
msp
Algebraic & Geometric Topology 22 (2022) 1841–1903

Thom spectra, higher THH and tensors in1–categories
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Let f W G ! Pic.R/ be a map of E1–groups, where Pic.R/ denotes the Picard
space of an E1–ring spectrum R. We determine the tensor X ˝RMf of the Thom
E1–R–algebra Mf with a space X ; when X is the circle, the tensor with X is
topological Hochschild homology over R. We use the theory of localizations of
1–categories as a technical tool: we contribute to this theory an 1–categorical
analogue of Day’s reflection theorem about closed symmetric monoidal structures on
localizations, and we prove that, for a smashing localization L of the1–category
of presentable1–categories, the free L–local presentable1–category on a small
simplicial set K is given by presheaves on K valued on the L–localization of the
1–category of spaces.

IfX is a pointed space, a map g WA!B ofE1–ring spectra satisfiesX–base change
if X ˝B is the pushout of A!X ˝A along g. Building on a result of Mathew, we
prove that if g is étale then it satisfies X–base change provided X is connected. We
also prove that g satisfies X–base change provided the multiplication map of B is an
equivalence. Finally, we prove that, under some hypotheses, the Thom isomorphism
of Mahowald cannot be an instance of S0–base change.
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1 Introduction

Topological Hochschild homology (THH) ofE1–ring spectraR is equivalent to S1˝R,
the tensor of R with the circle S1; see McClure, Schwänzl and Vogt [29]. Tensors
of E1–ring spectra with other spaces also give interesting invariants. For example,
consider tensoring with Sn for n � 2. For ordinary rings, this was first considered
by Pirashvili [33], who called it “higher-order Hochschild homology” and used it in
relation to Hodge decompositions. One can also consider tensoring with tori T n. In
this case, the action of T n on T n˝R leads to a higher version of topological cyclic
homology. In analogy to the nD 1 case, it is expected to bear a connection to n–fold
iterated algebraic K–theory. See Brun, Carlsson, Douglas and Dundas [9; 10].

Sometimes, it is actually easier not to focus on the specific case of THH.R/ but
instead look at the more general tensors X ˝R. In this paper, we provide an example
of this strategy. We will describe the tensors of a space X with Thom E1–ring
spectra Mf. Examples of the latter include various versions of cobordism spectra like
complex cobordism MU or periodic complex cobordism MUP. More precisely, we
will prove:

Theorem 4.13 Let R be an E1–ring spectrum. Let G be an E1–group and f WG!
Pic.R/ be an E1–map. Let X be a pointed space. There is an equivalence of E1–R–
algebras

X ˝RMf 'Mf ^SŒX ˇG�:

Here Pic denotes the Picard E1–group of R, ^ denotes the smash product of spectra,
˝R denotes the tensor of E1–R–algebras over spaces, ˇ denotes the tensor of E1–
groups (also known as grouplike E1–spaces) over pointed spaces, and SŒX ˇ G�

denotes the suspension spectrum of .X ˇG/C considered as an E1–ring spectrum.
This reduces the calculation of the homotopy groups of X ˝R Mf to that of the
unreduced Mf –homology groups of X ˇG, which is often simpler. For example,
Blumberg, Cohen and Schlichtkrull [7] determined THH.Mf / as a spectrum, and
used Hopkins and Mahowald’s interpretation of the Eilenberg–Mac Lane spectra HZ

and HFp as Thom spectra to give a new computation of their topological Hochschild
homology groups, originally computed by Bökstedt in his foundational manuscript [8].

As a consequence of the result above, we get a generalization of the Thom isomorphism
theorem of Mahowald [26], which would here take the formMf ^RMf 'Mf ^SŒG�.
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Thom spectra, higher THH and tensors in1–categories 1843

Indeed, that result is obtained by setting X D � in the equivalence

Mf ^R .X ˝RMf /'Mf ^SŒX ˝G�

of Example 4.21. Here ˝ denotes the tensor of E1–groups over spaces.

The proof of the theorem is divided into two parts. First, one proves that tensoring with
a space and taking Thom spectrum are operations that commute in an adequate sense
(Proposition 4.10). Using an1–categorical version of the splitting lemma for short
exact sequences in abelian categories, we obtain a splitting of E1–groups

X ˝G 'G � .X ˇG/

(Proposition 3.5), which we combine with the monoidality of the Thom spectrum
construction to finish the proof. When one takes X D S1, the above splitting becomes
the well-known splitting of the cyclic bar construction of G as a product of G and the
bar construction of G. Thus, our proof of the theorem relies on structural properties
satisfied by the Thom construction and by tensors in1–categories, and on a splitting
result for tensors of E1–groups.

Before saying a word about these tensors, we would like to note the differences
between the theorem above and the main result of Schlichtkrull [36], which is similar.
On one hand, a version of the tensor which allows for coefficients in an Mf –module
is considered by Schlichtkrull. On the other hand, he proves his results for maps
f WG!BGL1.S/. Our result is more general in two different ways: first, we consider
the whole Picard space instead of only BGL1. This is already an interesting extension,
since it allows for nonconnective Thom spectra such as MUP (see Example 4.24).
Second, we allow the Picard space of any E1–ring spectrum as a codomain for f,
instead of only the one of the sphere spectrum. See Remark 4.16, where we also recall
the related result of Klang [18] on factorization homology of Thom spectra.

Note that, at the beginning of Section 4 of [36], Schlichtkrull sketches a proof of his
result, but then notes that “when trying to make this argument precise, one encounters
several technical difficulties”, which he explains. Those technical difficulties are model-
categorical in nature, and the author works around them model-categorically as well,
using for example different models for E1–monoids and introducing a model of the
tensor which is homotopy invariant but combinatorially involved. We claim that these
complications are mostly side-effects of the rigidity of the model-categorical framework,
and in particular of the rigidity of the model for Thom spectra. Our determination
of X ˝RMf uses the1–categorical Thom spectra machinery introduced by Ando,
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1844 Nima Rasekh, Bruno Stonek and Gabriel Valenzuela

Blumberg, Gepner, Hopkins and Rezk [2] and further developed in [1], as well as the
universal property for Thom ring spectra of Antolín-Camarena and Barthel [4].

Note as well that Schlichtkrull’s theorem features, in lieu of what we have denoted by
X ˇG, the infinite loop space �1.B1G ^†1X/. We will prove in Proposition 3.2
that the two constructions coincide: it will be a direct consequence of the formal
properties of tensors. In Remark 2.46, we also prove that X ˇG is equivalent to the
infinite symmetric product SP1.X;G/, a construction studied by Kuhn [19].

The presence of different tensors like X˝RMf and XˇG interacting with each other
makes it important to place them on a firm technical ground. Consequently, the first
two sections are devoted to their study. The technical foundation for our paper will
be that of1–categories; see Lurie [22]. As noted by Lurie [24, 4.8], the1–category
of presentable1–categories and left adjoint functors, PrL, has a symmetric monoidal
product ˝. If R is a commutative algebra in PrL and C is a module over it, we say that
C is tensored over R. This generalizes the notion of a category being enriched, tensored
and cotensored over a symmetric monoidal category to an1–categorical setting in a
succinct way, at least in the presentable case.

As noted by Lurie, the1–categories of pointed presentable1–categories and of stable
presentable1–categories are (reflective) localizations of PrL, and they are smashing:
they are given by � ˝ S� and by � ˝ Sp, respectively, where S� denotes pointed
spaces and Sp denotes spectra. Gepner, Groth and Nikolaus [14] noted that both
semiadditive (which they call preadditive) and additive presentable1–categories are
similarly smashing localizations of PrL, given by �˝MonE1.S/ and �˝GrpE1.S/,
respectively; here MonE1.S/ are E1–monoids (also known as E1–spaces or special
�–spaces) and GrpE1.S/ are E1–groups (very special �–spaces). We will use their
developments as the grounding needed for the results presented above, and we will get
mileage out of the realization that, if L and L0 are two smashing localizations of PrL

such that L0PrL �LPrL, then any L0–local1–category is not only tensored over L0S,
but also over LS by restriction of scalars along the map LS! L0S (Proposition 2.24).

Along the way, we will prove some other1–categorical results of independent interest.
For example, in Theorem 2.17, we will give an1–categorical version of Day’s reflection
theorem [12], which gives equivalent conditions guaranteeing that the localization of
a closed symmetric monoidal1–category is closed symmetric monoidal. Also, we
prove that if L is a smashing localization of PrL, then LS is freely generated in
LPrL by the monoidal unit of the corresponding symmetric monoidal structure of LS
(Proposition 2.29). More generally, we prove:
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Theorem 2.37 Let K be a small simplicial set. Let L be a smashing localization
of PrL. Then the1–category of LS–valued presheaves on K, denoted by PLS.K/, is
freely generated in LPrL byK. More precisely, composition with v�ıj WK!PLS.K/

induces an equivalence of functor1–categories

FunL.PLS.K/;C/
�

.v�ıj /
�����! Fun.K;C/

for any C 2 LPrL, where v W S! LS is the localization map and j WK! Fun.Kop; S/

is the Yoneda embedding. Here , FunL denotes colimit-preserving functors.

Having determined X ˝Mf for a Thom E1–ring spectrum Mf, we would like to
extend this computation to other types of E1–ring spectra B , for example to those
which admit a map Mf ! B. Thus, in the last two sections, we turn to the following
more general question. Let A ! B be a morphism of E1–ring spectra. For any
space X, there is an induced map X ˝A!X ˝B and, if X is pointed, we can form
the square of E1–ring spectra

A //

��

B

��

X ˝A // X ˝B

When is this a pushout square? When it is, we say that A ! B satisfies X–base
change. Working over Z, when X D S1 and A and B are ordinary commutative rings,
the question amounts to asking when is the natural map HH.A/˝A B! HH.B/ an
isomorphism, where HH denotes Hochschild homology. Weiber and Geller [41] proved
this to hold when A! B is étale. This result was generalized to étale extensions of
E1–ring spectra and topological Hochschild homology by Mathew [27].

Note that a map g WA! B of E1–ring spectra satisfies S0–base change if and only if
g^ id W A^B! B ^B is an equivalence. On the other hand, the Thom isomorphism
theorem of Mahowald, mentioned above, takes the form Mf ^Mf ' SŒG�^Mf. One
could wonder if this equivalence is induced by a map g WMf ! SŒG� that satisfies
S0–base change. In Section 6 we will prove that this is hardly ever the case, under
some reasonable hypotheses on g.

One can study the question of X–base change more generally for a map in a presentable
1–category; the definition is analogous. We will prove the following:

Theorem 5.7 Let f W c!d be a map in a presentable1–category. Let n�0. Suppose
f satisfies Sn–base change. Then f satisfies X–base change for any .n�1/–connected
pointed space X.
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1846 Nima Rasekh, Bruno Stonek and Gabriel Valenzuela

In particular, we deduce that étale extensions ofE1–ring spectra satisfyX–base change
whenX is connected (Corollary 7.2) and, following Mathew, who proved it forX DS1,
we give a condition on algebraic K–theory which guarantees that a faithful G–Galois
extension A! B satisfies X–base change for all connected X (Corollary 7.18). In
general, if A!B is a faithful G–Galois extension, then the question of X–base change
for a pointed space X is equivalent to X ˝A! X ˝B being a faithful G–Galois
extension, and to X ˝A! .X ˝B/hG being an equivalence (Proposition 7.17).

When the multiplication map B ^AB! B of an E1–A–algebra B is an equivalence,
we say that B is solid. The units A! B for these types of algebras give another class
of maps which satisfy X–base change:

Theorem 7.5 Let A be an E1–ring spectrum and B be a solid E1–A–algebra. Then
the unit A! B satisfies X–base change for any connected pointed space X.

For example, the inversion by a homotopy element x 2��.R/ in an E1–ring spectrum,
R!RŒx�1�, satisfiesX–base change for all connectedX. In particular, in Corollary 7.7
we get an equivalence

.X ˝R/Œx�1�'X ˝RŒx�1�

for any connected X. This generalizes Corollary 4.12 of Stonek [39], which was only
for X D S1.

Thus, from the knowledge of X ˝Mf we can determine X ˝ .Mf /Œx�1� for any
x 2 ��.Mf /. As an important example one can consider the presentation given by
Snaith [38] for KU, namely KU ' SŒK.Z; 2/�Œx�1� for a certain x 2 �2SŒK.Z; 2/�.
We obtain

X ˝KU 'KU ^SŒX ˇK.Z; 2/�;

a result related to [39]; see Example 7.11. Since the similar equivalence of Snaith,
MUP ' SŒBU �Œx�1� for a certain x 2 �2SŒBU �, is not an equivalence of E1–ring
spectra — see Hahn and Yuan [17] — we cannot proceed as straightforwardly in this
case; however, we can still conclude that THH.MUP /'MUP ^SUC as spectra; see
Example 7.13. On the other hand, considering MUP as an E1–Thom spectrum gives
us THH.MUP /'MUP ^UC. This gives an indirect proof that

MUP ^SUC 'MUP ^UC

as spectra, ie U and SU have isomorphic unreduced MUP –homology.
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Notation and conventions

Following [22], we call1–category a simplicial set such that every inner horn has a
filler. Categories will be considered as1–categories via the nerve functor. If C is an
1–category and c and c0 are objects in C, then we denote by MapC.c; c

0/ the space of
arrows from c to c0 in C. An1–category is pointed if it has a zero object. We will
call a map that factors through the zero object a trivial map. A constant functor with
value c will be denoted by fcg.

We denote by S the1–category of spaces given by the homotopy coherent nerve of
the simplicial category of Kan complexes, and by S� its pointed counterpart. Adding a
disjoint basepoint gives a left adjoint .�/C W S! S� to the forgetful functor.

The1–category of spectra will be denoted by Sp. It is a closed symmetric monoidal1–
category [24, 4.8.2.19]. The internal mapping spectrum will be denoted by Sp.A;B/,
the smash product of spectra will be denoted by A^B and its monoidal unit, the sphere
spectrum, by S.

An E1–ring spectrum R is a commutative algebra object in Sp. The1–category of
left R–modules will be denoted by ModR; it is a symmetric monoidal 1–category
with monoidal product ^R and monoidal unit R [24, 4.5.2.1]. Commutative algebra
objects therein are E1–R–algebras and are the objects of the1–category CAlgR.

We reserve the notation ˝ for the monoidal product in the1–category of presentable
1–categories (to be introduced below), and for tensors of spaces with objects of an
1–category. A monoidal product in a general monoidal1–category will be denoted
by �.
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2 Presentable1–categories and tensors

The1–category PrL of presentable1–categories [22, 5.5] is a useful tool when it
comes to formulating the idea of an1–category tensored over a symmetric monoidal
1–category. We review this theory, then we turn to (reflective) localizations of1–
categories. We prove an1–categorical analogue of Day’s reflection theorem, which
gives equivalent conditions under which the localization of a closed symmetric monoidal
1–category is closed symmetric monoidal; these conditions are automatically satisfied
when the localization is smashing. We then turn our attention to smashing localizations
of PrL, reviewing the theory of [24, 4.8; 14]. Some important examples of smashing
localizations L of PrL are given by the 1–categories of presentable 1–categories
which are pointed, semiadditive, additive or stable; we look at the tensors appearing
in these situations. Along the way, we make some contributions to the general theory,
like proving that the free L–local presentable1–category on a small simplicial set K
is given by the category of LS–valued presheaves on K.

2.1 Generalities

Following [24, Section 4.8; 14; 1, Section 2.2], we will work with the closed symmet-
ric monoidal1–category PrL of presentable1–categories. The colimit-preserving
functors C! D (which, since the 1–categories are presentable, coincide with the
left adjoint functors) are assembled into a presentable1–category FunL.C;D/. These
provide the internal homs to PrL. The mapping spaces are given by their maximal
subspaces. The monoidal product of PrL is denoted by ˝ and is characterized by
the fact that left adjoint functors out of C˝D are given by functors out of C �D

which preserve colimits separately in each variable. The1–category C˝D is also
canonically equivalent to FunR.Cop;D/ (where the R denotes that the functors are right
adjoints). The monoidal unit of PrL is S, the1–category of spaces. A commutative
algebra in PrL is equivalently a presentable closed symmetric monoidal1–category C,
whose monoidal product we will typically denote by ���, monoidal unit by 1, and
internal hom by C.�;�/.

Definition 2.1 Let R be a presentable closed symmetric monoidal1–category. A
presentable 1–category C is tensored over R if it is a module over R in PrL. In
particular, there is a functor, the tensor,

�˝�W R�C! C;

which preserves colimits separately in each variable.
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Remark 2.2 Because we are working in PrL, a functor preserves colimits if and only
if it is a left adjoint. This means we also have a cotensor,

.�/.�/ W Rop
�C! C;

and an enrichment [15, Corollary 7.4.13],

R.�;�/ W Cop
�C! R:

Thus, an 1–category C tensored over R is cotensored and enriched over R. Since
we will mostly work with tensors, we have chosen to emphasize them in the previous
definition. Note that a morphism of R–modules is a colimit-preserving functor that
preserves tensors, cotensors and the enrichment.

We will denote the1–category of presentable1–categories enriched over R by .PrL/R.
The previous remark gives us a fully faithful embedding

ModR.PrL/ ,! .PrL/R:

Remark 2.3 Let C be a presentable 1–category tensored over R. Then, for any
objects u and v in R and c in C, by manipulating adjunctions we obtain a natural
equivalence .u� v/˝ c ' u˝ .v˝ c/, where � is the monoidal product of R.

Example 2.4 In a symmetric monoidal 1–category, any commutative algebra is
canonically a module over itself, with action given by multiplication. In particular, any
presentable closed symmetric monoidal1–category is tensored over itself, with tensor
given by the monoidal product and cotensor and enrichment given by the internal hom.

Since S is the monoidal unit in PrL, it is canonically a commutative algebra object
in PrL and every presentable1–category C is uniquely a module over it. The action
is given by a functor S˝ C! C (it is an equivalence) whose transpose is a functor
C! FunL.S;C/ which takes the object c to a colimit-preserving functor Fc W S! C

such that Fc.�/D c. If X is a space, then

.2.5/ Fc.X/' Fc.colim.X f�g�! S//' colim.X f�g�! S
Fc
�! C/D colim.X fcg

�! C/:

Definition 2.6 [22, 4.4.4.9] Let C be a cocomplete1–category and X be a space.
We define X ˝ c, the tensor of c with X, as

.2.7/ X ˝ c WD colim.X fcg
�! C/:
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In particular, �˝c' c. In conclusion, the tensor of a presentable1–category C over S
is a functor

.2.8/ �˝�W S�C! C

which preserves colimits separately in each variable. It satisfies

.2.9/ MapC.X ˝ c; d/'MapS.X;MapC.c; d//

for all spaces X and objects c and d in C. Indeed, the right adjoint to �˝ c W S! C is
immediately identified to be MapC.c;�/ by considering the adjunction equivalence for
X D �. Observe that the notation ˝ is being used for two different notions, namely
the monoidal product of two presentable1–categories and the tensor of an object in a
presentable1–category with a space.

Remark 2.10 The colimit formula (2.7) makes sense for any simplicial set K, so one
can define K˝ c for any c 2 C. In this case, considering � 2 S, we get that K˝� is a
Kan-fibrant replacement of K, ie a left adjoint of the inclusion of Kan complexes into
simplicial sets evaluated at K. We will denote K˝� by KKan.

We will need the following result on the behavior of tensors in overcategories:

Lemma 2.11 Let C be a presentable1–category. Let f WG!K and g WH !K be
morphisms in C and let X be a space. The equivalence

MapC.X ˝G;H/'MapS.X;MapC.G;H//

of spaces restricts to an equivalence

MapC=K .X ˝G;H/'MapS.X;MapC=K .G;H//;

whereX˝G is considered as an object in C=K via the morphismX˝G
�˝id
��!�˝G'

G
f
�!K.

Proof Let ff gWX! C=K be the constant diagram mapping X to the object f in C=K .
By definition, the colimit of ff g satisfies

MapC=K .colimff g;H/'MapS.X;MapC=K .G;H//:

By [22, 1.2.13.8], colimits in C=K are created via the standard projection �K WC=K!C,
which directly implies that

�K.colimff g/' colim�Kff g ' colimfGg DX ˝G:
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To finish the proof we need to determine the map X ˝G!K.

It suffices to do it for the caseKDG. Indeed, we have a projection �f W .C=K/=f !C=K ,
which is equivalent to the postcomposition map fŠ W C=G! C=K . Moreover, the map
ff gWX ! C=K lifts to the map fidGgWX ! C=G :

C=G .C=K/=f

X C=K

C

�

�G

fŠ �f
fidGg

ff g

fGg �K

Here the equivalence C=G
'
�! .C=K/=f follows from [22, 4.1.1.7]. Thus we want to

show that the colimit of fidGg in C=G is the map X ˝G ! �˝G ' G. However,
this follows immediately from the fact that for any map �Œn�!G the precomposition
map �Œn�˝G!X˝G!�˝G has to be �˝ id by definition of being a colimiting
cocone.

We now finish this section with an observation about tensors with spaces which have an
action of a topological group. If C is an1–category and G is a topological group, then
one can consider the1–category of objects of C with G–action, which is Fun.BG;C/.
If C is a presentable1–category tensored over a presentable closed symmetric monoidal
1–category R, then by functoriality of the tensor, whenever X 2 R or c 2 C have a
G–action, then so does X˝c 2 C, and this is a functorial construction. For example, if
X WBG!R, then the composite BG X

�!R �˝c��! C gives X˝c WBG! C. To recover
the underlying object of C, precompose the functor with the unique arrow e W � ! BG.

Let us take R to be S. Consider G with its regular G–action: we can describe it as the
left Kan extension of � f�g�! S along e W � ! BG. To avoid confusion, let us denote the
resulting functor by G W BG! S. We now claim that, if c 2 C, then G˝ c is the free
object of C with G–action on c. More precisely, we claim:

Proposition 2.12 For any cocomplete1–category C and topological group G, there
is an adjunction

.2.13/ C' Fun.�;C/
G˝�

e�
��!��! Fun.BG;C/:
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This is a generalization of [32, IV.2.2], which states (without proof) that, for an E1–
ring spectrum A, the map A! S1˝A is initial among maps from A to an E1–ring
spectrum with an S1–action.

To prove the proposition, it suffices to identify G˝� as the left Kan extension functor
along e [22, 4.3.3.7]. We first prove a general lemma:

Lemma 2.14 Consider the diagram of left Kan extensions in cocomplete1–categories

C D

E

F

f

g

h
Lang f

Lanh g

�

Suppose that for every c 2 C and x 2 F the composition

.2.15/ MapF.h.c/; x/
Lanh g
���!MapE

�
Lanh g.h.c//;Lanh g.x/

�
��c�!MapE.g.c/;Lanh g.x//

is an equivalence of spaces. Then the universal natural transformation

Lanh f ! Lang f ıLanh g

is an equivalence.

Proof Using the colimit formula for left Kan extensions, we get, for x 2 F,

Lanh f .x/' colim.h # x! C
f
�!D/;

.Lang f ıLanh g/.x/' colim.g # Lanh g.x/! C
f
�!D/:

The natural map Lanh f .x/! .Lang f ı Lanh g/.x/ is induced by the natural map
between the comma1–categories h # x! g # Lanh g.x/ described in (2.15). To see
that the former is an equivalence, it suffices to see that the latter is cofinal. However,
both comma1–categories are the domain of a corresponding right fibration over C. In
this case, being cofinal is equivalent to being a fiberwise equivalence of spaces [22,
2.2.3.13, 4.1.2.5]. This is precisely the condition that (2.15) be an equivalence.

Before proceeding to the proof of Proposition 2.12, let us observe that the map
Lanh f ! Lang f ıLanh g is not necessarily an equivalence without extra conditions
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like (2.15). First, note that for two spaces X and Y, the left Kan extension

� S

S

fY g

fXg
LanfXgfY g

is given by LanfXgfY g.Z/'Map.X;Z/�Y. Now take CD�, DDEDFDS, f Df�g,
gD fS0g and hD f∅g. In this case, Lanh f ' f�g and Lang f ıLanh g' fS0�S0g.

Proof of Proposition 2.12 It now suffices to observe that we have a diagram of left
Kan extensions

� C

S

BG

fcg

f�g

e
�˝c

G

and that (2.15) amounts to G id
�!G in this case.

2.2 Localizations

We quickly review some definitions and results about (reflective) localizations, mostly
from [22, 5.2.7; 24, 4.8.2; 14]. Then we prove a version of Day’s reflection theorem.

Definition 2.16 Let C be an1–category. A functor L W C!D is a localization if it
admits a fully faithful right adjoint i . The1–category D is equivalent via i to a full
subcategory of C, denoted by LC, so we often write L W C! LC (or even L W C! C)
and neglect to mention i . The objects of LC are L–local. For any c 2 C, there is a
localization map c! Lc given by the unit of the adjunction.

For any localization L, there are natural equivalences Lc! LLc for c 2 C. An object
c 2 C is in LC if and only if the localization map c!Lc is an equivalence, if and only
if for every c0 2 C the localization map c0! Lc0 induces an equivalence of spaces

MapC.Lc
0; c/'MapC.c

0; c/:

The following theorem is an1–categorical analogue of Day’s reflection theorem [12].
We remind the reader that C.c; d/ 2 C denotes an internal hom.
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Theorem 2.17 Let C be a closed symmetric monoidal 1–category. Let L W C! LC

be a localization functor. The following are equivalent :

(1) For all c 2 C and d 2 LC, the localization map C.c; d/ ! LC.c; d/ is an
equivalence.

(2) For all c 2 C, d 2 LC, the localization map c ! Lc induces an equivalence
C.Lc; d/! C.c; d/.

(3) For all c; c02C, the localization map c!Lc induces an equivalenceL.c�c0/!
L.Lc� c0/.

(4) For all c; c0 2 C, the localization maps of c and c0 induce an equivalence
L.c� c0/! L.Lc�Lc0/.

When these equivalent conditions are satisfied , LC admits a closed symmetric monoidal
structure such that L is symmetric monoidal and its right adjoint i is lax symmetric
monoidal and closed , ie the internal hom in LC is given by C.d; d 0/ for all d; d 0 2 LC.

Proof (2)() (3) Let c; c0 2 C and d 2 LC. The diagram

MapLC.L.Lc� c0/; d/ //

'
��

MapLC.L.c� c0/; d/

'
��

MapC.Lc� c0; d /

'
��

MapC.c� c0; d /

'
��

MapC.c
0;C.Lc; d// // MapC.c

0;C.c; d//

commutes, so the top arrow is an equivalence if and only if the bottom one is an
equivalence, and the Yoneda lemma finishes the proof.

(1)D) (3) Let c; c0 2 C and d 2 LC. The diagram

MapLC.L.Lc� c0/; d/ //

'
��

MapLC.L.c� c0/; d/

'
��

MapC.Lc� c0; d /

'
��

MapC.c� c0; d /

'
��

MapC.Lc;C.c
0; d //

'
��

MapC.c;C.c
0; d //

'
��

MapC.Lc;LC.c
0; d //

�
// MapC.c; LC.c

0; d //

commutes, so the top horizontal map is an equivalence, and the Yoneda lemma finishes
the proof.
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(3)D) (4) Let c; c0 2 C. The diagram

L.c� c0/ //

' &&

L.Lc�Lc0/

L.Lc� c0/
'

77

commutes, so the horizontal map is an equivalence.

(4)D) (1) Let us denote by � all localization maps. Let c 2 C and d 2 LC. We will
construct an inverse to � WC.c; d/!LC.c; d/. First, note that if � WLC.c; d/!C.c; d/

is a left inverse to �, then it is also a right inverse to it. Indeed, in this case, both id and
� ı � can play the role of the dotted arrow in the diagram

C.c; d/
�
//

�

��

LC.c; d/

LC.c; d/

88

making it commute, whence by the universal property of � we deduce that � ı � is
equivalent to id.

By adjunction, constructing a left inverse � to � is equivalent to constructing an arrow
x� W LC.c; d/� c! d making the diagram

C.c; d/� c
e
//

��id
��

d

LC.c; d/� c

x�

99

commute. Here e W C.c; d/� c! d , the evaluation map, is transpose to id W C.c; d/!
C.c; d/. Consider the commutative diagram

C.c; d/� c

��id

��

e
//

�

,,���

!!

d

L.C.c; d/� c/

L.���/

��

u

OO

LC.c; d/� c
id��

// LC.c; d/�Lc
�
// L.LC.c; d/�Lc/

where u exists by the universal property of �. By hypothesis, the vertical map L.���/

admits an inverse f. Define x� to be u ıf ı� ı .id ��/; it is the x� we were looking for.
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We now prove the last assertion. Call an arrow f W c! c0 in C a local equivalence if Lf
is an equivalence. Note that if f is a local equivalence, then f � id W c� c00! c0� c00

is a local equivalence for any c00 2 C. Indeed, in the commutative diagram

L.c� c00/
L.f�id/

//

L.��id/ '
��

L.c0� c00/

L.��id/'

��

L.Lc� c00/
L.Lf�id/

�
// L.Lc0� c00/

the vertical arrows are equivalences by (3). Now [14, Lemma 3.4] applies to prove that
LC has the desired symmetric monoidal structure, L is symmetric monoidal and i is
lax symmetric monoidal.

We now prove that the symmetric monoidal structure on LC is closed with internal
hom given by the internal hom of C. Let d 2 LC. We have adjunctions

C
��d

C.d;�/
����!����! C

L

i
�!�!LC:

We now compose the adjunctions and notice that the right adjoint C.d;�/ı i 'C.d;�/

takes values in the subcategory LC by (1), which gives us an adjunction

LC
L.��d/

C.d;�/
����!����! LC:

Since d is local and L is symmetric monoidal, we get L.�� d/'��LC d , giving
us the desired adjunction.

We now consider a strong condition one can impose on localizations:

Definition 2.18 A localization L W C! LC is smashing if C is a symmetric monoidal
1–category and L is of the form �� I for some smashing object I of C.

Note that I is equivalent to the localization of the monoidal unit of C and that, for any
c; c0 2 C, we have

.2.19/ c�Lc0 ' L.c� c0/' Lc� c0:

Proposition 2.20 If C! LC is a smashing localization functor of a closed symmetric
monoidal1–category , then the equivalent conditions of Theorem 2.17 are satisfied.
Moreover , the monoidal product �LC of LC can be computed in C, ie if i denotes the
right adjoint to L, then

i.d �LC d 0/' id � id 0:
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Note that we are not saying that i is symmetric monoidal; indeed, i typically does not
preserve the monoidal unit.

Proof In this situation, condition (3) of Theorem 2.17 is immediate, and the statement
about �LC readily follows from (2.19).

2.3 Smashing localizations of PrL

We now look at smashing localizations L of PrL. From Proposition 2.20 , we get that
if A is a commutative algebra in PrL, then we have a commutative algebra LA in PrL.
Recall that1–categories of modules over a commutative algebra can be endowed with
a closed symmetric monoidal structure [24, 4.5.2].

Theorem 2.21 [24, 4.8.2.10; 14, Propositions 3.8 and 3.9] Let L W PrL! PrL be a
smashing localization.

(i) The underlying presentable1–category of an object in ModLS.PrL/ is L–local ,
and the forgetful functor ModLS.PrL/! LPrL is an equivalence of symmetric
monoidal1–categories , where LPrL is a symmetric monoidal1–category as
in Theorem 2.17.

(ii) For any presentable closed symmetric monoidal1–category C, the1–category
LC admits a unique closed symmetric monoidal structure such that the localiza-
tion map C! LC gets a symmetric monoidal structure.

(iii) Given a second smashing localization L0 W PrL! PrL such that L0PrL � LPrL,
the induced morphism �C W LC ! L0C admits a unique symmetric monoidal
structure.

In (iii), the morphism LC!L0C is obtained as follows. Let j WL0PrL!LPrL denote
the inclusion. The unit of the .L0; i 0/ adjunction gives a map C! i 0L0CD ijL0C whose
transpose under the .L; i/ adjunction is the desired map

.2.22/ �C W LC! jL0CD L0C:

Remark 2.23 Let C and D be closed symmetric monoidal1–categories. If F WC!D

is a symmetric monoidal functor which is an equivalence of 1–categories, then it
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preserves the internal hom, ie if c; c0 2 C then F gives an equivalence FC.c; c0/ ��!

D.F c; F c0/. Indeed, let c; c0 2 C and d 2D. Then d ' F z for some z 2 C, and

MapD.d;D.F c; F c
0//'MapD.F z�D Fc; F c

0/'MapD.F.z�C c/; F c
0/

'MapC.z�C c; c
0/'MapC.z;C.c; c

0//

'MapD.d; FC.c; c0//;

as desired. Since the internal hom in LPrL is given by FunL (Theorem 2.17), from
Theorem 2.21(i) we deduce that for C;D 2 ModLS.PrL/ there is an equivalence of
1–categories

ModLS.PrL/.C;D/ ��! FunL.C;D/:

Thus, any colimit-preserving functor C!D can naturally be given the structure of an
LS–module map.

If f WA!B is a morphism of commutative algebras in a presentable closed symmetric
monoidal1–category C, then there is a restriction-of-scalars functor resf WModB.C/!
ModA.C/ with left adjoint the extension-of-scalars functor B �A �W ModA.C/ !
ModB.C/ [24, 4.5.3].

Proposition 2.24 Let L;L0 W PrL ! PrL be two smashing localizations such that
L0PrL � LPrL. The diagrams

ModL0S.PrL/
�
// L0PrL

ModLS.PrL/
�
//

L0S˝�

OO

LPrL

L0

OO
ModL0S.PrL/

�
//

resf
��

L0PrL
� _

��

ModLS.PrL/
�
// LPrL

commute. In particular , if C 2 L0PrL, then C is tensored over LS: the tensor of c 2 C
with A 2 LS is given by

.2.25/ �S.A/˝C=L0S c;

where �S W LS! L0S is as described in (2.22) and ˝C=L0S denotes the tensor of C

over L0S.

Proof The vertical maps in the two squares are adjoints (those in the left square are
the left adjoints) and thus it suffices to prove the square on the left commutes. This
follows immediately from the fact that L0 is smashing and thus L0 ' L0S˝�.
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Remark 2.26 From (2.25) we deduce that the tensor with A 2 LS depends only
on �S.A/, in the sense that, if A;A0 2 LS are such that �S.A/ ' �S.A

0/, then the
tensors with A and with A0 are equivalent.

There is an analogous result for enrichments under the same hypotheses as the above
proposition. First note that, since the localization map � W LS! L0S is a symmetric
monoidal functor, its right adjoint x� WL0S!LS is lax monoidal [15, Proposition A.5.11],
so it gives us a functor .PrL/x� W .PrL/L

0S ! .PrL/LS between 1–categories of pre-
sentable enriched1–categories [15, Proposition 5.7.8].

Proposition 2.27 In the situation of the previous proposition , the diagram

ModL0S.PrL/ .PrL/L
0S

ModLS.PrL/ .PrL/LS

res .PrL/x�

commutes. In particular , if C 2 L0PrL, then C is enriched over LS: the enriched hom
.LS/.c; c0/ for c; c0 2 C is given by x�..L0S/.c; c0//.

Proof Let C be an L0S–module. Then the desired result follows from the fact that the
diagram

FunL.C�L0S;C/ FunR.Cop �C; L0S/

FunL.C�LS;C/ FunR.Cop �C; LS/

�

.id��/� x��

�

commutes. Indeed, the enrichment map Cop�C!LS is equivalent to the composition

Cop
�C

L0S.�;�/
������! L0S

x�
�! LS:

Definition 2.28 Let P be a full subcategory of PrL, C be a presentable1–category
in P and c be an object of C. Then we say C is freely generated in P by c if for any
presentable1–category D in P the functor

evc W FunL.C;D/
fcg�
��! Fun.�;D/'D

induced by fcgW �! C is an equivalence.

The quintessential example is given by S, which is freely generated in PrL by any
contractible space.
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Proposition 2.29 LetL be a smashing localization of PrL. ThenLS is freely generated
in LPrL by the monoidal unit of LS.

Proof Let 1 denote the unit of LS and let D 2 LPrL. We can give two proofs. The
first one follows from Theorem 2.17(2), using the localization map S! LS:

ev1 W FunL.LS;D/ ��! FunL.S;D/ ��! Fun.�;D/'D:

For the second, first note that, by Remark 2.23, FunL.LS;D/'ModLS.PrL/.LS;D/.
In this way, ev1 is equivalently given by a functor ModLS.PrL/.LS;D/!D, which
is the canonical equivalence obtained from the fact that LS is the monoidal unit of
ModLS.PrL/.

The previous proposition might suggest that LS behaves similarly to S itself in certain
ways. We will now observe that from two elementary points of view this is not the
case, even in a simple example. We will use that there is a smashing localization L
of PrL such that LPrL is given by pointed presentable1–categories and LS is given
by S�. We will explain this in more detail in Section 2.4.

Remark 2.30 Left Kan extension along the Yoneda embedding j W S ! P.S/ for a
simplicial set S induces an adjunction Fun.S;D/

Lanj

j�
��!��! FunL.P.S/;D/ [22, 5.1.5]; this

is true in particular for S D �. A general left Kan extension along an arbitrary functor,
however, may not preserve colimits, so the inverse to evc in Definition 2.28 need not
be equivalent to Lanc .

To see this, consider the example outlined above, where LS is S�. If the inverse
to fS0g� were LanfS0g, we would have that LanfS0gfXg.S

0/ ' X for any X 2 S�.
However, the colimit formula for Lan gives us that LanfS0gfXg.S

0/'X _X.

Remark 2.31 Proposition 2.29 is not equivalent to saying that every object in LS is a
colimit of a constant diagram with value the monoidal unit. One might have suspected
this because of what happens in the case of S: there, every object X is a colimit of a
constant diagram with value the one-point space. Indeed,

X 'X ˝�D colim.X f�g�! S/:

We will now observe that, already in the simple case outlined above where LS is S�,
the analogous statement fails, ie we will show that not every object in S� is the colimit
of a constant diagram with value S0.

Algebraic & Geometric Topology, Volume 22 (2022)



Thom spectra, higher THH and tensors in1–categories 1861

Let K be a simplicial set. Then we have

colim.K fS
0g
��!S�/'colim.K!� f�g�!S

.�/C
��!S�/'colim.K!� f�g�!S/C'.K

Kan/C;

where KKan is the Kan-fibrant replacement of K of Remark 2.10. Notice that we used
that the functor .�/C is a left adjoint and thus commutes with colimits. Therefore, the
colimit of any constant diagram with value S0 necessarily has a disjoint basepoint,
which clearly does not hold for every pointed space.

At first glance, one could have thought that for a given pointed space .Y; y/ one could
use the cofiber sequence

f�gC
fygC
��! YC! Y

to construct Y as the colimit of a constant diagram with value S0, given that YC
and f�gC ' S0 can both be constructed as such colimits. However, that cofiber
sequence is a pushout along the map S0! �, so, in order to use this argument, we
must first be able to construct this map as the colimit of a map of diagrams. More
precisely, if colim.I fS

0g
��! S�/' S

0 and colim.J fS
0g
��! S�/' �, then we would need

to express the map S0 ! � as the colimit of a map of diagrams I ! J. However,
colim.J fS

0g
��! S�/'� if and only if J D∅ and so there cannot be any functor I ! J.

Proposition 2.29 can be generalized. IfK is a small simplicial set, then the1–category
of space-valued presheaves P.K/ WD Fun.Kop; S/ is the free cocomplete1–category
on K, in the sense that composition with the Yoneda embedding j WK!P.K/ induces
an equivalence of1–categories

.2.32/ FunL.P.K/;C/' Fun.K;C/

for any cocomplete1–category C [22, 5.1.5.6]. Since P.K/ is presentable [22, 5.5.3.6],
then P.K/ can also be regarded as the free presentable1–category on K.

Let L be a smashing localization of PrL. Define

PLS.K/ WD Fun.Kop; LS/:

We will now prove that PLS.K/ is the free object in LPrL (equivalently, the free
LS–module) on K. First, we prove that LP.K/' PLS.K/.

Lemma 2.33 Let K be a small simplicial set. Let L be a smashing localization of PrL.
There is an equivalence of 1–categories

.2.34/ LFun.K; S/' Fun.K;LS/:
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Moreover , this equivalence makes the triangle

Fun.K; S/ u
//

v� ''

LFun.K; S/

�

Fun.K;LS/

commute , where u W Fun.K; S/! LFun.K; S/ and v W S! LS are the localization
maps.

Proof Recall that if C;D 2 PrL, then C˝D' FunR.Cop;D/. Using the equivalence
of1–categories FunL.C;D/op ' FunR.D;C/ [22, 5.2.6.2] and (2.32), we deduce

Fun.K;LS/' Fun.Kop; .LS/op/op
' FunL.Fun.K; S/; .LS/op/op.2.35/

' FunR..LS/op;Fun.K; S//' LS˝Fun.K; S/' LFun.K; S/:

We will now prove that the triangle commutes.

To see this, first note that the equivalences in (2.35) are natural in the localization L.
To illustrate, for a natural transformation w W L0) L of localizations, the naturality of
the last equivalence takes the form

L0Fun.K; S/
wFun.K;S/

//

�

��

LFun.K; S/

�

��

L0S˝Fun.K; S/
wS˝id

// LS˝Fun.K; S/

Taking L0 to be the identity and considering the localization natural transformation
id) L, the naturality of (2.35) takes the form of the commutative square

.2.36/

Fun.K; S/ u
//

�

��

LFun.K; S/

�

��

Fun.K; S/
v�
// Fun.K;LS/

Therefore, to prove that the triangle commutes it suffices to see that the equivalence on
the left of (2.36) is the identity.

Let F W K ! S. The first equivalence of (2.35) is actually an isomorphism of 1–
categories, which gives us F op W Kop! Sop. The next equivalence extends F op to a
functor bF op W Fun.K; S/! Sop. In the next step, we associate to bF op a right adjoint
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functor G W Sop! Fun.K; S/. In the last step we simply evaluate to get G.�/ WK! S.
We need to prove thatG.�/'F WK!S. Let k 2K and let j be the Yoneda embedding
of Kop. The chain of equivalences

G.�/.k/'MapFun.K;S/.j.k/; G.�//'MapSop

�bF op.j.k//;�
�
'

'MapSop.F op.k/;�/'MapS.�; F
op.k//' F op.k/' F.k/

gives us the desired result.

Theorem 2.37 Let K be a small simplicial set. Let L be a smashing localization
of PrL. Then PLS.K/ is freely generated in LPrL by K. More precisely , composition
with v� ı j WK! PLS.K/ induces an equivalence of1–categories

FunL.PLS.K/;C/
�

.v�ıj /
�����! Fun.K;C/

for any C 2 LPrL, where v W S! LS is the localization map and j WK! P.K/ is the
Yoneda embedding.

Proof Let u W P.K/! LP.K/ be the localization map. We have equivalences of
1–categories

FunL.LP.K/;C/ �
u�
�! FunL.P.K/;C/ �

j�
�! Fun.K;C/;

and the result now follows from Lemma 2.33.

2.4 Four localizations of PrL

Let us start by fixing some notation. If C is a presentable1–category, let C� denote the
category of pointed objects of C (the undercategory C�=, where � is a final object of C),
MonE1.C/ the1–category of E1–monoids in C (special �–objects), GrpE1.C/ the
1–category of E1–groups in C (grouplike E1–monoids, or very special �–objects)
and Sp.C/ the stabilization of C. See [14] or [24, 2.4.2, 1.4] for more details. Note
that MonE1.C/ is equivalent to CAlg.C/, where C is given the cartesian monoidal
structure.

In [14], the authors consider the following smashing localizations of PrL: tensoring
with S�, MonE1.S/, GrpE1.S/ and Sp; and they determine descriptions for the
corresponding local objects. These are pointed, semiadditive, additive and stable
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1–categories, respectively. We display this in the following table, where C is any
presentable1–category:

categorical property full subcategory of PrL smashing object LS LS˝C unit of LS

no condition PrL S C �

pointed PrL
Pt S� C� S0

semiadditive PrL
Sem MonE1.S/ MonE1.C/

F
n�0 B†n

additive PrL
Add GrpE1.S/ GrpE1.C/ S

stable PrL
St Sp Sp.C/ S

The categorical properties above are listed in increasing order of restrictiveness. We
have adopted the terminology of [24]: in [14], the authors use the adjective “preadditive”
instead of “semiadditive”.

In [14, Corollary 4.10 and Theorem 5.1] the authors obtain the following as a corollary
of the result we summarized in Theorem 2.21. There is a chain of left adjoint functors

.2.38/ S S� MonE1.S/ GrpE1.S/ Sp
.�/C

†1

given by tensoring with the respective smashing object. The resulting functor S�! Sp
is †1. Each of these 1–categories admits a unique closed symmetric monoidal
structure, which is uniquely determined by the requirement that the respective functor
from S is symmetric monoidal. The symmetric monoidal structure in S� and in Sp is
given by the standard smash product of pointed spaces or spectra. Moreover, each of
the functors above uniquely extends to a symmetric monoidal functor.

Consider the table above. Theorem 2.21 also says that an 1–category satisfies the
categorical property in the first column if and only if it is tensored over the1–category
in the third column, following Definition 2.1. Proposition 2.24 tells us that, if we have
an1–category tensored over one of the1–categories in (2.38), then it is also tensored
over any1–category which appears further to the left in the sequence, and that the
action is obtained via restriction of scalars. We will now draw some consequences
from this observation and from the analogous one for enrichments (Proposition 2.27)

First, we set some notation:

Notation 2.39 Let C be a pointed presentable1–category. By the above discussion,
it is tensored over S�, so we denote the tensor by

�ˇ�W S� �C! C:
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Note that since S0 is the monoidal unit of S�, S0ˇ c ' c for any object c in C. The
following result is a generalization of [19, Corollary A.9]; see also Remark 2.45.

Corollary 2.40 Let C be a pointed presentable1–category. If Y is a space , then , for
any object c in C,

YCˇ c ' Y ˝ c

naturally in Y and c. Moreover , if .X; x0/ is a pointed space , then

.2.41/ X ˇ c ' cofib.c ' �˝ c x0˝id
���!X ˝ c/:

Proof Only the second part needs comment. There is a cofiber sequence of pointed
spaces

S0 D f�gC
.x0/C
���!XC!X:

Applying �ˇ c gives the desired cofiber sequence in C.

Corollary 2.42 Let A be a spectrum , Y be a space and X be a pointed space. Then

Y ˝A'†1C Y ^A; X ˇA'†1X ^A:

This shows that in this case ˇ recovers the familiar smash product of a pointed space
with a spectrum, as in eg [13, Definition II.2.1].

Proof By Example 2.4, Sp is tensored over itself via the smash product, so the
statements follow from Proposition 2.24.

We can apply Proposition 2.27 to presentable pointed1–categories and presentable
stable 1–categories. We obtain that �1 of the mapping spectrum is the mapping
pointed space:

Corollary 2.43 Let C be a presentable stable1–category (such as Sp). For any two
objects A and B in C, we have an equivalence of pointed spaces

S�.A;B/'�
1Sp.A;B/;

where �1 denotes the right adjoint to †1 W S�! Sp.

In the following example, we will identify S1ˇA with the more familiar bar construc-
tion on A when A is an augmented commutative algebra.
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Example 2.44 Let C be a presentable symmetric monoidal1–category with monoidal
product^ and monoidal unit 1. The1–category CAlg.C/=1 of augmented commutative
algebras in C is pointed, the zero object being 1. Let A be an augmented commutative
algebra in C. The bar construction BA of A is the pushout of 1 A! 1 [24, 5.2.2.3/4]
in CAlg.C/. In fact,

S1ˇA' BA:

To see this, first write S1 as the pushout of �  �t� ! � in S. Tensoring with A
proves that S1˝A is the pushout of A A^A! A in CAlg.C/; the two arrows are
the multiplication map of A. Since S1ˇA is the pushout of the unit A! S1˝A

along the augmentation A! 1 by (2.41), S1ˇA is the pushout of 1 A^A! A.

Now consider the diagram
1 Aoo // A

1

OO

��

1

OO

��

oo // A

OO

��

1 Aoo // A

where all the arrows are either the unit or augmentation of A, or identities. Taking
pushouts horizontally gives the diagram 1 A! 1, whose pushout is BA, and taking
pushouts vertically gives the diagram 1 A^A! A, whose pushout is S1ˇA, as
we have seen above. This proves the result, since colimits commute with colimits [22,
5.5.2.3].

Using Remark 2.3, since Sn ' .S1/^n we deduce that SnˇA is equivalent to the
iterated bar construction BnA.

As a particular example, we may take .C;^; 1/ to be .Sp;^;S/, in which case S1ˇA
is THH.A;S/, the topological Hochschild homology of A relative to S, and Snˇ�
gives iterated THH relative to S. See also [19, 7.1].

To close the section, we will now give two remarks that compare the tensor construction
to other constructions from the literature, namely the Loday construction and the infinite
symmetric product.

Remark 2.45 Let Fin denote the category of finite sets. If X W�op! Fin is a finite
simplicial set and R is an object of a presentable1–category C, there is an alternative
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description of X ˝R whose roots go back to [21];1 see also [33]. In [16, Section 3]
this description is recast in an1–categorical framework via

X ˝R' colim.LR ıX/;

where LR, the Loday functor for R, is the left Kan extension shown in the diagram

�
fRg

//

fŒ1�g

��

C

�op
X
// Fin

LR

>>

Here Œ1� denotes the one-point set. By the colimit formula for Kan extensions, LR.U /
is the coproduct of as many copies of R as there are elements in U for any finite set U,
so, if C has a cocartesian symmetric monoidal structure ^, then LR.U / D R^U . If
X is the simplicial model for the circle S1 given by �1=@�1, then S1˝R is BcyR,
the cyclic bar construction on R. When CD CAlg.Sp/ this recovers the equivalence
S1˝R' THH.R/ [29].

Let R be a commutative algebra in a presentable symmetric monoidal1–category M
with monoidal product ^. Then, if X is pointed, there is a version of the above
construction of X ˝R relative to an R–module M, whose output is an object of M
(see [33] for the classical case and [16, Section 4] for the1–categorical version of it).

Let us look at a particular case of this: If A is an augmented commutative R–algebra,
then R becomes an A–module via the augmentation A! R, and the corresponding
Loday functor of A relative to R is called LR;A; it takes a finite pointed set U as input
and returns the augmented commutative R–algebra R^A^U0 , where U0 is the set U
stripped of its basepoint. We then get

R^A .X ˝R A/' colim.LR;A ıX/:

Here X ˝R A denotes the tensor of A with X in the category of augmented commuta-
tive R–algebras; note that the forgetful functor from that category into commutative
R–algebras is a left adjoint, so the tensor can also be computed in the category of
commutative R–algebras. Recalling that R ^A .X ˝R A/ can be constructed as the
pushout of R A!X ˝R A in CAlg.M/ [24, 5.2.2.4], from (2.41) it follows that
R ^A .X ˝R A/ ' X ˇR A, where ˇR denotes the ˇ construction in the pointed

1In Remark 2.10 we noted that the colimit formula for tensors with spaces could be extended to arbitrary
simplicial sets.
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1–category of augmented commutative R–algebras. See [19, Section 4] for another
model of X ˇR A, similar to the one in the next remark.

Remark 2.46 Kuhn [19] has given a different description of the tensor of an E1–
monoid in spaces with a pointed space. We may rephrase his construction and recover
it in this context. We will do it more generally for E1–monoids in any presentable
1–category C.

First, note that MonE1.C�/'MonE1.C/. Indeed,

.2.47/ MonE1.C�/' C˝ S�˝MonE1.S/' C˝MonE1.S/'MonE1.C/;

since MonE1.S/ is pointed.

Let G 2MonE1.C�/, so in particular G is a functor Fin�!C�. Letm W Fin��Fin�!
Fin� denote the multiplication map which takes .hni; hpi/ to hnpi. Precomposing
G with m gives a functor m�G W Fin� � Fin� ! C�, whose transpose we denote
by m�G W Fin� ! Fun.Fin�;C�/. Let S W Fin� ! S� denote MapFin�.h1i;�/, which
represents the sphere spectrum. In other words, it is the functor that considers a finite
pointed set as a discrete pointed space. Taking the left Kan extension of m�G along S

gives a functor
SP1.�; G/ W S�! Fun.Fin�;C�/

which preserves colimits; this notation comes from Kuhn [19] (in the CD S case), who
explains the connection to the infinite symmetric products of [30]. Note that S.h1i/DS0

andm�G.h1i/DG.m.h1i;�//DG, so SP1.S0; G/DG. Both SP1.�; G/ and�ˇG
are colimit-preserving functors with value G at S0; since S� is freely generated by S0

in pointed presentable1–categories (Proposition 2.29), the two functors are equivalent.
Here we used that Fun.Fin�;C�/ is pointed; this follows from C� being pointed, and is
the reason we are considering C� instead of just C.

We have proven that
SP1.�; G/'�ˇG;

recovering [19, 3.14] in this context (when CD S). Note that, in particular, SP1.�; G/
takes values in MonE1.C�/.

One can modify the construction above to obtain a similar expression for the tensor
of MonE1.C/ over MonE1.S/, which we denote by ˇMonE1 . Indeed, a similar trick
as (2.47) shows that MonE1.MonE1.C// 'MonE1.C/, so a G 2MonE1.C/ can
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be presented by a functor G W Fin� ! MonE1.C/. Let F W S� ! MonE1.S/ be the
localization map. The statement is that the Kan extension of G along F ı S gives
�ˇMonE1 G, and the proof is similar to the one above, where we replace pointed
1–categories by semiadditive ones, and we use that F is symmetric monoidal, so it
takes the monoidal unit of S� to the monoidal unit of MonE1.S/.

One cannot recover the tensor of MonE1.C/ over S similarly as above by taking the
forgetful functor S�! S in place of F, because that forgetful functor does not preserve
the monoidal unit. However, instead of considering the multiplication functor m, one
could consider the addition functor a W Fin� � Fin�! Fin� which takes .hni; hpi/ to
hnC pi. In this case, if G W Fin� ! C is in MonE1.C/, then the Kan extension of
a�G WFin�!Fun.Fin�;C/ along the functor Fin�! S which considers a finite pointed
set as a discrete space is precisely �˝G, by a similar argument.

3 E1–groups

We now look at the case of E1–groups G more closely. We prove an1–categorical
version of the splitting lemma of short exact sequences in abelian categories, and we
use this to show that, when X is a pointed space, the tensor X ˝G splits as a product
of G and X ˇG.

Remark 3.1 The inclusion functor GrpE1.S/!MonE1.S/ preserves colimits [24,
5.2.6.9]. Therefore, if X is a space andG is a E1–group, then X˝G can be computed
in either1–category, and similarly for pointed X and XˇG. This follows either from
(2.7) and (2.41) or from Remark 2.23.

Let
GrpE1.S/

B1

�1
��!

��!� Spcn

denote the1–categorical incarnation of the adjoint equivalence between E1–groups
and connective spectra [24, 5.2.6.26]. The symmetric monoidal functor GrpE1.S/!Sp
in (2.38) factors as the composition of the symmetric monoidal functor B1 followed
by the inclusion Spcn

! Sp [14, Example 5.3(ii)].

Proposition 3.2 Let G be an E1–group and X be a pointed space. There is an
equivalence of E1–groups

X ˇG '�1.†1X ^B1G/:
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Proof Let F W S� ! GrpE1.S/ denote the functor in (2.38) and let � denote the
monoidal product of GrpE1.S/. By Proposition 2.24,XˇG'FX�G. ApplyingB1,
we obtain equivalences of connective spectra

B1.X ˇG/' B1.FX �G/' B1FX ^B1G '†1X ^B1G:

Applying �1 to the above equivalence gives the result.

See also Remark 2.46 for another interpretation of X ˇG.

Remark 3.3 From Remark 2.26 we know that, if we fix a spectrum E and X is a
pointed space, then XˇE only depends on†1X. In particular, if X and Y are pointed
spaces such that †nX '†nY for some n > 0, then X ˇE ' Y ˇE. Proposition 3.2
proves that we can extend this observation to E1–groups: under the same hypotheses,
if G is an E1–group then X ˇG ' Y ˇG. This proves that the tensor of spectra or
E1–groups with pointed spaces is a stable invariant, in the sense of [20].

The following result is a version of the splitting lemma for short exact sequences in
abelian categories:

Lemma 3.4 Let C be a stable1–category and let f W U ! V in C. If there exists a
map g W V ! U such that g ı f ' idU , then .g; p/ W V ! U �Z is an equivalence ,
where p W V !Z is the cofiber of f.

Proof Consider the commutative diagram

U
f
//

��

V

p
��

g
// U

��

� // Z // �

The left inner square is a pushout by definition, while the outer square is a pushout
since g ı f ' idU . It follows that the inner right square is a pushout. As C is stable,
this is a pullback square as well, whence the conclusion follows.

We can now give a splitting for X ˝G when X is pointed:

Proposition 3.5 Let G be an E1–group and .X; x0/ be a pointed space. There is an
equivalence of E1–groups

X ˝G 'G � .X ˇG/
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which is natural in X and G. Explicitly, the equivalence is given by

.3.6/ X ˝G 'XCˇG
.eCˇid;pˇid/
���������!G � .X ˇG/;

where e and p are as defined below. This equivalence makes the diagram

.3.7/

G
.x0/Cˇid

{{

id�.x0ˇid/

%%
id

��

XCˇG
�

//

eCˇid
##

G � .X ˇG/

�0
yy

G

commute , where �0 denotes the projection , in the domain of the top left arrow the
equivalence G ' �CˇG is understood , and in the domain of the top right arrow the
equivalence G 'G � .�ˇG/ is understood.

Proof Let e W X !� denote the unique map. The split cofiber sequence of pointed
spaces

�C
eC

.x0/C
���!���!XC

p
�!X

induces a split cofiber sequence of E1–groups

G!X ˝G!X ˇG

after applying the functor �ˇG. Let i W Spcn
! Sp denote the inclusion functor, which

is a left adjoint. Applying iB1, we obtain the cofiber sequence of spectra

iB1G! iB1.X ˝G/! iB1.X ˇG/:

Since Sp is stable, by Lemma 3.4 we have iB1.X˝G/' iB1G�iB1.XˇG/. Now
note that i preserves finite products. To see this, first note that the right adjoint � of i is
such that � ı i ' id. Moreover, if A and B are connective spectra, then i.A/� i.B/ is
connective since homotopy groups preserve products, so i.A/� i.B/' i.C / for some
connective spectrum C. Therefore,

C ' � i.C /' �.i.A/� i.B//' � i.A/� � i.B/' A�B;

so i.A/� i.B/' i.A�B/. In particular, iB1.X ˝G/' i.B1G �B1.X ˇG//,
so, applying � , we obtain

B1.X ˝G/' B1G �B1.X ˇG/

in Spcn. Applying �1 (which preserves products) finishes the proof of the equivalence.
The diagram commutes by construction.
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Remark 3.8 When X D S0, the equivalence (3.6) takes the form G �G! G �G,
.x; y/ 7! .xy; x/. The diagram (3.7) becomes

G
g 7!.1;g/

{{

g 7!.g;1/

##
id

��

G �G
�

//

�
##

G �G

�1
{{

G

where � denotes the multiplication map of G and 1 denotes the unit of G. Thus,
�˝ id WX ˝G!G is a generalization of �. Indeed, �˝ id is the universal map from
the colimit cocone X ˝G to the identity cocone G. Taking X to be S0, this universal
map is �. See also Example 4.21.

Example 3.9 Let X D S1. Since the monoidal unit (namely, the point) of the sym-
metric monoidal1–category of E1–monoids is a final object, then an E1–monoid
is equivalently an augmented commutative algebra in S. Example 2.44 then implies
that S1ˇG ' BG, so the equivalence of Proposition 3.5 recovers the equivalence
BcyG 'G �BG, where Bcy denotes the cyclic bar construction (Remark 2.45).

4 Thom spectra

Having set up the formalism of tensors and having studied the case of E1–groups in
detail, we now turn our attention to tensors of spaces with Thom spectraMf. Following
[2; 1; 4] we define the latter in the1–categorical framework. We then determine the
tensor of Thom spectra with spaces, which is particularly simple when X is pointed.
As a particular case, we recover the Thom isomorphism theorem of Mahowald. Finally,
we look at concrete examples like suspension spectra of E1–groups and the periodic
complex cobordism spectrum MUP.

4.1 Generalities

Let R be an E1–ring spectrum. An R–module M is invertible if there exists an
R–module N such that M ^RN 'R. We let Pic.R/ be the Picard space of R; this is
the maximal subspace of the full subcategory of ModR on the invertible R–modules.
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Definition 4.1 Let Z be a space and f W Z! Pic.R/ be a map of spaces: this is a
local system of invertible R–modules on Z. The Thom R–module of f is defined as

Mf WD colim.Z f
�! Pic.R/ ,!ModR/:

Note that this defines a functor M W S=Pic.R/!ModR.

Example 4.2 Let f WZ! Pic.R/ be the constant map at R. Then Mf 'R^†1
C
Z.

Indeed, Mf is the colimit of Z fSg�! Sp R^�
��!ModR, but R^� preserves colimits, so

Mf 'R^ .Z˝S/'R^†1
C
.Z/ using Corollary 2.42.

As noted in [1, Theorem 7.7; 4, Section 3], Pic.R/ is an E1–group. If G is an
E1–monoid and f is an E1–map, then Mf gets an E1–structure:

Proposition 4.3 [1, Corollary 8.1; 4, Corollary 3.2] If G is an E1–monoid and
f W G ! Pic.R/ is an E1–map , then there is an E1–R–algebra Mf such that its
underlying R–module is given by the above colimit.

Notation 4.4 Let SŒ�� WMonE1.S/! CAlg.Sp/ denote the functor induced on com-
mutative algebras by the symmetric monoidal functor †1

C
W S! Sp. For R an E1–ring

spectrum, let RŒ�� WMonE1.S/! CAlgR denote the functor R^SŒ��.

Example 4.5 If f WG! Pic.R/ is the E1–map constant at R, then Mf 'RŒG� as
E1–R–algebras. This follows eg from [4, Proposition 3.16] (see also [1, Theorem 8.4]),
since f admits an obvious E1–R–orientation.

The proposition above is a consequence of the following theorem. First, recall that if C
is a symmetric monoidal1–category and c 2 CAlg.C/, then the overcategory C=c is
also symmetric monoidal [24, 2.2.2.4]: if f W x! c and g W y! c, then their monoidal
product is given by the composition

x ^y
f ^g
��! c ^ c

�
�! c;

where � is the multiplication map of c. A commutative algebra in C=c is then a
commutative algebra map c0! c from a commutative algebra c0 in C.

Theorem 4.6 [1, Corollary 8.1] The Thom R–module functor

M W S=Pic.R/!ModR
is symmetric monoidal.
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Since symmetric monoidal functors preserve commutative algebras, we get a functor

.4.7/ M WMonE1.S/=Pic.R/! CAlgR;

thus recovering Proposition 4.3. The functor (4.7) is also symmetric monoidal [24,
3.2.4.3]. In particular, this says that if f W G! Pic.R/ and g WH ! Pic.R/ are two
E1–maps, then

.4.8/ M.G �H
f �g
��! Pic.R/�Pic.R/ �

�! Pic.R//'Mf ^RMg

as E1–R–algebras.

Let A be an E1–R–algebra. Let us define the E1–monoid Pic.R/#A as the pullback
of symmetric monoidal1–categories

Pic.R/#A //

��

.ModR/=A

��

Pic.R/ // ModR

Antolín-Camarena and Barthel have given the following universal property for the
E1–structure on Mf :

Theorem 4.9 [4, Theorem 3.5] Let G be an E1–monoid and f W G! Pic.R/ be
an E1–map. The E1-R–algebra structure on Mf is characterized by the following
universal property: the space of E1-R–algebra maps MapCAlgR.Mf;A/ is equivalent
to the space MapMonE1 .S/=Pic.R/

.G;Pic.R/#A/ of E1–lifts of f given by

Pic.R/#A

��

G

;;

f

// Pic.R/

4.2 Behavior with respect to the tensor

LetR be anE1–ring spectrum. We will denote the tensor of CAlgR over spaces by˝R.
Recall that S1˝R � is THHR, topological Hochschild homology of E1–R–algebras
over the base R [29]. Let f WG! Pic.R/ be a map of E1–monoids. Let X be a space.
We now prove that X ˝R � and the Thom spectrum functor commute:

Proposition 4.10 There is an equivalence of E1–R–algebras

X ˝RMf 'M.X ˝G
�˝id
��! �˝G 'G

f
�! Pic.R//:
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Proof Let A be an E1–R–algebra. Using the universal property of˝R, Theorem 4.9,
and Lemma 2.11 applied to C D MonE1.S/, K D Pic.R/ and H D Pic.R/#A, we
obtain

MapCAlgR.X˝RMf;A/'MapS.X;MapCAlgR.Mf;A//

'MapS
�
X;MapMonE1 .S/=Pic.R/

.G;Pic.R/#A/
�

'MapMonE1 .S/=Pic.R/
.X˝G;Pic.R/#A/

'MapCAlgR

�
M.X˝G

�˝id
��!�˝G'G

f
�!Pic.R//; A

�
:

Remark 4.11 We have more recently found an alternative proof of the above result.
Let us sketch it. First, note that the symmetric monoidal functor M W S=Pic.R/!ModR
preserves colimits [1, Corollary 8.1], so the induced functor M WMonE1.S/=Pic.R/!

CAlgR preserves colimits as well. Second, note that X ˝G �˝id
��! G

f
�! Pic.R/ is

actually the tensor of X 2 S with .G f
�! Pic.R// 2MonE1.S/=Pic.R/ by Lemma 2.11.

Since tensors are colimits, the proposition follows.

Remark 4.12 If in the proposition above we choose a basepoint x0 in X, then
X ˝R Mf gets the structure of an E1–Mf –algebra via the map x0 ˝ id W Mf '
�˝RMf !X ˝RMf. Similarly, M.X ˝G �˝id

��!�˝G 'G
f
�! Pic.R// gets the

structure of an E1–Mf –algebra by Thomifying the map x0˝ id WG!X ˝G. Since
the equivalence of Proposition 4.10 is natural in X, it commutes with these unit maps,
so in fact it is an equivalence of E1–Mf –algebras once we fix a basepoint in X.

Theorem 4.13 Suppose G is an E1–group and X is pointed. There is an equivalence
of E1–R–algebras

X ˝RMf 'Mf ^SŒX ˇG�:

Proof By Propositions 4.10 and 3.5, we have equivalences of E1–R–algebras

.4.14/ X ˝RMf 'M.X ˝G
�˝id
��! �˝G 'G

f
�! Pic.R//

'M.G � .X ˇG/
�1
�!G

f
�! Pic.R//;

where in the second equivalence we have applied functoriality of M. Since R is the
unit of Pic.R/, the diagram

G � .X ˇG/

f �fRg ))

G �� 'G//
�1'.id��/

f �fRg

��

Pic.R/

Pic.R/�Pic.R/
�

66

f
//
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commutes, so (4.14) is equivalent to the Thom E1–R–algebra of � ı .f � fRg/. By
monoidality of M (4.8), this is equivalent to

Mf ^RM.X ˇG
fRg
�! Pic.R//:

By Example 4.5, it is equivalent to Mf ^R RŒX ˇG�'Mf ^SŒX ˇG�.

Remark 4.15 In Theorem 4.13, we can consider X ˝RMf as an E1–Mf –algebra
as in Remark 4.12, and we can consider Mf ^SŒX ˇG� as an E1–Mf –algebra via
the coproduct inclusion into the first factor. In this way, the equivalence X ˝RMf '
Mf ^SŒX ˇG� commutes with the unit maps from Mf, so is in fact an equivalence
of E1–Mf –algebras. The gist of it is that in (3.7) the maps from G commute with
the equivalence.

Remark 4.16 Taking Proposition 3.2 into account, Theorem 4.13 is similar to [36,
Theorem 1.1] in an1–categorical setting. Whereas we consider Thom spectra of maps
into Pic.R/ for any E1–ring spectrum R, Schlichtkrull’s result is for Thom spectra
of maps into BGL1.S/. Recall that the space Pic.R/ is equivalent to the product of
BGL1.R/ with �0.Pic.R//; the latter is the classical Picard group of the homotopy
category of ModR, ie the group of isomorphism classes of R–modules M such that
there exists an R–module M 0 satisfying that M ^R M 0 is isomorphic to R in the
homotopy category of R–modules.

Considering Thom spectra of maps into Pic.R/ as we do is therefore more general (for
example, they may be nonconnective whereas Thom spectra of maps into BGL1.S/
are connective), and already taking maps into Pic.S/'Z�BGL1.S/ allows for a nice
application; see Example 4.24.

The result of Schlichtkrull has also been generalized before in a different direction.
In [18, Theorem 4.2], the author determined the factorization homology of Thom R–
algebras. On one hand, it is more general, as it can be applied to Thom En–R–algebras
instead of only E1; on the other hand, she only considers Thom spectra of maps
into BGL1.R/, whereas, more generally, we consider maps into Pic.R/. Moreover,
factorization homology takes a manifold with extra structure as an input, whereas we
consider tensors with completely general spaces X. The setting and the techniques are
very different, and as a consequence, the expression of the result (of the factorization
homology of structured manifolds with coefficients in Thom En–R–algebras in her
case and of tensors of Thom E1–R–algebras with spaces in our case) takes a very
different form at a first glance.
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Remark 4.17 In Remark 3.3 we observed that �ˇG is a stable invariant, ie if X and
Y are pointed spaces such that †nX '†nY for some n > 0, then X ˇG ' Y ˇG.
From Theorem 4.13, we deduce that �˝RMf is a stable invariant as well. This was
observed in [20, Corollary 5.1], but since they use Schlichtkrull’s result from [36], they
only consider maps to BGL1.S/ as input for Thom spectra, instead of a more general
Pic.R/ for an E1–ring spectrum R.

Example 4.18 Let G be an E1–group and let f WG! Pic.R/ be the constant map
at R. By Example 4.5, Mf 'RŒG�. From Theorem 4.13, we deduce that

X ˝R RŒG�'RŒG�^SŒX ˇG�:

Example 4.19 Let X D S1. Let G be an E1–group and let f W G! Pic.R/ be an
E1–map. Since S1 ˇG ' BG (Example 3.9), then the formula of Theorem 4.13
amounts to an equivalence

.4.20/ THHR.Mf /'Mf ^SŒBG�

of E1–R–algebras. The equivalence (4.20) has antecedents in the literature: besides
the papers of Schlichtkrull and Klang mentioned in Remark 4.16, there is [6] for Thom
E1–ring spectra of E1–maps into BGL1.S/, [7] for Thom spectra of E3–maps into
BGL1.S/, and [5] for Thom E1–R–algebras of E1–maps into BGL1.R/. These
three papers take place in model-categorical contexts.

Example 4.21 Consider a pointed space of the form XC D�tX, where X is a space.
Then Theorem 4.13 amounts to an equivalence of E1–R–algebras

.4.22/ Mf ^R .X ˝RMf /'Mf ^SŒX ˝G�;

essentially given by Thomifying the map X ˝G ! G � .X ˇG/ of (3.6). When
X D f�g, the equivalence becomes

.4.23/ Mf ^RMf 'Mf ^SŒG�;

which is the Thom isomorphism theorem going back to [26]; see also [4, Proposition
3.16 and Corollary 3.17]. Indeed, in this case, the equivalence is given by Thomifying
the map G �G!G �G, .x; y/ 7! .xy; y/ (see Remark 3.8). Thus, we can think of
the equivalence (4.22) for general X as a generalization of this Thom isomorphism.
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Example 4.24 Consider the stable J –homomorphism BU �Z!Pic.S/, an E1–map
of E1–groups. Its Thom E1–ring spectrum is the periodic complex cobordism MUP.
Note that MUP '

W
n2Z†

2nMU as spectra. Theorem 4.13 gives an equivalence of
E1–ring spectra

X ˝MUP 'MUP ^SŒX ˇ .BU �Z/�

for all pointed spaces X. For example, for X D S1, since B.BU �Z/' U this gives
an equivalence of E1–ring spectra

THH.MUP /'MUP ^SŒU �:

This equivalence was briefly mentioned in [35, Example 8.6]. See also Example 7.13.

Example 4.25 LetHZP denote the periodic integral homology spectrum, which is the
Thom E1–HZ–algebra of the E1–map Z! Pic.HZ/ that sends n to †2nHZ [17,
Construction 2.3]. Note that HZP '

W
n2Z†

2nHZ as HZ–modules. Theorem 4.13
gives an equivalence of E1–HZ–algebras

X ˝HZHZP 'HZP ^SŒX ˇZ�:

For example, for X D S1, we get THHHZ.HZP /'HZP ^SŒS1�.

Example 4.26 Let KU denote the periodic complex topological K–theory E1–ring
spectrum. We will see in Example 7.11 that S1˝KU 'KU ^SŒBK.Z; 2/�. Formula
(4.20) suggests thatKU could be the Thom spectrum of anE1–mapK.Z; 2/!Pic.S/.
However, this is not the case. For, if it were, then, by the Thom isomorphism theorem
(Example 4.21), we would have thatKU ^KU is equivalent toKU ^K.Z; 2/C, which
is not the case, as recalled in Example 7.11. In fact, KU is not even the Thom spectrum
of an E1–map K.Z; 2/! Pic.S/, since the Thom isomorphism holds for E1–maps.
Note that in [3] the authors prove that the connective complex K–theory ku is not the
Thom spectrum of any E3–map X ! BGL1.S/, where X is any grouplike E3–space.

5 X–base change

If A!B is a morphism of E1–ring spectra, for any space X there is an induced map
X˝A!X˝B. Sometimes, knowing X˝A one can get to X˝B: the Weibel–Geller
theorem [41], for example, asserts that if A! B is an étale extension of commutative
rings, then HH.B/, the Hochschild homology of B, can be computed as HH.A/˝AB;
the topological analogue of this theorem was proven by Mathew [27]. We will now
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generalize this question to arbitrary tensors; see Definition 5.1, where we introduce the
notion of X–base change. We will prove that Sn–base change is enough to guarantee
X–base change for any .n�1/–connected pointed X. In this section, we work in an
arbitrary presentable1–category; we will specialize to E1–ring spectra in Section 7.

Definition 5.1 Let X be a pointed space and C be a presentable1–category. We say
that a map c! d in C satisfies X–base change if the diagram in C

c //

��

d

��

X ˝ c // X ˝ d

is a pushout, where the vertical maps are given by the inclusion of the basepoint in X.
Equivalently, we are asking for the pushout map

.5.2/ .X ˝ c/tc d !X ˝ d

to be an equivalence. By Yoneda and the tensor–mapping space adjunction, this is
equivalent to

.5.3/

MapS.X;MapC.d; z// //

��

MapC.d; z/

��

MapS.X;MapC.c; z// // MapC.c; z/

being a pullback in S for all z 2 C, where the horizontal maps are the evaluation maps
at the basepoint of X.

Example 5.4 Any map c! d satisfies X–base change when X is contractible.

We will now prove that the base change property is closed under many operations; see
also Remark 5.6 for a negative result. That remark and the following proposition settle
the question of the closure of the base change property under limits and colimits in
general, except possibly for infinite products.

Proposition 5.5 Let f W c! d be a map in a presentable1–category C.

(1) Let X and Y be pointed spaces. Suppose that f satisfies X–base change and
Y –base change. Then it satisfies X�Y –base change.

(2) Let F W I ! S� be a diagram of pointed spaces. Suppose that f satisfies F.i/–
base change for all i . Then it satisfies .colimS�F /–base change.

(3) Let X and Y be pointed spaces. Suppose that f satisfies X–base change and
Y –base change. Then it satisfies X^Y –base change.
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Proof (1) Let z 2 C. Applying MapS.Y;�/ to the pullback diagram (5.3) and using
the product–mapping space adjunction in S, we get a pullback diagram

MapS.X �Y;MapC.d; z// //

��

MapS.Y;MapC.d; z//

��

MapS.X �Y;MapC.c; z// // MapS.Y;MapC.c; z//

Pasting this pullback diagram with the pullback diagram (5.3) where X has been
replaced with Y gives us the result.

(2) Let U W S�! S denote the forgetful functor. Let IKan 2 S denote the colimit of
the constant diagram f�gW I ! S (see Remark 2.10). Taking the colimit of the pushout
squares witnessing that f satisfies F.i/–base change for all i , we get a pushout square
in C

IKan˝ c //

��

IKan˝ d

��

colimS.UF /˝ c // colimS.UF /˝ d

since colimits commute with pushouts and tensors. Now, recall that U.colimS�F / is
computed by the pushout square in S

IKan //

��

�

��

colimS.UF / // U.colimS�.F //

The above recipe for colimits in S� is a classical result, but we quickly sketch an
1–categorical proof. The universal property of pushouts implies that the inclusion
S� ! S�

1

from pointed spaces to arrows of spaces has a left adjoint L that takes
X ! Y to its pushout along X ! �. Colimits in S�

1

are computed pointwise, and
colimits in S� are computed by applying L to their inclusion into S�

1

[22, 5.2.7.5].
This gives the result.

Applying �˝f to that square, we get the commutative cube

IKan˝ c //

��

**

IKan˝ d

��

**c //

��

d

��

colimS.UF /˝ c //

**

colimS.UF /˝ d

**

U.colimS�F /˝ c
// U.colimS�F /˝ d
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The back face and the left and right sides are pushouts; hence, the front side is a pushout
square as well by the pasting law [22, 4.4.2.1], proving the result.

(3) Note that X ^Y is the cofiber of X _Y !X �Y, so the result follows from the
previous points.

Remark 5.6 Base change is not stable under pullbacks in general. Suppose it were,
and let f be a map that satisfies X–base change for some given connected pointed
space X. Then f would satisfy �X D ��X�–base change. In Example 7.11 we will
give an example of an f that satisfies X–base change for all connected pointed X but
does not satisfy S0–base change. Now take X to be RP1 D BZ=2; we would have
that f satisfies �BZ=2' S0–base change, getting a contradiction.

The following theorem is an application of the previous proposition:

Theorem 5.7 Let f W c!d be a map in a presentable1–category. Let n�0. Suppose
f satisfies Sn–base change. Then f satisfies X–base change for any .n�1/–connected
pointed space X.2

Proof Let X be a pointed space; it is the sequential colimit in S of its skeleta
Xi ! XiC1. Suppose X is .n�1/–connected. It suffices to prove that f satisfies
Xi–base change for all i .

For 0 � i � n� 1 (there are no such i if nD 0 and in this case this step is skipped),
since X is .n�1/–connected, we can assume that Xi is a point, so f satisfies Xi–base
change for these values.

For i D n, using the above assumption we have that Xn is a wedge of copies of Sn, so
f satisfies Xn–base change.

For i � n we do induction. We have that XiC1 is the pushout of
W
� 

W
S i !Xi .

It now suffices to observe that f satisfies S i–base change. Indeed, this follows by
induction on i � n, by noting that S iC1 is the pushout of � S i !�.

See Corollaries 7.2 and 7.18 for concrete applications of Theorem 5.7.

6 The Thom isomorphism is not S 0–base change

A map g W c! d satisfies S0–base change if and only if gt id W c t d ! d t d is an
equivalence. Note that this is a stronger condition than c t d ' d t d : for an example

2Recall that all pointed spaces are .�1/–connected, which just means nonempty.
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in the category of sets, no function g W f0g !N is such that gt id is an equivalence,
but f0g tN 'N tN.

In this section, we show that the Thom isomorphism is another example of this phenom-
enon. LetG be anE1–group, letR be anE1–ring spectrum and let f WG!Pic.R/ be
anE1–map. The Thom isomorphism theorem of Example 4.21 gives us an equivalence
RŒG�^RMf 'Mf ^RMf, which suggests the possibility that there exists a map
RŒG�!Mf of E1–R–algebras that satisfies S0–base change. We will show that this
is not possible for maps of the form M.h/ W RŒG�!Mf, under a certain naturality
assumption for the maps h W G ! G, and with the hypotheses that f is nontorsion
and that the multiplication of Mf is not an equivalence (this holds for example for
Mf DMUP ; see Example 6.17).

The gist of the proof is Corollary 6.10. It is a statement about E1–groups; it says
that any natural collection of endomorphisms over a fixed group P (in the sense of
Definition 6.1; we will then take P D Pic.R/) has to be of the form g 7! gn for a
fixed integer n. The statement about the Thom isomorphism not being S0–base change,
Theorem 6.16, follows from general properties of Thom spectra.

The proof of Theorem 6.16 is similar in spirit to the proof of the Thom isomorphism
of Example 4.21, in the sense that both of them reduce to a statement about E1–
groups; in the Thom isomorphism case, the key observation was that the shear map
G �G!G �G, .x; y/ 7! .xy; y/ is an equivalence.

Definition 6.1 Let P be an object in an1–category C. Let � W C=P ! C be the projec-
tion functor. A natural collection of endomorphisms over P is a natural transformation
�) � . We assemble these into the space

NatColP .C/ WDMapFun.C=P ;C/.�; �/:

Remark 6.2 If H is a natural collection of endomorphisms over P, then H takes an
arrow f WG! P and associates to it an endomorphism H.f / WG!G; moreover, if
g WG0!G, then naturality of H means that the diagram

G0
g
//

H.f ıg/

��

G

H.f /

��

G0
g
// G

commutes.
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Let us give a class of examples of natural collections of endomorphisms over an
E1–group P. We first need a definition and a lemma.

Definition 6.3 Let G be an E1–group and n 2 Z. We define a map of E1–groups

Pn WG!G

by
Pn D

�
G �
�!Gn

�
�!G if n� 0;

G �
�!G�n

�
�!G i

�!G if n < 0;

where � is the multiplication map and i is the inverse map.

Lemma 6.4 Let n 2 Z. There exists a natural transformation

GrpE1.S/ GrpE1.S/

id

id

Pn

with components given by the Pn above. Moreover , Pn ' Pm if and only if mD n.

Proof Let n 2 Z. Since � is a natural transformation, it suffices to observe that
the multiplication map and the inverse map are natural transformations. For the
multiplication, take n� 0 and observe there is a functor

Fin�! Fun.MonE1.S/;MonE1.S//

that takes the active map hni!h1i to the natural transformation � W .�/n) idMonE1 .S/.
Indeed, by adjunction such a functor corresponds to a functor

Fin� �MonE1.S/!MonE1.S/:

Replacing the first MonE1.S/ by the equivalent MonE1.MonE1.S// [24, 3.2.4.5 and
2.4.2.5], this functor is precisely the evaluation functor; recall that MonE1.MonE1.S//
is the full subcategory of special �–objects in Fun.Fin�;MonE1.S//.

To see that inversion constitutes a natural transformation idGrpE1 .S/
) idGrpE1 .S/

,
consider the shear map s W G �G! G �G. It is defined as the projection �1 on the
first factor and multiplication on the second. We have just seen that multiplication
is natural; the projection is analogously proven to be natural, by considering the
corresponding inert map h2i ! h1i. Therefore, the shear map is the component of a
natural transformation. Since G is an E1–group, the shear map is invertible, thus the
inverse s�1 is the component of a natural transformation. Now, the inversion i is the
composition G 'G�� id��0

���!G�G
s�1
��!G�G

�2
�!G; all of these are components

of natural transformations.
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Finally, one quickly proves that Pn ' Pm if and only if mD n by considering cyclic
groups.

Now, if we fix an E1–group P, we can whisker the natural transformation Pn W id) id
with � W GrpE1.S/=P ! GrpE1.S/ to get a natural collection of endomorphisms
over P, which we also denote by Pn. Our goal now is to show that these Pn are in fact
the only examples of natural collections of endomorphisms over P. We will prove that
in Corollary 6.10, but first we need a couple of results.

Suppose C is a pointed presentable1–category. If 0 is a zero object of C, we have a
trivial Kan fibration C=0! C, so we can choose a section C! C=0 of it. Composing
it with the functor C=0 ! C=P induced by the zero map 0 ! P, we get a functor
Z W C! C=P which functorially chooses zero maps over P.

We have two functors
Fun.C;C/

��

Z�
��!��! Fun.C=P ;C/:

Note that � ıZ ' id, so Z� ı�� ' id. Taking appropriate mapping spaces, we get
two maps

.6.5/ Nat.idC; idC/
��

Z�
��!��! NatColP .C/

showing Nat.idC; idC/ as a retract of NatColP .C/. Here Nat.idC; idC/ denotes the
mapping space MapFun.C;C/.idC; idC/. We will now show, that under an additional
condition of semiadditivity, the maps in (6.5) are inverse homotopy equivalences.

Proposition 6.6 If C is a semiadditive presentable1–category, then

Nat.idC; idC/
��

Z�
��!��! NatColP .C/

are inverse homotopy equivalences for all P 2 C.

Proof We already observed thatZ�ı��' id, so �� is an inclusion of path components
(ie a fully faithful functor of1–groupoids). We only need to prove it is also a surjection
on �0 (ie an essentially surjective functor of 1–groupoids). More concretely: Let
H 2NatColP .C/. In particular, H W C=P ��1! C. We want to prove that the functor

HZ� W C=P ��
1 ��id
���! C��1 Z�id

���! C=P ��
1 H
�! C

is equivalent to H.

We will achieve this by constructing an equivalence H.f / ��!HZ�.f / natural in
f 2 C=P . To make the argument more transparent, we first construct this equivalence
for all f, and then we argue it is natural.

Algebraic & Geometric Topology, Volume 22 (2022)



Thom spectra, higher THH and tensors in1–categories 1885

Step 1: construction of an equivalence H.f / ��! HZ�.f / D H.0/ We first
introduce some notation. Let f; g W G! P. We let f zC g denote the universal map
G˚G! P induced by f and g; we can express it as the composition

G˚G
f˚g
���! P ˚P r

�! P;

where r W P ˚ P ! P denotes the fold map. Functorially, the biproduct functor
˚W C�C! C induces a functor ˚W C=P �C=P ! C=P˚P and the fold map induces
r� W C=P˚P ! C=P . We define zC as the composition r� ı˚W C=P �C=P ! C=P .

Let �0 WG!G˚G denote the coproduct inclusion into the first summand. By naturality
of H, the diagram

G
�0
//

Hf

��

G˚G

H.f zC0/
��

G
�0
// G˚G

commutes, since �0ı.f zC0/'f. Using �1, we similarly conclude thatH.f zC0/ı�1'
�1 ıH.0/. This proves that H.f zC 0/'Hf ˚H0.

We have just used that ˚ is the coproduct; we will now use that ˚ is the product as
well. Let � WG!G˚G denote the diagonal map. We have the commutative diagram

.6.7/

G G˚G G

G G˚G G

�1�

Hf Hf˚H0H.f zC0/

� �1

H0

id

id

where the square on the left commutes by naturality of H. Here the left arrow is H.f /
because � ı .f zC 0/' f. This constructs the equivalence Hf 'H0.

Step 2: naturality of the equivalence We will now prove the equivalence just
constructed is natural in f, by exhibiting the horizontal maps in (6.7) as components of
natural transformations. The naturality of the top and bottom parts will be clear from
the construction, so we have to prove naturality of the left and right squares.
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Step 2a: the left square Informally, naturality follows from applying H to the natural
commutative triangle

G
�
//

f

��

G˚G

f zC0{{

P

More carefully phrased, we have a natural transformation � from the identity of C=P
to the functor � zC 0; the latter functor is the composition

C=P
�
�! C=P �C=P

id�Z�
���! C=P �C=P

˚
�! C=P˚P

r�
�! C=P :

We can now compose � with H in the sense of the whiskering

C=P ��
1 C=P ��

1 C

id�id

.�zC0/�id

H
��id

getting a natural transformation H )H.� zC 0/.

Step 2b: natural equivalence betweenH.� zC0/ andH˚HZ� We will now prove
the naturality of the identification of H.f zC 0/ as a map that satisfies the universal
property of the coproduct of the maps �0ıH.f / WG!G˚G and �1ıH.0/ WG!G˚G.

We have the natural commutative triangle

G
�0
//

f

��

G˚G

f zC0{{

P

More formally, the �0 above is the component of a natural transformation �0 W idC=P )
� zC 0; compose it with H.

We also have the natural commutative triangle

G
�1
//

0

��

G˚G

f zC0{{

P

More formally, the �1 above is the component of a natural transformation �1 WZ�)
� zC 0. Now compose it with H.
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This proves that we can regard H.� zC 0/ as a representative for H ˚HZ� , which is
the composition

C=P ��
1 �
�! C=P ��

1
�C=P ��

1 H�HZ�
������! C�C ˚�! C:

Step 2c: the right square Making a minor abuse of notation for �1, we have a natural
transformation �1 from ˚W C�C! C to �1 W C�C! C, which, when whiskered with
the functor

C=P ��
1 �
�! C=P ��

1
�C=P ��

1 H�HZ�
������! C�C;

gives the desired natural transformation H ˚HZ�)HZ� .

We will now prove that Nat.idGrpE1 .S/
; idGrpE1 .S/

/ is equivalent to End.S/. First, we
need a lemma.

Lemma 6.8 Let F W D ! C be a functor of 1–categories. There is a homotopy
equivalence

Nat.F; F /' FunF .D;Fun.BN;C//�:

Here the latter is the maximal subspace of the full subcategory of Fun.D;Fun.BN;C//

of the functors that make the diagram

D Fun.BN;C/

C

F p

commute , where p WFun.BN;C/!Fun.�;C/'C is induced by the inclusion �!BN.

In particular ,

NatColP .C/' Fun�.C=P ;Fun.BN;C//; Nat.idC; idC/' FunidC.C;Fun.BN;C//:

Proof Note that a natural transformation F ) F is a functor ˛ WD! C�
1

such that

f0g�.˛/; f1g�.˛/ WD! C

are equivalent to F. Here, f0g; f1gW�0!�1 are the inclusion maps.

By the universal property of the pullback, this means ˛ is equivalently a functor
˛ WD! C�

1

�
C@�

1 C�
0

making the diagram

D C�
1

�
C@�

1 C�
0

C

F

˛

�2
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commute. Note that we have the pushout diagram of1–categories

@�1 �1

�0 BN

which implies that C�
1

�
C@�

1 C�
0

' Fun.BN;C/, and the conclusion follows.

Note that the fiber of p W Fun.BN;C/! C over c 2 C is the space of endomorphisms
End.c/.

Proposition 6.9 The evaluation map

evS WNat.idGrpE1 .S/
; idGrpE1 .S/

/! End.S/

is an equivalence of spaces. Here End.S/DMapGrpE1 .S/
.S;S/.

Proof Note that

Funid
�
GrpE1.S/;Fun.BN;GrpE1.S//

��
D FunLid

�
GrpE1.S/;Fun.BN;GrpE1.S//

��
;

since, as p creates colimits, every functor in the left-hand side preserves colimits.
Combining this with Lemma 6.8, we obtain an equivalence

Nat.id; id/' FunLid
�
GrpE1.S/;Fun.BN;GrpE1.S//

��
:

Now, we have a commutative diagram

FunL
�
GrpE1.S/;Fun.BN;GrpE1.S//

�
Fun.BN;GrpE1.S//

FunL.GrpE1.S/;GrpE1.S// GrpE1.S/

�

evS

p� p

�

evS

By Proposition 2.29, the horizontal maps are equivalences; Fun.BN;GrpE1.S// is
semiadditive since GrpE1.S/ is [14, Example 2.2]. We consider idGrpE1 .S/

in the
bottom left corner, which maps to S 2 GrpE1.S/ by evS. Taking fibers vertically and
taking maximal subspaces, we conclude that

evS WNat.id; id/! End.S/

is an equivalence.
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Corollary 6.10 Let P be an E1–group. There is a homotopy equivalence

NatColP .GrpE1.S//'�
1S:

In particular ,
�0
�
NatColP .GrpE1.S//

�
Š Z;

and thus every natural collection of endomorphisms over P is equivalent to Pn for
some n 2 Z.

Proof By Propositions 6.6 and 6.9, we have

NatColP .GrpE1.S//' End.S/:

Now note that

End.S/DMapGrpE1 .S/
.S;S/'MapGrpE1 .S/

.†1C .�/;S/'MapS.�; �
1S/'�1S:

By Lemma 6.4, the Pn for n 2 Z are pairwise nonequivalent natural collections of
endomorphisms over P, so this proves the last statement.

Let us now use the above to prove that the Thom isomorphism is generally not given
by S0–base change.

Definition 6.11 We say a map of E1–groups f W G ! P is torsion if there exists
a natural number n > 0 such that f ıPn W G! P is trivial. Otherwise, we say it is
nontorsion.

Remark 6.12 Let f WG!H be a map of E1–groups. If there exists a k � 0 such
that the map of groups

�k.f / W �k.G/! �k.H/

is nontorsion, then f is nontorsion.

Example 6.13 (1) A map of groups f W G!H is nontorsion if and only if it is
nontorsion in the classical group-theoretical sense.

(2) By the previous remark, if a map of groups f WG!H is nontorsion then the
induced map

Bf W BG! BH

is nontorsion as well.
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Proposition 6.14 Let f WG! P be a map of E1–groups that is nontorsion. Let H
be a natural collection of endomorphisms over P such that the diagram

G fRg

((
H.f /

��
P

G f

66

commutes , where R denotes the unit of P. ThenH.f /'fegWG!G, where e denotes
the unit of G.

Proof By Corollary 6.10, H.f /' Pn, which implies that f ıPn' f ıH.f /' fRg,
which is only possible if nD 0 since f is nontorsion, giving us the desired result.

We will now apply Proposition 6.14 to the Thom isomorphism theorem. We first need
a definition.

Definition 6.15 Let R be an E1–ring spectrum. An E1–R–algebra A is solid if the
multiplication map A^R A! A is an equivalence.

Since multiplying by the unit is equivalent to the identity, by the 2-out-of-3 property
for equivalences we conclude that A is solid if and only if any coproduct inclusion
A! A^R A is an equivalence.

Theorem 6.16 Let R be an E1–ring spectrum. Let H be a natural collection of
endomorphisms over Pic.R/. Suppose that f ıH.f /' fRg for all f W G! Pic.R/,
and additionally the induced map M.H.f // WRŒG�!M.f / satisfies S0–base change.
Then , for any nontorsion f WG! Pic.R/, Mf is a solid E1–R–algebra.

Proof Let f W G ! Pic.R/ be a nontorsion map. By the previous proposition, the
map H.f / WG!G is trivial.

By the results of Section 4, we have equivalences

Mf ^RMf 'M.G �G
f �f
���! Pic.R/�Pic.R/ �

�! Pic.R//

'M.G �G
�
�!G

f
�! Pic.R//;

where the last step follows from f being a map of E1–monoids. Similarly, we have
equivalences

RŒG�^RMf 'M.G
fRg
�! Pic.R//^RM.G

f
�! Pic.R//

'M.G �G
fRg�f
���! Pic.R/�Pic.R/ �

�! Pic.R//

'M.G �G
�2
�!G

f
�! Pic.R//:
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Since H.f /' feg and M.H.f // satisfies S0–base change, we get the commutative
diagram

RŒG�^RMf Mf ^RMf

M.G �G
�2
�!G

f
�! Pic.R// M.G �G

�
�!G

f
�! Pic.R//

'

M.feg/^Rid
�

'

M.feg�id/

The map feg � id W G � G ! G � G factors as feg � id D �2�2. Thus, we get the
commutative diagram of E1–monoids over Pic.R/

G G �G G G �G

G

Pic.R/

�2

idG

idG

�2

�2

feg�idG
idG

�2

�

f

Applying the Thom construction to this diagram, we get

Mf RŒG�^RMf Mf Mf ^RMf
M.�2/

idMf

M.�2/

'

M.feg�id/

M.�2/

As M.feg � id/ is an equivalence, there exists an equivalence K W Mf ^R Mf !
RŒG�^RMf such thatM.feg�id/ıK' idMf ^RMf , which gives us the commutative
diagram

Mf Mf ^RMf Mf Mf ^RMf
M.�2/

idMf

M.�2/K

idMf^RMf

M.�2/

whence we conclude that M.�2/ WMf !Mf ^RMf is an equivalence.

Example 6.17 Recall that MUP DM.BU �Z! Pic.S//. The map of E1–groups
BU�Z!Pic.S/ is nontorsion as the induced map ZD�0.BU�Z/!�0.Pic.S//DZ

is just the identity map.
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In order to prove that the Thom isomorphism MUP ^MUP 'MUP ^SŒBU �Z� is
not given by S0–base change for a map M.H.f // as in Theorem 6.16, it suffices to
prove that MUP is not a solid E1–ring spectrum. If MUP were solid, then its rational
homology H�.MUP;Q/ would be a solid Q–algebra, as rational homology satisfies
the Künneth formula. This means that the inclusion map of Q–algebras

H�.MUP;Q/
�1
�!H�.MUP;Q/˝QH�.MUP;Q/

is an isomorphism, which is only possible if the dimension of H�.MUP;Q/ is 0
or 1. Indeed, if ˇ D fxig is a basis for H�.MUP;Q/, then ˇ˝ˇ D fxi ˝ xj gi;j is a
basis for H�.MUP;Q/˝QH�.MUP;Q/ and an isomorphism necessitates a bijection
ˇ Š�! ˇ˝ˇ, xi 7! xi ˝ 1, which implies jˇj D 0; 1. However, this clearly does not
hold as H�.MUP;Q/ D ��.MUP /˝Q is a polynomial algebra on infinitely many
generators.

7 Base change for maps of E1–ring spectra

Following up on Section 5, where we introduced the notion of X–base change, we now
specialize to the case where CD CAlg.Sp/ (similarly, we could take CAlg.ModR/ for
R an E1–ring spectrum), in which case for f W A! B the map (5.2) becomes

.X ˝A/^AB!X ˝B:

We will now consider conditions on f which guarantee that the map displayed above is
an equivalence, ie that f satisfies X–base change, for some class of pointed spaces X.
Note, for example, that it is unlikely to hold for nonconnected X : a map A ! B

satisfies S0–base change if and only if A^B! B ^B is an equivalence (a concrete
counterexample is given in Example 7.11). We first look at the case where f is an étale
map. Then we look at the case where B is a solid E1–A–algebra. As a particular case,
we look at inversion of a homotopy element. Finally, we consider Galois extensions.

7.1 Étale maps

Following [24, 7.5.0.1/2], a map of (ordinary) commutative rings A! B is étale if
B is finitely presented as an A–algebra, B is flat as an A–module, and there exists an
idempotent element e 2B˝AB such that the multiplication map B˝AB!B induces
an isomorphism .B˝AB/Œe

�1�ŠB. For the next definition, we follow the terminology
of [24, 7.5.0.4] for étale maps, and that of [28] for THH–étale and TAQ–étale maps.
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Note that in [34], the latter two are called “formally symmetrically étale” and “formally
étale” maps, respectively.

Definition 7.1 Let f W A! B be a map of E1–ring spectra. We say it is

(1) étale if �0.A/! �0.B/ is étale and B is flat as an A–module, ie the natural
map

��.A/˝�0.A/ �0.B/! ��.B/

is an isomorphism;

(2) THH–étale if the natural map B! THHA.B/ is an equivalence;

(3) TAQ–étale if the E1–cotangent complex LB=A is contractible.

The natural map A! THHA.B/D S1˝AB (where ˝A denotes the tensor of CAlgA
over spaces) comes from the inclusion of a basepoint into S1. As noted in [27, Section 5],
this map is an equivalence if and only if A! B is a 0–cotruncated map in CAlg.Sp/,
meaning that the map of spaces f � W MapCAlg.Sp/.B; C / ! MapCAlg.Sp/.A; C / is a
covering space for all C 2 CAlg.Sp/, ie it has discrete homotopy fibers over any
basepoint. This is easily proven using the tensor–internal hom adjunction of CAlg.Sp/.
The cotangent complex in the1–categorical context is defined in [24, Section 7.3].

Any étale map is THH–étale [24, 7.5.4.6] and any THH–étale map is TAQ–étale
[34, Lemma 9.4.4]. Note that if A and B are connective and satisfy some finiteness
hypothesis (such as B being finitely presented as an A–algebra), then a TAQ–étale
map is étale [23, Lemma 8.9] and thus in this case all three étaleness conditions are
equivalent.

Mathew has proven that if A ! B is étale, then it satisfies S1–base change [27,
Theorem 1.3]. In light of Theorem 5.7, we get:

Corollary 7.2 Let X be a connected pointed space. Let f WA!B be an étale map of
E1–ring spectra. Then f satisfies X–base change.

Note that, in [27, Proposition 5.2], Mathew also proved that if A! B is THH–étale,
then it satisfies X–base change for all simply connected pointed spaces X. He stated it
for faithful Galois extensions (see Section 7.3), but his proof only uses THH–étaleness,
which is satisfied for Galois extensions [34, Lemma 9.2.6].
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7.2 Solidity and inversion of a homotopy element

Let R be an E1–ring spectrum and x 2 �0.R/. Lurie proves [24, 7.5.0.6/7] that there
exists anE1–ring spectrumRŒx�1�with an étale map ofE1–ring spectraR!RŒx�1�

which realizes the algebraic localization morphism �0.R/! �0.R/Œx
�1�.

There are interesting instances where we want to invert a homotopy element x that is
not in degree 0, as we shall see below. In [25, Proposition 4.3.17], Lurie constructs
RŒx�1� for x 2 �n.R/ with n 2 Z, and he gives the following universal property
for the E1–R–algebra RŒx�1�. Consider x as a map †nR! R in ModR. For any
A 2 CAlgR,

MapCAlgR.RŒx
�1�; A/

'

�
contractible if x induces an equivalence A^R†nR ��! A^R R;

∅ otherwise.

Note that if A 2 CAlgR, then the unit R! A allows us to consider x as an element
of ��.A/, and thus to consider AŒx�1�.

Lemma 7.3 Let R be an E1–ring spectrum , x 2 ��.R/ and A 2 CAlgR. Then the
canonical pushout map

A^R RŒx
�1�! AŒx�1�

is an equivalence of E1–A–algebras.

Proof Let B 2CAlgA. Note that A^RRŒx�1� is in CAlgA as the extension of scalars
via R!A of RŒx�1�, so MapCAlgA.A^RRŒx

�1�; B/ is contractible if B ^R†nR!
B ^R R is an equivalence, and empty otherwise. The space MapCAlgA.AŒx

�1�; B/ is
contractible or empty under the same conditions, so the result follows.

Unfortunately, when x is not in degree 0 the map R!RŒx�1�may not be étale; indeed,
it may not be flat. For example, if R is connective then any flat R–module is necessarily
connective, as follows from the definition [24, 7.2.2.11]. To remedy this, we will use
the notion of solidity, which we introduced in Definition 6.15.

Example 7.4 By Lemma 7.3, if R is an E1–ring spectrum and x 2 ��.R/, then
RŒx�1� is a solid E1–R–algebra, since RŒx�1�Œx�1�'RŒx�1�.

Theorem 7.5 Let R be an E1–ring spectrum and A be a solid E1–R–algebra. Then
the unit R! A satisfies X–base change for any connected pointed space X.
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Proof By Theorem 5.7, it suffices to prove that f satisfies S1–base change, namely
that the pushout map

.7.6/ .S1˝R/^R A! S1˝A

is an equivalence. Write S1 as the pushout of �  S0 ! �. Since � ˝ R pre-
serves pushouts, we recover the classical formula for topological Hochschild homology
S1˝R'R^R^RR. Using this equivalence for R and for A in (7.6), we see that we
want to prove that the pushout map

.R^R^R R/^R A! A^A^AA

is an equivalence. The left-hand side simplifies to R^R^R A.

Consider the commutative diagram

R R //oo R

R

OO

��

Soo

OO

��

// R

OO

��

A Aoo // A

Comparing pushouts computed horizontally or vertically, we getR^R^RA'A^R^AA.
We are using [22, 5.5.2.3].

Similarly, consider the commutative diagram

A A //oo A

R

OO

��

S //oo

��

OO

A

OO

��

A Aoo // A

Comparing pushouts computed horizontally or vertically, we get

A^R^AA' .A^R A/^A^AA' A^A^AA;

where the second equivalence comes from the solidity of A. This finishes the proof.

As a direct corollary of Theorem 7.5, Example 7.4 and Lemma 7.3, we obtain:
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Corollary 7.7 Let X be a connected pointed space. Let R be an E1–ring spectrum
and x 2 ��.R/. Then R!RŒx�1� satisfies X–base change , ie the canonical map

.X ˝R/^R RŒx
�1�!X ˝RŒx�1�

is an equivalence , so we get an equivalence

.X ˝R/Œx�1�'X ˝RŒx�1�:

Remark 7.8 Let R and T be E1–ring spectra. Let x 2 ��.R/. Applying Lemma 7.3
to ADR^T, where R^T is an E1–R–algebra via the canonical map R!R^T,
we get an equivalence of E1–R–algebras RŒx�1�^T ' .R^T /Œx�1�.

Putting Corollary 7.7, Theorem 4.13 and Remark 7.8 together, we deduce:

Corollary 7.9 Let G be an E1–group , R be an E1–ring spectrum and f W G !
Pic.R/ be an E1–map. Let x 2 ��.Mf /. Let X be a connected pointed space. Then

X ˝R ..Mf /Œx
�1�/' .Mf /Œx�1�^SŒX ˇG�

as E1–R–algebras.

Taking RD S and the Thom spectrum to be trivial, we get:

Corollary 7.10 Let G be an E1–group and x 2 ��.SŒG�/. Let X be a connected
pointed space. Then

X ˝ .SŒG�Œx�1�/' SŒG�Œx�1�^SŒX ˇG�

as E1–ring spectra.

Example 7.11 Let KU denote the periodic complex topological K–theory E1–ring
spectrum. Snaith [37; 38] proved that KU ' SŒK.Z; 2/�Œx�1� as homotopy commu-
tative ring spectra (ie commutative monoids in the homotopy category of spectra),
where x 2 �2SŒK.Z; 2/� is induced by the fundamental class in K.Z; 2/. See [25,
Theorem 6.5.1] for one improvement of such an equivalence to an equivalence of
E1–ring spectra. Corollary 7.10 gives an equivalence of E1–ring spectra

X ˝KU 'KU ^SŒX ˇK.Z; 2/�

for any connected pointed space X. In [39], the second author worked in a model-
categorical setting and got that description of X ˝KU when X is an n–sphere or
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an n–torus with n � 1 (an inductive proof similar to the one of Theorem 5.7 would
have allowed the author to obtain the above formula for X ˝KU in that same setting).
A different description as a free E1–KU –algebra was also given; that description
involves properties special to KU which do not generalize to other Thom spectra with
a homotopy element inverted, so they are not recovered here.

Note that the formula above proves that �˝KU is a stable invariant, in the sense of
Remarks 3.3 and 4.17. This was observed in [20, Theorem 5.4].

To conclude this example, let us remark that the map SŒK.Z; 2/�!KU which inverts x
does not satisfy S0–base change, even though, by Corollary 7.7, it satisfies X–base
change for connectedX . Indeed, the spectra S0˝KU 'KU^KU andKU^K.Z; 2/C
have different homotopy groups; see eg [40, Theorem 17.34 and Proposition 16.30].
This is the example used in Remark 5.6 to prove that base change is not closed under
pullbacks of spaces.

Example 7.12 In [42, Section 1.2], Westerland gives a higher analogue of Snaith’s
theorem. First, recall that if p is a prime and En denotes the nth Morava E–theory
spectrum at the prime p, thenE1'KUp , the p–completed periodic complexK–theory
spectrum. The extended Morava stabilizer group Gn acts on En, and EhGn

n 'LK.n/S,
the K.n/–local sphere; here K.n/ denotes the nth Morava K–theory at the prime p.
The extended Morava stabilizer group has a subgroup, denoted by SG˙n by Westerland;
he establishes an equivalence of E1–ring spectra

E
hSG˙n
n ' .LK.n/SŒK.Zp; nC 1/�/Œ�

�1
n �;

where �n is a higher analogue of the Bott element and p is odd. Corollary 7.7 gives a
first modest step towards the calculation ofX˝EhSG˙n

n , whereX is a connected pointed
space, ie its calculation reduces to the determination of X ˝LK.n/SŒK.Zp; nC 1/�.

Example 7.13 Let MUP denote the periodic complex bordism E1–ring spectrum.
In [38], Snaith proved thatMUP 'SŒBU �Œx�1� as homotopy commutative ring spectra,
where x 2 �2SŒBU �. This suggests a computation of X ˝MUP for X a connected
pointed space using Corollary 7.10, but it turns out that one cannot proceed as straight-
forwardly as in Example 7.11 because this equivalence of homotopy commutative ring
spectra cannot be lifted to an equivalence of E1–ring spectra, though it can be lifted
to an equivalence of E2–ring spectra [17]. Of course, Corollary 7.10 does give an
equivalence of E1–ring spectra

X ˝SŒBU �Œx�1�' SŒBU �Œx�1�^SŒX ˇBU �:
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Since THH is actually an invariant of E1–ring spectra and MUP and SŒBU �Œx�1� are
equivalent as E1–ring spectra, then, as BBU ' SU, we get an equivalence of spectra

THH.MUP /'MUP ^†1C .SU/:

In Example 4.24 we proved that THH.MUP / 'MUP ^ SŒU � as E1–ring spectra.
Putting these two results together, we conclude that there is an equivalence of spectra

MUP ^SUC 'MUP ^UC:

In other words, the (unreduced) MUP –homology groups of SU and of U are abstractly
isomorphic.

In fact, one can compute these groups. To compute MU�.U /, one can use the Atiyah–
Hirzebruch spectral sequenceE2�;�D zH�.U; ��.MU //)eMU�.U /. Since ��.MU / is
free over Z, the E2–page is zH�.U /˝Z ��.MU /Š zE.y1; y3; : : : /˝ZP.x2; x4; : : : /,
where jyi j D i and jxj j D j ; here zE denotes a nonunital exterior algebra over Z

and P denotes a polynomial algebra over Z. Thus, the E2–page has a checkerboard
pattern and the spectral sequence collapses at that page. We get that MU�.U / Š
eMU�.U /˚MU� Š E.y1; y3; : : : /˝Z P.x2; x4; : : : /, where E denotes a (unital)
exterior algebra, and, therefore,

MUP�.U /ŠE.y1; y3; : : : /˝Z P.x2; x4; : : : /Œx
�1
2 �:

The description of MUP�.SU/ is the same but without the y1 generator. By inspection,
both MUP�.U / and MUP�.SU/ have a direct sum of countably many copies of Z in
each degree, so they are indeed abstractly isomorphic.

7.3 Galois extensions of E1–ring spectra

Rognes [34] generalized the theory of Galois extensions of commutative rings to
the framework of E1–ring spectra. This notion has numerous applications, with a
considerable source of examples coming from chromatic homotopy theory. In what
follows, we will establish base change for a large class of Galois extensions.

Let G be a topological group. Recall from the discussion before Proposition 2.12 that
the1–category of objects of C with G–action is given by Fun.BG;C/. Whenever X
is a space and A is an E1–ring spectrum with G–action, X ˝A is also an E1–ring
spectrum with G–action.
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Definition 7.14 Let f W A! B be a map of E1–ring spectra and G be a finite group.
Suppose, in addition, that B has a G–action given by a functor B W BG! CAlgA. The
map f is a G–Galois extension if:

(1) The canonical map A! BhG is an equivalence.

(2) The map of E1–A–algebras B ^A B !
Q
G B induced by the morphisms

fB ^AB
id^g
��! B ^AB

�
�! Bgg2G is an equivalence.

The map f is said to be a faithful G–Galois extension if the functor �^AB WModA!
ModB is conservative, ie reflects equivalences.

The first condition is analogous to taking fixed fields in classical Galois theory, while
the second corresponds to the requirement of the extension being unramified.

Mathew proved that when A! B is a faithful Galois extension, it satisfies descent:

Proposition 7.15 [27, Corollary 4.2 and (6)] Let A! B be a faithful G–Galois
extension. There is an adjoint equivalence of symmetric monoidal 1–categories

ModB.Fun.BG;Sp//
.�/hG

�^AB
���!���! ModA:

Moreover , it yields an equivalence of 1–categories

Fun.BG;CAlg.Sp//B= ' CAlg
�
ModB.Fun.BG;Sp//

�
' CAlgA:

Remark 7.16 The construction �^A B gives, a priori, a functor from ModA (resp.
CAlgA) to ModB (resp. CAlgB ). Since �^AB is functorial in B, we can thus see this
as a functor to the corresponding category of G–equivariant objects.

Next, we remark that, in the context of faithful G–Galois extensions, the X–base
change property and the compatibility of homotopy fixed points with tensoring are
equivalent statements. This is an adaptation of [27, Proposition 4.3], which covers the
case X D S1; the same proof gives the following:

Proposition 7.17 Let X be a pointed space and A!B a faithful G–Galois extension.
The following are equivalent :

(1) A!B satisfiesX–base change , ie the comparison map .X˝A/^AB!X˝B

is an equivalence of E1–B–algebras ,

(2) X ˝A!X ˝B is a faithful G–Galois extension ,

(3) The map X ˝ A ' ..X ˝ A/ ^A B/
hG ! .X ˝ B/hG is an equivalence of

E1–A–algebras.
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It is known that being a faithful G–Galois extension it is not sufficient to guarantee
X–base change; see [27, Section 5] for an explicit example whereXDS1. Nonetheless,
Mathew shows in his Theorem 4.5 that S1–base change does hold for faithfulG–Galois
extensions satisfying an additional condition on rational algebraic K–theory. In light of
Theorem 5.7, we can extend his result to get X–base change for all connected pointed
spaces X. In the following, Lf

n denotes Miller’s finite Ln–localization [31].

Corollary 7.18 Let f WA!B be a faithful G–Galois extension such thatK0.f /˝Q

is surjective. Suppose that the p–localization A.p/ is Lf
n–local for some n (depending

on p) for all primes p. Then f satisfies X–base change for all connected pointed
spaces X.

In particular, the other two equivalent conditions of Proposition 7.17 are satisfied as
well.

Remark 7.19 The surjectivity condition on K–theory is essential as it guarantees
that the comparison map on homotopy fixed points is an Lf

n–local equivalence [11,
Theorem 5.6]. The additional assumption on A is there only so that A! B is already
a map of Lf

n–local spectra.

Example 7.20 As pointed out in [27, Example 4.6], many Galois extensions satisfy
the conditions of Corollary 7.18, including:

(1) The C2–Galois extension given by the complexification KO!KU.

(2) The Cp�1–Galois extension given by the p–adic completion of the inclusion of
the p–local Adams summand L!KU.p/.

(3) The G–Galois extension EhGn !En, where En is nth Morava E–theory and G
is a finite subgroup of the extended Morava stabilizer group,

(4) Any Galois extension of the different flavors of topological modular forms
TMFŒ1=n�, Tmf0.n/, or Tmf1.n/.
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