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Preface

This is the first of a series of papers devoted to the study
of iterated loop spaces. Our goal is to develop a simple and
coherent theory which encompasses most of the known results about
such spaces. We begin with some history and a description of the
desiderata of such a theory.

First of all, we require a recognition principle for n-fold
loop spaces. That is, we wish to specify appropriate internal
structure such that a space X possesses such structure if and
only if X 1is of the {(weak) homotopy type of an n-fold loop
space. For the case n= 1, Stasheff's notion [28] of an A_, space
is such a recognition principle. Beck [5] has given an elegant
proof of a recognition principle, but, in practice, his recogni-
tion principle appears to be unverifiable for a space that is not
given a priori as an n-fold loop space. In the casen =00, a
very convenient recognition principle is given by Boardman and
Vogt's notion [8] of a homotopy everything space, and, in [7],
Boardman has stated a similar recognition principle for n<oceo .

We shall prove a recognition principle for n«oo in section
13 (it will first be stated in section 1) and for n =oo in section

14; the latter result agrees (up to language) with that of
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Boardman and Vogt, but our proof is completely different. By
generalizing the methods of Beck, we are able to obtain immediate
non-iterative constructions of classifying spaces of all orders.
Our proof also yields very precise consistency and naturality
statements. In particular, a connected space X which satisfies
our recognition principle (say for n =oo) is not only weakly
homotopy equivalent to an infinite loop space B, X, where spaces
Bi X with Bi X = JI.Bi v 1 X are explicitly constructed, but also
the given internal structure on X agrees under this equivalence
with the internal structure on B, X derived from the existence of
the spaces Bi X. We shall have various other consistency state-
ments and our subsegquent papers will show that these statements
help to make the recognition principle not merely a statement as
to the existence of certain cohomology theories, but, far more
important, an extremely effective tool for the calculation of the
homology of the representing spaces.

An alternative recognition principle in the casen =00 is
due to Segal [27} and Anderson [1, 2]. Their approach starts with
an appropriate topological category, rather than with internal
structure on a space, and appears neither to generalize to the
recognition of n-fold loop spaces, 1 <n< e, nor to yield the
construction of homology operations, which are essential to the
most important presently known applications.

The second desideratum for a theory of iterated loop spaces

is a useable geometric approximation to £L"S"X and 175X =1im Q"S"X.
—
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In the case n = 1, this was first obtained by James [15]. For n<eo,
Milgram [22] obtained an ingenious, but quite intricate, approxi-
mation for connected CW-complexes. In the case n =eo0, such an
approximation was first obtained by Dyer and Lashof [unpublished]
and later by Barratt [4], Quillen [unpublished], and Segal [27].

We shall obtain simple functorial approximations to jlnS")(
for all n and all connected X in section 6 (a first statement
is in section 2). Our result shows that the homotopy type of Slﬁgn)(
is built up from the iterated smash products thj of X with
itself and the classical configuration spaces F(R"; j) of j~tuples
of distinct points of R®. Moreover, in our theory the approxima-
tion theorem, together with quite easy categorical constructions
and some technical results concerning geometric realization of
simplicial topological spaces, will directly imply the recognition
principle., This is in fact not surprising since ﬁannX and 52“5“7<
are the free n-fold and infinite loop spaces generated by X and
should play a central role in any complete theory of iterated loop

spaces.

The third, and pragmatically most important, requirement of a
satisfactory theory of iterated loop spaces is that it lead to a
simple development of homology operations. The third paper in
this series will study such operations on n-fold loop spaces,

n < =, and will contain descriptions of H,(Q"s"X) for all n as
functors of H, (X). The second paper in the series will study
homology operatiohs on Es spaces and infinite loop spaces and will
apply the present theory to the study of such spaces as

¥, F/0, BF, BTop, etc. It will be seen there that the precise
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geometry that allows the recognition principle to be applied to
these spaces is not only well adapted to the construction of
homology operations but can actually be used for their explicit
evaluation. Statementsof some of the results of these papers may
be found in [20].

OQur basic definitional framework is developed in sections 1,
2, and 3. The notion of "operad" defined in § 1 arose simulta-
neously in Max Kelly's categorical work on coherence, and conver-
sations with him led to the present definition. Sections 4 through
8 are concerned with the geometry of iterated loop spaces and with
the approximation theorem. The definition of the little cubes operads
in §4 and of their actions on iterated loop spaces in §5 are due
to Boardman and Vogt [8]. The results of §4 and §5 include all of
the geometry required for the construction of homology operations
and for the proofs of their properties (Cartan formula, stability,
Adem relations, etc.). The observations of §8, which simplify and
generalize results originally proven by Milgram {[23], Tsuchiya [33],
and myself within the geometrical framework developed by Dyer and
Lashof [ll], include all of the geometry required for the computa-
tion of the Pontryagin ring of the monoid F of based homotopy equi-
valences of spheres. Our key categorical construction is presented
in §9, and familiar special cases of this construction are discussed
in §10. This construction leads to simplicial spaces, and a variety
of technical results on the geometric realization of simplicial

spaces are proven in §1l and §12. The recognition theorems are
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proven in §13 and §14 and are discussed in §15. A conceptual under-
standing of these results can be obtained by reading §1-3 and §9

and then §13, referring back to the remaining sections for the
geometry as needed.

The results of §10 and §ll will be used in [21] to simplify and
generalize the theories of classifying spaces of monoids and of
classification theorems for various types of fibrations.

It is a pleasure to acknowledge my debt to Saunders Mac Lane
and Jim Stasheff, who read preliminary versions of this paper and
made very many helpful suggestions. Conversations with Mike

Boardman and Jim Milgram have also been invaluable.
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1. Operads and g-spaces

Our recognition principle will be based on the notion of an operad
acting on a space, We develop the requisite definitions and give a pre-
liminary statement of the recognition theorem in this section.

To fix notations, let UL denote the category of compactly generated
Hausdorif spaces and continuous maps, and let T denote the category of
based compactly generated Hausdorff spaces and based maps. Base-points
will always be denoted by * and will be required to be non-degenerate, in
the sense that (X, *) is an NDR-pair for X ¢ J . Products, function
spaces, etc., are always to be given the compactly generated topology.
Steenrod's paper [ 30] contains most of the point-set topology required for
our work., In an appendix, we recall the definition of NDR-pairs and prove
those needed results about such pairs which are not contained in [30].

An operad is a collection of suitably interrelated spaces C(j), the
points of which are to be thought of as j~adic operations Xj -+ X, Pre-

cisely, we have the following definitions.

Definition 1.1. An operad ;’ consists of spaces £ (j) eu for j2 0,
with C {0) a single point % , together with the following data:
(a) Continuous functions vy: c(k) X r(J )% ... X GG - ),
1 k
i js’ such that the following associativity formula is
satisfied for all c ¢ c(k), d e C(jg), and e, ¢ C (it):

y(y(c;di,...,dk};ei,...,ej) = Y(C;fi""’fk)’



. . seees€ . )» and
I Byt eee ¥

(b) An identity element 1 ¢ c(i) such that y(1;d) = d for de C(J) and
y(c;ik) =c for ce C(k), 1k= (1,...,1) ¢ C(i)k-

(c) A right operation of the symmetric group ZJ. on C(J) such that the
following equivariance formulas are satisfied for all c ¢ ¢(k),

dse C(js), Te Ek, and T € Ej :
v(cwd,,...,dq,) = v(c;d ).....d Joliyseresdy)

and Y(C;diTi"" ,dk'rk) = y(c;di, .. .,d.k)(-r1 ®...9 -rk),
where a'(ji, .o ’jk) denotes that permutation of j letters which
permutes the k blocks of letters determined by the given partition

of j as ¢ permautes k letters, and T+, ® ... ® 1, dendtes the

i k
image of {1,,...,T,) under the evident inclusion of Z,X.,.XZ,
i k 3y e
in .
]
An operad C’ is said to be Z-free if Z)j acts freely on ;(J} for all j. A

’
morphism ¢ ¢ C ~- c of operads is a sequence of Ej-equivariant maps

4153 G~ C'(J) such that 411(1) = { and the following diagram commutes
EEX G XEHY)—T———> £ G)

q;kxq,jix...xlpjk ¥,

Cax % x Gl ) — ')



Definition 4.2. Let X ¢ T and define the endomorphism operad EX
of X as follows. Let EX(j) be the space of based maps x) + x; x°%= %,

and EX(O) is the inclusion * = X, The data avre defined by

(a)  Y(Erg,,---rg) =g, X .. X g) for fe £, (k) and g ¢ E ()
{b) The identity element 1 ¢ E X(‘l) is the identity map of X .
{c}) (fo)y)=£floy) for fe gx(j), T € Zj, and vy ¢ X7, where 25 acts on X’

by a(xi,. .o ,xj) = (xo--i(i) seoey xo-_1(j)) .

An operation 6 of an operad C on a space X 1is a morphism of operads
8 C* EX’ and the pair (X,8) is then said to be a &--space. A morphism
f:(X,8) = (X', 8') of ;’-spaces is a based map f:X = X' such that
f°9j(c) = Bi(c)o ¢ for all c e C (i). The category of C-spaces is denoted
by CIT)
It should be clear that the associativity and equivariance formulas in
the definition of an operad merely codify the relations that do in fact hold
in é‘ x* The notion of an operad extracts the essential information contained
in the notion of 2 PROP, as defined by Adams and MacLane [14 ] and topo-
logized by Boardman and Vogt [ 8 ].
Our recognition theorem, roughly stated, has the following form.
Theorem 1.3, There exist T-free operads Cn, 4 € n < o, such that
every n-fold loop space is a fn-space and every connected Cn-space has

the weak homotopy type of an n-fold loop space.



In the cases n=1 and n = oo, the second statement will be valid with
;1 and {:oo replaced by any Aoo operad and Eco operad, as defined in
section 3,

Perhaps some plausibility arguments should be given. Let C be any
operad, and let (X.0)e¢ (' [T] For ce C(Z), Qz(c);XZ -+ X defines a
product on X, If ; (1) is connected, then * is a two-sided homotopy identity
for 8(c); indeed, the requisite homotopies are obtained by applying 6, toany
paths in C(i) connecting 1 to vy(ci*,1) and 1 to vy{c;i, *). Similarly, if
;3(3) is connected, then 6{c) is homotopy associative since vy{c;t,c) can be
connected to y(csc,1). I C’{Z} is connected, then 6{c)} is homotopic to
8{ct), where T ¢ 22 is the transposition, and therefore 9{c) is homotopy com-
mutative, It should be clear that higher connectivity on the spaces (& (j) will
determine higher coherence homotopies. Stasheff's theory of Am-spaces [28]
states essentially that an H-space X is of the homotopy type of a loop space
(i.e., has a classifying space) if and only if it has all possible higher coherence
homotopies for associativity, It is obvious that if X can be de-looped twice,
then its product must be homotopy commutative. Thus higher coherence
homotopies for commutativity ought to play a role in determining precisely
how many times X can be de-looped. Fortunately, the homotopies implicitly
asserted to exist in the statement that a suitably higher connected operad acts

on a space will play no explicit role in any of our work,



The spaces (n(j) in the operads of Theorem 1.3 will be (n-2)-
connected, Thus, if n = oo, it is plausible that there should be no obstruc~-
tions to the construction of classifying spaces of all orders. In the cases
1 < n< oo, the higher homotopies guaranteed by the connectivity of the ﬁ’n(,])
are only part of the story. It is not true that any C- space, where C(J)
is {n-2)-connected, is of the homotopy type of an n-fold loop space. Thus
Theorem 1.3 is considerably deeper in these cases than in the degenerate
case n =1 (where commutativity plays no role) or inthe limit case n = .

Since the notion of an action 8 of an operad ( on a space X is
basic to all of our work, it may be helpful to explicitly reformulate this notion
in terms of the adjoints C(g) X Xj ~ X of the maps Gj: {:‘(j) - 6X(j);

these adjoints will also be denoted by ej.

Lemma 1.4. An action 0: (-’ £X determines and is determined by
maps Gj: é,(_]) X Xj +X,jz0 (90: * = X}, such that
{2) The following diagrams are commutative, where st= j and u denotes
the evident shuffle homeomorphism:

J vy X1

1 Xy X

1X8) X...X6; A’(

1 i, &) x X5

J. .
COXC %% X x (5 XX

(b) 91(1;x)=x for xe¢ X, and



{(c) Oj(co‘; y) = Oj(c; oy) for ce ((j), oe Zj’ and ye X7,

A morphism f£:(X,8) ~ (X", 0') in ([T ] isamap £:X ~X' in J such

that the following diagrams commute:

. 8,
Chiixx —3I & x
1><£3 f

. 8!
¢ x xy : X!

We complete this section by showing that, for any operad C , the
category of (—spaces is closed unler several standard topological con-
structions and by discussing the product on f—spaces. These results will
yield properties of the Dyer-Lashof homology operations in the second paper
of this series and will be used in the third paper of this series to study such
spaces as F/O and F/Top. The proofs of the following four lemmas are
completely elementary and will be omitted,

Lemma 1.5, Let (X,08)e¢ ([ J] andlet (Y,A) be an NDR-pair

(¥, 4) € T denote the space of maps (Y, A) = (X, ¥), with

in U . Let X
(non-degenerate) base-point the trivial map. Then (X(Y’ A), O(Y’ A)) e ([T

where Gj is defined pointwise:
ol A ert ., 2)(y) = Aler £, (9, ee e £ (9D,
J 1 ' F O J
. , (1,31
In particular, (2X,20) and (PX,P6) arein { [J], where 26=9 and

P = G(I’ 0) , and the inclusion i:QX - PX and end-point projection p;:PX + X

are ( ~-movrphisms,



Lemma 1.6. (*,8)¢ ([7 ], where each Qj is the trivial map; if
(X,90) ¢ ([T}, then the unique maps *—+X and X =+ % in .T are
C-—morphisms.

Lemma 1.7. Let f:(X,0) - (B,0") and g:(Y,98') =~ (B,0") be
C-marphisms. Let X XB YC X XY denote the fibred product
{(x,y)| £(x) = g(y)} of f and g in J . Then (X xPy, 6 x28') is the
fibred product of £ and g in the category C[:T], where

(o xB 9')j: C(J) X (X ><BY)J - x xB Y is defined coordinatewise;
(X787 (e3 (xyy ) o+ s (s y) = (8,53, oo, x), BMesy s e es v
j H 1Y/ ji j J PRy e Ryl j 3 1:-'~vj
In particular, with B= %, {X XY, 8 X 8') is the product of {X,8) and

(Y,8') in the category C [J1, and the diagonal map A:X =X XX is

thus a c -morphism for any (X,8) ¢ { [:T].

The previous lemmas imply that any morphism in C [T] can be

replaced by a fibration in {5 [ J ]

Lemma 1.8. Let £:(X,8) = (Y,8') be a morphism in { [J]. Define
(}?,’5) e { [T] byletting X=X XY(YI) be the fibred product of f and g,
where g(w) = w(0) for we YI, and by letting §=09 XY(B')I. Then the
inclusion i:X - 5‘(, the retraction r:X = X, and the fibration f.:X =Y are
all C-morphxsms, where i(x) = (x, Wf(x)) with Wf(x)(t) = f(x}, r{x,w) = x,

and %)(x, w) = w(i).



Finally, we consider the product on a C-space. The following lemma
is the only place in our theory where a less stringent (and more complicated)
notion of C~morphism would be of any service, Such a notion is crucial to
Boardman and Vogt's work precisely because the H-space structure on a
(-space plays a central role in their theory, In contrast, our entire
geometric theory could perfectly well be developed without ever explicitly
mentioning the product on C-Spaces. The product is only one small part
of the structure carried by an n-fold loop space, and there is no logical

reason for it to play a privileged role,

Lemma 1.9, Let (X,0) ¢ C(T) and let # = 9(c):X2 -~ X for some
fixed c e C(Z). Let ﬁfz =@ and IJJ = @g(1 Xﬂj‘i}:xj - X for jy2.
(i) If € (j) is connected and d ¢ { (j), then G(d):Xj -+ X is homotopic
to the iterated product ¢J. .
(i) If C(J) is Ej-free and {(2j) is contractible, then the following
diagram is Zj-equivariantly homotopy commutative:

: {6 X 8),
CH X XxXY ——d xxXx

Lxg) g

Q{j)xxj J > X

Proof, (i) ﬁj = O(Cj), where c,=c and Cj = Y(c;i,cj_i) for j > 2.

Any path in C(]) connecting d to Cj provides the desired homotopy.

(ii) Define maps fand g from §{j) to C(Zj) by £{d) = y(d; ') and



g{d) = y{c;d,d)v, where ve 2 gives the evident shuffle map

(X x X)J - x) x xJ on XZJ. An examination of the definitions shows that

if de ¢ () and z ¢ X, then
01X )(d,2) = 0,,(£(a),z) and B(ox6),(d,2) = 6, (gla), =).

If Zj is embedded in EZj by o - o(2,...,2), in the notation of Definition

1.1{c), then f and g are Zj—equivariant. Our hypotheses guarantee that

f and g are Zj-equivariantly homotopic, and the result follows.



2. Operads and monads

In this section, we show that an operad ( determines a simpler mathe-
matical structure, namely a monad, and that C -spaces can be replaced by
algebras over the derived monad, We shall also give a preliminary state-
ment of the approximation theorem, The present reformulation of the notion
of C ~space will lead to a simple categorical construction of classifying
spaces for Cn-spa.ces in section 9. We first recall the requisite cate-

gorical definitions,

Definition 2.4. A monad (C,u,7) ina category .J consists of a
(covariant) functor C: j - T together with natural transformations of
functors ;L:C2 - C and m:1 + C such that the following diagrams are com-

mutative for all X ¢ \T :

cx SX) 2y MCK)  ox ana cdx —BCX) o2

u{X} CulX) w{¥X)
¥

cxX ol 2 oy
A morphism ¢ :(C,p,n) = (C',u', ') of monads in l\T is a natural transforma-
tion of functors i C ~ C' such that the following diagrams are commutative

forall Xe T :



i1

2
X and cox — Y scex

1 - B p
x —¥ s corx cx —2 . o

Here squares (and higher iterates) of natural transformations $:C ~ C' are

defined by means of the commutative diagrams

c?x Sy

\ )
T W
\

2 CC'X

P
.
clex —E ¥ en®x

v

Thus a monad {C,p,n) is, roughly, a "monoid in the functor category"
with multiplication p and unit 1, and a morphism of monads is a morphism
of "monoids". Following MacLane, we prefer the term "monad" to the more
usual term "triple". operationally, in our theory, the term monad is par-
ticularly apt; the use of monads allows us to replace actiona by operads, which
are sequences of maps, by monadic algebra structure maps, which are single

maps,
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Definition 2.2. An algebra (X,£) over a monad {C,u,n) is an object
Xe j together with a map £:CX =X in :T such that the following diagrams

are commutative:

X—T . Cx and cexXx —E—— wcx
£ Cg £
£

CY —— e
s
A morphism f:(X,£) > (X',£') of C-algebras is a map- X -~ X' in J} such
that the following diagram is commutative:

Cf

CX B e A O @

3 g

X » X!
The category of C-algebras and their morphisms will be denoted by C[J }.
We now construct a functor from the category of operads to the category

of monads in :T , where 7 is our category of based spaces. In order to

handle base-points, we require some preliminary notation,

Notations 2, 3. Let C be an operad. Define maps o,: C G) =~ CG-1),
0 £i1< j, by the formula gc= y(es si) for ce g(j), where
s, = i e Cyt x Coyx Gyt
Thus, in the endomorphism operad of X ¢ I . (crif)(y) = f(siy) for £:Xj - X
and vy e Xj-i, where si:Xj-1 - Xj is defined by

= %* .
si(xi’...,xj“i) (xijlcc'xil ’xi+1!---lxj_1)
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Construction 2.4, Let C be an operad, Construct the monad (C,p,n)

associated to C as follows. For X e T , let = denote the equivalence

relation on the disjoint union E ‘: (5) X X) generated by
jiz0

(i) (cric,y) S (c,siy) for ce ¢(j), 0€£i<j, and ye XJ-i; and

(ii) (co,y) = (c,oy) for ce T §), ce Ej, and ye x.

liefme CX to be the set 2 TG x X‘y(w) Let F,CX denote the image of

2 C(J) XXJ in CX a.nd give F CX the quotient topology. Observe that
j=0

CX is then a closed subspace of F, CX and give CX the topology of

Fk-i k

the union of the FkCX. FOCX is a single point and is to be taken as the base-~
point of CX. If ce £ (j) and ye Xj, let [c,y] denote the image of (c,v)
in CX. For amap f:X ~X' in 7], define Cf:CX— CX' by
Cflesy] = [c;fj(y)]. Define natural maps p: CZX-* CX and n:X = CX by the
formulas
Gif)  ple, e,y L. la, v 0= [vleid,, .. S d )Yy Vi

for ce ¢ (k), ds ¢ C(js), and Vg € XJS ; and
(iv) nlx) = [1,x] for xe X.
The associativity and equivariance formulas of Definition 1.1 imply both that
u is well-defined and that p satisfies the monad identity pep = p-Cp ; the
unit formulas of Definition 4.4 imply that p.Cn=1=pun. If ¢ C - (' is
a morphism of operads, construct the associated morphism of monads, also
denoted ¢, by letting {: CX = C'X be the map defined by

dlesyl = [45(c),y] for ce £(j) and ye xJ,
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The association of monads and morphisms of monads to operads and
morphisms of operads thus constructed is clearly a functor. Of course, to
validate the construction, we should verify that the spaces CX are indeed
in T for Xe T . We shall do this and shall examine the topology of the CX
in the following proposition. We first fix notations for certain spaces, which

are usually referred to in the literature as "equivariant half-smash products. ™

Notations 2. 5. Let W JU. and let w act from the right on W, where 7 is
any subgroup of Zj. Let X ¢ j and observe that the left action of ZJ, on Xj
induces a left action of w on the j-fold smash product X[j]. Let e[W,w, X]
denote the quotient space W X X[ﬂ/(m), where the equivalence relation = is
defined by {w, *) = (w',*) for w,w'e W and {(wo,y) = {w,oy) for we W,

§)

cgew, and ye X,

The spaces CX are built up by successive cofibrations from the spaces

e[C(j),Zj, X). Precisely, we have the following result,

Proposition 2.6. Let (: be an operad and let X ¢ :}v. Then

(i) (chx,rj_icX) is an NDR-pair for j>1, and CXe¢ J ;
(1) FjCX/FijX is homeomorphic to e C(j),EJ.,X];
(iii) C::T* J isa homotopy and limit preserving functor.

Proof. It is immediate from the definitions that

FCX -F, ,CX= €(}) xzj(x _xy
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It follows easily that each FjCX is Hausdorff, hence, by [ 30, 2.6}, com-
pactly generated. Since (X,*) is an NDR-pair by assumption, there is a
representation (hj’uj) of (X,%)) asa Zj-equivariant NDR-pair by

Lemma A.4. Define ?{j:l X FjCX - FJ,CX and gj: FjCX-» I by the formulas

ﬁ‘j(t,z) =z and ﬁ“j(z) =0 for ze« Fj-1 CX, and
gj(t,z) = [c,hj(t,y)] and "ﬁj(z) = uj(y) for z=1[c,y], ce g(J) and y e(X-*)j.
Then (zj,?ij) represent (FjCX,Fj_1CX) as an NDR-pair. By [30,9.2 and 9.4],
cX ¢ U and each (CX,FjCX) is an NDR-pair. Therefore CX ¢ j . Part (ii)
is now obvious, For (iii), if ht: X = X' is a homotopy, then Ch.: CX - CX!
is a homotopy, and it is evident that C preserves limits on directed sys-

* > 3 ‘-/
tems of inclusions in J .

We shall see in 2 moment that the CX are C'-spaces, and our approxi-

mation theorem can be stated as follows.

Theorem 2.7. For the operads C‘n of the recognition principle, there
- n .
is a natural map of C -spaces o !C X+ Q s"x , 1€n<oo, and a_ is a

n n" n n
weak homotopy equivalence if X is connected.
n_n . e \

In fact, @S defines a monad in _) , and the natural transformations
a: Cn - 0"s" will be morphisms of monads. This fact will provide the
essential link connecting the approximation theorem to the recognition principle.

We now investigate the relationship between { -spaces and C-algebras,

where C is the monad associated to the operad (.
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Proposition 2.8, Let C be an operad and let C be its associated

monad. Then there is 2 one-to-one correspondence between (f -actions
e: €~ EX and C-algebra structure maps £;CX — X defined by letting
® correspond to £ if and only if the following diagrams are commutative

for all j: -

ch)xx! 1 CcX

8.
J % ¢

(where . is the evident composite { (j) X X3 FjCX - CX). Moreover,
this correspondence defines an isomorphism between the category of
£ -spaces and the category of C-algebras.

Proof, By the definition of the spaces CX, a map £:CX = X
determines and is determined {via the stated diagrams) by a sequence of
maps Gj: ¢ (§) % xd X such that Qj_l(o'ic, y) = Qj(c, siy) and
Gj(co-, y) = Gj(c, oy). Since o.c = y(c;si), the maps OJ. given by a & -action
6 do satisfy these formulas. For a given map £:CX — X, the relation
g£-u = £-CEf is equivalent to the commutativity of the diagrams given in
Lemma 1.4(a) for the corresponding maps ej, and the relation &n =1 is
equivalent to 01(1,x) =x forall xe¢e X. Thus amap £:CX—+X isa
C-algebra structure map if and only if the corresponding maps ej define an
action of { on X. The last statement follows fromthe observation that if
(X,£) and (X', £') are C-algebras and if f:X = X' is a map in :T , then

f-£= £.Cf if and only if (0, = o1(1x #) for all j.
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Henceforward, we shall use the letter 8 both for {-actions and for
the corresponding C-algebra structure maps. Thus the maps
ej: C(J) X Xj -+ X which define a £ -action should now be thought of as
components of the single map 8:CX - X,

We should observe that the previous proposition implies that CX is
the free c -space generated by the space X, in view of the following

standard lemma in category theory.

Léemma 2.9. Let (C,p,n) be a monad in a category J . Then
(CX,u) e C[ :r] for X ¢ J , and there is a natural isomorphism
: Hom X,Y) - H CX,n), (Y,
¢ 3— ( ) Omc[ J ](( ), (Y, £))

defined by §(f) = £+ Cf ; @4 is given by ¢-1(g) =g. 7.

The preceding lemma states that the forgetful functor U:C[J ]~ T
defined by U(Y,£) = Y and the free functor Q@ J — C[J] defined by
QX = (CX,p) are adjoint. We shall later need the following converse re-

sult, which is also a standard and elementary categorical observation.

Lemma 2,40, Let @:Homs. {(X,UY) - Homx(QX, Y} be an adjunction
between functors U: ,( - 3' and Q: T*x . For X e 7T, define
n= @'1(1@():}{ - UQX and define
p= U{)(1UQX)= UQUQX -~ UQX .
Then (UQ,u,7) is amonadin J . For Ye x , define
§ = Ud(1,y): UQUY ~ UY.

Then (UY,£) ¢ UQ[JT ], and £: UQU = U is a natural transformation of
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functors f - :T . Thus there is a well-defined functor V: X* UQ[O']

givenby VY = (Y, £) on objects and Vg = Ug on morphisms.

Of course, V is not an isomorphism of categories in general. How-
ever, if the adjunction § is derived as in Lemma 2.9 from a monad C ,
with of = C[T], then it is evident that the monads UQ and C are the

same and that V is the identity functor.



3. A and E operads
oo ©

We describe certain special types of operads here and show that the
constructions of the previous section include the James construction and
the infinite symmetric product. Most important, we obtain some easy
technical results that will allow us to transfer the recognition principle
and approximation theorem from the particular operads Ci and (:00 to
arbitrary Aoo and Eoo operads, respectively,

We first define discrete operads M. and 7L such that an M -space is
precisely a topological monoid and an n-space is precisely a commutative

topological monoid,

Definition 3.1. (i) Define M.(j) = z, for j21, andlet e, denote the
identity element of Ej, e = 1, Let TN (0) contain the single element e

Define y(ek; e.

TR ej ) = ej, j= st, and extend the domain of definition of
i

k

¥ to the entire set Z, XZ, X .., XZ, bythe equivariance formulas of

Iy Tk
Definition 1.1{c). With these data, the #1(j) constitute a discrete operad M.

k

(ii) Define T71(j) = Ylfj} , a single point, Let 1 =1f , let Zj act trivially

1'

on Y.(j), and define y(f ;f. ,...,f, )=f, j=2 j . Withthese data, the
k' e o s

ﬂ,(_y) constitute a discrete operad n.
Observe that if C is any operad with each (T {j) non-empty, then the
unique functions (7 (j) -~ YL(j) define a morphism of operads £ -+ n,

hence any n-space is a C-apace.
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A topological monoid G in J (with identity element *) determines

and is determined by the action 0: n- E defined by letting Gj(ej): -G

G
be the iterated product and extending Oj to all of Zj by equivariance, The
permutations in m serve only to record the possibility of changing the order
of factors in forming products in a topological monoid. Clearly a topological
monoid G is commutative if and only if the corresponding action

G:m-' C

For X ¢ T , the monoids MX and NX are called the James construc-

G factors through n
tion and the infinite symmetric product on X; it should be observed that the
successive quotient spaces e[m(j),Zj,X] and e[ ‘ﬂ,(j),Zj,X] are homeo-
morphic to the j-fold smash product X[J] and to the orbit space X[J]/Zj,
respectively. The arguments above and the results of the previous section

yield the following proposition.

Proposition 3.2. The categories m [(J1= M[J ] and NiJ1=nNJ1

are isomorphic to the categories of topological monoids and of commutative
fv

topological monoids, respectively. For X e )/ , MX and NX are the free

topological monoid and the free commutative topological monoid generated

by the space X, subjectto the relation * =1,

We shall only be interested in operads which are augmented over either
M or n, in a sense which we now make precise. Let c be any operad,

and let -n-oC(j) denote the set of path components of (] (j). Define
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Sj: C(J) - C(J) by Bj(c) = [¢c], where [c] denotes the path component
containing the point c, The data for C uniquely determine data for voc
such that wof is a discrete operad and 6§ is a morphism of operads.-
Clearly L defines a functor from the category of operads to the category
of discrete operads. If l9' is any discrete operad and if €& C - ‘3 is a
morphism of operads, then & factors as the composite -n'oa ¢ &, where

mE: 1T°C - 1109 =R. With these notations, we make the following definition.

Definijtion 3.3. An operad over a discrete operad 19 is an operad C
together with a morphism of operads £: ¢~ K such that 1ro€. :WOC - 1’9
is an isomorphism of operads. & is called the augmentationof § . A morph-
ism $:(( ,¢) > (', g') of operads over {7 is 2 morphism of operads

4"6" C' such that g'¢=¢ :C..B,.

We shall say that an operad (J is locally n-connected if each ( (j) is
n-connected. Clearly an operad C can be augmented over n if and only if
it is locally connected, and C then admits a unique augmentation. An operad
C can be augmented over ¢\ if and only if ﬂoc (j) is isomorphic to Zj ,
and an augmentation of C is then a suitably coherent choice of isomorphisms.

We shall say that a morphism of operads §: & =+ f ' is a local
equivalence, or a local Z-equivalence, if each Q;j: C(}) - C”(j) is a homo-
topy equivalence, or a Z'j«equivariant homotopy equivalence (that is, the

requisite homotopies are required to be Zj-equivariant). Of course, these
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are not equivalence relations since there need be no inverse
morphism of operads C' + C. The following proposition will be
essential in passing from one operad over 777 or 7L to another.

Proposition 3,4. Let $:C + C' be a morphism of operads

over N or Il. Assume either that ¥ is a local I-equivalence or
that ¥ is a local equivalence and C and C' are I-free, Then the
associated maps y:CX + C'X are weak homotopy equivalences for
all connected spaces X.

Proof. Since Y:CX + C'X is an H-map between connected
H-spaces, it suffices to prove that ¥ induces an isomorphism on
integral homology. By Proposition 2.6 and the five lemma, this
will hold if the maps e[C(j),Ej,X] -+ e[C'(j),Zj,X] determined by
wj induce isomorphisms on homology. These maps are homotopy
equivalences if ¢j is a Zj-equivariant homotopy equivalence.

031 C(3)x z,x[j] is
J

clearly a covering map and so determines a spectral sequence

[j])

If C(j) 1is Ej-free, then the map C(j)x X

converging from E2=H*(2j;H*(C(j)x X ) to H,(C(3)xg X[j?).
J

Thus if C(j) and C'(j) are Zj-free and wj is a homotopy equi-

valence, then wj induces an isomorphism on Ez, hence on

Hy(C(3)x 5 xt31), hence on Hy (e[C(3),T4,X1).
3
We now define and discuss A_ and E_ operads and spaces.

Definition 3.5. (i) An A_ operad is a I-free operad over

such that e€:C +7 is a local I-equivalence. An A_ space (X,0)
is a C-space over any A_ operad C.

(i1) An E_ operad is a I-free operad over Jl such that €:C + is
a local equivalence. An E_ space, or homotopy everything space,

(X,0) is a C-space over any E_ operad C.
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We have not defined and shall not need any notion of an Aoo or Eoo
morphism between Aoo or Eoo spaces over different operads.

An operad € isan Eoo operad if and only if each ((j) is Z)j-free
and contractible, Thus the orbit space C(j)/Zj is a classifying space
for Ej; its homology will give rise to the Dyer-Lashof operations on the
homology of an Eoo space. We have required an Eoo operad to be Z-free
in order to have this interpretation of the spaces ¢(j)/2j and in order to
have that CX is weakly homotopy equivalent to 0®s®xX for any Eco
operad ﬁ' and connected space X. Note in particular that we have chosen
not to regard n as an Ea) operad, although a connected n-space is evi-
dently an infinite loop space. The following amusing result shows that,

for non-triviality, we must not assume £ to be a local T -equivalence in the

definition of an Ecn operad,

Proposition 3.6. Let C be an operad over 7\ such that £: C —~7Z

is a local Z-equivalence. Let {X,8) be a C-space, where X is a con-
nected space. Then X is weakly homotopy equivalent to X K(wn(X), n).
n>1

Proof. We have the following commutative diagrams:

X—3 X  and Xx—a . cx

8 n €
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By Proposition 3.4, £ is a weak homotopy equivalence, It is well-known and
easy to prove that 7 _: T, (X) = 7, (NX) = g{*(X) may be taken as the definition
of the Hurewicz homomorphism h, Thus 1=86,n, = (6, E*-i)h, and h isa
monomorphism onto a direct summand of ﬁ*(X). By the proof of

[18, Theorem 24, 5], this is precisely enough to imply the conclusion,

An operad { is an Aoo operad if and only if each TI'OC (j) is iso-
morphic to Zj and each component of { (j) is contractible. In particular,
m is itself an A00 operad. In contrast to the preceding result, we have

the following observation concerning operads over m.

Lemma 3.7, Any operad C over m is Z-free and any local equivalence
'H C - ¢' between operads over m is a local Z-equivalence.

Proof. Each o« Zj must act on C (j) by permuting components,
carrying Ej_if't') homeomorphically onto 6;1(’( o) for Te Z‘j. For the
second statement, we may assume that ¢ =£& (redefining g by this
equation if necessary), and then xpj. must restrict to a homotopy equivalence
Ej-i(ej) -~ (83)-1(65). The resulting homotopies can be transferred by equi-
variance to the remaining components of ¢ (j) and ('(j), and the result
follows.

In the applications, it is essential that our recognition theorem apply,
for n=1 and n = oo, to arbitrary Aoo and Eoo operads. However, there
need be no morphism of operads between two Aoo or two EOo operads,
Fortunately, 2ll that is needed to circumvent this difficulty is the observation

that the category of operads has products.
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Definition 3.8, Let { and (J' be operads. Define an operad
C XC' by letting (£ xEG) = € () X Ci(j) and giving C’XC" the follow-
ing datas
(a) {v Xy e X c‘;d1 xd',..., ded]'() = y(c;di, e dk)xY'(c"d'i’ cens d1'<)
for ¢ Xc'e ¢ (k) XL'(k) and dg X dle £(,) X EG)s
) t=1xte L)XL'(1): and
(¢) (cXcYo=ceXc'o for cXc'e () XE'G) and e Zj .
Then (XC' is the product of C‘ and c' in the category of operads. The
monad associated to C X C’ will be denoted C X C*' (by abuse of notation,
since we do not assert that C X C' is the product of C and C' in the cate~

gory of monads in j')

The product of an operad over B and an operad over ‘9' is evidently
an operad over QX [9'. Since M Xm;;! m , the above product is inappro-.
priate for the study of operads over m . Observe that the category of

operads has fibred products as well as products,

Definition 3.9, Let (C‘ &) and (', &') be operads over 777 . Define
an operad (CVC.',' eVe’) over m by letting { V¢’ be the fibred product of €
and g' in the category of operads and letting £V g’ be defined by com-

mutativity of the following diagram:
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c 3 > M

Explicitly, V(¢ is the sub operad of & X €’ such that (Cv C7)3) is the
disjoint union of the spaces €j-1(e-) X (E})-l(o') for oe Zj. Then
(CVC . eye’) is the product of ((,€ ) and (C/, ¢') inthe category of

operads over N . The monad associated to CVC’ will be denoted by C VC',

In conjunction with Proposition 3. 4, the following result contains all

the information about changes of operads that is required for our theory.

/
Proposition 3.10. (i) Let { bean Aoo operad and let C be any

’

operad over M . Then the projection w,: cv¢ ‘- ¢ is a local Z-equivalence.
’

(ii) Let C be an Em operad and let {, be any Z-free operad. Then the pro-

Ia Vs
jection m,: CxC ~ € is alocal equivalence between I-free operads.

Proof. (i) follows from Lemma 3.7 since egl(a) is contractible
for 0 € I, and therefore wzze;l(o) x (55)-1(0) + (eg)-l(o) is a
homotopy equivalence. Part (ii) is immediate from the definitions.

Since (ii) depends only on the local contractibility (and not
on the I-freeness) of (, the proof of our recognition principle
for E, spaces will actually apply to C-spaces over any locally

contractible operad C.
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Corollary 3.1, Let & bean E_ operad. Then m,: Fxm -m
is a local Z-equivalence and therefore ¢ X M is an Aoo operad. If
(X,8) is a C -space, then (X,Ofri) isa C X P -space, ™ Cxm-¢.

Thus every E  space is an A space.
(o] (e ]

Since Am spaces are of interest solely inthe study of first loop spaces,
where commutativity plays no role, a simpler theory of Aoo spaces can be
obtained by throwing out the permutations by means of the following definition
and proposition. We have chosen to describe Aoo spaces in terms of operads
in order to avoid further special arguments, and no use shall be made of the

theory sketched below.

Definition 3.12. A non-Z operad B isa sequence of spaces #3(j) ¢ /A
for j 20, with J3(0) = *, together with the data (a) and (b) in the definition
of an operad. An operad c determines an underlying non-Z operad 'u{: by
neglect of permutations. An action of a non-% operad /3 on a space X ¢ 3’
is a morphism of non-Z operads 8: 3 -QLE X’ and, 33 [gv] denotes the
category of ¢3-spaces (X,0). By omission of the equivariance relation (ii)
in construction 2.4, a non-Z operad 73 Getermines an associated monad B
such that the categories 43 [J] and B[ J ] are isomorphic. The notion of
a non-Z operad over a disc¢rete non-Z operad is defined by analogy with
Definition 3.3. The product ?3 X?@' of non-Z operads A and ﬁ’ is defined

by analogy with Definition 3. 8.
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Let a, denote the sub non-Z operad of M such that a,(;) = {ej}.
The categories Q [T] and L [J ] are evidently isomorphic. A non-Z
operad over a, clearly admits a unique augmentation. A non-X operad
determines an operad 7 such that "UES#H = # by letting Ej act

trivially on P(j). In particular, ={@. is isomorphic to M.

Proposition 3.13. Let ({,g ) be an operad over M and define

w(c T E) = &“1(0,); then w({ ,¢&) is a non-Z operad over Q and the

monads associated to C and to w({ ,e) are isomorphic. Let 73 bea

non-Z operad over (L and define w'173 =(zr xXin, 11'2)_; then w-1(Ja)

is an operad over #] and the monads associated to 13 and to w-i( 72 )

are isomorphic. Moreover, w and W"1 are the object maps of an equivalence

between the categories of operads over /7, and of non-XT operads over Q, .
Proof. The first two statements follow immediately from the definitions.

s . s -1 .
For the last statement, it is obvious how to define w and w on morphisms,

1 1

and we must show that ww™' and w™ *w are naturally isomorphic to the
oo . -1 : .
respective identity functors. Now ww ( ~ )= 73 xR is evidently naturally
isomorphic to #3 , and a natural isomorphism
vi(C L&) »wilw(f,e) = (B€71 (@) x M, m)
can be defined by vj(c) = (co-"i,o-) for c e ej—i(c) and o« Zj; v1ie then

given by v}ifc,o') =¢co for ce £j.1(ej) and oe Zj.



29

It follows that the notion of an Aoo operad is equivalent to the notion
of a locally contractible nén-Z operad over 0, , and the notion of an Aoo

space is equivalent to the notion of a fa_-space over such a non-Z operad B.

Remark 3.14. The notion of A(JE> space originally defined by Stasheff [18]
is included in our notion. Stasheff constructs certain spaces Kj for j2 2;

with Ko =% and K, = 1, these Kj can be verified to admit structure maps

1

Y 80 as to form a locally contractible non- = operad K such that an Aco

space in Stasheff's sense is precisely a ?f-spa.ce.



4. The little cubes operads tn

We define the = -free opérads cn and discuss the topology of the
spaces Cn(j) in this section. I am indebted to M. Boardman for explain-
ing to me the key result,teaen4.8 , The definition of the cn (in the con-~

text of PROP's) is due to Boardman and Vogt [ 8 1.

Definition 4. 1. Let In denote the unit n-cube and let Jn denote its
interior. An (open) little n~cube is a linear embedding { of Jn ‘in Jn, with

parallel axes; thus f=1f X ... X £ where fi:J' - J is a linear function,

i

= - 3 < < . : .
fi(t) (yi xif)t +x,, with O_xi v, < i.. Define &‘n(g) to be the set of those

j-tuples <c¢ . ,cn> of little n-cubes such that the images of the ¢, are

T

j n
pairwise disjoint. Let J5% denote the disjoint union of j copies of I,

regard <c . 'Cj> as a map It - Jn, and topologize Cn(j) as a subspace

i*°°
of the space of all continuous functions J.Tn -~ J'n. Write Cn(o) = <>, and
regard <> as the unique "embedding" of the empty set in 7%, The requisite
data are defined by
ji n jk n n
(a) y(c;dl,...,dk)—Co(di+...+dk). J +...+ 7T =7
for c ¢ C‘n(k) and dS e C’n(js), where + denotes disjoint union;

by e ?‘;’n(i) is the identity function; and

c <C,s.¢4,C,>20 = <¢
(c) 5 of

1 > for oce X, .
J

1) o)

By our functional interpretation of <>, (a) implies that

{d) 0'i<c

-

1""’Cj>= <c1,...,ci,ci+2,...,cj> , 0<i<ij.
The associativity, unitary, and equivariance formulas required of an operad

are trivial to verify, and the action of Zj on Q(J) is free in view of the
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requirement that the component little cubes of a point of Cn(j) have disjoint

images. Define a morphism of operads o ! Cn ~-C by

n+i

Xi,...,ch1> , 127 =17,

(e} o <c,,...,c.>=<c
3 i

n,j 1

Each o ,
n

is an inclusion, and C'm(j) denotes the space lim Cn(j), with the
topology of the union. Clearly Coo inherits a structure of Z-free operad

from the rn'

The topology we have given the C'n(j) is convenient for continuity proofs
and will be needed in our study of the Dyer-Lashof operations on F in the
third paper of this series. The following more concrete description of this

topology is more convenient for analyzing the homotopy type of the spaces Cn(j).

Lemma 4.2. Let c=<c,... ’Cj> ¢ C;(J) Observe that ¢ determines

and is determined by the point c(e, B) ¢ Jzn'] defined by
cla,p) = (c (a),c (B), ..., cj(a). cJ.( B,
! 1 n 3 3 n
where o = (Z""'Z) ¢J and B= (Z""'Z)E J.
Let ’U, denote the topology on C'n(j) obtained by so regarding Z'n(j) as a sub-
2nj O‘V' . . . e

set of J and let denote the topology on Cn(_;) defined in Definition 4.1.
Then 'u, = 6‘)‘ .

Proof. Let W(C,U) denote the qr-open set consisting of those ¢ such
that ¢{C)C U, where C is compact in I5® and U is open in %, Let a

j.n

(resp. ﬁr) denote the point a (resp. B) in the r-th domain cube Jl: c 5.

If U and V_ are open subsets of 3%, 1 <r<j, then
I

(N Wea_,u) AW, v).

(n(;.)r\(uixvix... ><Uj><vj)=j=1
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It follows that any ‘U, ~open set is ‘V‘-open. Conversely, consider
W(C,U). We may assume that U is the image of an open little cube g
and that C is contained in a single domain cube J: . Let C'C J: be the
image of the smallest closed little cube f containing C (f may be
degenerate; that is, some of its intervals may be points). Then, by

linearity, W(C,U) = W(C',U). Clearly ¢ = <¢,,..., Cj> e W{C',U) if and

1
only if crf(O) > g(0) and crf(i) < g(1), with the inequalities interpreted

coordinate-wise and with 0 = (0,...,0) and t=(1,...,1) in I'. It is now

easy to verify that W(C',U) is ou..—open.

Using this lemma, we can relate the spaces Cn(j) to the configuration
spaces of R™. We first review some of the results of Fadell and Neuwirth [12]

on configuration spaces.

Definition 4.3. Let M be an n-dimensional manifold. Define the j-th
configuration space F(M;j) of M by
L3) = . J
F(M;j) = {<Xi....,xj>{xre M, x_ # x if rfs} C M,
§
with the subspace topology. F(M;j) is a jn-dimensional manifold and
F(M;1) = M. Let Ej operate on F(M;j) by
<X,,...,%X,> 9= <x
1 j

OB OIS

This operation is free, and B(M; j) denotes the orbit space F(M;j)/Ej .
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Fadell and Neuwirth have proven the following theorem.

Theorem 4.4, Let M be an n-dimensional manifold, n > 2. Let
Yo = ¢ and Y = fyi, . ..,yr} , | £r < j, where the y; are distinct
points of M. Define wr:F(M-Yr;j-r) - M-Yr by
T <X,,...,X, >=x%x, 0<r<j-i. Then w_ is a fibration with fibre
r 1 j-r 1 r
F(M-YrH;J-r-i) over the point Vret’ and LA admits a cross-section
if #21,

Let "S™ denote the wedge of r copies of s™; since R"- Yr is

homotopy equivalent to rSn-i, the theorem gives the following corollary.
n i rn-i
Coroliary 4.5. If n >3, then ﬂiF(R i3) = ‘S ni( s )
r=1

wiF(Rz;j) =0 for i1 and wiF(Rz;j) is constructed from the free groups
‘wi(rsi), 1 < r <j, by successive split extensions.

The case n= 2 is classical. B(stj) is a K(Bj, 1), where Bj is the
braid group on j strings, and there is a short exact sequence
1 - Ij - Bj - Zj -+ 1 which is isomorphic to the homotopy exact sequence of
the covering projection F(Rzgj) - B(Rz;j). Detailed descriptions of
Ij = wIF(Rz; j) and of Bj may be found in Artin's paper [ 3 ). Fox and.
Neuwirth [ 13] have used F(RZ; i} to rederive Artin's description of Bj in

terms of generators and relations.
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Let R® = 1imR" with respect to the standard inclusions. Since

¥(M;j) is functorial on embeddings of manifolds, we can define

F(R®;j) = lim F(R";}).
Corollary 4.6, F(Rm;j) is Zj -free and contractible.
We shall also need the degenerate case n= 1,

Lemma 4,7. TTOF(Ri:j) is isomorphic to Zj, and each component of
F(Ri;j) is a contractible space.
P . L = . 3 <. <xf 33 i
roof et ¥ {(xi, ,xJ)I X, xJ} CF(R;j F is
clearly homeomorphic to the interior of a simplex and is therefore contractible.
1
F_ is one component of F(R ;j}, and it is evident that the operation by Ej

o

defines a homeomorphism from F X EJ. to F(Ri;j).

Theorem 4.8. For 1 Sn<® and j2>1{, Cn(j) is Zj-equivariantly
homotopy equivalent to F(Rn;j). Therefore Ci is an Aoo operad, Kn is
a locally {n~2)-connected T -free operad over n for 1t <n<o, and § ©
is an Eco operad.

Proof. The second statement will follow immediately from the first
statement and the properties of the spaces F(Rn;j). We first consider the
case n <. For convenience, we may as well replace Rn by Jn. Define

amap g { (5)~ F(I™;;) by the formula

1 1 n
(i) g<Ci;--»’Cj> = <c1(Y)n'--:cj(Y)>t where Yz('z'!“"i)e J.

F =<¢,,...,C.> - (j)s i = tJ -
or c 4 cJ € gn(J) write ¢ Crix xcrn' where € J -7
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s s b - _ ) . di ¢
is given by crs{t) (yrs xrs)t e We say that ¢ is equidiameter

of diameter d if Vs = Xpg = d forall r and s (thus each c, is actually

r

a cube, and all c_ have the same size). Obviously, for each be F(I'3j),

there is some equidiameter ¢ ¢ (n(j) such that gfc) = b; we can radially

expand the little cubes of this ¢ until some boundaries intersect, Thus de-

fine f£: F(Jn;j) - Cn(j) by the formula

(ii) £(b) = ¢, where g(c)=b and c is the equidiameter element of C‘n(j)
with maximal diameter subject to the condition gc) = b.

The continuity of f and g is easily verified by use of Lemma 4.2,and { and

g are clearly Zj-equivarignt. Obviously gf = {, Define h: c'n(j)x I~ C’n(j)

as follows., Let c ¢ fn(j) be described as above, and let d be the diameter

of fg{c). Then define

n n
hic,u) =< X ¢, (u),..., X ¢, (u)>, 0<u< i, where
o) =< X e ()., X e ()

¢ o(0)(E) = [(-u)y, ;- x, ) +udl +3 (ay_ + (2-u)x - ud) .

In words, h expands or contracts each coordinate interval s linearly from
its mid-point to a coordinate interval of length d. It is easy to verify that h
is well-defined, Ej-»equivariant, and continuous. Since h{c,0)=c,

h(e, 1) = fg{c), and h{f(b),u) = £(b), we see that F(I";j) is in fact a strong

s . . R . +1
Ej-equlvanant deformation retract of d'n(_)). Now embed J"in J°' by

n+i

X - (x,%) and let o J.:F(Jn;j) -+ F(J""7;j) be the induced inclusion. Write

g, for the map g defined in {i}. Then the following diagram commutes:
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. 8,j - .
C'n(J) > CnH(J)
Ba Enti-
o .
F (™ j) ) . rE™My)

; - . R .
Thus we can define £, = lgn g, C‘mfg) F(J ;j). Clearly C‘w(J) has
trivial homotopy groups. It is tediocus, but not difficult, to verify that C;o {j)
is paracompact and EL C X and therefore has the homotopy type of a CW-
complex, by Milnor {25, Lemma 4]. Therefore C’m(j) is contractible and

8 is a Ej-equivariant homotopy equivalence,

We shall later need the following technical lemma, which is an easy

consequence of the theorem.

. . . o : . .
Lemma 4.9. Define Tt Cn-l(‘]) Cn(J) by sending each little

(n-1)-cube f to the little n-cube 1 X f, 1:J -~ J, Then o-;l 1 is Zj-

equivariantly homotopic to ¢ .o
n-1,j
Proof, It suffices to prove that oy 0';1 1:].7'(.'."11-1;j) ~ F(J'n:j).
= 1 ' =L 5 n-4 3
where o-n_i(x) = {x, 2) and o-n_i(x) = (2 ,x) on points xe¢ J . Define

maps T, 'r‘:F(J'n; )= F%5) by the following formulas on points

{s,x}e IX J'n”1

- J‘n-

{8, x) if n is odd
T(s,x) = (x,8) and *'(s,x) =

{t-8,x) if n is even

then 7o' , =¢ and 1'o¢’ = ¢! ., hence it suffices to prove that T is
n-1 n-1 n-1 n-1
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Ej-equivariantly homotopic to 7'. Let
n n
W (1%, 017) = (5%, e )
+1
be the relative homeomorphism defined by Toda [31, p. 5], where S" C R"
is the standard n-sphere and e, = (1,0,...,0). Toda has observed that, as

based maps s —><Sn,

-1
UpTlp (8g-evvm )= (885800008 158,), and

-1 nei
t = -
\Dn-rupn (si,...,anH) (81’( 1) 32,53,...,sn+1). .
Obviously, these znaps lie in the same component of O(n) since they both
have degree (-i)n-i. They are thus connected by a path k: I - O(n), where
n . -1 n n
O(n) acts as usual on (S ,eo). Define h, = ¢ k(t)q,un:J' ~ T then h =
and hi = ¢'. Since each ht is a homeomorphism, the product homotopy
(ht)J: {3 Y - (7°)) restricts to give the desired Zj-equivariant homotopy

T™T! oon F(J’n;j).

Remarks 4.10. Barratt, Mahowald, Milgram, and others (see [24] for a
survey) have made extensive calculations in homotopy by use of the quadratic
construction e{Sn. Zz,X] on a space X (see Notations 2.5 for the definition).

. n+i . . . . n
Since F(R" ;2) is Zzeequwanantly homaotopy equivalent to S,

. . n \ .

e[ C’nH(Z), ZZ’X] is homotopy equivalent to e[S, ZZ,X]. ¥or odd primes p,
Toda [32 ] has studied the extended p-th power e[Wn, Zp' X] on X, where wh
is the n-skeleton of S with its standard structure of a regular Zp-free

n+i,

acyclic CW-complex. w" clearly maps Zp-equiva.riantly into F( i P)
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and we thus have a map

n+i

e[w ,zp,x} -~ e[F(R ,p),zp,x] o ef Cn_H(p),Ep,X}.

It appears quite likely that the successive quotients ef L‘n(j),zj,x] of
the filtered space CnX will also prove to be useful in homotopy

theory.



5. Iterated loop spaces and the C’n

We here show that {fn acts naturally on n-fold loop spaces and that
this action leads to a morphism of monads Cn —~ @°S". The first statement
will yield the homology operations on n-fold loop spaces and the second state-
ment is the key to our derivation of the recognition principle from the
approximation theorem,

We must first specify our categories of loop spaces precisely. Let
rn’ 1 £n £ o, denote the following category of n-fold loop sequences. The
objects of 'fn are sequences {Yi' 0<i<n}, or {Yil i>0} ifn= o,
such that Yi =QYi+1 in T The morphisms of Xn are sequences
{gi205i <n}or {gi§ i >0} if n= ¢, such that g =%g,,, in T . Let
U : xn -+ T denote the forgetful functor defined by Un{Yi} =Y  and
Un{g} =g, An n-fold loop space or map is a space or map in the image
of Un'

For n<o, an n-fold loop sequence has the form {Qn-iY}, and
Un{ﬂn-iY} = QnY. r;x serves only to record the fact that the space oy
does not determine the space Y and that we must remember Y in order to
have a well-defined category of n-fold loop spaces. We shall use the notation
o'y ambiguously to denote both n-fold loop spaces and sequences, on the
understanding that naturality statements refer to xn' Of course, xn is

isomorphic to T
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For n = oo, it is more usual to define an infinite loop space to be the
inijtial space YO of a bounded 2-spectrum {(Yi,fi)l i 2 0} and to define an
infinite loop map to be the initial map g, of a map {gi}:{(Yi,fi)} - {(Yi|’fi)}
of bounded Q-spectra (thus fi: Yi - QYiH is a homotopy equivalence and
Qgi-!-l' fi is homotopic to f% gi). The geometric and categorical imprecision
of this definition is unacceptable for our purposes. I have proven in [19]
that these two notions of infinite loop spaces and maps are entirely equivalent
for all purposes of homotopy theory; we can replace bounded Q2-spectra and
maps by objects and maps of foo’ naturally up to homotopy, and via weak
homotopy equivalences on objects. Precise statements and related results
may be found in [19].

We regard Q"X as the space of maps (8", %) = (X, %), where s" is

identified withthe quotient space I"/dI .

Theorem 5.1, For X ¢ J , define 6, i C'n(j)X(QnX)J -Q"X as
follows. Let c = <c1,...,cj>e Cn(J) and let y=(y1,...,yj) € (QnX)J.
Define 6 j(c, ¥y} to be yrc;l on cr(Jn) and to be trivial on the complement

of the image of c¢; thus, for v e Sn

yr(u) if cr(u) =v
en’j(c’Y)(v) =
* if viIme

Then the ©_ . define an action 8_ of (*_ on @'X. If X =9X', then
n,j n n

9n= 9n+1“n’ where g ?n-» C'n-i-l and em_1 is the action of cn—%l on

nt+l n
> O ; . .
Y] If {Yi} ¢ f , then the actions en of tn on Yo Q Yn define
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an action © of t’ on Y . The actions 6 _, 1 <n < oo, are natural
fe o) ® o n
on maps in fn; precisely, if Wn: xn - Cn[ ‘7] is defined by
WY = (U Y,6 ) onobjects, where 6 :C U Y - U_Y is the C -algebra
n n n" nn n n
structure map determined by the en i’ and by Wn(g) = Ung on morphisms,
then Wn is a functor from n-fold loop sequences to Cn-algebras.
Proof. The 0 f are clearly continuous and Zj-equivariant, and

en 1(1, y) =y is obvious. An easy inspection of the definitions shows that the

diagrams of Lemma 1.4(a) commute, and the o j

thus define an action en
’

of fn on QnX If X = QX!', then Q"X = Qn+1X' via the correspondence yery'
where y(u)(t) = y'(u,t) for (u,t)e ™ X I; since G‘n(f) = fX 1 on little n-cubes f,
= = . e
On 9n+1 L follows., If {Yi} € 2’00, then On 0n+16n' Cn - Yo and
therefore 8 = 1lim 0 _: C - € is defined. The naturality statement is
fe's] . n 00 Y0
immediate from the definitions.

We next use the existence of the natural rn-action en on n-fold loop
spaces to produce a morphism of monads Cn - QnSn. We require some
categorical preliminaries. We have the adjunction
(1) ¢:Hom _ (X,QY) - Hom _ (SX,Y), #(f) [x,s] = {{x){s),

J T

where SX = X X I/* X I WX X3l defines the suspension.
By iteration of #, we have the further adjunctions
(2) ¢":Hom 7 (x,2%Y) - Homj_ (s°X,Y), 1<n<oco.
It is conceptually useful to reinterpret (2) as follows. Define

n-i . . R . -}
(3) QX-={ s"X| 0<i<n} e £ _;then U QX =0Q'S X.
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Since a morphism {gil 0£ign} in xn is determined by g , we have

Hom,J_ (S™X,Y) = Hom _ ¢ Q_X, @y},
n

Therefore (2) may be interpreted as defining an adjunction

(4) 4 HomT(X, un{nn'iy}) - Homxn(QnX,{Qn-iY}) )

The ¢n pass to the limit case n = co. To see this, define

) o =ata ):aRsPx - P HsPHx
n n+l
s X
Geometrically, if QPSPX is identified with Hom J,(sn, S"X), then
(6) o (f)=5f=1a1:5"A sl =gt L g™y . g™as!, f:5"+sX.
Thus each o'n is an inclusion, and we can define
(7) X -= 2®s®xX = 1im Q"s"X , with the topology of the union.
We shall use the alternative notations QX and 2®s®x interchangeably.
. 1 . n_n+l_ :
Since a map S -+ QSX lands in some S X, QQSX = QX. Define
_ iy . . - gP®
(8) Q X = {Qsx|iz0} xw, then Umooo?c QS X,
if {Yil i>o0} e_‘( o and if f:X - Yo = Uoo{Yi} is a map in '\T , then we

have the commutative diagrams:

. nn+i
a"s™Mx ag () oy
n+i
I
o Y.
I 1
+1 n+i+l Il
gt gntitl Q" g n+l
B n+i+l

We therefore have the further adjunction

(9) ﬂm:Hom (X'Uoo{Yi}) - Homxoo(QmX,{Yi}), where

T

g (f). = lim %" (:08'%x - ¥., i>0, for XY
(00] 1 - 1 [e]
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-1 . . . X
Here ¢00 {gi} = 8, Ny + Where nOO:X -+ QX is the evident inclusion.
A pedantic proof that ¢oo is an adjunction, together with categorical
relationships between QODX and the suspension spectrum of X, may be
found in [19 1.

Clearly (4) and {9) state that QnX , 1 £n< oo, is the free n-fold loop
sequence generated by the space X; it is in this sense that the Q"s"X are
free n-fold loop spaces. By Lemma 2,10, our adjunctions fl‘n yield monads

n_n . n. i~ . -
Qs pn,nn) and functors Vn. '(n -2 S [7J], with VnY = (UnY' gn) on
objects. Explicitly, in terms of iterates of the adjunction #, we have
-n RS Y W . Y
(10) nn-—¢ (1n 12X >0 88X if n<oo; lhm'qn.
S7X
n_n n.n.n n.n . .
(11) p_=97¢ “ﬂnSnX):g sqPs™x - @'S"X if n< oo
B = lmp (which makes sense since QQX = lim Q"s"a"s"x).

n.n.mn

n_m n. . .
(12) €n—sz¢(1gny).nsa Y - @°Y if n<oo;

1= s R oo _ 00
goo—lim Q ¢n(1QnYn).Q $TY - Y_ for {Yi} € xoo.

By (5), (10), and {11), each orn:sz“s“*sz”“sn“

is a morphism of monads,
and ©Fs% = lim a"s™ as a monad.

Let (Cn, ”n’ nn) denote the monad associated to Cn, and observe that
Coo = lgn Cn as a monad. With these notations, we have the following
theorem, which is in fact a purely formal consequence of Theorem 5.1 and

the definitions,
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Theorem 5.2. For X e :f and 1 £ n< w, define a: CnX - a"s™x

CaMa

to be the composite map C_X —=——> cnnns”x —2 5 0%"X. Then
a: Cn -qQ"" isa morphism of monads, and the following diagram of

functors commutes, whe re a: (Y,¢) = (Y, E,-an):

Moreover, the following diagrams of morphisms of monads are commutative
for n< o, and a. is obtained from the a, for n< o by passage to

limits:

F o
i3] n
| o+l n+l
C —=qo"'s
ntl

Proof. The fact that each By gn, and o for the monad Q"S" is an
n-fold loop map and that On is natural on such maps, together with the very
definition of a natural transformation and of an algebra over a monad,

immediately yield the commutativity of the following diagrams for X ¢ J— H



U'

/\ﬂng

cszs”x—-———>s‘z s™x

R V
o"s™x

Cncnﬂn n Cnen Cn n_n n_n
CCX"’-———‘-'}CCQSX,}(_—>CQ ‘QI—T:“__‘?"CQSQSX
n n - n

ntn
g
B Fpn lsn n
qun l'n n % n Ha n_p n_n
cnx—-—~—->cns“ss><~—-——>ﬁs”x Q"sPas"x
n Cnnn n.n_n o n_n.n
CHQX-—%*CQSQX———-——%‘*QSQX
n
T Cﬁgn én
n 8n n
X ————> O X
n
Cnnn G aPs™x
C x C Q S X

c,
n+1/ n_"“ n / \
Cntt s ot Rt ly onHgnly

n+1 n+1
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. . . R ¢
4 = =
The first diagram gives a_n n_, the second gives p_«a o

(Cn;.un is inserted solely to show commutativity), the third gives gnan =8,

E-
as required for a_V_ = W_, and the last gives v a_ = « o . The first
n n n nn nti ' n
two diagrams are valid as they stand for n = oo, and the third has an obvious
analog in this case; consistency with limits is clear from the last diagram.
We next show that the morphisms of monads a i Cn - Q"™ factor
through QICn_iS1 for 1 <£i<n. The following elementary categorical
observation about adjunctions and monads in any category :T implies that
. i iAi i n_.n . .
the natural transformations £ @ iS :Q Cn iS -+ 'S are in fact morphisms
of monads.
Lemma 5.3. Let ¢:Hom:‘_ (xX,AY) —~ Homj_(EX,Y) be an adjunction,
and let (C,p,n) be a monadin J. Then (ACZ,f,%) is a monadin [T,

where, for Xe¢Jj ,f and 7 are the composites

ACZACsx —2CH) ACCZX —DEZ S Acsx

and

x I W apx AN L cnx
Moreover, if Y:C = C' is a morphism of monads, then AYZ:ACZ—+ AC'Z
is also a morphism of monads.,

We must still construct morphisms of monads Cn* QiCn_iSi, and, by

the lemma, it suffices to do this in the case i= 1.
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Proposition 5.4. For n> 1, there is a morphism of monads

B :C —-QC_ .S suchthat o = (Qa_ .S8) B_. Therefore o factors as
n n n-1 n n-1 n n

a composite of morphisms of monads

C -9C .5—+ ... »0® 1o s L gis® .
n n-1 1

Proof, Define Bn:CnX *QCn 1SX as follows. Let

C=<cpy.aa,0 > Cn(j)’ let x= (xl,...,xj)e X), andlet te I. Write
J

- n-1 :
cr=c'rX c'l[, where c'r:J'-*J' and c;t":.]'n l;*J . Let Tyseso: Ty, in

order, denote those indices r (if any) such that t ¢ c'r(J'). Since the ¢
have disjoint images, the little (n-1)-cubes c'l'_ , 1 £ g<i, have disjoint

q
images. Thus we can define ﬁ by the formula

(1) B fexlt) = if ¢ @ ¢'(3), and

ﬁn[c’x](t.) = [<C;1, .y C;i> ’ [xrln 51]: L] [xri' Si]]

ce - .
if cf (sq)-t, 1< q<i, and t/c'r(J) for r¢ {rqg.

q

-1
It is easily verified that ﬁn is well-defined and continuous. For v s

formula {1) and Theorem 5.1 give

[x ,8,u] if ¢ (s u) = {t,v)
(2) Qan_]_S“ﬁn[c:x}(t: v) = é
if t,v)¢{ Ime.
Thus Qa ,S-B =a :C X *QnSnX. The fact that B is a morphism of
n-1 n n’ n n

monads can easily be verified from the definitions and also follows from the

facts that ﬁn and Qarn_ls are inclusions for all X and that a and Qan_ls

are morphisms of monads,
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We conclude this section with some consistency lemmas relating
Theorem 5.1 to the lemmas at the end of section 1. These results will
be needed in the study of homology operations; their proofs are easy veri~

fications and will be omitted.

(Y, A)

Lemma 5.5. Let w:(2°X) - Qn(X(Y' A)) be the homeomorphism

defined by w(f)(v)(y) = £(y)(v) for ye Y and veS. Then w isa .-

morphism with respect to the actions On(Y’A) on (ﬂnX)(Y’A) and 8 on
Qn(X(Y’ A)).

In particular, w: (Q(SZnX),QOn) - (Qn(QX),On) isa ( n~-morplrxism,

n
where 8 = gn-i-le'n on Q (NX). Observe that w transfers the first coordi-

+
nate of 2" 1X (y above) to the last coordinate. Under the identity map on

n+l

Q X, Qen corresponds to Gn crr; , and Lemmas 1.5 and 4.9 therefore

+1

yield the following result,

Lemma 5.6. For X e jﬂ , the following diagram is commutative, and

- Lo - . . . : - .
Qen’j 9n+1,j o'n,j is Zj equivariantly homotopic to en,j en+1,jvn,j
. . . j .
. +i.. 1% . jad 1 5
Cx@mxy ——s c_pxraxy —F— ¢ G x@"x)
. Pa e .
QG“:J ) )

o*Hx 1 > Pd'x P > Q"X
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Lemma 5.7. Let f:X +B and g:Y - B be maps in J . ldentify
n
Q"X XB Y) with @°X x% BﬂnY as subspaces of 2™X xQ"Y. Then the
"B
f n-actions Qn and ang On are identical. In particular, On agrees with

0,%X0_ on QMXXY)= 2°x x oy,

Remarks 5, 8. Lemma 1, 9(ii) is obviously inappropriate for the study of
the product on n-fold loop spaces for n< oo, Observe that Q"% may be -

given the product

o lg:a™x x oK = 0" Hax x ax) - 2%,

where § is the standard product, Clearly Qn-l ¢ isthena & n._l-morphism.
Similarly, we can give Q"X the inverse map Qn-lc 0°X *QDX, where

c:2X ~+ QX is the standard inverse, and then Qn-lc is a Cnnlvmorphism.
The point is that the product and conjugation on H *(QnX) will commute with

any homology operations which can be derived from the action en-l of

¢

on ﬂnX.
n-1



6. The approximation theorem

This section and the next will be devoted to the proof of the approxima-
tion theorem (2.7) and related results, The following more detailed state-

ment of the theorem contains an outline of the proof,

Theorem 6.1. For X e¢J and n2 1, there is a space EnX which

contains C_X and there are maps m :E X -~ C SX and
n n' n n-1

&'n: EnX -»Pszn'ls“x such that the following diagram commutes:

ki3
G X = > E X L >C .SX
n n n-1
O‘n [an 1&11_1
Qs — = spoPisix P s oPlgfx

where, if n=1, COSX = SX and a is the identity map. EnX is contractible
for all X and L is a quasi-fibration with fibre ch for all connected X,
Therefore @ is a weak homotopy equivalence for all connected X and alln,

1 <n<o.

We shall construct the required diagram and give various consequences
and addenda to the theorem in this section., The proof that EnX is contract-
ible and that L is a quasi-fibration for connected X will be deferred until
the next section, where these results will be seen to be special cases of more

general theorems.
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Coupled with Propositions 3,4 and 3,10, the theorem yields the following
corollaries, which transfer our approximations for n=1 and n= o from
Cl and & oo to arbitrary Aoo and Em operads, The reader should recall
that a map is said to be a weak homotopy equivalence if it induces isomorphisms
on homotopy groups, and that two spaces X and Y are said to be weakly
homotopy equivalent if there are weak homotopy equivalences from some third
space Z to both X and Y. Thus the following corollary contains the state-
ment that the James construction MX is naturally of the same weak homotopy
type ag QSX, for connected X; curiously, our proof of this fact uses neither

classifying spaces nor associative loop spaces.

o

Corollary 6.2. Let X ¢ T be connected and let { be any Aoo operad,

Then the following natural maps are all weak homotopy equivalences:

£ 1!’1 1\'2 (Zl

MX < CX (cvcl)x > C. X > QSX .

Corollary 6.3. Let X 7 be connected and let £ be any Em operad,

Then the following natural maps are all weak homotopy equivalences:

. kig o
CX et (C x C )X —--?—-—>cmx —2 5 o%s%x
‘ 2 % n_n
and, if 1<n<oo, (CXC )X >C_X Q"s"x.

n
Of course, for arbitrary (non-connected) X, we can approximate Q s

by QCn_ 5X, since SX is connected.

1
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Corollary 6.4. Let Xe¢J andlet { be any Eco operad. Then the
following natural maps are all weak homotopy equivalences:

8'211'15 QHZS Q'aooS .00
QCSY ¢———— Q(C X Cw)SX —— QCOOSX —_— S X

Qm,S $ar S ntl_n+l
and, if 1<n<, 9CXC JSX ——> aC_sx ——> """ 'x,

In these corollaries, all maps are evidently given by morphisms of
monads. Clearly this implies that these maps are H-maps, but the H-space

structure is only one small portion of the total structure preserved.

+
Remarks 6.5. In[4 ], Barratt has constructed an approximation [I' X| to
an S°°|X| for connected simplicial sets X, Implicitly, Barratt constructs
a "simplicial operad" consisting of simplicial sets D *Ej' If we define

}S(J) = ]D *Ej | , then we obtain an Eoo operad /O, and it is easily verified

—~~
that il"+X‘ is homeomorphic to D|X| {(where D denotes the monad in )
associated to |}, Thus Corollary 6.3 displays an explicit natural weak
. + @ 00
homotopy equivalence between II" X] and QS IX], for connected X, For
all X, I‘+X is a simplicial monoid, and if I'X denotes the simplicial group
+ - . ® . ®
generated by I' X, then |[I'X| is homotopy equivalentto @ S |X|. We

shall describe 9 explicitly in section 15,

We begin the proof of Theorem 6.1 with the definition of a functar En
from pairs (X, A) to spaces. EnX will be the space En(TX, X), where TX

denotes the cone on X,
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Construction 6,6, Let (X,A) be a pair in J , by which we understand

a closed subspace A of X with *¢ A, We construct a space En(X,A) as
follows, For a little n-cube £, write f= f'X f", where £':J - J and

fn:Jn"l - Jn'l; if n=1, then f = f', Define En(j;X,A) to be the subspace

of Cfn(j) x X7 consisting of all points (< Cyreres cj> » Kpreoos xj) such that
if X, ¢ A, then the intersection in J of the sets (c'r(O), 1) % cI'_' (Jn-l) and
cs(Jn) is empty for all s # r. The equivalence relation = defined on

z [n(j) X X’ in the construction, (2.4), of CnX restricts to an equivalence
j2o0

relation on jgo € _(i3X,A). Define E _(X,A) to be the set

E(X.4) = > € (:X4)/),
iz0

topologized as a subspace of CnX. Since A is closed in X, En(X,A) is closed
in CnX and En(X,A) U . En(X, A) is a filtered space with filtration

defined by
FjEn(X,A) = E_(X,A)N FiC.X,

and FoEn(X'A) = %, Clearly Cn(j) XA ¢ en(j;X, A} and thus

CnA C En(X, A), If £:{X,A)~ {X',A') is a map of pairs, then

E f1E (X,A) >~ E_(X', A') is defined to be the restriction of C _f:C X -~ C_X!
n" n n n° n n

to En(X, A).

The following results, particularly Lemmas 6,7 and 6.10, show that the
definition of En(X, A) is quite naturally dictated by the geometry. Observe that

En(X, X) = CnX; at the other extreme, En(X, ¥} is closely related to cn_lx.
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Lemma 6.7. Let Xe¢J andlet [c,x]e En(X’ *), where c = <Cyrene ,cj>
and x¢ (X - ¥ for some j21. Then j=1 if n=1 and
c"=<q",..., c:'j'> € Cn 1(j) if n>1, There is thus a hatural surjective based

map v, : En(X, *} - Cn- X defined by the following formulas on points other

1
than % :
(1) vl{c,x] =xe¢ X = COX; and

=fa? :
(2) vn[c,x] [c",x] e cn_lx if n>1,

Proof, Let x= (xl,...,xj), x_ e X-% Fix r#s, 1<r<j and
1 € s£j. For definiteness, assume that c'r(O) < c;(O). Lett e c's(J). In=1,
then t ¢ (cr(o), 1) n cs(J), which contradicts the definition of El(j; X, ®)3
thus r# s is impossible if n =1 and therefore j=1. If n>1 andif
v e c‘l'_(.]'nbl) N c;(‘]’m), then (t,v) e cs(Jn) and te¢ (c;:(O),l), which contradicts
the definition of En(j;X, *). Thus the little {n-1)-cubes c¥ and ch have

disjoint images and c" ¢ Cn-l(j)°

Notations 6.8. Let w(X,A) = (Y,*) be a map of pairs in J . Then the com-
E «

v
posite map En(x, A) -2 En (Y, %) -—L>Cn 1Y will be denoted ™ -

Since En is a functor and A is a natural transformation, ™ is natural on

commutative diagrams
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(X, ) —— (Y, %)

fl lg

1
(X1, A1) ——> (Y1, %),
in the sense that C gew =mw'eE {f for any such diagram.
n-1 n n n

Lemma 6,9, For XeJ and n21, there is a natural commutative

diagram
C "n
C X =———eceo——3 E (TX,X) ->» C_ . SX
n n n-1
Cnnn l Ennn P Cn-lnrhl
c a's"x —S sk (P sk, a%"x) ——> c, @ s™x

Proof, Define the cone functor T by TX =X X I/#XIwX X0, and
embed X in TX by x—-[x,1); SX = TX/X and m TX -+ SX denotes the
natural map. Define ?{n: X P Qn-ISnX by the formula

?}Jn[x,s}(t}(v) = [x,st,v] for [x,s]e¢ TX, te I, and ve Sn‘-1 .

Then the following diagram commutes and the result follows:
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Since «_ factors as the composite 8 ¢C T, the lemma gives half of
n n n
the diagram required for Theorem 6.1, The following sharpening of Lemma
5.6 will lead to the other half of the required diagram and will also be needed
in the study of homology operations on n-fold loop spaces.

Lemma 6,10, For Xe J , define 'Sn J.: t‘n(j;Pszn'lx,Q“x) -Pn“"lx
»

as follows. Let (c,y)e En(j;Pﬂn-IX,QnX), where c=<c,... ,cj> and

y = (yl,...,yj). For tel and ve Sn~1, define

jvr{S)fu) if < (s,u)=(t,v)
gn’j(C.y)(t)'(V) = \yril}(u) ift2cl(l),elfu)=v, y ¢ a™x

= othaerwise

Then the following diagram is commutative:

. o .
¢ G)x ©"x)y L) > 9'x
c c
- o . ]
g T Pt g, o) —Ped 5 pettlx
4
f s1d
n'l)J !
Cn-l (i x (mn-l}{}‘] ba n-1,] P
1X pJ
,

' ) 8 .
€ Hx @ 1xy polg o ontly

N~

Proof. The definition of & _(j; " 1%,07K) gives that if q# r and

Y. I'4 27X, then no element of cq(.]'n) has the form (t,v) with t> c;(l) and
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- ~
Ve c';(Jn 1). Thus the first and second parts of the definition of Gn . have dis-

joint domains. Of course, yr(s)(u) =% for ue BIn‘l, and it follows that

en i is continuous, By comparison with Theorem 5.1, (] = . on
t4

.= 0
, j n,J
Cn(j) X (QDX)J. Pen 1,j is defined in Lemma 1.5, and the commutativity of the
“Lis

bottom square follows from that lemma. The commutativity of the triangle is

immediate from the definitions, since 0-;1 1,j is given by £ 1 X{ on little
]

{n-1)-cubes f.

~ -1 -1
Lemma 6,11, * For X ¢J , the maps 8. j: 5n(j;P$2n X,an) -pa™ X
. E3
~ - -
induce a map 8 : En(PQn 1X,QnX) ~ PP lx such that the following diagram is
commutative (where, if n=1, eo = 1:X - X)s

1 P

- - -
ca™ —— s o ix, e —2 ¢ o™x
n 1 n-1
) 8 8
bel n n-1
¥
Q"X c s>paP-lx B —> o™y

P i "~ ~n ~e 'é-’ . h
roof. Gn’j(cw, v} = Sn,j(c, oy) and en,j—l(o‘ic' y) = n,j(c’ siy), in the

notation of Construction 2.4, and therefore 'é-'n is well-defined., The previous

lemma implies that gn= Bn on CnQnX. Clearly

Yr(l)(u) if c;(u) = v and Y, I'4 Q™
P8 [c, yl(v) =

¥ otherwise .
By the definition P, =V’ Enp and by the definition of v, in Lemma 6.7

-
and of en-l in Theorem 5.1, pen = en-lpn follows.
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Define & =6 o E A E X = E_(TX,X) -+ Pg” 1s™X. Then the com-
n n n n n
mutativity of the diagram in the statement of Theorem 6,1 results from

Lemmas 6.9 and 6,11,

We complete this section by showing that our approximations relate
nicely to the Hurewicz homomorphism h and to the homotopy and homology
suspensions 5,. Recall that we have morphisms of monads ¢ :Cn -+ N,
where NX is the infinite symmetric product on X; by abuse, if n=1, ¢

here denotes the evident composite C., - M - N, For connected spaces X,

1
~d
we may identify rri(NX) with Hi(X), and then h= n*:ni(X) - -rri(NX) and

S

«= 2 -1: ,(NX) - wri+1(NSX), where 8 denotes the connecting homomorphism .
i

of the guasi-fibration Nw:NTX - NSX with fibre NX; proofs of these results
may be found in [10].

Lemma 6,12, Let m:{X,A) - (Y,*) be a map of pairs in J ., and let
% denote the composite En(X, A) L. CnX —£_ NX. Then the following
diagram is commutative where, if n=1, &= n:Y -~ NY,

- ™

CA ——SE(X,A)—2—>C_ .Y
n n n-1
! ¢ 5
NA S s xr - NY

Proof. The commutativity of the left-hand square is obvious and the
commutativity of the right-hand square follows easily from the definition
of L For n =1, the crucial fact is that at most one coordinate x of an

element [<c1,...,cj>,xl,...,xj]e EI(X,A) is not in A.
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Corollary 6,13, Let X ’_T be connected. Then there is a natural

commutative diagram, with isomorphisms as indicated:

-1l

7 (@0sT%) —2 w, {(8°X)
nn/' b - tn
) I,_:
L
Tln# 3_n jo)
(X)) ——> r (C X} ——0gp—> 7 {3X)
i it n = itn
£ ln =h
_ e -T3 %
My~ h l 4 = Sf; ny
'rri(NX‘) = “i‘!-n(NS )

-n . . .
where 9 o nn*. wi(X) tri_'_n(SnX) is the homotopy suspension,

Proof, The triangles commute since a and € are morphisms of
monads. The upper square commutes by the diagrams of Theorem 6.1 and

the lower square commutes by the lemma applied to X C TX and = TX — SX,

Remark 6. 14, Let M(X,A) denote the image of the space EI(X,A) under
the augmentation £ CIX -+ MX; Gray [14] has made an intensive study of
M(X%,A), which he calls (X’A)oo' The natural map m:X - X/A induces
wl:El(X,A) - X/A, and ™ clearly factors (via g) through a map

p:M(X,A) -~ X/A, If A is connected (and if the pair (X,A) is suitably nice),
then, by Theorem 7,3 and [14], ™ and p are quasi-fibrations with respective

fibres C.A and MA, and ¢g:C

1 lA -+ MA is a weak homotopy equivalence by

/

Proposition 3. 4; therefore §: EI(X' A) - M{X, A) is also a weak homotopy

equivalence,



7. Cofibrations and gquasi-fibrations

We prove here that En(x,A) is aspherical if (X,A}) is an NDR-pair
such that X is contractible and that, for appropriate NDR-pairs (X,A),
the maps ﬂann(x,A) + Cn_l(x/A) and C_w:C X + C_(X/A) are quasi-
fibrations with respective fibres CnA and C_. A, Applied to the pairs
{TX,X), these results will complete the proof of the approximation
theorem, They will also imply that =,(C_X) is a homology theory on
connected spaces X (which, a fortiori, is isomorphic to stable homo~
topy theory).

Theorem 7.1, Let (X,A) be an NDR-pair in J, Then

(1) (F.E (X,A),F,

j j=1Fn
(ii) If X is contractible, then En(x,A) is aspherical,and En(x,A) is

(X,A)) is an NDR-pair for j > 1.

contractible if X is compact, or if X is the cone on A, or if n=1,

Proof, By Lemma A.5 applied to (X,A,*), there is a representation
(h,u) of (X,*) as an NDR=-pair such that h(IXA)} < A, By Lemma A.4,(h,u)
determines a representation (hj'uj) of (x,*)j as an Zj-equivariant
NDR-pair. Since any coordinate in A remains in A throughout the homotopy
hj' the representation (ﬁg,ﬁj) of (chnx,Fj_lcnx) as an NDR~pair which
was derived from (hj,uj) in the proof of Proposition 2,6 restricts to a
representation of(FjEn(x,A),Fj_lEn(x,A)) as an NDR-pair. The contrac-
tibility statement is more delicate. 1Indeed, my first proof was
incorrect and the argument to follow is due to Vic Snaith. Let
g:I x X + X be a contracting homotopy, g(O,x) = x%,g(t,*) = *, and
g(l,x) = *, Clearly g cannot in general be so chosen that g(IxA) < A,
Por ¢ = < CleeerC; > € Cn(j)' write ¢y = ci x cI, ci: J + J, and define

J

{c) = 2 max (c!(l)-c!{(1l)/2 (), where A(c) = min (c!{(1)-c'!(0)}.
Vi i 1 (12 te), 1okey k7%

Define a homotopy G:I X(FjEn(x,A)-Fj (X,a) ~>1~"jE“(x,A) by

-lEn

G(t,[C,x.l-..,xj]) = [c,q(tlpxl),...,g(tj,xj)], where
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t if vile) £ 0
t, = t(l-vi(cj) if 0 « vi(c) <1
o if v, {cy 21
G is well-defined since, as is easily verified, vi(c):l implies that
(ci(o),l)x c;(Jn-l)n ck(Jn) is empty for all k % j (and thus that the

ith

coordinate in X is unrestricted)., G starts at the identity and ends
in F ] 1E (X,A) since vy (c) < O for at least one i and each c. Note,
however, that G cannot be extended over all of FjEn(X,A). Now assume
that there exists e > O such that g(I x u ‘[0,e]) « uw 1[0,1). If X is
compact, then there exists such an € by an easy exercize in point-set
topology; if X = TA,(j,v) represents (A,*) as an NDR-pair, and

ula,s]= v(a).s, h(t,la,s])= [j(t,a),s], and g(t,[a,s))= [a,s~st],
then any € < 1 suffices, Define a homotopy

H:I x F E (X,A) » F E (X,A) by H(t,z)= 2z for z ¢ F, (X,A) and by

h i l n
G(t,lc,y]) if uj(y) > €/2

H(t,[c,y]) = 2t.u.(y)/
Gt J e,le,y]) if u.(y) < e/2

for [c,yle FjEn(X,A) Fj 1En (X,A). Then H deforms FJE (X,A) into

E‘j'l[o,l) and, by the first part, u. [0,1) can be deformed into

u,
3

J -1 n(X,A) in F E (X,A). It follows that each F E {(X,A) is contrac-

tible, and the argument given by Steenrod in [30,9.4] shows that

En(X,A) is contractible. For arbitrary contractible X, a map

£:59 » En(X,A) has image in FjEn(Y,A n Y) for some j and some compact

Y ¢ X; if € is such that g(I x u-l[0;ﬂnY) cu‘l[o,l) then the homotopy

H above deforms FjEn(Y,AnY} into 5'1[0,1) in FjEn(X,A), and it follows

that £ is null-homotopic., Thus En(x,A) is aspherical. Finally, ifn =1,

then we can write points of El(X,A) in the form [c,y] where the inter-

vals c; of ce C (j) are arranged in order {(on the line); then the
retracting homotopy for (X,*)J obtained from hJ 1 ©on xj-l and g on X

by Lemma A.3 can be used to deform FjEl(X,A) into F l(x A).

j-1
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Recall that a map p:E == B is said to be a quasi-fibration if p is
onto and if p,¢ ‘rri(E, pnl(x), vy}~ wi(B,x) is an isomorphism (of pointed sets
or groups) for allx e B, ye p-l(x), and i2 0. A subset U of B is said
to be distinguished if p: p-l(U) = U is a quasi-fibration, The following lemma,
which results from the statements [10,2,2,2,10, and 2,15] of Dold and Thom,

describes the basic general pattern for proving that a map is a quasi-fibration.

Lemma 7.2. Let ptE = B be a map onto a filtered space B. Then
each FjB is distinguished and p is a quasi-fibration provided that
(i) F B and every open subset of FjB - Fj-lB for j > 0 is distinguished.
(ii) For each j> 0, there is an open subset U of FjB which contains
F;.1B andthere are homotopies h:U =~ U and H;: p () ~ o7 (V)
such that

(&) b =1, ht(Fj_lB) C F, B, and h (U)C F, 1B

1 1

(b) H =1 and H covers h, pH =hp; and

(c) lep-l(x) -~ p-l(h1 {(x)) is a weak homotopy equivalence for all x ¢ U.

The notion of a strong NDR~pair used in the following theorem is defined
in the appendix, and it is verified there that (Mf,X) is a strong NDR-pair for any

map f: X +Y,.

Theorem 7.3. Let (X,A) be a strong NDR-pair in J , and assume that
A is connected. Let m:X - X/A be the natural map. Then
(i) T En(X,A) - Cn_l(X/A) is a quasi-fibration with fibre C_A ;

{ii) Co™ C X~ Cm(X/A) is a quasi-fibration with fibre C LA
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Proof. (i), The maps m are defined in Notations 6.8. For the case
n =1, recall that CO(X/A) = X/A and define FO(X/A) = % and FI(X/A) = X/A,
The proof for n = 1 will be exceptional solely in that we need only consider
the first filtration, j = 1 below, and therefore no special argument will be
given. FOCn_l(X/A) = % is obviously distinguished, and we must first show

that any open subset V of Fan_l(X/A) -F (X/A) is distinguished .

j-lcn-l

By use of permutations and the equivalence relation used to define En(X,A),

and by the definition of ™ any point y e vI;I(V) may be written in the follow-

ing form:

(2) y=1[<e,d> x,a], where c = <c1,...,cj> € Cn(j), d= <d1,--.,dk>€C n(k),
X € (X-A)J, and a e Ak; here if c.= c;:X c: y c:‘r 3J = J, then the inter-

section of (c'r(O), 1) % c;'_(Jn-lf and dS(J'n') is empty, and

. . " " %
wn(y) [e ,P(x)] e V, where ¢ <c1,...,(:j > e Cn-l(‘])'

Define q: wr:l(V) ~C A by qly) = [d,2] for y as in (2). It is easy to verify
that q is well-defined and continuous., We claim that ™ Xaq: 'n'n.l(V) -V X an
is a fibre homotopy equivalence, and this will clearly imply that V is dis~
tinguished. Define morphisms of operads cr+: cn-—l - Cn and T°: C.n - Cn
by the formulas

(3) 0'+(f) = g+>< f on little (n-1)-cubes f, where g+(s) = IE(I‘I"S), g+(J') = (-]3- ,1).

(4) ()= {g" X 1“‘1)f on little n-cubes f, where g (s) = —;-s, g {I) = (o,—;-).

Then define wiV X CnA - 'n-n-l(V) by the formula
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(8 wllen WL [4,a]) = [<o¥(cn, 7 (@)>,x,a], where c"e & (),

xe (X -a), de C'n(k), and a e A (for any k2 0).

The definition of ¢t and 7~ ensures that the little cubes on the right satisfy
the requirements specified in (2) for points of wnnl(V). Clearly w is con-
tinuous and fibrewise over V. Now (-n-n X q) w is the map 1 X 1 , where
E CnA g CnA is the associated morphism of monads to T : Cn -+ Cn .
Since 1 &+ via the homotopy induced from f — (g;X ln_l)f on little n-cubes f,
where g;(s) = (s - %st), (1rn X q)w is fibre homotopic to the identity map. On
points y e 'rrn.l(V) written as in {2), we have

wir X @)(y) = [<e'(c"), 7 7(2)>,x, 2]
Construct a fibre-wise homotopy 1 sw(wn X q) by deforming d into 7 (d) as
above (without changing c,x, or a) during the first half of the homotopy and
then deforming c¢ into o-+(c") by deforming each c! linearly to g+ (without
changing 7 {d), %, or a) during the second half of the homotopy. It is easily
verified that the disjoint images and empty intersections requirements on the
little cubes of points of 1fn-1(V) are preserved throughout the homotopy. Thus
L X q is a fibre homotopy equivalence and V is distinguished. It remains to

construct a neighborhood U of FJ, 1

Cn_l(X/A) in Fan__l(X/A) and deforma-
tions of U and of -rrn-l(U) which satisfy the conditions of Lemma 7. 2(ii). Let
(£,v) represent (X,A) as a strong NDR-pair, and let B = v-l[O, 1); by

definition, £ (I X B} C B, Define U to be the union of Fj- cn-l(X/A) with

1

{[c",'tr(xl),. .. ,-rr(xj)] | x e B for at least one index r}.
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Let (h,u) be the representation of (X/A,*) as an NDR-pair induced from

{t,v) by =, and let (hj’uj) and (Ij,vj) be the representations of (X/A,*)‘}

and (X,A) as NDR-pairs given by Lemma A, 4, Let (hj,?;j) be the repre-

sentation of (Fan_l}(/A,Fj . 1X/.A) as an NDR-pair given by Proposition

2.6% then ﬁ_(x) <1 if and only if x¢ U, and ’};J. restricts to a strong deforma-
J

tion retraction ﬁj: IXU~~U of U onto Fj-lcn-lx/A' Define

~j -1 -1 v j-1

171X L (U) -~ LA (U) by £°(t,y) =y for ye F En(X,A), where

1

FJ-IEn(X,A) = ‘ll'n. (F. X/A), and by the following formula on pomts

j- 1 n-1
Ve rrn-l(U) - FJ.lEn(X, A) written in the form {2)

(6) P, p=[<c,a>,1 ), 3]

~i ~3
1) s well-defined since £(t,a)=a for ae¢ A, and clearly 17 covers Aﬁ} and
is a strong deformation retraction of TI'n'l {U) omnto FJ-IE (X, A)., By Lemma

- : . ~j, -1 -1
7. 2, it suffices to prove that if x¢ U and x'= h (x) , then ll. T (x)~> L (x")
is a homotopy equivalence. Since I is constant on F'] 1En(X,A), this is
trivial for x ¢ F 1% 1(X/A). Thus consider a typical element
xeU- FJ C (X/A),

x = fe"w(x.),...,7w(x,)], where c" =<c¥,...,c"™ and x_e¢ X-A.
1 3 1 j T

Let 1jl(x1,. .. ,xj) = (xi P ,x;). Some of the x; lie in A. By use of per-
mutations and the equivalence relation, we may assume that x’r {§ A for r<i

and xl" ¢ A for i<r<j (i maybe zero), and then

X! =’;1j1(x) = [<en

1oeee ,c'i>, 'lr(x'l),... ,-n'(xi")].
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Consider the following diagram:

~j
1
-1 1 -1, ,
= (x) 7 ()
nan w -nnX q w
o
h_] X1
x XC_A J x'XC A
n n

Here the q and w are defined precisely as in the first part of the proof, and

L X q and w are inverse homotopy equivalences., We shall construct a

~

homotopy H:IX (x X an) - 'rrn-l(x') from {

imply that TIJ

lJew to w.,(iijl X 1). This will
is homotopic to the composite of homotopy equivalences

~
w»(hjl X l)o(nn X q). Since A is connected, we can choose paths P I-A

connecting x'r to * for i< r<j. Define H by the formula

(7) H(t, x, [d, a]) = [< °'+(c“)’ T-(d)>, xio- . ’x;_ ’ Pi+1 (t): csey Pj(t)n a’] .

~ 3 ~
Clearly H is well-defined, and Ho = lljw and H1 =w (hjl X 1) are easily
verified from (5) and (&). This completes the proofof (i),

’
(ii). Define a subspace €n(j; X,A) of En(j; X, A) by
. +,

€ (isX,4)= {(<C1,....cj>,x1,...,xj)l ct =gl if x ¢ A},

where g+ is defined in (3). Let E;I(X,A) denote the image of >, f;(j;X,A)
jzo0

in E (X,4), andlet 7't E!(X,A) ~ Cn_l(X/A) be the restriction of = to
E;I(X,A). With a few minor simplifications, the proof of (i) applies to show

that -n']'n is a quasi-fibration., We have been using En(X, A) rather than
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E!'l(X,A) since the contractibility proof of Theorem 7.1 does not apply to
EL(X,A); a fortiori, these spaces are weakly homotopic equivalent and can

be used interchangeably, We now have commutative diagrams

[o2
n
¥b: (RO A" v}
EH{X,A} . I(X,A}
¥ i
wn Wn-ﬂ
-
c ¥ x/ay — 2L s ¢ (x/a)
n-1 Fo
and +
0-n i
1
C X —— En+1(X,A) ———> Cn+lx
1
CLm Tt Chn1™
ot
1 n
C ———— (/8] —— >
WX/A8) C_(x/a) C 4 X/8)

+ .
where o is defined by O':(f) = g+>< f on little n-cubes £, and i is the
inclusion. E;1+1 (X,A) was introduced in order to ensure that

+
i= ' i i o gt ot X
Cn+11ro1 voeTIa Lemma 4.9 implies that ool CnX - cn+1 s

naturally in X, and, since o-;l(c) = 1 X ¢ on little n-cubes ¢, we evidently

have that ¢! = 0’+:C X =-C ¥, naturally in X, Now pass these diagrams
n n n n+

1

P : . + +

to limits with respect to the o¢_, observingthat ¢ .o = For
n ntl n

= "n41 %n"

X e Coo(x/A) and ye (Cw'n')-l(x), we have a commutative diagram
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+

(€ X, (Cm (), y) —2—> (E1_(%,4),m " ), 0 y) 2> (C_x, (€ _m Mot 2, h y)

1
C n 1 C =
o0 fi o 00

+
i i
— 3 Y o +
(C, (X/5), %) (€ (X/a), %) (C (X/A), o x)
Clearly wc‘n is still a quasi-fibration; since crn'3 c':, naturally, both the top
composite ia:o and the bottom map o-:o , as well as 'rréo , induce isomorphisms
on homotopy groups (or sets). Since 17('30*0-0':* is a monomorphism, so is

; + s . . .
(Coow)* on the left. Since L “::o* is an epimorphism, so is {me)* on the

right, It follows that

(C Myt m(C_X,(C_m " x),y) = m,(C_(X/A),x)

is an isomorphism for all x and y, which verifies the defining property of a
quasi-fibration,

The second part of the theorem has the following consequence,

Corollary 7.4, For any Eoo operad ¢, w’:‘(CX) defines a homology
theory on connected X ¢ J and w*(ﬁ CSX) defines a homology theory on all
X e J . These theories are isomorphic to stable homotopy theory, and the
morphism of homology theories £ : 1T*(CX) - v*(NX) is precisely the stable

Hurewicz homomozrphism,
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Proof. By Proposition 2.6 and the homotopy exact sequence of the

quasi-fibrations C_X =~ C_M, - CpTp where T, = Mf/X is the mapping

f
coneof L1 X =Y, « *(COOX) satisfies the axioms for a homology theory on
connected X. Since suspension preserves cofibrations and looping preserves
fibrations, =« *(ﬂ CmSX) satisfies the axioms for all X, The natural weak
homotopy equivalences of Corollaries 6.3 and 6. 4 clearly allow us to trans-
fer the result to arbitrary Eoo operads C » and the maps (am)* and

(ﬂaooS)* define explicit isomorphisms with n:(x) = 7, (QX). The statement

about ¢, follows immediately from Corollary 6,13.



8, The smash and composition products

The purpose of this section is to record a number of observations
relating the maps en: cnnnx - Q"X and a: CnX +@"s"X to the smash
and composition products, and to make a few remarks about non~connected
spaces, The results of this section do not depend on the approximation
theorem and are not required elsewhere in this paper; they are important
in the applications and illustrate the geometric convenience of the use of
the little cubes operads.

We identify a"x with the space Hom j_, (Sn,X) of based maps s - X,
Sn = In/ BIn, and we write S for the inclusion Q"X - Qn+ISX given by sus~
pension of maps.

For X,Y ¢ ']— , the smash product defines a natural pairing

m+tn

27X x Q™Y - @™ X A Y); explicitly,

(£EA g)(s,t) = i(s) A g(t)
for fe 27X, ge2°Y, seI™, and te [, Observe that if m>1 and if
ﬂ:QmX X 27X - Q™X denotes the standard (first coordinate) loop product,
then, for fl,fz e QX and ge QnY, we have the evident distributivity formula
gle,1)n g = BlE,ag fhg) .

Diagrammatically, this observation gives the following lemma.
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Lemma 8.1. For X,Ye T , the following diagram is commutative:

a™x x 27X x oy gx1 a™x x oy
IXIX A A
¢ ¥
"X xaTx x oy xa'y o™ x AY)
1%Xtx1 J 2

f .
AT x Y x 0K x "y —EXL T TPAY ) x 2T X A Y),
where A is the diagonal and t is the switch map.

Now the loop products in this diagram are given by L Z(C), where
c=<g X lm-l, gdl-XIm-1 >e Cm(z) with g and g+ as defined in formulas
(7.3) and (7.4), and the lemma generalizes to the following computationally

important result,

-
Proposition 8.2. For X,Y e J and anl positive integers m,n, and j,

the following diagram is commutative:

(i) x @™x) x oy -5 ol » 27X xQ"Y
IXIXA [N
£_O)x (nm}g)j x @™y 2™ (x A Y)
b,
C )X (nm)'c x 2°y) 1x A’ C ) xa™x AYY

m

where A is the iterated diagonal and u is the shuffle map.
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Proof. We must verify the formula

Gm’j(c,xl..--.xj)f\ y = Om,j(C;xlA Yoeoor X, Ayl

for x, € gmx, Ve Qny, and ¢ = <cl,. ..,cj> € Cm(j). By Theorem 5,1, if

8 € Im and te In, then

x _(s')Ay(t) if c (s')=s

r r
6 .(c,xlA Yoeeas X Ay)(s,t) =
+J J * if sfIme .

Vigibly, this agrees with 6__ (ec,x.,...,x.)(s)A y(t).
m,) 1 J

An equally trivial verification shows that we can pull back the smash

product along the maps @ in the sense of the following proposition,

Proposition 8.3, Define a map A :CmX X CnY - Cm+n(XA Y) by

the following formula on points [c,x] ¢ C X and [d,y]e C.Y, with
= : - 3 =
c= <c1,...,cj>e Cm(J), x = (xl,...,xj)e X', d=<d;,..., 4> Cn(k),
k
and y = (yl,....yk)e Y

[e,x] A [de] = [e, z],

2 =< X eresc, X4 >
where e CIXdl,...,ch dk,...,cj d}, cJ dk
and z=(xlAyl,...,xll\yk,...,xjt\yl,....xj'\}’k)
Then the following diagram is commutative:
C ¥xC Y A > C {XaAY)
m n mtn
a'mXcrn crm-!-n

A
QUK x o5ty —— oM TYx Ay
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(where we have identified STX AS"Y = XA 5T A YAS" with

m+tn

XAaYASTA 8" = 8™™(X AY) via the map 1AtAl).

We can stabilize the smash products of the previous proposition, up to
homotopy, by use of Lemma 4, 9 and the following analogous result on change
of coordinmates,

Lemma 8.4, Let X e 7 . Define 52015 x -~ "™, n21,

n-lsn-l

by letting S'f, f¢ Q X, be the following composite:

SnzslASm—l 1Af Sl/\XASn~1 tal XASI'\Sn-lr-SnX.

Then S' is homotopic to S, where Sf=f A 1:8" - s™X.

Proof, Let T,1': Sn +8® and h:t 2 v' be the maps and homotopy

constructed in the proof of Lemma 4,9. For fe ﬂn-lSn-IX and 8 ¢ I, let

H_(£): s" = S™X be the composite

n hs.1 n 1af 1 n-1 tal n 1'\hs n
s > S >S AXAST A2 5 x Ast —5> x5 =8,

Then Ho(f) =fal and Hl(f) = {t Al)e(l A f), as required.

Of course, it is now clear that the n suspension maps

n-1_n-1

Q"™ X -~ a"s"X and Cn X - CnX obtained by the n choices of privileged

-1
coordinate are all homotopic. It follows easily that the smash products of

Proposition 8,3 are consistent under suspension, up to homotopy, a8 m and n

vary,
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We next discuss the composition product, Let g(n) denote the space
of based maps s - s regarded as a topological monoid under composition
»
of maps. Let ’F\:i( n) denote the component of ¥{(n) consisting of the maps
of degree i. As usual, we write
n? ~ ~e
F(n) = Fl(n) uF 1(n) and SF(n)= Fl(n).

~ ~ ~
F(n) may be identified with ©°S", and then, by (5.6), S:¥(n) -~ F(n+1)

n+l Sn-!-l

. n.n . : -
agrees with o-n:ﬂ S —-Q . We write ¥ for the monoid lim F(n)
i

. . ~ o
and identify F with QS5 as a space. For X ¢ 7 , define
cn:sz"x x F(n) » ™%

to be composition of maps., Then <, is a right action of the monoid Af’(n}

on the space Q"X. The diagram

n re
2 X x Fin-1) x"*-\Cn-l
e

1% 8 *oMx

an s %(n)/

n

is evidently commutative for all n2> 1, Therefore, if {Yi} € xeo’ then
the maps

c:Y X Fn) = @°Y_ X Fln) - o°Y_=Y
n [+ n n (o]

induce a right action ¢ Y X F - Y of ¥ on Y . Of course,
®” "o o o
O b4 Le] o4
coo: QS XF =+ QS coincides with the composition product on F. The
composition product enjoys another stability property, which is quite analogous

to the result of Lemma 5.6,
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Lemma 8.5. For X ¢ J and n 31, define Pc_: PR"X x ¥(n) -~ PO"X

by Pe_(x,£)t) = c_(x(t),f) for xe PO"X, fe F(n), and te L. Then the

As
restriction an of Pcn to Qn+1XXF(n) is the composite
. c
™ x x Bn) 225055 o"Mx x Fnt1) —2H 5 o7 1y

and the following diagram is commutative:

~ X 1
2% x F(n) ———» PO™X x F(n) ————e0"X X F(n)
Qc Pc I
n n n
x5 pex P i S

The precise relationship between the smash and composition products

is given by the following evident interchange formula,

Lemma 8. 6. For xe¢ 97X, v e QnY, fe 'f‘(m), and ge #(n),
Cm(X, f) A Cn(Yl g) = Cm_*_n(x“ er’\g)
Lemma 8.7, The composition and smash products on T are weakly
homotopic, and both products are weakly homotopy commutative,
Proof. For fe F(m) and ge f(n), we have the formulas
(81 ges’ = fag = sTte(s)Tg

since (S')mg = lml\g and S™f=fA1", S and S' are homotopic by

Lemma 8.4, and the result follows.
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We shall obtain an enormous generalization of this lemma in the

second paper of this series, There is an E operad I such that I acts

0N B
on F ({so as to induce the smash product) in such a manner that the com-
. od
position product FxF~F isa morphism of I -spaces.

Of course, there is a distributive law relating the loop product § to

the composition product, namely

B(¢,.5,)eS'g = Blf,°S'g,1,°S'8)

for fl,fz e @°X and ge F(n-1). Diagrammatically, this gives

Lemma 8.8. For X e J , the following diagram is commutative

-~
2°X x "X x F(n-1) fxs > Q"X X F(n)
1X1X AS' c
n
v
Q"X x @"X x F(n) x F(n) Q"x
1%tX1 4
| c Xe¢

k.
Q"% x Fln) x 27X x Fln) —2—2 "% x "X

The following generalized distributive law is proven, as was

Proposition 8. 2, simply by writing down the definitions.

Proposition 8.9. For X j and all positive integers m,n, and j,

the following diagram is commutative:
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min j o em . X (S')m m+ )
G (%@ ")) xFn) = - 277X % Fmn)

tual
I X1XA(S5) e o
L ) x @""xy x F(m+n)’ o™ Fny

m A
1xXu [}
m,)

mi o j 1 X ch+n mtn,,,j

£ 06) x @77X x F(m#n) — C_()x@""x)

We can pull back the composition product along the approximation
maps « , but this fact is slightly less obvious. The following reinterpre-

tation of the definition of the maps Qn ] will aid in the proof,
£

Lemma 8.10. For Xe J , let JX denote the wedge of j copies of
X and let p:JX - X denote the folding map, the identity on each copy of X.
Let c= (cls~~scj>€ Cn(j) and y= (Ylt-o-th)a Yr € Qn)(' Then

8 j(c, v): " - X is the composite
¥

- . YV e VY, .
st <5 Js ! J o Ix L4 » X ,

where T is the pinch map defined by €(v) = * unless v = cr(u) for some r

h copy of Sn.

and u, when c(v) = u inthe rt

We next describe CnSO and a: CnSO - QnSn; these maps play a cen-

tral role in the homological applications of our theory.
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Lemma 8.11, For any operad C , cs® is homeomorphic to the dis~
joint union of the orbit spaces C(J)/ Ej for j2o0,

Proof. If S° has points * and 1, then any point of cs°® other than

& G).

Lemma 8,12, Consider a :C S° +Q"8". For ce &' (j), write
—_= n" 'n n

* can be written in the form [c, IJ], ce

3
an(c) = an[c, 1] € ‘f‘j(n). Then an(c) is the composite

Sn C - an o4 (Sn

Proposition 8.13. Define a map ¢ _:1C X XC s°+>c x by
n’ “n n n

e ([esx],d) = [v(d, ™), x"),

for ce C n(j), x= (xl, eee ,xj) e X), and de Cn(k). Then the following

diagram is commutative for all n, 1¢ n ¢ !

[+

CXxCcst—2 —»cCcX
n n n
aX& 1&’
n n n
n 1&‘ cn n_n
Q"s"X X F(n) ——» o"s'%

= gt L J
Proof. Let m (x)= nn(xl) V...V nn(xj). S s™X, where
nn(xr)(s) = [Xr’ s] for s« s". Since a_= 8 ° Cnﬂn’ it suffices to verify

the commutativity of the following diagram:
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I CH ck) e n knn(x) X p
s > 5g » K% —— » 57X
d p
- . n_{x) .
kgh LB e < w 15" n > 5%

The result follows easily from the definition of v, in 4.1,

Note that, in contrast to the smash product, the following diagrams

are commutative for all n:

C [+

cxxcs® —=2 — CX and 9"S"XxF(n) r > 0"s"x
n n n
T Xo o XS 1
n n o n n
(s C n Cc
+
Can®XChpy5 mtl C_ 41X Qs ly « par1) —2H, gPFlgnty

Of course, an: CI;X - @"s"X fails to be a weak homotopy equivalence for
non-connected spaces X, essentially because -no(ﬂnSnX) is a group and we
have not built inverses into operads, Conceivably this could be done, but the
advantages would be far outweighed by the resulting added complexity. It may
be illuminating to compute wo(arn):'rro(CoX) - wo(QnSnX). Recall that if S is a
based set (regarded as a discrete space), then MS (resp. NS} denotes the
free monoid (resp., free commutative monoid) generated by S, subject to the
relation *=1, Let MS (resp., ﬁS) denote the free group (resp., free com-
mutative group) generated by S, subject to the relation * = 1, and let

it MS -~ ?/IS (resp., jt NS - NS) denote the evident natural inclusions of monoids.
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Proposition 8,14, For X ¢ J , the horizontal arrows are all

isomorphisms of monoids in the commutative diagrams

Mrro(}i)—-——'-ﬂo{cl}{) and, if n>1, DNn (¥}————> v (C X}
i WO{Q‘I) .] TYO(OIn)
'f\iwo(x) ———>n_(@SX) ﬁwo(x) —— v _(@75"%)

Here the horizontal arrows are induced from the set maps
n
w (n)im (X) >« (CX) and w_(n)iw (X)=rw (@ s"X)
fad
by the universal properties of the functors M, N, M, and ﬁ
Proof. Fix be (n(z) (with b= {b;,b,> where b, (1) & b,(0) if

n = 1); then the product in CnX may be taken to be

{C, X] * {do Y] = (V(b; <, d)a X, Y}

for ce C'n(j), X e Xj, de Cn(k), and y ¢ x5, It follows easily that the image
of -rro(X) generates wo(CnX) as a monoid. Thus the top horizontal arrows
are epimorphisms and by the diagrams, it suffices to prove that the bottom
horizontal arrows are isomorphisms. For n »1, we have the evident chain
of isomorphisms

[

Nr_(X) = ?fo{x) = Hn(snx) = ﬂn(s“x) & -:ro(QnSnX).
For n=1, let Xg denote the component of g, where g runs through a set
of points, one from each component of X. Define open subsets Ug of 585X

by

x

_ 1 3
U, = {[x,s]]xe X, or 8¢ 4 or s>z}
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and Ug= U*\J{[x,s]]xsxg} for g# *.

For g#h, Ugﬁ U, = U, and WI(U*) = * since U, is homotopy equivalent
to SX,. For g4 % wl(Ug) is free on one generator, since Ug is homo=~
topy equivalent to S(X, U X ), and therefore T, (5X) = ﬁwo(x) by the

van Kampen theorem,



9. A categorical construction

We shall here introduce a very general categorical "two-sided bar
construction™. When we pass back to topology via geometric realization
of simplicial spaces, this single construction will specialize to yield

(1) A topological monoid weakly homotopy equivalent to any given
Aoo spaces

{2) The n-fold de-looping of a Cn-space that is required for our
recognition principle;

(3) Stasheff's generalization [28] of the Milgram classifying space
of a topological monoid,

The construction also admits a variety of applications outside of topology;
in particular, as we shall show in §10, it includes the usual two-sided bar
constructions of homological algebra.

Throughout this section, we shall work in the category Jj of
simplicial objects in an arbitrary category :r. Since verifications of
simplicial identities are important, we recall the definition of simplicial
objects and homotopies and then leave such verifications to the diligent
reader,

Definition 9.1. An object X ¢ 4] is a sequence of objects Xq eJ,

q 2 0, together with maps 9 !X -+ X and s X ==X in .T R
i g q-1 i g qgtl

0 £1i< q, such that
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8.9.=9, 8, ifi<j

s, 9, if ;<]
g.s.=¢1 if i=j or i=j+l
jTi-l i il

8,8, =

i% stSi if i

Amap {: X~ Y in A{T is a sequence £ :X —+Y of maps in T such
QT 9q q

that 9.f =1 9, and s
1q

q-1% f ..8.. Ahomotopy h: £{&# g in ,0'7 between

ifq: qtl i

maps f,g: X =+ Y consists of maps hi:X 0£isg q, such that

q*Yﬁf

@h = f and 8 ,.h =g

o o q qtl’q “q
e i<
hj_lai if i<j
5h = . £ o=
ihj 6th_1 if i=j>0
i> i+
hjai-l if i> j+1
L
r R ‘e
hj-!-l i if i
sihj= [
5. oIS
hJsl_1 if i>]

Thus a purely formal homotopy theory exists in ,JT y regardless of
the choice of J , and we can meaningfully speak of homotopy eguivalences,
deformation retracts, etc. When 'I is our category of spaces, these
notions will translate back to ordinary homotopy theory via geometric

realization,
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We shall need a few very elementary observations about the relation-
ship between T and /f j . For Xe j » define X ¢ ,Xj by letting
Xq = X and letting each Bi and s be the identity map. For a map

S .
£:X X' in T , define £:X, ~X, in AT by £,=f. The following

lemma characterizes maps in and out of X* in J:f .

P
Lemma 9.2, Let X e 'j and let Y ¢ JJ . Then
(i) A map p:X - Y in “T determines and is determined by the map

1 (p):X, ~Y in AT defined by TP = s i

Xty
[+]

Ik

X'——-—L——i’Y(;

. -~ o’
is a commutative diagram in J , where ge Z J ,» then

T,(P)

Y
f* lg
(e

Y
X;k Y

is a commutative diagram in /g J .

(i) Amap M:Y_ =X in ] suchthat \D_=\B:Y, =X determines and
a

is determined by the map £,(\):Y =X, in 4] defined by £, = he 2 1;

if

Yo-—-—-—-)‘——-—a» X
gol ¢
)\l
LA —— q

o
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" -
is a commutative diagram in J , where ge¢ ,JJ and both )\80= A9, and

1
A'8_ =213, then
€, 0
Y i s 5 X*
g £y
£

Yl%——bx'
%"

is a commutative diagram in [ j' .

If F: T - 0—4 is a functor, let Fu A(-T —>/f.T' denote the functor de-~
fined on objects Y e .ij by FqY = F(Yq), with face and degeneracy
operators F(&i) and F (si). If w:F - G is a natural transformation between
functors T - T' , let p*:F* - G* denote the natural transformation defined

b =,
Yl-qu-

Lemma 9.3. Let (C,p,n) be amonadin J. Then (C*, Byo Ny is
a monad in,&T , and the category /!C[j] of simplicial C-algebras is
isomorphic to the category C*[l 3‘ ] of C,-algebras,

Proof. The first part is evident from Definition 2.4, For the second
part, an object of either ,JC[ T7 or C*[,J.'J— ] consists of an object
XefT together with maps gq: CXq - Xq in 7 such that (Xq, gq) ecClJ]

and the following diagrams commute:

£
cx 4 X and CcxX 1 X
q q g
ca,
i £ ai Csi Si
q-1 § +1
C ———e 2 X -—-—-r-c-l—-'-*-‘—-—.‘»’ x
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~
The point is that the diagrams which state that £:C X ~ X is a map in 47
are the same as the diagrams which state that each ai and s, on X is a

morphismin C[ T 1
We need a new concept in order to make our basic construction.

Definition 9.4. Let (C,p,n) be a monad in J . A C-functor (F,)\)
. ‘V' : " .
in a category is a functor F: J -—'lr together with a natural transforma-~

tion of functors A:FC — F such that the following diagrams are commutative:

F——L1 s¥C and FCC—F 5 FC
» A N
F FC Ll G

A morphism w:{F,\) = (F',\'}) of C-functors in ‘V is a natural transforma-

tion m:F —+ F' such that the following diagram is commutative:

FC ——T s FIC

xl lx'
F o> B
This definition should be compared with the defintion of a C-algebra:
a monad in J can act from the left on an object of 7 and from the right

on a functor with domain 7 . The following elementary examples will play

a central role in all of our remaining work.
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Examples 9.5. (i) Let (C,u,n) be a monad in 7 . Then (C,p) is itself
a C-functor in J . Since (CX,p)e c{ T ] and p:C ¥ +CX isa morphism
in C[J ] forany X eT, (C,n) can also be regarded as a C-functor in

C[ J ], by abuse of language.

(ii) Let a:(C,u,m) ~ (D,v,{) be a morphism of monads in 7 . Recall
that if (X,£) is a D-algebra, then o*(X,£) = (X, £*a) is a C-algebra,
Analogously, if (F,\) is a D-functor in J , then o™(F,\)= (F,\*Fa) isa

Cofunctor in J , in view of the following commutative diagrams:

F—r1 5 FC and FCC Fo SFC
FL 1:-&. FQJ' Fo
3
D

Fpc 2022 FDD —Y 5 FD

xl ]’x \

i3 Y J

FC Z > D F

In particular, by {i), {D,v.De} is a C-functor in D[ T }; composing

D: T +D[J ] with «™:D[ T ] =~ C[T], we can also regard (D,v.Da) as a
C-functor in C[ T ]. Clearly a: {C,p) =~ (D, v-Da) is then a morphism of
C-functors in C[ T ].

(iii) Let f: Homg, (X, AY) - Hom,V_ (ZX,Y) be an adjunction between
functors A : U T and =: T -V . Let (AZ,v,t) be the monadin J
which results by Lemma 2,40; thus { = ¢'-1( iz) and v = Af{ 1AZ‘)

Clearly (= ,ﬂ(iAz }) is a AZ-functor in V.
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(iv) Let e:(C,p,m) =~ (AZ,v,l) be a morphism of monads in J , with
AZ asin (iii). Obviously @(e) = g(1)*Ze: £C - =, Thus, by (ii) and (iii),

(=,#(a)) is a C-functor in ‘Y and
a:(C,p) ~ (AZ, Af(e))

is a morphism of C-functors in C[ T ].

Construction 9, 6. Construct a category B (J,?V) and a functor

B,: BTN -»,J‘)}‘ as follows. The objects of @B (7 ,)) are triples
((F,2), (C,u, m), (X, £)),
abbreviated (F,C,X), where C is a monadin 4 ,F is a C-functor in v
and X is a C-algebra., Define B*(F, C,X) by
Bq(F,C,X) = rc %,
with face and degeneracy operators given by
3 =2 , anFc%x +~rcTix
9, = FCi-ip , p:cq'i“x ~cTix , 0<i<aq,

1

 =Fc¥?: |, ticx-x

s, = FCln R n:Cq-IX - Cq~1+1X , 0L£ix<g

A morphism {w, §,f): (F,C,X) = (F,C,X") in #B(7 ,V) is a triple
consisting of a morphism y:C =+ C' of monads in 7 , a morphism
T F = Y*F' of C-functors in {7, and a morphism f:X - $*X! of C-algebras,

where Lp*F' and \p*X' are as defined in Example 9.5 (iii). Define
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B(w, ¢, 1) by

B (w4 1) = - Feix - Frc)

here *m};q?FCq - F'(C’)q is a natural transformation of functors ff -V,

and ml;qf is defined by commutativity of the diagram

Fc% —FC% > FCiX!
_mpcil \\ mquf l.m',
ol

FrcH% — FiC) %!

q

The following observation will be useful in our applications.

4
Lemma 9.7. Let (F,\) be a C-functor in V" and let G:V TV

be any functor, Then (GF,G\) is a G-functor in V' and
B,(GF,C,X) = G,B,(F,CX)

in ,4?)" for any C-algebra X,

We next show that, as one would expect, B *(C, C,X) can be regarded
as a "simplicial resolution of X", This special case of our construction was
known to Beck [ 5 ] and others. The proofs of the following two propositions
consist solely of applications of I.emma 9. 2 and formal verifications of

simplicial identities,
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Proposition 9.8, Let (C,p,7n) be a monad in J andlet

(X,6)e C[ J]. Then s*(f,): B*(C,C,X) -+ X, is a morphism in dcl T ]
and T (m:X, ~ B(C,C,X) is a morphism in 47T such that
g8l eT(n)=1 on X . Define hi:Bq(C,C,X) - BqH(C.C,X). 0<i<q,

by . . . .
h, = s-o‘qaolch“x -~ T2y | ety L cote-iy

Then h is a homotopy in 47T from the identity map of B *(C, C,X) to

T*(ﬂ)e*(é), and hic 'rq('q)= T (n) for all i. Thus X_ is a strong deforma-

q+
tion retract of B,(C,C,X) in 4T .

Analogously, if for fixed ¥ and C we regard B*(F,C, CY) as a
functor of Y, then this functor can be regarded as a "simplicial resolution
of F*",

Proposition 9.9, Let (C,p,m) be 2 monadin J , let (F,\) bea

C-functorin U , andlet Ye J . Note that (FY), =F, Y . Then

E M) B(F,C,CY)»F .Y, and 7 (FnhF, Y, —~ B*(F, C,CY) are morphisms
in {V such that E,\)or (Fn)=14 on F, Y . Define

hB (F,C,CY) = B_,,(F,C,CY), 0<i<q, by

. FC1+111¢ 9

h.=8 ...s, » :rcPly o rc*y, vy -cy.
i gt q

+1 L%
Then h is a homotopy in AV from = *(Fn)ﬁe*()\) to the identity map of
B(F,C,CY), and he -rq(Fq) = Tq-*-i(Fn) for all i. Thus F Y, is a strong

deformation retract of B*(F, C,CY) in 4 4.
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The following two theorems result by specialization of our previous
results to Examples 9.5, In these theorems, we shall be given a morphism
of monads «:C = D, and the functors a* which assign C-algebras and
C-functors to D-algebras and D-functors will be omitted from the notations,

The reader should think of « as the augmentation &€:C - M of the
monad associated to an Am operad, or as one of the morphisms of monads
@ : Cn - QnSn, or as the composite of a and Lt CX Cn - Cn’ where C

is the monad associated to an Eoo operad.

Theorem 9,10. Let a!(C,p,n) = (D,v, () be a morphism of monads
in ’J/ .
(1) For (X,&)e C[T], B*(D,C,X) is a simplicial D~algebra and there are
natural morphisms of simplicial C-algebras:

£,(8) B,(e,1,1)
X,<——B,(C, C,X) ———— B_(D, C,X);

6*(5) is a strong deformation retraction in 37 with right inverse -r*(n) such

that B*(a,i,i)o'r n) = -r*( ?;):X* - B*(D,C,X).

ol
(ii) For (X,£') e D[T], there is a natural morphism

£,(£):B,(D,C.X) ~ X,
of simplicial D-algebras such that ¢g,(£')e 'r*( £)=1 on X, and such that

e, (60 B (e, 1,1) = ¢, (£'): B (C, C,X) - X,.
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(iii) For Ye J , there is a natural strong deformation retraction
£,(v +Da): B (D,C,CY) ~ DY,

of simplicial D-algebras with right inverse 7 *(Dn).

When D= AZ, as in example 9.5, we can "de-lambda® all parts of
the theorem above; applied to an: Cn - QnSn, this fact will lead to the n-fold

"de-looping" of Cn- spaces,

Theorem 9.11., Let «:C - AZ be a morphism of monads in 7J ,
where AZX results from an adjunction #: Homg_ X, AY) ™~ Homq}_ {zX,Y).
(i) For (X,8)eC[T 1 B (AZ,C,X)= AB(Z,C,X)

(ii) For Y eV , (AY, AB(1)) ¢ A=[ T ] and there is a natural morphism
EP(1):B(Z,CAY) > Y,

in JV 5 € (AP0)) = A e (1):A,B.(E,C,AY) =AY, .

(iii) For Y e :T , there is a natural strong deformation retraction
£f(@):B(Z,C,CY)~Z Y,

in U with right inverse 7 (Zm), m:Y - CY.

Remark 9.12, We have described our basic construction in the form most
suitable for the applications. However, as pointed out to me by Maclane,

the construction admits a more aesthetically satisfactory symmetric generali-
zation, If C is a monad in J , then a left C-functor (E,£) from a category
fU. is a functor E: U~ T together with a natural transformation

£:CE = E suchthat £.p= £<CE and £n= {; thus it is required that EX
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admit a natural structure of C-algebra for X ¢ W . Now we can define
B*(F,C, E), a functor from Uk to V where (F,\) is a (right) C-functor
in ”lr , by

B,(F,C,E)X) = B_(F,C,EX)
on objects X ¢ 'U. . Since an object of 7 is equivalent to a functor from
the unit category (one object, one morphism) to J , our original construction
is a special case, In the general context, B*(F,C,C) is a simplicial resolu-
tion of the functor F and B*(C, C,E) is a simplicial resolution of the

functor E.



10, Monoidal categories

The construction of the previous section takes on a more familiar form
when specialized to monoids in monoidal categories, We discuss this speciali~
zation here in preparation for the study of topological monoids and groups in
{21] and for use in section 15.

A (symmetric) monoidal category (1L ,®,*) is a category U together
with a bifunctor @ : U XU =W and an object * ¢ U such that @ is
associative (and commutative) and * is a two-sided identity object for @ ,
both up to coherent natural isomorphism; a detailed definition may be found
in MacLane's paper [17]. For example, a category Ul with finite products
(and therefore a terminal object *, the product of zero objects) is a symmetric
monoidal category with its product as @ ; we shall call such a category
Cartesian monoidal. Observe that if U isa {symmetric or Cartesian) monoidal
category, then so is AU , with ® defined on objects X,Y ¢ qu by
(X®Y)q= Xq@Yq, Bi = 8i®8i and s, = 8i®si , and with *= (¥)_.

A monoid (G, u,n) in a monoidal category L is an object G e W
together with morphisms p: G@G — G and n: ¥~ G such that the following

diagrams are commutative:

GRGRG _..@J‘_. G®c and *@Gﬁ@ii_ G@Qi@.ﬂ.(}@*
~
r®1 l ] =Y 1}1 B

GGt » G G



95

These diagrams show that (G,u,n) determines a monad in ‘h , which we shall

still denote (G, p,n), by
GX = G®X

pX)=p®1: GRGRX ~ GRX

n(X)=n®1: X 2*®X - GRX

A left G-object (X,£) is anobject X ¢l together witha map £:GR®X =+ X
in VL such that £€n=1 and £§®1) = £(1® £). Thus a left G-object is pre-
cisely a G-algebra. On the other hand, a right G-object (Y,\) determines a
G-functor in U, , which we shall still denote (Y,\), by
YX = YR®X and MX) =2 Q1:YRCGRAX +~YRX.,

Thus a triple (Y,G,X) consisting of a monoid G in A and right and left G
objects Y and X naturally determines an object (Y,G,X) of B{U,W),
and B*(Y,G,X} is a well-defined simplicial object in AL . Of course,

Bq(Y,G,X) = 6% =YQRGQ...® G®X, qfactors G,

with the familiar face and degeneracy operators

‘ao=x®1q .3 1'"Q@u®1T it o0<i<q,

11+1®n ® 1q—!—i—x

aquq@g , s, if 0<isq .

i
Let us write (L (1) for the evident category with objects (Y, G,X), as above,
If U is symmetric and if (Y,G,X) and (Y',G',X') are objects of a L),

then, with the obvious structural maps, (Y® Y ,GQRG!',X®X!') is also an object

of a {14 ), and we have the following lemma,
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Lemma 10,1, Let (u, be a symmetric monoidal category and let
{Y,G,X) and {Y',G',X') be objects of a( 9L). Then there is a com-~

mutative and associative natural isomorphism
B*(Y, G, X)® B*(Y', GLXY) & B$(Y Y, GRGY, XOX)

of simplicial objects in 1L.

Proof, Since 1L is symmetric, we have shuifle isomorphisms
x®clI®YV)® xR IQY) 2x®X'®GR®c)IRY®Y',
and these are trivially seen to commute with the 31 and s, -

Now suppose that U is a monoidal category which is also Abelian,
Then objects of ,Ju. determine underlying chain complexes in U with
differential d= z (-1)iai; moreover, if h:f >~ g is a homotopy in JU
in the categorical sense of Definition 9.1, then s= > (-1)ihi is a chain
homotopy from f to g in the usual sense, ds +sd=f-g, by direct
calculation. Therefore, regarding B*(Y, G,X) as a chain complexin U,
we recover the usual unnormalized two-~sided bar constructions, together
with their contracting homotopies when X =G or Y = G, To normalize,
we quotient out the sub-complex generated by the images of the degeneracies.
Of course, if W is the category of (graded) modules over a commutative
ring R, with @ the usual tensor product over R and %= R, then a monoid
G in J isan R-algebra and left and right G-objects are just left and right

G-modules
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When W is our Cartesian monoidal category of (unbased) topological
spaces, geometric realization applied to the simplicial spaces B*(Y,_G, X)
will yield a complete theory of associated fibrations to principal G-fibrations
for topological monoids G. The following auxiliary categorical observations,
which mimic the comparison in [ 9 ,p. 189] between "homogeneous" and
"inhomogeneous" resolutions, will be useful in the specialization of this
theory to topological groups and will be needed in section 15.

For the remainder of this section, we assume given a fixed Cartesian
monoidal category T4 . For X W » let & denote the unique map X — %
and let A:X -+ X XX denote the diagonal map., A group (G,p, 11,"X) in W
is a monoid (G,u,n) in ‘U together with a map X:G =G in U such

that the following diagram commutes:

1 XK

GXG —ii—» GXG

N p

G—E ag—1 5 G

Consiruction 10.2. Define a functor D,: U, -~ AW by letting

DX = xatt

with face and degeneracy operators given by

Q3
H

tixex 1Thx T Lxig e x> x4

1ixax ¥t x| a2

1]

and s
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For a map f:X—+ Y in U, define qu = fq.H. Observe that D, preserves
products in the sense that the shuffle isomorphisms between Xq'M X Yq-'-1
and (X X Y)q.H define an associative and commutative natural isomorphism
between D X XD.Y and D(XXY) in 4U. Therefore, if (G,p.n,X) is 2
growp in U, then (D*G,D*p,D*n,D*x) is a group in AU and if {X,€) isa
left G-object, then (D*X,D*g) is a left D G-object. By Lemma 9.2, if
'rq:X - xH is the iterated diagonal, then 72X, - D X is a map in U .
If G is a group in U, then T*:G* - D*G is a morphism of groups in AU.
In particular, left and right D G-objects determine left and right G -objects

(that is, simplicial G-objects) via T

Proposition 10.3. Let {G,p,%n,X) be a group in LWL . Define

@,:B(%,G,G) = D,G

by letting azq:qu'-1 - qul.1 be the map whose i-th coordinate is El-

XP o2y
1<i< g¥1, where ;.Lj:Cr3 ~ G is the iterated product (p.1 =1, By = B

|..|.j = u(1 X p'j-i) if j> 2). Then @, is an isomorphism of simplicial right

%
G-objects a';i is the map whose i-th coordinate is ai—i Xpl{lt X)X ch-i
if 1€i<q andis €X1 if i=qtHl.

Proof. Of course, the proof consists of easy diagram chases, but
some readers may prefer to see formulas, Thus suppose that objects of u

have underlying sets and write elements of Bq(*, G,G) and of DqG in the

respective forms

) » g.¢G.

[gi,...,gq]g and (gi""'qu i

q+1
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Write plg,g') = gg' and x(g) = g-ﬁ. Then we have

aq([gi""'gq]gq‘l-i) = (gigzn.gcﬁ-i’ gz"'gqi-i""’gng-ﬂ’ gq-H)

and
2™ ) = [e,e)  epe;” ]
q gi""'gq+1 gigz 1883 ""’gng-H gq-!-i :

Visibly these are inverse functions, For ge G, we have
([gyse-orglegyyle = [greenrg leg, g and (gyaoggyde= (gy8.-es Bgrq8)r
and a« and 0-1 are thus visibly G-equivariant; they commute with the face
and degeneracy operators by similar inspections.

In line with Proposition 9.9 and the previous result we have the follow-
ing observation.

Proposition 40.4, Let X ¢ 1| and let n:* = X be any map in u.

Define hi: Dq(X) - Dq+1(X}, 0<i<q, bythe formula

b, = s (qx 19hpt; xT - x|
1 [e] (o]

Then h is a strong deformation retraction of D*(X) onto (*)* .

Proof. Since % is a terminal object in UL, gn=1 on * and
EuoTn) =1 on (), . Itistrivial to verify that h is a homotopy from 1

to -r*('q)° €, such that hi-'rq(n) (n) for all i.

Tq+1



11, Geometric realization of simplicial spaces

We shall use the technique of geometric realization of simplicial spaces
to transfer the categorical constructions of the previous sections into construc-
tions of topological spaces. This technique is an exceedingly natural one and
has long been implicitly used in classifying space constructions, Segal [24]
appears to have been the first to make the use of this procedure explicit.

In this section and the next, we shall prove a variety of statements to the
effect that geometric realization preserves structure; thus we prove here that
realization preserves cell structure, products (hence homotopies, groups, etc.),
connectivity, and weak homotopy equivalences. Base-points are irrelevant in
this section, hence we shall work in the category U of compactly generated
Hausdorff spaces.

Let Aq denote the standard topological g-simplex,

- - q+i
a = ety ost <1, >t =1} CRY .

Define Si:Aq_1 -*Aq and Gi:AqH -‘Aq for 0i<q by

éi(tc,...,t%i) = (to. ...,ti.'i,O,ti,... ’tq-i)
and

LA ,tq_H) NIRRT AL AL L N AR 'tq-l-i)
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Definition 11.4. Let X ¢ 4 . Define the geometric realization of X,

denoted |X|, as follows. Let X = z X X Aq, where qu Aq has the
q20

product topology (in W ) and 2 denotes disjoint union. Define an equivalence

relation = on X by

(3ix,u) & (x,biu) for x e Xq , U Aq-i ,

(six,u) ~ (x, O'iu) for x e Xq , uce Aq-t-i

M- -

As a set, |X| =X/(x). Let Fq|XI denote the image of Xix 4, in x|

i=0

and give Fq[X[ the quotient topology. Then quXf is a closed subset of
Fq+ilxl’ and 'Xf is given the topology of the union of the Fq'Xf. The
class of (x,u) e X in IXI will be denoted by lx,ul. If f:X -+ X' is a map
in AW, define |£]:[X|~ |X'| by |f||x,u| = |£(x),u]. Observe that if
each fq is an inclusion (resp., surjection), then |[f| is an inclusion (resp.,
surjection).

Of course, if X is a simplicial set, then the classical geometric
realization of X, due to Milnor, coincides with the geometric realization of X
regarded as a discrete simplicial space. Further, if X denotes the under-
lying simplicial set of a simplicial space X, then fo = ]i] as sets and
therefore any argument concerning the set theoretical nature of rf(’| applies

automatically to |X|. The following definition will aid in the analysis of the

topological properties of IXI



102

q
Definition 11.2. Let X ¢ 4WU. Define ssXq = JL__.JO stq - Xq+1 . We

say that X is proper if each (qu' sXq) is a strong NDR-pair and that X
is strictly proper if, in addition, each (xqﬁ- 1 stq). 0< k< q, is an NDR-

pair via a homotopy h:l X Xq+ - xq+ such that

1 1
k-1 k-1

h(I XJ.L% ijq) C jk=)o ijq.

A point {x,u) ¢ Xq X Aq is said to be non-degenerate if x is non-

degenerate and u is interior (or if q=0),

Lemma 114.3. Let X ¢ 4U. Then each point of X is equivalent to a
unique non-degenerate point, If X is proper, then each (Fq]XI,Fq_ilXD
is an NDR-pair, |X| ¢ WL, and FqIXI /Fq_ 1{xl is homeomorphic to
sYx q/axq_ o)

Proof, Define A:X +X and [ X-+X by the formulas

(1) Mx,u)= (y,0, ..., u) if x=5, .,..8, y where y is non-degenerate
PR 3 iy
P P
and 05j1<... <jp; and

{2} p{x,u) = (ai ...Bi x,v) if u= 51 ...Gi v where v is interior and
q q 1
0£Li, <.,..<1i .
1 q

By [ 18, 14, 2], the composite \e p carries each point of X into the unique

equivalent non-degenerate point. Now

F X} ~-F Xl = (X ~s8X X (A - 9A ).
JXI-F %] = % - ex )% (a - 98)
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If X is proper, then (qu Aq’ qu 8Aqu sX X Aq) is an NDR-pair by

q-1
Lemma A,3 and |X] ¢ U by[30,9.2and 9.4]. There is an evident one-
to-one continuous map

F |IX|/F_,|X]= (X XA)/(X X85 usX
JEIE IR = X XA )/(X X84 v eX,

q
XA )+8(X [sX
BEER WL S

determined by Xq - Xq/sX and any homeomorphism of pairs

q~1
(Aq, BAq) - (Iq, BIq); the continuity of the inverse map follows easily from

[30,4.4].
As an immediate consequence of the lemma, we have the following
proposition,

Proposition 11.4. Let X be a cellular object of AU , in the sense

that each Xq is a CW-complex and each Si and 8 is a cellular map.
Then |X| is a CW-complex with one {n+g)-cell for each n-cell of Xq- sXq_i.

Moreover, if f:X = X' is a cellular map between cellular objects of A ’U,

(each fq is cellular), then |f| is cellular,

As in the case of simplicial sets, geometric realization is a product-

preserving functor since we are working in ) .

Theorem 41.5, For X,Y ¢ W , the map |, |X |, [+ |Xx¥]| = |X|x]|Y]
is a natural homeomorphism. Its inverse { is commutative and associative,

and is cellular if X and Y are cellular.
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Proof, We recall the definition of § , which is based on the standard

triangulation of Apx Aq. Consider points

u= (to....,tp)e Ap and v = (to,...,t'q)e Aq.

m n
Define o= Eti,0$m<p,and vn=zt3 , 0£n<q. Let
i=0 j=0

+q-
wo £... 5 wb 4 1 be the sequence obtained by ordering the elements of

{‘Jm} v {v'} and define we A by
ptq

- - +
w = (tg,...,t;+q), where tl'; = wk-wk 1, w 1=1=Oa.m:lwp 9=y,

Let i‘1 <...< iq and j1 <.,.. < jp be disjoint sequences {not uniquely

j i
determined) such that W e {u™} and w e {v"}. Then

u=0o, ...0., w and v=o0, ...0, W,
iy lq 1 Jp

If xe¢ Xp and y ¢ Yq, define

§(|x1u|1|Y0V]) = I(siq"'siix’ Sjp---sjiy))wl'

It is easy to verify that { is well-defined and ipverse to |p1| X lpzl by use
of Lemma 11.3 (compare [18,14.3]), and the commutativity and associativity
of { follow formally from the commutativity and associativity of t‘,'i. The
continuity of {, and the cellularity statement, follow from the commutative

diagrams:
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X
xx&'.xaxa—i—fﬁ‘—-wxxax*{ xa“"—"}l—“;x}x?}ﬂ
P 4 p g B P 4 4 P el

- 4

s'x 5 xals, )

X XY X K{i,j) X XY  xa , —>F | |[¥XxY|
P q ptqg

ptq pta  ptq

Here K(i,j) denotes the set of points of ApX Aq which can determine given

. i
{Js} as above, s = 8, +ee8; and

sequences i = {ir} and j
q 1

J -

i

s, ...sj , (i, i), v) w, and the w are quotient maps.
p 1

Corollary 11.6, Let f:X -+ B and p:Y - B be mapse in AU . Then

|x XBYI is naturally homeomorphic to |X| x| Bl |Y|, where

% ><BY)q = {(x, y}} fq(x) = pq(y)} C qu Yq gives the fibre product in JU .

Proof. An easy verification shows that the restrictionof ¢ to

x| )(“3I |¥| takes values in |X XBYf and is inverse to
B B
ol X Iol: x| =[x xI®ljy]

Corollary 44.7. The geometric realization of a simplicial topological

monoid {or group) G is a topological monoid {or group) and is Abelian

if G is Abelian,

There are two obvious notions of homotopy in the category A'U. , namely
that of a simplicial map I il X - Y and that given categorically in
Definition 9.1, We now show that geometric realization preserves hoth types

of homotopy.
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Lemma 11.8., Let Xe Ul . Then [X may be identified with X.

«

Proof. X= FO}X*I = |X,] since all simplices of Xq: X are

«l
degenerate for q >0,

Corollary 44.9. If hiI, XX > Y is a map in U and if hiX =Y is
defined by h, q(ic) = h{i,x) for xe Xq and i= 0 or i= 4, then the com-
posite IX |X| £ [1,xX| —-‘—h—l—> 1Y| is a homotopy between [hol
and lhi"

Proof. For te I, |h|Ut, |x,ul) = [h{t,x),u]| by the definition of &

Corollary 41.10, DLet h: f r g be a homotopy between maps

f,g: X —+Y in 1'[)_ , a8 defined in Definition 9.4. Then h determines a
”»
homotopy h:IX |X| = |Y| between [f| and |g].
Proof. Let A[1] denote the standard simplicial 1-simplex [18,p.14],
regarded as a discrete simplicial space. By [18, Proposition 6.2, p. 16], if :z1
is the fundamental 1-simplex in A[1] and we define H:A[1] XX =~ Y by

e S541%51

Hq(sq__'1 ...soii,x) = ai+1hi(x) , Xe€ Xq,

then H is a map of simplicial sets, and therefore also of simplicial spaces
(since the h. and 3, are continuous), Now |A[1]]| is homeomorphic to I
and the composite

1x x| = |alt]] x x| S Jap) x x| L jyg

gives the desired homotopy h between [£f] and |g].
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We next relate the connectivity of the spaces Xq to the connectivity
of |X%].

Lemma 11.114. For X e L, wO{XI = 'rro(Xo}/(~), where ~ is the
equivalence relation generated by [aox] ~ [Bix] for x¢ Xi; here [y] de-
notes the path component of a point vy ¢ Xo.

Proof, X determines a simplicial set -rro(X) with q-simplices the
components of Xq and, by [18,p. 29 and p.65], our assertion is that
ﬂ0|X| = wOIwO(X)]. If (x,u)e¢ qu Aq, >0, and if f:I - Aq is a path con-
necting u to the point 5oqu, then the path ?(t) = |x,£(t)] in |X| connects
|x,u]| to a point of X, = FOIX[. If xeX,, then glt) = |x,(t,1-t)] is a

path in ]X{ connecting aox to aix. The result follows easily,

Theorem 41,412, Fix n2 0, If X is a strictly proper simplicial

space such that Xq is {n-g)-connected for all g< 1 ,then |X| is n-connected.

Proof. For n= 0, this follows fromthe lemma. For n=1, we may
assume that Xq is connected for q > 2, since otherwise we can throw away
those components of Xq whose intersection with the simplicial subspace

of X generated by Xo and X. is empty without changing the fundamental

1
group of lXi. Then ]Q*X} is weakly homotopy equivalent to QIXI by
Theorem 12,3 below and therefore |X| is simply connected since |SZ*X| is
connected. (For technical reasons, this argument does not iterate.) Now

assume that n > 2. By the Hurewicz theorem, it suffices to prove that

'I:I'JX} =0 for i<n, We claim that f—i‘infX] =0 for i<n andall g2>0,
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FOIX[ = Xo is n-connected, and we assume inductively that
Hi(rq_llxn =0 for i<n., Since (Fq|X|,Fq_1|X|) is an NDR~pair, we

~
will have that Hi(FqIX]) =0 for i<n provided that
Hi(FqIXI/Fq—l |X|)=0 for i<n, Since FqIXI/Fq-l |X| is homeomorphic
to Sq(Xq/sXq_l), it suffices to prove that Hi(xq/sxq-l) =0 for i< n-q;
since Xq is (n-q)-connected and (Xq' sXq_l) is an NDR-pair, this in turn
will follow if we can prove that ﬁi(sxq-l) =0 for i< n-q. We shall in fact
show that K
Bl ) sx )=0 for igntl-q, 0<k<a

i 320 i q-1

We may assume, as part of our induction hypothesis on q, that

k
~
= i - < QOw
Hi( j{_—-ol SjXq-Z) 0 for i<n+2-q and 0<k< g-1.

Observe that s.:X - s X and 9.:s.X, . >+ X are inverse homeo-
g1 Ja-1 iTi -1 q-1
morphisms, 0 £ j< q. Thus ?{',(ijq 1) =0 for ig<ntl-q. Assume
k-1 : -

inductively that 'ﬁi( U 8X,)) =0 for i<ntl-q. Since X is strictly
i=0

proper, the excision map

k-1 k-1 K
(J.EJO 8 X 175X g1 0 J.L:% s%g1) (J.LJO 5% q-1"*1¥ q-1)

is a map between NDR-pairs, and we therefore have the M yer-Vietoris

exact sequence
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k-1 k

cee = H( U 5% o) @ Hile X | U

j=0 =0

k-1
or %q1)

- H 1 k g-1 N
= i< = = + g8i =
if 8.y sjz for j<k, then y akHsJ.z sj8kz, since sksj sjsk-l'
it follows that
k-1 k-1
s X N s, X = s, 8.X
kia-l'h &g T 9t JL_.!)‘ kj gq-2
k-1 k-1
Now ) : U s U s, 5.X is a homeomorphism, with jnverse
=0 ifa-2 j5o ki a2

Bk. By the induction hypothesis and the above exact sequence,

k
Vo
Hi( Jsz ijq-l) =0 for i< ntl-q, as required.

Theorem 11,13, Let £f:X - Y be a simplicial map between strictly

proper simplicial spaces, Assume that each fq is a weak homotopy
equivalence and that either IX] and |Y| are simply connected or that Ifl
ig an H-map between connected H-spaces. Then [fl is a weak homotopy
equivalence,.

Proof. By the Whitehead theorem, it suffices to prove that If]
induces an isomorphism on integral homology. In outline, the proof is the
same as that of the previous theorem. One shows that Fq]f} is a homology
isomorphism by induction on g and the same sequernce of reductions as was
used in the previous proof, together with the naturality of Mayer-Vietoris

sequences and the five lemma.
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We complete this section by recalling a result due to Segal [26] on
the spectral sequence obtained from the homology exact couple with respect
to an arbitrary homology theory k, of the filtered space IX], where X is
a proper simplicial space. Observe that kq(X) is a simplicial Abelian
group for each fixed q; thus, regarding kq(X) as a chain complex with
d= Z (-1)1(31)* , there is a well-defined homology functor H*k*(X) such
that Hpkq(X) is the homology of kq(X) in degree p. By [18,22.3],
H$kq(X) is equal to the homology of the normalized chain complex of kq(X),
and the p-chains of the latter chain complex are easily seen to be isomorphic

to k {X ,sX .
q( p’ p-l)

Theorem 11,14, Let X be a proper simplicial space and let k, be
2
a homology theory., Then quX = Hpkq(X) in the spectral sequence {ErX}
derived from the k* exact couple of the filtered space IXI.
1 1

Proof. E X=k F _|X|,F X and d  is the boundar

2 oo Pq p+q( p} !s p_lf g)v n y
operator of the triple (FPIXI ,Fp 1 |X| ,FP_ZIXI). The result follows from

Lemma 11.3 and the following commutative diagram:
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SFl o
k(X)) - kp+q(xp><Ap,xprp)--—ji—~—->kp+q(Fp|X|.Fp_1|XI)
9 3
. ] .
Kopqur (KX A, X, ) B )=—>k (F A IXELE XD
IS B(-1)1(1xay), |
& k x_x AL x_xal)
i=p ptg-1"p PP
e(-l)i(lxsi);l e~ T
P | @507 i .
1‘z’okq(xpz — 190 kp+q l(xpx Ap*l’XPXAPd}
v v
' Szpl k (X . xa X ooxAa_ )
k (¥ ) —— “pra-1"p-1" Tpe1? Tp-1" Tp-l

q*p-1

Here Ap = BAP is the (p~1)-skeleton of Ap and Kp is the (p-2)-skeleton.

i , , , Yo e . i i
A; = EA sjAp-l’ @ is the inclusion (AP,AP)-* (Ap, AP), and 2(-1)1(1Xai)$

is an isomorphism by the Mayer-Vietoris sequence of the ptl pairs

° i
X XA ,X XA). H
( b X p) The maps 6i (a

. i .
- (A, A learly relative
P { p’ p) are clearly relativ

p-1*2p-1)
homeomorphisms. On the left, the maps are
i
(0900 =t mxey (1)%%) |, xek (X)),

and

V(xo, ves ,xp) = i 81*(xi) » X e kq(xp)

i=o0
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(The other map ¥ is defined similarly, from (aix 1),, and the maps w
are the evident quotient maps.} Now the upper left rectangle commutes
by a check of signs, the upper right and lower left rectangles commute by
the naturality of 8 and of S, and the triangle commutes by the face
identifications used in the definition of the realization functor.

Of course, {ErX} is a right half-plane spectral sequence
(Epqu =0 if p < 0), The convergence of such spectral sequences is dis-
cussedin [ 6 ]. The following observation is useful inthe study of products

and coproducts in {ErX}.

Lemma 11.15. For X,Y e JU, t:|X|Xx |Y| > |X X Y] is filtration
preserving, and the diagonal map A:|X| = |X| X |X]| is naturally homo-
topic to a filtration preserving map.

Proof. ;(Fplxl X Fqlx]) c Fp+q,{x X Y| by the definition of §{ in
Theorem 11,5. For the second statement, define gi:An - An for i=0 andl
and all n 20 as follows. Let u-= (to, ceey t'n) € An. Let p be the least

integer such that t°+ ces +1;p > 1/2 and define

p-1
g,(W) = 8 .. .6p+1(2t°,..., 2, 101 -é% 2t,)

and

n
g, (v) = 5(}’(1 -S>z, .2t )
i=ptl P

Then g induces Gi: ]X‘ - ‘X[ such that Gi is homotopic to the identity map,

thus A is homotopic to the filtration preserving map (GOX Gl)‘A.



12, Geometric realization and S*, C*, and Q*

In this section, we investigate the behavior of geometric realization
with respect to the functors S*,C*, and Q* defined on Jﬂ' , where 7T is
our category of based spaces, For Xe jj , we give lXI the base-point
* ¢ Xo = FO}XI; if X is proper, then it follows from Lemma 11.3 that *

is non-degenerate and that |X| ¢ J .

Proposition 12,1, Realization commutes with suspension in the sense

that there is a natural homeomorphism T: IS*X} - S|X| for Xe AT .

Proof. Define 7|[x,s],u| =[|x,u],s] for xe Xq’ sel, and ue Asq.
It is trivial to verify that v is well-defined and continuous, with continuous
inverse,

The following pleasant result is more surprising. Its validity is what
makes the use of simplicial spaces a sensible technique for the study of
c -spaces,

Theorem 12.2. Let ¢ be any operad and let C be its associated
monad in J . Then there is a natural homeomorphism v: [C X| = C|X|
for Xe¢ 4 7  such that the following diagrams are commutative:

Jcixi v = Cuevy CZIX|

x| v and [i,] W

clx| |6, % | ———— c[X|
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I {X,€) ¢ XCY_T], then (|X], ;g}v'i} ¢ C[J ] and geometric realization
therefore defines a functor 4C[T1-+C L71.
Proof. Consider a point l[c,xi, ves ,xj],ul € IC*X|, where c ¢ ({j),

X; € Xq, and ue Aq. Define v by the formula

i
{2) vf{c,xi,...,xj],uf = e, lxi,ul,..., lxj,uH .

Clearly v is compatible with the equivariance and base-point identifications
used to define CXq and with the face and degeneracy identifications used in
the definition of the realization functor., For the latter, observe that

Cai[c,xi, e ,xj] = [c, 8ix1, ees 3ixj]

and similarly for the Csi' In view of this relationship between the iterated
products %7 and CX, we can define v-1 by

(3) v-1[c, lxi,uil,. .es lxj,uj” = |[c,y1,. . .,yj],vl, where the iteration
z;j:}xLJ ~ |%3] of ¢ is given by

Lllmgeny loees Dxw D) = ypeeensyovls

By the associativity of {, Z_.j is unambiguous. By the commutativity of ¢, v"1

is compatible with the equivariance identifications, and its compatibility with
I sos s . . A -1
the remaining identifications is evident, The continuity of v = follows from

1 are ideed

that of i;j, and it is clear from Theorem 44.5 that v and v~
inverse functions. The commutativity of the stated diagrams is verified by

an easy direct calculation from (2) and the formulas in Construction 2.4, and
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these diagrams, together with trivial formal diagram chases, imply that
(IX], |&lv-tye cLTT if (X,£)e 4clTI.

The relationship between |$2*XI and QIXI is more delicate. Indeed,
if X is a discrete simplicial space, then each QXq: * and therefore

|SZ*X| = %, whereas 2|X| is obviously non-trivial in general.

Theorem 12.3. For X e 4T, IP*XI is contractible and there are

natural maps ¥ and y such that the following diagram commutes:

C P
|9*x|——|1>*x| - |X]|
Y N
2|x| —=——+p|x| : - x|

Moreover, if X is proper and each Xq is connected, then |p*| is a quasi-
fibration with fibre [2,X| and therefore y: |Q*X| -~ Q|X| is a weak homo-
topy equivalence.

Proof. The standard contracting homotopy on PY, Y J, is natural
in Y; therefore, when applied to each PXq, this homotopy defines a simplicial
contracting homotopy I*X P*X - P*X. Thus IP*X[ is contractible by
Corollary 11.9, For fe¢ PXq, ue Aq, and te¢ I, define ?{‘ by the formula
(4) Vit ullt) = |i(t),u] .
It is trivial to verify that '\\(‘ is a well-defined continuous map which restricts
to an inclusion vy: IQ*XI -*QIXI and satisfies p?= |p*|. The last statement

will follow from Lemma 12.6 and Theorem 12.7 below.
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Before completing the proof of the theorem above, we obtain an im-

portant consistency statement which interrelates our previous three results.

Theorem 12.4. For X e AJ , the iteration y : ]S'Z:X! - 2®|X| of vy

is 2 morphism of Cn-aigebras, and the following diagram is commutative!

lc_ x| ~—c_|X|
ni
}afn*l @
s nX ﬂn7n=yn n_n
|ﬂ>¢cs>c: J >S5 'XI

Proof. We must prove that the following diagram commutes:

C yn
n n N n
r:;n|m*x| » C 9 | %]
v 8
41
nx en* n yn n
Ic, 8. %] |2, X | ———>27[X|

and it clearly suffices to prove the commutativity of the diagram obtained by
replacing v_1 by v. Thus consider
y= llesfpsenasflu] € C, 2.X],  where
n n
=< ess,C, i), £, . . A3 )
c ci, cJ>e [ n(J), f:.E Qan, and uce Aq Let vel. ¥ vf Ucl( )
then yn‘en*](y)(v) = %= Bnocnynb v{y)(v), and if v= <, (v*), then, by

Theorem 5.1 and the definitions of v and v,

8,0 C ¥ s vy) (v) = 0 [e, ¥ £, ]seu ¥ £ 0|10
Ple,ulte) = (gl

ENCE PPN R R LWICILR

n
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Thus yn is indeed a morphism of Cn-algebras. Since a is defined to
be the composite 6 e« Cnnn’ the commutativity of the following diagram gives

nn n
that an°v—9‘r >y sian*f.

¢ X|——— c_|x]
i n*nn*l ¢ 'n
1'; v Tl nY ) .n u n.n
|C_ QIS X| e ©&_|0S0K | P ¢ 0" |SL X | —2——C_a"S"|X|
nyg ¥ ¥ ol o) e n
le .| 6 6
iy n pe 9
n nn
isz_:sjjxi Y - " |shx | — 2%s"x

Here Q@ 1oy o lnn*! =7t IX] = a%"|X| by an easy explicit calculation,

In order to complete the proof of Theorem 12,3, we shall prove a
general result relating geometric realization to fibrations, We require some
notations and a definition,

For Bel , let NIB denote the space of all paths I~ B. For a map
p:E ~ B in L, define

T(p) = {(e,f) | ple) = £(0)} C ExTB.
Define «w:NE -T{p) by w(g) = (g(0),pg). Recall that p is a Hurewicz
fibration if and only if there exists a lifting function \ :T'(p) =~ IIE such that
w\ = 1. In the applications, A is usually "homotopy associative® in the

- -1
sense that if f,g e NIB satisfy £(1) = g(0), then the two maps p 1£(0) »~p g(1)
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defined respectively by sending e to A\{e,£){1),g}{1) or to \e, gf}(1)
are homotopic.

Definition 12,5, Let p:E - B be a map in Jll. Observe that if

wq: e l'[Eq-> I‘(pq), then v*:H*E - I‘*(p) is a map in 4U. We say that
p is a simplicial Hurewicz fibration if there exists a map \ 5 I‘*(p) - 11 *E
such that 'rr*)\* = 1 and such that the following associativity condition is
satisfied.
(i) If f,ge an satisfy £(1) = g(0) and if x4 and y, denote the discrete
simplicial subspaces of B generated by the g-simplices x = £f{0) and y = g(1},
then there exists a simplicial homotopy H:I, X p‘l(x*) - p-l(y*) such that
for any i-simplex e of p-l(x*), with pi(e) = yx for a composite y of face
and degeneracy operators (y exists by the definition of x =’:),

H(0,¢) = L\ (e, v)(L), ve)1)

and
H(l,e) = \fe, v(gf))1) .

We observe that the following statements, which shall be used in conjunction
with (i), are valid in any simplicial Hurewicz fibration; in (ii) and (iii),

e denotes an i-simplex of p-l(x*) with p(e) = yx, as in (i).

(ii) If h:l - HBQ satisfies h(t)(0) = x and h{t)(1) = y for all te I, then the
formula Hi(t, e)= )\i{e, vh{t)}{1) defines a simplicial homotopy

-1 -1
H: I*x P (x*) - P (Y*)‘
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(iii) If c(x):l -~ Bq is the constant path at x ¢ Bq' then the formula
. . L. ~1 -1
Hi(t’ e} = )\i(e, ve(x))(t) defines a simplicial homotopy H:I Xp (x *) -p (x *)

which starts at the identity map of p-l(x*).

The standard natural constructions of Hurewicz fibrations apply

simplicially; the only example that we shall need is the path space fibration.

Lemma 12.6. For X ¢ {J, Pyt P X = X is a simplicial Hurewicz
fibration,
Proof. Choose a retraction r:IXI-=IX1V0XI such that
(0, 2t) , 0¢tel/2

r(s,0) = (0,0) and r(l,t) =
(2t-1,1) , 1/2¢tel

For Ye¢J and p:PY — Y, define \: I'(p) = IPY by the formula

efu) if r(s,t)={0,u)
Ae, £)(s)(t) =
flv) i r(s,t)=(v,1}

where ee¢ PY, fe¢ 1Y, and e(l) = £(0), Clearly X is a lifting function and
Me, £)(1) = fe is the standard product of paths, Thus if f,g e IY and
£(1) = g(0), then
AMr(e, £)(1), g1) = glfe) and e, gf)(1) = (gf)e
Now define Xq= X:I"(pq) - lIPXq. By the naturality of \, \, is simplicial,

and clearly = *)\ &= 1. Condition (i) of Definition 12.5 is satisfied since the
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evident homotopies defined for each fixed y are easily verified to fit together

to define a simplicial homotopy.

Theorem 12,7, Let p:E -+ B be a simplicial Hurewicz fibration, in {7,
and let F = p-l(*). Assume that B is proper and each Bq is connected.

Then l P

:|E| = |B] is a quasi-fibration with fibre |F|.
Proof, We first define explicit lifting functions for the restrictions of

T.: ees A + A_ to the inverse image of A_ - 3A . We shall define
3,77 %9, Tarr T O g a” ""q

+ I'{o,
Y (J

. . eeeo, ) H{A )
Jr...Jl J qt

1 r ¥

by the inductive formula (u e Aq-i-r'f € H(Aq-aAq) ,oj'l‘ . .c.]ru = £(0)):

- u, £)),

Y. c(u,f) = v,
1 J r

(u, v,
Jr-..J JI‘

. (e,
- yeeedy

and it remains to define Yj:I‘(u'j) -1 Aq+1)' Thus let (u,f) ¢ I‘(o'j). Let
f{s) = (to(s), - ,tq(s)) € Aq' Since o-j(u) = £{0),
u=(t (0),..., tj_l(o), atj(O), 1 -a)tj(O),th () AP tq(o))
for some a, 0 ¢a4l {a is well-defined since tj (0)>0). Define Yj by
Y 0) = (6(6)nernt_ ()2t (o), (1-alt(od by (o)t fo):
Visibly, yj(u, £){0) = u and vjyj(u,f) = f, hence -|ryj =1, Corresponding to

the relation O'iU'j =¢, .o, for idj, we have vy, ;5 Y by an easy
3

j-174 j i,j-1"

verification., This implies that

W ey @0y

. . {ou,f) if s.8, vee8, T B, «eaB,
ipeeedy eedp ji i j

1



121

If a=0 or a=1 above, then yj(u,f)(s) ¢ Im 65 or Im 55+1' and it is an

easy matter to verify the formula

(2) 6.y, (w,f) = v, . (6.u,f) if 3.8, ...8, =8, ,..8, .
3geeedy Lgpreedy N L

We can niow show that |p|:|p| -1 (V) =V is a Hurewicz fibration for any open
subset V of FqIBI - Fq 1|B|, where, if q= 0, F_IIB[ = . We must
define a lifting function ’;:q: r{|p]) - njp| -I(V). Of course, by Lemma 11.3,
we have that
wCnB -sB_  )XO(A -203A).
q q-1 q q
Let (|e,w|, (', ") ¢ T'| p|, where (e,w) ¢ Eq-l-r X Aq+r is non-degenerate,

fuI—+-B -8B y and f": I+~ A - 8A , Necessarily, we have
q q-1 q q

p, (e)=s, ..., £'{0), where o, ...o, w= £7(0)
qtr Jr I Jl Jr

{as in the proof of Lemma 11,3). Define ﬂ)‘s.q by the formula

B X flerwl @00 = Irgy (oo ooos; €MDY, | (N0

r 3
Since M\, is simplicial, formulas (1) and {2) show that h}‘\q respects the

equivalence relation used to define |E|, and it follows easily that Aiq is con-
tinuous, Clearly w’iq= 1,as required. We have now verified (i) of
Lemma 7.2, and it remains to verify (ii) of that lemma., Fix q 0. Let

{k,v) be the representation of

(qu Aq qu_l x Aq U Bq x aAq)
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as a strong NDR-pair obtained by use of Lemma A.3 from any given
representations of (Bq’ SBq-l) and (Aq, eAq) as strong NDR-pairs. Define
Uc Fq[Bl to be the union of F__, |B| and the image of v [0,1) under the
evident map Bq ke Aq — FqlBi. Define ht:U ~3U by ht(x) =x for

x € Fq_l}BI and by

(6) ht]b,u] = !kt(b,u)l for (b,u) ¢ Bq x Aq with v{b,u} < 1.

Then h is a strong deformation retraction of U onto F_ _|B|. To lift h,

g-1

let (e,w) € Em % Am be a typical non-degenerate point such that

+r +r

le.w] € fprl(U) where, as in Lemma 11.3,

P (e)=s8, ...8. b and u= o, ...¢ w
mir I iy,
determines the non-degenerate representative (b,u) of |p|(je,w|). Here

m £ q and we define H by the formulas

(7) Hit, le,w!) = l DY (e,s‘j ...sj c(b))(t),wl if m < g, where

m+r r 1

c(b):l —> Bm is the constant path at b; and

8 e w]) = .5, ...8, YL Y., . (w,f i = q,
(8) H(t, |e,w]) I>\q+r(e er sjlf)(t) YJr"'h (w, #){t)| if m=gq

where f':I —>» Bq and f':1 —-—?Aq are the paths defined by

d = ' =
fi{t) let(b‘u) and f(t) "n‘zkt(b,u) (here ‘n'l and TZ

are the projections of Bq x Aq onto its factors).

Here the Yj 3 can be applied to the paths £" in Aq (even though
r". 1

£f" does not have image in Aq—a Aq) because if £" (O)¢ aAq, then

f" is the constant path at f£"(0) and the definition above of

Yj 3 (w,£") is therefore unambiguous.
r... l
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It is straightforward to verify that H is well-defined and continuous (note

that vy,
Y_] vee

T

; {w,c{u)) = c{w)), and that H covers h and deforms
1

-l .
lpl 7 (U) into |p]

-1

Fq«l |B|. It remains to verify that

H: Ipl -1(x) - |p| _1h1(x) is a weak homotopy equivalence for each x e U.
If xe¢ Fq_1 [|B], then hl(x) =x and H is itself a homotopy

1 o2 H: Ip!-l(x) - Iplnl(x). Thus assume that x ¢ Fq_l]B|. In the notation
of (8), let x = |b,u| = |£(0), £*(0}|, so that hl(x)= |£(1),£m(1)]. Let

g:l - Bq be any path connecting g(0) = £'{(0) to g(1) = *, and let

gt= g,f'-l:l - Bq’ where f’-l(t) = £1(1 - t); g' is then a path connecting
f'(1) to *. We shall first construct a homotopy equivalence

F(u): [prl |b,u] = |F| for any path £:I -+ Bq such that f{0)=b and £(1)= *
and for any ue Aq. We shall then complete the proof by showing that the

following diagram is homotopy commutative,

H

(9) ol ™ ) = o ! [£100), £7(0)| ——> [p] "} [£(1), (1) = [p] 'y (x)
“ p
g(£"(0)) g1y
v

Thus fix f11 - Bq with £(0) = b and £(1) = %, Let A[q] denote the standard
simplicial g-simplex [48,p.14] regarded as a discrete simplicial space,

and let b:A[q] ~ B be the unique simplicial map such that -S-(iq) = b, where
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iq (Aq in [18]) is the fundamental g-simplex in A[g]. Let E(b} denote the
simplicial fibre product E XBA[ q] of p and b. Define
£, E(b) = F X Alq] by

fi(e: Y iq) = ()‘ i(e’ Yf)(l): Yiq)o

where e ¢ Ei satisfies pi(e) = yb = y'ﬁ.(iq) for some composite y of face

and degeneracy operators, Define f;I:F X Alq] =~ E(b) by
-1 sy -1 : :
fi (e! qu) = ( A i(ei Yf )(1)! qu)! €€ Fi a'nd qu € Ai[q]‘

By (i), (ii), and {(iii) of Definition 11,5, £, and f;l are inverse fibre homo-
topy equivalences over A[gql. Therefore, by Corollary 11,6, the following

composite is a fibre homotopy equivalence over lA[q]I = Aq:

£ X
IBla ~Ls iz LD Ll 1R

|E| % |F| xa .

q

‘B’Aq, pz_l(u) may be identified with

Fix ue A , u=1]i ,u|l. In [E| X
€ qd 1 q I l l
|p| -1 [b,u|, and the above composite restricts to give the desired homotopy

equivalence f{u): lp[-l |b,u| = |F|. Finally, consider the diagram (9). Let

|e,w| ¢ lprl(x) be as described above formula (7). We then have

(10) gl (o)) e, w) = qu,rr(e.sjr...sjlg)u),w[ , and

(11) “g"(f"(l)’)-Hl le, w|

= l)\ Q"‘l‘()\q*'r(e' sjr' L Sjlf')(l)b sjr' L sjlg')(l). er"'jl(w’ f“)(l)l .
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Definition 12,5 and g'= gf‘-l imply that g'{(f*(1)) «H, is homotopic to the

map £ |p|-1(x) -+ |F| defined by

(12)  f]e,w|= }kqh‘(e,sj ...sjlg)(l). vjrmjl(w,f")(l){ .

T

Finally, define L:IX |p|'1(x) - |F| by the formula

{13) Lit, |e,w]) = jth_(e, 5

cees, gl1), v, . (w, ()],
r Jl Jrooojl

Then L is a homotopy from g(£"(0)) to the map £ .
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13, The recognition principle and oo —Races

We now have at our disposal all of the information required for the
proof of the recognition principle. We prove our basic recognition theorem
for n-fold loop spaces, n < w, and discuss Aoo spaces here; Eoo spaces
will be studied in the next section. We first fix notations for our geometric
constructions,

Let (C,u,n) be a monad in 7 , let {X,&) be a C-algebra, and let
(F,A ) be a C-functor in :T; these notions are defined in Definitions 2.1,
2.2, and 9.4, Then Construction 9,6 yields a simplicial topological space
B*(F, C,X), and we agree to write B(F,C,X) for its geometric realization
|B*(F, C,X)|, as constructed in Definition 11.1; B defines a functor
B(T.,.T)~ "J » and we write B(w,{,f) = iB*(-rr,tp,f)f for a morphism
(w,4,£) in  B{T,T). Many of our C-functors F in J will be obtained
by neglect of structure from C-functors {also denoted F) in the category
DI ’j] of D-algebras, for some monad D in 'J . Then B*(F,C,X) is a
simplicial D-algebra, but this need not imply that B{F,C,X) is itself a
D-algebra. For example, this implication is not valid for D= o"s". How-
ever, by Theorem 12.2, if D is the monadin /:I/ associated to an operad 9 >
as obtained in Construction 2.4, then realization does define a functor
4 o[ :7] +~ D[] and B therefore defines a functor & (7, D[ ’:)/]) - D[ 7].

We shall write (¢ )= ]-r*( ¢ )|:Y - B(F,C,X) for any map

£:Y +~FX in "J and we shall write elm =] 5*(11‘)':B(F, C,X) =~ Y for any
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map wFX >Y in ‘J such that the following diagram is commutative:

3 = 2
FCX — 2w FX

81= FE T

FX —T— > ¥

Here T,(%{) and g (m) are defined in Lemma 9.2, and |Y*[ =Y by
Lemma 11.8; 7 and € are natural, in the evident sense,

We must dispose of one minor technical point before proceeding to the
theorems. Since we wish to apply the results of the previous two sections,
we shall always tacitly assume that B*(F, C,X) is a strictly proper
simplicial space, in the sense of Definition 11,2, This is in fact 2 harmless
assumption, at least when C is the monad associated to an operad C , in
view of the results of the appendix, In Proposition A,.10, we show that I:
can, if necessary, be replaced functorially by a very slightly altered operad C !
which maps onto C and is such that B*(F,C',X) is strictly proper for
reasonable functors (such as ,8,C,C! and their composites) and for
£ -spaces (X,0) such that (X,*) is a strong NDR-pair. If (X, ¥) is not
well-behaved, for example if * is degenerate, then L.emma A.1ll shows
that (X, @) can be replaced by (X',8')¢ {’:j"] where [X',*) is a strong

NDR-pair.
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In our basic theorem, we shall assume given a morphism of operads
w @~ C n' where C n is the n-th little cubes operad of Definition 4.1
and U is some other operad; as in Construction 2.4, we shall also write
w for the associated morphism of monads D —~ Cn. Observethat if Y € 'J/
then (san,en-:r) € D[T], where 8 is as defined in Theorem 5.1, and, by

Theorem 5,2, en coincides with the composite

n.n
n “n n.,n.n gn=9¢(1) n
CnﬂY—-——-—-—>QSQY > QY.

Here §: Hom,T(X,QY) - Hom ,_(SX,Y) is the standard adjunction homeo-
J
morphism of (5.1) and a: Cn - "™ is the morphism of monads constructed
in Theorem 5.2. Of course, we are identifying the notions of C o SPace
and of Cn-algebra via Proposition 2.8, and similarly for ¥ . Since
n.n , , . — n n .

an-rr:D -~ Q'S is a morphism of monads in J , (S, ¢ (an'rr)) is a D-functor
in J by Examples 9.5. Thus, if (X,£)e D[ J ], then B(S",D,X) is de-
fined. With these notations, we have the following theorem, which implies

the recognition principle stated in Theorem 1.3,

Theorem 13.1, Let w:D - Cn denote the morphism of monads

associated to a local equivalence mv-»cn of I~free operads. Let (X,£)

be a D-algebra and consider the following morphisms of D-algebras:

B{e_w,1,1)
x<«t8) g, D x)__‘:r-_-_> BQ"s", D x)J—>sz B(s”, D, X).
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(i) &(t) is a strong deformation retraction with right inverse (%),
where L : X+ DX is given by the unit { of D.

(i) B(an-rr, 1,1) is a weak homotopy equivalence if X is connected.

(iii) yn is a weak homotopy equivalence for all X,

(iv)  The composite yncB(an'rr, 1,1)er(t ): X ~Q"B(S", D, X) coincides
with the adjoint of T(1):S"X - B(s”,D, X).

(v) B(Sn,D,X) is (m+n)-connected if X is m-connected.,
Moreover, the following conclusions hold for Y e T .

. n n . :
(vi) ¢€¢ (1):B(s ,D,0°Y) = Y is a weak homotopy equivalence if Y is

n-connected; for all Y, the following diagram is commutative and

ﬂnsqin(l) is a retraction with right inverse ¢-n1'(1)1

B(an1'r, 1,1)

B(D,D,2"Y) > B{@"s",D,a"Y)
E.(Bn'n'} El.c_,nj l v
T, N
oy “« { £¢ {1} QnB(Sn,D,QnY)

(vii) E¢n(an1r):B(Sn,D, DY) = s"Y isa strong deformation retraction with

right inverse -r(SnL ).
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Proof. (¢} and B(an-rr, 1,1) are morphisms of D-algebras since
E*(g) and B*(an'lr, 1,1) are morphisms of simplicial D-algebras by

Theorem 9,10, By Theorem 9.11, we have
n_n n n
B (@s,D,X) = 9,B (s,D,X).

Thus yn is a well-defined morphism of D-algebras by Theorem 12, 4.
Now (i) and (vii) hold on the level of simplicial spaces by Theorems 9.10 and
9.11 and therefore hold after realization by Corollary 11,10, By the approxi-
mation theorem (Theorem 6.1) and Proposition 3.4, each composite
an'n':Dq+1X -9%"D% isa weak homotopy equivalence if X is connected,
and (ii) follows from Theorem 11,13, Part (iii) follows from Theorem 12.3;
here X need not be connected since each QiSanX for i<n is certainly
connected. Part (iv) is trivial (from a glance at the explicit definitions) and
(v} follows from Theorem 11.12, Finally, the upper triangle in the diagram
of (vi) commutes by the naturality of £, since gnan = On, and the lower
triangle commutes by the naturality of yn, since §n = Qn¢n(1) and
E*ﬂn¢n(1) = Q:e*fbn(i) by Theorem 9.14 and since yn reduces to the identity
on Q7Y = |Q:Y*l; the fact that €¢n(l) is a2 weak homotopy equivalence for
n-connected spaces Y follows from the diagram.

B(Sn,D,X) should be thought of as an n-fold de-looping of X. As such
for Ye J , B(Sn,D,QnY) should give back Y but with its bottom homotopy
groups killed. This is the content of part {vi). Similarly, DY approximates

n
Q"s X, hence B(Sn, D,DY) should give back s™Y. This is the content
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of part (vii), but with a curious twist: the proof of {vii) in no way depends on
the approximation theorem and the result is valid even when Y is not con-
nected, in which case DY {fails to approximate QnSnY.

For (X,£)e D[J ], the diagram

n
v Ble_w,1,1)
x «£E) B(D,D, X) 8 2"B(s", D, X)

is to be thought of as displaying an explicit natural weak homotopy equivalence

between X and Q2°B(S", D,X) in the category of D-algebras. The use of

weak homotopy equivalence in this sense is essential: it is not possible,

in general, to find a morphism f:X -~ QY of D-algebras which is a (weak)
homotopy equivalence. For example, if D= Cn and if X is a connected
N-algebra (that is, a connected commutative monoid) regarded as a Cn-
algebra by pull-back along the augmentation & Cn -+ N, then, for any space
Y, the only morphism of Cn-algebras from X to €Y is the trivial map!
Indeed, for any such f, commutativity of the diagram

£y xx Lxf £ (1)xa’y

=

X
EX ] en,l

NHxXx=X—— 35 "
implies 6 I(C,f(x)) = f(x) for xe¢ X andall ce { (1), and a glance at the
s n
definition of 8  in Theorem 5.1 shows that this implies f(x)(s) = * for all

n
se S,



132

Thus we cannot do better than to obtain a weak homotopy equivalence
of D-algebras between a given D-algebra X and an n-fold loop space,
and it is clearly reasonable to demand that an n-fold de-looping of X be
{n-1)~connected (hence n-connected if X is connected), Subject to these
two desiderata, the n-fold de-looping of X is unique up to weak homotopy

equivalence,

Corollary 13,3, Under the hypotheses of Theorem 13.1, if

(%, 8) L (x1, £1) —E—> (@"¥,0_)

is a weak homotopy equivalence of connected D-algebras, where Y is

n-connected, then the diagram

B(sn’ D,X) <_.§(_1J.l'_£L. B(Sn, D'XI) _£¢f_(_g)_> Y

displays a weak homotopy equivalence between Y and B(Sn,D,X).
Proof. 8¢n(g) = t‘.¢n(1) eB(1,1,g) by the naturality of & ; e@n(l) is
a weak homotopy equivalence by the theorem and B(1,1,f) and B(i,1,g)

s . n qf n..q
are weak homotopy equivalences by Theorem 11,13 since S Df and S D7g
are weak homotopy equivalences for all q {as follows readily from the

s . n _n.ngq ., . .
approximation theorem; S (2 S') " is certainly a functor which preserves

weak homotopy equivalences).
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Remarks 13.3. The idea of proving a recognition principle by geometrically
realizing simplicial constructions based on monads is due to Beck[ 5 ].
In that paper, Beck sketched a proof of the fact that (in our terminology)

if (X, &) is a Q"S"-algebra, then the diagram
n
n
x <28 poRs® o%s?, x)—Y— 5 o"p(s”, "™, X)
s . n_ .t NN
displays a weak homotopy equivalence between X and @ B(S ,2 §,X).
Of course, our results prove this and add that &(£) and y" are morphisms

of Cn-algebra.s (not of ﬂnsn-algebras) and that

B(l,a_,1): B(s", C_,X) » B(s",2"s", %)

is a2 weak homotopy equivalence if X is connected. Unfortunately, the
only QnSn-algebras that seem to occur "in nature™ are n-fold loop spaces,
and Beck's recognition theorem is thus of little practical value.

The little cubes operads are of interest because their geometry so
closely approximates the geometry of iterated loop spaces; for precisely this
reason, a recognition principle based solely on these operads would also be
of little practical value. We have therefore allowed more general operads
in Theorem 13.1. We next exploit this generality to obtain our recognition
principle for Aoo spaces, as defined in Definition 3,5, Recall that the
category of operads over Tl of Definition 3.3 has the product V described
in Definition 3.9. In view of Proposition 3.10, the following theorem is an

immediate consequence of Theorem 13.1 and Corollary 13. 2.
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Theorem 13.4. Let C be any AOD operad, let R=Cv Ci and
let 2 D~ C and w: @ - Cl be the projections. Then w is a local
T.equivalence of operad. Therefore, if (X,8) is a connected C -space,
then there exists one and, up to weak homotopy equivalence, only one con-
nected space Y such that (X,8y) is weakly homotopy equivalent as a

{D -space to (QY,OI'Ir), namely Y = B(S,D,X).

Of course, Theorem 13.4 implies that a connected Aoo space X is
weakly homotopy equivalent to a topological monoid, namely the Moore loop
space AB(S,D,X). As was first proven by Adams (unpublished), a more
direct construction is possible. Recall that, by Proposition 3.2, the notions

of topological monoid and of M-algebra are equivalent.

Theorem 13.5. Let ( be any A_ operadandlet §:C = M be the
morphism of monads associated to the augmentation ; - m . Let {X,9)

be a C-algebra and consider the following morphisms of C-algebras:

X <—-§ﬂ—~ B(C,C,X)M B(M, C,X}.

(1) £(6) is a strong deformation retraction with right inverse v(7),
where n:X -» CX is given by the unit n of C,

(ii) B(8,1,1) is a weak homotopy equivalence if X is connected.

(iii) B(M, C,X) has a natural structure of topological monoid.

(iv) If (G,9) is an M-algebra (that is, a topological monoid) then
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£($): B(M,C,G) - G is a morphism of monoids and the following
diagram is commutative (hence Eﬂi) is a weak homotopy equivalence

if G is connected):

B(C, C,G) —2&: L) 5 5m,c,q)
(9 () B(1,5,1)
G < (%) B(M, M, G)

For Ye'J , &(v-M§):B(M,C,CY)~ MY, viMe - M, is a strong
deformation rectraction of topological monoids {that is, the required
deformation is given by morphisms of monoids ht) with right inverse

T{Mn).

Proof. In view of Theorem 9,10 and the fact that, by Proposition 3.4,

§:CY = MY is a weak homotopy equivalence if Y is a connected space, the

theorem follows from the facts that geometric realization preserves homo-

topies {Corollary 11,10), weak homotopy equivalences {Theorem 11.13),

monoids (Gorollary 11.7), and C-algebras (Theorem 12, 2).

Like Theorem 13,1, the result above implies ite own uniqueness

atatement.
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Corollary 13.6, Under the hypotheses of Theorem 13,5, if

(%,0)<—L— (x',0") —E—> (G, §5)
is a weak homotopy equivalence of connected D-algebras, where (G, ) is

an M-algebra, then the diagram

B(M,C,x) « 2L L) gy g, xn)-Blllg) 5 piy,c, 0 -l

displays a weak homotopy equivalence of topological monoids between G

and B(M, C,X).

Remarks 13.7, By Corollary 3,11, any Ecospace is an Am space ; by
the previous theorem any connected Aoo space is weakly homotopy equivalent
to a topological monoid. These two facts are the starting point of Boardman
and Vogt's proof [ 7 , 8 ] of the recognition principle for Em spaces.
Given an Eoo space, they construct a homotopy equivalent monoid and show
that the monoid can be given a structure of Eoo space such that the (monoid)
product commutes with the {operad) action., Then, as we shall see in

[21],  the classifying space of the monoid inherits a structure of Eoo space
and the argument can be iterated. While conceptually very natural, this
line of argument leads to formidable technical complications; a glance at
Lemma 1.9 will reveal one major source of difficulty, and another source

of difficulty will be discussed in section 15.
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Qur recognition principle for Eoo- spaces, as defined in Definition 3.5,
will follow from Theorem 13.1 by use of the product {Definition 3. 8) in the
category of operads and passage to limits, Throughout this section, C will
denote a fixed EO0 operad, [0 n will denote the product operad C X )7: n
for n>1 or n= oo, and 'trn: @n-‘ C: n and x;zn: Dn» f: will denote
the projections. By Proposition 3,10, the T, are local equivalences,
and Theorem 13.1 thus applies to the study of 0 o= Spaces. The inclusions
o ’Cn - Cn+1 of Definition 4.1 (e) give rise to inclusions
ThT 1X LA Dn - pn+1' and 0 o is the limit of the @n for finite n,
As in Construction 2.4, we write C’Cn’ and Dn for the monads in .T
associated to C, (;n, and Bn’ and we use the same letter for morphisms
of operads and for their associated morphisms of monads in :T . Welet
v Dj - Dn and Qn: 1 - Dn denote the product and unit of Dn .

A connected C-algebra (X,0) determines a Dn-algebra (X,Otpn) for
all n 21 andthus has an n-fold de-looping B(Sn, Dn’ X) by Theorem 13,1,
By the definition of the functor B # in Construction 9.6, the following

lemma will imply that the B(S", Dn' X) fit together to form a (weak)

Qespectrum,
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Lemma 14,1, Let n= ¢-1(1):1 - QS, Then, for all n>1,

)

B, g? p" . ntl . ntl
nS (5, ¢ (an'trn)) @s" ", e (an+11rn+1-rn
is a morphism of Dn-functors in T Therefore, for all i 2 0, the
functor QS = lim st inherits a structure of Dm-functor in DOOK}J]

-

: oigs - g4
by passage to limits from the actions QJ¢1+J(az .) of Di+j on 22577,

i+ it

Proof. The first statement holds since the following diagram is

commutative:
n+}
QS T
ns"
5°p P as™ n n as™p
n n n+l
I n _..ntl nt+l
s (cxn';rn} 08 {au'rrn) QS {an+1vn+l)
n.n Snﬂnqn \l’ 41 an+lo- n v +i_n+l_n+l
sa"s U as™ s ! st gt s™
l n n n+l
L ¢™(1) s (1) o (1}
v s” v 1 ¥
Sn n an""] an,{_l

Here c = Qn$—1(l):ﬂn8n - Qn+lsn+1' as in formula (5,5), and

R L R TILN by Theorem 5.2 and the definitions of

the L and T Since QS' is defined by passage to limits from the

inclusions . s ias x ogs . s
cerI=QJnSﬁJ:QJSI+J - QJ+IS1+J+1

’

the second statement does follow from the first,
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We precede our recognition theorem for Eoo spaces with two further
lemmas, These will lead to a structural description of the homotopy type
of the n-fold de-looping of a Dco-algebra which is based on Doo itself,
rather than on Dn. Recall that, by Proposition 5.4, there are morphisms
of monads pn: Cn - QCn_IS such that a = (ﬂan_ls)pn . We require the

analogous result for the D .

Lemma 14.2. There exist morphisms of monads 6n: Dn - ﬂDn_IS

for n>1 such that the following diagrams are commutative:

<] &
D —2 sap s and D —2 —sap S
n n-1 n n-1l
T 95 4 5 T T s
n n-1 n n=1
P, ®at1
c —2 =pc s D — 5 aps
n n-1 n+l n

Proof, Recall that ﬂDn S is a monad in 'J- by Lemma 5.3. Let

-1
X ¢ J . By Definition 3.8 and Construction 2.4, a typical point of an

has the form [(d,c),y], where de C {j}, c= <Cyreees cj> € Cn(j), and

v e X}, For te I, write

ﬂn{co}r](t) = {<c:‘l“." C;.>iz],
1

where c = c'r x c: with c; :J 73, the r, are those indices r such that
te c'r(J'), and z ¢ (S}'[)1 is as determined in the proof of Proposition 5.4,

By Notations 2.3 and Definition 4, 1{d), we can choose degeneracy operators
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o'k ,...,o'k such that

1 j-i
O, ea, C = KC_ yevesC_ >
S T 1 "

We define 5n by the formula

¥

5n[(d,c):Y](t) = I(ck "'o.k d’<c; ;00.3‘::>).Z] A
1 j-1 1 i

It is then easy to verify that Sn is a well-defined morphism of monads

such that the stated diagrams commute,

Let Gij:Di +j - S'?.IDJ,S1 denote the composite morphism of monads

6'+' Q5'+' IS 2 2 i i
D, . —l _sgp s Tl 50 . —_— ... —> 0D 8§,
itj i+j-1 itj-2 J

i i i i
i : imi i . . QD S b
and define ﬂij Ci + -Q CjS similarly, Define 5100 Dmo - o y
passage to limits over j,

Lemma 14,3, Let )\..:D.Slb, . D,S1 be the composite
- ij ) it J

. D.$%(s..) . v .
i i i j i
DSD. . D.D.S ——tf——3> DS .
Jitj J J
i . . -
Then (DjS ’)\ij) is a Di+j-f1mctor in Dj[j ], and
+shosin) —s . st ...oD. 8% )
j 57 "My §#1° 0N, 5417 TS Tisg
and
amS: (DS, ) —s (@, 90w )
i 7773 ' itj itj

are morphisms of Di+j-functors in Dj[ T ). By passage to limits over 3,
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i, .
DwS inherits a structure of D -functor in Dco[ ‘T ], with action

D(b( vSi

A, D SD»——-+~—————-—-;>DDS—————>DS
100 o0

and aroo-rroosi: Doosi - QS"‘l is a morphism of Dm-functors in Doo[ ',T].
Proof. qu)i(&ij) = Dj(?i{l)' Djsia-ij' and it is trivial to verify that
iji- Dj¢i(1) gives DjSi a structure of QiDjSi-functor in Dj['\}'] by use
of l.emma 5.3, Thus (DjSi, ')\ij) is a Di+j-functor in Dj[:j'] by Example
9.5(ii). The following two commutative diagrams show that -r.Si and

@ 1rj31 are morphisms of Di+j-£unctors in Dj[ T1, and thus complete

the proof:

. 5D, . ] D, st .
Djlei+j _Tl—il—} Dj+151Di+j M Dj+1lei+j+1
b ¢1(5i5} Dj+l¢1( 1_)) 1+1¢i 1:3*'1}
bD.s —Tﬁli——en, DSI—MLV. !
i3 i AR
Vjﬁi Yin 1
p.st Tjsi % st




142

cy.'Tr.S:L i i+ja T s sys s saz
nsp —d 3 5 Jisitip Hj I o olgttigitigl®l
7 iy i4]
i 5 jed Ssigi
D ¢'(5,. Qsiis ., sei
46, ¥is,) #'0)
VS X AU+ N Y
pps —L 5 glglp gt L] s olgipist™)
i i
\ Jgd
v_Sl Q2 ¢ {1)
j
i
w 3 a_‘rr.S \:f > g
D.s' il > gt

The upper left and bottom rectangles commute since 'rj and aj-:rj are
natural and are morphisms of monads. The upper right rectangles commute

by Lemma 14, 2 and Proposition 5.4, which imply that
By i qoTiy: = TS 0B
J 1)

and

i i i i
a-'i+j°‘ri+j = chjS .ﬁij'-'ri+j = Qaj-ter .Gij .

Recall that by Theorems 5.1 ard 5.2, if Y = {Yi} e Iw, so that

Y, =QY,

. , then (Y ,0 o ) isaD_-algebraand 6 :C Y =Y factors
i i+l o’ o oo o0 © o o o

4

as the composite

@ = lim @ € = lim Qn¢n(1)
cC Y Q0 > QwsmY (s o] »Y .
® o o o

We shall write W: Ioo - Dm[ :T] for the functor given on objects by

WY =(Y ,9 v ). Recall also that if Z ¢ 7 , then Q Z denotes the free
o’ "o (e o]
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infinite loop sequence {Q5'Z} generated by Z, as described in formulas
(5.7),(5.8), and (5.9).
We retain the notations of the previous section for our geometric

constructions, and we have the following recognition theorem for Em-spacea.

Theorem 14.4, Let {X,£) bea Doo-algebra, and regard X asa
Dn-algebra via the restriction of £ to an C Dwx. Then the following
is a commutative diagram of morphisms of Dj-algebras forall 120 and

izl

j itj
P TR Py X0

e . L
B's™") b, ,X) S?B(nSl+J,Ti+j,1)

i+’

itj+l D X)

v
i j
B - y
(:rjs,-si j,l} ¢ B(GS +Digserr

. i
/
1
j¥1 _it+j+l o
B s ,Di+j+1,X) . Y
3
\QJ+1B(SI+J+1 D X)

P TibjL’

Define an infinite loop sequence BOOX = {BX} by
i
R NS T
BX = 1lim 'B(S 1Dy r X)
and, for iz 0, define a morphism Yoo of Dm-algebras by

v© = lim \R:B(Qs‘,nm,x) ~ BX.
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Consider the further morphisms of Dcd-valgeb:a.s

i i i
Ble v _S ,1,1):B(D°°51, D_,X) = B(QS,D_,X)
and
e(§) :B(D_,D_,X)~X
(i) &(t) is a strong deformation retraction with right inverse -r(!,m), where

:X =D i s R ]
gw cnx is given by the unit l;m of Dm

{ii) B(afoo':rmsl, 1,1) is a weak homotopy equivalence if i>0 or if i=0

and X is connected.
(i) v is a weak homotopy equivalence for all i and X.

s s o . - .
{(iv) The composite vy B(amwoo, 1, l)v(ém).x + B X coincides with

v o= li_r’n ¢-1'r(1), (1) SjX - B(Sj,Dj, X).

{v) Bix is (mti)~-connected if X is m-connected,

{(vi) Let Y= {Yi} 'y oo 2nd define w3 BOOWY ~Y by
w, = lim Pe¢ayBwy - v,
1 o~ b 1

Tt P i+§ it j
{where :z’eQ (1).{93(5 ,Di+j,n Yi+j) *Q’Yﬁj ).

Then wy is a weak homotopy equivalence if Yi is i-connected and, for all
Y, the following diagram is commutative and @, is a retraction with right

inverse 1 ¢



(vii) Let Ze Y . Then the composite
J po

Boo(aoowoo) @
B D Z > B QZ —————> Q 2
o oo ()

is a strong deformation retraction in : . with right inverse the

adjoint ¢°°(|.§.°o) of l.(,oo 1 Z - BODOOZ.

Proof. Inview of the definitiong of Construction 9.6, the specified
spaces and maps are well-defined by Lemmas 14.1 and 14,3, The diagram
commutes by the naturality of yJ {since o'j = S’tin) and by the definition of
yjﬂ Of course, g(£), B(aoo-troosi, 1,1), and y© are morphisms of
Dm-algebras by Theorems 12,2 and 12.4. Now (i) follows from Proposition
9.8 and Corollary 11,10, (ii) follows from the approximation theorem
(Theorem 6.1), Propositions 3.4 and 3.10, and Theorem 11,13, and (iii)
follows from Theorem 12.3. Parts (iv) and (v) follow from the correspond-
ing parts of Theorem 13,1 by passage to limits., For (vi), @ is well-defined
since the following diagram commutes by the naturality of £ andof vy

and by the fact that y=1 on QZ = [Q,Z.|, Z 7 :
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I
B(Tls ’ Tn’ 1)

n n g L | n+l
B(s", D ,q Yn) B{gs ', Do YnM)
. sap™(1)
ed7(1) Y
n+l
ed (1) n+l n+l
Yn = QYn-H aB(s” ", Dn-H ' Yn+}}

The commutativity of the diagram in (vi) follows by passage to limits from
Theorem 13, 1{vi). If Yo is connected, then w, = ini is a weak homlo-
topy equivalence by parts (i), (ii), and (iii) and the diagram; it follows that
mi is 2 weak homotopy equivalence if Yi is i~connected. For (vii), the
explicit deformations of B(Sn; Dn’DnZ) given by Proposition 9.9 and
Corollary 11.10, and the loops of these homotopies, are easily verified to

h, ,.

yi€ld deformations h, H,t = Lt

. of B.D Z in the limit such that $h,
i,t i o 1

The fact that 4)00(..400) is the right inverse to wBoo (aoofoo) follows by

passage to limits from Theorem 13, 1{vii) and the definition {5.9) of @w.

Up to weak homotopy equivalence in : @’ there is only one con~
nective Y e : oo such that WY is weakly homotopy equivalent as a

Dm-algebra to a given connected Dco ~algebra X,
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Corollary 14.5. If (X,¢£) P S (X1, &) Ly (Yo, eoo'“'m) is a
weak homotopy equivalence of connected Dm-algebras, where
Y= {Yi} € Xoo and each Yi is connected, then the diagram of infinite
loop sequences
B f B
B_X' - B WY —2—> Y

displays a weak homotopy equivalence in :oo between Y and BwX.

Proof, By Theorem 11.13 and passage to limits, each functor Bi
preserves weak homotopy equivalences between connected Doo-algebras;
since Y, = QY,

i it

1 each Yi is i-connected, and therefore each w, is a

weak homotopy equivalence by the theorem,

Since our de-loopings Bi are not constructed iteratively, we should
verify that Bi +jX is indeed weakly homotopy equivalent to BiBjX' To see
this, define functors < Iw - Xoo for all integers j by letting the i-th
space Q;Y of QJY, i> 0, be

S"Y_ . if 1>

i)

Qj.Y=

1 .
Q*?Yi if i<j .

Observe that if j > 0, then the zero-th space of 2y is Yj' Clearly

DY = @™y forall j and k, and ©° = 1. We have the following

addendum to part (vi) of the theorem.
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Corollary 14.6. If Y ¢ Xoo and S'liJY is connected for all i, then

we BODWQJY - Y is a weak homotopy equivalence in I " In particular,
if (X,£¢) is a Dm-algebra and if j 20 orif j=0 and X is connected,
then, for i> 0,

©:BBX = BWeYB X - 7B X = B, X
i i) i w i oo i+j

is a weak homotopy equivalence,

We require one further, and considerably less obvious, consistency
result. Recall that if an operad acts on a space X, then, by iterative use
of Lemma 1, 5, the same operad acts on each QIX, i> 0. We thus obtain
functors Q': Dw[':f] - Doo[ J1, and we wish to compare the infinite loop
sequences QiBwX and Booﬁlx, at least for Doo-algebras which arise
from C-algebras. To this end, let 7' = 1X¢' : @ - D , where

n n n n+l
o't L - Cn+1 is the inclusion of Lemma 4.9 {which gives the first

n n

coordinate the privileged role). Let -r;j: Dj - Di-l-j denote the composite

morphism of operads

T Tt+1
Dj —— mm _J_">pj+z"“>"”">pi+j’

t
and define T Doo - Doo by passage to limits over j; this makes sense

since Tt T, = 7! «T. . It follows easily from Lemma 4,9 that T::.oo

4+ i Ti, j+

is a local Z-equivalence of operads.
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Proposition 14,7, For i>0, let Déosl denote the functor DOOS]'

regarded as a D_ -functor in Doo{ 7] via the action

D S T . :
DSD -——-—-—>D SD —2 5>p s .
e <)
Then e(g-an:i(l)): B(D(')osi, Dm,QiX) -+ X is a well-defined morphism of
Doo~a1gebras for any Dw-algebra {(X,£), and &{£- Dm¢i(1)) is a weak
homotopy equivalence if X is ji-connected,
Proof. Let §i: DinX - QiX denote the Dm-algebra structure map
determined from £ by Lemma 1,5 (the previous notation szig would be con-
fusing here). We claim that i_‘,i factors as the following composite:

- ; alp ¢(1) ; ot
D S‘l”X 22 5p sz‘x———-s»gn sholx ———-——ﬂnn x 28 5 gix,

Since T;co results by replacing each little co-cube c by the co-cube 1'% c,

the proofs of Lemma 14. 2 and of Proposition 5,4 imply that

RN (CHO AUV O IR (CHON A RO PP

for de C(j), ce Cm(j), Y, ¢ le, and s e Il .

Since 4)1(1) is the evaluation map, ¢1[y, s] = y(s), §i is indeed equal to the
stated composite by L.emmma 1.5. Therefore the following diagram is com-
mutative, and this implies that €(§°Dm4)1(1)) is well-defined by Lemma

9.2, Construction 9.6, and the definition of xioo in Lemma 14. 3:
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i

i i Doo¢1(6ioo-rz ) i Y i
D §'D o ® . p p §gx ——— D _Ss0X
o0 [s 0] [+ o) (o)
D D) p_$'1)
o oo (s 5]
: ¥ v 4
D s, \ DD X—2 5D X
(o 0] 1 i oo oo [» 9]
Db (éi)\
i \ Peot :
R D ${1) y ;
D_s'w'x © . > D X § > X
(e o] o

Moreover, by the naturality of ¢ and of yl, the following diagram is also

commutative:
. B(&,m'r;m, 1,1) r .

B(D ,D ,9X) b > B@'D' $',D_,9'X)

o0 [s 9] [¢ o] o

i, i i i

e(€,) L2t 0 Doo¢ (1)) ¥
g////

QX B s,p _,0x)

o0 Qo

Here 5, ' :D =D s' isa morphism of D _-functors in D[]
joo ico” @ w ™ 1o o)

by a simple diagram chase from Lemma 5.3. By Theorem 14.4(i) and

Theorem 12,3, E(Ei) and \{1 are weak homotopy equivalences, For con-

nected spaces Z, . :D Z-=D Z and §, :D Z >0 D _S'Z are weak
i "o @ joo” Teo w
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homotopy equivalences by Proposition 3.4 and by the approximation theorem

fm,l,l) is

(since @ * = Q' w S'es, ). By Theorem 11,13, B(5, T
® o @ oo joo ioo i

thus a weak homotopy equivalence if X is i-connected and, by the diagram,

g(ge D®¢1{1)) is then also a weak homotopy equivalence.

Lemma 14.8. Let (X, Ol.poo) be the Doo-algebra determined by a

C-algebra (X,6). Then
B(l, 7} 1) B(Déosi; D_.X) = B(Dmsi, D_.X)

is a well-defined morphism of Dm-algebras and is a weak homotopy
equivalence if X is connected,

Proof. Since Ll;oo:Doo - C is the projection, we obviously have
"poo = me'r;oo . In view of the definition of D;osi, (1, T;-m, 1) is thus a
morphism in the category B (7J,D[J]) of Construction 9.6 and
B(l,'r;oo, 1) is well-defined. The last part follows from Proposition 3.4

and Theorem 11.13.

By combining the previous lemma (applied to QiX instead of to X) and
proposition with Theorem 14, 4 and Corollaries 14,5 and 14,6, we obtain the

desired comparison between QIBOOX ‘and Bwsz‘x for C-algebras (X,8).

Theorem 14.9, Let (X,8) be a C-algebra and let £ = Otl,uw.
Assume that X is i-connected. Then the diagram

e(goD_¢§'(1))

0O i 1
. . v eBle w S,v ,1)
X B(D! s',D_,0" 2.2 A2

X) > Binlx
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displays a weak homotopy equivalence of Doo -algebras between (X, ¢£)
and WQV-IBwﬂlTX. Therefore the infinite loop sequences BOOX and

Q-IBOOQIX are weakly homotopy equivalent.

Remark 14.10.  Observe that if Y ¢ [ _, then 2'WY and WR'Y have

the same underlying space, namely QIYO, and respective actions

Q eooa To and 900- To By passage to limits , Lemma 5.6 implies

that the action 91900 of Coo on QlYO derived in Lemma 1, 5 satisfies

Qe = 0 oo (where o is defined from the ¢' as T  was defined

oo o ico ico n ico

fromthe v =1Xd ), Therefore 26 om =86 ow ot , and ,

n n ® @ o © i

by Proposition 3.4, the action maps DooQIYo - QIYO of QWY and

WQ'Y are weakly homotopic (at least if QIYO is conmected).



15. Remarks concerning the recognition principle

The purpose of this section is to indicate the intent of our recognition
theorem for Eoo spaces in pragmatic terms, to describe some spectral
sequences which are implicit in our goemetric constructions, to discuss
the connectivity hypotheses in the theorems of the previous section, and to
indicate a few directions for possible generalizations of our theory. We
shall also construct a rather curious functor from Z -free operads to
an operads.

Of course, Theorem 14.4 implies that a connected Eco space X
determines a connective cohomology theory. Pragmatically, this is not
the importance of our results. A cohomology theory cannot be expected to
be of very much use without an explicit hold on the representing spaces.
Ideally, one would like to know their homotopy groups, and one surely wants
at least to know their ordinary homology and cohomology groups. Our re-
sults are geared toward such computations via homology operations derived
directly from the Em structure, and it is crucial for these applications that
the homology operations derived from a given C-algebra structure map
0:CX ~—> X, where Q is any Eoo operad, necessarily agree with the
homology operations derived on the equivalent infinite loop space BOX from
the canonical Cm-algebra structure map OOO:COOBOX -—-)BOX. In the
notations of Theorem-14.4, our theory yields the following commutative

diagram, in which the indicated maps are all (weak) homotopy equivalences:
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o0
D e(ey ) D yv Ble w_ ,1,1)
D Xe®2 _® p gp ,p ,X) =2 > ® D BX
w ~ o o’ oo = @ o
q‘oo hat il L
7 B> D ,D » X) N
CX @ 0 o© C BX
)
0 Bv_,1,1) o
©
J 5(94100) Y B(aoo-rroo’ 1,1) v
X < = B(D_,D ,X) = > B X
o o e o o

Thus the given geometry 6:CX - X is automatically transformed into the
little cubes geometry 6 :C B X -+ B X, The force of this statement

®" o o o
will become apparent in our subsequent applications of the theory to such
spaces as F and BTop, where there will be no direct geometric connection
between the relevant Eoo operad C and the operad :m.

We indicate one particularly interesting way in which this statement
can be applied. With (X,0) as above, let £f3Z -~ X be any map of spaces.
By use of the adjunction ¢oo of (5.9), we obtain a map of infinite loop
sequences g = ¢00(|-f): Q,Z = B_X such that the following diagram is

commutative:

n

z —t 5 x
t
© s

&

ZzZ ———>»B X

o
Obviously g, is a map of Cw-algebras, by Theorem 5.1. On mod p
homology then, identifying H*(X) with H*(BOX) via 1, and using Theorem

14, 4(iv), we are guaranteed that (go)* transforms the homology operations
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on QZ coming from eoozcco QZ -+ QZ into the homology operations on X
coming from 6:CX - X, Since H*( QZ) is freely generated by H*(Z)
under homology operations (see [ 20 , Theorem 2.5] for a precise statement),
it follows that (go)* is completely determined by f, and the homology opera-
tions on H*(X).

Theorem 14.9 will have several important concrete applications.
For example, the spaces occuring in Bott periodicity are all ﬁ -gpaces
for an appropriate Em-operad £ and the various Bott maps X -~ QX!
(e.g., X = BU and X'= SU) are all { -morphisms, where OX' has the
ot -space structure determined by Lemma 1.5 from that on X'. Via
Theorem14. 9, it follows that our spectra BmX are weakly homotopy
equivalent to the connective spectra obtained fromthe periodic Bott spectra
by killing the bottom homotopy groups. Less obvious examples will arise
in the study of submonoids of F.

We should ohserve that our constructions produce a variety of new
spectral sequences, in view of Theorem 11,14, Probably the most interesting
of these are the spectral sequences {iErX} derived by use of ordinary
mod p homology in Theorem 11,14 from the simplicial spaces B*(DmSi,Dm,X)
of Theorem 14,4, where X is a connected Doo-algebra. and i> 0. Of
course, B(Doosi, Doo,X) is weakly homotopy equivalent to the i-th de-looping
B.X of X, For each j and gq, the homology Hq(DooSiDoi X) is a known

functor of H (X), determined by [ 20, Theorem 2.5], since Doo may be
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replaced by Q. The differentials
d= t (-niu (8.):1 (0_s'Dd x) ~ H (D_s'pilx)
o g i"""'q o Too qQ o
are in principle computable from knowledge of the homology operations on
H,(X); these operations determine Hq(aj), and the Hq(ai) for i< j depend
only on the additive structure of H*(X) as they are derived from natural
transformations of functors on .J (with known behavior on homology).
Therefore iEz is a well-defined computable functor of the R-algebra
H*(X), where R is the Dyer-Lashof algebra (see [20]), and {iErX} con-
verges to H*(Bi}(). It appears unlikely that these spectral sequences will
be of direct computational value, but they are curious and deserve further
study, In particular, one would like to have a more precise description of
iEZXL, perhaps as some homological functor of H*(X), and, in the case i=1,
one would like to know the relationship between {lErX} and the Ejlenberg-
Moore spectral sequence {derived by use of the Moore loop space on BlX)

: H,(X)
converging from Tor (Zp’ Zp) to H*(B1X)..

Although all of our constructions of spaces and maps are perfectly
general, the validity of our recognition principle is restricted to connected
Eco spaces since its proof is based onthe approximation theorem. A necessary
condition for an H-space X to be homotopy equivalent to a loop space is that
X be group-like, in the sense that vO(X) is a group under the induced pro-

duct. It is trivial to verify that a homotopy associative group-like H-space
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X is homotopy equivalent to Xo X -rro(X), where Xo is the component of
the identity element, It follows that a group-like Eoo space X is weakly
homotopy equivalent to an infinite loop space since both Xo and the Abelian
group TO(X) are. Such a statement is of no pragmatic value since the
equivalence does not preserve the E00 space structures: there are many
examples {such as QZBU and Q5°) of E_, spaces with non-trivial homology
operations on zero-dimensional classes but, as a product, Xo x WQ(X) has
only trivial homology operations on such classes {see [ 20, Theorem 1,1}).
A more satisfactory result can be obtained by reworking everything
in the previous section with C, Cj, and Dj replaced by the monads RCS,
QCjS, and QDjS. Of course, any QDmS-algebra is a Dm-algebra by pull-

back along & :Doo-' QDOOS, and therefore any S?DOOS-algebra is a group~

loo

like E_ space Given a QD_S-algebra (X,£), define B_X= {Bx}] by

= v e cdoraiti
BX = lim ?B(s ’QDi-I-j—IS’X)

-

and consider the following spaces and maps:

B{Qa w §,1,1)
© @

o0
x <2 pop s,ep s,%) > B[2QS, ap_s,X) ——> B X
[o0] @ o °

Y Y

QB{e w S,1,1)
QB(D_S,0D _S,X) ® @ QB(QS,9D _S,X)
o o] 0 o

By Theorems 12.2 and 12,4, &(£), B(ano-woos, 1,1}, and y'm are morphisms

of Doo-algebras {not of ﬂDmS-algebras). €(¢) is a homotopy equivalence
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by Proposition 9.8 and Corollary 11,10, and {(granting the appendix to have
been generalized so as to show that the various simplicial spaces are

strictly proper) the maps Yoo, vy, and B(aoo-rrws, 1,1) are weak homotopy
equivalences by Theorem 12,3, the approximation theorem, and Theorem
11.13. It follows from the commutative square that the map B(ﬂaoo-lrms, 1,1}
is also a weak homotopy equivalence, Thus (X, £) is weakly homotopy
equivalent as a Dm—algebra to WEOOX. The remaining results of the
previous section can be similarly reproven for QDws-algebras, with all
connectivity hypotheses lowered by one (e. g., Yi need only be (i-1)-connected
in the analog of Theorem 14.4(vi})). We omit the details since no applications
are presently in view,

Finally, we mention several possible generalizations of our theory.
There are various places where it should be possible to replace strictly
commuting diagrams by diagrams which only commute up to appropriate
homotopies. The technical cost of weakening the notion of operad surely
cannot be justified by results, but the notion of c -space might profitably
be weakened. It would be useful for applications to BO and BU withthe
tensor product H-space structure if all reference to base-points could be
omitted, but this appears to be awkward within our context. A change ina
different direction, suggested by Stasheff, is to define the notion of a homotopy
c ~space by retaining the commutativity with permutations, degeneracies,

a nd unit that we have required of an action 8 of {£ on X, but only requiring
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the resulting map 6;:CX -+ X to be such that the various ways of composing
8 and p: C2 =+ C to obtain maps CqX -+ X agree up to appropriately co-
herent homotopies,

This possible refinement to our theory is related to an objection that
might be raised. We have not proven, nor have we needed, that a space X
which is homotopy equivalent to an E(JQ space Y is itself an Eoo space.

This was proven by Boardman and Vogt [ 7 , 8 ] {(and was essential to their

proof of the recognition theorem)by means of a change of operads.
With a recognition theorem based on the notion of a homotopy

[ -space,such an argument might be unnecessary. Alternatively,
their argument may generalize to replace a homotopy £ —space by

a {l-space, for a related operad &l. Of course , one would expect
the notion of a homotopy [-space to be homotopy invariant. Indeed,
let £ :X > Y be a homotopy equivalence with homotopy inverse g,
where (¥,0) ¢ [ JJ). Define 0': CX + X to be the composite

cx &£ s oy A v 8 o

By Corollary A, 13, we may replace f by its mapping cylinder (at the price
of growing a whisker on C ) and thus assume that f is an inclusion, and

we may then assume that X is a strong deformation retraction of Y with
retraction g, Now gf =1 trivially implies that 8'n =141 on X, but 6'

fails to define a C-algebra structure map since the third square in the follow-

ing diagram only homotépy commutes:
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e
cox =CL s ooy S8 oy S sox Sy oy

ARV R O

CX—=—5 CY — > v —B s xe«$t& v

Intuitively, this is a minor deficiency which should evaporate with the study
of the notion of homotopy f -spaces,

Similarly, the notion of a morphism of C -spaces can certainly be
weéakened to an appropriate notion of homotopy c -morphism (most simply
between actual E -spaces but also between homotopy C -spaces). The
maps f and g above ought then to he homotopy C -morphisms. As
further examples, one w uld expect the product on an E o SPace to be a
homotopy morphism (see L.emma 1.9) and one would expect the homotopy
inveérse of a f -morphism which is a homotopy equivalence to be a homotopy
r ~-morphism, Our theory avoids such a notion at the negligible cost of re-
versing the direction of certain arrows. We have not pursued these ideas
since they are not required for any of the immediately visible applications.

Finally, we point out the following procedure for constructing new_

operads from old ones.

Construction 15.1. Let {: be an operad. Define R () = [D, &(j)| where

D*: ?,L—-'JZL is the functor defined in Construction 10.2. Then R { is an

operad with respect to the data specified by
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(@ QW = [D 3| REx BRG R ... X QPGY = REG), = 2 5, where
we have used the fact that D,’= and realization preserve products to
identify the left-hand side with |D (B(k) X £(j;) X. .. xz;(jk))l.

(b) The identity of R is 1 € (1) = F,|D, 2.

(c) The right action of Zj on QPE(j) is the composite
WFGIXE X7, ID,BGH | XD, T;| = |D(EGXT)] —“ﬁ‘i’—»nm.
where T, is defined in Construction 10.2 and o< is the action of 23
on E(j).

By Proposition 10.4 and Corollary 11.10, each Q;(j) is contractible hence,

by (c), RE is an E _ operad if Z isa 2 -free operad.

The E_ operad K =@ bas been implicitly exploited by Barratt [4]
(see Remark 6.5). This operad is technically convenient because DX is a
topological monoid for any X € J ; indeed, the product is induced from the
evident pairings

® QU)X 0 = DT x T (D, T, | = QG+

by the formula [d,y] [d',y']=[d® . v.v']



APPENDIX

We prove the technical lemmason NDR-pairs that we have used and
discuss whiskered spaces, monoids, and operads here.

Definition A.1, A pair (X,A) of spaces in W is an NDR-pair if
there exists a map u:X -» I such that A = u_l(O) and a homotopy
h:IX X = X such that h{0,x) = x for all xe¢ X, h(t,a)=a for all
{t,a) e IX A, and h{l,x) e A for all xe u-l[O, 1); the pair (h,u} is saidto
be a representation of (X,A) as an NDR-pair, If, further, ux <1 for all x,
so that h{l,x)e A for all xe X, then {X,A)} is a DR-pair. An NDR-pair
(X,A) is a strong NDR-pair if uh(t,x) <1 whenever ux ¢ l; thus, if
B = uhl{o, 1}, it is required that (h,u) restrict to a representation of (B, A)

as a DR-pair.

By [30,7.1)], (X,A) is an NDR-pair if and only if the inclusion A C X
is a cofibration. There is little practical difference between the notions of
NDR-~pair and strong NDR-pair in view of the following example and the dis-

cussion below of whiskered spaces.

Example A.2. Define the (reduced) mapping cylinder M, of a map f:X =Y

£
in J to be the quotient space of X X I+ Y obtained by identifying (x,0) with
£(x) and (*,t) with *e¢ Y. Embed X in Mf by x = (x,1). Itis trivial that

(Hf,x) is an NDR-pair, where I\—/ff is the unreduced mapping cyclinder, but

f must be well-behaved near the base-points to ensure that (Mf,X) is an
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NDR-pair. Thus let (h,u) and (j,v) represent (X,*) and (Y,*) as

NDR-pairs and assume that vi{x)= u{x) and j(t,f(x)) = fh{t,x} for xe X

and te I. Then (k,w) represents (Mf,X) as an NDR-pair, where

u(x) 0¢s ¢1/2
w(y) = v(y) and w(x,s)=
minfu(x),2-2s) 1/2 ¢ s ¢1

(h(t,x),s+st) 0<s<1/2
k(t,y) = j(t,y) and k(t,(x,s)) =
| (h(2t-2st,x) ,s+t=st) 1/2<s5l

If (h,u) and (j,v) represent (X,*) and (Y, *) as strong NDR-pairs, then
{k,w) represents ,(Mf,X) as a strong NDR-pair., Of course, (Mf,Y) is

1
represented as a DR-pair by (u',h'), where u'(y) = 0, u'(x, s) = 5s.u(x), and
h’(t: Y) =y and h'(ts (x: S)) = (X, 3(1 ’t)) .
We have frequently used the following result of Steenrod [30,6.3].

Lemma A.3. Let (h,u) and {j,v) represent (X,A) and (Y,B) as

NDR-pairs, Then (k,w) represents the product pair
{(X,A)X{Y,B) = (XXY,XXBuUAXY)
as an NDR-pair, where w{x,y)= min{ux,vy) and

'(h(n,x).jiﬁ—’;wn i vy »ux
kit,x, y) =
(=Lt %), jlt,y)) i wx > vy
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Further, if (Y,B) is a DR-pair, then so is (X, A) X (Y, B), since vy<¢l
for all y implies wi(x,y)<1 for all (x,vy).

The proof of the following addendum to this lemma is virtually the
same as Steenrod's proof of [30,6.3].

Lemma A.4., Let (h,u) represent (X,A) as an NDR-pair, Then

. . . .
(hj,uj) represents (X,A)J = (XJ, U xlx A x %) Y as a Ej-equivariant
i=1
NDR-pair, where uj (xl,...,xj) = min(uxl,....uxj) and

hj(ta xl e ,xj) = (h(tl'xl)’ s eny h(tj’ xj))

with

t {n}jin (uxj/uxi) if some uxj 24 ux, , i¥i

vy

t if all ux, yux, , IE R

The following sharpening of [30,7.2] is slightly less obvious.

Lemma A.5. Let (B,A) and (X,B) be NDR-pairs. Then there is a
representation (h,u) of (X,A) as an NDR-pair such that h{l X B) C B.

Proof. Let (j,v) and (k,w) represent (B,A) and (X,B) as NDR-
pairs, Define f:IX B ~1 by f{t,b) = (1-t)w(b) + tv(b). Since B+X isa
cofibration, there exist maps 'j'. IXX =X and f:IXX -1 which make the

following diagrams commutative:
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oXp———— I X B IXB——mIX B
[P ﬂXf//
w~ and VI\ "

OX X —+ ] X X tx X

IXX

Define u by u(x) = max(f(l,k(l,x)),w(x)) and define h by

k{2t, x} 0gt ¢1/2

h{t,x) N
\ Jzt-1, %1, x)) 1/2¢t 41

it is easy to verify that the pair (h.u) has the desired properties,

We shall shortly need the following lemma 0n unions, in which the

requisite verifications and the continuity proof are again simple and omitted.

Lemma A.6, Let Ai’ 1< ign, be subspaces of X, and let (hi’ui)
represent (X, Ai) as an NDR-pair. Assume that

{a) hj(IXAi) C A, for i<j and
(b). ujx< 1 implies ujhi(t,x}<.1 for i¢j, tel and xe X.

Then {j,v) represent (X,.A1 Uoeed U An) as an NDR-pair, where
vx = r'nin(ulx, vy unx) and

with j(tg X) = hh(t’ny-hn_l(fn’l, sney h], (tl’x). . )),

t min ux/ux if some ux<ux
ifi : oo

o

ifall ux > 1.1.)(
§ i
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The functors we have been studying preserve NDR-pairs and strong
NDR-pairs in a functorial way; the following ad hoc definition will con~-

veniently express this for us.

Definition A, 7. A functor F: J = J is admissible if any representa-
tion {h,u) of (X,A) as an NDR-pair determines a representation (Fh,Fu)
of (FX,FA) as an NDR-pair such that (Fh)t = F(ht) on X and such that,
for any map g:X - X with ug(x) < 1 whenever u(x) ¢ 1, the map
FutFX - 1 satisfies (Fu}{Fg){y) ¢ 1 whenever Fuly) < 1, ye FX, As
examples, S,C, and  are admissible (where C is the monad associated
to any operad ( ), with

(Su)[x,8] = u(x) , xe¢ X and sel;

(Cu)[c,xl,...,xj] = max u(xi), ce C({j) and x, € X;

(Qu)(f) = max uf(s) ,f e QX.
se¢f

Clearly any composite of admissible functors is admissible.

We now discuss whiskered spaces, monoids, and operads, Growing a
whisker is a standard procedure for replacing a given base-point by a non-
degenerate base-~point. For our purposes, what is more important is that

the new base~-point is strongly and functorially non-degenerate.
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Definition A.8 (i) Let (X, *) be a pair in U, * ¢ X. Define
X'=XvI, where I is given the base-point 0 in forming the wedge, and
give X' the base-point 1 ¢ I. (X',1) is represented as an NDR-pair by
{h,u), where u{x)=1 and h{t,x})=x for xe¢ X and, for se I,

1 if s¢1/2 s+ st if s ¢1/2

u(s) = and  hft,s) =

2-28 if s >1/2 s¥t-st if s »1/2
Let (:X-+X'" and p= hI:X' =+ X denote the evident inclugion and
retraction., If fi(X,*) - (Y,*) is a map of pairs, let f'=fv1:X' > Y';,

then, by Example A.2, (M,,,X') is a strong NDR- pair (since uf'=u and

£

htf' = f!ht)’ and (M,,,Y') is a DR-pajr.

£
{ii) Let G be a topological monoid with identity e. Then G' is a topological
mongid with identity 1 under the product specified by the formula

gs=g=58g for ge¢ G and sel
and the requirement that the product on G' restrict to the given product on G
and the usual multiplication on I, The retraction p:G' -+ G is clearly a
morphism of monoids.
(iii) Let ¢ bean operad; to avoid confusion, let e denote the identity
element in (1), Define a new operad (&’ and a morphism p: C',-' & of
operads by C’(j) = () asa Ej-space_, with pj =1, for j>1 and by
C"(l) = & (1) as a monoid under y', with Py the retraction; the maps y'

are defined by commutativity of the diagrams
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ClIx €6 X e x £1) —L—n C1)

p, Xp. X...Xp, '
kT "

COIX CH)Xene X € () ———> &)

for j=j1+...+jk¥1 or k# 1. Of course, C'(0)=*= ¢ (0).

Lemma A,9. Let C and C' denote the monads in J associated to
an operad € and its whiskered operad g ! . Let Xe¢TJ . Then there is a
natural homeomorphism x from the mapping cylinder M‘q of tX = CX
to C'X such that the following diagram commutes:

N

N
Ny

c'X

¥ CX

{where i and r are the standard inclusion and retraction)
Proof. On CX C MTI' let y: CX = C'X be the evident inclusion, and
define x(x,s) = [s,x] for (x,8) e XX 1, where s ¢ I ¢ {(1)' on the right.

Since
(x,0) = n{x) = [e,x] ¢ M'q and [0,x] = [e,x] e C'X,

%X is well~-defined, and the remaining verifications are easy.
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Proposition A,10. Let £ bvean operad and let C' be the monad

in J associatedto ¢ . Let X be a C'-algebra and F a C'-functor
in J (e.g., X a {-space and F a C-functor). Assume that F is an
admissible functor and that (X, *) is a strong NDR-pair, Then B*(F,C‘,X)
is a strictly proper simplicial space,
Proof. Let (h,u) represent (X,*) as a strong NDR-pair. As shown

in Definition A.7, (h,u) determines a representation {Ch,Cu) of
(CX,C*) = (CX, *) as a strong NDR-pair. Clearly Chie n= noh, and
Cu o1 = u, hence, by Example A. 2, (MTI’ X) is a strong NDR-pair. By the
lemma above, (Mﬂ'X) is homeomorphic to {C'X, n'X)} and (h,u) thus ex-
plicitly determines a representation of (C'X,n'X) as a strong NDR-pair,
Write D= C' to simplify notation, and let

Y=8B (F,D,X) = FD™X and A =Ims, C7,

qtl i i

where s, = FDin' R n':Dq_iX - Dq."1 -iX .
Now {(h,u) determines a representation (Dq"ih, Dq-iu) of (Dq.iX,*) as a
strong NDR-pair and, with X replaced by thix, we have just shown that
this representation explicitly determines a representation, (ki’ wi) say, of
ch+1 ‘iX, n'Dq-iX) as a strong NDR-pair, Since FDi is admissible,
(hi,ui) = (FDilci,FDiwi) is then a representation of (Y’Ai) as a strong NDR-~

pair. Since FDln' is a natural transformation, the following diagram

commutes for i< j and te It
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+1 FDJk‘r 31
FDT 'y — &, Fp9x
FD'qy FD'y'
ol
FDW — ' o rp%
Therefore hj(I X Ai) c Ai for i¢j, By Definition 11,2, B*(F,D, X) will
be strictly proper if it is proper and, by Lemma A,6, B *(F,D, X) will be
proper provided that ujy <1 implies ujhi(t' y) <1 for i¢j, te I and
y ¢ Y. By our definition of an admissible functor, this will hold provided
that
(DJ-le)ki(t, x} ¢ 1 whenever (DJ-IWj)(x) <1,
s, s g+l -iX j~i s
for i¢j, tel and xe D . Here ki and D .wj are explicitly de-
termined by the original representation (h,u) of (X, *) as a strong NDR-
pair, and the result is easily verified by inspection of the definitions,
The requirement that (X,*) be a stong NDR-pair is no real restriction

in the proposition above in view of the following lemma,

Lemma A.11, Let 8 be an action of an operad & on a based space
X ¢ WU . Then there is an action @' of ¢ on X' suchthat p:X'=+X isa

morphism of -spaces,
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Proof: Let t:X C X' and define 8': € (j) X (X'} = X' by
B— j

' J’ Lej(c,pxl,...,pxj) if some xi;’ {1-0)
0. (esxsnreix) =

l KyeneX, ifall x,¢1
1 j i

Here x

1°° .xj ¢ I C X' ; both parts of the domain are closed, and both

definitions yield 0 = % on the intersection.

The requisite verifications are
all straightforward.

The following lemma is relevant to the remarks. at the end of § 15,

Lemma A.12. Let (Y,8) e Q[T ], let YC Z, andlet hiIX Z = Z

be a homotopy such that

h(1,z) = z, h(t,y)=y, h{0,z) ¢ Y, and h{tt', z) = h(t, h(t', z))

for ze¢ Z, ye Y, and t,t' ¢ I, Then there is an action 8 of C, on Z

/
such that the retraction r= hO: Z + Y is a morphism of C -spaces,

Proof. Define gj on & {j)X% z) by commutativity of the diagram

cixd —Lxxl L epxy

8,
J J
Z € =

Y

/
and define 6, =h on IXZ C G{1) X Z, The requisite verifications are

again completely straightforward,



172

Corollary A. 13, If (Y,8) e C[J ] and £:X - Y is any mapinJ

~ 2
then there is an action 6 of ( on Mf such that the retraction r:Mf-' Y

I
is a morphism of ( -spaces.

i . = 1
Proof. Define h: IX Mf'-*Mf by ht hl-—t

in Example A, 2, and apply the lemma.

, where h' is as defined
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