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Preface 

This book is divided into two parts. 
The first one is purely algebraic. Its objective is the classification of 

quadratic forms over the field or rational numbers (Hasse-Minkowski 
theorem). It is achieved in Chapter IV. The first three chapters contain some 
preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. 
Chapter V applies the preceding results to integral quadratic forms of 
discriminant ± l. These forms occur in various questions: modular functions, 
differential topology, finite groups. 

The second part (Chapters VI and VII) uses "analytic" methods (holomor-
phic functions). Chapter VI gives the proof of the "theorem on arithmetic 
progressions" due to Dirichlet; this theorem is used at a critical point in the 
first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, 
and in particular, with theta functions. Some of the quadratic forms of 
Chapter V reappear here. 

The two parts correspond to lectures given in 1962 and 1964 to second 
year students at the Ecole Normale Superieure. A redaction of these lectures 
in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) 
and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to 
me; I extend here my gratitude to their authors. 

J.-P. Serre 

v 
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A Course in Arithmetic 



Part I 

Algebraic Methods 



Chapter I 

Finite Fields 

All fields considered below are supposed commutative. 

§1. Generalities 

1.1. Finite fields 

Let K be a field. The image of Z in K is an integral domain, hence 
isomorphic to Z or to ZfpZ, where p is prime; its field of fractions is iso-
morphic to Q or to Z/pZ = FP. In the first case, one says that K is of 
characteristic zero; in the second case, that K is of characteristic p. 

The characteristic of K is denoted by char(K). If char(K) = p =I= 0, pis 
also the smallest integer n >0 such that n.l = 0. 

Lemma.-/fchar(K) = p, the map a: x 1-+ xP is an isomorphism of K onto 
one of its subfields KP. 

We have a(xy) = a(x}a(y). Moreover, the binomial coefficient is 
congruent to 0 (mod p} if O<k<p. From this it follows that 

a(x+y) = a(x)+a(y); 

hence a is a homomorphism. Furthermore, a is clearly injective. 

Theorem 1.-i) The characteristic of a finite field K is a prime number 
p =F 0; iff= [K:FP], the number of elements of K is q = pf. 

ii) Let p be a prime number and let q = pf(J I) be a power of p. Let 
n be an algebraically closed field of characteristic p. There exists a unique 
subfield Fq of n which has q elements. It is the set of roots of the polynomial 
Xq-X. 

iii) All finite fietds with q = p1 elements are isomorphic to Fq. 
If K is finite, it does not contain the field Q. Hence its characteristic is a 

prime number p. Iff is the degree of the extension K/FP, it is clear that 
Card(K) = pf, and i) follows. 

On the other hand, if n is algebraically closed of characteristic p, the 
above lemma shows that the map x 1-+ xq (where q = pf, f I) is an 
automorphism of n; indeed, this map is the f- th iterate of the automorphism 
a: X I-+ xP (note that a is surjective since n is algebraically closed). Therefore, 
the elements X E n invariant by X I-+ xq form a subfield Fq of n. The derivative 
of the polynomial Xq- X is 

qxq- 1 -I = P·P'- 1 xq-l -I = -I 
3 



4 Finite fields 

and is not zero. This implies (since n is algebraically closed) that Xq- X 
has q distinct roots, hence Card(Fq) = q. Conversely, if K is a subfield of U 
with q elements, the multiplicative group K* of nonzero elements in K has 
q-l elements. Then xq-t = I if x e K* and = x if x e K. This proves 
that K is contained in Fq. Since Card(K) = Card(Fq) we have K = Fq which 
completes the proof of ii). 

Assertion iii) follows from ii) and from the fact that all fields with p1 

elements can be embedded in n since n is algebraically closed. 

1.2. The multiplicative group of a finite field 

Let p be a prime number, let f be an integer ;;;:; I, and let q = p1. 

Theorem multiplicative group F; of a finite field Fq is cyclic of 
order q-l. 

Proof If dis an integer ;;;:; I, recall that cf>(d) denotes the Euler cf>-function, 
i.e. the number of integers x with I x d which are prime to d (in other 
words, whose image in Z/dZ is a generator of this group). It is clear that the 
number of generators of a cyclic group of order dis cf>(d). 

Lemma n is an integer ;;;:; I, then n = cf>(d). (Recall that the nota-
tion dJn means that d divides n). din 

If d divides n, let C., be the unique subgroup of ZjnZ of order d, and 
let <D., be the set of generators of c.,. Since all elements of Z/nZ generate 
one of the C.,, the group Z/nZ is the disjoint union of the <D., and we have 

11 = Card(Z/nZ) = L Card(<D.,) = L cf>(d). 
dJn din 

Lemma 2.-Let J-1 be a finite group of order 11. Suppose that ,for all divisors 
d of n, the set of x e H such that x" = I has at most d elements. Then H is 
cyclic. 

Let d be a divisor of n. If there exists x e H of order d, the subgroup 
(x) = {I, x, ... , x"- 1 } generated by x is cyclic of order d; in view of the 
hypothesis, all elements y e H such that y 11 = I belong to (x). In particular, 
all elements of H of order d are generators of (x) and these are in number 
cf>(d). Hence, the number of elements of H of order dis 0 or cf>(d). If it were 
zero for a value of d, the formula n = cf>(d) would show that the number 

dJn 

of elements in 11 is < 11, contrary to hypothesis. In particular, there exists an 
element x e H of order n and H coincides with the cyclic group (x). 

Theorem 2 follows from lemma 2 applied to H = F: and n = q- I ; 
it is indeed obvious that the equation x" = I, which has degree d, has at 
most d solutions in Fq. 

Remark. The above proof shows more generally that all finite subgroups 
of the multiplicative group of a field are cyclic. 



Equations over a finite field 5 

&2. Equations over a finite field 

Let q be a power of a prime number p, and let K be a field with q elements. 

2.1. Power sums 

Lemma.-Let u be an integer The sum S(X") = x" is equal to -1 
xeK 

if u is I and divisible by q- I ; it is equal to 0 otherwise. 
(We agree that x" = I if u = 0 even if x = 0.) 
If u = 0, all the terms of the sum are equal to I ; hence S(X") = q.l = 0 

because K is of characteristic p. 
If u is and divisible by q-1, we have 0" = 0 and x" = I if x + 0. 

Hence S(X") = (q-1).1 = -I. 
Finally, if u is I and not divisible by q- I, the fact that K* is cyclic 

of order q- I (th. 2) shows that there exists y E K* such that y" + I. One has: 

S(X") = L x" = LY"x" = y"S(X") 
xeK• xeK• 

and (I-y")S(X") = 0 which implies that S(X") = 0. 
(Variant-Use the fact that, if d 2 is prime top, the sum of the d- th 

roots of unity is zero.) 

2.2. Chevalley theorem 

Theorem 3 (Chevalley- Warning).-Let /« E K[X1, ••• , Xn] be poly-
nomials in n variables such that deg f. < n, and let V be the set of their 
common zeros in K". One has " 

Card(V) = 0 (mod p). 

Put p = no-fa.q-l) and let X E K". If X E V, all the fix) are zero and 
CL 

P(x) = I; if x f V, one of the fix) is nonzero and f«(x)q- 1 = I, hence 
P(x) = 0. Thus Pis the characteristic function of V. If, for every polynomial 
f, we put S(/) = f(x), we have 

xeK" 
Card(V) = S(P) (modp) 

and we are reduced to showing that S(P) = 0. 
Now the hypothesis deg f« < n implies that deg P < n(q- I); thus P 

is a linear combination of monomials X" = Xr' ... with < n(q-1). 
It suffices to prove that, for such a monomial X", we have S(X") = 0, and 
this follows from the lemma since at least one u1 is <q-1. 

Corollary 1.- If degf, < n and if the/, have no constant term, then the/, 
have a nontrivial common zero. 

Indeed, if V were reduced to { 0 }, Card( V) would not be divisible by p. 
Corollary I applies notably when the f« are homogeneous. In particular: 
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Corollary 2.-A// quadratic forms in at least 3 variables over K have a 
non trivial zero. 

(In geometric language: every conic over a finite field has a rational 
point.) 

§3. Quadratic reciprocity law 

3.1. Squares in F4 

Let q be a power of a prime number p. 

Theorem 4.- -(a) If p = 2, then all elements ofF q are squares. 
(b) If p 9= 2, then the squares ofF; form a subgroup of index 2 in F;; 

this subgroup is the kernel of the homomorphism x x<q-l lll with values 
in { ± I}. 
(In other terms, one has an exact sequence: 

I F: 2 _,.. F: 1.) 

Case (a) follows from the fact that x x 2 is an automorphism of F4 • 

In case (b), let n be an algebraic closure of Fq; if x e F;, let yen be 
such that y 2 = x. We have: 

yq-l = x<4 -n12 =±I sincexq-t =I. 

For x to be a square in F4 it is necessary and sufficient that y belongs to F:, 
i.e. y4 - 1 =I. Hence F;2 is the kernel of Moreover, since F; 
is cyclic of order q- I, the index of F;2 is equal to 2. 

3.2. Legendre symbol (elementary case) 

Definition.-Let p be a prime number =I= 2, and let x e F;. The Legendre 

symbol of x, denoted is the integer x<p-l)/l = ±I. 

lt is convenient to extend to all of FP by = 0. Moreover, 

if x e Z has for image x' E F P' one writes = ( 

We = ( The Legendre symbol is a "character" (cf. 

chap. VI, §I). As seen in theorem 4, = I is equivalent to x e F;2 ; if 

x e F; has y as a square root in an algebraic closure of FP, = yP- 1 • 
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Computation x = l, -1, 2: 

If n is an odd integer, let e(n) and w(n) be the elements of Z/2Z defined by: 

e(n) = 11-1 (mod 2) = {0 if n = l (mod 4) 
2 lifn = -l(mod4) 

w(n) = 112 -:=-J (mod 2) = {0 if n = ± l (mod 8) 
8 I if n = ± 5 (mod 8) 

[The function e is a homomorphism of the multiplicative group (Z/4Z)* 
onto Z/2Z; similarly, w is a homomorphism of (Z/8Z)* onto Z/2Z.] 

Theorem 5.-The following formulas hold: 

( I' 
i) p) = l 

ii) ( -ty<PI 

"') (2) ( l)w(p) Ill-=-. 
p 

Only the last deserves a proof. If at denotes a primitive 8th root of unity 
in an algebraic closure il of F P' the element y = at+ at- 1 verifies y 2 = 2 
(from at4 = - l it follows that at 2 +at- 2 = 0). We have 

yP = atp+at-p. 

If p = ± l (mod 8), this implies yP = y, thus = yP_, = I. If p = ± 5 

(mod 8), one finds yP = at 5 +at-s = -(at+at- 1) = -y. (This again follows 
from at4 = -I.) We deduce from this that yP- 1 = -I, whence iii) follows. 

Remark. Theorem 5 can be expressed in the following way: 
- l is a square (mod p) if and only if p = I (mod 4). 

2 is a square (mod p) if and only if p = ± l (mod 8). 

3.3 Quadratic reciprocity fall' 

Let I and p be two distinct prime numbers different from 2. 

Theorem 6 (Gauss).- (D = (7) ( -IY1'>•<Pl. 

Let n be an algebraic closure of F P' and let w E n be a primitive /-th 
root of unity. If x E F 1, the element w" is well defined since w1 = I. Thus 
we are able to form the "Gauss sum": 

y = L 
xeF1 I 

Lemma 1.-y2 = ( -t)'<'lf. 
(By abuse of notation I denotes also the image of I in the field Fp.) 
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We have 

y2 = L(xz)wx+: = L w"(L(t(u-t)))· 
x, z I ueF1 reF, I 

Now if t =!= 0: 

and 
< -l)'(l>y2 = I c.w·. 

ueF1 

where 

c.= L -- . ( I-ur 1) 

lEFT I 

If u = 0, C0 = L (1-) = 1-1; otherwise s = 1-ut- 1 runs over F1-{ 1 }, 
IEF7 I 

and we have 

c. = L - (!) = - (!) = - I, 
seF1 I I I 

since in Fj there are as many squares as non squares. Hence c.w" = 
ueF, 1- I- w" = I, which proves the lemma. 

ueF; 

Lemma 2.-yp-t = (i) 
Since n is of characteristic p, we have 

yP = L 1vxp = L w• == (P- 1
) y = (/!_) y; 

xeF1 p zeF, I I I 

hence yp- 1 = ( T) . 
Theorem 6 is now immediate. Indeed, by lemmas I and 2, 

and the second part of th. 5 proves that 

( I)) = <- w(l>•(p). 

Translation.-Write IRp if I is a square (mod p) (that is to say, if I is a 
"quadratic residue" modulo p) and /Np otherwise. Theorem 6 means that 

IRp = pRI if p or I =: I (mod 4) 

/Rp pNI if p and I= -I (mod 4). 
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Remark. Theorem 6 can be used to compute Legendre symbols by 
successive reductions. Thus: 

= = G:) = = -(;9) -I. 

Another proof of the quadratic reciprocity law (G. EISENSTEIN, J. Crelle, 
29, 1845, pp. 177-184.) 

i) Gauss Lemma 

Let p be a prime number =+= 2, and let S be a subset of r; such that r; is 
the disjoint union of Sand - S. In the following we take S = { I, ... , P l 

If .reS and a e r;, we write as in the form as = e,(a)s .. with e,(a) = ±I 
and .r,. e S. 

Lemma = n e.(a). 
p sES 

Remark first that, if s and s' are two distinct elements of S, then s .. =+= s; 
(for otherwise s = ± s' contrary to the choice of S). This shows that s s .. 
is a bijection of S onto itself. Multiplying the equalities as = e,(a)s ... we 
obtain 

a<p-l)/2 n S = (n e,(a)) n Sa = (n e.(a)) n S, 
seS seS seS seS seS 

hence 
a<p-1)/2 = ne.(a); 

seS 

this proves the lemma a<'- 1>12 in F,. 

Example.-Take a= 2 and S = {1, ... , P; 1}. We have e,(2) = I if 

2.r ::i! P; 1 and e,(2) = -I otherwise. From this we get (;) = ( -l)ft<P> 

where n(p) is the number of integers s such that p- 1 < s ::i! p-I . If p is 
4 2 

of the form 4k + I (resp. 4k- 1), then n(p) = k. Thus we recover the fact 

= 1 if p = ± 1 (mod 8) = - 1 if p = ± 5 (mod 8), cf. th. 5. 

ii) A trigonometric lemma 

Lemma.-Let m be a positive odd integer. One has 
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sin mx- ( 4)(m-l)/2 n ( . 2 . 2 2rrj) -. --- - - Sin x-sin --- . 
SinX m 

This is elementary (for instance, prove first that sin (mx)fsin (x) is a poly-
nomial of degree (m -1)/2 in sin2 x, then remark that this polynomial has 

for roots the sin2 2rrf with I:;?.}:;?. (m-1)/2; the factor (-4)(m-I)Jl IS 
m 

obtained by comparing coefficients of e1<m-t>x on both sides). 

iii) Proof of the quadratic reciprocity law 

Let I and p be two distinct prime numbers different from 2. Let 

S={l, ... ,(p-1)/2} 

as above. From Gauss' lemma, we get 

( = n e,{l). 
p sES 

Now the equality Is = e,(l)s1 shows that 

. 2rr 1 (/) • 2rr Sin - tS = e, Sin- s1• 
p p 

Multiplying these equalities, and taking into account that s H s1 is a bi-
jection, we get: 

(I) f1 (/) f1 . 2rrls / . 21TS - = e, = stn - Sin - . 
p sES .<ES p p 

By applying the trigonometric lemma with m = I, we can rewrite this: 

(I)- f1 ( 4)(1-1)/2 n (. 2 2rrs . 2 2rrt) - - - s1n - - sm -
p sES tET p I 

- - sin -- sm - , - ( 4)(1-l)(p-1)/4 n (. 2 2rrs . 2 2rrt) 
sES, tET p / 

where T denotes the set of integers between I and (/-1)/2. Permuting the 
roles of I and p, we obtain similarly: 

(p)- ( 4)(1-l)(p-1)/4 n (. 2 2rrt . 2 2rrs) - - - Sin - ·- - Sin - . 
/ sES, rET / p 

The factors giving and (7) are identical up to sign. Since there are 

{p-1) (/-1)/4 of these, we find: 

= (Y)<-J)(p-1)(1-1)/4. 

This is the quadratic reciprocity law, cf. th. 6. 



Chapter 1/ 

p-Adic Fields 

In this chapter p denotes a prime number. 

§1. The ring ZP and the field QP 

1.1. Definitions 

For every n 1, let A.= Z/p"Z; it is the ring of classes of integers 
(mod p"). An element of A. defines in an obvious way an element of A._ 1 ; 

we thus obtain a homomorphism 

which is surjective and whose kernel is p"- 1 A •. 
The sequence 

forms a "projective system" indexed by the integers I. 

Definition 1.-The ring of p-adic integers ZP is the projective limit of the 
system (A., .P.) defined above. 

By definition, an element of zp = lim (A., .P.) is a sequence X = 

( ... , x., ... , x 1 ) with x. eA. and .P.(x.) = x._ 1 if n 2. Addition and 
multiplication in ZP are defined "coordinate by coordinate". In other words, 
ZP is a subring of the product n A •. If we give A. the discrete topology and 

n A. the product topology, the ring ZP inherits a topology which turns it 
into a compact space (since it is closed in a product of compact spaces). 

1.2. Properties of ZP 

Let "•: ZP A. be the function which associates to a p-adic integer x its 
n-th component x •. 

Proposition 1.-The sequence 0 ZP ZP 0 is an exact sequence 
of abelian groups. 
(Thus we can identify ZP/p"ZP with A. = Z/p"Z.) 

Multiplication by p (hence also by p") is injective in ZP; indeed, if 
x = (x.) is a p-adic integer such t-hat px = 0, we have pxn+ 1 = 0 for all n, 
and x.+ 1 is of the form p"y,+ 1 with Yn+ 1 e An+ 1 ; since x. = .Pn+ 1(xn+ 1), we 
see that x. is also divisible by p", hence, is zero. 

II 
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It is clear that the kernel of e, contains p"Z,; conversely, if x = (x'") 
belongs to ker(em), one has Xm = 0 (mod p") for all m !;;; n which means that 
there exists a well defined element Ym-n of Am-n such that its image under 
the isomorphism Am-n--+ pnZ/pmz cAm satisfies Xm = p"Ym- 11• TheY; define 
an element y of z, = lim.A;, and one checks immediately that p11y = x. -which proves the proposition. 

Proposition 2.-(a) For an element of z, (resp. of A11 ) to be invertible it 
is necessary and sufficient that it is not divisible by p. 

(b) If U denotes the group of invertible elements of z,, every nonzero 
element of z, can be written uniquely in the form p11U with u e U and n !;;; 0. 
(An element of U is called a p-adic unit.) 

It suffices to prove (a) for A,.; the case of z, will follow. Now, if x e A, 
does not belong to pA,, its image in A 1 = F, is not zero, thus invertible: 
hence there exists y, z e A,. such that xy = 1 - pz, hence 

xy(l + pz +. . . + p11 - 1 Z11 - 1) = I, 
which proves that x is invertible. 

On the other hand, if x e z, is not zero, there exists a largest integer n 
such that x,. = e,.(x) is zero; then x = p"u with u not divisible by p, hence 
u e U by (a). The uniqueness of the decomposition is clear. 

Notation.-Let x be a nonzero element of z,; write x in the form p11u 
with u e U. The integer n is called the p-adic valuation of x and denoted by 
v,(x). We put v,(O) = + oo and we have 

v,(xy) = v,(x) +vp(y), v,(x+ y) !;;; inf (v,(x), v,(y)) 

It follows easily from these formulas that z, is an integral domain. 

Proposition 3.-The topology on z, can be defined by the distance 

d(x, y) = e-••p(x->·>. 

The ring z, is a complete metric space in which Z is dense. 
The ideals p"Z, form a basis of neighborhoods of 0; since x e p"Z, is 

equivalent to v,(x) !;;; n, the topology on z, is defined by the distance 
d(x, y) = e-•p(x-y>. Since z, is compact, it is complete. Finally, if x = (x,) 
is an element of z,, and if y, e Z is such that Y11 = X11 (mod p"), then lim.y11 = 
x, which proves that Z is dense in z,. 
1.3. The field Q, 

Definition 2.-The field of p-adic numbers, denoted by Q,, is the field of 
fractions of the ring z,. 

One sees immediately that Q, = z, [p- 1]. Every element x of Q; can be 
written uniquely in the form p11u with n e Z, u e U; here again, n is called the 
p-adic valuation of x and is denoted by vp(x). One has v,(x) !;;; 0 if and only 
if X E Z,. 
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Proposition 4.-The field QP, with the topology defined by d(x, y) = 
e- vp(x- Yl, is locally compact, and contains ZP as an open subring; the field Q 
is dense in Qr 

This is clear. 

Remarks.-!) We could have defined QP (resp. ZP) as the completion 
of Q (resp. Z) for the p-adic distance d. 

2) The distance d satisfies the "ultrametric" inequality 

d(x, z) sup (d(x, y), d(y, z)). 

From this one sees that a sequence u. has a limit if and only if 

lim. (u.+ 1 -u.) = 0; 

similarly, a series converges if and only if its general term tends to 0. 

§2. p-adic equations 

2.1. Solutions 

Lemma.-Let ... -+ D.-+ D._ 1 -+ ... -+ D1 be a projective system, and 
let D = lim . D, be its projective limit. If the D, are finite and nonempty, 

+--
then D is nonempty. 

The fact that D * 0 is clear if the D. -+ D._ 1 are surjective; we are 
going to reduce the lemma to this special case. For this, denote by D.,p the 
image of D,+p in D.; for fixed n, the D •. p form a decreasing family of finite 
nonempty subsets; hence this family is stationary, i.e. D.,p is independent 
of p for p large enough. Let E. be this limit value of the D •. r One checks 
immediately that D.-+ D._, carries E. onto E._ 1 ; since the E. are non· 
empty, we have lim. E. * 0 by the remark made at the beginning; hence. 

+--
afortiori lim. D. * 0. 

+--
Notation.-)[ f e ZP[X1, .•. , Xm] is a polynomial with coefficients in 

ZP, and if n is an integer l, we denote by J. the polynomial with coefficients 
in A. deduced from f by reduction (mod p"). 

Proposition 5.-Let f<il e Zp(X1, ••• , X'"] be polynomials with p-adic 
integer coefficients. The following are equivalent: 

i) The J<il have a common zero in (Zp)'". 
ii) For all n > I, the polynomials J.<il have a common zero in (A.)'". 
Let D (resp. D.) be the set of common zeros of the f(i> (resp. f. <i>). The 

D. are finite and we have D = lim . D •. By the above lemma, D is nonempty 
+--

if and only if the D. are nonempty; hence the proposition. 

A point x = (x1, ... , xm) of (Zp)'" is called primitive if one of the X; is 
invertible, that is, if the X; are not all divisible by p. One defines in a similar 
way the primitive elements of (A.)'". 
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Proposition 6. -Let fCil e ZP[X1, ••• , Xm] be homogeneous polynomials 
with p-adic integer coefficients. The following are equivalent: 

a) The f<il have a non trivial common zero in (Qp)m. 
b) The f(il have a common primitive zero in (Zp)m. 
c) For all n > I, the J..<il have a common primitive zero in (A.)m. 
The implication b):;. a) is trivial. Conversely, if x = (x 1, ••• , xm) is a 

nontrivial common zero of the J(il, put 

h = inf(vp(x1), ••. , vp(xm)) and y = p-hx. 

It is clear that y is a primitive element of (Zp)m, and that it is a common 
zero of the J(il. Hence a). 

The equivalence of b) and c) follows from the above lemma. 

2.2. Amelioration of approximate solutions. 

We are concerned with passing from a solution (mod p") to a true 
solution (i.e. with coefficients in Zp). One uses the following lemma (p-adic 
analogue of "Newton's method"): 

Lemma.-Let f E zp [X] and let!' be its derivative. Let X E Zp, n, k E z 
such that 0 2k < n, f(x) = 0 (mod p"), vP(f'(x)) = k. Then there exists 
y E Zp SUCh that 

f(y) = O(modp"+'), vp(f'(y)) = k, andy= x(modp"-k). 

Take y of the form x+p"-kz with z E zp. By Taylor's formula we have 

f(y) = f(x)+p"-kzf'(x)+p 2n-lka With a E Zp. 

By hypothesisf(x) = p"b andf'(x) = pkc with be ZP and c e U. This allows 
us to choose z in such a way that 

b+zc = 0 (mod p). 
From this we get 

f(y) = p"(b+zc)+p2"- 2ka = O(modp"+ 1) 

since 2n- 2k > n. Finally Taylor's formula applied to f' shows that 
f'(y) = pkc (mod p"-k); since n-k > k, we see that vP(f'(y)) = k. 

Theorem 1.-Let f E Zp[X1, ••• , XmJ, x = (x;) e (Zp)m, n, k e Z and jan 
integer such that 0 j m. Suppose that 0 < 2k < n and that 

f(x) = 0 (mod p") and vP ( of (x)) = k. 
axj 

Then there exists a zero y off in (Zp)m which is congruent to x modulo p•-k. 
Suppose first that m = I. By applying the above lemma to x< 01 = x, 

we obtain x<ll e ZP congruent to x<01 (mod p"-k) and such that 

f(x< 11) = O(modp"+ 1) and vP(f'(x<ll)) = k. 
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We can apply the lemma to x< 1>, after replacing n by n+ I. Arguing induc-
tively, we construct in this way a sequence x<0 >, ... , x<'>, ... such that 

x<q+!l = x<'>(modp"+q-k), f(x<'>) = O(modp"+'). 

This is a Cauchy sequence. If y is its limit, we have /(y) = 0 and y = x 
(mod p"-k), hence the theorem for m = I. 

The case m > I reduces to the case m = I by modifying only x1. More 
precisely, let J E Zp[X1) be the polynomial in one variable obtained by 
replacing Xi, i =I= j, by xi. What has just been proven can be applied to J and 
x1; this shows the existence of y1 = x1 (mod p"-') such that J(y1) = 0. If 
one puts Yi = xi fori =I= j, the element y = (yi) satisfies the desired condition. 

Corollary 1.-Every simple zero of the reduction modulo p of a polynomial 
f lifts to a zero off with coefficients in ZP. 

(If g is a polynomial over a field k, a zero x of g is called simple if at 
least one of the partial derivatives cgfoX1 is nonzero at x.) 

This is the special case n = I, k = 0. 

Corollary 2.-Suppose p =I= 2. Let f(X) = '£aiiXiX1 with au = a1i be a 
quadratic form with coefficients in zp whose discriminant det(au) is invertible. 
Let a E ZP. Every primitive solution of the equation f(x) = a (mod p) lifts to a 
true solution. 

In view of cor. I, it suffices to show that x does not annihilate all the 

partial derivatives off modulo p. Now of = 2'£piiX1 ; since det(au) $ 0 a xi 
(mod p) and xis primitive, one of these partial derivatives is $0 (mod p). 

Corollary 3.-Suppose p = 2. Let f = '£aiJXiX1 with aii = a1i be a 
quadratic form with coefficients in z2 and let a E z2. Let X be a primitive 
solution of f(x) = a (mod 8). We can lift x to a true solution provided x does 

not annihilate all the of_ modulo 4; this last condition is fulfilled if det(aiJ) is 
invertible. axj 

The firs-t assertion follows from the theorem applied to n = 3, k = I; the 
second can be proved as in the case p =1= 2 (taking into account the factor 2). 

*3. The multiplicatiPe group ofQP 

3.1. The filtration of the group of units 

Let U = z; be the group of p-adic units. For every n ;;; I, put U" = 
l+p"ZP; this is the kernel of the homomorphism e": U -+(Z/p"Z)*. In 
particular, the quotient UfU 1 can be identified with F;, hence is cyclic of 
order p-1 (cf. Chap. I, th. 2). The U" form a decreasing sequence of open 
subgroups of U, and U = lim. U/Un. If n ;;; I, the map 

(I +p"x) 1-+ (x modulo p) 
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defines an isomorphism u.;u.+ I -)> ZjpZ; this follows from the formula: 

(l+p"x)(l+p"y) = l+p"(x+y) (modp"+ 1). 

We see from this, by induction on n, that U 1/U. has order p"- 1• 

Lemma.-Let 0 --+ A -+ E _ _,._ B-+ 0 be an exact sequence of commutath·e 
groups (denoted additively) 1rith A and B finite with orders a and b prime to 
each other. Let B' be the set of x E E such that bx = 0. The group E is the 
direct sum of A and B'. Moreover B' is the only subgroup of£ isomorphic to B. 

Since a and bare relatively prime, there exist r, s E Z such that ar+bs = I. 
If x E A n B', then ax = bx = 0, hence (ar+bs) x = x = 0; and A n B' = 
0. Moreover, all x E E can be written x = arx+bsx; since bB' = 0, we have 
bE c A, hence bsx E A; on the other hand, from abE = 0 follows that 
arx E B'. Hence we see that E = A EB B' and the projection E---+ B defines 
an isomorphism of B' onto B. Conversely, if B" is a subgroup of E iso· 
morphic to B, we have bB" = 0 hence B" c B' and B" = B' because these 
groups have the same order_ 

Proposition 7.---0ne has U = V x U 1 where V = { x E UJ;x.p- 1 = I } is the 
unique subgroup of U isomorphic to F;. 

One applies the lemma to the exact sequences 

I---+ U1/U.-+ U/U. -)> F:-+ I, 

which is allowable because the order of lJ 1 ;u. is p" -t and the order of F; 
is p-I. From this, one concludes that U/U. contains a unique subgroup v. 
isomorphic to F; and the projection 

u;u. _,_ u;u._ 1 

carries V. isomorphicatly onto v._ 1 . Since U =lim. U/U., we get from 
+--

this, by passage to the limit, a subgroup V of U isomorphic to F;. One has 
lJ = V xU 1 ; the uniqueness of V follows from that of the v •. 

Corollary.-The field QP contains the (p-l)th roots of unity. 

Remarks- I) The group V is called the group of multiplicative repre· 
sentatites of the elements ofF;. 

2) The existence of V can also be proved by applying cor. I of th. I to 
the equation xq-t -1 = 0. 

3.2. Structure of the group U 1 

Lemma.-Let X E u.- u.+ l with 11 ;;; I if p * 2 and n ;;; 2 if p = 2. 
Then xP E u.+ I -Un+2· 

By hypothesis, one has x = I + kp" with k $ 0 (mod p). The binomial 
formula gives 

Xp = J+kpn+l+ . .. +kPp•P 

and the exponents in the terms not written are ;;; 2n +I, hence also ;;; 11 + 2. 
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Moreover np n + 2 (due to the fact that n 2 if p = 2). This shows that 

xP = l + kp"+ 1 (mod p"+ 2) 

Proposition 8.-/f p '*' 2, u I is isomorphic to zp. 
If p = 2, ul = {±I} X u2 and Uz is isomorphic to Zz. 

Considei first the case pot 2. Choose an element a E U 1 -U2 , for 
example C( = I +p. By the above lemma, we have aP' E ui+ I- ui+2· Let 
a. be the image of a in U 1/U.; we have (a.)P"- 2 4' I and (a.)P"_, = l. But 
U 1/U. is of order p"- 1 ; hence it is a cyclic group, generated by a •. Now, 
denote by e •. a the isomorphism z ....... of Zjp"- I z onto u 1/U •. The diagram 

On+ J, cr: Zjp"Z ------+ 

l l 
is commutative. From this one sees that the e •. " define an isomorphism 
(} of zp = lim . Z/p"- I z onto u I = lim . u 1/U., hence the proposition for 
p '*' 2. 

Suppose now that p = 2. Choose a E U 2 - U 3 , that is a = 5 (mod 8). 
Define as above isomorphisms 

e •. a: Z/2"- 2 Z-+ U2/U., 
hence an isomorphism ea: Z2 -+ U2 • On the other hand, the homomorphism 

U1 -+ UtfU2 Z/2Z 

induces an isomorphism of { ± I } onto Z/2Z. From this we get 

U 1 = {±I}xU2 , q.e.d. 

Theorem 2.-The group Q; is isomorphic to z X zp X Z/(p- I )Z if p '*' 2 
and to Zx z2 X Z/2Z ifp = 2. 

Every element x E Q; can be written uniquely in the form x = p"u with 
n E Z and u E U. Hence Q; Z xU. Moreover, prop. 7 proves that U = 
V x U 1 where V is cyclic of order p- I, and the structure of U 1 is given by 
prop. 8. 

3.3. Squares in Q; 
Theorem 3.-Suppose p 4' 2 and let x = p"u be an element of Q;, with 

n E Z and u E U. For x to be a square it is necessary and sufficient that n is 
even and the image ii of u in F; = U/U 1 is a square. 

(The last condition means that the Legendre_ symbol of u is equal 

to I. We write in the instead of(;).) 
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Decompose u in the form u = v.u 1 with v E V and u1 E U1• The decom-
position Q; Z x V x U1 of th. 2 proves that xis a square if and only if 
n is even and v and u 1 are squares; but U1 is isomorphic to z, and 2 is 
invertible in z,; all the elements of u I are then squares. Since v is iso-
morphic to F;, the theorem follows. 

Corollary.-lf p =!= 2, the group Q;;Q;2 is a group of type (2, 2). It has 

for representatives { I. p, u, up} 1rhere u c U is such that (;) = - I. 

This is clear. 

Theorem 4.-For all eleme111 x = pnu of Qi to be a square it is necessary 
and sufficient that n is even and u = I (mod 8). 

The decomposition U = { ±I} x U2 shows that u is a square if and only 
if u belongs to U2 and is a square in U2• Now the isomorphism 8: Z 2 -+ U2 

constructed in the proof of prop. 8 carries rz2 onto un+ 2· Taking II = I. 
we see that the set of squares of U2 is equal to U3 • An element u c U is 
then a square if and only if it is congruent to I modulo 8, hence the theorem. 

Remark.-The fact that every element of U3 is a square follows also 
from cor. 3 of th. I applied to the quadratic form X 2 • 

Corollary.-The group Qi /Qi 2 is of type (2, 2, 2). It has for representatives 
{ ± I, ± 5, ± 2, ± 10 }. 

This follows from the fact that { ± I, ± 5} is a system of representatives 
for U/U3 • 

Remarks. 
I) For p = 2, define homomorphisms e, w: U/U3 -+ Z/2Z by means of 

the formulas of chap. I, no 3.2: 

z-1 {0 e(z) = (mod 2) = 
2 I 

if z = I (mod 4) 
if z = -I (mod 4) 

w(z) = (mod 2) = {0 if z = ±I (mod 8) 
8 I if z = ± 5 (mod 8). 

The map e defines an isomorphism of U/U2 onto Z/2Z and the map w an 
isomorphism ofU2/U3 onto Z/2Z. The pair {e, w) defines thus an isomorphism 
of U/U3 onto Z/2Z x Z/2Z; in particular a 2-adic unit z is a square if and 
only if e{z) = w(z) = 0. 

2) Theorems 3 and 4 show that Q;2 is an open subgroup of Q;. 



Chapter III 

Hilbert Symbol 

§I. Loc11l properties 

In this paragraph, k denotes either the field R of real numbers or the 
field QP of p-adic numbers (p being a prime number). 

1.1. Definition and first properties 

Let a, be k*. We put: 
(a, b) = I if z2 -ax2 -by2 = 0 has a solution (z, X, y) * (0, o. 0) in e. 
(a, b) = -I otherwise. 

The number (a, b) = ±I is called the Hilbert symbol of a and b relative to k. 
It is clear that (a, b) does not change when a and bare multiplied by squares; 
thus the Hilbert symbol defines a map from k*/k* 2 x k*/k·* 2 into {±I}. 

Proposition I.-Let a, be k* and let kb = k(..j b). For (a, b) = I it is 
necessary and sufficient that a belongs to the group Nk: of norms of elements 
ofk:. 

If b is the square of an element c, the equation z2 - ax2 - by2 = 0 has 
(c, 0, I) for a solution, hence (a, b) = I, and the proposition is clear in this 
case since kb = k and Nk: = k*. Otherwise, kb is quadratic over k; if {j 
denotes a square root of b, every element e kb can be written z + f3y with 
y, z e: k and the norm is equal to z2 -by2 • If a e Nk:, there exist 
y, zek such that a= z2 -by2 , so that the quadratic form z2 -ax2 -by2 

has a zero (z, I, y) and we have (a, b) = I. 
Conversely, if (a, b) = I, this form has a zero (z, x, y) *' (0, 0, 0). One 

has x =1= 0, for otherwise b would be a square. From this we see that a is the 

norm of + f3 !. . 
X X 

Proposition 2.-The Hilbert symbol satisfies the formulas: 

i) (a, b) = (b, a) and (a, c2) = I, 
ii) (a, -a)= I and (a, l-a) = I, 

iii) (a, b) = 1 (aa', b) = (a', b), 
iv) (a, b) =(a, -ab) =(a, (1-a)b). 

(In these formulas a, a', b, c denote elements of k*; one supposes a =1= 
when the formula contains the term I -a.) 

Formula i) is obvious. If b = -a (resp. if b = 1-a) the quadratic 
form z2 -ax2 -by2 has for zero (0, I, 1) (resp. (1, I, 1)); thus (a, b)= I, 
which proves ii). If(a, b) = I, a is contained in the subgroup Nk:, cf. prop. I; 
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we then have a' E Nk: ·<c> aa' E: Nk:. which proves iii). Formula iv) 
follows from i), ii), iii). 

Remark.-Formula iii) is a particular case of 

v) (aa', b) = (a, b) (a', b), 

which expresses the bilinearity of the Hilbert symbol; this formula will be 
proved in the following section. 

1.2. Computation of(a, b) 

Theorem 1.-lfk = R, we have (a, b)= I !la orb is >0, and(a, b)= -I 
if a and bare <0. 

If k = QP and if 1re write a, b in the form p•u, pPv ll'here u and v belong to 
the group U of p-adic units, ll'e have 

ca. b)= ifp 2 

(a, b)= (-J)<(u)<(v)+2w(v)+p"'(u) ifp = 2. 

[Recall that the Legendre symbol(;) where ii is the image of u 

by the homomorphism of reduction modulo p: U-+ F;. As for e(u) and 
u-1 u2 -I 

w(u), they denote respectively the class modulo 2 of -- and of ---
cf. Chap. II, n° 3.3.] 2 8 

Theorem 2.-The Hilbert symbol is a nondegenerate bilinear form on the 
F2 -vector space k*lk* 2 • 

[The bilinearity of (a, b) is just formula v) mentioned at the end of no 1.1. 
The assertion "(a, b) is nondegenerate" means that, if b E k* is such that 
(a, b) = I for all a c= k*, one has bE k* 2 .] 

Corollary.-.({ b is not a square, the group Nk: defined in prop. I is a 
subgroup of index 2 ink*. 

The homomorphism if>h: k* -+ { ± I } defined by if>b(a} = (a, b) has 
kernel Nk: by prop. 1; moreover, if>b is surjective since (a, b) is nondegener-
ate. Hence if>h defines an isomorphism of k* 1 Nkt onto { ± 1}; the corollary 
follows from this. 

Remark.-More generally, let L be a finite extension of k which is 
galoisian and whose Galois group G is commutative. One can prove that 
k* IN L * is isomorphic to G and that the knowledge of the group N L * 
determines L. These are two of the main results of the so-called "local class 
field theory." 

Proof of theorems 1 and 2. 
The case k = R is trivial. Note that k* lk* 2 is then a vector space of 
dimension I (over the field F 2 ) having { I, - I } for representatives. 
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Suppose now that k = QP. 

Lemma.-Let v E U be a p-adic unit. If the equation z 2 - px2 - vy2 = 0 
has a nontrivial solution in QP, it has a solution (z, x, y) such that z, y E U 
and X E ZP. 

By prop. 6 of chap. II, no 2.1, the given equation has a primitive solution 
(z, x, y). Let us show that this solution has the desired property. If it did not, 
we would have either y = 0 (mod p) or z = 0 (mod p); since z2 - vi = 0 
(mod p) and v $ 0 (mod p), we would have both y = 0 (mod p) and z = 0 
(mod p), hence px2 = 0 (mod p2 ), i.e. x = 0 (mod p) contrary to the primitive 
character of (z, x, y). 

We now return to the proof of theorem I, and we suppose first that p * 2. 
It is clear that the exponents IX and f3 come in only by their residue 

modulo 2; in view of the symmetry of the Hilbert symbol, there are only 
three cases to consider: 

I) IX = 0, f3 = 0. We must check that (u, v) = I. Now the equation 

z2 -ux2 -vy2 = 0 

has a nontrivial solution modulo p (chap. I, §2, cor. 2 to th. 3); since the 
discriminant of this quadratic form is a p-adic unit, the above solution 
lifts to a p-adic solution (chap. II, no 2.2, cor. 2 to th. I); hence (u, v) = I. 

2) IX = I, f3 = 0. We must check that (pu, v) = Since (u, v) = I we 

have (pu, v) = (p, v) by formula iii) of prop. 2; thus it suffices to check that 

(p, v) = This is clear if vis a square, the two terms being equal to I. 

= -I, see chap. II, no 3.3, th. 3. Then the above lemma 

shows that z2 - px2 - vy2 does not have a nontrivial zero and so (p, v) = - 1. 

3) IX= I,{J = l. Wemustcheckthat{pu,pv) = 

Formula iv) of prop. 2 shows that: 

(pu, pv) = (pu, -p2 uv) = (pu, -uv). 

By what we have just seen, (pu, pv) = ( =puv), from which the desired result 

follows since = ( -l)<P- 1112• 

Once theorem I is established (for p * 2), theorem 2 follows from it, 
since the formula giving (a, b) is bilinear; in order to prove the nondegeneracy, 
it suffices to exhibit, for all a E k* Jk* 2 distinct from the neutral element, an 
element b such that (a, b) = -I. By cor. to th. 3 of chap. II, no 3.3, we can 

take a = p, u or up with u E U such that = -I; then we choose for b 
respectively, u, p, and u. P 
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The case p = 2. Here again, il( and {3 come in only by their residue modulo 
2 and there are three cases to consider: 

I) il( = 0, {3 = 0. We must check that (u, v) = I if u or vis congruent to 
I (mod 4) and (u, v) = -I otherwise. Suppose first that u = I (mod 4). 
Then u = I (mod 8) or u = 5 (mod 8). In the first case u is a square (chap. II, 
no 3.3, th. 4) and we do have (u, v) = 1. In the second case we have u+4v = 1 
(mod 8) and there exists w e U such that w2 = u + 4v; the form z 2 - ux2 - vy2 

has thus (w, 1, 2) for a zero and we do have (u, v) = 1. Let us now suppose 
u = v = -1 (mod 4); if (z, x, y) is a primitive solution of z2 - ux2 - vy2 = 0, 
then z2 +x2 + y 2 = 0 (mod 4); but the squares of Z/4Z are 0 and 1; this 
congruence implies that x, y, z are congruent to 0 (mod 2), which contradicts 
the hypothesis of primitivity. Thus we have (u, v) = -1 in this case. 

2) IX = I, f3 = 0. We must check that (2u, v) = ( -Iy<•I•C•I+w<•l. First let 
us show that (2, v) = ( -1)"'<•1, i.e. that (2, v) = I is equivalent to v = ± 1 
(mod 8). By the above lemma if (2, v) = I, there exists x, y, z e Z 2 such 
that z2 - 2x2 - vy2 = 0 and y, z * 0 (mod 2). Then we have y 2 = z2 = I 
(mod 8), hence I- 2x2 - v = 0 (mod 8). But the only squares modulo 8 are 
0, I, and 4; from this we get v = ±I (mod 8). Conversely, if v = I (mod 8), 
v is a square and (2, v) = I ; if v = -1 (mod 8), the equation z2 - 2x2 - vy2 

= 0 has (1, 1, l) for a solution modulo 8, and this approximate solution 
lifts to a true solution (chap. II, no 2.2, cor. 3 to th. I); thus we have (2, v) 
=I. 

We show next that (2u, v) = (2, v) (u, v); by prop. 2, this is true if 
(2, v) = 1 or (u, v) = 1. The remaining case is (2, v) = (u, v) = -1, i.e. 
v = 3 (mod 8) and u = 3 or -I (mod 8); after multiplying u and v by 
squares, we can suppose that u = - 1, v = 3 or u = 3, v = - 5; now the 
equations 

have for solution (l, 1, 1); thus we have (2u, v) = I. 
3) il( = 1, f3 = I. We must check that 

(2u, 2v) = ( -J)'(u)r(v)+w(u)+w(vl. 

Now formula iv) of prop. 2 shows that 

(2u, 2v) = (2u, -4uv) = (2u, -ur). 

By what we have just seen, we have 

(2u, 2v) = ( -J)•<•l•(-uv)+w<-••·1. 

Since e( -I) = I, w( -1) = 0 and e(u) (l +e(u)) = 0, the above exponent is 
equal to e(u)e(v)+w(u)+w(v), which proves theorem 1. The bilinearity of 
(a, b) follows from the formula giving this symbol, since e and w are homo-
morphisms. The nondegeneracy is checked on the representatives { u, 2u} 
with u = I, 5, - I or -5. Indeed, we have (5, 2u) = -I and 

(- I, - I) = (- I, - 5) = - I. 
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Remark.-Write (a, b) in the form ( -l)[a.bJ with [a, b] e Z/2Z. Then 
[a, b] is a symmetric bilinear form on k*/k* 2 with values in Z/2Z and th. 1 
gives its matrix with respect to some basis of k* fk* 2 : 

- For k = R, it is the matrix (1). 

- Fork= QP' p =I= 2, with basis {p, u} -I, it is the matrix 

if p = I (mod 4) and (! if p = 3 (mod 4). 

(0 0 I) 
- For k = Q 2 , with basis { 2. -I, 5} it is the matrix 0 I 0 . 

I 0 0 

§2. Global properties 

The field Q of rational numbers embeds as a subfield into each of the 
fields QP and R. If a, be Q*, (a, b)P (resp. (a, b)"") denotes the Hilbert 
symbol of their images in QP (resp. R). We define V to be the set of prime 
numbers together with the symbol oo, and make the convention that Q"' = 
R, hence Q is dense in Q. for all v e V. 

2.1. Product formula 

Theorem 3 (Hilbert).-.if a, be Q*, ll'e have (a, b). = I for almost all 
v e V and fl (a, b). = I. 

veV 

(The expression "almost all 11 e V" means "all the elements of V except a 
finite number".) 

Since the Hilbert symbols are bilinear, it suffices to prove the theorem 
when a orb are equal to -1 or to a prime number. In each case, theorem I 
gives the value of (a, b)v· We find 

1) a= -1, b =-I. One has (-1, -1)00 = (-1, -1) 2 =-I and 
(-I, -1)P = I if p =I= 2, oo; the product is equal to I. 

2) a = -I, h = I with I prime. If I = 2, one has (-I, 2). = 1 for all 
v e V; if I =I= 2, one has (-I, 1). = I if v =I= 2, I and (-I, 1)2 = (-I, 1)1 = 
(- I y< n. The product is equal to I. 

3) a = I, b = I' with I, I' primes. If I = 1', formula iv) of prop. 2 shows 
that (I, 1). = ( -1, 1). for all v e V and we are reduced to the case considered 
above. If I f:- I' and if I' = 2, one has (I, 2)v = I for v =I= 2, I and 

(/, 2h =( -l)"<n, (/, 2)1 = G) = (- I)'''<n, cf. chap. I, no 3.2, th. 5. 

If I and I' are distinct and different from 2, one has(/, l')v = 1 for v f:- 2, I, I' and 

(1,/'h = (-l)'(l)t(l"), (I, 1'), = (/, !'),. = (f,} 
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but by the quadratic reciprocity law (chap. I, no 3.3, th. 6) one has 

( 7) (f;) = ( -l)'(l)t(l'); 

hence the product is equal to I. This completes the proof. 

Remark.-The product formula is essentially equivalent to the quadratic 
reciprocity law. Its interest comes mainly from the fact that it extends to 
all algebraic number fields (the set V being replaced by the set of "places" 
of the field). 

2.2. Existence of rational numbers with given Hilbert symbols 

Theorem 4.-Let (a;);er be a finite family of elements in Q* and let 
(e;,.);.,r,vev be a family of numbers equal to ±I. In order that there exists 
x e Q* such that x). = e;," for all i e I and all v e V, it is necessary and 
sufficient that the following conditions be satisfied: 
(I) Almost all the e;,v are equal to I. 
(2) For all i E I we have n £; v = I. 

veJI ' 

(3) For all v e V there exists x. e Q: such that (a;, x.). = e;,.for all i e I. 
The necessity of (I) and (2) follows from theorem 3; that of (3) is trivial 

(take x. = x). 
To prove the sufficiency of these conditions, we need the following three 

lemmas: 

Lemma 1 ("Chinese remainder theorem").-Let a 1, ••• , an, m 1, ••• , mn 
be integers with them; being pairwise relatively prime. There exists an integer a 
such that a= a; (mod m;)for all i. 

Let m be the product of m;. Bezout theorem shows that the canonical 
homomorphism 

i=n 

Z/mZ-+ fl Z/m;Z 
i= 1 

is an isomorphism. The lemma follows from this. 

Lemma 2 ("Approximation theorem").-Let S be a finite subset of V. 
The image of Q in TI Q. is dense in this product (for the product topology 

veS 

of those of Q.). 
Being free to enlargeS, we can suppose that S = { oo, p 1, ••• Pn} where 

the P; are distinct prime numbers and we must prove that Q is dense in 
R x Qp, x ... x QPn' Let (x", x 1, ... , xn) be a point of this product and 
let us show that this point is adherent to Q. After multiplying by some 
integer, we may suppose that x; e Zp, for I i n. Now one has to prove 
that, for all e > 0 and all integers N > 0, there exists x e Q such that 

lx-xocl e and fori= l, ... ,n. 
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By lemma I applied to m 1 = there exists x 0 e; Z such that v,,(x0 - x1) 

N for all i. Choose now an integer q 2 which is prime to all the p1 (for 
example a prime number). The rational numbers of the form afq"', a e Z, 
m 0, are dense in R (this follows simply from the fact q"' - oo when 
m .,.. oo ). Choose such a number u = afq"' with 

!x0 -x"' ... PNI e. 

The rational number x = x0 ... has the desired property. 

Lemma 3 ("Dirichlet theorem").-.lf a and mare relatively prime integers 
I, there exist infinitely many primes p such that p = a (mod m). 
The proof will be given in chap. VI; the reader can check that it uses 

none of the results of chapters III, IV, and V. 

Now come back to theorem 4, and let (e1, .) be a family of numbers 
equal to ±I and satisfying conditions (1), (2), and (3). After multiplying 
the a1 by the square of some integer, we can suppose that all the a1 are 
integers. Let S be the subset of V made of oo, 2, and the prime factors of a1; 

let T be the set of v e V such that there exists i e I with e1 •• = -I; these 
two sets are finite. We distinguish two cases: 

I) WehaveSnT= 0. 

Put 
a= TI I and 

/ET '*It) 
m = 8 TI /. 

/ES '*2,«> 
Because S n T = 0, the integers a and m are relatively prime and, by 
lemma 3, there exists a prime number p = a (mod m) with p f S v T. We 
are going to show that x = ap has the desired property, i.e. (a1, x). = e1 •• 

for all i e I and v e V. 
If v e S, we have e1 •• = I since S n T = 0, and we must check that 

(a 1, x). = I. If v = oo, this follows from x > 0; if v is a prime number I, 
we have x = a2 (mod m), hence x = a2 (mod 8) for I= 2 and x = a2 (mod I) 
for I =F 2; since x and a are 1-adic units, this shows that x is a square in Qr 
(cf. chap. II, no 3.3) and we have (a1, x). = I. 

If v = I is not in S, a1 is an /-adic unit. Since I =F 2 we have 

( a·)"'(b) (a1, b), = -j for all be Qj, cf. th. I. 

If If Tv{p }, x is an /-adic unit, hence v1(x) = 0 and the above formula 
shows that (a1, x), = I; on the other hand, we have e1, 1 = 1 because If T. 
If I e T, we have v1(x) = 1; moreover, condition (3) shows that there exists 
x1 e Qj such that (a1, x1) 1 = e1, 1 for all i e I; since one of the e1, 1 is equal 
to -I (because I belongs to T), we have v1(x1) = I (mod 2) hence 

(a1, x)1 = ( 7) = (a1, x1) 1 = e1, 1 for all i e I. 
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There remains the case I = p, which we deduce from the others using 
the product formula: 

(a;, x)p = TI (a;, x)v = fl ei,v = ei,p· 
v;>'p v;>'p 

This completes the proof of theorem 4 in the case S n T = 0. 

2) General case. 
We know that the squares of Q: form an open subgroup of Q:, cf. chap. II, 
no 3.3. By lemma 2, there exists x' E Q* such that x'fxv is a square in Q: for 
all v E S. In particular (a;, x'). = (a;, xv)v = e;, v for all v E S. If we set 
1Ji,v = e;,v(a;, x')., the family (7J;,v) verifies conditions (1), (2), (3) and 
moreover 1Ji,v = 1 if v E S. By 1) above there exists y E Q* such that 
(a;, y)v = 1Ji,v for all i E I and all v E V. If we set x = yx', it is clear that x 
has the desired properties. 



Chapter IV 

Quadratic Forms over Qp and over Q 

§ 1. Quadratic forms 

1.1. Definitions 

First recall the general notion of a quadratic form (see BouRBAKI, A/g., 
chap. IX, 3, n° 4). 

Definition t.-Let V be a module over a commutative ring A. A function 
Q: V ----)o- A is called a quadratic form on V if: 

1) Q(ax) = a2 Q(x) for a E A and x E V 
2) The function (x, y)t-+ Q(x+y)-Q(x)-Q(y) is a bilinear form. 

Such a pair ( V, Q) is called a quadratic module. In this chapter, we limit 
ourselves to the case where the ring A is a field k of characteristic #2; the 
A-module Vis then a k-vector space; we suppose that its dimension is finite. 

We put: 
x.y = HQ(x+y)- Q(x)- Q(y)}; 

this makes sense since the characteristic of k is different from 2. The map 
(x, y) 1---+ x.y is a symmetric bilinear form on V, called the scalar product 
associated with Q. One has Q(x) = x.x. This establishes a bijective corre-
spondence between quadratic forms and symmetric bilinear forms (it would 
not be so in characteristic 2). 

lf(V, Q) and (V', Q') are two quadratic modules, a linear mapf: V ----)o- V' 
such that Q' of= Q is called a morphism (or metric morphism) of (V, Q) 
into (V', Q'); thenf(x).f(y) = x.y for all x, y E V. 

Matrix of a quadratic form.- let (e;) 1 be a basis of V. The matrix 
of Q with respect to this basis is the matrix A = (a;i) where aii = e;.e i; 
it is symmetric. If x = is an element of V, then 

Q(x) = L a;ixixi, 
i,j 

which shows that Q(x) is a "quadratic form" in x 1, ••• , x. in the usual 
sense. 

If we change the basis (e;) by means of an invertible matrix X, the matrix 
A' of Q with respect to the new basis is X. A.' X where' X denotes the trans-
pose of X. In particular 

det(A ') = det(A). det(X)2 , 

which shows that det(A) is determined up to multiplication by an element of 
k* 2 ; it is called the discriminant of Q and denoted by disc(Q). 

27 
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1.2. Orthogonality 

Let (V, Q) be a quadratic module over k. Two elements x, y of V are 
called orthogonal if x.y = 0. The set of elements orthogonal to a subset H 
of Vis denoted by H 0 ; it is a vector subspace of V. If V1 and V2 are two 
vector subspaces of V, they are said to be orthogonal if V1 c i.e. if x e V1• 

y E V2 implieS X.y = 0. 
The orthogonal complement V 0 of V itself is called the radical (or the 

kernel) of Vand denoted by rad(V). Its codimension is called the rank of Q. 
If V 0 = 0 we say that Q is nondegenerate; this is equivalent to saying that 
the discriminant of Q is =t= 0 (in which case we view it as an element of the 
group k*fk* 2). 

Let V be a vector subspace of V, and let V* be the dual of V. Let 
qu: V-+- V* be the function which associates to each x e V the linear form 
(y e V 1-+ x.y). The kernel of qu is V 0 • In particular we see that Q is non-
degenerate if and only if qv: V-+- V* is an isomorphism. 

Definition 2.-Let V1, ••• , V'" he vector subspaces of V. One says that 
V is the orthogonal direct sum of the V; if they are pairwise orthogonal and 
if Vis the direct sum of them. One writes then: 

v = ... v'". 
Remark.-lf x e V has for components X; in V;, 

Q(x) = Ql(x1)+ ... +Qm(Xm), 
where Q; = QIU; denotes the restriction of Q to U;. Conversely if (U;, Q;) 
is a family of quadratic modules, the formula above endows V = EB U; 
with a quadratic form Q, called the direct sum of the Q;, and one has 
V = ••• e,vm. 

Proposition 1.-/f U is a supplementary subspace of rad( V) in V, then 
V = V rad(V). 

This is clear. 

Proposition 2.-Suppose ( V, Q) is nondegenerate. Then: 

i) All metric morphisms of V into a quadratic module( V', Q') are injective. 
ii) For all vector subspaces V of V, we have 

U 00 = U, dim U+dim U 0 =dim V, rad(V) = rad(U 0 ) = U n V 0 • 

The quadratic module U is nondegenerate if and only if U0 is nondegenerate, in 
which case V = V & U 0 • 

iii) If Vis the orthogonal direct sum of two subspaces, they are nondegenerate 
and each of them is orthogonal to the other. 

Iff: V-+- V' is a metric morphism, and if f(x) = 0, we have 

x.y = f(x).f(y) = 0 for all y e V; 

this implies x = 0 because ( V, Q) is nondegenerate. 
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If U is a vector subspace of V, the homomorphism qu: V- U* defined 
above is surjective; indeed, it is obtained by composing qv: V- V* with 
the canonical surjection V* - U* and we have supposed that qv is bijective. 
Thus we have an exact sequence: 

o - uo - v- u• - o, 
hence dim V =dim U* +dim U0 =dim U+dim U0 • 

This shows that U and U00 have the same dimension; since U is con-
tained in U00, we have U = U00 ; the formula rad(U) = U n U0 is clear; 
applying it to U0 , and taking into account that U00 = U, we get rad( U0 ) = 
rad( U) and at the same time the last assertion of ii). Finally iii) is trivial. 

1.3. Isotropic vectors 

Definition 3.-An element x of a quadratic module ( V, Q) is called isotropic 
if Q(x) = 0. A subspace U of V is called isotropic if all its elements are iso-
tropic. 

We have evidently: 

U isotropic <> U c U0 <> Ql U = 0. 

Definition 4.-A quadratic module having a basis formed of two isotropic 
elements x,y such that x.y =+= 0 is called a hyperbolic plane. 

After multiplying y by lfx.y, we can suppose that x.y = l. Then the 

matrix of the quadratic form with respect to x, y is simply its 

discriminant is -I (in particular, it is nondegenerate). 

Proposition 3.-Let x be an isotropic element =!=0 of a nondegenerate 
quadratic module ( V, Q). Then there exists a subspace U of V which contains 
x and which is a hyperbolic plane. 

Since V is nondegenerate, there exists z e V such that x.z = I. The 
element y = 2z-(z.z)x is isotropic and x.y = 2. The subspace U = kx+ky 
has the desired property. 

Corollary.-// ( V, Q) is nondegenerate and contains a nonzero isotropic 
element, one has Q(V) = k. 

(In other words, for all a e k, there exists v e V such that Q(v) = a.) 
In view of the proposition, it suffices to give the proof when V is a 

hyperbolic plane with basis x, y with x, y isotropic and x.y = I. If a e k, 

then a= and from this Q(V) = k. 

1.4. Orthogonal basis 

Definition S.-A basis (e1 , ••• , e") of a quadratic module (V, Q) is called 
orthogonal if its elements are pairwise orthogonal, i.e. if V = ke1 $ ... $ken. 
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This amounts to saying that the matrix of Q with respect to this basis is 
a diagonal matrix: 

(
a 1 0 ... 0) 
0 a2 ... 0 . 

0 0 ... a, 

If x = one has Q(x) = + ... 
Theorem 1.- ·Every quadratic module ( V, Q) has an orthogonal basis. 
We use induction on n = dim V, the case n = 0 being trivial. If V is 

isotropic, all bases of V are orthogonal. Otherwise, choose an element 
e 1 e V such that e 1.e1 =f. 0. The orthogonal complement H of e1 is a hyper-
plane and since e 1 does not belong to H, one has V = ke 1 Ef> H; in view of 
the inductive hypothesis, H has an orthogonal basis (e2 , • •• , en), and 
(el, . .. 'en) has the desired property. 

Definition 6.-Two orthogonal bases 

e = (e 1 , ••• , e,) and e' = (e;, ... , 

of V are called contiguous if they have an element in common (i.e. if there 
exist i and j such that e; = ej). 

Theorem 2.-Let ( V, Q) be a nondegenerate quadratic module of dimension 
'?, 3, and let e = (e1, • •• e,), e' = (e;, .. . be two orthogonal basesofV. There 
exists a finite sequence e<0 >, e< 1 >, ... , e<"'> of orthogonal bases of V such that 
e<0 > = e, e<m> = e' and e11> is contiguous with e<1• 1 >for 0 i < m. 

(One says that e10 >, ... , elm> is a chain of orthogonal bases contiguously 
relating e to e') 

We distinguish three cases: 
i) (e 1.e1) (e;.e;)-(epei) 2 =F 0 

This amounts to saying that e 1 and e; are not proportional and that the 
plane P = ke 1 "'-ke; is nondegenerate. There exist then e2 , e2 such that 

P = ke 1 $ ke2 and P = ke; $ ke2. 

Let H be the orthogonal complement of P; since P is nondegenerate, we 
have V = H ® P, see prop. 2. Let (e;, ... , e;) be an orthogonal basis of H. 
One can then relate e toe' by means of the chain; 

e- (e1, e2 , e;, ... , e;)-+ (e[, e;, ... , e;)- e', 

hence the theorem in this case. 
ii) (epe1) (e;.e;>-(e 1.ei)2 =F 0 

Same proof replacing e; by e;. 
iii) (e 1.e 1)(e;.e;)- (epe;) 2 = 0 for i = I, 2. 
We prove first: 

Lemma.-There exists x e k such that e, = e{ +xe:Z is nonisotropic and 
generates with e 1 a nondegenerate plane. 
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We have e.-e" == ei.ei +x2(e2.e%); we must thus take x 2 distinct from 
-(e;.e;)/(ei.e%). Moreover, fore" to generate with e1 a nondegenerate plane, 
it is necessary and sufficient that 

(e1.e1) (e".e")-(e1.e")2 #= 0. 

If we make this explicit, taking into account the hypothesis iii), we find 
that the left hand side is -2x(epe;) (e .. eD. Now hypothesis iii) implies 
e1.e1 + 0 for i = I, 2. We see thus that e" verifies the conditions of the 
lemma if and only if we have x #= 0 and x 2 #= -(ej.ei)f(ei.ei). This elimin-
ates at most three values of x; if k has at least 4 elements, we can find one 
such x. There remains the case k = F3 (the case k = F2 is excluded because 
char(k) #= 2). But, then, all non-zero squares are equal to 1 and hypothesis 
iii) can be written (e1.e1) (e;.e;) = 1 for I = l, 2; the expression (e{.e{)/ 
(e2.e2) is thus equal to l, and, in order to realize the condition x2 -+ 0, -I, 
it suffices to take x = I. 

This being so, let us choose e" = ei +xei verifying the conditions of the 
lemma. Since e" is not isotropic, there exists ei such that (ex, ei) is an 
orthogonal basis of kej (f) keJ.. Let us put 

, ( It , ')· e = e", e2 , e3, ••• , e, , 
it is an orthogonal basis of V. Since ke1 +ke" is a nondegenerate plane, 
part i) of the proof shows that one can relate e to e" by a chain of contiguous 
bases; since e' and e" are contiguous, the theorem follows. 

1.5. Witt's theorem 

Let (V, Q) and (V', Q') be two nondegenerate quadratic modules; let 
U be a subvector space of V, and let 

s: u-v· 
be an injective metric morphism of U into V'. We try to extends to a sub-
space larger than U and if possible to all of V. We begin with the case 
where U is degenerate: 

Lemma.-.lf U is degenerate, we can extend s to an injective metric 
morphism s1 : U1 - V' where U1 contains U as a hyperplane. 

Let x be a non-zero element of rad( U), and I a linear form on U such 
that l(x) == l. Since V is nondegenerate, there exists y e V such that l(u) = 
u.y for all ue U; we can moreover assume that y.y = 0 (replace y by y- Ax, 
with A = }y.y). The space U1 = U E& ky contains U as a hyperplane. 

The same construction, applied to U' = s(U), x' = s(x) and/' = 1 o s- 1 

gives y' e V' and u; = U' E& ky'. One then checks that the linear map 
s1 : U, - V' which coincides with s on U and carries y onto y' is a metric 
isomorphism of U1 onto u;. 

'Ibeorem 3 (Witt).-Jf (V, Q) and (V', Q') are isomorphic and non-
degenerate, every injective metric morphism 

s: u-v· 
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of a subvector space U of V can be extended to a metric isomorphism of V 
onto V'. 

Since V and V' are isomorphic, we can suppose that V = V'. Moreover, 
by applying the above lemma, we are reduced to the case where U is non-
degenerate. We argue then by induction on dim U. 

If dim U = 1, U is generated by a nonisotropic element x; if y = s(x), 
we have y.y = x.x. One can choose e = ± 1 such that x+ey is not isotropic; 
otherwise, we would have 

2x.x+2x.y = 2x.x-2x.y = 0 

which would imply x.x = 0. Choose such an e, and let H be the orthogonal 
complement of z = x+ey; we have V = kz $ H. Let a be the "symmetry 
with respect to H", i.e. the automorphism of V which is the identity on H 
and which changes z to -z. Since x-ey is contained in H, we have 

a(x-ey) = x-ey and a(x+ey) = -x-ey, 

hence a(x) = -q, and the automorphism -ea extends s. 
If dim U > l, we decompose U in the form U1 $ U2 , with U1, U2 =I= 0. 

By the inductive hypothesis, the restriction s1 of s to U1 extends to an 
automorphism a 1 of V; after replacing s by 1 o s, one can thus suppose 
that sis the identity on U1• Then the morphism s carries U2 into the ortho-
gonal complement V1 of U1 ; by the inductive hypothesis, the restriction of 
s to U 2 extends to an automorphism a2 of V 1 ; the automorphism a of V 
which is the identity on U1 and a2 on V1 has the desired property. 

Corollary.-Two isomorphic subspaces of a nondegenerate quadratic 
module have isomorphic orthogonal complements. 

One extends an isomorphism between the two subspaces to an auto-
morphism of the module and restricts it to the orthogonal complements. 

1.6. Translations 

Let f(X) = f a . .X.2 + 2 . .X .X. be a quadratic form in n variables 
i = 1 U l i<j I} I J 

over k; we put a1i = ai1 if i > j so that the matrix A = (ali) is symmetric. 
The pair (kn,f) is a quadratic module, associated to f (or to the matrix A). 

Definition 1.-Two quadratic forms f and .f' are called equivalent if the 
corresponding modules are isomorphic. 

Then we write .f- f'. If A and A' are the matrices off and f', this 
amounts to saying that there exists an invertible matrix X such that A' = 
X.A.'X, see n° l.l. 

Letf(X1, ... , Xn) and g(X1, ••• , X'") be two quadratic forms; we will 
denote f + g (or simply f + g if no confusion is possible) the quadratic form 

f(X,, ... ' Xn)+g(Xn+ I• ... ' xn+m> 

in n + m variables. This operation corresponds to that of orthogonal sum 
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(see def. 2, no 1.2). We write similarly f-'-g (or simply f-g) for f +(-g). 
Here are some examples of translations: 
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Definition 4'-A form f(X1• X2) in two variables is called hyperbolic 1/ 
we have 

1- x.xz-
(This means that the module (e, f) corresponding is a hyperbolic plane, 

cf. def. 4). 
We say that a form f(X 1, ••• , X.) represents an element a of k if there 

exists x e: kn. x # 0, such that f(x) = a. In particular f represents 0 if and 
only if the corresponding quadratic module contains a non-zero isotropic 
element. 

Proposition 3' .-Iff represents 0 and is nondegenerate, one has f....., f 2 + g 
where [ 2 is hyperbolic. Moreover, f represents all elements of k. 

This is a translation of prop. 3 and its corollary. 

Corollary l.-Let g = g(X1, ••• , X._ 1) be a nondegenerate quadratic 
form and let a e k*. The following properties are equivalent: 

(i) g represents a. 
(ii) One has g ....., h + aZ 2 \!."here h is a form in n- 2 variables. 
(iii) The form f = g-'-aZ2 represents 0. 

It is clear that (ii) (i). Conversely, if g represents a, the quadratic 
module V corresponding to g contains an element x such that x.x = a; if H 
denotes the orthogonal complement to x, we have V = H kx, hence 
g ....., h +aZ2 where h denotes the quadratic form attached to a basis of H. 

The implication (ii) =(iii) is immediate. Finally, if the form/= 
has a nontrivial zero (x 1, ••• , x._ 1 , z) we have either z = 0 in which case 
g represents 0 thus also a, or z =F 0 in which case g(x 1/z, ... , x._ .fz) = a. 
Hence (iii) (i). 

Corollary 2.-Let g and h be two nondegenerate forms of rank I, and 
let f = g-'-h. The following properties are equivalent: 
(a) f represents 0. 
(b) There exists a e k* which is represented by g and by h. 
(c) There exists a e k* such that g-'-aZ2 and h-'-aZ2 represent 0. 

The equivalence (b)= (c) follows from corollary I. The implication 
(b)= (a) is trivial. Let us show (a) A nontrivial zero off can be 
written in the form (x, y) with g(x) = h(y). If the element a = g(x) = h(y) 
is =F 0, it is clear that (b) is verified. If a = 0, one of the forms g for example, 
represents 0, thus all elements of k, and in particular all non-zero values 
taken by h. 

Theorem I translates into the classical decomposition of quadratic 
forms into "sums of squares": 
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Theorem 1 '.-Let f be a quadratic form in n variables. There exists 
a1, ••• , an ek such thatf -a1 Xf+ ... +anXn2• 

The rank off is the number of indices i such that ai =!= 0. It is equal to 
n if and only if the discriminant a 1 ••• an off is ;tO (in other words, iff is 
nondegenerate). 

Finally the corollary to Witt's theorem gives the following "cancellation 
theorem": 

Theorem 4.-Letf = g+h andf' = g' +h' be two nondegeneratequadratic 
forms. Iff-!' and g - g', one has h - h'. 

Corollary.-// f is nondegenerate, then 

f - g 1 + · · • + gm + h 

where g1, ••• , gm are hyperbolic and h does not represent 0. This decomposition 
is unique up to equivalence. 

The existence follows from prop. 3', and the uniqueness from theorem 4. 
[The number m of hyperbolic factors can be characterized as the dimen-

sion of the maximal isotropic subspaces of the quadratic module defined by f] 

1.7. Quadratic forms over Fq 

Let p be a prime number #2 and let q = p1 a power of p; let Fq be a 
field with q elements ( cf. chap. I, §I). 

Proposition 4.-A quadratic form over Fq of rank 2 (resp. of rank 3) 
represents all elements ofF; (resp. of Fq). 

In view of cor. I of prop. 3; it suffices to prove that all quadratic forms in 
3 variables represent 0 and this has been proved in chap. I, §2, as a con-
sequence of Chevalley theorem. 

[Let us indicate how one can prove this proposition without using 
Chevalley theorem. One has to show that, if a, b, c e Fq are not zero, the 
equation 

(•) ax2 +by2 = c 

has a solution. Let A (resp. B) be the set of elements of Fq of the form ax2 

(resp. of the form c-by2 ) with x e Fq (resp. with y e Fq). One sees easily 
that A and B have each (q+ 1)/2 elements; thus A fl B =!= 0 from which one 
gets a solution of(*).] 

Recall now that the group F;JF:Z has two elements (chap. I, no 3.1). 
Let a denote an element of F; which is not a square. 

Proposition 5.-Every nondegenerate quadratic form of rank n over Fq is 
equivalent to 

Xi+ .. . 
or 

Xi+ .. . 
depending on whether its discriminant is a square or not. 
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This is clear if n = 1. If n 2, prop. 4 shows that the form/represents I. 
It is thus equivalent to g where g is a form in n- I variables and one 
applies the inductive hypothesis to g. 

Corollary.-For two nondegeneratequadraticforms over F9 to be equivalent 
it is necessary and sufficient that they have same rank and same discriminant. 

(Of course the discriminant is viewed as an element of the quotient 
group F;/F; 2.) 

§1. Quadratic forms OPer Q, 

In this paragraph (n° 2.4 excepted) p is a prime number and k is the 
p-adic field Q,. 

All quadratic modules are over k and nondegenerate; we make the same 
conventions for the quadratic forms. 

2.1. The two invariants 

Let (V, Q) be a quadratic module of rank nand d(Q) its discriminant; 
it is an element of k*fk*2 , cf. no 1.1. If e = (e1, ••• en) is an orthogonal 
basis of V, and if we put a 1 = e1.e" we have 

d(Q) = a1 ••• an (in k*/k* 2 ) 

(In what follows we will often denote by the same letter an element of k* 
and its class modulo k* 2.) 

Recall now that, if a and bare elements of k*, we have defined in chap. 
III, no 1.1, the Hilbert symbol (a, b), equal to ±I. We put 

e(e) = n (a;, aJ 
i<j 

One has e(e) = ±I. Moreover e(e) is an invariant of (V, Q): 

Theorem 5.-The number e(e) does not depend on the choice of the 
orthogonal basis e. 

If n = l, one has e(e) = I. If n = 2, one has e(e) = I if and only if 
the form Z 2 -a1X 2 -a2 Y2 represents 0, that is to say (cf. cor. l to prop. 3') 
if and only if a1 X 2 +a2 Y2 represents I; but this last condition signifies that 
there exists v e V such that Q(v) = I and this does not depend on e. For 
n 3 we use induction on n. By th. 2 it suffices to prove that e{e) = e(e') 
when e and e' are contiguous. In view of the symmetry of the Hilbert symbol, 
e(e) does not change when we permute the e1 ; we can thus suppose that 
e' = (e{ ... , is such that e; = e1• If we put aj = e;.e;, then a{= a 1• 

One can write e(e) in the form 
e(e) = (al, a2 ... an) n (a;, aj) 

2 f!i<j 

since d(Q) = a1 ••• an. 
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Similarly 
e(e') = (a,, d(Q)a,) n (a;, aj). 

2f;i<j 

But the inductive hypothesis applied to the orthogonal complement of e 1 

shows that 

from which the desired result follows. 
We write from now on e( Q) instead of e(e). 

Translation.-If f is a quadratic form in n variables and if 

f ... +a"x;, 
the two elements 

d(f) = a 1 ••• an (in k*fk*2 ) 

e(f) = fl (a;, a1) (in {±I}) 
i<j 

are invariants of the equivalence class off 

2.2. Representation of an element of k by a quadratic form 

Lemma.-a) The number of elements in the F2-vector space k*/k* 2 is 
2' with r = 2 if p =I= 2 and r = 3 if p = 2. 

b) If a e k*/k*2 and e = ±I, let H! be the set of x e k*fk* 2 such that 
(x, a)= e. !fa= I, H1 has 2' elements and H;; 1 = 0. {fa =I= I, H; has 
2'- 1 elements. 

c) Let a, a' e k*fk* 2 and e, e' = ± l; assume that H; and H;: are nonempty. 
For H! () H;: = 0, it is necessary and sufficient that a = a' and e = -e'. 

Assertion a) has been proved in chap. II, no 3.3. In b) the case a = I 
is trivial; of a ¥- I, the homomorphism b....-. (a, b) carries k*fk* 2 onto { ± I} 
(chap. III, no 1.2, th. 2); its kernel H1 is thus a hyperplane of k*fk* 2 and 
has 2'- 1 elements; its complement H;; 1 has 2'- 1 elements (it is an "affine" 
hyperplane parallel to H1). Finally, if H! and H;: are nonempty and disjoint, 
they have necessarily 2'- 1 elements each and are complementary to one 
another; this implies H1 = H1· hence 

(x, a) = (x, a') for all x e k*/k* 2 ; 

since the Hilbert symbol is nondegenerate, this implies a = a' and e = 
The converse is trivial. 

I -e. 

Let now f be a quadratic form of rank n; let d = d(f) and e = e(f) be 
its two invariants. 

Theorem 6.-For .f to represent 0 it is necessary and sufficient that: 

i) n = 2 and d = -I (in k*/k* 2), 

ii) n = 3 and(-1, -d)= e, 
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iii) n = 4 and either d =I= I or d = I and e = (- I, - I). 
iv) n S 
(In particular, all forms in at least S variables represent 0.) 

Before proving the theorem, let us indicate a consequence of it: let 
a e k*/k.z and f. = j...:...aZ2• We know (cf. no 1.6) that f. represents 0 if and 
only iff represents a. On the other hand, 

d(f..) = -ad, e(f.) = (-a, d}e, 

as one checks right away. By applying theorem 6 to f., and taking into 
account the above formulas, we obtain: 

CoroUary. Let a e k*/k* 2• In order that f represent a it is necessary and 
sufficient that: 

i) n = 1 and a = d, 
ii) n = 2 and(a, -d)= e, 
iii) n = 3 and either a =I= -dora = -d and ( -1, -d) = e, 
iv) n 4. 

(Note that, in this statement as in theorem 6, a and d are viewed as 
elements of k*/k* 2 ; the inequality a =+= - d means that a is not equal to the 
product of -d by a square.) 

Proof of theorem 6.-We write fin the form f """'a1 Xl + ... +a, X! and 
consider separately the cases n = 2, 3, 4 and 5. 
i) The case n = 2. 

The form/represents 0 if and only if -a1/a2 is a square; but -a1/a2 = 
-a1a2 = -din k*/k*2 ; hence this means that d = -I. 
ii) The case n = 3. 

The form f represents 0 if and only if the form 

-alf"""' -ala,Xl-alazXf-Xf 
represents 0. Now by the very definition of the Hilbert symbol, this last form 
represents 0 if and only if we have 

( -a3a" -a3a2) = I. 
Expanding this, we find: 

{ -1, -1)( -1, a1)( -1, a2 ){a3 , a 3){a1, a 2 )(a1, a3)(a2 , a3) = I 
But one has (a 3, a3) = ( -1, a3), cf. chap. III, n° 1.1, prop. 2, formula iv). 
One can thus rewrite the above condition in the form 

(-I, -I) (-I, a1a2a3) (a1, a2) (a1, a3) (az, a3) = I, 
or (-1, -d)• =I, i.e. (-1, -d)= e. 

iii) The case n = 4. 
By cor. 2 to prop. 3 ', f represents 0 if and only if there exists an element 

x e k*/k*2 which is represented by the two forms 
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and -a3Xf-a4xt 
By case ii) of the corollary above, such an xis characterized by the conditions 

and 

Let A be the subset of k*/k* 2 defined by the first condition, and let B be the 
subset defined by the second. In order that/ does not represent 0, it is neces-
sary and sufficient that A n B = 0. Now A and B are clearly nonempty 
(one has a1 E A and -a3 E B for example). By part c) of the lemma given at 
the beginning of this n°, the relation A n B = 0 is thus equivalent to 

and 

The first condition means that d = I. If it is fulfilled one has 

e = (a 1, a2 ) (a3 , a4 ) (a 3a4 , a3a4 ); 

by using the relation (x. x) = (-I, x) (cf. chap. III, no 1.1, formula iv) of 
prop. 2) we get from this: 

e = (a 1, a2 ) (a3 , a4 ) (-I, a3a4 ) 

= (at,az)(-a3 ,a4 )(-1, -1). 

Hence the second condition can be written e = - (- I, - I), from which the 
result follows. 

iv) The case 11 5. 
It is sufficient to treat the case n = 5. By using the lemma and part ii) 

of the above corollary, we see that a form of rank 2 represents at least 2'- 1 

elements of k* fk* 2 , and, the same is a fortiori true for the form of rank 2. 
Since zr-t 2, f represents at least one element a E k*/k* 2 distinct from d. 
One has 

where g is a form of rank 4. The discriminant of g is equal to dja; it is thus 
different from I, and, by iii), the form g represents 0. The same is then true 
for f, and the proof of theorem 6 is complete. 

Remarks.- I) Let f be a quadratic form not representing 0. The above 
results show that the number of elements of k*/k* 2 which are represented 
by f is equal to I if 11 = I, to 2'- 1 if n = 2, to 2'- I if n = 3, and to 2' if 
II = 4. 

2) We have seen that all quadratic forms in 5 variables over QP represent 
0. In this connection, let us mention a conjecture made by E. Artin: all 
homogeneous polynomials of degree dover QP in at least d 2 +I variables have 
a nontrivial zero. The case d = 3 has been solved affirmatively (see, for 
example, T. SPRINGER, Koninkl. Nederl. Akad. van Wetenss., 1955, pp. 
516). The general case remained open for about thirty years. It was only in 
1966 that G. TERJANIAN showed that Arlin's conjecture is false: there exists 
a homogeneous polynomial of degree 4 over Q2 in 18 variables which has no 
nontrivial zero. Terjanian starts from the polynomial 
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n(X, Y,Z) = X 2 YZ+Y 2ZX+Z 2 XY+X 2Y 2 +Y2Z 2 +Z 2 X 2 -X4 -Y4 -Z4 , 

which has the property that n(x, y, z) = -1 (mod 4) if (x, y, z) is primitive 
in (Z2) 3. Let 

f(X1, ••• , X9) = n(X1, X2 , X3) + n(X4 , X5, X6 ) + n(X7 , X8, X9); 

one has f (x 1> ••• , x 9 ) $ 0 (mod 4) if (x 1, •.• , x 9) is primitive. From this 
one deduces easily that the polynomial 

F(X1, ••• , X18) = f(X1, ••• , X9 )+4f(X10 , ••• , X18) 

does not have a non-trivial zero. (There exist analogous examples-but of 
higher degrees-for all the Q,.) 

One knows nevertheless that Arlin's conjecture is "almost" true: for 
a fixed degree d, it holds for all prime numbers p except a finite number 
(Ax-KocHEN, Amer. J. of Math., 1965); however, even ford= 4, one does 
not know how to determine the set of exceptional prime numbers. 

2.3. Classification 

Theorem 1.-Two quadratic forms over k are equivalent if and only if they 
have the same rank, same discriminant, and same invariant e. 

That two equivalent forms have the same invariants follows from the 
definitions. The converse is proved by induction on the rank n of the two 
formsfand gconsidered (the case n = 0 being trivial). Corollary to theorem 6 
shows that f and g represent the same elements of k*/k* 2 ; one can thus 
find a e k* which is represented at the same time by f and by g; this allows 
one to write: 

f....., aZ2 +!'and g ....., aZ2 +g', 

where f', g' are forms of rank n- 1. One has 

d(f') = ad(f) = ad(g) = d(g') 

e(f') = e(f) (a, d(f')) = e(g) (a, d(g')} = e(g'), 

which shows that/' and g' have the same invariants. In view of the inductive 
hypothesis, we have f' ....., g', hence f....., g. 

Corollary.-Up to equivalence, there exists a unique form of rank 4 
which does not represent 0; if(a, b) = -1, it is the form z2 -ax2 -by2 +abt2• 

Indeed, by th. 6, such a form is characterized by 

d(f) = 1, e(f) = -( -1,-1) 

and a simple computation shows that z2 - ax2 - by2 + abt2 has these pro-
perties. 

Remark.-This form is the reduced norm of the.unique non-commutative 
field of degree 4 over QP; this field can be defined as a field "of quaternions" 
with basis {1, i,j, k} where i2 = a,j2 = b, ij = k = -ji, and (a, b)= -1. 
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Proposition 6.-Let n I, de k* jk* 2 and e = ± I. In order that there 
exists a quadratic form f of rank n such that d(f) = d and e(f) = e it is 
necessary and sufficient that n = I, e = I ; or n = 2. d =F - 1 ; or 11 = 2, e = 1 ; 
or n 3. 

The case 11 = 1 is trivial. If 11 = 2, one hasf-aX2 +bY2 and, 

if d(f)= -1, then t(/) =(a, b)= (a, -ab) = 1; 

thus we cannot have simultaneously d(f) = -I and e(f) = -I. Con-
versely, if d = -I, e = I, we take f = X 2 - Y 2 ; if d # -I, there exists 
a e k* such that (a, -d) = e and we take f = aX 2 +adY2 . 

If n = 3, we choose a e k* /k* 2 distinct from - d; by what we have just 
seen, there exists a form g of rank 2 such that d(g) = ad, e(g) = e(a, -d); 
the form aZ 2 + g works. The case n 4 is reduced to the case n = 3 by 
taking f = g(X1, X2 , X3) + Xj + ... + x; where g has the required invariants. 

Corollary.-The number of classes of quadratic forms of rank n over 
QP for p =F 2 (resp. p = 2) is equal to 4 (resp. 8) if n = I, to 7 (resp. 15) if 
n = 2, and to 8 (resp. 16) if n 3. 

Indeed, d(f) can take 4 (resp. 8) values and e(f) can take 2 values. 

2.4. The real case 

Let f be a quadratic form of rank 11 over the field R of real numbers. 
We know that f is equivalent to 

where rands are two integers such that r+s = n; the pair (r, s) depends 
only onf; it is called the signature off We say thatfis definite if r or s = 0, 
i.e. iff does not change sign; otherwise, we say that f is indefinite. (This is 
the case where f represents 0.) 

The invariant e(f) is defined as in the case of QP; due to the fact that 
(-I, -I) = -I, we have 

Moreover: 

e(f) = ( -J)'(s-l)/l = { l if s = 0, l (mod 4) 
- l if s = 2, 3 (mod 4). 

d(f) = (-I)' = { l if s = 0 (mod 2) 
- l if s = 1 (mod 2). 

We see that the knowledge of d(f) and t(f) is equivalent to that of the 
class of s modulo 4; in particular, d(f) and e(f) determine f up to equivalence 
if n 3. 

One also checks that parts i), ii), iii) of th. 6 and its corollary are valid 
for R (indeed their proofs use only the nondegeneracy of the Hilbert symbol, 
and this applies to R); it is clear that part iv) does not extend. 
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§3. Quadratic forms over Q 

All quadratic forms considered below have coefficients in Q and are 
nondegenerate. 

3.1. Invariants of a form 

As in chap. III, §2, we denote by V the union of the set of prime numbers 
and the symbol oo, and we put Qt() = R. 

Let/ -a1Xf+ ... +a,.x; be a quadratic form of rank n. We associate 
to it the following invariants: 

a) The discriminant d(f) E Q*/Q* 2 equal to a 1 ••• a,.. 
b) Let v E V. The injection Q- Qu allows one to view f as a quadratic form 
(which we will denote f.) over Q •. The invariants of fu will be by 
d.(f) and e.(J); it is clear that d.(J) is the image of d(f) by Q*/Q*2 -)oQ: fQ: 2 ; 

we have 

The product formula (chap. III, no 2.1, th. 3) gives the relation 

11 e.(/) = 1. 
ueV 

c) The signature (r, s) of the real quadratic form f is another invariant off 

The invariants d0(f), e0(f), and (r, s) are sometimes called the local 
invariants off 

3.2. Representation of a number by a form 

Theorem 8 (Hasse-Minkowski).-/n order that f represent 0, it is necessary 
and sufficient that, for all v e V, the form/, represent 0. 

(In other words: f has a "global" zero if and only iff has everywhere a 
"local" zero.) 

The necessity is trivial. In order to see the sufficiency, we write fin the 
form 

f=atXf+ ... +a,.x;, a;eQ*. 

Replacing f by ad, one can moreover suppose that a1 = 1. We consider 
separately the cases n = 2, 3, 4 and 5. 

i) The case n = 2. 
We have f = Xf-aXf; since flO represents 0, a is >0. If we write a in 

the form 

the fact thatfP represents 0 shows that a is a square in QP, hence that vp(a) is 
even. From this follows that a is a square in Q and f represents 0. 
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ii) The case n = 3 (Legendre). 
We have f = Xl-aXl-bXf; being free to multiply a, b, by squares, 

we can assume that a and bare square free integers (i.e. vP(a), vP(b) are equal 
to 0 or I for all prime numbers p). Also we can assume that Jai ;::; JbJ. We 
use induction on the integer m = Jai + JbJ. If m = 2, we have 

f = Xt2 ± Xl ± Xl; 
the case of X?+ Xf + X32 is excluded because fro represents 0; in the other 
cases, f represents zero. 

Suppose now that m > 2, i.e. lbl f;; 2 and write b in the form 

b = ±Pt · · ·Pk• 

where the p; are distinct primes. Let p be one of the p;; we are going to 
prove that a is a square modulo p. This is obvious if a = 0 (mod p). Otherwise 
a is a p-adic unit; by hypothesis, there exists (x, y, z) e (Qp) 3 such that 
z2 -ax2 -by2 = 0 and we can suppose that (x, y, z) is primitive (cf. chap. II, 
no 2.l, prop. 6). We have z2 -ax2 = 0 (mod p). From this follows that, if 
x = 0 (mod p), the same is true also for z, and by2 is divisible by p 2 ; since 
vp(b) = I this implies y = 0 (mod p) contrary to the fact that (x, y, z) is 
primitive. Thus we have x $ 0 (mod p), which shows that a is a square 
(mod p). Now, since ZjbZ = DZ/p;Z, we see that a is a square modulo b. 
There exist thus integers t, b' such that 

t 2 = a+bb' 

and we can choose tin such a way that It I ;::; lbl/2. The formula bb' = t 2 - a 
shows that bb' is a norm of the extension k(.ja)jk where k = Q or Q"; 
from this we conclude (the argument is the same as that for prop. I of chap. 
III), that f represents 0 in k if and only if the same is true for 

!' = X12 -aXf-b'Xf. 

In particular, f' represents 0 in each of the Q". But we have: 

lb'l = + I < lbl because lbl f;; 2. 

Write b' in the form b"u 2 with b", u integers and b" square free; we 
have a fortiori lb"l < JbJ. The induction hypothesis applies thus to the 
form F = X 12-aXf-b" Xf which is equivalent to f'; hence this form 
represents 0 in Q and the same is true for f 
iii) The case n = 4. 

Write f = aX?+bX22 -(cXf+dX]). Let v e V. Since fv represents 0, 
cor. 2 of prop. 3' of no 1.6 shows that there exists xv e Q: which is represented 
both by aX12 +bXl and by cXf+dX}; by part ii) to cor. of th. 6 (which 
applies equally well to Q"" = R), this is equivalent to saying that 

(Xv, -ab)v = (a, b)v and (Xv, -cd)v = (C, d)v for all V E V. 
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Since IT (a, b). = Il (c, d). = I, we can apply th. 4 of chap. III, no 2.2 and 
veV veV 

obtain from it the existence of x e Q* such that 

(x, -ab). =(a, b). and (x, -cd)v = (c, d)" for all v e V. 

The form aX12+bXl-xZ2 represents zero in each of the Q" hence in Q by 
what we have just seen. Hence xis represented in Q by aX/+bXl, and the 
same argument applies to c X/+ dXi; the fact that f represents 0 follows 
from this. 

iv) The case n 5. 
We use induction on n. We write fin the form 

f= h.,:_g 

with h = a 1X12 +a2X22, g = -(a3 Xf+ .... +anX1). 
Let S be the subset of V consisting of oo, 2, and the numbers p such that 

vp(ai) =t 0 for one i 3; it is a finite set. Let v e S. Since fv represents 0, 
there exists a. e Q: which is represented in Q. by h and by g; there exist 
xr E Q •• i = I' ... ' n, such that 

h(xr. xn = av = •. .. 'X::). 
But the squares of Q: form an open set (cf. chap. II, no 3.3). Using the 
approximation theorem (chap. III, no 2.2, lemma 2), this implies the existence 
of xi> x 2 e Q such that, if a = h(x1, x 2), one has afav e Q: 2 for all v e S. 
Consider now the formft = aZ 2 _:_g. If v E s. g represents av in Qv. thus also 
a because afav e Q: 2 ; hence f 1 represents 0 in Q". If v $ S, the coefficients 
-a3 , ••• , -an of g are v-adic units; the same is true of d"(g), and because 
v "# 2 we have e"(g) = I. [This could also be deduced from cor. 2 to th. I of 
chap. II, no 2.2. combined with Chevalley's theorem.] In all cases, we 
see that f 1 represents 0 in Q"; since the rank of f 1 is n- I, the inductive 
hypothesis shows that f 1 represents 0 in Q, i.e. g represents a in Q; since h 
represents a, f represents 0, and the proof is complete. 

Corollary 1.-Let a e Q*. In order that f represents a in Q it is necessary 
and sufficient that it does in each of the Q". 

This follows from the theorem applied to the form aZ2 _:_f 

Corollary 2 (Meyer).-A quadratic form of rank 5 represents 0 if and 
only if it is indefinite (i.e. if it represents 0 in R). 

Indeed, by th. 6, such a form represents 0 in each of the QP. 

Corollary 3.-Let n be the rank off Suppose that n = 3 (resp. n = 4 
and d(f) = 1.) Iff represents 0 in all the Qv except at most one, then f repre-
sents 0. 

Suppose that n = 3. By th. 6, f represents 0 in Q" if and only if we have: 

(•)v (-I, -d(f))v = ev(f). 

But the two families ev<f), (-I, -d(f))v satisfy the product formula of chap. 



44 Quadratic forms over QP and over Q 

III, no 2.l. From this follows that, if (•)v is true for all v except at most one 
( * )v is true for all v; by th. 8, f represents 0. 

When n = 4 and d(f) = I we argue in the same way, the equality (*)., 
being replaced by (- I, -1 )v = e.(f). 

Remarks.- I) Suppose that n = 2 and that f represents 0 in all the Qv 
except a finite number. One can then show, by means of the theorem on 
arithmetic progressions (cf. chap. VI, no 4.3) that f represents 0. 

2) Th. 8 does not extend to homogeneous polynomials of degree ;;:: 3; 
for example, Selmer has proved that the equation 

3X 3 +4Y 3 +5Z3 = 0 

has a nontrivial solution in each of the Qv but none in Q. 

3.3. Classification 

Theorem 9.-Let f and .f' be two quadratic forms over Q. For f and f' to 
be equivalent over Q it is necessary and sufficient that they are equivalent 
over each Qv. 

The necessity is trivial. To prove the sufficiency, we use induction on 
the rank n off and f'. If n = 0, there is nothing to prove. Otherwise, there 
exists a e Q* represented by f, thus also by f' (cf. cor. 1 to th. 8). Thus we 
have f- aZ2 + g, f'- aZ2 + g'. By th. 4 of no 1.6, we have g - g' over 
Qv for all v e V. The induction hypothesis then shows that g - g' over Q, 
hence f - .f'. 

Corollary.-Let (r, s) and (r', s') be the signatures off and of .f'. For f and 
.f' to be equivalent it is necessary and sufficient that one has 

d(f) = d(f'), (r, s) = (r', s'), and ev(f) = ev(f')for all v e V. 

Indeed these conditions just mean that f and .f' are equivalent over each 
of the Qv. 

Remark.-The invariants d = d(f), ev = ev(f) and (r, s) are not arbitrary. 
They verify the following relations: 

(I) ev = I for almost all v E v and 11 ev = I, 
veV 

(2) ev = l if n = I or if n = 2 and if the image dv of din Q:IQ: 2 is equal 
to -1, 
(3) r,s'?, Oandr+s=n, 
(4)doc;=(-l)', 
(5) e00 = ( -l)s(s-l)/l 

Conversely: 

Proposition 7.-Let d, (ev)veV• and (r, s) verify the relations (l) to (5) 
above. Then there exists a quadratic form of rank n over Q having for invariants 
d, (ev)veV and (r, S). 

The case n = l is trivial. 
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Suppose that n = 2. Let v E V. The nondegeneracy of the Hilbert symbol, 
together with condition (2), shows that there exists x" E Q: such that 
(x", -d)n = £". From this and condition (I), follows the existence of x E Q* 
such that (x, -d)" = e" for all v E V (chap. III, no 2.2, th. 4). The form 
xX2 +xdY2 works. 

Suppose that n = 3. Let S be the set of v E V such that (- d, - I)" = - e"; 
it is a finite set. If v E S, choose in Q:JQ: 2 an element c" distinct from the 
image -d" of -din this group. Using the approximation theorem (chap. 
III, no 2.2, lemma 2), we see that there exists cEQ* whose image in each 
of the Q:IQ: 2 , v E S, is c". From what we have just proved follows the 
existence of a form g of rank 2 such that 

d(g) = cd, ev(g) = (c, - d)vev for all v E V. 
The form f = cZ 2 + g then works. [Note that for n 3 we do not need to 

consider the signature of the form, since conditions (3), (4), (5) determine 
it as a function of d"' and e00 ]. 

When n 4 we use induction on n. Suppose first that r I. Using 
the inductive hypothesis, we obtain a form g of rank n- I which has for 
invariants d, (ev)veV and (r-1, s); the form X 2 +g works. When r = 0, 
we use a form h of rank 11- 1 having for invariants - d, e.(- I, -d)", and 
(0, n-1); the form -X2 +h works. 

Appendix 

Sums of three squares 

Let n and p be positive integers. We say that n is the sum of p squares 
if n is representable over the ring Z by the quadratic form x? + ... + x;, 
i.e. if there exist integers n 1, •.. , nP such that 

n = nr+ ... +n; 
Theorem (Gauss).-/n order that a positive integer be a sum of three 

squares it is necessary and sufficient that it is not of the form 4°(86-1) with 
a, b EZ. 

(Example: if n is not divisible by 4, it is a sum of three squares if and only 
if n = 1, 2, 3, 5, 6 (mod. 8).) 

Proof-We can suppose n is nonzero. The condition "n is of the form 
4°(8b-1)" is then equivalent to say that -n is a square in Qi (chap. II, 
no 3.3, th. 4). But we have: 

Lemma A.-Let a E Q*. In order that a be represented in Q by the form 
f = X?+ Xi+ X} it is necessary and sufficient that a is > 0 and that -a is 
not a square in Q2 • 

By cor. 1 of th. 8 we have to express that a is represented by fin R and 
in all QP' The case of R gives the positivity condition. On the other hand the 
local invariants dp(f) and ep(f) are equal to I. If p =t= 2, one has 
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( -1, -d,(f)), = ( -1, -1), = I = e,(J); 

the corollary of theorem 6 thus shows that a is represented by f in Q,. 
If p = 2, we have ( -1, -d2{f)h = -I ::f= e2(f); the same corollary shows 
that a is represented by fin Q2 if and only if a is different from -I in 
Q!fQ! 2, i.e. if -a is not a square in Q2. 

Now we must pass from representations in Q to representations in Z. 
This is done by means of the following lemma: 

p 

Lemma 8 (Davenport-Cassels).-Let f(X) = 1 aliX1Xi be a positive 

definite quadratic form, the matrix (au) being symmetric and with integer 
coefficients. We make the following hypothesis: 

(H) For every x = (x1, . .. , xp) e QP there exists y E Z' such that 
f(x-y) < I. 

If n e Z is represented by fin Q, then n is also represented by fin Z. 
If x = (x1 , ••• , x,) andy= (y 1, ••• ,y,) are two elements of Q', we 

denote by x.y their scalar product I:.aiix1y i· One has x.x = f(x). 
Let n be an integer represented by fin Q. There exists an integer t > 0 

such that t2n = x.x with x e Z'. Choose t and x in such a way that t is 
minimum; we must prove that t = I. 

By hypothesis (H), there exists y e Z' such that 

X - = y+z with z.z <I. 
I 

If z.z = 0 we have z = 0 and has integer coefficients. Because of the 
I 

minimality of t, this implies t = 1. 
Assume now that z.z ::f= 0 and put 

a= y.y-n 
b = 2(nt- x.y) 
t' = at+b 

x' = ax+by. 

One has a, b, t' e Z, and: 

Moreover: 

x'.x' = a2x.x+2abx.y+b2y.y 
= a2t2n+ab(2nt-b)+b2(n+a) 
= n(a2t2 +2abt+b2 ) 

= t' 2n. 

tt' = at2 + bt = t2y.y- nt2 + 2nt2 - 2t x.y 
= t2y.y-2t x.y+x.x = (ty-x).(ty-x) 
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hence t' = t z.z; since 0 < z.z < 1, we have 0 < t' < 1. This contradicts the 
minimali ty of 1 and concludes the proof of the lemma. 

To prove the theorem, it suffices now to check that the form/= X'f+ 
Xi+ Xf satisfies condition (H) of lemma B. But this is clear: if (x1, x2 , x3) e 
Q 3 we choose (y1, y 2 , y3) e Z 3 such that jx;-Y;l t for all i; we have 

3/4 < I. 

Corollary 1 (Lagrange).-Every positive integer is a sum of four squares. 
Let n be an integer > 0. We write n in the form 4"m, where m is not divis-

ible by 4. If m = 1, 2, 3, 5, 6 (mod 8), m is a sum of three squares, and the 
same holds for n. Otherwise m = - I (mod 8) and m- 1 is sum of three 
squares; in this case m is a sum of four squares, and the same holds for n. 

Corollary 2 (Gauss).-Every positit·e integer is a sum of three triangular 
numbers. 

(A number is called "triangular" if it is of the form m(m+ 1)/2 with 
m eZ.) 

Let n be a positive integer. By applying the theorem to 8n+3, we see 
that there exist integers x 1, x 2 , x3 such that 

= 8n+3. 
One has = 3 (mod 8). 

But the only squares in Z/8Z are 0, I and 4; a sum of three squares in 
Z/8Z can be equal to 3 only if each of its terms equal I. This shows that the 
X; are odd, and one can write them in the form 2m;+ I with m1 an integer. 
We have 



Chapter V 

Integral Quadratic Forms with Discriminant ± 1 

§1. Preliminaries 

1.1. Definitions 

Let n be an integer We are interested in the following category S,: 
An object E of S, is a free abelian group of rank n (i.e. isomorphic to Z") 

together with a symmetric bilinear form E x E Z, denoted by (x, y) x.y, 
such that: 

(i) The homomorphism of E into Hom(£, Z) defined by the form x.y is an 
isomorphism. 
Oneseeseasilythat this condition is equivalent to the following (cf. BouRBAKI, 
A/g., chap. IX, §2, prop. 3): 

(ii) If (e1) is a base of E, and if a1i = e1.e i• the determinant of the matrix 
A = (a1j) is equal to ±I. 

The notion of isomorp/1ism of two objects E, E 1 e S, is defined in an ob-
vious way. One then writes E::::::: E 1 • It is also convenient to introduce 
S = vS,, n = 0, I, ... 

If E e S,, the function x x.x makes E a quadratic module over Z (cf. 
chap. IV, def. I, no 1.1). lf(e1) is a basis of E and if x = the quadratic 
form f(x) = x.x is given by the formula 

= L ajjxr+ 21: aiix1xi. 
; l<j 

The coefficients of the non-diagonal terms are thus even. The discriminant 
off (i.e. det(a1i)) is equal to ± I. Changing the basis (e;) means replacing the 
matrix A = (ali) by 'BAB with Be GL(n, Z). From the point of view of the 
form f, this means changing the variables (x;) by the linear substitution 
with matrix B; the form so obtained is called equivalent to the form f. (Ob-
serve that this is an equivalence over the ring Z of integers; it is finer than the 
equivalence over Q studied in the preceding chapter.) 

1.2. Operations on S 

Let E, E 1 e S. We denote by E Ea E' the direct sum of E and of E 1 

together with the bilinear form which is the direct sum of those on E and E I; 
by definition (cf. BOURBAKI, A/g., chap. IX, § I, n° 3): 

= x.y+x 1.y 1 if x, y e E and x', Y1 e E'. 

48 
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From the point of view of "quadratic forms" this operation corresponds to 
that of orthogonal direct sum denoted by ® in chap. IV. 

One can also define tensor products E ® £' and exterior powers 1\m£ 

(BOURBAKI, foe cit., no 9); we will not need them. 

1.3. Invariants 

1.3.1. If E e Sn, the integer n is called the rank of E and is denoted by r( £). 

1.3.2. Let E e Sand let V = E ® R the R-vector space obtained by extending 
the scalars from Z to R. The quadratic form of V has a well defined signature 
(r, s) (chap. IV, no 2.4). The integer 

-r(E) = r-s 

is called the index of E. One has 

-r(£) r(E) r(£) and r(£) = -r(E) (mod 2). 

Recall that E is called definite if -r(£) = ± r(E), i.e. if x.x has constant 
sign; otherwise E is called indefinite. 

1.3.3. The discriminant of E with respect to a basis (eJ does not depend on 
the choice of this basis. Indeed, changing the basis (e1) multiplies the dis-
criminant by det(X' X) = det(X)2 where X is an invertible matrix over Z; 
the determinant of X is equal to ± I, and its square is equal to I. 

The discriminant of E is denoted by d(E); one has d(E) = ±I. If 
V = E ® R is of signature (r, s), the sign of d(E) is (- I)'; since d(E) = ± I, 
we get the formula: 

d(£) = { -J)(r(f)-r(f))/2. 

1.3.4. Let E e S. We say that E is even (or of type II) if the quadratic form 
associated with E takes only even values; if A is the matrix defined by a 
basis of£, this amounts to saying that all the diagonal terms of A are even. 

If E is not even, we say that E is odd (or of type I). 

1.3.5. Let E e S and let E = E/2£ be the reduction of E modulo 2. It is 
a vector space of dimension r(E) over the field F 2 = Z/2Z. By passage to 
quotient, the form x.y defines on E a form i.y which is symmetric and of 
discriminant ± l = l. The associated quadratic form x.x is additive: 

(x+y).(x+y) = x.x+y.y+2x.y = x.x+y.y 
Thus it is an element of the dual of E. But the bilinear form i.y is non-
degenerate; it defines an isomorphism of Eon its dual. From this we see that 
there exists a canonical element ii e E such that 

u.i = x.i for all i e E. 
Lifting u to £, we obtain an element u e £, unique modulo 2£, such that 

u.x = x.x (mod 2) for all x e £. 
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Consider the integer u.u. If we replace u by u+2x, u.u is replaced by 

(u+2x).(u+2x) = u.u+4(u.x+x.x) = u.u (mod 8). 

The image of u.u in Z/8Z is thus an invariant of E; we denote it by a( E). 
If E is of type II, the form x.x is zero (in other words, x.y is alternating) 
and we can take u = 0, hence u(E) = 0. 

1.3.6. Let p be a prime number, and let VP = E ® QP be the QP-vector 
space obtained from E by extending the scalars from Z to QP. The invariant 
e(Vp) = ±I of Vp defined in chap. IV, no 2.I is a fortiori an invariant of E; 
we denote it by ep(E). One can prove that: 

ep(E) = I if p -:/: 2 

e2(E) = ( -l)i, wherej = !(d(E)+r(E)-u(E)- I). 

This is seen by splitting E ® ZP in an orthogonal direct sum of ZP·modules 
of rank 1 (resp. rank I or 2) if p + 2 (resp. p = 2). Since we do not use 
these formulas, we leave the details of the verification to the reader (see also 
]. CASSELS, Comm. Math. Helv., 37, 1962, pp. 61-64). 

1.3.7. Let E 1 , E2 E Sand E = E1 E9 E2 . In order that E is of type II it is 
necessary and sufficient that E 1 and E2 are of type II. One has: 

1.4. Examples 

r(E) = r(E1)+r(E2 ), T(E) = T(E1)+T(E2) 

u(E) = u(E1)+u(E2), d(E) = d(E1).d(E2). 

1.4.1. We denote by I+ (resp. L) the Z-module Z with the bilinear form 
xy (resp. -xy); the corresponding quadratic form is +x2 (resp. -x2). 

If s and t are two positive integers, we denote by sf+ EEl tl _ the direct sum 
of s copies of I+ and t copies of I_ ; the corresponding quadratic form is 

s t 
L x;- L yJ. The invariants of this module are: 

i=l j=l 

r = s+t, T = s-t, d = ( -1)', a= s-t (mod 8). 

Aside the trivial case (s, t) = (0, 0), the module sf+ (B t/ _ is of type /. 

1.4.2. We denote by U the element of S 2 defined by the matrix The 

associated quadratic form is 2x1x 2 ; U is of type II. One has: 

r(U) = 2, T(U) = 0, d(U) = -I, a(U) = 0 

1.4.3. Let k be a positive integer, let n = 4k, and let V be the vector 
space Q" with the standard bilinear form LX;Y; corresponding to the unit 
matrix. Let E0 = Z" be the subgroup of V formed from the points with 
integer coordinates, endowed with the bilinear form induced from that of V; 
E0 is an element of Sn isomorphic to nl +· Let E 1 be the submodule of E0 
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formed of elements x such that x.x = 0 (mod 2), i.e. Lx1 = 0 (mod 2). 
One has (£0 :£1) = 2. Let £be the submodule of V generated by E 1 and 
by e = (!, ... , !). One has 2e E £ 1 (since n = 0 (mod 4)) and e £ 1, hence 
(£:£1) = 2. For an element x = (x 1) of V to belong toE, it is necessary and 
sufficient that one has 

n 
2x1 E Z, x 1-xi E Z, L x 1 E 2Z. 

i= I 

Then we have x.e = !Lx1 E Z; since e.e = k, this shows that the form x.y 
takes integral values on £. Moreover, the fact that £ 1 has the same index in E0 

and in E shows that the discriminant of E is equal to that of E0 , that is to say 
+I. The quadratic module £is thus an element of Sn = S4k; we denote it 
by rn. When k is even (i.e. when n = 0 (mod 8)) e.e = k is even and this 
implies that x.x is even for all x E E; rn is thus of type II when n = 0 (mod 8). 
One has 

The case of r 8 is particularly interesting. There are 240 elements<!) X E r 8 

such that x.x = 2; if (e 1) denotes the canonical base of Q8 , these are the 
vectors 

8 8 
±e;±edi,. k) and t L e,e;, t; = ± 1, n E; = 1. 

i= I i=J 

[The mutual scalar products of these vectors are integers; they form what is 
called in Lie group theory a "root system of type £ 8 " see, BouRBAKI, Gr. et 
Alg. de Lie, chap. VI, §4, no 10.] 

One can take as a basis of r 8 the elements 

!(e. +e8) -1(e2 + ... +e7), e1 +e2 , and e1-e1_1(2 i 7). 

The corresponding matrix is 

2 0 -1 0 0 0 0 0 
0 2 0 -1 0 0 0 0 

-1 0 2 -1 0 0 0 0 
0 -1 -1 2 -1 0 0 0 
0 0 0 -1 2 -1 0 0 
0 0 0 0 -1 2 -1 0 
0 0 0 0 0 -1 2 -1 
0 0 0 0 0 0 -1 2 

For m 2 the vectors x E r 8m such that x.x = 2 are simply the vectors 
± e1 ± ek(i '# k); note that they do not generate r 8m> contrary to what 
happens for m = 1. In particular, r 8 EEl r 8 is not isomorphic to r 16. 
·--------· 

111 More generally we will show in chap. VII, no 6.S, that, if N is an integer ii:: I, the 
number of x" r. such that x.x = 2N is equal to 240 times the sum of the cubes of divisors 
of N. 
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1.5. The group K(S) 

Let £, E' E S. We say that E and £' are stably isomorphic if there exists 
FE S such that E EB F:::: £' (f) F; this is an equivalence relation. We denote 
by K+(S) the quotient of S by this relation and if E E S, we denote by(£) 
the class of E in K+(S). The operation EB defines by passage to quotient a 
composition law + on K+(S); this law is commutative, associative, and 
has for neutral element the class 0 of the module 0 E S. One has 

(E EB £') = (£)+(£'). 

Moreover, if x, y, z E K+(S) are such that x+z = y+z, one has x = y; 
the proof is immediate. This allows us to define the group K(S) from the 
semi-group K+(S) (exactly as one defines Z from the set Z+ of positive 
integers): By definition, an element of K(S) is a pair (x, y) with x, y E K+(S), 
two pairs (x, y), (x', y') being identified if and only if x+y' = y+x'. The 
composition law of K(S) is defined by 

(x, y)+(x', y') = (x+x', y+ y'). 

It makes K(S) into a commutative group with neutral element (0, 0). We 
identify K+(S) with a subset of K(S) by the map x (x, 0). Every element of 
K(S) is a difference of two elements of K+(S), thus can be written in the 
form (£)-(F) with £, F -o S. One has 

(E)-(F) = (£')-(F') in K(S) 

if and only if there exists G E S such that E EB F' EB G :::: £' (f) F (f) G, 
i.e. if and only if E EB F' and E' EB F are stably isomorphic. 

Universal property of K(S).-Let A be a commutative group and let 
f: S be a function such that j(E) = f(E 1)+f(E2) if E ::-::: £ 1 (f) £ 2 ; 

we then say that/is additive. If x = (E)-(F) is an element of K(S) we put 

/(X) = f(E) --f(F); 

this does not depend on the chosen decomposition of x. It is obvious that 
the function f: K(S) ->-A thus defined is a homomorphism. Conversely, 
every homomorphism f: K(S) gives, by composition with S K(S), 
an additive function on S. We express this "universal" property of K(S) 
by saying that K(S) is the Grothendieck group of S relative to the operation@. 

In particular, the invariants r, T, d, a of no 1.3 define homomorphisms 

r: K(S) Z, -r: K(S) Z, d: K(S) { ± 1 }, a: K(S) Z/8Z. 

We have again r = r mod 2 and d = ( -J)(r-rl/2. 

§2. Statement of results 

2.1. Determination of the group K(S) 

Theorem I.-The group K(S) is a free abelian group with basis (I+) and(/_). 
(The proof will be given in no 3.4.) 
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In other terms, all/ e K(S) can be written uniquely as f = s.(I +)+ t.(L) 
with s, t e Z. One has r(f) = s + t, T(/) = s- t, which shows that s and t 
are determined by r and T. From this follows: 

Corollary I.-The pair (r, T) defines an isomorphism of K(S) onto the 
subgroup of Z x Zformed of elements (a, b) such that a = b (mod 2). 
Hence: 

Corollary 2.-For two elements E and E' of S to be stably isomorphic 
it is necessary and sufficient that they have same rank and same index. 

[Note that this does not imply E E' For example U = 6) defines 

in K(S) the same element as (6 _ = I+ $I_, but U and I+ E9 /_ are 

of different types.] 

Theorem 2.-0ne has u(E) = T(£) (mod 8) for every E e S. 
Indeed T reduced mod 8, and u, are homomorphisms of K(S) in Z/8Z 

which are equal on the generators I+ and L of K(S); hence they coincide. 

Corollary 1.-1/ E is of type II, one hasT(£)= 0 (mod 8). 
Indeed u(£) = 0. 

(Note that this implies that r(£) = 0 (mod 2) and d(£) = ( -I)•<E>tz .) 

Corollary 2.-/f E is definite and of type II, one has r(E) = 0 (mod 8). 
Indeed we have T(£) = ± r(E) if E is definite. 

Remarks-!) Conversely, we saw in n° 1.4 that for all n divisible by 8, 
there exists E e Sn which is positive definite and of type II. 

2) The congruence u{£) = T(£) (mod 8) can also be deduced from the 
product formula lle.(£) = l (see chap. IV, no 3.1) combined with the 
values of e,{£) given (without proof) in no 1.3.6. 

2.2. Structure theorems (indefinite case) 

Let E e S. One says that E represents zero if there exists x e £, x =1= 0, 
such that x.x = 0. This is equivalent to saying that the corresponding 
quadratic form Q(x) represents 0 over Q in the sense of chap. IV, no 1.6; 
indeed, one passes from a rational zero to an integral zero by a homothety. 

Theorem 3.-/f E e S is indefinite, E represents zero. 
(The proof will be given in no 3.1.) 

Theorem 4.-/f E e Sis indefinite and of type I •. E is isomorphic to sf+ $ tf_ 
where s and t are integers I. 

(The corresponding quadratic form is thus equivalent over Z to the 
$ I 

x7- xJ.] ,_, J=l 
(The proof will be given in n° 3.3.) 
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Corollary.-Let E and E' be two elements of S with the same rank and 
index. Then either E EB /+ E' $1+ orE(£} L E' EB L. 

This is clear if E = 0. Otherwise, one of the two modules E E9 1 + or 
E $ /_ is indefinite. Suppose that the first is. Since E and £' have the same 
signature, E' E9 I+ is also indefinite. By applying theorem 4, we see that 
E (f) I+ and E' $ I+ are isomorphic to sf+ EB tL and s 'I+ EB t 'L respectively. 
Since E and E' have the same signature, we haves = s' and t = t', hence the 
result. 

Theorem 5.-/f E e S is indefinite of type II, and if T(E) 0, then E is 
isomorphic to pU E9 qr 8 where p and q are positive integers. 

[When T(£) ;;; 0, one has a corresponding result obtained by applying 
the theorem to the module-£ deduced from E by changing the sign of the 
quadratic form.] 

(The proof will be given in no 3.5.) 
Note that q = i-r(E) and p = !(r(E)- T(E)). This shows that E is 

determined up to isomorphism by its rank and its index. Since the same is 
true for type I (cf. theorem 4), we get: 

Theorem 6.-/f E, E' e S are indefinite, and have same rank, index, and 
type, they are isomorphic. 

2.3. The definite case 

One does not have a structure theorem, but only a finiteness theorem: 
for all integers n, sn contains but a finite number of positive definite classes. 
This follows, for instance, from the "reduction theory" of quadratic forms. 
The explicit determination of these classes has been made only for small 
values of n (for n;;;; 16, seeM. KNESER, Archiv der Math., 8, 1957, pp. 241-250). 
One can get this from the Minkowski-Siegel formula (Kneser uses a different 
method). I will just state this formula (I restrict myself, for the sake of 
simplicity, to type 11-there are analogous results for type I): 

Let n = 8k be an integer divisible by 8. Let en denote the set of iso-
morphism classes of elements E E sn which are positive definite of type II. 
If E E en, let G E be the group of automorphisms of E; it is a finite group since 
it is a discrete subgroup of the orthogonal group, which is compact; Jet gE 
be the order of G E· Put: 

This is the "mass" of en, in Eisenstein's sense, i.e. the number of elements 
E of en, counted each with the multiplicity lfgE. The Minkowski-Siegel 
formuJa< 0 gives the value of Mn: 

(•) M = B2k i=:n-1 !}_i 
n 8k j= 1 4j' 

111 For a proof of this formula, cf. C. L. SIEGEL, Gesamm. Abh., I, n• 20 and Ill, n• 79. 
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where n = 8k, and the B 1 are the Bernoulli numbers (B 1 = !, B2 = _!_ , ••. , 
6 30 

cf. chap. VII, n° 4.1). 

(Here are some approximate values of the M.: 
Ma= 10-9 X 1.4352 ... ; M16=10- 18 x2.4885 ... ; M24= 10- 15 X 7.9367 ...• 
M32 = 107 x4.0309 ... ; M40 = 1051 x4.3930 ... ) 

This formula gives a method to prove that a subset C' of c. is equal 
to c.; it suffices to check that the sum of the 1/gE, for E e C', is equal to 
M. (if C' =I= C,, this sum is < M,). 

Examples 
i) n = 8, i.e. k = I. One can show (see for instance BouRBAKI, Gr. et A./g. 
de Lie, chap. VI, §4, no 10) that the order of the group of automorphisms of 
r 8 is 21435527. Moreover, formula (•) gives M8 = r 14 3-5 5- 2 7- 1. By 
comparing, we see that C8 is reduced to the single element r 8 , a result due to 
Mordell. 
ii) n = 16. We know two elements of C 16 : r 16 and r 8 E9 r 8• One can 
prove that the corresponding orders gE are respectively 215(16!) and 
2293105472. Moreover M16 = 69I.r 303- 105-47- 211- 113- 1 and it is easy 
to check that 

691/230310547211.13 = 1/215(16!)+ 1/2293105472. 

We thus have C16 = { r16, r 8 E9 r 8 }, a result due to Witt. 
iii) n = 24. The determination of C24 has been made in 1968 by H. 
NiemeierO>; this set has 24 elements. One of them (discovered by Leech a 
propos of the sphere-packing problem in R24 ) is particularly remarkable; it 
is the only element of C24 which contains no vector x with x.x = 2. Its group 
of automorphisms G has order: 

22239547211.13.23 = 8 315 553 613 086 720 000. 

The quotient G/{± 1} is the new simple group discovered by Conway<2>. 
iv) n = 32. Since M32 > 4.107 and gE 2 for all E, we see that C32 has 
more than 80 million elements; they have not been classified yet. 

§3. PrH/1 

3.1. Proof of theorem 3 

Let E e S, and let V = E ® Q the corresponding Q-vector space. 
Suppose E is indefinite. We must show that E (or V) represents zero. We 
consider several cases: 

Ill See H. NIEMEIEll, J. Number Theory, S, 1973, pp. 142-178. 

121 See J. H. CONWAY, Proc. Nat. Acad. Sci. USA, 61, 1968, pp. 398-400, and Invent. 
Math., 1, 1969, pp. 137-142. 
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i) n = 2. The signature of Vis then (1, 1), hence d(£) = -1. Since -d(£) 
is a square in Q, it is clear that V represents 0. 
ii) n = 3. Let f(X 1, X2 , X3) =·"f.aiiX;Xi be the corresponding quadratic 
form with respect to a basis of £; one has aii e Z and det(ail) = ± 1. 
If pis a prime number the form deduced fromfby reduction modulo p 
has a nontrivial zero (chap. I, no 2.2), and this zero can be lifted to a p-adic 
zero (chap. II, no 2.2), and cor. 2 to th. 1). Hence f represents 0 in all the 
Q,(p =1= 2), and also in R; by cor. 3 of th. 8 of chap IV, no 3.2, this implies 
that f represents 0 in Q. 
iii) n = 4. The same argument as above shows that the quadratic form f 
represents 0 in all the QP, p =1= 2, and in R. If the discriminant d(E) off is 
equal to 1, this suffices to imply that f represents 0 in Q (cor. 3 to th. 8 of 
chap. IV, no 3.2). Otherwise one has d(E) = -1 and d(E) is not a square 
in Q2 ; by th. 6 of no 2.2. of chap. IV, this implies that/represents 0 in Q2 ; 

the Hasse-Minkowski's theorem (chap. IV, no 3.2, th. 8) then shows that f 
represents 0 in Q. 

iv) n 5. One applies Meyer's theorem (chap. IV, no 3.2, cor. 2 to th. 8). 

3.2. Lemmas 

Let E e Sand let F be a submodule of£; let F' be the set of elements of 
E orthogonal to all elements of F. 

Lemma 1.-/n order that F, with the form x.y induced from that of £, 
be in S it is necessary and sufficient that E be the direct sum ofF and F'. 

If E = F E9 F', then one has d(E) = d(F).d(F') from which d(F') = ± 1. 
Conversely if d(F) = ± 1, one has clearly F f1 F' = 0; moreover, if x e £, 
the linear form y 1-+ x.y(y e F) is defined by an element x 0 e F. We then 
have x = x0 +x1, with x 0 e F and x1 e F', hence E = F E9 F'. 

Lemma 2.-Let x e E be such that x.x = ± 1 and let X be the orthogonal 
complement of x in E. If D = Zx, one has E = D Et> X. 

One applies lemma I to F = D. (If, for instance, x.x = I, one has D I+ 
hence E /+ E9 X.) 

An element x e E is called indivisible if it is not contained in any sub-
group nE (n 2), i.e., if one cannot divide it by any integer 2. Every non-
zero element of E can be written in a unique way in the form mx with m 1 
and x indivisible. 

Lemma 3.-/f x is an indivisible element of E there exists y e E such that 
x.y = 1. 

Let/,. be the linear form y 1-+ x.y defined by x. It is a homomorphism 
E-+ Z. Moreover, /,. is indivisible since x is and since x.y defines an iso-
morphism of E onto its dual Hom(£, Z). From this follows that/,. is surjec-
tive (otherwise, one could divide it by an integer 2) and there exists thus 
y e E such that x.y = 1. 
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3.3. Structure theorem (odd indefinite case<'l) 

Lemma 4.-Let E E s •. Suppose E is indefinite and of type I. There exists 
FE s._ 2 such that E,...., I+ 83 /_ 83 F. 

By theorem 3, there exists x E £, x "# 0 such that x.x = 0. Being free to 
divide x by an integer, we can suppose x is indivisible; by lemma 3 above, 
there exists thus y E E such that x.y = I. One can choose y of such that y.y 
is odd. Indeed, suppose that y.y is even; since E is of type I, there exists tEE 
such that t.t is odd. Put y' = t + ky and choose k such that x.y' = I, i.e. 
k = I- x.t; one has y' .y' = t.t (mod 2) and y'.y' is odd. We can thus suppose 
that y.y =2m+ l. Put then e 1 = y-mx, e2 = y-(m+ l)x. One checks 
immediately that el'e 1 = l, el'e2 = 0, e2.e2 = -I. The submodule G of E 
generated by (e 1, e2 ) is isomorphic to I+ 83 L; by lemma I, we have thus 
E 83 /_ 83 F, with FE s.-2· 

Proof of theorem 4.--We use induction on n. Let E E s. with E indefinite 
and of type I. By lemma 4, E::::: /+ 83 /_ 83 F. If n = 2, we have F = 0 
and the theorem is proved. If n > 2, we have F "# 0 and one of the modules 
I+ 83 F, I_ 83 F, is indefinite, for instance the first one. Since I+ is of type I, 
the same is true for I+ 83 F and the inductive hypothesis shows that I+ 83 F 
is of the form a/+ 83 bl_ ; this shows that E a/+ 83 (b + I)!_. 

3.4. Determination of the group K(S) 

Let E E S, E "# 0. Then E 83 I+ or E 83 I_ is indefinite and of type I. 
Applying theorem 4, we see that the image of E in K(S) is a linear combina-
tion of(!+) and of(L). This implies that(!+) and (L) generate K(S). Since 
their images by the homomorphism 

(r, T): K(S) Z x Z 

are linearly independent, (l +) and (!_) form a basis of K(S). 

3.5. Structure theorem (even indefinite case) 

Lemma 5.-Let E E S. Suppose E is indefinite and of type II. There exists 
FE S such that E U 83 F. 

We proceed as in the proof of lemma 4. Choose first x E £, x * 0, x 
indivisible such that x.x = 0; choose next y E E such that x.y = l. If 
y.y = 2m, we replace y by y-mx and obtain a new y such that y.y = 0. 
The submodule G of E generated by (x, y) is then isomorphic to U; by lemma 
l one has E U 83 F with FE S. 

Lemma 6.-Let F1, F2 E S. Suppose that F1 and F2 are of type II and that 
I+ 83 L 83 Ft I+ 83 L 83 F2 • Then U EB F1 U 83 F2 • 

<•l The method followed in this section has been shown to me by Milnor, together 
with the idea of introducing the group K(S). 
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To simplify the notations, we put W = I+ @I_, £ 1 = W EEl F1, and 
V1 = £ 1 ® Q. In £ 1, let £1° be the subgroup of elements x such that x.x = 0 
(mod 2); it is of index 2 in £ 1• One sees immediately that E? = W0 EB F1 where 
W 0 is the set of elements x = (x 1 , x 2 ) of W such that x 1 = x 2 (mod 2). 
Let Et be the "dual" of E? in V1, i.e. the set of y E V1 such that x.y E Z for 
all XEEt It is clear that£/= w+ EEl F; where w+ is the set of(xr,Xz) 
such that 2x 1 E Z, 2x2 E Z, x 1 -x2 E Z. One has £? c £ 1 c £ 1+ and the 
quotient E/!E? is isomorphic to w+jW0 ; it is a group of type (2, 2). There 
exist thus three subgroups strictly between and E;t; they correspond to 
the three subgroups of order 2 in a group of type (2, 2). One of them is £ 1 

itself; the two others will be denoted by E; and £;". Here again we have: 

E( = W' ® F1 and £;" = W" EB F1 

where W' and W" are defined in an obvious way. One checks that W' and 
W" are isomorphic to U (for instance, take for basis of W' the vectors 
a = (t }), b =(I, -I); one has a.a = b.b = 0, a.b = I; for W", take 
(t, -})and (1, 1)). Let then f: W ® F 1 -+ W ® F2 be an isomorphism. It 
extends to an isomorphism of V1 onto V2 , which carries £ 1 onto £ 2 , thus 
also E? onto Ef and £ 1+ onto Et. Thus it carries also(£;,£;) onto either 
(E;, Ei) or (£;, £;). Since £; and E; are isomorphic to U ® F:1, one sees 
that U ® F 1 U ® F2 • 

Proof of theorem 5.-We first prove that if £ 1, £ 2 E S are indefinite of 
type II and have the same rank and same index, they are isomorphic. By lemma 
5, one has £ 1 = U (f) F 1, £ 2 = U EE> F2 ; it is clear that F 1 and F 2 are of 
type II and same rank and same index. The modules I+ ® I_ EEl F 1 and 
I+ ® /_ ® F2 are indefinite, of type I, of same rank and index. By theorem 
4, they are isomorphic. Applying lemma 6, we -see then that £ 1 and £ 2 are 
isomorphic, which proves our assertion. 

Theorem 5 is now clear: if E is indefinite, of type II, and if -r( £) 0 we 
determine integers p and q by the formulas 

q = i-r(£), p = }(r(E)- -r(E)). 

By applying the above result to the modules E and pU EB qr 8 one sees that 
these modules are isomorphic. 
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Chapter VI 

The Theorem on Arithmetic Progressions 

The aim of this chapter is to prove the following theorem. conjectured 
(and used) by Legendre and proved by Dirichlet. 

Tbeorem.-Let a and m be relatively prime integers I. There exist 
infinitely many prime numbers p such that p = a (mod m). 

The method we follow (which is that of Dirichlet himself) uses the 
properties of the L-functions. 

§I. ClaGriiCters of finite abelian groups 

1.1. Duality 

Let G be a finite abelian group written multiplicatively. 

Definition I.-A character of G is a homomorphism of G into the multi-
plicative group C* of complex numbers. 

The characters of G form a group Hom (G, C*) which we denote by G; 
it is called the dual of G. 

Example. Suppose that G is cyclic of order n with generator s. If 
x: G- C* is a character of G, the element w = x(s) satisfies the relation 
w" = I, i.e. is a nth root of unity. Conversely every nth root of unity w 
defines a character of G by means of w". Thus we see that the map 
x 1-+ x(s) is an isomorphism of (; on the group p., of nth roots of unity. In 
particular, G is cyclic of order n. 

Proposition 1.-Let H be a subgroup of G. Every character of H extends 
to a character of G. 

We use induction on the index (G:H) of H in G. If (G:H) = I, then 
H = G and there is nothing to prove. Otherwise let x be an element of G 
not contained in H, and let n be the smallest integer > I such that x" e H. 
Let x be a character of H, and let t = x(x"). Since C* is a divisible group, 
one can choose an element w e C* such that w" = t. Let H' be the subgroup 
of G generated by Hand x; every element h' of H' can be written h' = hx" 
with a e Z and h e H. Put 

x'(h') = x(h)w". 

One checks that this number does not depend on the decomposition hx" of 
h' and that x': H'- C* is a character of H' extending X· Since we have 
(G: H') < (G:H) the inductive hypothesis allows us to extend x' to a 
character of G. 

61 
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Remark. The operation of restriction defines a homomorphism 
p:C-+R 

and prop. 1 says that pis surjective. Moreover, the kernel of p is the set of 
characters of G which are trivial on H; it is thus isomorphic to the group 
/"... 

(G/H) dual toG/H. Hence the exact sequence: 

{I} -+ (6/H) -+ C -+ R -+ { I}. 

Proposition 1..-The group C is a finite abelian group of the same order as G. 
One uses induction on the order n of G, the case n = 1 being trivial. 

If n 2, choose a nontrivial cyclic subgroup H of G. By the remark above, 
the order of C is the product of the orders of R and of (6/H). But the 
order of H (resp. of G/H) is equal to that of its dual, because H is cyclic 
(resp. because G/H is of order strictly smaller than n). We conclude from 
this that the order of Cis the product of the orders of Hand of G/H, hence 
is equal to the order of G. 

Remark. One can prove a more precise result: G is isomorphic (non-
canonically in general) to G. This is shown by decomposing G into a product 
of cyclic groups. 

If x e G the function x x(x) is a character of C. We obtain thus a 
homomorphism e: G -+ G. 

Proposition 3.-The homomorphism e is an isomorphism of G onto its 

bidual G. 
Since G and G have the same order, it suffices to prove that e is injective, 

i.e. that, if x e G is #I, there exists a character x of G such that x(x) =I= I. 
Now, let H be the cyclic subgroup of G generated by x. It is clear (seethe 
above example) that there exists a character x of H such that x(x) =I= I and 
prop. 1 shows that x extends to a character of G; hence the desired result. 

1.2. Orthogonality relations 

Proposition 4.-Let n =Card( G) and let x e G. Then 

L x(x) = {n if x = I 
xeG 0 if X =f I. 

The first formula is obvious. To prove the second, choosey e G such 
that x(Y) =I= I. One has: 

x(y) L x(x) = L x(xy) = L x(x), 
xeG xeG xeG 

hence: 
(x(y)-1) :L x(x) = o. 

xeG 

Since x(y) + I, this implies I: x(x) = 0. 
x•G 
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Corollary.-Let x e G. Then 

L x(x) = {n 
xeG 0 

if x=l 
if X ::f= J. 

This follows from prop. 4 applied to the dual group C. 
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Remark.-The above results are special cases of the "orthogonality 
relations" of the character theory of finite groups (not necessarily abelian). 

1.3. Modular characters 

Let m be an integer I. We denote by G(m) the multiplicative group 
(Z/mZ)* of invertible elements of the ring Z/mZ. It is an abelian group of 
order ,P(m), where ,P(m) is the Euler .P-function of m, cf. chap. I, no 1.2. An 
element x of the dual of G(m) is called a character modulo m; it can be 
viewed as a function, defined on the set of integers prime to m, with values 
in C*, and such that x(ab) = x(a)x(b); it is convenient to extend such a 
function to all of Z by putting x(a) = 0 if a is not prime to m. 

Examples 
I) m = 4; the group G(4) has two elements, hence has a unique nontrivial 
character, which is x 1--+ ( -ty<x>, cf. chap. I, n° 3.2. 
2) m = 8; the group G(8) has four elements. It has three nontrivial 
characters which are 

X 1--+ ( -J)'(xl, ( -J)w(xl, ( -J)'(x)+<->(XI 

cf. chap. I, no 3.2. 
3) m = p with p prime :J=2. The group G(p) is cyclic of order p-1, hence 

has a unique character of order 2, the Legendre character x .._. ( . 

4) m = 7. The group G(7) is cyclic of order 6, thus has two characters of 
order 3 which are complex conjugates. One of them is given by 

x(x) = 1 if x = ± I (mod 7) 

x(x) = e2" 113 if X := ± 2 (mod 7) 

x(x) = e4 " 113 if X =:: ± 3 (mod 7). 

The characters of order 2 are closely related to the Legendre characters. 
More precisely: 

Proposition 5.-Let a be a non-zero square-free integer (cf. chap. IV, no 3.2) 
and let m = 4lal. Then there exists a unique character Xa modulo m such that 

x,.(p) = for all prime numbers p not dividing m. One has = I and 

X a =!= 1 if a =!= I. 
The uniqueness of Xa is clear because all integers prime to m are products 

of prime numbers not dividing m; the same argument shows that x: = 1. 
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To prove the existence of Xa• assume first that a = / 1 ••• It where the /1 

are distinct prime numbers. different from 2. Then we take for X a the character 

xix) = ( -ty<xl<Cal ... 

If p is a prime number distinct from 2 and the /1, the quadratic reciprocity 
law shows that 

and Xa has the required property. We have Xa to I if a =!= I; indeed, if we 
choose x such that 

-1 and x = I (mod 412 ••• lk), 

we have xa(x) = - I. 
When a is of the form -b (or 2b or -2b) with b = /1 ••• It as above. 

we take for Xa the product of Xb with the character ( -l)•Cxl (or ( -l)"'<xl 
or ( -l)•<xJ+w<x>). A similar argument shows that Xa ::f I. 

Remark.-One can prove that, if xis an integer >0 prime tom, then 

xa<x) = n (a, x), = n (a, x), 
lim (l,m)=l 

where (a, x)1 denotes the Hilbert symbol of a and x in the field Q,. This 
formula could have been used to define Xa· 

§l. Dirichlet series 

2.1. Lemmas 

Lemma 1.-Let U be an open subset of C and let /, be a sequence of 
holomorphic functions on U which converges uniformly on every compact set 
to a function f Then f is holomorphic in U and the derivatives /,' of the /, 
converge uniformly on all compact subsets to the derivative f' off 

Let us recall briefly the proof: 
Let D be a closed disc contained in U and let C be its boundary oriented 
in the usual manner. By Cauchy formula, one has 

/,(zo) = f fn(z) dz 
217T z-z0 

c 
for all z0 interior to D. Passing to the limit, one gets: 

f(zo) = fj(z) dz, 
217T z-z0 

c 
which shows that f is holomorphic in the interior of D, and the first part of 
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the lemma follows. The second part is proved in the same way. using the 
formula: 

f'(zo) = l_ I - dz. 
2i1T (z-z0 ) 

c 
Lemma 2 (Abel's lemma).-Let (a.) and (b.) be two sequences. Put: 

n=p tt=m' 

Am,p = L a. and sm,m' = L a.b •. 
n=m n=m 

Then one has: 
n=m'-1 

S,.,m· L Ano,n(b.-bn+ l)+Am,m'bm'• 
n=m 

One replaces a. by Am,.-Am,n-l and regroups the terms. 

Lemma 3.-Let a., fJ be two real numbers with 0 < a. < {J. Let z = x + iy 
a·ith x, y E R and x > 0. Then: 

One writes 

Je-"•-e-II•J (e-ox-e-llx). 

p 

e-«z -e-ll• = z J e-'• dt, 

« 

hence by taking absolute values: 
ll 

Je-"'-e- 11 '1 Jzl f e-'"dt = 1;1 (e-""-e-11"). 

"' 
2.2. Dirichlet series 

Let (A.) be an increasing sequence of real numbers tending to + oo. For 
the sake of simplicity, we suppose that the An are 0 (this is not essential, 
for we can always reduce ourselves to this case by suppressing a finite number 
of terms of the series under consideration). 

A Dirichlet series with exponents (A.) is a series of the form 

:La.e-J."z (a. E C, z E C). 

Examples 
(a) A" = Jog n (ordinary Dirichlet series); such a series is written :E a.fn•, 
cf. no 2.4. 
(b) A. = n. By setting t = e-•, the series becomes a power series in t. 

Remark.-The notion of Dirichlet series is a special case of that of the 
Laplace transform of a measure IL· This is the function 

<X> J e-•' JL(t). 
0 
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The case considered here is that where p. is a discrete measure. (For more 
details, see for instance D. WIDDER, The Laplace Transform, Princeton Univ. 
Press, 1946.) 

Proposition 6.-Jf the series f(z) = I:a"e-A": converges for z = z0 , it 
converges uniformly in every domain of the form R(z- z0 ) 0, Arg(z- z0) oc 
with oc < TT/2. 

(Here, and in all that follows, R(z) denotes the real part of the complex 
number z.) 

After making a translation on z, we can suppose that z0 = 0. The 
hypothesis then means that the series I:a" is convergent. We must prove that 
there is uniform convergence in every domain of the form R(z) 0, Jzl/ R(z) 

k. Let e > 0. Since the series I:a, converges, there is an N such that if 
m, m' N, we have JAm,m·l e (notations being those of lemma 2). Applying 
this lemma with b" = e-A"". we obtain 

m'-1 
Sm,m' = L Am,.(e-A"•-e-An••')+Am,m'e-A•n'•. 

m 

By putting z = x + iy and applying lemma 3, we find: 

JSm,m•l e(l + J:J"'tl (e-A""-e-A"•'")} 

that is to say: 

hence: 

and the uniform convergence is clear. 

Corollary 1.-Jf f converges for z = z0 , it converges for R(z) > R(z0 ) and 
the function thus defined is holomorphic. 

This follows from prop. 6 and lemma I. 

Corollary 'l.-The set of convergence of the series f contains a maximal 
open half plane (called the half plane of convergence). 

(By abuse of language we consider 0 and C as open half planes.) 
If the half plane of convergence is given by R(z) > p, we say that p is 

the abscissa of convergence of the series considered. 
(The cases 0 and C correspond respectively to p = + oo and p = - oo ). 
The half plane of convergence of the series I:Ja,Je-A"• is called (for 

obvious reasons) the half plane of absolute convergence off; its abscissa of 
convergence is denoted by p +. When A, = n (power series), it is well known 
that p = p +. This is not true in general. For example the simplest L series: 

L(z) = 1-1/3' + 1/5' -1/7' + ... 
corresponds to p = 0 and p + = 1, as we will see later. 
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Corollary 3.-f(z) converges to f(z0) when z-+ z0 in the domain 

R(z- z0) 0, JArg (z- z0)J oc with oc < 1rj2. 

This follows from the uniform convergence and the fact that e-A.z tends 
tO e-A.zo. 

Corollary 4.-The function f(z) can be identically zero only if all its 
coefficients a. are zero. 

Let us show a0 is zero. We multiply f by elo• and make z tend to + oo 
(with z real for instance). The uniform convergence .shows that eAozf tends 
then to a0 hence a0 = 0. We proceed similarly for a 10 etc. 

2.3. Dirichlet series with positive coefficients 

Proposition 1.-Let f = l:a.e-A.z be a Dirichlet series whose coefficients 
a. are real 0. Suppose that f converges for R(z) > p, with p e R, and that 
the function f can be extended analytically to a function holomorphic in a 
neighborhood of the point z = p. Then there exists a number e > 0 such that f 
converges for R(z) > p- e. 

(In other terms, the domain of convergence off is bounded by a singularity 
of /located on the real axis.) 

After replacing z by z- p, we can assume that p = 0. Since f is holo-
morphic for R(z) > 0 and in a neighborhood of 0, it is holomorphic in a 
disc lz -II I+ e, with e > 0. In particular, its Taylor series converges in 
this disc. By lemma I, the pth derivative off is given by the formula 

j<P>(z) = Lan(-A.)'e-;."z for R(z) > 0; 
n 

hence 
J<P>(l) = ( -l)P L . 

• 
The Taylor series in question can be written 

oo I 
f(z) = L -

p•op! 
In particular for z = -e, one has 

Jz-II I+e. 

f( -e) = f _!_(I +e)'( -l)Pf<P>(l), 
p=O p! 

the series being convergent. 
But ( -l)PJ<'>(l) = l: is a convergent series with positive terms. 

n 

Hence the double series with positive terms 

/(-e)= L 
p,n p. 
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converges. Rearranging terms, one gets 
co 1 

f( -e) = L 0 11e-An L - {1 +e)'A: 
" p=op! 

= L a"e-AneAn(l +•) = LaneAn•, 
II II 

which shows that the given Dirichlet series converges for z = -e, thus also 
for R(z) > -e. 

2.4. Ordinary Dirichlet series 

This is the case A" = log n. The corresponding series is written 
00 

f(s) = L anfn', 
n=l 

the notation s being traditional for the variable. 

Proposition 8.-/f the a" are bounded, there is absolute convergence for 
R(s) > I. 

co 
This follows from the well known convergence of l/n« for at.> J. 

n=l 
p 

Proposition 9.-/f the partial sums A, , = are bounded, there is . "' 
convergence (not necessarily absolute) for R(s) > 0. 

Assume that IAm.,l K. By applying Abel's lemma (lemma 2), one 
finds 

iSm,m·l (n:l)., + 

We can suppose that s is real (by prop. 6). This allows us to write the preced-
ing inequality in the simpler form 

ISm,m•l K/m'. 
and the convergence is clear. 

§3. Zeta function and L functions 

3.1. Eulerian products 

Definition 2.-A function f: N -+ C is called multiplicative iff ( 1) = I and 

f(mn) = f(m)f(n) 

whenever the integers n and m are relatively prime. 
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Examples.-The Euler </>-function (chap. I, no 1.2) and the Ramanujan 
function (chap. VII, no 4.5) are multiplicative. 

Let f be a bounded multiplicative function. 
<1) 

Lemma 4.-The Dirichlet series 1: f(n)jn• converges absolutely for 
n-1 

R(s) > I and its sum in this domain is equal to the convergent infinite product 

n (I +f(p)p-•+ ... +f(p"')p-m•+ ... ). 
peP 

(Here and in the following, P denotes the set of prime numbers.) 
The absolute convergence of the series follows from the fact that f is 

bounded (prop. 8). Let S be a finite set of prime numbers and let N(S) be 
the set of integers I all of whose prime factors belong to S. 

The following equality is immediate: 

L f<n>Jn• = n ( f f(p"')p-ms) 
11eN(S) peS m=O 

<1) 

When S increases, the left hand side tends to 1: f(n)jn•. From this, one sees 
n=l 

that the infinite product converges and that its value is equal to l:f(n)fn'. 

Lemma 5.-/f f is multiplicative in the strict sense (i.e. if f(nn') = f(n)f(n') 
for all pairs n, n' EN), one has: 

<1) 1 L f<n)Jn• = n --
peP 1-f(p)jp• 

This follows from the above lemma and the identity f(p"') = f(p)"'. 

3.2. The zeta function 

Apply the preceding section with f = I. We obtain the function 

Cl) 1 l 
'<s> = L -. = n -. 

peP 1 _ __!_ 

p• 

these formulas making sense for R(s) > I. 

Proposition 10.-(a) The zeta function is holomorphic and =I= 0 in the half 
plane R(s) > l. 

(b) One has: 

'(s) = - 1- + </>(s), 
s-l 

where cf>(s) is holomorphic for R(s) > 0. 
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Assertion (a) is clear. For (b), we remark that 
QQ n+l 

-- = t t = L... 1 f -·d 
s-J n=l 

f t-•dt. 
I " 

Hence we can write 

{(s) = _!__ + f nf-!1 ,-•dr) = _I_+ I nf+l(n-•-r•)dt. 
s-l n=l n s-l n=l 

" " 
Put now: 

n+l 

c/>n(s) = f (n-•-t-")dt and cf>(s) = .. cf>.(s). 
n 

We have to show that cf>(s) is defined and holomorphic for R(s) > 0. But it is 
clear that each c/>,.(s) has those properties, thus it suffices to prove that the 
series 'f.c{>,. converges normally on all compact sets for R(s) > 0. One has: 

lc/>,.(s)i sup ln-•-,-•1. 
n::;t::;n+l 

But the derivative of the function n-•-r-• is equal to str•+•. From this we 
get: 

lc/>,.(s)i , with x = R(s), 
n 

and the series 'f.c{>,. converges normally for R(s) e, for all e > 0. 

Corollary l.-The zeta function has a simple pole for s = J. 
This is clear. 

Corollary 2.-When s- I, one has r. p-• .-log 1/(s-1), and r. 1/p'" 
remains bounded. P p.lc '= 2 

One has: 
I 

log {(s) = L = L 1/p"+I/J(s), 
peP,ko=lk.p peP 

with 1/J(s) = r. r. (1/k.pls). The series 1/J is majorized by the series 
peP k <;2 

QQ 

'[)tl• = LI/p"(p•-1) })/p(p-1) L 1/n(n- 1) = l. 
n=2 

This implies that 1/1 is bounded, and since cor. I shows that log {(s) -. 
I Jog -, cor. 2 follows. 

s-J 

Remark.-Even though it is not necessary for our purpose, it should be 
mentioned that {(s) can be extended to a meromorphic function on C with 
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the single pole s = 1. The function f(s) = 'IT-•t 2 r(sj2)t(s) is meromorphic 
and satisfies the functional equation = 

Moreover, the zeta function takes rational values on the negative 
integers: 

"- 2n) = 0 if n > 0 
W-2n) = (-l)"Bn/2n ifn > 0, 

where B" denotes the nth Bernoulli number (cf. Chap. VII, no 4.1). 
One conjectures (Riemann hypothesis) that the other zeros of C are on 

the line R(s) = t. This has been verified numerically for a large number of 
them (more than three million). 

3.3. The £-functions 

Let m be an integer 1 and let x be a character mod m (cf. no 1.3). The 
corresponding L function is defined by the Dirichlet series 

00 

L(s, x) = L x(n)tn•. 
n=l 

Note that, in this sum, it is only the integers n which are prime to m which 
give a non-zero contribution. 

The case of the unit character gives nothing essentially new: 

Proposition ll.-For x = 1, one has 

L(s, 1) = F(sg(s) with F(s) = n (1-p-•). 
,jO: 

In particular L(s, 1) extends analytically for R(s) > 0 and has a simple pole 
at s = 1. 

This is clear. 

Proposition 12.-For x =+= 1 the series L(s, x) converges (resp. converges 
absolutely) in the half plane R(s) > 0 (resp. R(s) > 1); one has 

1 L(s, x) = ll for R(s) > 1. 
peP 1 _ x(p) 

p" 

The assertions relative to R(s) > 1 follow from what has been said in 
no 3.1. It remains to show the convergence of the series for R(s) > 0. Using 
prop. 9, it suffices to see that the sums 

v 
A ... v = Lx(n), u v, .. 

are bounded. Now, by prop. 4, we have 
u+m-1 L x(n) = 0 . .. 



72 The theorem on arithmetic progressions 

Hence it suffices to majorize the sums Au,v for v-u < m, and this is obvious: 
one has 

IAu,vl 1/>(m). 

The proposition follows. 

Remark.-In particular L(l, x) is finite when x =!= I. The essential point 
of Dirichlet's proof consists in showing that L( I. x) is different from zero. 
This is the object of the next section. 

3.4. Product of the L functions relative to the same integer m 

In this section, m is a fixed integer If p does not divide m, we denote 
by p its image in G(m) = (Z/mZ)* and by f(p) the order of p in the group 
G(m). By definition, f(p) is the smallest integer f > I such that p 1 = I 
(mod m). We put 

g(p) = 1/>(m)/f(p); 

This is the order of the quotient of G(m) by the subgroup (p) generated by p. 

Lemma 6.-1/ p-r m, one has the identity 

n (l-x(p)T) = (1-TICP>JKCP>, 

where the product extends over all characters x of G(m). 
Let W be the set of f(p)-th roots of unity. One has the identity 

0 (1- wT) = 1-TICP>. 
weW 

Lemma 6 follows from this and the fact that for all we W there exists g(p) 
characters x of G(m) such that x(fJ) = w. 

We now define a new function {m(s) by means of the formula 

{m(s) = TI L(s, x), 
11. 

the product being extended over all characters x of G(m). 

Proposition 13.-0ne has 
I 

{m(s) = fl ( I )rCPl · pfm l __ _ 
pf(P)• 

This is a Dirichlet series, with positive integral coefficients, converging in the 
half plane R(s) > I. 

Replacing each L function by its product expansion, and applying 
lemma 6 (with T = p-"), we obtain the product expansion of {m(s). This 
expansion shows clearly that it is a series with positive coefficients; its con-
vergence for R(s) > I is clear. 
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Theorem 1.-(a) '"' has a simple pole at s = I. 
(b) L(l, x) -::F 0 for all x =t= I. 

If L(l, x) =t= 0 for all x =t= 1, the fact that L(s, 1) has a simple pole at 
s = 1 shows that the same is true for ,,. Thus (b) =- (a). Suppose now that 
L(l, x) = 0 for some x =t= I. Then the function '"' would be holomorphic 
at s = 1, thus also for all s such that R(s) > 0 (cf. prop. 11 and 12). Since 
it is a Dirichlet series with positive coefficients, this series would converge 
for all s in the same domain (prop. 7). But this is absurd. Indeed, the pth-factor 
of '"' is equal to 

1 =(I +p-f(p)a+p-2/(p)s+ •• ,)f(P) 
( 1 - p- f(p),f(p) ' 

and dominates the series 
1 +p-4>(m)s+p-l4>(m)s + ... 

It follows that '"' has all its coefficients greater than those of the series 
L n-•cml• 

(n, m)= 1 

which diverges for s = - 1-. This concludes the proof. 
r/J(m) 

Remark.-The function '"' is equal (up to a finite number of factors) 
to the zeta function associated with the field of mth roots of unity. The fact 
that '"' has a simple pole at .f = I can also be deduced from general results on 
zeta functions of algebraic number fields. 

§4. Density and Dirichlet theorem 

4.1. Density 

Let P be the set of prime numbers. We have seen (cor. 2 to prop. 10) 
that, when s tends to I (s being real > 1 to fix the ideas) one has 

L.!. "' log _1_. 
PEP p' S-l 

Let A be a subset of P. One says that A has for density a real number k 
when the ratio 

)/(tog 

tends to k when s - I. (Of course, one then has 0 k 1.) The theorem 
on arithmetic progressions can be refined in the following way: 

Theorem '1..-Let m I and let a be such that (a, m) = I. Let P, be the 
set of prime numbers such that p = a (mod m). The set P, has density 1/r/J(m). 

(In other words the prime numbers are "equally distributed" between the 
different classes modulo m which are prime tom.) 
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Corollary.-The set Pa is infinite. 
Indeed a finite set has density zero. 

The theorem on arithmetic progressions 

4.2. Lemmas 

Let x be a character of G(m). Put 

f.,.(s) = L x(p)jp•, 
p-fm 

this series being convergent for s > 1. 

1 Lemma 1.-Jfx = 1, thenfx,......, log -fer s-+ l. 
s-I 

Indeed, f 1 differs from the series 'f..!jp• by a finite number of terms only. 

Lemma 8.-If x =I= I, fx remains bounded when s-+ I. 
We use the logarithm of the function L(s, x). It is necessary to make a 

little more precise what we mean by this (due to the fact that "log" is not 
properly speaking a function): 

L(s, x) is defined by the product [ll/(1- x(p)p•). For R(s) > I each factor 

is of the form 1/(l- ex) with lex I < l. We define log - 1 - as 'f. ex"fn ("principal" 
l-ex n=l 

determination of the logarithm) and we define log L(s, x) by the series (clearly 
convergent): 

I log L(s, x) = L log (R(s) > I) 
I-x(p)p-• 

= L x(ptfnp"• 
n, p 

(Equivalent definition: take the "branch" of log L(s, x) in R(s) > I which 
becomes 0 when s-+ + oo on the real axis.) 

We now split log L(s, x) into two parts: 

log L(s, x) = fx(s) + Fx(s) 
with 

F.,_(s) = L x(p)"/np"•. 

Theorem I, together with cor. 2 of prop. 10, shows that log L(s, x) and 
Fx(s) remain bounded when s-+ l. Hence the same holds for fx(s), which 
proves the lemma. 

4.3. Proof of theorem 2 

We have to study the behavior of the function 
ga(s) = L I jp• 

peP. 
for s--+ I. 
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Lemma 9.-0ne has 

gD(S) = t x(a) -lfl(S), 

the sum being extended over all characters x of G(m). 
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The function Lx(a)-'fis) can be written, by replacingfx by its definition: 

L (2: x(a-')x(P))fp'. 
p{m X 

But x(a- 1 )x(p) = x(a- 1p). By the corollary to prop. 4, we have: 

l:x(a- 1p) = rf;(m) ifa- 1p =I (modm) 

= 0 otherwise. 

Hence we find the function rp(m)ga(s). 

Theorem 2 is now clear. Indeed, lemma 7 shows that fis) ,_,log _I_ 
s-1 

for x = I, and lemma 8 shows that all other fx remain bounded. Using 

lemma 9, we then see that gis) ,_,_I_ log _I_ , and this means that the 
. . 1 rf;(m) s-I 

denstty of Pa ts -- , q.e.d. 
rf;(m) 

4.4. An application 

Proposition 14.-Let a be an integer which is not a square. The set of 

prime numbers p such that = I has density t. 
We can assume that a is square-free. Let m = 4jaj, let Xa be the character 

(mod m) defined in prop. 5 of no 1.3 and let H c G(m) be the kernel of Xa 
in G(m). If p is a prime number not divisible by m, let p be its image in G(m). 

We have = I if and only if p is contained in H. By th. 2 the set of prime 

numbers verifying this condition has for density the inverse of the index of H 
in G(m), that is to say l· 

Corollary.-Let a be an integer. If the equation X2 -a = 0 has a solution 
modulo p for almost all p e P, it has a solution in Z. 

Remark.-There are analogous results for other types of equations. For 
instance: 
i) let f(x) = a0 Xn + ... +an be a polynomial of degree n with integer co-
efficients, which is irreducible over Q. Let K be the field generated by the 
roots off (in an algebraically closed extension of Q) and let N = [K: Q]. 
One has N n. Let P1 be the set of prime numbers p such thatf"decomposes 
completely modulo p", i.e. such that all the roots off (mod p) belong to FP' 

One can prove that P1 has density _!_ . (The method is analogous to that of 
N 
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the Dirichlet theorem-one uses the fact that the function of the field 
K has a simple pole at s = 1.) One can also give the density of the set Pi of 
p such that the reduction off (mod p) has at least one root in FP; it is a 
number of the form q/N with I q < N (setting aside the trivial case 
where n = I). 
ii) More generally, let {f.(x 1, ••• , x.)} be a family of polynomials with 
integer coefficients and let Q te the set of p e P such that the reductions of 
fm (mod p) have a common zero in (Fp)". It can be proved (see J. Ax, Ann. of 
Maths., 85, 1967, pp. 161-183) that Q has a density; moreover this density 
is a rational number and is zero only if Q is finite. 

4.5. Natural density 

The density used in this paragraph is the "analytic density" (or "Dirichlet 
density"). Despite its apparent complexity, it is very convenient. 

There is another notion, that of "natural density": a subset A of P has 
natural density k if the ratio 

number of elements of A which are n 
n urn ber of elements of P which are n 

tends to k when n oo. 
One can prove that, if A has natural density k, the analytic density of A 

exists and is equal to k. On the other hand, there exist sets having an analytic 
density but no natural density. It is the case, for example, of the set P1 of 
prime numbers whose first digit (in the decimal system, say) is equal to 1. 
One sees easily, using the prime number theorem, that P1 does not have a 
natural density and on the other hand BOMBIERI has shown me a proof that 
the analytic density of P 1 exists (it is equal to log 102 = 0.301029995 ... ). 

However, this "pathology" does not occur for the sets of prime numbers 
considered above: the set of peP such that p = a (mod m) has a natural 
density (equal to 1/"'(m), if a is prime to m); the same holds for the sets 
denoted P1 , Pi, and Q in the preceding section. For a proof (and an estimate 
of the "error term") see K. PRACHAR, Primzahlverteilung, V, §7. 
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Modular Forms 

§ 1. The modular group 

1.1. Definitions 

Let H denote the upper half plane of C, i.e. the set of complex numbers 
z whose imaginary part /m(z) is > 0. 

Let SL2(R) be the group of matrices (; :) , with real coefficients, such 

that ad- be = I. We make SL2(R) act on C = Cu {co} in the following 
way: 

(1) 

if g = (; is an element of SL2(R), and if z E C, we put 

az+b gz = --. 
cz+d 

One checks easily the formula 
., ( ) Jm(z) ,m gz = 

lcz+dl2 
This shows that His stable under the action of SL2(R). Note that the element 

- I = (- _ of SL2(R) acts trivially on H. We can then consider that 

it is the group PSL2(R) = SL2(R)/ { ± 1} which operates (and this group 
acts faithfully-one can even show that it is the group of all analytic auto· 
morphisms of H). 

Let SL2(Z) be the subgroup of SL2(R) consisting of the matrices with 
coefficients in Z. It is a discrete subgroup of SL2(R). 

Definition 1.-The group G = SLiZ)/ { ± 1 } is called the modular group; 
it is the image of SL2(Z) in PSL2(R). 

If g = (; :) is an element of SL2(Z), we often use the same symbol to 

denote its image in the modular group G. 

1.2. Fundamental domain of the modular group 

Let S and T be the elements of G defined respectively by 

D . One has: 

77 

-1) 0 and 
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Sz = -1/z, 
S2 = 1, 

Tz = z+l 
(ST)3 = I 

Modular forms 

On the other hand, let D be the subset of H formed of all points z such 
that lzl 1 and IRe{z)l ;;:;! 1/2. The figure below represents the transforms 
of D by the elements: 

{I, T, TS, sr-•s, s, ST, STS, r-•s, r-•} of the group G. 

Fig. 1 

We will show that D is a fundamental domain for the action of G on the 
half plane H. More precisely: 

Theorem 1.-(1) For every z e H, there exists g e G such that gz e D. 
(2) Suppose that two distinct points z, z' of D are congruent modulo G. 

Then, R(z) = ± t and z = z' ± I, or lzl = I and z' = - 1/z. 
(3) Let z e D and let l(z) = {gig e G, gz = z} the stabilizer of z in G. 

One has l(z) = {I} except in the following three cases: 
z = i, in which case l(z) is the group of order 2 generated by S; 
z = p = e2 " 113 , in which case l(z) is the group of order 3 generated by ST; 
z = - p = eJt1/ 3 , in which case l(z) is the group of order 3 generated by TS. 

Assertions (I) and (2) imply: 

Corollary.-The canonical map D H/G is surjective and its restriction 
to the interior of D is injective. 

Theorem 2.-The group G is generated by SandT. 

Proof of theorems I and 2.-Let G' be the subgroup of G generated by 
Sand T, and let z e H. We are going to show that there exists g' e G' such 

that g'z e D, and this will prove assertion (I) of theorem I. If g = (: 

is an element of G', then 

(I) lm(z) lm(gz) = --- . 
lcz+dl 2 
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Since c and dare integers, the numbers of pairs (c, d) such that lcz+dl is 
less than a given number is finite. This shows that there exists g e G' such 
that Im(gz) is maximum. Choose now an integer n such that T"gz has real 
part between -! and + !. The element z' = T"gz belongs to D; indeed, it 
suffices to see that lz'l 1, but if lz'l < 1, the element -1/z' would have 
an imaginary part strictly larger than /m(z'), which is impossible. Thus the 
element g' = T"g has the desired property. 

We now prove assertions (2) and (3) of theorem I. Let z e D and let 

g =(: :) e G such that gz e D. Being free to replace (z, g) by (gz, g- 1), 

we may suppose that lm(gz) Im(z), i.e. that !cz+dl is l. This is clearly 
impossible if lei !;;:; 2, leaving then the cases c = 0, I, -1. If c = 0, we have 
d = ± 1 and g is the translation by ±b. Since R(z} and R(gz) are both 
between -! and f, this implies either b = 0 and g = 1 or b = ± I in which 
case one of the numbers R(z) and R(gz) must be equal to - t and the other 
to f. If c = 1, the fact that lz+dl is 1 implies d = 0 except if z = p (resp. 
- p) in which case we can have d = 0, I (resp, d = 0, -1). The case d = 0 
gives lzl ::;; I hence lzl = I ; on the other hand, ad- be = I implies b = - I, 
hence gz = a-1/z and the first part of the discussion proves that a = 0 
except if R(z) = ± !. i.e. if z = p or - p in which case we have a = 0, - 1 or 
a= 0, 1. The case z = p, d = 1 gives a-b = 1 and gp = a-1/(1 +p) = a+p, 
hence a = 0, 1 ; we argue similarly when z == - p, d = -1. Finally the case 
c = - 1 leads to the case c = I by changing the signs of a, b, c, d (which 
does not change g, viewed as an element of G). This completes the verific-
ation of assertions (2) and (3). 

It remains to prove that G' == G. Let g be an element of G. Choose a 
point z0 interior to D (for example z0 = 2i), and let z = gz0 • We have seen 
above that there exists g' E G' such that g'z e D. The points z0 and g'z = 
g'gz0 of D are congruent modulo G, and one of them is interior to D. 
By (2) and (3), it follows that these points coincide and that g'g = I. Hence 
we have g e G', which completes the proof. 

Remark.-One can show that (S, T; S2, (ST) 3) is a presentation of G, 
or, equivalently, that G is the free product of the cyclic group of order 2 
generated by S and the cyclic group of order 3 generated by ST. 

§2. Modular functions 

2.1. Definitions 

Definition l.-Let k be an integer. We say a function f is weakly modular 
of weight 2k1 11 iff is meromorphic on the half plane Hand verifies the relation 

(2) f(z) = for all(: :) e SL2(Z). 

1 •> Some authors say that I is "of weight - 2k", others that I is "of weight k'". 
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Let g be the image in G !)· We have d(gz)/dz = (cz+d)- 2• The 

relation (2) can then be written: 

f(gz) = (d(gz))- k 

f(z) dz 
or 

(3) f(gz)d(gz)k = f(z)dzk. 

It means that the "differential form of weight k" f(z)dzk is invariant under G. 
Since G is generated by the elements S and T (see th. 2), it suffices to check 
the in variance by S and by T. This gives: 

Proposition 1.-Let f be meromorphic on H. The function f is a weakly 
modular function of weight 2k if and only if it satisfies the two relations: 

(4) 

(5) 

f(z+ I) = /(z) 

/( -1/z) = z2"/(z). 
Suppose the relation (4) is verified. We can then express f as a function 

of q = e2ni•, function which we will denote by/; it is meromorphic in the 
disk jqJ < 1 with the origin removed. If J extends to a meromorphic (resp. 
holomorphic) function at the origin, we say, by abuse of language, that f 
is meromorphic (resp. holomorphic) at infinity. This means that J admits a 
Laurent expansion in a neighborhood of the origin 

-ao 

where the a,. are zero for n small enough (resp. for n < 0). 

Definition 3.-A weakly modular function is called modular if it is mero-
morphic at infinity. 

When f is holomorphic at infinity, we set/( oo) = /(0). This is the value 
off at infinity. 

Definition 4.-A modular function which is holomorphic everywhere 
(including infinity) is called a modular form; if such a function is zero at 
infinity, it is called a cusp form ("Spitzenform" in German-':forme para-
bolique" in French). 

A modular form of weight 2k is thus given by a series 
ao oo 

(6) f<z> = .L a,.q" = .L a"e2"i"• 
n=O n=O 

which converges for Jql <I (i.e. for lm(z) > 0), and which verifies the 
identity 

(5) /( -1/z) = znf(z). 

It is a cusp form if a0 = 0. 
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Examples 
I) Iff and f' are modular forms of weight 2k and 2k', the product ff' is a 
modular form of weight 2k+2k'. 
2) We will see later that the function 

00 

q n (l-q")24 = q-24q 2 +252q 3 -1472q4 + ... 
n=l 

is a cusp form of weight 12. 

2.2. Lattice functions and modular functions 

We recall first what is a lattice in a real vector space Voffinite dimension. 
It is a subgroup r of V verifying one of the following equivalent conditions: 

i) r is discrete and v;r is compact; 
ii) r is discrete and generates the R-vector space V; 
iii) There exists an R-basis (e 1, ••• , e.) of V which is a Z-basis of r (i.e. 
l' = Ze 1 Et1 ... Et1 Ze.). 

Let be the set of lattices of C considered as an R-vector space. Let M 
be the set of pairs (w 1, w2) of elements of C* such that Im(w 1/w2) > 0; to 
such a pair we associate the lattice 

r(w 1, w 2 ) = Zw 1 ® Zw2 

with basis {w 1, w 2 }. We thus obtain a map M ----?- f!l which is clearly surjective. 

Let g = E SL2(Z) and let (w 1, w 2) EM. We put 

w; = aw 1 +bw2 and wi = cw 1 +dw2 • 

It is clear that {w;, wi} is a basis ofr(w 1, w2 ). Moreover, if we set z = w 1/w 2 

and z' = we have 
, az+b z = = gz. 

cz+d 

This shows that /m(z') > 0, hence that (w;, belongs to M. 

Proposition 2.-For two elements of M to define the same lattice it is 
necessary and sufficient that they are congruent modulo SL2(Z). 

We just saw that the condition is sufficient. Conversely, if (w 1, w2) and 
(w;, wi) are two elements of M which define the same lattice, there exists 

an integer matrix g = (: of determinant ± 1 which transforms the first 

basis into the second. If det(g) was < 0, the sign of Jm(w;/w].) would be 
the opposite of /m(w 1/w 2) as one sees by an immediate computation. The 
two signs being the same, we have necessarily det(g) = 1 which proves the 
proposition. 

Hence we can identify the set 81 of lattices of C with the quotient of M 
by the action of SL2(Z). 
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Make now c• act on fJt (resp. on M) by: 

r 1-+ .\r (resp. {wlo W2) 1-+ (Awl, Aw2)), A E C*. 

The quotient M/C* is identified with H by {w 1, w2 ) 1-+ z = w.fw2 , and 
this identification transforms the action of SL2(Z) on M into that of 
G = SL2(Z)/ {±I} on H (cf. n° 1.1). Hence: 

Proposition 3.-The map (w 1, w 2) 1-+ wtfw2 gives by passing to the quotient, 
a bijection of fJtjC* onto H/G. (Thus, an element of H/G can be identified 
with a lattice of C defined up to a homothety.) 

Remark.-Let us associate to a lattice r of C the elliptic curve Er = qr. 
It is easy to see that two lattices r and r' define isomorphic elliptic curves 
if and only if they are homothetic. This gives a third description of H/G = 
fJtjC*: it is the set of isomorphism classes of elliptic curves. 

Let us pass now to modular functions. Let F be a function on fJt, with 
complex values, and let k e Z. We say that F is of weight 2k if 

(7) 

for all lattiCeS r and all A E C*. 
Let F be such a function. If {w1, w2) eM, we denote by F(w 1, w2 ) the 

value ofF on the lattice r(w 1, w2). The formula (7) translates to: 

(8) 

Moreover, F(w 1, w2 ) is invariant by the action of SL2(Z) on M. 
Formula (8) shows that the product w2) depends only on 

z = w.fw2 • There exists then a function f on H such that 

(9) F(w 1, w2) = w:; 21<j(w.Jw2). 

Writing that F is invariant by SL2(Z), we see that f satisfies the identity: 

(2) f(z) = (cz+d) 'f -- for all e SL2(Z). -lk (az+b) (a b) 
cz+d c d 

Conversely, iff verifies (2), formula (9) associates to it a function F on Yf 
which is of weight 2k. We can thus identify modular functions of weight 2k 
with some lattice functions of weight 2k. 

2.3. Examples of modular functions; Eisenstein series 

Lemma I.-Let I' be a lattice in C. The series 1/lrl" is convergent for 
a > 2. yel' 

(The symbol signifies that the summation runs over the nonzero 
elements of r.) 

We can proceed as with the series i.e. majorize the series under 

consideration by a multiple of the double integral J' r /xd; j2 extended 
j(x +y )" 
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over the plane deprived of a disk with center 0. The double integral is easily 
computed using "polar coordinates". Another method, essentially equivalent, 
consists in remarking that the number of elements of r such that Jrl is 
between two consecutive integers nand n+ I is O(n); the convergence of the 
series is thus reduced to that of the series "f.l/n"- 1• 

Now let k be an integer >I. If r is a lattice of C, put 

(10) Gt<r) = L' ljy2k_ 
yer 

This series converges absolutely, thanks to lemma I. It is clear that Gk is 
of weight 2k. It is called the Eisenstein series of index k (or index 2k following 
other authors). As in the preceding section, we can view Gk as a function on 
M, given by: 

'\'' I Gk(wl, w2) = £... 2k · 
m,n (mwl +nw2) 

(II) 

Here again the symbol "f.' means that the summation runs over all pairs of 
integers (m, n) distinct from (0, 0). The function on ll corresponding to Gk 
(by the procedure given in the preceding section) is again denoted by Gk. 
By formulas (9) and (II), we have 

{12) G,Jz) = L' 1 -
m,n (mz+n)2k 

Proposition 4.-Let k be an integer > I. The Eisenstein series Gk(z) is a 
modular form of weight 2k. We have Gk(oo) = 2{{2k) where t denotes the 
Riemann zeta function. 

The above arguments show that Giz) is weakly modular of weight 2k. 
We have to show that Gk is everywhere holomorphic (including infinity). 
First suppose that z is contained in the fundamental domain D (cf. no 1.2). 
Then 

Jmz+nl 2 = m 2zz+2mnR(z)+n2 

m 2-mn+n2 = Jmp-nj 2. 

By lemma I, the series "f.'l/Jmp-nl 2k is convergent. This shows that the 
series Gk(z) converges normally in D, thus also (applying the result to Gk(g- 1z) 
with g e G) in each of the transforms g D of D by G. Since these cover H 
(th. 1), we see that Gk is holomorphic in H. It remains to see that Gk is 
holomorphic at infinity (and to find the value at this point). This amounts 
to proving that Gk has a limit for lm(z) - oo. But one may suppose that z 
remains in the fundamental domain D; in view of the uniform convergence 
in D, we can make the passage to the limit term by term. The terms 
1/(mz+n)2k relative tom * 0 give 0; the others give l/n2k. Thus 

<J) 

lim.Gk(z) = L' l/n2 k = 2 L l/n2k = 2t(2k) q.e.d. 
n=l 

Remark.-We give in no 4.2 below the expansion of Gk as a power series 
in q = e2ftlz. 
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Examples.-The Eisenstein series of lowest weights are G2 and G3, 

which are of weight 4 and 6. It is convenient (because of the theory of 
elliptic curves) to replace these by multiples: 

(13) g2 = 60G2 , g3 = 140G3 . 

We have gicXl) = 120,(4) and gkYJ) = 280,(6). Using the known values 
of '(4) and '(6) (see for example no 4.1 below), one finds: 

(14) 

If we put 

(I 5) 

4 4 gioo) = - rr , 
3 

we have il( oo) = 0; that is to say, il is a cusp form of weight I 2. 

Relation with elliptic curves 
Let r be a lattice of C and let 

(16) Pr(u) = _!_ + 2:' (---1 - _!_) 
u2 yer (u-y)2 y2 

be the corresponding Weierstrass function< n. The Gk(I') occur into the 
Laurent expansion of KJr: 

(17) 

If we put x = Pr(u), y = we have 

(18) 

with g 2 = 60G2(r), g3 = 140G3(r) as above. Up to a numerical factor, 
il = is equal to the discriminant of the polynomial 4x 3 - g2x-g 3 . 

One proves that the cubic defined by the equation (18) in the projective 
plane is isomorphic to the elliptic curve c;r. In particular, it is a nonsingular 
curve, and this shows that il is + 0. 

§3. The space of modular forms 

3.1. The zeros and poles of a modular function 

Let f be a meromorphic function on H, not identically zero, and let p 
be a point of H. The integer n such that f/(z- p )" is holomorphic and non-
zero at p is called the order off at p and is denoted by vp(f). 

Ol See for example H. CART AN, Theorie elementaire des fonctions analytiques d'une ou 
plusieurs variables complexes, chap. V, §2, n° 5. (English translation: Addison-Wesley Co.) 
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When f is a modular function of weight 2k, the identity 

f(z) = (cz+d)- 2k 
cz+d 

shows that v,(f) = v,!P>(f) if g E G. In other terms, v,(f) depends only on 
the image of p in H/G. Moreover one can define V00{f) as the order for 
q = 0 of the function](q) associated tof(cf. no 2.1). 

Finally, we will denote by eP the order of the stabilizt:r of the point p; 
we have e, = 2 (resp. eP = 3) if p is congruent modulo G to i (resp. to p) 
and e, = I otherwise, cf. th. I. 

Theorem 3.-Let f be a modular function of weight 2k, not identically 
zero. One has: 

(19) 
I k 

v<Y,(f) + L - vp(f) = - . 
peH/G e, 6 

[We can also write this formula in the form 
I I k 

(20) V00(f) + -- vi(f) + vp(f) + L* vp(f) = --
2 3 peH/G 6 

where the symbol means a summation over the points of H/G distinct 
from the classes of i and p.] 

Observe first that the sum written in th. 3 makes sense, i.e. that f has 
only a finite number of zeros and poles modulo G. Indeed, since 1 is mero-
morphic, there exists r > 0 such that! has no zero nor pole for 0 < Jq I < r; 

1 
this means that/has no zero nor pole for Im(z) >-log (1/r). Now, the part 2tr 

D, of the fundamental domain D defined by the inequality Im(z) Llog 

(1/r) is compact; sincefi.s meromorphic in H, it has only a finite number of 
zeros and of poles in D, hence our assertion. 

To prove theorem 3, we will integrate 1.- d[ on the boundary of D. More 
precisely: 2m f 

I) Supposethatfhas no zero nor pole on the boundary of Dexcept possibly 
i, p, and -p. There exists a contour'G' as represented in Fig. 2 whose interior 
contains a representative of each zero or pole off not congruent to i or p. 
By the residue theorem we have 

On the other hand: 

_I . f rj[ = L* vp(f) 
2trl f peH/G 

'tl' 

a) The change of variables q = e2"i• transforms the arc EA into a circle w 
centered at q = 0, with negative orientation, and not enclosing any zero or 
pole of J except possibly 0. Hence 

A 

_!_ fdf =_I frj[ = -voo<f). 
2iTT f 2iTT f 

E w 
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A.-----.....,E 

8 

-1 -% 0 

Fig. 2 
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b) The integral of - 1- t!f on the circle which contains the arc BB', oriented 
2iTT f 

negatively, has the value - vP(J). When the radius of this circle tends to 0, 
/"..._ 2TT 

the angle BPB' tends to-. Hence: 
6 

B' 

- --- -v (/). I fdf I 
2i1T f 6 p 

B 

Similarly when the radii of the arcs CC' and DD' tend to 0: 
C' 

- ---- vl(f) 
I fdf 1 

2i1T f 2 
c 
D' 

_I ft}f- - v (f). 
2i1T f 6 p 

D 

c) T transforms the arc AB into the arc ED'; since f(Tz) = f(z), we get: 
B E 

_I fdf + __ I fdf = O. 
2i1T ! 2iTT f 

A D' 

d) S transforms the arc B'C onto the arc DC'; since f(Sz) = z2"/(z), we 
get: 

df(Sz) = Zk + df(z) , 
f(Sz) z f(z) 
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hence: 
C D C 

I fdl I fdl I f(dl(z) di(Sz)) 
2i1T I + 2i1T f = 2.1; f(z) - f(Sz) 

B' C' B' 

c 

= 
2l7T z 

B' 

- -2k (- Il2) = 

when the radii of the arcs BB', CC', DD', tend to 0. 
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Writing now that the two expressions we get fdf are equal, and 
2r1r I 

'/: 
passing to the limit, we find formula (20). 

2) Suppose that f has a zero or a pole .\ on the half line 

{ziRe(z) = - /m(z) > 

We repeat the above proof with a contour modified in a neighborhood of .\ 
and of T.\ as in Fig. 3. (The arc circling around T.\ is the transform by T of 
the arc circling around .\.) 

A r----1!':----..,E 

-1 0 

Fig.3 

We proceed in an analogous way iff has several zeros or poles on the 
boundary of D. 

Remark.-This somewhat laborious proof could have been avoided if 
one had defined a complex analytic structure on the compactification of H/G 
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(see for instance Seminar on Complex Multiplication, Lecture Notes on Math., 
no 21, lecture II). 

3.2. The algebra of modular forms 

If k is an integer, we denote by Mk (resp. the C-vector space of 
modular forms of weight 2k (resp. of cusp forms of weight 2k) cf. no 2.1, 
def. 4. By definition, is the kernel of the linear form f /( oo) on Mk. 
Thus we have dim Mk/ M2 I. Moreover, for k 2, the Eisenstein series 
Gk is an element of Mk such that Gk( oo) =F 0, cf. no 2.3, prop. 4. Hence we 
have 

Mk = Et> C.Gk (fork 2). 

Finally recall that one denotes by .:\ the element 27gj of where 
g2 = 60G2 and g 3 = 140G3 . 

Theorem 4.-(i) We have Mk = 0 for k < 0 and k = l. 
(ii) Fork = 0, 2, 3, 4, 5, Mk is a vector space of dimension I with basis I, 

G2 , G3 , G4 , G5 ; we have MZ = 0. 
(iii) Multiplication by .:\defines an isomorphism of Mk- 6 onto 
Let f be a nonzero element of Mk. All the terms on the left side of the 

formula 

(20) 
I I k 

V 00(/) + - v,(f) + - vp(f) + L;* v,(f) = -
2 3 peH/G 6 

are 0. Thus we have k 0 and also k =F I, since i cannot be written in 
the form n+n'f2+n"f3 with n, n', n" 0. This proves (i). 

Now apply (20) to f = Gk, k = 2. We can write i in the form n+n'/2 
+n"/3, n, n', n" 0 only for n = 0, n' = 0, n" = l. This shows that vp(G2 ) 

= 1 and vp(G2) = 0 for p =F p (modulo G). The same argument applies to 
G3 and proves that v1(G3) = I and that all the others vp(G3 ) are zero. This 
already shows that .:\ is not zero at i, hence is not identically zero. Since the 
weight of.:\ is 12 and V00 (.:\) I, formula (20) implies that vp(.:\) = 0 for 
p =F oo and V00 (.:\) = I. In other words, .:\ does not vanish on Hand has a 
simple zero at infinity. Iff is an element of MZ and if we set g = f! .:\, it is 
clear that g is of weight 2k- 12. Moreover, the formula 

v ( ) = v (f)-v (.:\) = {vp(f) ifp =F oo 
Pg ' P vp(f)-1 ifp=oo 

shows that vp(g) is 0 for all p, thus that g belongs to Mk _ 6 , which proves (iii). 
Finally, if k 5, we have k-6 <0 and = 0 by (i) and (iii); this 

shows that dim Mk I. Since I, G2 , G3, G4 , G5 are nonzero elements of 
M0 , M 2 , M 3 , M4 , M5 , we have dim Mk = 1 fork= 0, 2, 3, 4, 5, which 
proves (ii). 

Corollary 1.-We have 

(21) dim M = {[k/6] 
k [k/6]+ I 

ifk = 1 (mod 6), k 0 
if k I (mod 6), k 0. 
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(Recall that [x] denotes the integral part of x, i.e. the largest integer n such 
that n x.) 

Formula (21) is true for 0 k < 6 by (i) and (ii). Moreover, the two 
expressions increase by one unit when we replace k by k+6 (cf. (iii)). The 
formula is thus true for all k 0. 

Corollary 2.-The space Mt has for basis the family of monomials 
with ct, {3 integers and 2ct+3{3 = k. 

We show first that these monomials generate Mk. This is clear for k 3 
by (i) and (ii). For k 4 we argue by induction on k. Choose a pair (y, II) 
of integers 0 such that 2y + 311 = k (this is possible for all k 2). The 
modular form g = is not zero at infinity. Iff E Mk, there exists ,\ E C 
such that f -,\g is a cusp form, hence equal to t>.h with hE M"_ 6 , cf. (iii). 
One then applies the inductive hypothesis to h. 

It remains to see that the above monomials are linearly independent; 
if they were not, the function would verify a nontrivial algebraic 
equation with coefficients in C, thus would be constant, which is absurd 
because G2 is zero at p but not G3• 

ao 
Remark.-Let M = M" be the graded algebra which is the direct 

0 

sum of theM" and let e: C[X, YJ- M be the homomorphism which maps 
X on G2 and Yon G3. Cor. 2 is equivalent to saying that e is an isomorphism. 
Hence, one can identify M with the polynomial algebra C[G2, G3}. 

3.3. The modular invariant 

We put: 
(22) j = 

Proposition S.-(a) The function j is a modular function of weight 0. 
(b) It is holomorphic in H and has a simple pole at infinity. 
(c) It defines by passage to quotient a bijection of H/G onto C. 
Assertion (a) comes from the fact that and d are both of weight 12; 

(b) comes from the fact that t>. is +0 on Hand has a simple zero at infinity, 
while g2 is nonzero at infinity. To prove (c), one has to show that, if,\ E C, 
the modular form! .. = ,\t,. has a unique zero modulo G. To see 
this, one applies formula (20) with/ = J .. and k = 6. The only decompositions 
of k/6 = I in the form n+n'f2+n"/3 with n, n', 11" 0 correspond to 

(n, n', 11") = (1, 0, 0) or (0, 2, 0) or (0, 0, 3). 
This shows that/A is zero at one and only one point of H/G. 

Proposition 6.-Let f be a meromorphic function on H. The following 
properties are equivalent: 

(i) f is a modular function of weight 0; 
(ii) f is a quotient of two modular forms of the same weight; 
(iii) f is a rational function of j. 
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The implications (iii}= (ii) = (i) are immediate. We show that (i) = (iii). 
Let/be a modular function. Being free to multiply fby a suitable polynomial 
in j, we can suppose that f is holomorphic on H. Since fl. is zero at infinity, 
there exists an integer n 0 such that g = !l."f is holomorphic at infinity. 
The function g is then a modular form of weight 12n; by cor. 2 of theorem 4 
we can write it as a linear combination of the with 2a: + 3{3 = 6n. By 
linearity, we are reduced to the case g = i.e. f = fl.". But the 
relation 2a: + 3{3 = 6n shows that p = a:/2 and q = {3/ 3 are integers and one 
has/= Thus we are reduced to see that and are 
rational functions of j, which is obvious. 

Remarks.-1) As stated above, it is possible to define in a natural way 

a structure of complex analytic manifold on the compactification HjG of 
/"'-.... 

H/G. Prop. 5 means then that j defines an isomorphism of H/G onto the 
Riemann sphere S2 = Cu { oo }. As for prop. 6, it amounts to the well 
known fact that the only meromorphic functions on S 2 are the rational 
functions. 

2) The coefficient 1728 = 26 3 3 has been introduced in order that j has 
a residue equal to I at infinity. More precisely, the series expansions of §4 
show that: 

(23) 
I X 

j(z) = - + 744 + I c(n)q", z E H, q = e2•iz. 
q •=1 

One has: 
c(l) = 22 33 1823 = 196884, c(2) = 211 5.2099 = 21493760. 

The c(n) are integers; they enjoy remarkable divisibility properties' 1 ): 

n = 0 (mod 2G) = c(n) = 0 (mod 23G+ 8) if a;::: I 
n = 0 (mod 3G) = c(n) = 0 (mod 32a+ 3 ) 

n = O(mod sa) = c(n) = O(mod sa+') 
n = 0 (mod 7a) = c(n) = 0 (mod 7a) 
n = 0 (mod JIG)= c(n) = 0 (mod JIG). 

§4. Expansions at infinity 

4.1. The Bernoulli numbers Bk 

They are defined by the power series expansion:< 2 J 

01 See on this subject A. 0. L. ATKIN and J. N. O'BRIEN, Trans. Amer. Math. Soc., 
126, 1967, as well as the paper of ATKIN in Computers in mathematical research (North 
Holland, 1968). 

121 In the literature, one also finds "Bernoulli numbers" b, defined by 

_x_ = f b4x4/k! , 
ex- I o 

hence bo =I, b, = -1/2, bz••• = 0 if k >I, and bu = (-1)•-•s •. 
The b notation is better adapted to the study of congruence properties, and also to general-
izations a Ia Leopoldt. 
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(24) 
ClO 2k 

_x_ = l- + L 
e"-1 2 (2k)! 

Numerical table 

I l l 1 5 691 
B, = 6' B2 = 30' B3 = 42' B4 = 30' Bs = 66' B6 = 2730' 

B _ 7 B _ 3617 B _ 43867 B _ 283.617 B _ 11.131.593 
7 - 6' 8 - 510 ' 9 - 798 ' 10 - 330 ' 11 - 138 

B _ 103.2294797 B _ 13.657931 B _ 7.9349.362903 
12 - 2730 ' 13 - -6-- ' 14 - 870 

The Bk give the values of the Riemann zeta function for the positive even 
integers (and also for the negative odd integers): 

Proposition 7.-/f k is an integer I, then: 
221<-1 

(25) U2k) = -- B17T2k. 
(2k)! 

The identity 

(26) 
"' 2zkz2k 

zcotgz =I- L B"--
•= 1 (2k)! 

follows from the definition of the B, by putting x = 2iz. Moreover, taking 
the logarithmic derivative of 

(27) oo ( zl ) sin z = z TI I - l2 , 
n= I n 7T 

we get: 

(28) 
oo zl 

z cotg z = I + 2 L 2 2 2 
n=IZ -n 7T 

oo oo zu 
=t-2:L LTkll· 

n=llt=l n 7T 

Comparing (26) and (28}, we get (25). 

Examples 
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4.2. Series expansions of the functions G• 

We now give the Taylor expansion of the Eisenstein series G .. (z) with 
respect to q = e2"iz. 

Let us start with the well known formula: 

(29) TT cotg TTZ = -- + L -- + --- . 1 <1J ( 1 I ) 
z m=l z+m z-m 

We have on the other hand: 

(30) COS TTZ • q + 1 . 2iTT . 2. n 
TT COtg TTZ = 11" -;-- = ITT -- = ITT - - = ITT- ITT f... q , 

Sin TTZ q-J 1-q n=O 

Comparing, we get: 

1 oo ( 1 I ) <1J + L -- + -- = iTT-2iTT L q". 
Z m=l z+m z-m n=O 

(31) 

By successive differentiations of (31), we obtain the following formula 
(valid for k 2): 

(32) L __ I -;.=_I_ ( -2iTT)._ f n•-lq". 
mel (m+z) (k-1)! n=1 

Denote now by u .. (n) the sum d .. of kth-powers of positive divisors of n. 
din 

Proposition 8.-For every integer k 2, one has: 

(33) 

We expand: 
I 

G .. (z) = L ---- 2k 
(n,m)=F(O,O) (nz+m) 

Applying (32) with z replaced by nz, we get 

2( 2 ")2k <1J <1J 
Gk(z) = + L L d2k-lqad 

(2k-J)! d= 1 a=l 

2(2TTi)2k <1J 

= + L u2k-1(n)q". 
(2k-J)! n= 1 

Corollary.--G1(z) = n(2k)E .. (z) with 
<1J 

(34) Ek(z) = 1 +Yt. L u2._- 1(n)q" 
n=l 
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and 

(35) Y1r = ( -1)11 • 

93 

One defines £ 11(z) as the quotient of G11(z) by 2'(2k); it is clear that £.(z) 
is given by (34). The coefficient y11 is computed using prop. 7: 

_ (2hr)211 I _ (271}z11( -ll .. (2k)! _ I t 4k 
Yt - (2k-l)! '(2k) - (2k-l)_i __ - (- ) 8,.. 

Examples 
00 

E2 = 1 + 240 L a3(n)q", 
n=l 

00 6 1 
£ 3 = I- 504 L a5(n)q", g3 = (2-rr) 33 £3 

n=l 2 .3 

00 

£4 = I +480 L a 7(n)q" (480 = 25.3.5) 
•=1 

00 

£5 = I -264 L a9(n)q" (264 = 23.3.11) 
•=I 

65520 00 " £6 =I+-- L a 11(n)q 
691 n= 1 

00 

£ 7 = 1-24 L a 13(n)q". 
•=1 

Remark.-We have seen in n° 3.2 that the space of modular forms of 
weight 8 (resp. 10) is of dimension 1. Hence: 

(36) = £4, £2£3 = Es. 

This is equivalent to the identities: ,_, 
a7(n) = a3(n)+ 120 L a3(m)a3(n-m) 

111=1 

,_, 
lla9(n) = 2la5{n)-10a3(n)+S040 L a3(n)a5(n-m). 

111m! 

More generally, every£" can be expressed as a polynomial in £ 2 and £ 3• 

4.3. Estimates for the coefficients of modular forms 

Let 
00 

(37) /(z) = L a,.q" (q = e2-'') 
••O 
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be a modular form of weight 2k, k 2. We are interested in the growth of 
the an: 

Proposition 9.-Jf f = Gk, the order of magnitude of a. is n2k-•. More 
precisely, there exist two constants A, B > 0 such that 

(38) 

Prop. 8 shows that there exists a constant A > 0 such that 

an= (-JlAa2k-l(n), hence Ia.! = Aa2k-l(n) An2k-l_ 

On the other hand : 

Theorem 5 (Hecke).-.if f is a cusp form of weight 2k, then 

(39) a. = O(nk). 

(In other words, the quotient !ani remains bounded when n oo.) 
nk 

Because f is a cusp form, we have a0 = 0 and can factor q out of the 
expansion (37) of f. Hence: 

(40) 1/(z)i = O(q) = O(e-lny) withy= lm(z), whenqtendstoO. 

Let ,P(z) = 1/(z)ll- Formulas (I) and (2) show that ,P is invariant under 
the modular group G. In addition, cp is continuous on the fundamental 
domain D and formula (40) shows that cp tends to 0 for y oo. This implies 
that cp is bounded, i.e. there exists a constant M such that 

(41) IJ(z)l ;;; My-k for z E H. 

Fix y and vary x between 0 and I. The point q = e2ni(x + 11> runs along a 
circle CY of center 0. By the residue formula, 

I 

a.= = ff(x+iy)q-"dx. 
21Tl 

Cy 0 

(One could also deduce this formula from that giving the Fourier coefficients 
of a periodic function.) 

Using (41), we get from this 

Ia.! ;;; My-ke2""Y. 

This inequality is valid for all y > 0. For y = 1/n, it gives lanl e2"Mnk. 
The theorem follows from this. 

Corollary.-// f is not a cusp form, then the order of magnitude of an 
is n2k- •. 

We write fin the form AGk +h with A =F 0 and a cusp form h and we 
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apply prop. 9 and th. 5, taking into account the fact that n' is "negligible" 
compared to n2k -I. 

Remark.-The exponent k of theorem 5 can be improved. Indeed, 
Deligne has shown (cf. 5.6.3 below) that 

a. = O(nk-lf2ao(n)), 

where a0(n) is the number of positive divisors of n. This implies that 

for every e > 0. 

4.4. Expansion of 6. 

Recall that 

(42) 
6. = = 

= (21r)12(q-24q2 +252q 3 -1472q 4 + ... ). 
ro 

Theorem 6 (Jacobi).-6. = (21r)12q 11 (l-q"/4 . 
•=I 

[This formula is proved in the most natural way by using elliptic functions. 
Since this method would take us too far afield, we sketch below a different 
proof, which is "elementary" but somewhat artificial; for more details, the 
reader can look into A. HURWITZ, Math. Werke, Bd. I, pp. 578-595.) 

We put: 
00 

(43) F(z) = q n (l-q")24. 
•= I 

To prove that F and 6. are proportional, it suffices to show that F is a 
modular form of weight 12; indeed, the fact that the expansion of G has 
constant term zero will show that F is a cusp form and we know (th. 4) that 
the space of cusp forms of weight 12 is of dimension I. By prop. 1 of 
no 2.1' all there is to do is to prove that: 

(44) F( -1/z) = z12F(z). 

We use for this the double series 

GJ(z) = L L' 1 2' G(z) = L 2:' l 2 
" m (m+nz) m " (m+nz) 

H1(z) = LL' l , H(z) = LL' __ I __ 
" "' (m-1 +nz)(m+nz) m n (m-1 +nz)(m+nz) 

where the sign :E' indicates that (m,n) runs through all meZ, neZ with 
(m,n) :f:. (0,0) for G and G1 and (m,n) =F (0,0), (l,Q) for Hand H 1• (Notice 
the order of the summations!) 

The series H 1 and Hare easy to calculate explicitly because of the formula: 
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------- = ---- --. 
(m-1 +nz)(m+nz) m-1 +nz m+nz 

One finds that they converge, and that 

H1 = 2, H = 2-21rijz. 

Moreover, the double series with general term 

I 1 1 
(m-1 +nz) (m+nz) - (m+nz)2 = (m+nz)2 (m-1 +nz) 

is absolutely summable. This shows that G 1 - H 1 and G- H coincide, thus 
that the series G and G1 converge (with order of summation indicated) and 
that 

21Ti G1(z)-G(z) = H 1(z)-H(z) =- . 
z 

It is clear moreover that G1( -1/z) = z2G(z). Hence: 

(45) G1( -1/z) = z2G1(z)-27riZ. 

On the other hand, a computation similar to that of prop. 8 gives 

(46) 

Now, go back to the function F defined by ( 43). Its logarithmic differential is 

dF d oo d oo - = _!1 {t-24 L nq""') = _fj (1-24 L u 1(n)q"). 
F q n,m=l q n=l 

(47) 

By comparing with (46), we get: 

dF 6i (48) --- = - G1(z)dz. F 'IT 

Combining (45) and (48), we have 

dF(- 1/z) 6i dz 6i dz 2 • 
---- = -- G1( -1/z)- =-- (z G1(z)-27r1z) 
F( -1/z) TT z2 TT z2 

(49) 
= dF(z) + 12 dz. 

F(z) z 

Thus the two functions F( -1/z) and z12 F(z) have the same logarithmic 
differential. Hence there exists a constant k such that F( -1/z) = kz12F(z) 
for all z E H. For z = i, we have z12 = I, -1/z = z and F(z) =+= 0; this 
shows that k = I, which proves (44), q.e.d. 

Remark.-One finds another "elementary" proof of identity (44) in 
C. L SIEGEL, Gesamm. Abh., 111, no 62. See also Seminar on complex multi-
plication, III, §6. 
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4.5. The Ramanujan function 
We denote by -r(n) the nth coefficient of the cusp form F(z) = (21T)- 12 

Thus 
00 00 

(50) L .,.<n>q" = q n <t-q")24. 
n=l n=l 

The function n ..-. -r{n) is called the Ramanujan function. 

Numerical table < 1 > 

-r(l) = I, -r{2) = -24, T(3) = 252, T(4) = -1472, T(5) = 4830, 
-r(6) = -6048, -r(7) = -)6744, T(8) = 84480, T(9) = -IJ3643, 
T(IO) = -115920, T(J I)= 534612, 1'(12) = -370944. 

Properties of .,.(n) 

(51) 

is of weight 12, cf. no 4.3, th. 5. (By Deligne's theorem, we even 
have -r(n) = O(n1112 +') for every e > 0.) 
(52) .,.(nm) = T(n).,.(m) if (n, m) = I 

(53) .,.(p"+ 1) = T(p).,.(p")-p11 .,.(p"- 1) for p prime, n > I, cf. no 5.5. below. 

The identities (52) and (53) were conjectured by Ramanujan and first proved 
by Mordell. One can restate them by saying that the Dirichlet series 

00 

L.(s) = :I: T(n)/11' has the following eulerian expansion: 
n=l 

l 
(54) Lr(s) = 0 -1 -( ) -•+ 11-:: 2,, cf. no 5.4. 

peP -T p p p 

By a theorem of Heeke (cf. no 5.4) the function Lr extends to an entire 
function in the complex plane and the function 

(21T) -•r(s)Lr(s) 
is invariant by s r-+ 12-s. 

The .,.(n) enjoy various congruences modulo 212 , 36 , 53 , 7, 23, 691. We 
quote some special cases (without proof): 

(55) T(n) = n2a1(n) (mod 33) 

(56) 

(57) 

T(n) = nu3(n) (mod 7) 

T(n) = u 11 (n) (mod 691). 

For other examples, and their interpretation in terms of "/-adic repre-
sentations" see Sem. Delange-Pisot-Poitou 1967/fl8, expose 14, Sem. Bourbaki 
1968/69, expose 355 and Swinnerton-Dyer's lecture at Antwerp (Lecture 
Notes, no 350, Springer, 1973). 

111 This table is taken from D. H. LEHMER, Ramanu}an's function 'l'(n), Duke Math. J., 
10, 1943, which sivca the values of T(n) for n :;; 300. 
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We end up with an open question, raised by D. H. Lehmer: 
Is it true that T(n) =I= 0 for all n 1? 
ltissoforn 1015• 

§5.. Heeke operators 

5.1. Definition of the T(n) 

Correspondences.-Let E be a set and let X E be the free abelian group 
generated by E. A correspondence on E (with integer coefficients) is a 
homomorphism T of XE into itself. We can give T by its values on the ele-
ments x of E: 

(58) T(x) = L n,(x)y, n,(x) e Z, 
yeE 

the n,(x) being zero for almost all y. 
Let F be a numerical valued function on E. By Z-linearity it extends to a 

function, again denoted F, on XE. The transform ofF by T, denoted TF, is 
the restriction to E of the function F o T. With the notations of (58), 

(59) TF(x) = F(T(x)) = L n,(x)F(y). 
yeE 

The T(n).-Let fJt be the set of lattices of C (see no 2.2). Let n be an integer 
1. We denote by T(n) the correspondence on fJt which transforms a lattice 

to the sum (in X !if) of its sub-lattices of index n. Thus we have: 

(60) T(n)r = L r' if r e fJt. 
(1': l"J = n 

The sum on the right side is finite. Indeed, the lattices r' all contain nr 
and their number is also the number of subgroups of order n of rjnr = 
(Z/nZ) 2• If n is prime, one sees easily that this number is equal to n + I 
(number of points of the projective line over a field with n elements). 

We also use the homothety operators R;. (A e C*) defined by 

(61) = Ar if r e fJt. 

Formulas.-It makes sense to compose the correspondences T(n) and 
R;., since they are endomorphisms of the abelian group Xzl. 

Proposition 10.-The correspondences T(n) and R;. verify the identities 

(62) R;.R11 = R;,11 (A, 1-' E C*) 

(63) R;,T(n) = T(n)R;. (n l,AeC*) 

(64) T(m)T(n) = T(mn) if(m, n) = 1 

(65) T(p")T(p) = T(p"+ 1)+pT(p"- 1)R, (p prime, n 1). 

Formulas (62) and (63) are trivial. 
Formula (64) is equivalent to the following assertion: Let m, n be two 
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relatively prime integers ;:;; I, and let r· be a sub lattice of a lattice r of 
index mn; there exists a unique sublattice r• of r, containing r•, such that 
(r:r') = nand (r':r") = m. This assertion follows itself from the fact that 
the group r tr", which is of order mn, decomposes uniquely into a direct 
sum of a group of order m and a group of order n (Bezout's theorem). 

To prove (65), let r be a lattice. Then T(p")T(p)r, T(p"+ 1)r and 
T(p"- 1)R,r are linear combinations of lattices contained in rand of index 
p"+ 1 in r (note that R,r is of index p2 in r). Let r" be such a lattice; in the 
a"love linear combinations it appears with coefficients a, b, c, say; we have 
to show that a = b + pc, i.e. that a = 1 + pc since b is clearly equal to 1. 

We have two cases: 
i) r· is not contained in pr. Then c = 0 and a is the number of lattices r•, 
intermediate between rand r·, and of index pin r; such a lattice r· contains 
pr. In rjpr the image of r• is of index p and it contains the image of r· 
which is of order p (hence also of index p because rjpr is of order p2); 

hence there is only one r• which does the trick. This gives a = 1 and the 
formula a = I + pc is valid. 
ii) L" c pr. We have c = I; any lattice r· of index p in r contains pr, 
thus a fortiori r•. This gives a= p+ 1 and a= I +pc is again valid. 

Corollary I.-The T(p"), n > I, are polynomials in T(p) and R,. 
This follows from (65) by induction on n. 

Corollary 2.-The algebra generated by the R;. and the T(p), p prime, is 
commutative; it contains all the T(n). 

This follows from prop. 10 and cor. l. 

Action of T(n) on the functions of weight 2k. 
Let F be a function on fJl of weight 2k (cf. no 2.2). By definition 

(66) R;.F=>t.- 2kF forall>t.EC*. 

Let n be an integer 1. Formula (63) shows that 

R;.(T(n)F) = T(n)(R;.F) = >t.- 2kT(n)F, 

in other words T(n)F is also of weight 2k. Formulas (64) and (65) give: 

(67) T(m)T(n)F = T(mn)F if(m, n) = I, 

(68) T(p)T(p")F = T(p"+ 1)F+p1 - 2kT(p"- 1)F, p prime, n?; 1. 

5.2. A matrix lemma 

Let r be a lattice with basis {w1, w2 } and let n be an integer The 
following lemma gives all the sublattices of r of index n: 

Lemma 2.-Let s. be the set of integer matrixes :) with ad= n, 

a I, 0 b < d. = :) is contained in s., let r., be the sublattice 
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of r having for basis 

The map a 1-+ r .. is a bijection of Sn onto the set r(n) of sublattices of index 
ll in r. 

The fact that r .. belongs to r(n) follows from the fact that det(a) = n. 
Conversely let r' E r(n). We put 

Y1 = r;(r' +Zw2 ) and Y2 = Zw2 j(r' f"\ Zw2 ). 

These are cyclic groups generated respectively by the images of w 1 and w2• 

Let a and d be their orders. The exact sequence 

o _,... Y2 _,... r;r' _,... Y1 _,... o 
shows that ad= II. If wi = dwz, then wi E r'. On the other hand, there 
exists wj e r' such that 

wj = aw 1 (mod Zw2). 

It is clear that wj and w2 form a basis of r'. Moreover, we can write wj in 
the form 

wj = aw 1 +bw2 with bE Z, 

where b is uniquely determined modulo d. If we impose on b the inequality 
0 b < d, this fixes b, thus also wj. Thus we have associated to every 
r' E r(n) a matriX a(r') E Sn, and one CheckS that the mapS a 1-+ r .. and 
I'' H a(r') are inverses to each other; the lemma follows. 

Example.-Jf p is a prime, the elements of SP are the matrix (.Po ot) 
and the p with 0 b < p. 

5.3. Action ofT(n) on modular functions 

Let k be an integer, and let/be a weakly modular function of weight 2k, 
cf. no 2.1. As we saw in no 2.2,/corresponds to a function Fofweight 2k on 
f!l such that 

(69) 

We define T(n)fas the function on H associated to the/unction n2"- 1T(n)F 
on f!l. (Note the numerical coefficient n2k-t which gives formulas "without 
denominators" in what follows.) Thus by definition: 

(70) T(n)f(z) = n2"- 1T(n)F(r(z, 1)), 

or else by lemma 2: 

(71) T(n)/(z) =nu-l 
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Proposition 11.-The function T(n)f is weakly modular of weight 2k. It 
is holomorphic on H iff is. We have: 

(72) T(m)T(n)f = T(mn) if (m, n) = 1, 

(73) T(p)T(p"}f= T(p"+ 1)f+p2k- 1T(p"- 1)f, ifpisprime,n 

Formula (71) shows that T(n)f is meromorphic on H, thus weakly 
modular; if in addition f is holomorphic, so is T(n)f Formulas (72) and 
(73) follow from formulas (67) and (68) taking into account the numerical 
coefficient n2k-t incorporated into the definition of T(n)f 

Behavior at infinity.-We suppose that f is a modular function, i.e. is 
meromorphic at infinity. Let 
(74) f(z) = L c(m)q"' 

meZ 

be its Laurent expansion with respect to q = e2JCI•. 

Proposition 12.-The function T(n)f is a modular function. We have 

(75) T(n)f(z) = L y(m)q"' 
meZ 

with 

(76) y(m) = L a2k- 'c(m:) . 
al(n,m) a 
a I!: I 

By definition, we have: 

T(n)f(z) = n2k-t L d-2k L c(m)e2"im(ao+b)ld 

Now the sum 

Gd=n,ail:l meZ 
O;:ib<d 

L e2•1bm(d 
O:Ob<d 

is equal to d if d divides m and to 0 otherwise. Thus we have, putting mfd = m': 

T(n)f(z) = n2k-t L d- 2k+ 1c(m'd)q(l"''. 
Dd=n 
aO:I,m'eZ 

Collecting powers of q, this gives: 

T(n)f(z) = L q" L - c I!:_ . (n)2k-t ( d) 
ueZ al(n, u) d a 

Since f is meromorphic at infinity, there exists an integer N 0 such that 

c(m) = 0 if m -N. The c(,.:) are thus zero for p. - nN, which shows 

that T(n)fis also meromorphic at infinity. Since it is weakly modular, it is a 
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modular function. The fact that its coefficients are given by formula (76) 
follows from the above computation. 

Corollary 1.--y(O) = and y(l) = c(n). 

Corollary 2.-lf n = p with p prime, one has 

y(m) = c(pm) ifm $ 0 (modp) 

y(m) = c(pm)+p2•- 1c(m/p) ifm = 0 (modp). 

Corollary 3.-If f is a modular form (resp. a cusp form), so is T(n)f 
This is clear. 

Thus, the T(n) act on the spaces and M2 of no 3.2. As we saw above, 
the operators thus defined commute with each other and satisfy the identities: 

(72) T(m)T(n) = T(mn) if(m, n) = I 

(73) = ifpis prime,n J. 

5.4. Eigenfunctions of the T(n) 
DO 

Letf(z) = be a modular form of weight 2k, k > 0, not identically 

zero. We assume that f is an eigenfunction of all the T(n), i.e. that there 
exists a complex number ..\(n) such that 

(77) T(n)f = >.(n)f for all n ;;; I. 

Theorem 7.-a) The coefficient c(l) of q in f is 9=0. 
b) Iff is normalized by the condition c(l) = I, then 

{78) c(n) = ..\(n) for all n > I. 

Cor. I to prop. 12 shows that the coefficient of q in T(n)fis c(n). On the 
other hand, by (77), it is also >.(n)c(l). Thus we have c(n) = ..\(n)c(l). If 
c(l) were zero, all the c(n), n > 0, would be zero, andfwould be a constant 
which is absurd. Hence a) and b). 

Corollary I.-Two modular forms of weight 2k, k > 0, which are eigen-
functions of the T(n) with the same eigenvalues >.(n), and which are normalized, 
coincide. 

This follows from a) applied to the difference of the two functions. 

Corollary 2.-Under the hypothesis of theorem 1, b): 

(79) c(m)c(n) = c(mn) if(m, n) = I 
(80) c(p)c(pn) = c(p"+ 1)+p2*- 1c(p"- 1). 

Indeed the eigenvalues >.(n) = c(n) satisfy the same identities {72) and 
(73) as the T(n). 

Formulas (79) and (80) can be translated analytically in the following 
manner: 
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(8I) 
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00 

<I>1(s) = L c(n)/n' 
n=! 

be the Dirichlet series defined by the c(n); by the cor. of th. 5, this series 
converges absolutely for R(s) > 2k. 

Corollary 3.-We have: 

(82) 1 
<I>,(s) = n -I -(-) 2k-!-2s peP -c p p +p 

By (79) the function n 1---+ c(n) is multiplicative. Thus lemma 4 of chap. 
00 

VII, no 3.1 shows that <l>J<s) is the product of the series c(p")p - .... Putting 
n=O 

p-• = T, we are reduced to proving the identity 

(83) 

Form the series 

,P(T) = c(p")r) (l-c(p)T+p2k-tT2). 

The coefficient ofT in ,Pis c(p)-c(p) = 0. That ofT"+ 1 , n I, is 

c(p"+ 1) _ c(p)c(p") + p2k- 1 c(p"- 1 ), 

which is zero by (80). Thus the series ,Pis reduced to its constant term c (I) = I, 
and this proves (83). 

Remarks.-1) Conversely, fonnulas (8I) and (82) imply (79) and (80). 
2) Heeke has proved that <1>1 extends analytically to a meromorphic 

function on the whole complex plane (it is even holomorphic iff is a cusp 
form) and that the function 

(84) 

satisfies the functional equation 

(85) 

The proof uses Mellin'sformula 
00 

x,(s)= f<f(iy)-f(oo))y'; 
0 

combined with the identity j( -1/z) = zuf(z). Heeke also proved a con-
verse: every Dirichlet series <I> which satisfies a functional equation of this 
type, and some regularity and growth hypothesis, comes from a modular 
form f of weight 2k; moreover, f is a normalized eigenfunction of the T(n) 
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if and only if c/> is an Eulerian product of type (82). See for more details 
E. HECKE, Math. Werke, no 33, and A. WElL, Math. Annalen, I68, I967. 

5.5. Examples 

a) Eisenstein series.-Let k be an integer 2. 

Proposition 13.-The Eisenstein series Gk is an eigenfunction of T(n); 
the corresponding eigenvalue is a2k-l (n) and the normalized eigenfunction is 

(86) k Bk ( k Bk n ( -1) Ek = -1) - + f... a2k_ 1(n)q . 
4k 4k n=l 

The corresponding Dirichlet series is 1). 
We prove first that Gk is an eigenfunction of T(n); it suffices to do this for 

T(p), p prime. Consider Gk as a function on the set .rJi of lattices ofC; we have: 

Gk(f) =I,' I/y2k, cf. no 2.3, 
yer 

and 
T(p)Gk(f) = L I,' 1/lk. 

(r: r') yer' 

Let y e 1'. If y e pf then y belongs to each of the p +I sublattices of r of 
index p; its contribution in T(p)Gk(f) is (p+ 1)/lk. If y E r-pl', then y 
belongs to only one sublattice of index p and its contribution is I /y2k. Thus 

T(p)Gk(r) = Gk(f)+p L 1/lk = Gk(f)+pGk(pf) 
yepr 

= (I +pl-2k)Gk(r), 

which proves that Gk (viewed as a function on 31) is an eigenfunction of 
T(p) with eigenvalue I +p 1 - 2k; viewed as a modular form, Gk is thus an 
eigenfunction of f(p) with eigenvalue p2k- 1(1 + p1 - 2k) = a2k- 1 (p). Formulas 
(34) and (35) of no 4.2 show that the normalized eigenfunction associated with 
Gk is 

(-It Bk + f a2k-l(n)qn. 
4k n=l 

This also shows that the eigenvalues of T(n) are a2k_ 1(n). Finally 
oc L a2k-l(n)/n' = L a2k-1ja'd' 

n:;; 1 a,d I 

= ( L 1/ds) ( L l/a'+l-2k) 
d?;l a?; I 

= 1). 
b) The !1function 

Proposition 14.-The 11 function is an eigenfunction of T(n). The corre-
sponding eigenvalue is r(n) and the normalized eigenfunction is 

ro 
<271)-12 11 = q TI 0 _qn)24 = I r(n)qn .. 

n= I n= I 
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This is clear, since the space of cusp forms of weight 12 is of dimension 
I, and is stable by the T(n). 

Corollary.-We have 

(52) r(nm) = r(n)r(m) if(n, m) = l, 

(53) r(p)r(p") = r(p"+ 1)+p11 r(p"- 1) ifp is a prime, n I. 

This follows from cor. 2 of th. 7. 

Remark.-There are similar results when the space Mf of cusp forms 
of weight 2k has dimension I ; this happens for 

k = 6, 8, 9, 10, 11, 13 with basis Ll, LlG2 , LlG3, 6G4 , 6G5, and 6G7 • 

5.6. Complements 

5.6.1. The Petersson scalar product. 
Let f, g be two cusp forms of weight 2k with k > 0. One proves easily 

that the measure 

p.(f,g) = f(z)g(z)y 2kdxdyfy2 (x = R(z), y = /m(z)) 

is invariant by G and that it is a bounded measure on the quotient space H/G. 
By putting 

(87) ({,g) = J p.(f, g) = J f(z)g(z)yu-zdxdy, 
H/G D 

we obtain a hermitian scalar product on Mf which is positive and non-
degenerate. One can check that 

(88) (T{n)f, g) = <J. T(n)g), 

which means that the T(n) are hermitian operators with respect to (/.g). 
Since the T(n) commute with each other, a well known argument shows that 
there exists an orthogonal basis of made of eigenvectors of T(n) and that 
the eigenvalues of T(n) are real numbers. 

5.6.2. Integrality properties. 
Let Mk(Z) be the set of modular forms 

"' f= L c(n)q" 
n=O 

of weight 2k whose coefficients c(n) are integers. One can prove that there 
exists a Z-basis of Mt(Z) which is a C-basis of M". [More precisely, one can 
check that Mk(Z) has the following basis (recall that F = q IT (l-q")24): 

k even: One takes the monomials where ex, fJ e N, and ex+ 3{1 = k/2; 
k odd: One takes the monomials where ex, fJ eN, and «+3{1 = 
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(k-3)/2.] Proposition 12 shows that M1(Z) is stable under T(n), n I. We 
conclude from this that the coefficients of the characteristic polynomial of T(n). 
acting on Mk, are illlegers<' >; in particular the eigenvalues of the T(n) are 
algebraic integers ("totally real", by 5.6.1). 

5.6.3. The Ramanujan-Petersson conjecture. 
Let f = c(n)q", c(l) = I, be a cusp form of weight 2k which is a 

nil; I 

normalized eigenfunction of the T(n). 
Let <t>1 jT) = 1-c(p)T +p21 - 1T2, p prime, be the polynomial defined in 
no 5.4, formula (83). We can write 

(89) 

with 

(90) 

The Petersson conjecture is that rxP and rx; are complex conjugate. One can 
also express it by: 

or 

or 
ic(n)l ;;;; nk- 112u0(n) for all n I. 

For k = 6, this is the Ramanujan conjecture: HP)I ;;;; 2p11 ' 2 . 

These conjectures have been proved in 1973 by P. Deligne (Pub/. Math. 
I.H.E.S. n°43, p. 302), as consequences of the "Weil conjectures" about 
algebraic varieties over finite fields. 

§6. Theta functions 

6.1. The Poisson formula 

Let V be a real vector space of finite dimension n endowed with an 
invariant measure p.. Let V' be the dual of V. Let f be a rapidly decreasing 
smooth function on V (see, L. ScHWARTZ, Theorie des Distributions, chap. 
VII, The Fourier transform f' off is defined by the formula 

(91) f'(y) = J e-lln(x,y>f(x)p.(x). 
v 

This is a rapidly decreasing smooth function on V'. 
Let now r be a lattice in V' (see no 2.2). We denote by f' the lattice 

in V' dual tor; it is the set of y E V' such that (x, y) E Z for all x E r. One 

01 We point out that there exists an explicit formula giving the trace of T(n), cf. 
M. EtCHLF.R and A. SELBERG, Journ. Indian Math. Soc., 20, 1956. 
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checks easily that r' may be identified with the z-dual of r (hence the 
terminology). 

Proposition 15.-Let v = flo(Vfr). One has: 

(92) r l<x> = ! r f'<Y>· 
xel' V yei" 

After replacing flo by v- 1 flo, we can assume that flo( Vfl') = I. By taking a 
basis e1, ••• , e. of r, we identify V with R", r with Z", and flo with the 
product measure dx 1 ••• dxn. Thus we have V' = R", r' = Z" and we are 
reduced to the classical Poisson formula (SCHWARTZ, loc. cit., formule (VII, 
7:5)). 

6.2. Application to quadratic forms 

We suppose henceforth that V is endowed with a symmetric bilinear 
form x.y which is positive and nondegenerate (i.e. x.x > 0 if x 9= 0). We 
identify V with V' by means of this bilinear form. The lattice r· becomes 
thus a lattice in V; one has y E r' if and only if x.y E Z for all x E r. 

To a lattice r, we associate the following function defined on Rt: 

(93) er<t> = L e-n, ...... 
xel' 

We choose the invariant measure p. on V such that, if e1, ••• En is an 
orthonormal basis of V, the unit cube defined by the £ 1 has volume I. The 
volume v of the lattice r is then defined by v = p.( Vfr), cf. no 6.1. 

Proposition 16.-We have the identity 

(94) 0r(t) = t-"12v- 10r.(t- 1). 

Let I= e-xx.x. It is a rapidly decreasing smooth function on V. The 
Fourier transform f' of I is equal to f Indeed, choose an orthonormal basis 
of V and use this basis to identify V with R"; the measure flo becomes the 
measure dx = dx 1 ••• dx. and the function I is 

We are thus reduced to showing that the Fourier transform of e-axz is e-ax', 
which is well known. 

We now apply prop. 15 to the function f and to the lattice t 1' 2r; the 
volume of this lattice is t"12v and its dual is t - 112 r'; hence we get the formula 
to be proved. 

6.3. Matrix interpretation 

Let e 1, ••• , e. be a basis of r. Put aii = e1.e1• The matrix A = (a11) is 
positive. nondegenerate and symmetric. If x = is an element of V, then 
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The function 0 r can be written 

(95} E>r(t) = L e-,.t"Ea,;"•";. 
x;eZ 

The volume v of I' is given by: 

(96) 

Modular forms 

This can be seen as follows: Let e 1, •••• en be an orthonormal basis of V 
and put 

We have e = Ae with IAI = v. Moreover, e.e = det(A) e.e, and by comparing, 
we obtain v2 = det(A). 

Let B = (bii) be the matrix inverse to A. One checks immediately that 
the dual basis (ef) to (e;) is given by the formulas: 

The (ei) form a basis of r·. The matrix (e;.ej) is equal to B. This shows in 
particular that if v' = p.(Vjr'), then we have vv' = I. 

6.4. Special case 

We will be interested in pairs ( V, I') which have the following two 
properties: 

(i) The dual r' of r is equal to r. 
This amounts to saying that one has x.y e Z for x, y e r and that the 

form x.y defines an isomorphism of r onto its dual. In matrix terms, it means 
that the matrix A = (e1.ei) has integer coefficients and that its determinant 
equals I. By (96) the last condition is equivalent to v = I. 

If n = dim V, this condition implies that the quadratic module r belongs 
to the category Sn defined in n° 1.1 of chap. v. Conversely, if r E sn is 
positive definite, and if one puts V = r ® R, the pair ( V, r) satisfies (i). 

(ii) We have x.x = 0 (mod 2) for all X E r. 
This means that r is of type II, in the sense of chap. V, no 1.3.5, or else 

that the diagonal terms e1.e1 of the matrix A are even. 
We have given in chap. V some examples of such lattices r. 

6.5. Theta functions 

In this section and the next one, we assume that the pair (V, r) satisfies 
conditions (i) and (ii) of the preceding section. 

Let m be an integer and denote by rr(m) the number of elements 
x of r such that x.x = 2m. It is easy to see that rr(m) is bounded by a 
polynomial in m (a crude volume argument gives for instance rr(m) = 
O(mn'2)). This shows that the series with integer coefficients 
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00 

L rr(m)qm = I +rr(l)q+ ... 
m=O 

converges for iql < I. Thus one can define a function Or on the half plane H 
by the formula 

(97) Or(z) = L rr(m)qno (where q = e2niz). 
m=O 

We have: 

(98) Or(z) = L q<x.x)/2 = L eniz(x.x). 
xel' xel' 

The function Or is called the theta function of the quadratic module I'. It is 
holomorphic on H. 

Theorem 8.-(a) The dimension n of V is divisible by 8. 
(b) The function Or is a modular form of weight n/2. 

Assertion (a) has already been proved (chap. V. n° 2.1, cor. 2 to th. 2). 
We prove the identity 

(99) 

Since the two sides are analytic in z, it suffices to prove this formula when 
z = it with t real > 0. We have 

Or(it) = L e-nr(x.x) = 0r{t). 
xer 

Similarly, Or(-l/it) = 0r{t- 1). Formula (99) results thus from (94), taking 
into account that v = I and r = r'. 

Since n is divisible by 8, we can rewrite (99) in the form 

(100) 

which shows that Or is a modular form of weight n/2. 
[We indicate briefly another proof of (a). Suppose that n is not divisible 

by 8; replacing r, if necessary, by r $ r or r $ r $ r EB r, we may 
that n = 4 (mod 8). Formula (99) can then be written 

Or( -1/z) = ( -1)"'4zmi2 0r(z) = -z"'20r(z). 

If we put w(z) = Or(z)dz"'4 , we see that the differential form w is transformed 
into -w by S:z -1/z. Since w is invariant by T:z z+ I, we see that ST 
transforms w into -w, which is absurd because (ST) 3 = 1.) 

Corollary I.-There exists a cusp form fr of weight n/2 such that 

(101) Or= Ek+fr where k = n/4. 

This follows from the fact that Or( oo) = I, hence that Or- Ek is a cusp 
form. 

4k Corollary 2.-We have rr(m) =- a2k_ 1(m)+O(mk) where k = n/4. 
Bk 
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This follows from cor. I, formula (34) and th. 5. 

Remark.-The "error term" fr is in general not zero. However Siegel 
has proved that the weighted mean of the fr is zero. More precisely, let C, 
be the set of classes (up to isomorphism) of lattices r verifying (i) and (ii) 
and denote by gr the order of the automorphism group of r e C, (cf. chap. V, 
no 2.3). One has: 

(102) 

or equivalently 

(I03) I where M, = L - . 
rec" gr 

Note that this is also equivalent to saying that the weighted mean of the Or 
is an eigenfunction of the T(n). 

For a proof of formulas (102) and (103), see C. L. SIEGEL, Gesam. Abh., 
n° 20. 

6.6. Examples 

i) The case n = 8. 
Every cusp form of weight n/2 = 4 is zero. Cor. I of th. 8 then shows 

that Br = £ 2 , in other words: 

(104) rr(m) = 240a3(m) for all integers m I. 

This applies to the lattice r 8 constructed in chap. V, no 1.4.3 (note that this 
lattice is the only element of C8 ). 

ii) The case n = 16. 
For the same reason as above, we have: 

QC 

(105) Br = £4 = I +480 L a7(m)q'". 
m=l 

Here one may take r = r 8 EB r 8 or r = r 16 (with the notations of chap. V, 
no 1.4.3); even though these two lattices are not isomorphic, they have the 
same theta function, i.e. they represent each integer the same number of 
times. 

Note that the function 8 attached to the lattice r 8 E9 r 8 is the square of 
the function 8 of r 8 ; we recover thus the identity: 

(I +240 ... a3(m)q"Y = I +480 a 1(m)q"'. 

iii) The case n = 24. 
The space of modular forms of weight I2 is of dimension 2. It has for 

basis the two functions: 

65520 00 • £6 = I + --- L a 11(m)q , 
691 ••1 
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00 00 

F = = q n (l-qm)24 = L T(m)qm. 
m= I m= I 

The theta function associated with the lattice r can thus be written 

(106) 

We have 

(107) 65520 rr(m) =- - 0' 11 (m)+crT(m) form I. 
691 

The coefficient cr is determined by putting m = I : 

65520 
Cr = rr(1) - --. 

691 
(108) 

Note that it is =1=0 since 65520/691 is not an integer. 

Examples. 
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a) The lattice r constructed by J. LEECH (Canad. J. Math., 16, 1964) is such 
that rr(l) = 0. Hence: 

65520 
Cr = 

691 

b) For r = r 8 $ r 8 $ r 8 , we have rr(l) = 3.240, hence: 

Cr = 432000 = 273353/691. 
691 

c) For r = f 24 , we have rr(l) = 2.24.23, hence: 

cr = 697344 = 2•o3.227f691. 
691 

6.7. Complements 

The fact that we consider only the full modular group G = PSL2(Z), 
forced us to limit ourselves to lattices verifying the very restrictive conditions 
of no 6.4. In particular, we have not treated the most natural case, that of the 
quadratic forms 

xi+ ... +x;, 
which verify (i) but not (ii). The corresponding theta functions are "modular 
forms of weight n/2" (note that n/2 is not necessarily an integer) with respect 
to the subgroup of G generated by Sand T 2 • This group has index 3 in G, 
and its fundamental domain has two "cusps" to which correspond two 
types of "Eisenstein series"; using them, one obtains formulas giving the 
number of representations of an integer as a sum of n squares; for more 
details, see the books and papers quoted in the bibliography. 
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K(S): Grothendieck group of S, V.l.5. 
G: dual group of a finite abelian group G, 

VI. I. I. 
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P: set of prime numbers, Vl.3.1. 
'(s): Riemann zeta function, Vl.3.2. 
L(s, x>: L-function relative to x. ¥1.3.3. 
G = SL2(Z)/(± 1): modular group, Vll.l.l 
H: upper half plane, VII. I. I. 
D: fundamental domain of the modular 

group, VI1.1.2. 
p = e2rrif3: Vll.l.2. 
q = e2rriz: Vll.2.1. 
:Jt: set of lattices inC: ¥11.2.2. 
G.(k 2), g 2 , g3 , 6 ¥11.2.3. 
B.: Bernoulli numbers, VH.4.1. 
£.: ¥11.4.2. 
"•(n): sum of k-th powers of divisors of "· 

Vll.4.2 . 
... : Ramanujan function, VII.4.5. 
T(n): Heeke operators, Vli.S.I, VIJ.5.2. 
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J. Serre: A course in Arithmetic, ISBN 978-1-4614-9794-3, copyright 1973

p.83, line -13. Replace this line by :

> m2 − |mn|+ n2 = |mρ± n|2.

p.91, Proposition 7. Add (Euler) between Proposition 7 and .-

p.112, lines 6, 7. Replace by : G. Lejeune-Dirichlet - Beweis eines Satzes 
über die arithmetische Progression, 1837, Werke I, pp. 307-312.
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