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ON THE COBORDISM RING Q* AND A COMPLEX ANALOGUE,
PART I.*

By J. MILNOR.

This paper will prove that the cobordism groups a', defined by Thom
[15], have no odd torsion.' Furthermore, it is shown that certain related
groups 7r;,2nM(U U) have no torsion at all; providing that n is large. The
proofs are based on a spectral sequence due to J. F. Adams [1, 2].

The following is a brief summary of Thom's constructions. Let G be a

subgroup of the orthogonal group O... (More generally one could start with

any Lie group G, together with a specified representation into On.) Beginning

with a universal bundle for G we can form:

1) The weakly associated bundle having the disk Dn as fibre. Let
7r: E -> B (G) denote the projection map of this bundle.

2) The weakly associated bundle having the sphere S'-1 as fibre. Let
dEC E denote the total space.

The Thoom space MI(G) is now defined as the identification space obtained
from E by collapsing OE to a point.

Taking G to be the rotation group SO C O,,, Thom showed that the
hornotopy group 7ri+,M(SO.) is independent of n, providing that n is large.

He showed that this group is isomorphic to the "cobordism group" O'; and
determined its structure up to torsion. The 2-torsion subgroup of O' has
recently been determined by C. T. C. Wall. Hence the assertion that Q2i has

no odd torsion completes the description of this group.

Let M(UnU,) denote the Thom space for the unitary group U. C 02n.
In Part II of this paper it will be shown that the stable homotopy group
i2+24M (Uff) can be interpreted as a "complex cobordism group." Part I will

determine the structure of this group without attempting to interpret it.

* Received July 27, 1959.
1 Added in proof. This result has been obtained independently by B. G. Averbuch,

Doklady Akademii Nauk SSSR, vol. 125 (1959), pp. 11-14. The results on complex
cobordism have been obtained independently by Novikov.
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506 J. MILNOR.
The first section proves several lemmas concerning the Steenrod algebra,

which are needed later. The second section describes the Adams spectral
sequence, which relates the cohomology module of any space to the stable
homotopy groups of the space. Sections 3 and 4 complete the argument by
computing the cohomology modules of l ( U,0) and 111 (SOn) respectively.

1. Lemmas concerning the Steenrod algebra. Let A denote the Steen-
rod algebra corresponding to a fixed prime p. (See Cartan [6], Adem [3].)
The Bochstein coboundary operation will be denoted by QO E Al. The two-
sided ideal generated by QO in A will be denoted by (QO).

LEMMA 1. The Steenrod algebra containts a subalgebra AO with the
following properties.

(i) A, is a Grassmann algebra over Zp with generators Qo, Q,*
of odd dimension.

(ii) A is free as a right A,-module.

(iii) The identity map of A induces an tsomorphism between the left
A-modules A OAO Zp and A/ (QO).

[Explanation of (iii). The field Zp is considered as a left AO-inodule
with QZp = 0. Hence A OA Zp is the quotient of A by the left ideal
AQO+AQ,+AQ2+ *- ]

Proof for the case p odd. We will first prove the corresponding state-

ments with left and right interchanged. According to Milnor [10, Theorem
4a]:

(1) There is a basis for A over Zp consisting of elements QoeoQel CPR.

Here the integers eo, e,, * should be 0 or 1, and almost all zero. The letter
R stands for a sequence (r,., r2, ) of non-negative integers, almost all zero.

[Explanation. The element 'P is a complicated polynomial in the
Steenrod operations, with dimension E r1 (2pi -2). For the special case
R = (r, 0, 0, 0 * ) the element 'PR is equal to the Steenrod operation 'Pr.
The element Qi of dimension 2pi - 1 can be defined inductively by the rule
Q + 1 P'Q E Qp P.]

Furthermore:

(2) The elements Qi are odd dimensional, and satisfy QiQj + Q1Qi = 0,
QiQ = O.
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GOBORDISM RING 0?*, PART I. 507

Thus the Qi generate a Grassmann algebra which may be denoted by
A, C A. Clearly A is free as a left A,-module, with basis {'PR}.

Consider the right ideal QoAA + Q,A + Q2A + - . The following
idenitity (see [10, Theorem 4a]) proves that this is also a left ideal. Define
p~1r as the sequence (0,. , 0, i, 0,. ) with pi in the j-th place.

(3) 'PRQi is equal to Q EQ.+j9R-pAj, to be summed over all
j > 0 for which R - p zAj is a sequence of non-negative integers. (That is,
all j for which r3 ? pt.)

Thus QoA + Q1A + is a two-sided ideal which contains QO, and
therefore contains (QO).

As a special case of (3), the identity PAjQoi= Qo9PAj + Qj is valid.
Thus the elements Qj belong to the ideal (QO). This proves that the ideal
QoA + Q1A + * * is equal to (QO). Dividing A by these ideals, it follows
that Zp ?AO A is isomorphic to A/ (Qo).

This proves Lemma 1 for p odd, except that right and left have been
interchanged. To complete the proof it is only necessary to recall:

(4) There exists an anti-automorphism of A; that is, a ZZ,-isomor-
phism c: A-- A satisfying

c (xy) d (-1 x di yC (y) C (X).

Furthermore, c carries Qi into - Qi.

This is proved in [10, ? 7]. Clearly Lemma 1 follows (for p odd).

LEMMA 2. The elements cpR R A yield a basis over Zp for the quotient
algebra A/ (QO).

Proof for p odd. Recall that {'PR} forms a basis for A, considered as a
left Ao-module. Hence it forms a basis for Z4 A0 A = A/ (Qo) over Z., which
completes the proof.

Conventions. The sum R + R' of two sequences is defined as the term
by term sum, and nR denotes the sequence (nr1, nr2, ). The binomial
coefficient (R, ') is defined as the product over i of (r+ r')!/r!ri!. The
symbol Ai stands for a sequence with 1 in the j-th place and zero elsewhere.

Proof of Lemmas 1 and 2 for the case p = 2. The Steenrod algebra over

Z2 has a basis consisting of elements SqR of dimension r1 + 3r2 + 713 + *

(See [10, Appendix 1].) Define 'PR to be Sq2R and define Q>1 to be SqA.
(For example QO = SqA1 - Sql which checks with the definition of Q0O as the

This content downloaded from 24.59.112.61 on Tue, 26 Aug 2025 17:59:51 UTC
All use subject to https://about.jstor.org/terms



008 J. MILNOR.
Bochstein coboundary operator.) Then we will prove Assertions (1), (2),
(3) and (4) above. Using these, the proof of Lemmas 1 and 2 can be carried
out just as for p odd.

The formula for products SqR'SqR is rather complicated; however the
following special case will suffice.

(5) If E is a sequence satisfying et ? 1, then SqESqR is equal to
(E, R]) SqE+R.

For a proof see [10, Corollary 4 and Appendix 1]. As examples, taking
E = Aj+,, R =- Aj+1 we find that QiQj- QjQ= , and that' QQ =- 0. This proves

Assertion (2) for the case p = 2.

By induction the product Q0eiQ1e2* is equal to SqE. Furthermore, a
binomial coefficient of the form (E, 2R) is always odd, hence SqESPR = SqESq2R

is equal to SqE+2R. Since every sequence can be written uniquely in the form

E? +22R, it follows that these elements form a basis for A over Z2. This
proves Assertion (1).

Proof of Assertion (3) for p = 2. Direct application of the general
product rule [10, Theorem 4b] shows that

Sq2RSqAi+l = SqAt+lSq2R + z Sq2R-2i+1Aj+A+i1+ji

to be summed over all j? 1 for which rj_ 21. On the other hand, using
Assertion (5), the j-th term on the right can be written as

SqAi+l+iSq2R-2i+l = Q- jPR-21.

Thus 'pRQ, - Q'P R + E Q,+jpR-2AiJ, as required.

Since Assertion (4) is also true for p = 2, this completes the proof of
Lemmas 1 and 2.

[Remark. There is one essential difference between the case p odd and
the case p = 2. For p odd the elements ?pR span a subalgebra of A isomorphic

to A/ (Qo); but for p = 2 there is no such subalgebra. This can be seen
using the identity Sq2Sq2 = Sq'Sq2Sql #/ 0.]

The symbol A, will denote the sequence (0, 0,7

LEMMA 3. If p is odd, then the cohomology operations 'PR have the
following properties.

(1) For x,yEH*(X;Z.) the element 'P R(Xy) is equal to

R+ (R2RX) (apR2y).
RI+R2=R
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COBORDISM RING Q*, PART I. 509

(2) For a 2-dimensional cohomology class t E IH2(X; Z), the element
cpRt iS equal to t1' if R= A; and is zero if R is not equal to one of the
sequences A0, A1, A2, * -

Proof. The first assertion follows from [10, Lemma 9]. For the special
case R =rA,, the second assertion is well known. That is:

'P0t= , PIt=tp, 'prt O0 for r > 1.

But every 'PR is a "polynomial" in the Steenrod operations pr. Proceeding
by induction on the complexity of this polynomial, we see that PRt must have

the form ktl, where kc E Zp is some constant, and 2i is the dimension.

To evaluate kc it is sufficient to consider one example. As example, let

X be the 2i-skeleton of the Eilenberg-MacLane complex K (Zp, 1). According

to [10, Lemmas 4, 6] we have:

A(t)-==t (04 + oo e l + ***
hence

'PRt - <PR, >tp-

UJsing the definition of 'PR, this is equal to tv' if R = Ai and is zero otherwise.

This completes the proof.

For the prime p = 2, both assertions of Lemma 3 would be false. How-

ever the following modified assertions are proved by the same method:
(1') SqR(xy) == (SqR1X) (SqR2y).

R1+R2=R

(2') If aCH1(X;Z2), then SqAia-a2 ; and SqRa 0 for R not of
the form Ai.

Using these statement the following result will be proved.

LEMMA 3'. Let p- 2 and let H* (X; Z2) be a cohomology ring which is
annihilated by the operation QO = Sql. The assertions (1) and (2) of Lemma
3 are valid as originally stated.

Proof of (1). If R1 is a sequence containing some odd integer, then
SqRl belongs to the ideal (QO) (compare the proof of Lemma 1), and there-
fore annihilates the cohomology of X. Thus in formula (1') above, it is
sufficient to consider sequences R1 and R2 which are "even." This proves
assertion (1).

Proof of (2). It will be convenient to weaken the hypothesis on X, and
assume only that Sq1t =0. Then just as in the proof of Lemma 3, it follows
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510 J. MILNOR.
that 'P Rt has the form lct. In order to determine the constant k C Z2, it is
sufficient to consider the example of a real projective space X, with t a2,
Using (1') and (2') it is seen that IPRt equals t2l for R A? and equals -zero
otherwise. This completes the proof of Lemma 3'.

2. The spectral sequence of Adams. Let X, Y be finite CW-complexes
with base point denoted by o; and let A be the Steenrod algebra for some fixed

prime p. Thus the cohomology group H* (X mod o; Zp ) is a graded left
A-module.

The rn-fold suspension SmX is obtained from the product X X Irn by
collapsing (X X aIm) U (o X In) to a point. Here Im denotes the unit n-cube.

The stable track group {X, Y}rZ is the direct limit under suspension of the
group of homotopy classes of maps S'n+nfX .* SmY. (The integer n may be

positive or negative.)

THEOREM OF ADAmS. There exists a spectral sequence {ErSt, d.} deter-
mined by X, Y and p such that

E28t = ExtAst(H*(Ymod o; Zp),IHI(Xmod o; Zp)))

and such that

E00st = B&t/BS+l t+1

where {X_ Y} - B0n D B''+' D B2 +2 D is a certain filtration. The
intersection nBsn+s of these groups is equal to the subgroup of {X, Y}n

s

consisting of elements whose order is finite and prime to p. Each succeeding

terrn Er+, of the spectral sequence is equal to the homology of Er with respect
to the differential operator

dr: Erst - Ers+r t+r-l;

and Er,, is the limit as r -> oo of Er.

The functor ExtA8t is defined as follows. If M1 and N are graded left
A-modules let OmAt (11, N) =ExtAOt (, N) denote the group of A-homo-
morphisms M -> N of degree - t. Choose a projective resolution

d d
*2 * P: P1 PQ- M ->0,

where the A-homomorphisms d have degree zero. Then ExtAst (M, N) is
defined as the homology group (kernel modulo image) of the sequenced* d-

1_IOnA' (P,_1, N) 3 HOMAt (Ps), N) -- IOMAt (P,,,, N) .
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COBORDISM RING Q*, PART I. 511

It will be convenient' to add -an E1 term to the spectral sequence by defining

Eist HOMAt (Psn N),~ di == d*.

For the special case X ==SO this theorem is proved in Adams [1]. The
more general case is proved by the same argument. It is only necessary to
replace the homotopy group {SO, }n by the track group {X, }, throughout.
See Adams [2].

More generally the finite complex Y may be replaced by a "spectrum"
in the sense of Lima [9] and Spanier [13]; or by an "object in the stable
category" in the sense of Adams [2]. For our purpose the following defini-

tion will be convenient. A stable object Y is a sequence of CW-complexes
(Yo, Y1, * ) such that each suspension SY, is a subcomplex of Y+1. The
imbedding SYi C Y+1 must be explicitly given.

Given such an object, define the chain group C, (Y) as the direct limit
under suspension of the chain groups C" (Yi mod o). Homology and co-
homology groups are then defined as usual. Similarly, for any finite complex

X define {X, Yf =- dir.lim.{S4X, Yi},. The abbreviation mrnY will sometimes

be used for {S0, Y}n.

Remark. The suspension homomorphism of chain groups should be
defined by the correspondence

a a X t, for a C C* (Yi mod o), t C C1 (I mod AI),

so as to commute with boundary homomorphisms.

Exlamples. Any finite complex Y may be defined with the stable object

Y-(y,Sy,S2Y,.)

We will see later that the suspension of the Thom space M (SOn) is imbedded

naturally as a subcomplex of M (SO,+,). Hence the stable Thorn object

M(SO) = (o, M(SO1), M(SO2), *..)

is defined. Note that the track group

{SO, M(SO) },n - dir. lim. 7r.+^, (M (SOj))

is isomorphic to the cobordism group i2n.

Assertion. The theorem of Adams remains valid if the finite complex Y

is replaced by any stable object Y; providing that the following finiteness
condition is satisfied. The groups C. (Y; Z) should be finitely generated, and

should vanish for n less than some constant.
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512 J. MILNOR.
This can be proved in two ways. One can simply take the direct limit

of the spectral sequences for the "finite sub-objects " of Y; or the theorem can

be proved from the beginning in the stable category. See Adams [2]. The
second approach is preferable, since the proof is much easier in the stable
category. Details will not be given.

Using the Adams spectral sequence we will prove the following key
result. Let Y be an object such that Hn (Y; Zp) is zero for n odd. Then
H*(Y;Zp) is annihilated by the element QO, and hence can be considered as
a graded module over the quotient algebra A/(Qo).

THEOREM 1. If H*(Y;Zp) is a free A/(Qo)-module with even dimen-
sional generators, and if C* (Y; Z) satisfies the finiteness condition, then the

stable homotopy group {S0, Y},n contains no p-torsion.

The idea of the proof is to compute- the spectral sequence for the track

group {X, Y},), where X is a "co-Moore space" having cohomology groups
HII(Xmodo;Z) equal to Z. for i=kc and equal to zero for i#,k.

The following universal coefficient theorem has been proved by Peterson

[11]. There exists an exact sequence

0 -O {Sk, Y} , 0 Zp -> {X, Y}). -> Tor ( {Sk, Y}nf1, Zp) -* 0.

An immediate consequence is the following.

LEMMA 4. If {SO, Y}n contains p-torsion, then {X, Y}m must be non-
trivial for two consecutive values of m.

On the other hand, assuming that H* (Y; Z) is a free A/ (QO) -module
on even dimensional generators, we will see that {X, Y)m is zero for m odd.
This will prove Theorem 1.

Construction of an A-free resolution for H* (Y; Z4p).

First consider the Grassmann algebra Ao and the AO-module Zp.
According to Cartan's theory of constructions, to each Grassmann algebra AO

there corresponds a twisted polynomial algebra P and a differential operator d

on AO 0 P so that this tensor product becomes acyclic. If AO has generators

QO, Ql, * , then P has a basis over Zp consisting of elements b (ro,0r, * )
of dimension Eri(dimQ +1). The integers ro,ri, r * should be non-
negative and almost all zero. The differential operator d is defined as follows.

(In order to make the signs come out correctly, we let d act on the right.)
For any a C Ao:
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COBORDISM RING Q*, PART I. 513

a 0b( o,r, * *)d = aQ 80b(r0,* *,r- ,ri+l,*

suLmmed over all i for which ri > 0.

Proof that AO 0 P is acyclic. For a Grassmann algebra oii one generator,

see Cartan [5, p. 704, I]. But a Grassmann algebra with finitely many
generators in each dimension can be considered as a tensor product of Grass-

mann algebras with one generator. Hence the conclusion follows by applying
the Kiinneth theorem.

This conclusion can be formulated as follows. Let F8 be the free AO-
module generated by those symbols b (rO, r,, * ) for which rO + r1 + = * * s.

Then AO 0 P can be considered as the direct sum FO + F1 + * . The aug-
mentation e: Fo -- Z, is the Ao-homomorphism defined by b (0, 0, ) 1.
It follows that the sequence

d d e
* F1- >Fo0 -Z -*> 0

is an A(-free resolution of Z,.

Now apply the functor A 0A,, to this exact sequence. Since A is free as

a right AO-module, we obtain an exact sequence

** *- >A AOFl-*AOAOFO-*A AOZP-O

of left A-modules. Furthermore, each A ?A,, F is a free A-module. Thus we

have constructed an A-free resolution of A ?AO Z,.

According to Lemma 1, the A-module A/ (QO) is isomorphic to A ?AO Z,.

Hence in order to form an A-free resolution of any A/(Qo)-free module,
it is sufficient to take the direct sum of a number of copies of the above
resolution. This proves the following.

LEMMA 5. Let H*(Y;Zp) be a free module over- A/(Qo) with basis
{y4,}. Then there exists an A-free resolution

* -- Fl'- yFto'-->H*(Y; Zp,) - ,

where each F8' has a basis consisting of elements ba (ro, rl* ), with
rO + rl + = s. The dimension of such a basis element is equal to
dimya,?+2ri(pi-1) +s.

[Explanation. The integer s has been added to the dimension of
ba (ro,r1, ) so that the homomorphisms d': F'-F81' will have degree
zero. ]
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514 J. MILNOR.
Now consider the complex X consisting of a circle with a 2-cell attached

by a map of degree p. Let

xE H1(Xmodo;Z,), Q0xC H2(Xmodo;Z,)

be generators. Then the term

E1st = HomAt (F8', H* (X mod o; Zr,))

of the spectral sequence for {X, Y} has a basis consisting of the following
elements.

(1) For each bay (r0, r1, ) of dimension t + 1, the homomorphism
ha (r0,r,, r1, ) which carries this basis element into x and carries the other
basis elements into zero.

(2) For each bay (r,, r1, ) of dimension t + 2, the homomorphism
ha' (r, r1,* * ) which carries this basis element into Q0x and carries the other
basis elements into zero.

The boundary operator d1: E1st *E8+ t is given by

d,ha(rO,,r, ) ha' (rO,+ 1, rl, )
and

diha'(ro,** ) O.

Thus E2st has as basis the set of elements ha'(O, r1, r2, ), with total
dimensions t - s equal to dim ya + Y 2ri (pi -1) -2.

If the integers dim ya are all even, then everything in the spectral
sequence is even dimensional. It follows that {X, Y}m is zero for m odd.
Together with Lemma 4, this completes the proof of Theorem 1.

3. Computation of H* (B (U.); Zp) and H* (M(U); Z,). This section
will complete the study of M (U,U) by constructing a stable object

M(U) =- (0, o, M(U1), SM(U1), M(U2), SM(U2), );

and showing that H* (MJ(U) ; Z.) is a free module over A/(Q0), with even
dimensional generators, for any prime p.

The proof of this assertion is an immediate generalization of the argu-

ment which Thom used to compute the non-orientable cobordism group.
In our terminology, Thom showed that H* (M(O) ; Z2) is a free A-module.
(See [15, pp. 39-42].)

First a description of H*B (Un). The coefficient group Z. is to be
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COBORDISM RING Q*t PART I. 51D

understood, where p is some fixed prime. (However, integer coefficients could

equally well be used.) Let TX C UX be the n-torus consisting of diagonal
unitary matrices. There is a natural map B (T,) -> B (Un) of classifying
spaces. The cohomology algebra H*B(Ta) is a polynomial algebra on
generators t1, , tX of dimension 2. According to Borel and Serre [4]
we may identify H*B(U U) with the subalgebra consisting of all symmetric
polynomials.

A basis for H2'B (Un) over Z. is given as follows. Let i, ik
range over all partitions of r such that the "length" k1 is less than or equal

to n. (A partition of r is an unordered sequence of positive integers with
sum -r.) Define s (w) as the "smallest" symmetric polynomial which contains

the term t1,? * . Wk-

[The notation E t,jL* t.. is commonly used. A more precise definition
would be the following. Consider all distinct monomials which can be obtained

from t:1t t k by permuting the n variables; and let s (Ct) denote their
sum. It is clear that these elements s(w) from a basis for the vector space of

symmetric polynomials.]

Next we must study the Thom complex M(Un). For a group G C SOm
recall that M (G) is the quotient space E/IE, where E is an oriented rn-disk
bundle over B(G). Any CW-cell subdivision of B(G) induces a cell sub-
division of M(G) as follows. For each open i-cell e of B(G), the inverse
image e' in E - OE is an (i + m) -cell. Clearly, M ( G) is the disjoint union
of these cells e', together with the base point. It is not difficult to verify that
M11(G) thus becomes a CW-complex.

Let G X 1 denote the group G, considered as a subgroup of SOm+1, The

CW-complex ll (G X 1) can be identified with the suspension SM (G) as
follows. Let Dm denote the in-disk and I the unit interval. Map Dm X I
onto DnI+1 by the correspondence

(x1,* , xm), y x1, *i*, xm., (2_1 1 1 . .xM 2)1.

This correspondence gives rise to a map f of E X I onto the total space E,
of the associated (m + 1) -disk bundle. Since f carries (OE X I) U (E X AI)
onto the boundary DE1, it follows that f gives rise to a map f': SM (G)
- M(G X 1). But f is a relative homeomorphism, hence f' is a homeomorphism.

The Thom isomorphism

cp: LHB(G) vHi+m(M(G) mod o)

is defined as follows. (see [14, Theoreme I. 4] ). The cohomology of
M (G) mod o will be identified with the cohomology of E mod DE. It can be
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516 J. MILNOR.
verified that H"f (E mod aE; Z) is an infinite cyclic group, with standard
generator u. The isomorphism ( is now defined by the formula +(a) -7r*(a)u,

where ir: E ->B(G) denotes the projection map. It follows from this defi-
nition that the following diagram is commutative:

S

Hi+m(M(G) modo) H1+m+l(M(G X 1) modo)f c
HIB(G) H'B(G X 1).

Here S denotes the cohomology suspension, defined using the cohomology cross
product.

Now let us specialize to the case G = U,, C SO2,f. The classifying space
B(Us) has a standard cell subdivision due to Ehresmann [7] and B(Un)
is a subcomplex of B(Us+,). Hence M(U U) is a CW-complex and the two-
fold suspension

S2M (Un) = M(Un X i X 1)

is a subcomplex of M(Un+1). Thus

M(U) - (0, O, M(U1), SM(U1), M(U2),*

is a stable object. The track group {S0,M(U) }k is clearly isomorphic to the
stable homotopy group ?7k+2n (M ( Un)), with n large.

On the other hand the complexes B (U1) C B (U2) C . . . have a union
B(U) which is again a CW-complex. The isomorphisms

:H4B (U,,) ->H + 2(U) mod o)

give rise, in the limit, to an isomorphism

0: HiB (U)->HiM (U).

It follows that H*M (U) has a basis over Z. consisting of the elements
Os (o), where a ranges over all partitions.

THEOREM 2. The cohomology H*M(U) with coefficient group Zp is a
free module over A/(Qo), having as basis the elements O(s (), where A ranges

over all partitions which contain no integer of the form pi -1.

Together with Theorem 1, and the fact that M (U) has no odd dimensional
cohomology, this clearly implies the following.

THEOREM 3. The groups {S, M (U)}m have no torsion.
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The full structure of these stable homotopy groups can now be deter-

mined, using the fact that the stable Hurewicz homomorphism

{SO, Y}m Hm (Y; Z)

is a E-isomorphism, where l denotes the class of finite groups. (See Serre
[12] for definitions. This particular assertion is not in Serre's paper, but
is well known.)

COROLLARY. The group {SO,M(U)}mi7rmMM(U) is zero for m odd,
and is free abelian for m = 2n, the number of generators being equal to the
number of partitions of n.

The proof of Theorem 2 will be based on a peculiar partial ordering of

partitions, due to Thom. Given a sequence R = (r1, r2, ), define .R as
the partition of E rj (pi -1) consisting of rj copies of pJ - 1 for each j _ 1.

Thus every partition w can be written uniquely in the form AR, where
A hi * * * hi contains no integer of the form pi -1. Let 1 denote the
length of A and let > h1 + * * * + hi denote the sum of the integers in A.
Similarly, given a second partition o', define 1' and V'.

Definition. w' is less than o if 1' < 1, or if 1' = 1 and ' > E. (Note
that integers of the form pi - 1 are completely ignored in this definition.)

LEMMA 6. The cohomology operation TR carries Os(A) C H*M(U) into
/s(AwR) plus a linear combination of elements cs(w') with 0)' less than XOR.

Proof. It is clearly sufficient to prove the corresponding assertion for

H*M(Un), where n is large (say n 1 + r + r2+ ) but finite. Con-
sider the cross-section

f: B(Un)->E,e9E

of the 2n-disk bundle, determined by the center points of the disks. The induced

cohomology homomorphism f* carries the fundamental cohomology class
u c H2n (E mod OE) into the characteristic class

Cn ==ti . . *tnls(l* * -1)EH2nB (Un).

(See Thom [14], Borel and Serre [4].) Hence f * carries the general element
+(a) ==7r*(a)u C Hj+2n(Emod0E) into the cup product ac C Hi+2nLB(Un).
But the correspondence a-a acg is a monomorphism; hence f* is a nmono-
morphism. Thus in order to prove Lemma 6 it is sufficient to prove the
following.

9
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518 J. MILNOR.
Assertion. cpR(s(A)c,) is equal to S(AckwR)cn plus a linear contbination

of elements s(w')c.n with )' less than AwR.

Consider a typical monomial t1l *. tn/ n of the sum s (A) c8. Here 1 of

the integers a1, * , a,, are equal to the integers 1 + h1, * * *, 1 + hi in some

order; while the remaining n -1 integers ai are equal to 1. According to
Lemma 3 we have

'P R (t1ai . . . t,la,) E ( Rital) . . . (9 Rtan)
RI+ +Rf,=R

This formula is valid even for the case p 2, since B (US) has no odd
dimensional cohomology. (See Lemma 3'.) The expression 'P Rjt,aj is equal
to some constant kc. times t,, where b& ? a,. The case bi = a, can occur only
if R=-- O.

Each such monomial (c1 . ..n) t16b1 *. t,,b_ contributes to a symmetric

polynomials s (W') cn, where w' denotes the partition obtained from the sequence

bi-1, , 1 b- 1 by deleting zero. We wish to choose Rl, , Rn so that
this partition o' is as " large " as possible, in the sense of the partial ordering.

The first requirement is that as few as possible of the integers b, -1 should

be of the form pi - 1. But if a =- 1, and if the constant As, is non-zero, then
'P Ritiai is necessarily of the form ttPJ. (See Lemma 3.) Thus the best we
can do is to choose Ri, , Rn, so that bi is a power of p only if a* = 1.

The second requirement in order to make w' "large" is that the sum of

all bi - 1 for which bi is not a power of p should be as small as possible.
Evidently, the best we can do in this direction is to choose R, = 0 whenever
ai > 1; so that b, will be equal to al whenver a, > 1.

Now consider the sum of all terms ('PRIt1aI) . (CPRnt,na) for which this

last condition (that R, must be equal to zero whenever ai > 1) is satisfied.
Each such term has the form t1bi tbn, where 1 of the integers b1, ,bn
are equal to 1 + h1, *, 1 + hi in some permutation; and the remaining
n - 1 integers b, are powers of p. Recall that 'P Rit, is equal to tiPj if Ri-A

and is zero otherwise. Hence the relation R, + - - +- R - R=1 -- (r1, r2,

implies that a given power pi, j ? 1, must occur exactly rj times in the
sequence b1,- * , b.. The integer 1 must therefore occur n - 1- r1 - r.- * *
times in the sequence b1, , bn. Taking the sum of all monomials t1bi * * tnb.

which satisfy these conditions, we obtain exactly the polynomial S (XOR) cn.
This completes the proof of Lemma 6.

Proof of Theorem 2. The equations

Cp RIS (A) -=,S (AWR) + E (constant) Os(A'wR )
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with all A' less than A, can be solved inductively, giving rise to equations:

O S(Ak)R ) i 9R"s (A) + > (constant) 'P R'4S (XI) ,

with all A' less than A. (Only a finite number of terms are involved, since
H*M (U) is finitely generated in each dimension.) But the elements Os (kwR)

are known to form a Zp-basis for H*M (U). Therefore the elements cPR4s (x)

also form a Z.-basis for H*M(U). Since {P-R} is a basis for the vector space
A/(Q0) over Z,, this implies that the elements ps(A) form an A/(Q0)-basis
for H*M(U). This completes the proof of Theorem 2, and hence Theorem 3.

4. Cohomology computations for B(SO2,t) and M(SO). Consider the
torus T, C U? C SO2n, and the corresponding homomorphism

H" (B (S?21) ; Zv) ->H* (B (T,,); Zp).f

According to Borel and Serre [4], if p is odd, then the first algebra may be

identified with the subalgebra of the second consisting of all polynomials
a + t1 tu,b, where a and b are symmetric polynomials in the elements
t12, ...tn2. Thus a basis for H* (B (SO,2) ; Zr,) over Z, is given by the
elements s(o) and s(0)t1 * tn, where X - ii * * ik, l-< n, is a partition
into even integers. Letting n tend to infinity, a Zp-basis for H* (B (SO) ; Z)

is given by the elements s(o), where X ranges over all partitions into even
integers.

Carrying out an argument completely analogous to that in Section 3,
we construct a stable object

M(SO) = (o, M (S01), M (S02), )

and prove the following.

THEOREM 4. Let p be an odd prime, and let A = h. h, range over
all partitions into integers hi which are even and not of the form pi - .
Then H*(M(SO) ;Zp) is the free A/(Q0)-module having as basis the elements
Os (A).

Together with Theorem 1 this proves the following

THEOREM 5. The cobordism groups ai = ,j(M(SO)) contain no odd
torsion.

C. T. C. Wall has recently proved that an element in the 2-torsion
subgroup of f2i is completely determined by its Stiefel-Whitney numbers.

Together with Theorem a, this proves the following conjecture of Thom.
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020 J. MILNOR.
COROLLARY 1. If the Stief el-Whitney numbers and the Pontrjagin

numbers of a compact, oriented, differentiable manifold Vi are all zero,
then Vi is a boundary.

As special cases:

COROLLARY 2. Suppose that V* can be imbedded in euclidean space so
as to have trivial normal bundle. Then V* is a boundary.

The proof is clear.

COROLLARY 3. Suppose that HB (Vi; Z2) is isomorphic to H (Si; Z2).
Then Vi is a boundary.

Proof. The Stiefel-Whitney number wi[Vi] is equal to the Euler charac-

teristic reduced modulo 2; hence is zero. If i =4n, then the Pontrjagin
number p,[Vi] is zero by the index theorem (Hirzebruch [8]). Since the
other characteristic numbers of Vi are trivially zero, it follows that Vi is a
boundary.

Concluding Remariks. There are other homotopy groups which may be

accessible, using the Adams spectral sequence. For example, the symplectic
groups Sp (n) C S04f, give rise to a stable object

M(Sp) - (o, o, o, o, M(Sp(l)), SM(Sp(l)),

S2M(Sp(l)), S3M(Sp(l)), M(Sp(2)),' . .

Assertion. The groups 7riM (Sp) have no odd torsion.

This can be proved directly from the spectral sequence; or can be derived
from Theorem 5, using the natural map M(Sp) -> M (SO).

Problem. Can one compute the spectral sequence for 7r*M (Sp) corres-
ponding to the prime p = 2 ?

Similarly, the representations Spin (n) SO,, give rise to a stable object.

M (Spin) = (o, M (Spin (1) ), M (Spin (2) ),. .

Again there is no odd torsion; but the case p = 2 seems difficult. As a final

question, consider the stable object M (SU) corresponding to the special unitarv
group.

Problem. What can be said about 7r*.M(SU) ?

This content downloaded from 24.59.112.61 on Tue, 26 Aug 2025 17:59:51 UTC
All use subject to https://about.jstor.org/terms



COBORDISM RING W, PART I. 521

REFERENCES.

[1] J. F. Adams, " On the structure and applications of the Steenrod algebra,"
Commentarii Mathematici Helvetici, vol. 32 (1958), pp. 180-214.

[2] , " Sur la theorie de l'homotopie stable," Bulletin de la SociWt6 Math6-
matique de France, vol. 87 (1959), pp. 277-280.

[3] J. Adem, " The relations on Steenrod powers of cohomology classes," Algebraic
geometry and topology, Princeton, 1957, pp. 191-238.

[4] A. Borel and J.-P. Serre, " Groupes de Lie et puissances reduites de Steenrod,"
American Journal of Mathematics, vol. 75 (1953), pp. 409-448.

[5] H. Cartan, "Sur les groupes d'Eilenberg-MacLane II," Proceedings of the National
Academy of Sciences U. S. A., vol. 40 (1954), pp. 704-707.

[6] , " Sur l'iteration des operations de Steenrod," Commentarii Mathematici
Helvetici, vol. 29 (1955), pp. 40-58.

[7] C. Ehresmann, " Sur la topologie de certains espaces homogenes," Annals of
Mathematics, vol. 35 (1934), pp. 396-443.

[8] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie,
Springer, 1956.

[9] E. L. Lima, " Stable Postnikov invariants," American Mathematical Society
Notices, vol. 5 (1958), abstract number 544-27, p. 215.

[10] J. Milnor, "The Steenrod algebra and its dual," Annals of Mathematics, vol. 67
(1958), pp. 150-171.

[11] F. Peterson, " Generalized cohomotopy groups," Americart Journal of Mathematics,
vol. 78 (1956), pp. 259-281.

[12] J.-P. Serre, " Groupes d'homotopie et classes de groupes abeliens," Annals of
Mathematics, vol. 58 (1953), pp. 258-294.

[13] E. Spanier, " Function spaces and duality," Annals of Mathematics, vol. 70 (1959),
pp. 338-378.

[14] R. Thom, "Espaces fibres en spheres et carres de Steenrod," Annales Scientifiques
de l'Ecole Normale superieure, vol. 69 (1952), pp. 109-181.

[151 - , " Quelques proprietAs globales de varietes differentiables," Commentarii
Mathematici Helvetici, vol. 28 (1954), pp. 17-86.

This content downloaded from 24.59.112.61 on Tue, 26 Aug 2025 17:59:51 UTC
All use subject to https://about.jstor.org/terms


	Contents
	p. 505
	p. 506
	p. 507
	p. 508
	p. 509
	p. 510
	p. 511
	p. 512
	p. 513
	p. 514
	p. 515
	p. 516
	p. 517
	p. 518
	p. 519
	p. 520
	p. 521

	Issue Table of Contents
	American Journal of Mathematics, Vol. 82, No. 3 (Jul., 1960) pp. 389-652
	Front Matter
	Seminuclear Extensions of Galois Fields [pp. 389-392]
	Regular Mappings Whose Inverses are 3-Cells [pp. 393-429]
	Basic Representations of Completely Simple Semigroups [pp. 430-434]
	Sur la Théorie de la Variété de Picard
[pp. 435-490]
	Characteristic Classes and Homogeneous Spaces, III [pp. 491-504]
	On the Cobordism Ring Ω<sup>*</sup> and a Complex Analogue, Part I [pp. 505-521]
	Solution of Some Problems of Division. Part IV. Invertible and Elliptic Operators [pp. 522-588]
	Homomorphisms of Commutative Banach Algebras [pp. 589-608]
	On Hypersurfaces with no Negative Sectional Curvatures [pp. 609-630]
	On the Rationality of the Zeta Function of an Algebraic Variety [pp. 631-648]
	Whitehead Products and the Cohomology Structure of Principal Fibre Spaces [pp. 649-652]
	Back Matter



