OPERADIC TENSOR PRODUCTS AND SMASH PRODUCTS

J. P. MAY

ABSTRACT. Let k be a commutative ring. FEo k-algebras are associative
and commutative k-algebras up to homotopy, as codified in the action of
an Eo operad; Ao k-algebras are obtained by ignoring permutations. Us-
ing a particularly well-behaved E algebra, we explain an associative and
commutative operadic tensor product X that effectively hides the operad:
an A algebra or E algebra A is defined in terms of maps & — A and
AKX A — A such that the obvious diagrams commute, and similarly for mod-
ules over A. This makes it little more difficult to study these algebraic objects
than it is to study their classical counterparts. We also explain a topological
analogue of the theory. This gives a symmetric monoidal category of mod-
ules over the sphere spectrum S whose derived category is equivalent to the
classical stable homotopy category. The existence of this category allows the
wholesale importation of algebraic techniques into stable homotopy theory.

There will not be time to go into this, but the algebraic theory has applica-
tions to mixed Tate motives in algebraic geometry and the topological theory
has applications to the construction and study of M U-module spectra, the con-
struction of generalized Kiinneth and universal coefficient spectral sequences,
a construction of the algebraic K-theory of S-algebras that includes Quillen’s
algebraic K-theory of discrete rings and Waldhausen’s algebraic K-theory of
spaces, a construction of the topological Hochschild homology of an S-algebra
that generalizes Bokstedt’s THH, and a completion theorem for equivariant
complex cobordism and any of its modules analogous to the Atiyah-Segal com-
pletion theorem in equivariant K-theory.

1. THE CATEGORY OF C-MODULES AND THE PRODUCT X

Let € be an operad in a cocomplete symmetric monoidal category . with prod-
uct ® and unit k. We are thinking of the category of differential graded modules
over a commutative ring k and will restrict to it shortly. In general, C = €(1) is
a monoid in .. In our algebraic context, this means that C is a DGA. We call
left C-objects C-modules in any case. In the algebraic situation, if ¥ is unital and
the augmentation € : C — k is a quasi-isomorphism, then the derived categories Zj,
and Z¢ are equivalent.

Via instances of the structural maps -y, we have a left action of C and a right
action of C®C on €(2), and these actions commute with each other. Thus we have
a bimodule structure on €(2). Let M and N be left C-modules. Clearly M @ N
is a left C ® C-module via the given actions. This makes sense of the following
definition of the “operadic tensor product X”.
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Definition 1.1. For C-modules M and N, define M X N to be the C-module
M@NZ%(Q) ®(C®(CM®N-

This definition deserves more study than it has been given. In special cases, it
has led to interesting algebraic results, which are joint work with Igor Kriz and
which I shall describe. These are largely motivated by applications to mixed Tate
motives, but I will not go into that. An analogous operadic smash product has led to
really rather spectacular results in topology, which are joint work with Elmendorf,
Kriz, and Mandell [5]. T will give an introduction to the parallel topological theory
at the end.

We concentrate on algebra. Here we have an operadic Hom functor Hom™ on
C-modules to go with the operadic tensor product. Since its precise definition is
dictated by the adjunction, I won’t bother writing it down.

Lemma 1.2. There is a natural adjunction isomorphism
Mc(M RN, P) = (M, Hom® (N, P)).
The product K is always commutative.

Lemma 1.3. There is a canonical commutativity isomorphism of C-modules
T:MXN— NK M.

Proof. Use the action of the transposition o € Xo on %(2) together with the trans-
position isomorphisms C® C - C® Cand M @ N — N @ M. a

Associativity is more subtle and requires an exceptionally well-behaved operad.
Although we are working algebraically, the following basic result comes from topol-
ogy.

Theorem 1.4. There is an Es, operad € = C.(L), where £ is the “linear isome-
tries operad”, for which there is a canonical associativity isomorphism of C-modules

(LXM)XN=LK(MXN).
In fact, for any j-tuple My, ..., M; of C-modules, there is a canonical isomorphism
M1|E|XM] g%(])@(ﬁ (M1®M]),

where the iterated product on the left is associated in any fashion. For j > 2, the
j-fold R-power C%J is isomorphic to €(j) as a (C,C?)-bimodule.

It is also true that €(j) is isomorphic to C as a left C-module. These properties
are quite miraculous. I will explain why they are true later, after describing some
of the implications. We restrict attention to this particular operad % from now on.
As long as we are considering E,, operads, there is no loss of generality: algebras
and their modules over other F., operads can be converted functorially to algebras
and their modules over &.

Note that k is a C-module via the augmentation C — k. The degeneracy map
o1:%(2) — €(1) = C induces a natural unit map.

Lemma 1.5. There is a natural map of C-modules A : kKN — N.

This map is not an isomorphism, but another special property of the linear
isometries operad implies that it is usually a quasi-isomorphism.

Lemma 1.6. 01 : ¥(2) — C is a homotopy equivalence of right C-modules.
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There is not time to describe it today, but there is a theory of cell modules over
DGA’s that is just like the topological theory of CW complexes or CW spectra,
except much simpler. Briefly, free modules on suspensions of k serve as analogs of
spheres and thus as the domains of attaching maps for algebraic cones. We pass
to derived categories by approximating general modules by quasi-isomorphic cell
modules. Via such cell approximations, the functors X and Hom®™ induce a derived

L
tensor product X and a derived Hom functor RHom® on P¢c. These functors are
nicely related to the derived tensor product and Hom functors on k-modules.

Proposition 1.7. If N is a cell module, then A : kKN — N is a quasi-isomorphism,
the functor MXIN of M preserves exact sequences and quasi-isomorphisms, and the
k-module MIXIN is naturally quasi-isomorphic to M ® N. Therefore the equivalence

of derived categories Do — Dy, induced by the forgetful functor from C-modules to
L L
k-modules carries K to ®.

Proposition 1.8. If N is any C-module, then the adjoint N — Hom®(k, N) of
A is a quasi-isomorphism and the functor Hom&(M, N) of M preserves ezxact se-
quences of cell C-modules. If M is a cell C-module, then the functor Homg(M, N)
of N preserves exact sequences and quasi-isomorphisms, and the k-module
Homg(M, N) is quasi-isomorphic to Hom(M, N). Therefore the equivalence of
derived categories Do — Dy induced by the forgetful functor carries RHom® to
R Hom.

Remark 1.9. It would be of interest to construct an E,, operad with the properties
that we have quoted by purely algebraic methods. One further property is out of
reach. We would like A : kX k — k to be an isomorphism. The indecomposable
quotient ¢(2) ®¢1)e% (1) k¥ would then be k. We have required that €(j),, = 0 for
n < 0, and it is natural to require further that € (1) = k. This property would
then imply that €'(2)o = k, contradicting the requirement that € (2) be Xa-free.

2. A NEW DESCRIPTION OF A., AND F,, ALGEBRAS AND MODULES

We consider %-algebras and their modules, where @ = C.(¥£). We call these
A, algebras when we ignore permutations and F, algebras when we retain them.

Restricting the action to j = 1, we see that an A, algebra is a C-module with
additional structure. From j = 0 we obtain a unit  : kK — A and from j = 2
we obtain a product ¢ : AK A — A. The rest of the operad action is actually
determined by this portion of it. The following result is the analog of a theorem
first discovered in a much deeper topological context.

Theorem 2.1. An Ao, algebra A determines and is determined by a C-module
with a unit map n : k — A and a product map ¢ : AKX A — A such that the
following diagrams commute:

nXid idXn dX¢
EXA—AKA<— AXE and AXAXA—AKA

ST TR

AR A ———4;
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A is an Ey algebra if the following diagram also commutes:

AXA AKX A

R

A.

Although I will not have time to go into detail, there is an even simpler and
more convenient way to package these reinterpretations of A, and E, algebras.

Proposition 2.2. The category of C-modules under k admits a variant [ of the
product X with respect to which it is symmetric monoidal with unit k. An A or
FE algebra is precisely a monoid or commutative monoid in this category.

To illustrate the force of this result, I will give a formal consequence. Recall
that the tensor product of commutative DGA’s is their coproduct in the category
of commutative DGA’s. The proof consists of categorical diagram chases that now
carry over to our more general context.

Corollary 2.3. Let A and B be Ay, algebras. Then AL B is an A algebra. If
M is an A-module and N is a B-module, then M W N is an A B-module. If A
and B are Eo, algebras, then A B is an Ey algebra and is the coproduct of A
and B in the category of Es algebras.

We have a similar reinterpretation of the notion of an A-module.

Theorem 2.4. Let A be an A or Eo algebra. An A-module is a C-module M
together with a map p: AR M — M such that the following diagrams commute:

nXid 1dXp
ERM—> AR M and ARARM “E> AR M
\ iu ¢|Z|ldl \LN
M ARM —E— M.

When A is an E, algebra, this implies that we obtain the same A-modules
for A regarded as an E., algebra as for A regarded by neglect of structure as an
Ao algebra. This is far from obvious with the original operadic definitions.

3. U(A) AND THE DERIVED CATEGORY OF A-MODULES

Fix an A, algebra A. The category of A-modules is isomorphic to the category
of U(A)-modules. It therefore enjoys all of the formal properties that are familiar
from the context of modules over a non-commutative DGA. Here we are thinking
of A-modules as defined in the ground category of k-modules. However, the ideas
above dictate that we sometimes change our point of view and regard A-modules
as defined in the category of C-modules. Since U(k) = C, this means that we are
thinking of the ground category as the category of E., k-modules rather than the
category of k-modules.

From the first point of view we see that M ® K and Hom(K, M) are A-modules
if M is an A-module and K is a k-module. From the second point of view, we
see that M X L and Hom™ (L, M) are A-modules if M is an A-module and L is a
C-module.

To develop the cell theory of A-modules, we need a free functor from k-modules
to A-modules, and we already have a free functor from k-modules to C-modules,
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namely K — C ® K. The following observation gives a free functor L — A < L
from C-modules to A-modules.

Lemma 3.1. For a C-module L, define A < L to be the pushout displayed in the
diagram

Xid
ERL ——> AR L

]

L——A<L.
Then, for A-modules M,

MA(A< L, M) = Mc(L,M).
Lemma 3.2. For a k-module K, define an A-module FK by
FK =A< (C®K).
Then, for A-modules M,
MA(FK, M) = M, (K, M).

Now recall that we have already constructed the free A-module functor for an
algebra A over any operad: since the category of A-modules is isomorphic to the
category of U(A)-modules, the free A-module generated by a k-module K must be
U(A) ® K. We are entitled to the following consequence, which is special to the
linear isometries operad. Note that the unit of U(A) determines a natural k-map
K—-UA)®K.

Proposition 3.3. For k-modules K, the natural map FK — U(A) ® K is an
isomorphism of A-modules.

In particular, F'k is isomorphic as an A-module to U(A). It simplifies matters
to assume from now on that A is augmented. This assumption makes it fairly easy
to prove the following result, which gives homological control of free A-modules,
something that is rather difficult to achieve for algebras over general operads.

Proposition 3.4. If K is a cell k-module, then the A-map @ : FK — AQ K
induced by the canonical k-map K — AR K is a quasi-isomorphism. If K is a free
k-module with zero differential, then H.(FK) is the free H.(A)-module generated
by K.

We can now parrot the development of derived categories via cell modules over
DGA’s in our more general context of F., algebras. For an actual DGA A, we
have two categories of A-modules in sight, namely ordinary ones and A., ones.
The latter are the same as U(A)-modules, and we have the following consistency
statement.

Proposition 3.5. If A is a DGA, then the quasi-isomorphism o : U(A) 2 Fk — A
is a map of DGA’s. Therefore it induces an equivalence of categories from the
derived category D4 to the derived category Py a-
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4. THE TENSOR PRODUCT OF A-MODULES

We have not yet defined tensor products of modules over A, algebras. We can
mimic classical algebra.

Definition 4.1. Let A be an A, algebra and let M be a right and N be a left
A-module. Define M X4 N to be the coequalizer displayed in the following diagram
of C-modules:

uXid

MRARN MKXN—> MKy N,

idXv

where p and v are the given actions of A on M and N.

We construct the derived tensor product é A by approximating one of the vari-
ables by a cell A-module.

When A = k, our new M X N coincides with MK N. We have used the notation
X 4 to avoid confusion with ® 4 in the case of a DGA A regarded as an A, algebra.

Proposition 4.2. If A is a DGA and M and N are A-modules, then the derived
L
tensor product MR AN is isomorphic in the derived category Py to the classical
L
derived tensor product M® 4N .

The new tensor product enjoys the same formal properties as the classical tensor
product over DGA’s. We give some examples.

Lemma 4.3. For a right A-module M and left A-module N,
MXy N =N Xgop M.

Lemma 4.4. Let L be an (A, B)-bimodule, M be a (B, C)-bimodule, and N be a
(C, D)-bimodule. Then LXpg M is an (A, C)-bimodule and

(LRp M)Re N = LRy (M Ke N)
as (A, D)-bimodules.

Lemma 4.5. The actionv: AXN — N of a left A-module N factors through a
map of A-modules A : A4 N — N.

The homological behavior of the functor X4 is unclear from its definition as
a coequalizer, but analysis of its behavior on free modules leads to the following
result.

Proposition 4.6. Let N be a cell A-module. Then A : A4 N — N is a quasi-
isomorphism and the functor M X4 N of M preserves exact sequences and quasi-
isomorphisms.

We have a Hom functor Hom% to go with our new tensor product. It is defined
as a suitable equalizer, as in the context of DGA’s.

Lemma 4.7. For C-modules L and left A-modules M and N, there is a natural
adjunction isomorphism

MA(LK M, N) = #e(L, Hom® (M, N)).

Analyis of Hom® (M, N) on free A-modules M gives homological control.
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Lemma 4.8. Let M be a cell A-module. Then the functor Hom'f(M, N) preserves
exact sequences and quasi-isomorphisms in the variable N. It also preserves exact
sequences of cell A-modules in the variable M.

We construct the derived functor RHom% by approximating the contravariant
variable by a cell A-module.

5. GENERALIZED EILENBERG-MOORE SPECTRAL SEQUENCES

Fix an A, algebra A. Since our derived tensor product and Hom functors
generalize those of DGA’s, the following definition is reasonable. We are grading
by subscripts, with differentials lowering degrees.

Definition 5.1. Define
L
Torf(M7 N)=H,(MX4oN) and Ext}(M,N) = H,*(RHom%(M7 N)).

These functors enjoy the same general properties as in the case of DGA’s: exact
triangles in either variable induce long exact sequences on passage to Tor or Ext,
Tor preserves direct sums in either variable, and Ext converts direct sums in M to
direct products and preserves direct products in N. The behavior on free modules
is

Tor(M,FK) >~ H,(M ® K) and Ext’(FK,N)=~ H_,(Hom(K, N)).

The crucial point of this generalized definition of Tor and Ext is that we have
Eilenberg-Moore spectral sequences for their calculation, just as for DGA’s. Fol-
lowing the usual grading convention, write H,(M) = H~*(M).

Theorem 5.2. There are natural spectral sequences of the form

B2 = Torl™-((H,(M), H,(N)) = Tors, (M, N)

and

By = Exti ) (H* (M), H*(N)) = Ext};"*(M, N).

6. Esy ALGEBRAS AND DUALITY

Let A be an E., algebra. The study of F,, modules works exactly the same way
as the study of modules over commutative DGA’s.

Theorem 6.1. If M and N are A-modules, then M X4 N and Hom%(M7 N)
have canonical A-module structures deduced from the A-module structure of M or,
equivalently, N. The tensor product over A is associative and commutative, and
the unit maps AKX M — M and A — Hom%’(A, N) are maps of A-modules. There
is a natural adjunction isomorphism

MA(LRy M, N) = #n(L, Hom% (M, N)).
L
The derived category P4 is symmetric monoidal under M4, and the adjunction
passes to the derived category.
Proposition 6.2. If M and M’ are cell A-modules, then so is M @4 M'.

Again, write H.(A) = H™*(A); it is an associative and (graded) commutative
algebra.
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Corollary 6.3. Tor(M,N) and Ext*,(M,N) are H,(A)-modules, and there are
natural commutativity and associativity isomorphisms of H,(A)-modules
Tor (M, N) = Tor (N, M)
and
Tor (LXK, M, N) = Tor?(L, M K, N).

The spectral sequences above are spectral sequences of differential H,(A)-modules.

The formal properties we have stated imply many others, just as for classical
commutative DGA’s and their modules. For example,

Hom% (M K4 L, N) = Hom% (M, Hom% (L, N))
because the two sides represent isomorphic functors on modules. Using this, a
formal argument shows that we have a composition pairing
Hom% (M, N) K4 Hom®% (L, M) — Hom% (L, N).

This pairing is associative and commutative. It induces a Yoneda product on Ext.

Proposition 6.4. There is a natural, associative, and unital system of pairings
Ext’y (M, N) ®p(ay Ext’ (L, M) — Ext’y (L, N).

Moreover, there is an induced pairing of Ext spectral sequences that coincides with
the algebraic Yoneda pairing on the Es-level and converges to this pairing of Ext
groups.

Formal duality theory, as developed by Dold-Puppe [2] and others [8] in algebraic
topology and by Deligne [1] and others in algebraic geometry, applies verbatim to
the present context. We define MY = Hom%(M ,A), and we say that a cell A-
module M is “strongly dualizable” if it has a coevaluation map 77: A — M X MV
such that the following diagram commutes in Z4:

A—"—> M@, MY

| |

HomA(M,M) <TMV ®a M.

When M is strongly dualizable, various natural maps such as
p: M — MY

and

v:MY Ky N — HomZ (M, N)
induce isomorphisms in Z4, exactly as if A were a classical k-algebra, without differ-
ential, and M were a finitely generated projective A-module. The last isomorphism

has the following implication, which is an algebraic version of Spanier-Whitehead
duality in topology.

Proposition 6.5. For a strongly dualizable A-module M and any A-module N,
Tor (MY, N) = Ext'y (M, N).

The following observation, which is due to Greenlees, makes clear that finite cell
A-modules and their direct summands should be viewed as analogues of finitely
generated free and projective modules in ordinary commutative algebra.
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Theorem 6.6. A cell A-module is strongly dualizable if and only if it is a direct
summand up to homotopy of a finite cell A-module.

7. THE LINEAR ISOMETRIES OPERAD

The algebraic discussion above was all predicated on the good properties of the
topological linear isometries F, operad. We proceed to define that operad, which
was already implicit in Boardman’s approach [15] to the stable homotopy category,
before operads were invented.

Let U 2 R be a countably infinite dimensional real inner product space, topol-
ogized as the union of its finite dimensional subspaces. Let U7 be the direct sum of
j copies of U. Define .Z(j) to be the set of linear isometries U/ — U with the func-
tion space topology. Note that a linear isometry is an injection but not necessarily
an isomorphism. The space £(0) is the point i, i : 0 — U, and £(1) contains the
identity 1 : U — U. The left action of ¥; on U’ by permutations induces a free
right action of ¥; on Z(j). The structure maps

v: ZL(k) x L(1) x-x L(jk) — L+ + k)
are defined by

Vg frs-o s fr) =go(fr @ @ fr).

The crucial associativity property of % stems from an associativity property of
% that was first observed by Mike Hopkins. We need a categorical definition in
order to state it properly.

Definition 7.1. Working in an arbitrary category, suppose given a diagram
€
A—=B—=C

in which ge = gf. The diagram is called a split coequalizer if there are maps
h:C—B and k:B— A
such that gh = id¢, fk = idg, and ek = hg.

Observe that £ (1) acts from the left on any .#(4), via v, hence £ (1) x .Z(1)
acts from the left on Z (i) x Z(j). Note too that £ (1) x Z(1) acts from the right
on Z(2). Let us denote these actions by v and p, respectively.

Lemma 7.2 (Hopkins). Fori>1 and j > 1, the diagram
pxid

Z(2) x L(1) x L(1) x L(i) x L(j) —= ZL(2) x L(i) x L(j) — L(i + j)
id xv

is a split coequalizer of spaces.

Proof. Choose isomorphisms s : U — U and t : U7 — U and define
hf)=(fo(s@t) ™! s,1)

and
k(fi9,9') = (figos™h g ot is,1).
It is trivial to check the required identities. [
Observe that, while covariant functors need not preserve coequalizers in gen-

eral; they clearly do preserve split coequalizers. This applies to the singular chain
complex functor and leads to the following result.
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Proposition 7.3. Leti > 1 and j > 1. Then the structural map v of the operad
€ = C.(L) induces an isomorphism

€(2) Bcac €(i) © €(j) — (i + 7).
We use this to construct the promised natural associativity isomorphism
(LXM)XN =LK (MXN),
and we claim that both sides are naturally isomorphic to
€(3)®cs Lo M & N.
Note that N = C ®@c N. We have the isomorphisms

(LRM)XN = E(2) @c2 (€¢(2) @2 L& M) @ (C®c N)
= (¢(2) ®c2 €(2) ® €(1)) ®cs (LOM R N)
> 6(3) ®cs (LOM QN).

The symmetric argument shows that this is also isomorphic to L X (M X N).
In view of the generality of the previous proposition, the argument iterates to
prove that all j-fold iterated X products are canonically isomorphic to

C(j) @ci M1 ®@---® M;.

When all M; = C, this gives an isomorphism C®/ 22 €(j) of (C,C7)-bimodules. We
also claimed an isomorphism of left C-modules between € (j) and C. This arises
from the evident fact that if ¢+ : U9 — U is an isomorphism, then composition
with ¢ and ¢t~! give inverse homeomorphisms of left #(1)-spaces between Z(j)
and Z(1).

We also used the following observation about .Z.

Lemma 7.4. The degeneracy map o1 : ZL(2) — Z(1) is an ZL(1)-equivariant
homotopy equivalence.

This does not exhaust the remarkable properties of this truly miraculous operad.
The following property is not at all obvious and is not inherited in algebra.

Lemma 7.5. The orbit £(2)/Z(1) x £(1) is a point.

8. APPLICATIONS

The singular cochains of topological spaces can be given F, algebra structures.
The singular chains of F., spaces and thus of infinite loop spaces have evident
E, algebra structures. Bloch’s Chow complexes in algebraic geometry can be
transformed into quasi-isomorphic E., algebras. The last example leads to one
version of a theory of mixed Tate motives [6, 7]. The first example has been studied
by Smirnov [12, 13]. In both cases, much more remains to be done. We turn from
algebra to topology to explain fully worked out applications of a parallel theory
that we have developed there [5].
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9. THE STABLE HOMOTOPY CATEGORY

Since the early 1960’s, serious work in stable algebraic topology has taken place
in a suitable category of spectra, which plays the role in stable algebraic topology
that the category of spaces plays in unstable algebraic topology. Until recently,
algebraic topologists always worked, not on the point-set level, but in the stable
homotopy category of spectra. Thus associativity, commutativity, and unity were
understood as properties that held only “up to homotopy”. The reason for this
crudity of structure was that we believed that it was impossible to construct a
good category of spectra with a smash product that was associative, commutative,
and unital on the point-set level, so that it made no sense to ask for precise point-set
level algebraic structure.

The topological analog of the algebraic theory that I have described gives such
a seemingly impossible category. This theory allows point-set definitions of ring,
module, and algebra spectra and thus gives rise to a new subject of stable topo-
logical algebra. Most of the important examples of ring spectra in the homotopical
sense arise from ring spectra in the new sense: the sphere spectrum, the Eilenberg-
MacLane spectra, the spectra of algebraic and topological K-theory, the spectra of
cobordism theory, and so on. Many of the examples come from multiplicative infi-
nite loop space theory, which was itself by far the deepest of the earlier applications
of topological operads.

For a new style commutative ring spectrum R and R-module M, it makes sense
to construct the localization M[T '] of M at a multiplicatively closed subset T' C
7« (R) and the quotient M/IM and completion M; of M at an ideal I C m,(R).
There are new torsion products and Ext groups that include the Tor and Ext groups
of classical algebra and both classical and new homology and cohomology theories
in topology as special cases. The new theory has already had many applications
[3, 5] and is rapidly becoming a standard tool. The applications include:

e Simple new constructions of important spectra that previously were con-
structed by indirect means and with little algebraic structure.

e Simple constructions of a host of useful spectral sequences — universal
coefficient, Kiinneth, generalized Eilenberg-Moore, etc.

e New and compatible constructions of Quillen’s algebraic K-theory of rings
and Waldhausen’s algebraic K-theory of spaces.

e A new construction and generalization of topological Hochschild homology
and of spectral sequences for its calculation.

e A completion theorem for equivariant complex cobordism and its modules
analogous to the Atiyah-Segal completion theorem in equivariant K-theory.

10. A SKETCH OF THE DEFINITIONS

Let me give a thumbnail sketch of the modern foundations of stable homotopy
theory [4]. Let U = R be the sum of countably many copies of R, with its standard
inner product. A prespectrum 7' consists of based spaces T(V) for each finite
dimensional inner product space V C U together with maps o : T(V) A SV =V —
T(W) when V. .C W, where W — V is the orthogonal complement of V' in W and
SW=V is its one-point compactification. A map f : T — T’ of prespectra is a
collection of maps fV : TV — T’V that are strictly compatible with the structure
maps.
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A spectrum F is a prespectrum whose adjoint structure maps ¢ : E(V) —
QW -V E(W) are homeomorphisms. A map f : E — E’ of spectra is a map of
underlying prespectra. The forgetful functor ¢ : ¥ — & from the category of
spectra to the category of prespectra has a left adjoint L : & — .¥. For a based
space X, define QX = UQ9%7X, where the inclusions are given by suspension of
maps. The suspension spectrum of X is

NOX = L{Z"X} = {Q¥"X}.

In particular, S = ©>°S° is the sphere, or zero sphere, spectrum.

The zeroth space Ey of a spectrum is denoted Q°°F; such spaces are called
infinite loop spaces. The functors %°° and Q°° are left and right adjoint. More
generally, there is a shift desuspension functor X{? that is left adjoint to the V'th
space functor. We define sphere spectra for integers n by

ST =%*S"ifn>0 and ST"=3%x%S"ifn>0.
We define the smash product of a prespectrum 7" and a based space X by
(TAX)V)=TV AX.

We then define EA X = L({E A X). Taking X = I, this gives us a notion of
homotopy between maps of spectra. We define homotopy groups of spectra by

m(E) =[S™, E].

We say that a map of spectra is a weak equivalence if it induces an isomorphism of
homotopy groups. We have a homotopy category h.”, in which homotopic maps
are identified. The stable homotopy category h.7 is obtained from h.7 by adjoining
formal inverses to the weak equivalences.

The essential point is to define the smash product of spectra. On the prespectrum
level, we define

(TATHYVaeV)Y=TWV)ANT (V).
We lift the construction to spectra by use of the left adjoint L. The key fact is that
E A E' is now a spectrum indexed on inner product spaces in U @ U rather than in
U. We call this the external smash product.

Given a linear isometry f : U & U — U, we can construct a functor f, from
spectra indexed on U @ U to spectra indexed on U. The composite f.(EAE’) is an
internal smash product. Different choices of f give rise to equivalent functors when
we pass to the stable homotopy category, and this is what implies the associativity,
commutativity, and unity of the internal smash product that we use when defining
ring spectra and modules in the homotopical sense.

This smash product is crying out to be reinterpreted in terms of the operad Z.
There is a “twisted half-smash product” that allows us to glue together all of the
j-fold internal smash products into a single j-fold smash product

z(j)b((E&/\“'/\Ej).

It is equivalent to each of the j-fold internal smash products determined by a choice
of isometry U7 — U. This smash product, although canonical, is not associative.
We can define an action of L = .£(1) on a spectrum E by means of a suitable
map Z(1)x E — E. This gives us the notion of an L-spectrum. Examples include
all suspension spectra. For L-spectra F and E’, we can define an operadic smash
product
E/\j £ 23(2) X 2(1)x2(1) EAE
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that is again an L-spectrum. This smash product is commutative, and the split co-
equalizer property of the linear isometries operad implies that it is also associative.
It is not unital, but there is a natural map A : S Ay E — FE of L-spectra that
is always a weak equivalence of spectra. It is not usually an isomorphism, but our
last surprising property (Lemma 7.5) of the linear isometries operad implies that it
is an isomorphism for £ = S and for E = S Ay E’ for any L-spectrum E’.

We define an S-module to be an L-spectrum M such that A\ : SAy M — M is
an isomorphism. For two S-modules M and M’, we define

M/\5M/=M/\3M/.

The category of S-modules is symmetric monoidal under Ag, with unit S, and there
is even a function S-module functor Fs such that

%S(M Ns M/,M”) = %S(MaFS(MvM/))a

where .#s is the category of S-modules. We define the derived category Zg by
adjoining formal equivalences to the weak equivalences in the homotopy category
h%Ps. This category is equivalent to the stable homotopy category h.#, and the
equivalence preserves smash products and function spectra.

From here, the topological theory is precisely parallel to the algebraic theory.
Note the startling fact that, in view of the strict unity property, the topological
theory is actually better behaved algebraically than the algebraic theory!

Given the category of S-modules, we define an S-algebra R by requiring a unit
S — R and product R Ag R — R such that the evident unit and associativ-
ity diagrams commute. We say that R is a commutative S-algebra if the evident
commutativity diagram also commutes. We define a left R-module similarly, by re-
quiring a map RAg M — M such that the evident unit and associativity diagrams
commute.

For a right R-module M and left R-module N, we define M Ar N by a coequalizer
diagram

pAsid
MANs RAN¢g N—/—————=MAg N— M Agr N,

idAgv

where 1 and v are the given actions of R on M and N. If R is commutative,
then the smash product of R-modules is an R-module, the category .#r of R-
modules is symmetric monoidal with unit R, and there is a function R-module
functor Fr(M, N) with the usual adjunction. We define R-algebras exactly as we
defined S-algebras, via unit and product maps R — A and AAg A — A. All
of the standard formal properties of modules, rings, and algebras go over directly
to the new subject of stable topological algebra. For example, the smash product
A AR A’ of commutative R-algebras A and A’ is their coproduct in the category of
commutative R-algebras.

Thinking homotopically, .#Zr has a derived category Zgr that is obtained by
inverting the maps of R-modules that are weak equivalences of underlying spectra.
For an S-algebra R, the category Zg is not just a tool for the the study of classical
algebraic topology, but an interesting new subject of study in its own right. When
R = Hk for a discrete ring k, Y is equivalent to Zj.

What about examples? There is a notion of an A, ring spectrum F that Quinn,
Ray, and I defined in 1972 [10]. It is specified by an action of the operad £ on a
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spectrum E. Such an action is given by maps
0;: L(j)x B — E

such that the evident associativity and unity diagrams commute. If the 6; are X;-
equivariant, then F is said to be an F., ring spectrum. It turns out that if F is
an A, ring spectrum, then S Ay E is an S-algebra; if E is an F, ring spectrum,
then SA ¢ E is a commutative S-algebra. Thus the earlier definitions are essentially
equivalent to the new ones, and the earlier work gives a plenitude of examples.

Observe that the operad .Z has been exploited in several essentially different
ways in this theory.

Descriptively: Thom spectra arise in nature with an action of . [10]. This
observation was the starting point of everything I talked about today.

Constructively: £ acts on Steiner’s analog [14] of the infinite little cubes operad;
this fact is the starting point of multiplicative infinite loop space theory [11], in
which one constructs F, ring spectra from E., ring spaces.

Foundationally: Properties of .Z discovered long after the applications just cited
led to our construction of the symmetric monoidal category of S-modules.

As this conference has shown, this theory is just one of many in which operads
play a central mathematical role. For me, after enjoying their company for 25 years,
I still find operads remarkable and delightful creatures, with a knack for springing
surprises. Thanks for joining the fun.
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