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Using profinite Galois descent, we compute the Brauer group of the K(1)-local category relative to
Morava E-theory. At odd primes this group is generated by a cyclic algebra formed using any primitive
(p − 1)st root of unity, but at the prime two is a group of order 32 with nontrivial extensions; we give
explicit descriptions of the generators, and consider their images in the Brauer group of KO. Along the
way, we compute the relative Brauer group of completed KO, using the étale locally trivial Brauer group
of Antieau, Meier and Stojanoska.

1 Introduction
The classification of central simple algebras over a field is a classical question in number theory, and by
the Wedderburn theorem any such algebra is a matrix algebra over some division algebra, determined
up to isomorphism. If one identifies those algebras that arise as matrix algebras over the same division
ring, then tensor product defines a group structure on the resulting set of equivalence classes. This
relation is Morita equivalence, and the resulting group is the Brauer group Br(K). One formulation of class
field theory is the determination of Br(K) in the case that K is a number field.

One consequence of Wedderburn’s theorem is that every central simple algebra is split by some
extension L/K; in fact, one can take L to be Galois. This opens the door to cohomological descriptions of
the Brauer group: by Galois descent, one obtains the first isomorphism in

Br(K) ∼= H1(K, PGL∞) ∼= H2(K,Gm), (1)

where PGL∞ denotes the Galois module lim−→ PGLk(Ks). The second isomorphism is [40, Proposition X.9],
and follows from Hilbert 90. This presents Br(K) as an étale cohomology group, and allows the use
of cohomological techniques in its determination. Conversely, it gives a concrete interpretation of 2-
cocycles, analogous to the relation between 1-cocycles and Picard elements.

Globalising this picture was a deep problem in algebraic geometry, initiated by the work of Azumaya,
Auslander and Goldman, and the Grothendieck school. There are two ways to proceed, resulting in
two variants: the group Br(X) of Azumaya algebras, and the more computable group Br′(X). These are
in general related by an injective map Br(X) ↪→ Br′(X), but surjectivity is known to fail for arbitrary
schemes (e.g., 12, Corollary 3.11). A key insight of Toën was to pass to derived Azumaya algebras, in
which case this map becomes an isomorphism in full generality [42]. Toën’s work shows that even the
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The Relative Brauer Group of K(1)-Local Spectra | 11293

Brauer groups of classical rings are most naturally studied in the context of derived or homotopical
algebraic geometry. This initiated a study of Brauer groups through the techniques of higher algebra,
and in recent years they have become objects of intense study in homotopy theory. In this context, the
basic definitions appear in [4]: as in the classical case, the Brauer group of a ring spectrum R classifies
Morita equivalence classes of Azumaya algebras. This gives a useful class of noncommutative algebras
over an E∞-ring: for example, Hopkins and Lurie [21] computed Brauer groups as part of a program to
classify algebra structures on Morava K-theory over Lubin-Tate theory. A more categorical perspective
is to view the Brauer space as the Picard space of modules over ModR ∈ CAlg(PrL); in this guise it is the
target for (invertible) factorisation homology, as an extended quantum field theory [3, 13, 19, 26, 39].
Computations of Brauer groups of ring spectra of particular interest appear in [1, 2, 15].

In this document we study Brauer groups in the monochromatic setting. Recall that Hopkins and
Lurie focus on the K(h)-local Brauer group Br(Eh) of Eh, constructing a certain filtration on it whose
associated graded they compute; in particular, their work shows that this group is highly nontrivial,
in contrast to the Picard case. Our starting motivation here was to extend this to a computation of
the Brauer group Brh := Br(SpK(h)) of the entire K(h)-local category, which classifies K(h)-local Azumaya
algebras up to Morita equivalence. As a first step, in this document we complement [21] by studying
the relative Brauer group Br0

h := Br(SpK(h) | Eh), which classifies those K(h)-local Azumaya algebras that
become trivial after basechange to Eh. Combining the two computations gives access to the group Brh up
to extension problems, which we do not attempt to address here. The group Br0

h also has a concrete inter-
pretation in terms of chromatic homotopy theory: it classifies twists of the Gh-action on the ∞-category
ModEh (SpK(h)). For the standard action (by basechange along the Goerss-Hopkins-Miller action on Eh), one
has SpK(h) � ModEh (SpK(h))

hGh (see [31, Proposition 10.10] and [35, Theorem A.II] for two formulations).
Taking fixed points for a twisted action therefore gives a twisted version of the K(h)-local category.

Our main theorems give the computation of the relative Brauer group at height one:

Theorem A (Lemma 5.16). At the prime two, Br0
1

∼= Z/8{Q1} ⊕ Z/4{Q2}.
(i) The Z/4-factor is mapped injectively to Br(KO2), and Q⊗2

2 ⊗KO2 is the image of the generator under
Z/2 ∼= Br(KO | KU) → Br(KO2 | KU2). The Z/8 factor is the relative Brauer group Br(SpK(1) | KO2).

(ii) Q4 := Q⊗4
1 is the cyclic algebra formed using the C2-Galois extension SK(1) → KUh(1+4Z2)

2 and the strict
unit 1 + ε ∈ π0GL1(SK(1)) = (Z2[ε]/(2ε, ε2))×.

We have indexed generators on the filtration in which they are detected in the descent spectral
sequence, which we recall later in the introduction. For the final part, note [4, §4] that cyclic algebras
are defined using strict units: that is, maps of spectra u : Z → gl1(E). We give a construction of cyclic
algebras from strict units in Section 3, and using this we show that they are detected in the HFPSS by
a symbol in the sense of [40, Chapter XIV]. This allows us to deduce when they give rise to nontrivial
Brauer classes.

Any strict unit has an underlying unit, and we abusively denote these by the same symbol. The unit
1+ε was shown to be strict in [10], which is what gives rise to the claimed representative for the class Q4

at the prime two. Likewise, at odd primes the roots of unity are strict, which leads to our second main
computation:

Theorem B (Lemma 5.1). At odd primes, Br0
1

∼= Z/(p−1). A generator is given by the cyclic algebra
(KU

h(1+pZp)
p , χ , ω), where χ : μp−1 ∼= Z/(p − 1) is a character and ω ∈ (π0SK(1))

× ∼= Z
×
p is a primitive

(p − 1)st root of unity.

We now give an outline of the computation. Since Grothendieck, the main approach to computing
Brauer groups has been étale or Galois descent, and this is the case for us too. Namely, recall that at any
height h, Morava E-theory defines a K(h)-local Galois extension SK(h) → Eh, with profinite Galois group
Gh. In [35], we used condensed mathematics to prove a Galois descent statement of the form

SpK(h) � ModEh (SpK(h))
hGh ,

and deduced from this a homotopy fixed point spectral sequence for Picard and Brauer groups,
extending the Galois descent results of Mathew and Stojanoska [32] and Gepner and Lawson [15]. For
our purposes, the main computational upshot of that paper is:
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11294 | I. Mor

Theorem 1.1. There is a descent spectral sequence

Es,t
2 = Hs(Gh, πtpic(Eh)) 
⇒ πt−spic(SpK(h)),

whose (−1)-stem gives an upper bound on Br0
h. In a large range, there is an explicit comparison of

differentials with the K(h)-local Eh-Adams spectral sequence.

A more precise form of the theorem is recalled in Section 4. In the present paper, we determine this
spectral sequence completely at height one, at least for t−s ≥ −1. Unsurprisingly, the computation looks
very different in the cases p = 2 and p > 2, and the former represents the majority of our work. To prove
a lower bound on Br0

1, we also prove a realisation result in the spirit of Toën’s theorem. Namely, we show
in a very general context that all classes on the E∞-page may be represented by Azumaya algebras:

Theorem C (Lemma 2.10). Let C be a symmetric monoidal ∞-category, and suppose that C is
generated under colimits by dualisable objects. If A ∈ CAlg(C) is a faithful dualisable Galois
extension of the unit, then the map

Br(C | A) −→ Br′(C | A) := {D : ModA(D) � ModA(C)} ⊂ Pic(ModC(PrL))

sending an Azumaya algebra to its module ∞-category is an isomorphism.

Most pertinently, the chromatic localisations of spectra give examples of such ∞-categories; see also
[1, §6.3] and [15, §6.4] for similar results in the case of compact unit. This accounts immediately for
most of the classes in Br0

1, by sparsity in the descent spectral sequence. At the prime two there is one
final computation necessary, which is the relative Brauer group of KO2. Recall that the group Br(KO | KU)

was computed by Gepner and Lawson [15]. In Section 5.2, we prove:

Theorem D (Lemma 5.3). The relative Brauer group of KO2 is Br(KO2 | KU2) ∼= Z/4. The basechange
map from Br(KO | KU) ∼= Z/2 is injective.

The generator, which we denote P2, may be thought of as a cyclic algebra for the unit 1+4ζ , where ζ is a
topological generator of Z2 (see Section 3). We remark that this unit is not strict, and so the cyclic algebra
cannot be constructed by hand; instead, we invoke Theorem C to prove that the possible obstructions
vanish. We then show that P2 survives the descent spectral sequence for the extension SK(1) → KO2, and
therefore gives rise to the class Q2 ∈ Br0

1.
As an aside, we observe that Theorem D implies the following result, which may be of independent

interest:

Theorem E. There is no C2-equivariant splitting gl1KU2 � τ≤3gl1KU2 ⊕ τ≥4gl1KU2.

1.1 Outline of the paper
The first two sections give some general results on Brauer groups, especially on representing elements
of the cohomological Brauer group. To begin, in Section 2 we prove that the property of “admitting a
compact generator” satisfies SpK(h)-linear Galois descent, which allows us to lift certain E∞-classes to
Azumaya algebras. In Section 3 we give the construction of a certain kind of cyclic algebra, which makes
clear where they are detected in the descent spectral sequence; this later allows us to assert that the
cyclic algebras we form are distinct. We also give a construction of Brauer classes from 1-cocycles,
which we use at the prime two. In Section 4 we specialise to the case of SpK(1). We begin by computing
the E2-page of the descent spectral sequences and most differentials, giving an upper bound on the
relative Brauer groups. Using Section 2, the computation at odd primes follows easily. In Section 5 we
compute the relative Brauer group Br(KO2 | KU2), and use this to complete the computation of Br0

1 at
the prime two.

1.2 Notation and conventions

• We will freely use the language of ∞-categories (modeled as quasi-categories) as pioneered by Joyal
and Lurie [25, 27, 29]. In particular, all (co)limits are ∞-categorical. Most commonly, we will be in
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The Relative Brauer Group of K(1)-Local Spectra | 11295

the context of a presentably symmetric monoidal stable ∞-category with unit 1, and we use the
term stable homotopy theory to mean such an object. All our computations take place internally to
the K(h)-local category, and so the symbol ⊗ will generally denote the K(h)-local smash product.

• We will only consider spectra with group actions, meaning functors BG → Sp when G is finite
or sheaves on BGproét when G is profinite. When G is a profinite group, we will write H∗(G, M) for
continuous group cohomology.

• We work at a fixed prime p and height h (mostly one). As such, p and h are often implicit in the
notation: thus we write E, K and G for Eh, K(h), and Gh, respectively. We denote the K(h)-local sphere
by 1K. We use the symbol S for the both the sphere and its p-completion, according to context. To
avoid ambiguity, we are explicit in some cases: for example, KU will always mean integral K-theory.

• We follow the conventions of [35]. In particular, we direct the reader to [35, §2.2] for details about
the proétale site and the sheaves E and pic(E). If M is a topological G-module, we will write M for
the associated proétale abelian group. Given a descendable G-Galois extension 1 → A in a stable
homotopy theory (possibly profinite), we will implicitly use the associated (hypercomplete) sheaf
A ∈ Sh(BGproét,C), writing AhG := 	A. Using [35, §3.1], we will also form the sheaf ModA(C) ∈
Sh(BGproét, PrL,smon), and hence the Picard sheaf pic(A) ∈ Sh(BGproét,Sp≥0). In this case the descent
spectral sequence reads

Hs(BGproét, πtpic(A)) 
⇒ πt−spic(A)hG, (2)

• and the E2-term can be identified with continuous cohomology of the G-module πtpic(A) as long
as πtpic(A) = πtpic(A) and πtpic(A) satisfies for example the conditions of [7, Lemma 4.3.9].

• When indexing spectral sequences, we will always use s for filtration, t for internal degree, and
t − s for stem. We abbreviate “homotopy fixed points spectral sequence” to HFPSS. We write “Picard
spectral sequence” for the descent spectral sequence (2).

• We fix once and for all a regular cardinal κ such that (i) SK(1) ∈ SpK(1) is κ-compact; (ii) |G1| < κ. The
cohomological Brauer space Br′(SpK(1)) will by definition be the Picard space of SpK(1) ∈ CAlg(PrL

κ ),
which is a small space since PrL

κ is presentable. As noted in Lemma 2.10, for relative Brauer classes
this is no restriction.

2 Descent for Compact Generators
If C is a stable homotopy theory, we will be interested in the group Br(1) of Azumaya algebras in C. It
will often be technically convenient to first compute the related group

Br′(1) := Pic(ModC),

where ModC := ModC(PrL
κ ) and κ is chosen to be large enough that C ∈ CAlg(PrL

κ ). In this first section
we study the relation between the two groups.

Given a Galois extension 1 → A inC, we showed in [35, §5] that the Picard spectral sequence computes
the subgroup

Br′(1 | A) = π0(BPic(A))hG = ker(Br′(1) → Br′(A)) ⊂ Br′(1)

of the cohomological Brauer group. To relate this to the Brauer-Azumaya group classifying Azumaya
algebras in C, we prove a descent result for compact generators valid in the K-local setting. This is
entirely analogous to the theory of [1, §6.3] and [15, §6.4].

Definition 2.1. Let C be a presentably symmetric monoidal ∞-category, and D ∈ ModC. An object
D ∈ D is C-compact if the functor

MapD(D, −) : D → C (3)

preserves filtered colimits. We say that D is a C-generator if the functor (3) is conservative; when
C is stable, it is equivalent that (3) detects zero objects. A C-compact generator of D is an object
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11296 | I. Mor

D ∈ D that is both C-compact and a C-generator, and we shall write Decg ⊂ D for the full
subcategory of such D. (These might also be called enriched compact generators.)

Example 2.2. The K-local sphere is an SpK-compact generator of SpK. More generally, we always
have 1 ∈ Cecg since in this case (3) is the identity functor.

Our first objective is to show that Schwede-Shipley theory goes through in the presence of a C-
compact generator.

Definition 2.3. Let C be a stable homotopy theory. We say C is rigidly generated if it is generated
under colimits by dualisable objects. That is, the localising category generated by Cdbl is C itself.

Example 2.4.

(i) Sp is generated under colimits by shifts of 1, and so rigidly generated.
(ii) If C is a rigidly generated stable homotopy theory and L : C → C′ a monoidal localisation, then C′

is rigidly generated. Thus, SpK is rigidly generated.
(iii) For a compact Lie group G, the ∞-category SG of G-spaces is generated under colimits by orbits

G/H (e.g., 30, Theorem 1.8). Its stabilisation SpG
U at any G-universe U (as defined in [16, Corollary

C.7]) is generated under colimits by shifts �−V�∞
U G/H+ as V ranges over representations in U , and

if U is complete then these are dualisable by virtue of the Wirthmüller isomorphism [18, (4.16)].
Thus, the ∞-category SpG of genuine G-spectra is rigidly generated.

Proposition 2.5 (Enriched Schwede-Shipley). Let C be a rigidly generated stable homotopy theory
and D ∈ ModC. Suppose that D ∈ Decg, and write A := EndD(D) ∈ Alg(C). Then there is a C-
linear equivalence

D � LModA(C).

Proof. The object D ∈ D determines canonically a C-linear left adjoint F : C → D, with right adjoint
G := MapD(D, −). According to [27, Proposition 4.8.5.8], it is enough to check the following:

(i) G preserves colimits of simplicial objects: in fact G preserves all colimits. Indeed, G preserves
filtered colimits since D is C-compact, and finite colimits as it is a right adjoint between stable
∞-categories.

(ii) G is conservative: this is by definition of C-compact generators.
(iii) for every D′ ∈ D and C ∈ C, the map

C ⊗ FG(D′) = C ⊗ G(D′) ⊗ D → C ⊗ D′

(iii) is adjoint to an equivalence C⊗G(D′) ∼−→ G(C⊗D′). But by (i), the functor G preserves all colimits, so
by rigid generation we reduce to C dualisable. In this case, the desired equivalence is the composite

C ⊗ MapD(D, D′) � MapC(C∨, MapD(D, D′)) � MapD(C∨ ⊗ D, D′) � MapD(D, C ⊗ D′).

�

To use this to produce Azumaya algebras, we first need to be able to produce C-compact generators.

Remark 2.6. Recall [31, Definition 3.18] that in a stable homotopy theory C, we say A ∈ CAlg(C)

is descendable if the thick ⊗-ideal generated by A contains 1. For example, any faithful finite
Galois extension is descendable [31, Corollary 6.15], and E is descendable in LnSp (and hence
in SpK) by [36, §8].

In this context, we will have a good supply of generators thanks to the following result:
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Proposition 2.7 (Descent for C-compact generators). Let 1 → A be a descendable extension in a
rigidly generated stable homotopy theory C, and suppose that A is dualisable. Then D ∈ ModC

admits a C-compact generator if and only if ModA(D) := D ⊗C ModA(C) admits one.

The proof relies on the following basic lemma:

Lemma 2.8. Suppose C ∈ CAlg(PrL) and A ∈ C is dualisable. Then A is faithful if and only if A∨ is.

Proof. Assume that A is faithful, and that A∨ ⊗ X = 0; the converse is given by taking duals. Then the
identity on A ⊗ X factors as

A ⊗ X → A∨ ⊗ A ⊗ A∨ ⊗ X → A ⊗ X,

and in particular A ⊗ X = 0. By faithfulness of A, this implies X = 0. �

Proof. (Lemma 2.7) As in [15], we will make use of the adjunctions

i! : C � ModA(C) : i∗ and i∗ : ModA(C) � C : i∗

and the adjunctions (denoted by the same symbols) between D and ModA(D). We begin by proving that
the adjunctions i! � i∗ � i∗ are C-linear. For i! we observed C-linearity in the proof of Lemma 2.5. To see
C-linearity for i∗ it is enough to prove that the canonical map

θ : C ⊗ i∗M → i∗(C ⊗ M)

is an equivalence for every C and M, and by rigid generation we reduce to C dualisable. As in [29, Remark
D.7.4.4] one checks that MapC(C′, θ) is the composite equivalence

Map(C′, C ⊗ i∗M) � Map(C′ ⊗ C∨, i∗M)

� Map(i!(C′ ⊗ C∨), M)

� Map(i!C′ ⊗ C∨, M)

� Map(i!(C′), C ⊗ M)

� Map(C′, i∗(C ⊗ M))

for any C′ ∈ C, which gives the claim.
Given linearity, the proof of the proposition is straightforward. If D admits a C-compact generator

D, one checks that i!D ∈ ModA(D)ecg: indeed, i!D is C-compact because D is so and i∗ preserves colimits,
while i!D generates because D does and i∗ is conservative. Conversely, suppose we have D ∈ ModA(D)ecg,
and consider i∗D ∈ D. By dualisability of A, the right adjoint

i∗ = MapC(A, −) � A∨ ⊗ − : C → ModA(C)

preserves colimits, and hence the right adjoint i∗ : ModA(D) → D does too. As a result, i∗D is C-compact.
On the other hand, if X ∈ D and MapD(i∗D, X) = 0, then MapModA(D)(D, i∗X) = 0 and so

i∗X = A∨ ⊗ X = 0.

Now faithfulness of A∨ implies that X = 0. �

Example 2.9. If A → B is an E-local Galois extension of ring spectra with stably dualisable Galois
group G, then Rognes [37, Proposition 6.2.1] shows that B is dualisable over A. For example, this
covers the following cases:

(i) E = S and G is finite or compact Lie.
(ii) E = Fp and G is p-compact.

(iii) E = K and G = K(π , m) for π a finite p-group and m ≤ h.
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11298 | I. Mor

Corollary 2.10 (Br = Br′). Let 1 → A be a faithful dualisable Galois extension in a rigidly generated
stable homotopy theory C, and Q ∈ π0BPic(A)hG a relative Brauer-Grothendieck class. Then Q

is represented by some Azumaya algebra Q whose basechange to A is (Morita) trivial: that is,

Q � ModQ(C) ∈ ModC,

and ModA⊗Q(C) � ModA(C). Thus, the map Br(1 | A) → Br′(1 | A) is an isomorphism.

Proof. We claim that Q is κ-compactly generated, so that Q ∈ Pic(ModC). Given this, the result follows
from Lemma 2.7: by assumption, ModA(Q) � ModA(C), and so

A ∈ ModA(C)ecg � ModA(Q)ecg.

By descent for compact generators we obtain D ∈ Qecg, and so Schwede-Shipley theory yields a C-linear
equivalence Q � ModQ(C), where Q = EndQ(D).

For the claim, we note that as in [31, Corollary 3.42], Q is the limit of the cosimplicial diagram Q ⊗C

ModA⊗•+1 (C), and for j ≥ 1 we have Q ⊗ ModA⊗j (C) � ModA⊗j (C) ∈ PrL
κ . Thus Q ∈ PrL

κ . �

Remark 2.11. In a previous version, we claimed that Morava E-theory is dualisable in SpK. As
pointed out to us by Maxime Ramzi, while E is Spanier-Whitehead self-dual [6, 41] and hence
ref lexive, it is not dualisable: for example, K∗E would otherwise be finite by [23, Theorem 8.6].
We will bypass this issue at height one by showing that all generators of Br′(SpK | E) are in
fact trivialised in a finite Galois extension of the sphere, and hence lift to Azumaya algebras by
Lemma 2.10; we do not know if Br0

h
∼= Br′(SpK | E) at arbitrary height.

3 Explicit Generators
In this section, we give some explicit constructions of Azumaya algebras from Galois extensions. Most of
this section works in an arbitrary stable homotopy theory C. We will use these constructions in Section 5
to describe generators of the group Br0

1, and hence to solve extension problems.

3.1 Zp-extensions
We will begin with a straightforward construction for extensions with Galois group Zp, using the fact
that cd(Zp) = 1.

Remark 3.1. Let G be a profinite group, and B ∈ Sh(BGproét,S∗). Under suitable assumptions on
B, décalage gives an isomorphism between the descent spectral sequence and the spectral
sequence for the Čech nerve of G → ∗ [35, Appendix A]. Moreover, the homotopy groups of the
latter can often be identified with the complex of continuous cochains with coefficients in πtB,
yielding an isomorphism on the E2-pages

H∗(G, πtB) → H∗(BGproét, πtB). (4)

For example, this is the case for the sheaf pic(E) for any Morava E-theory E(k, 	).

Lemma 3.2. Let G = Zp or Ẑ, and write ζ ∈ G for a topological generator. Suppose C is a stable
homotopy theory and B ∈ Sh(BGproét,S∗), with B := B(G/∗) and BhG := 	B. If the canonical
map (4) is an isomorphism, then

BhG � Eq
(
id, ζ : B ⇒ B

)
. (5)

Proof. Write B′ for the equaliser in (5). The G-map (id, ζ ) : G → G × G gives rise to maps

B ⇒ B(G × G) → B (6)

factoring id, ζ : B ⇒ B, and the identification BhG � limB(G•+1) gives a distinguished nullhomotopy in
(6) after precomposing with the coaugmentation η : BhG → B. Thus η factors through θ : BhG → B′. Taking
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fibres, the descent spectral sequence for B implies that π∗θ fits in a commutative diagram

and is therefore an equivalence. �

Construction 3.3. Suppose 1 → A is a descendable Galois extension in a stable homotopy theory
C, with group G = Zp or Ẑ. Then B := BPic(A) ∈ Sh(BGproét,S∗), and in good cases B satisfies the
assumption that (4) be an isomorphism: for example, this is the case whenever each πtpic(A)

is the limit of a tower of finite sets by [7, Lemma 4.3.9]. Thus,

Br′(1 | A) � Eq
(
id, ζ ∗ : BPic(A) ⇒ BPic(A)

)
,

and so a relative cohomological Brauer class is given by the data of an A-linear equivalence

ξ : ModA(C)
∼−→ ζ ∗ModA(C).

In fact, if X ∈ Pic(A), then we may form the A-linear composite ζX
! : ModA

X⊗A−−−−→ ModA
ζ!−→ ζ ∗ModA.

This gives an isomorphism

(A, −) := ζ
(−)

! : Pic(A)G ∼= H1(G, Pic(A)) → Br′(1 | A).

Example 3.4. At the prime 2, the extension 1K → KO2 is a descendable Z2-Galois extension. As
a result, Lemma 3.3 applies, and we can form the Brauer class (KO2, X) associated to any X ∈
Pic(KO2) as above. For example, since KO2 is 8-periodic one can form the cohomological Brauer
class

(KO2, �KO2) ∈ Br′(1K | KO2).

Example 3.5. Let KOnr
2 := lim−→n

(KO2)W(F2n ) be the ind-étale KO2-algebra given by the maximal
unramified extension of π0KO2 = Z2; since étale extensions are uniquely determined by their
π0, one can also describe this as KOnr

2 = KO2 ⊗S SW, where SW = W+(F2) denotes the spherical
Witt vectors [28, §5.2]. The extension KO2 → KOnr

2 is a descendable Galois extension: indeed,
KO2 ⊗S (−) preserves finite limits, and S → SW is descendably Ẑ-Galois. As a result, Lemma 3.3
applies, and we can form the Brauer class (KOnr

2 , X) associated to any X ∈ Pic(KOnr
2 ) as above.

For example, since KOnr
2 is 8-periodic one can form the cohomological Brauer class

(KOnr
2 , �KOnr

2 ) ∈ Br′(KO2 | KOnr
2 ).

In fact, (KOnr
2 , �KOnr

2 ) is an element of the étale locally trivial Brauer group LBr(KO2) of [2]; we discuss
this in Section 5.

3.2 Cyclic algebras
Suppose that C is a stable homotopy theory and 1 → A a finite Galois extension in C with group G.
Suppose also given the following data:

(i) an isomorphism χ : G ∼= Z/k.
(ii) a strict unit u ∈ π0Gm(1).

In this section, we will use this to define a relative Azumaya algebra (A, χ , u) ∈ Br(C | A).
Let us first recall the construction when C is the category of modules over a classical ring. Then we

begin with a G-Galois extension R → A of rings, and define a G-action on the matrix algebra Mk(A) by
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11300 | I. Mor

letting σ := χ−1(1) act as follows: first act termwise by σ using the G-action on A, and then conjugate
by the matrix

ũ :=

⎡⎢⎢⎢⎢⎣
0 u
1 0

. . .
. . .

1 0

⎤⎥⎥⎥⎥⎦ (7)

Since ũk = uIk ∈ GLkA is central, this gives a well-defined action on MkA. Passing to fixed points, we
obtain the cyclic algebra

(A, χ , u) ∈ Br(R | A). (8)

When R is a field it is well-known (see, e.g., [11]) that under the isomorphism

Br(R | A) ∼= H2(G, A×),

the cyclic algebra (A, χ , u) maps to the cup-product β(χ) · u, where β denotes the Bockstein homomor-
phism

χ ∈ Hom(G,Z/k) = H1(G,Z/k)
β−→ H2(G,Z),

and we use the Z-module structure on A×. Indeed, this follows from the exact sequence

1 → A× → GLk(A) → PGLk(A) → 1

and the resulting commutative square of cohomology groups

(9)

As a result, we obtain an isomorphism

Ĥ0(G, A×) = A×/NG
e A× → Br(R | A)

sending u �→ (A, χ , u). We will prove an analogous result for cyclic algebras in arbitrary stable homotopy
theories, which will allow us to detect permanent cycles in the descent spectral sequence; conversely,
this will allow us to assert that the cyclic algebras we construct are nontrivial.

The square (9) motivates the following definition:

Definition 3.6. Given a Galois extension 1 → A with group G in a rigidly generated stable
homotopy theory C, and given χ : G ∼= Z/k and u ∈ π0Map

E2
(Z, GL1(1)), define the composite

G-map

(A, u) : BZ/k
β−→ B2

Z
B2u−−→ B2GL1(A)

τ≥2−→ BPic(A).

The relative Brauer class (A, χ , u) ∈ Br(1 | A) is defined to be the image of χ under the map on
fixed points

(A, −, u) := π0(A, u)hG : Hom(G,Z/k) = π0BZ/kBG → π0(BPic(A))hG = Br′(1 | A) ∼= Br(1 | A).
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The final isomorphism is inverse to the map Br(1 | A)
∼−→ Br′(1 | A) considered in Section 2.

Remark 3.7. Baker, Richter and Szymik use similar data to define an Azumaya algebra A(A, χ , u)

as the fixed points of an appropriate twist of the action on the matrix algebra MkA. We believe
that when u is a strict unit the two constructions agree; this question will be investigated in
future work.

Theorem 3.8. Suppose given an E2-unit u �= 1 ∈ π0Map
E2

(Z,gl1(1)). Its image in π0GL1(1) is
detected in the HFPSS for pic(C) � pic(A)hG by a class v ∈ Es,s+1

2 , and we assume that one
of the following holds:

(i) v is in positive filtration;
(ii) v is in filtration zero, and has nonzero image in Ĥ0(G, (π0A)×).

Then the algebra (A, χ , u) is detected by

β(χ) · v ∈ Hs+2(G, πs+1pic(A)) = Es+2,s+1
2 .

In particular, β(χ) · v is a permanent cycle. If it survives to E∞ then (A, χ , u) �= 1 ∈ Br(1 | A).

Proof. We consider the map of spectral sequences induced by the G-map (A, u). It is standard that the
map induced by β is indeed the Bockstein, and we claim that the map

u∗ : H2(G,Z) → Hs(G, πs−1Pic(A))

induced on E2-pages by B2u : B2
Z → BPic(A) agrees with v · −. For this, we consider the (equivariant)

action map

m : Z × Map
E2

(Z, GL1(A)) → B2GL1(A).

Then u∗β(χ) = m(β(χ), v), where v in the E2 page of the HFPSS for Map
E2

(Z, GL1(A)) detects u. This fits
in a diagram

in which the bottom map induces the H∗(G,Z)-module structure on the E2-page for GL1(A) �
Map

E1
(Z, GL1(A)). Since v �→ v, we see by going down and left in the square above that m(β(χ), v) =

β(χ) · v.
The class β(χ) · v is nonzero since Tate cohomology is β(χ)-periodic, which gives the result. �

4 The Descent Spectral Sequence
We now specialise to height one. In this short section, we record the descent spectral sequence that
will be the starting point for our computations. At any characteristic (p, h), this arises as the descent
spectral sequence for the sheaf

pic(E) ∈ Sh(BGproét,Sp≥0)

of [35, §3.2]. The main input from op. cit. is the following theorem:

Theorem 4.1 ([35], Theorem A and Proposition 5.11).
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11302 | I. Mor

Fig. 1. The height one Picard spectral sequence for odd primes (implicitly at p = 3). Classes are labelled as follows:
◦ = Z/2, �× = Z[p]×, × = μp−1, and circles denote p-power torsion (labelled by the torsion degree). Since

Pic1 ∼= Picalg
1

∼= Z
×
p × Z/2, no differentials can hit the (−1)-stem. Differentials with source in stem t − s ≤ −2 have

been omitted.

1) There is a strongly convergent spectral sequence

Es,t
2 = Hs(G, πtpic(E)) 
⇒ πt−spic(SpK). (10)

2) Its (−1)-stem converges to Br′(1 | E).
3) Differentials on the Er page agree with those in the K-local E-Adams spectral sequence in the region

t ≥ r + 1, and for classes x ∈ Er,r
r we have dr(x) = dASS

r (x) + x2.

In [35,§4], we used this spectral sequence to recover the computation of Pic1 := Pic(SpK(1)) (due to [22]).
In this case, Morava E-theory is the p-completed complex K-theory spectrum KUp, acted upon by G ∼= Z

×
p

via Adams operations ψa.

4.1 Odd primes
We first consider the case p > 2. The starting page of the Picard spectral sequence is recorded below:

Lemma 4.2 ([35], Lemma 4.15). At odd primes, the starting page of the descent spectral sequence
is given by

Es,t
2 = Hs(Z×

p , πtpic(KUp)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z/2 t = 0 and s ≥ 0
Z

×
p t = 1 and s = 0, 1

μp−1 t = 1 and s ≥ 2
Z/pνp(t)+1 t = 2(p − 1)t′ + 1 �= 1 and s = 1

(11)

This is displayed in Figure 1. In particular, the spectral sequence collapses for degree reasons at
the E3-page.

Proposition 4.3. At odd primes, Br0
1 is isomorphic to a subgroup of μp−1.

Proof. The only possible differentials are d2-differentials on classes in the (−1)-stem; note that there
are no differentials into the (−1)-stem, since every E2-class in the 0-stem is a permanent cycle. The
generator in E1,0

2 supports a d2, since this is the case for the class in E1,0
2 of the descent spectral sequence

for the C2-action on KU [15, Prop. 7.15], which is displayed in Figure 3a). The cospan of Galois extensions

KU
hZ×

p
p → KUhC2

p ← KUhC2

allows us to transport this differential (see also Figure 4). Thus,

Br′(SpK | E) ∼= μp−1.

�
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Fig. 2. The Picard spectral sequence for the Galois extension 1K → E = KU2 at p = 2. We know that all remaining
classes in the 0-stem survive, by comparing to the algebraic Picard group. Thus, the only differentials that remain
to compute are those out of the (−1)-stem; those displayed can be transported from the descent spectral sequence
for Pic(KO)hC2 —see Figure 3a and 3b. We have not displayed possible differentials out of stem ≤ −2.

Fig. 3. The Picard spectral sequences for KO and KO2 respectively. Differentials in Figure 3b come from the
comparison with Figure 3a; see Section 5 for the extension in the (−1)-stem.

In Section 5 we will show that this bound is achieved using the results of the previous sections.

4.2 The case p = 2
We now proceed with the computation of the (−1)-stem for the even prime.
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11304 | I. Mor

Fig. 4. The HFPSS for pic(KOp) � pic(KUp)C2 at odd primes. Here ◦ = Z/2, × = μp−1, ×2 = μp−1[2] = C2 and � = Zp.

Lemma 4.4 ([35], Lemma 4.17). We have

Hs(Z×
2 , Pic(KU2)) =

{
Z/2 s = 0
(Z/2)2 s ≥ 1

Hs(Z×
2 , (π0KU2)

×) =

⎧⎪⎨⎪⎩
Z2 ⊕ Z/2 s = 0
Z2 ⊕ (Z/2)2 s = 1
(Z/2)3 s ≥ 2

The resulting spectral sequence is displayed in Figure 2.

Proposition 4.5. At the prime two, |Br0
1| ≤ 32.

Proof. In [35, §4], we determined the following differentials:

• in degrees t ≥ 3, differentials agree with the well-known pattern of Adams differentials (e.g., 5,
Figure 3).

• the class in bidegree (s, t) = (3, 3), which supports a d3 in the Adams spectral sequence, is a
permanent cycle.

By comparing with the Adams spectral sequence, any classes in the (−1)-stem that survive to E∞ are in
filtration at most six; on the E2-page, there are seven such generators. By comparing to the HFPSS for
Br′(KO2 | KU2) = (BPic(KU2))

hC2 as in Section 4.1, we obtain the following differentials:

• a d2 on the class in H1(C2, Pic(KU2)) ⊂ H1(Z×
2 , Pic(KU2)),

• a d3 on the class in H2(C2, (π0KU2)
×) ⊂ H2(Z×

2 , (π0KU2)
×).

This gives the claimed upper bound. �

In Section 5 we will show that this bound is also achieved.

Remark 4.6. For later reference, we name the following generators:

(i) q1 ∈ E1,0
2 is the generator of H1(1 + 4Z2,Z/2) ⊂ H1(Z×

2 ,Z/2),
(ii) q2 ∈ E2,1

2 is the generator of H2(C2, 1 + 4Z2) ⊂ H2(Z×
2 ,Z×

2 ),
(iii) q′

2 ∈ E2,1
2 is the generator of H1(C2,Z×

2 ) ⊗ H1(Z2,Z×
2 ) ⊂ H2(Z×

2 ,Z×
2 ),

(iv) q4 is the unique class in E4,3
2 ,

(v) q6 is the unique class in E6,5
2 .

While q6 survives to E∞ by sparsity in Figure 2, the other classes are sources of possible differentials.
We will show that in fact all are permanent cycles.

5 Computing Br0
1

We are now ready to complete the proofs of Theorem A and B. At odd primes, we will see that the cyclic
algebra construction of Section 3 gives all possible Brauer classes. On the other hand, when p = 2 not
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all classes on the E∞-page of the descent spectral sequence will be detected in this way. In this case, we
will first compute the relative Brauer group Br(KO2 | KU2).

5.1 Odd primes
When p ≥ 3, Figure 1 shows that Br0

1 ⊂ μp−1. In fact, we can deduce from Lemma 3.8 that this inclusion
is an equality:

Theorem 5.1. Let p be an odd prime, and choose χ : μp−1 ∼= Z/p − 1. There is an isomorphism

μp−1
∼−→ Br0

1,

given by the cyclic algebra construction ω �→ (KU
h(1+pZp)
p , χ , ω).

Proof. By Lemma 4.3 there is an inclusion Br0
1 ⊂ μp−1. Since H2(μp−1, (π0B)×) ∼= μp−1{β(χ) · ω}, Lemma

3.8 implies it is enough to show that the roots of unity in (π01K)× = Z
×
p have E2 lifts. But we have a

commuting square

and at odd primes the roots of unity are strict in Sp by [9, Theorem A]. �

Remark 5.2. In fact, Lemma 5.1 also follows from Lemma 2.10. Indeed, Figure 1 shows that

Br′(SpK | KUp) ∼= H2(Z×
p ,Z×

p ) ∼= H2(μp−1,Z×
p ).

In particular, this group is killed in the μp−1-Galois extension 1K → KU
h(1+pZp)
p , since the group

Br′(KU
h(1+pZp)
p | KUp) = π0BPic(KU2)

h(1+pZp)

is concentrated in filtration s ≤ 1 of the Picard spectral sequence for the (1 + pZp)-action. Since

the extension 1K → KU
h(1+pZp)
p is finite, Lemma 2.10 yields the second isomorphism below:

Br′(SpK | KUp) ∼= Br′(SpK | KU
h(1+pZp)
p ) ∼= Br(SpK | KU

h(1+pZp)
p ) ⊂ Br0

1.

5.2 Completed K-theory
In this section we use Galois descent to compute the Brauer group Br(KOp | KUp). This builds on the
integral case computed by Gepner and Lawson [15], and we will therefore also determine the completion
maps

Br(KO | KU) → Br(KOp | KUp).

The computation for p = 2 will be important for our main computation: we will show that the relative
Brauer classes of KO2 descend to 1K, which will help us determine the group Br0

1. Therefore, we start
with the computation in this case:

Theorem 5.3. At the prime two we have

Br(KO2 | KU2) � Z/4,

and the completion map from Br(KO | KU) is injective.
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Since the extension KO2 → KU2 is finite, it follows by combining Figure 3b with Lemma 2.10
that |Br(KO2 | KU2)| = 4. To prove the theorem, we need to prove there is a nontrivial extension
between E2,1∞ = Z/2 and E5,6∞ = Z/2 in Figure 3b, and we do this by reducing to computations of étale
cohomology.

Definition 5.4. Recall the étale locally trivial Brauer group LBr(KO2) ⊂ Br(KO2) of [2]; more generally,
Antieau, Meier and Stojanoska define

LBr(R) := π0	BPicOR

for any commutative ring spectrum R, where BPicOR is the sheafification of BPic(OR) on the étale
site of Spec R. (Note that this is equivalent to the étale site of Spec π0R.) Explicitly [2, Lemma
2.17] this is the group of Brauer classes that are trivialised in some faithful étale extension
R → R′ in the sense of [29, Definition 7.5.0.4]. Likewise, for an extension R → S of commutative
ring spectra we write

LBr(R | S) := ker(LBr(R) → LBr(S)) ⊂ Br(R | S).

The group LBr(R) is sometimes more computationally tractable than Br(R): for example, one can often
reduce to étale cohomology of Spec π0R, which gives access to the standard cohomological toolkit. When
R = KOp, this allows us to use Gabber-Huber rigidity in the proof of Lemma 5.3.

Remark 5.5. In the setting of unlocalised E∞-rings, one always has compact generators and
hence LBr(R) ∼= LBr′(R). One may (rightly) worry about the difference between the groups of
unlocalised and of K(1)-local Brauer classes, since the results of [2] pertain to the former. While
we do not know if the two groups agree in general (even for nice even-periodic rings), in our
applications this is taken care of by restricting to relative Brauer classes. Indeed, in that case
we are computing the space

Br′(1 | A) = BPic(ModA(C))hG,

and by [20,Remark 3.7] the canonical map

ιA : Pic(ModA) → Pic(ModA(SpK))

is an equivalence of infinite loop-spaces in the following cases:

• A = E(k, 	) is any Morava E-theory,
• A admits a descendable extension A → B for which ιB is an equivalence.

For example, this means that the two possible meanings of the expression LBr′(KO2) agree. In fact,
by Lemma 2.10 we know that any element of LBr′(KO2 | KU2) lifts to an Azumaya algebra (in
both the localised and unlocalised setting). This means that there is no ambiguity in writing
LBr(KO2 | KU2) below.

We begin with a preliminary computation; the following is essentially [2, Proposition 3.8]:

Proposition 5.6. The étale sheaf π0pic(OKO2 ) fits in a nonsplit extension

0 → i∗Z/2 → π0pic(OKO2 ) → Z/4 → 0,

where i : SpecF2 → SpecZ2 is the inclusion of the closed point. Moreover, i∗π0pic(OKO2 )
∼= Z/8.
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Proof. We specify the necessary adjustments from the case of integral K-theory KO. Recall that Antieau,
Meier and Stojanoska compute the sheaf π0pic(OKO) on Spec KO = SpecZ, using the sheaf-valued HFPSS
for

pic(OKO) � pic(OKU)hC2 ,

which is [2, Figure 1]. The same figure gives the HFPSS for

pic(OKO2 ) � pic(OKU2 )
hC2 ,

as long as one correctly interprets the symbols as in [2, Table 1], replacing O = OZ with OZ2 . The proofs
of [2, Lemmas 3.5 and 3.6] go through verbatim to give the 0-stem in the E∞-page, so that π0pic(OKO2 )

admits a filtration

Now the determination of the extensions follows as in [2, Proposition 3.8], by using the exact sequence

H1(SpecZ2,Gm) = Pic(Z2) → Pic(KO2) → H0(SpecZ2, π0pic(OKO2 ))

of [2, Proposition 2.25], and the fact that Z2 is local so has trivial Picard group. In particular, since i∗ is
exact we have that i∗π0pic(OKO2 ) admits a filtration by three copies of Z/2, and a surjection from the
constant sheaf Z/8. �

Proof. (Lemma 5.3) By inspection of the HFPSS for the C2 action on Pic(KU2) (Figure 3b), the Brauer
group is of order four. It remains to prove there is a nontrivial extension between the two Z/2-generators.
In fact, we will prove that

Br(KO2 | KU2) ⊃ LBr(KO2 | KU2) ∼= Z/4.

When π0R is a regular complete local ring with finite residue field, the exact sequence [2, Proposition
2.25] simplifies to an isomorphism

LBr(R) ∼= H1(Spec π0R, π0pic(OR)),

since the cohomology of Gm vanishes [34, 1.7(a)]. One has that π0pic(OKU2 ) � Z/2 is constant since KU2 is
even periodic with regular Noetherian π0, while π0pic(OKO2 ) is torsion by Lemma 5.6. We can therefore
use Gabber-Huber rigidity [14, 24] to compute

LBr(KO2) ∼= H1(SpecZ2, π0pic(OKO2 ))
∼= H1(SpecF2, i∗π0pic(OKO2 )),

LBr(KU2) ∼= H1(SpecZ2, π0pic(OKU2 ))
∼= H1(Spec

mathbbF2, i∗π0pic(OKU2 )).

Since i∗π0pic(OKO2 ) � Z/8, we obtain

LBr(KO2) ∼= Z/8 and LBr(KU2) ∼= Z/2,

which implies that LBr(KO2 | KU2) ∼= Z/4 or Z/8; but |LBr(KO2 | KU2)| ≤ 4, so we are done. �

Remark 5.7. The generator of LBr(KO2) is the Azumaya algebra (KOnr
2 , �KOnr

2 ) constructed in
Lemma 3.5, and the generator of LBr(KO2 | KU2) is (KOnr

2 , �2KOnr
2 ).
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Remark 5.8. In [33, Lemma V.3.1], May proves a splitting of infinite loop-spaces

BU⊗ � τ≤3BU⊗ × τ≥4BU⊗,

where the monoidal structure is given by tensor product of vector spaces. The map BU(1) =
τ≤3BU → BU is induced from a map at the level of bipermutative categories, and classifies the
canonical line bundle. One can ask if this extends to a splitting of gl1KU, and if this splitting
happens C2-equivariantly.

As an aside to Lemma 5.3, we deduce that the completed, equivariant analogue of this splitting
fails:

Corollary 5.9. There is no C2-equivariant splitting

gl1KU2 � τ≤3gl1KU2 ⊕ τ≥4gl1KU2.

Proof. By comparing the HFPSS for the C2-action on B2GL1(KU2) with Figure 3b, one computes that
π0(B2GL1(KU2))

hC2 = Z/4. Suppose now that a splitting as above did exist. Then

π0(B2GL1(KU2))
hC2 = π0(�

2gl1(KU2))
hC2 � π0(τ≤5�

2gl1(KU2))
hC2 ⊕ π0(τ≥6�

2gl1(KU2))
hC2 .

However, the generators in the (−1)-stem of the E∞-page of Figure 3b are in filtrations two and six, and
in particular both factors in the right-hand splitting are nontrivial: indeed, the generator in filtration
two maps to a nonzero element in π0(τ≤5�

2gl1(KU2))
hC2 , and the generator in filtration six is in the image

of π0(τ≥6�
2gl1(KU2))

hC2 . This contradicts the fact that π0(B2GL1(KU2))
hC2 is cyclic. �

We do not know if gl1KU (or its 2-completion) splits equivariantly: note that the obstruction in
the case of KU2 comes in the form of an extension on a class originating in H2(Z×

2 , 1 + 4Z2) ⊂
H2(Z×

2 ,Z×
2 ).

Let us briefly also mention the case when p is odd; this will not be necessary for the computation of
Br0

1 at odd primes.

Proposition 5.10. When p is odd, we have

Br(KOp | KUp) ∼= Z/2,

and the map Br(KO | KU) → Br(KOp | KUp) is zero.

Proof. Since Zp is local away from 2, the E2-page takes the form in Figure 4, from which Br(KOp | KUp) ∼=
μp−1/μ

2
p−1

∼= Z/2 follows by Lemma 2.10. To describe the generators, note that the roots of unity μp−1 ⊂
π0KO×

p are strict, since they are so in the p-complete sphere [9]. Choosing χ : C2 ∼= Z/2, Lemma 3.8
implies that the cyclic algebra construction

ω �→ (KUp, χ , ω)

yields β(χ) · μp−1 = H2(C2, μp−1) ∼= Br(KO2 | KU2). The map from Br(KO | KU) is zero, since Br(KO2 | KU2) is
detected in filtration 2 and Br(KO | KU) in filtration 6. �

5.3 The case p = 2
Putting together the work of the previous sections, we complete the computation of Br0

1 at the prime two.
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5.3.1 Descent from KO2

Lemma 5.3 yields

πtBr(KO2 | KU2) = πtBr′(KO2 | KU2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z/4{(KOnr

2 , �2KOnr
2 )} t = 0

Z/8{�KO2} t = 1
Z

×
2 t = 2

πt−2KO2 t ≥ 3

We will use this to compute the group Br(1K | KU2) by Galois descent along the Z2-Galois extension
1K → KO2. Namely, we use the iterated fixed points formula

Br′(1K | KU2) � (BPic(KU2)
hC2 )h(1+4Z2) = Br(KO2 | KU2)

h(1+4Z2).

to form the descent spectral sequence

Es,t
2 = Hs(Z2, πtBr(KO2 | KU2)) 
⇒ πt−sBr′(1K | KU2).

More precisely, this is the descent spectral sequence for p∗BPic(E) ∈ Sh(B(Z×
2 /C2)proét), where p is the

projection. To see that it takes the form stated, we compute the proétale homotopy groups as below.

Lemma 5.11. Let p : Z×
2 � G = Z

×
2 /C2. Then,

πtp∗pic(E) = πtpic(KO2).

Proof. Write i : G ∼= (1 + 4Z2) ↪→ Z
×
2 . The adjunction i∗ � i∗ is monadic (c.f. [35, §2.2.4]), and provides an

equivalence

Sh(BGproét) � Sh(BGproét)
BC2 .

Under this identification we have p∗ � (i∗(−))hC2 and so obtain a HFPSS of proétale abelian groups

Hs(C2, πti∗BPic(E)) 
⇒ πt−sp∗BPic(E).

Note that πti∗BPic(E) = πtBPic(E), and so the E2-page looks identical to the HFPSS for pic(KOnr
2 ),

replacing every abelian group M there by M. By passing to G-modules in [38, Corollary 4.9] we see that
the functor M �→ M on derived categories is fully faithful, so in particular one has

Ext∗
BGproét

(Z/2, M) = Ext∗
G(Z/2, M),

where M = Z/2 or Z2(j). Thus, the spectral sequence is determined the spectral sequence of underlying
G-spaces (i.e., when we evaluate on a G-torsor). This is what we computed in Lemma 5.3. �

Remark 5.12. The same proof works for KOnr
2 in place of KO2, giving an isomorphism

πtp∗pic(E) ∼= πtpic(KOnr
2 ) ∈ Ab(B(G × Ẑ)proét),

where now E is based on algebraically closed Lubin-Tate theory E = E(Fp, 	h).

Since Z2 has cohomological dimension one, there is no room for differentials and the spectral sequence
collapses immediately. To determine Br′(SpK | KU2), what remains to compute is the following:

• The group E0,1
2 = Br(KO2 | KU2)

1+4Z2 ,
• The extension between the groups E0,−1∞ = E0,−1

2
∼= Br(KO2 | KU2)

1+4Z2 and E1,0∞ = E1,0
2

∼=
Z/8{(KO2, �KO2)}.
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Fig. 5. The descent spectral sequence for Br′(1K | KU2) � Br′(KO2 | KU2)h(1+4Z2). To match other figures, we have
shifted everything in degree by one (so one may think of this as the spectral sequence for �−1br′). The extension
in the 0-stem is 4 ∈ Ext(Z/8,Z2) � Z/8, which gives π0�−1br′

(1K | KU2) = Pic1 = Z2 ⊕ Z/4 ⊕ Z/2.

This is achieved in the next couple of results, and the result is displayed in Figure 5. Note that we have
shifted degrees by one to match other figures, so that the relative Brauer group is still computed by the
(−1)-stem.

Proposition 5.13. We have Br(KO2 | KU2)
1+4Z2 = Z/4, so the map

Br′(1K | KU2) → Br(KO2 | KU2)

is surjective.

Proof. It suffices to prove that ψ∗(KOnr
2 , �2KOnr

2 ) � (KOnr
2 , �2KOnr

2 ), where ψ = ψ� is the Adams operation
for a topological generator � ∈ 1 + 4Z2. By Lemma 3.3, this class is given by(

ϕ
�KOnr

2
! : ModKOnr

2
→ ϕ∗ModKOnr

2

)
∈ Eq

(
id, ϕ∗ : BPic(KOnr

2 ) ⇒ BPic(KOnr
2 )

)
,

where ϕ = KO2 ⊗ ϕ2 is the Frobenius on KOnr
2 = KO2 ⊗S SW. In particular, note that ψ ⊗ SW commutes

with the ϕ. Thus, the proposition follows from the square

whose commutativity is witnessed by the natural equivalence

ψ!ϕ!�
2 � ϕ!ψ!�

2 � ϕ!�
2ψ!. �

The next result will be used in solving the extension problem in Br′(1 | KU2).

Proposition 5.14. The cohomological Brauer group relative to KOnr
2 is

Br′(1K | KOnr
2 ) = Z/8 ⊕ Z/8.

Proof. Note that 1K → KOnr
2 is the descendable Z

×
2 Ẑ Galois extension corresponding to the proétale

spectrum p∗E of Lemma 5.12. We will compute the relative Brauer group Br′(1K | KOnr
2 ) by means of the

descent spectral sequence

Hs(Z2 × Ẑ, πtBPic(KOnr
2 )) 
⇒ πt−sBr′(1K | KOnr

2 ),
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which collapses at the E3 page since Z2 × Ẑ has cohomological dimension two for profinite modules. To
compute the E2-page, note that

Pic(KOnr
2 ) = Z/8{�KOnr

2 } and π0GL1(KOnr
2 ) = W

×,

by C2-Galois descent from KUnr
2 := E(F2, Ĝm) � KU2 ⊗S SW. The action on Pic(KOnr

2 ) is trivial, while the
action on π0GL1(KOnr

2 ) is trivial for the Z2-factor, and Frobenius for the Ẑ-factor. In particular, note that
H0(Ẑ,W×) = Z

×
2 ; using the Ẑ-equivariant splitting W

× � F
×
2 × U2 (where U2 = {x : ν(x − 1) ≥ 2} ∼= W), we

see that

H1(Ẑ,W×) ∼= H1(Ẑ,F
×
2 ) ⊕ H1(Ẑ,W)

∼= 0 ⊕ lim−→ H1(Z/n,W(F2n ))

= 0

by Hilbert 90. This implies that H2(Z2 × Ẑ, π0GL1(KOnr
2 )) = 0, since cd(Z2) = cd(Ẑ) = 1 for profinite

coefficients. The (−1)-stem of the E2-page is hence concentrated in filtration one, and agrees with the
E∞-page in this range. Thus,

Br′(1K | KOnr
2 ) = H1(Z2 × Ẑ,Z/8) = Z/8 ⊕ Z/8.

�

Putting the pieces together, we can compute the group Br(1 | KU2):

Theorem 5.15. The relative cohomological Brauer group at the prime two is

Br′(SpK | KU2) ∼= Z/8 ⊕ Z/4.

Proof. Based on Figure 5, what remains is to compute the extension from Br′(1K | KO2) ∼=
Z/8{(KO2, �KO2)} to Br(KO2 | KU2)

1+4Z2 ∼= Z/4{(KOnr
2 , �2KOnr

2 )}. But both (KO2, �KO2) and (KOnr
2 , �2KOnr

2 )

split over KOnr
2 , so that the inclusion of Br′(1K | KU2) in Br′(1K) factors as

Thus Br′(1K | KU2) ↪→ Z/8 ⊕ Z/8, which implies the claim. �

5.3.2 Generators at the prime two.
To deduce Theorem A from Lemma 5.15 we will appeal to the results of Section 2.

Theorem 5.16. The relative Brauer group at the prime two is

Br1
0 = Z/8 ⊕ Z/4.

Proof. To lift the cohomological Brauer classes generating Br′(SpK | KU2) ∼= Z/8 ⊕ Z/4 to Azumaya
algebras, it is enough by Lemma 2.10 to prove that they are trivialised in some finite extension of 1K.
Recall from the previous subsection that:

1) The generator of the Z/4-factor is (KO2, �KO2) ∈ Br′(SpK | KO2) (Lemma 3.4), and detected by 2 ∈
Z/8 ∼= H1(Z2, Pic(KO2)). Since 2 is in the kernel of

H1(Z2, Pic(KO2)) → H1(4Z2, Pic(KO2)),
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Fig. 6. Detailed view of the Picard spectral sequence (Figure 2) in low degrees.

2) this cohomological Brauer class is trivialised in the Z/4-Galois extension KOh(1+16Z2)

2 , so

(KO2, �2KO2) ∈ Br′(1K | KOh(1+16Z2)

2 ) ∼= Br(1K | KOh(1+16Z2)

2 ) ⊂ Br0
1.

3) Similarly, the generator of theZ/8-factor is detected in the descent spectral sequence for 1K → KOnr
2

by (1, 0) ∈ Z/8 ⊕ Z/8 ∼= H1(Ẑ × Z2,Z/8). We claim that this generator is trivialised in the extension
(KOnr

2 )h(8Ẑ×Z2) � 1K ⊗S SW8, where SW8 := W+(F28 ). Indeed, since

(1, 0) ∈ ker
(
H1(Ẑ × Z2,Z/8) → H1(8Ẑ × Z2,Z/8)

)
4) and the relative cohomological Brauer group Br′(1K ⊗S SW8 | KOnr

2 ) is concentrated in filtration
s ≤ 1 of the Picard spectral sequence for 1K ⊗S SW8 → KOnr

2 , we see that

[(1, 0)] ∈ Br′(1K | 1K ⊗S SW8) ∼= Br(1K | 1K ⊗S SW8) ⊂ Br0
1.

�

Remark 5.17. Using Lemma 5.15, we can also completely determine the behaviour of the Picard
spectral sequence Figure 2. Recall the E2-generators specified in Remark 4.6.

• Under the base-change to KO2, the generators q2 and q6 map to the E2-classes representing P2, P6 =
P2

2 ∈ Br(KO2 | KU2). The splitting in Lemma 5.16 of the surjection Br0
1 � Br(KO2 | KU2) of Lemma

5.13 gives a canonical choice of classes Q2, Q6 = Q2
2 ∈ Br0

1 lifting these. In particular, q2 must also be
a permanent cycle.

• Since Br0
1 ⊃ Br(1K | KO2) ∼= Z/8, the classes q1, q′

2 and q4 must also survive, and detect Brauer classes
Q1, Q′

2 and Q4 trivialised over KO2. We have Q′
2 = Q2

1 and Q4 = Q4
1 for this choice.

In Figure 6 we have displayed the E∞-page of the descent spectral sequence, including extensions.
For the purposes of constructing explicit generators, we have also included the module
structure over H∗(Z×

2 ,Z/2) and H∗(C2,Z), as appropriate; in particular, in Figure 6a we display
multiplications by the generators

• χ ∈ H1(C2,Z/2) ∼= Hom(C2,Z/2),
• π ∈ H1(1 + 4Z2,Z/2) ∼= Hom(Z2,Z/2),
• β(χ) ∈ H2(C2,Z).
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Remark 5.18. From the form of the spectral sequence, it follows that the class in E7,5
2 survives to

E∞—this should have implications for the nonconnective Brauer spectrum of SpK, as defined
in [19].

Finally, we consider the consequences of Lemma 3.8 at the prime two. The units Z/4× ⊂ Z
×
2 ⊂ π01×

K

are not strict: for example, they are not strict in Morava E-theory by [8, Theorem 8.17]. In fact, we expect
that the descent spectral sequence for Gm(1K) � Gm(E(F̄2, Ĝm))h(Ẑ×Z

×
2 ) will yield

π0Gm(1K) ∼= Z/2 {1 + ε} ⊂ (π01K)× = (Z2[ε]/(2ε, ε2))×.

This will be discussed in future work. Nevertheless, we have the following corollary of Lemma 3.8:

Corollary 5.19. For any χ : C2 ∼= Z/2, we have

Q4
1 = Q4 := (KUh(1+4Z2), χ , 1 + ε) ∈ Br0

1.

Proof. The unit 1 + ε is strict by [10, Corollary 5.5.5], so the result follows from Lemma 3.8 since q4 =
β(χ) ∪ (1 + ε). �
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