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ABSTRACT. We give an different proof of our result computing the stable
homology of dihedral group Hurwitz spaces. This proof employs more
elementary methods, instead of higher algebra.
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1. INTRODUCTION

Let G be a group, c ⊂ G be a conjugacy class, and n ∈ Z≥0. Let HurG,c
n

denote the Hurwitz space over the complex numbers which parameterizes
branched G-covers of the disk, with a marked basepoint over the boundary,
branched at n points, where the inertia type of each branch point lies in the
conjugacy class c ⊂ G. In algebraic topology, these Hurwitz spaces can be
described as the homotopy quotient cn/Bn, where Bn is the braid group on n
strands.
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Let Confn denote the configuration space of n unordered, distinct points in
the interior of the disc, and unbranched over the boundary. There is a natural
map HurG,c

n → Confn which sends a branched cover of the disc X → D to
its branch locus in the interior of the disc.

Theorem 1.0.1. Choose an odd prime ℓ and use G to denote the dihedral group of
order 2ℓ, G := Z/ℓZ ⋊ Z/2Z. Let c ⊂ G denote the conjugacy class of order 2
elements. There are constants I and J depending only on G so that for n > iI + J
and any connected component Z ⊂ HurG,c

n , the map Hi(Z, Q) → Hi(Confn, Q)
is an isomorphism.

This is an immediate consequence of [EVW16, Theorem 6.1], which proves
the homology stabilizes in a linear range, and Theorem 5.0.3, which computes
the stable value of these homology groups.

Our primary motivation for proving Theorem 1.0.1 is for its application to
the computation of the moments predicted by the number theoretic Cohen–
Lenstra heuristics over function fields. See [LL24] for more on this applica-
tion.

Remark 1.0.2. We originally came up with a more elementary argument for
Theorem 1.0.1 along the lines in this paper, which guided us to later devise
the argument presented in [LL24]. In some sense, these two arguments
follow very similar trajectories, although this may not be evident on first
blush. Our main result Theorem 1.0.1 is a special case of the results of [LL24],
where we study the stable homology of G = Z/ℓZ ⋊ Z/2Z, instead of the
more general case that G is a finite group and c ⊂ G is a conjugacy class so
that (G, c) is non-splitting, i.e., (G, c) has the property that c ∩ G′ does not
consist of more than one conjugacy class for any subgroup G′ ⊂ G.

We chose to write that version there, because it seemed conceptually
simpler and also generalized more easily to the case when (G, c) is non-
splitting. However, we still thought it would be nice to record an argument
along the lines of our original one, especially for those interested in the
subject and not familiar with higher algebra.

We also wanted to write this note to emphasize that our computation of
stable homology is not an abstruse result in topology. If readers unfamiliar
with higher algebra only read [LL24], it is possible they could view it that
way. We wrote this exposition to emphasize that our computation of the
stable homology of Hurwitz spaces is an accessible result in linear algebra.

Remark 1.0.3. With significant additional work, we were able to generalize
many parts of the argument presented here to the case that (G, c) is non-
splitting. However, we did not carefully work out all the details. In particular,
we did not work out the generalization of § 4. We believe it would be
interesting to do so.
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1.1. Proof outline. To prove Theorem 1.0.1, we first study what the stabi-
lization map looks like more concretely. By combining various ideas in the
literature, namely the group completion theorem and the interaction of the
stabilization map with boundary monodromy, we are able to show that the
homology in the kernel of the map to configuration space decomposes as a
direct sum of subspaces, each of which is stabilized via multiplication by a
single element of the group. This reduction is carried out in §5. The crux of
the matter is therefore to prove Proposition 4.0.2, showing that any element
of the stable cohomology of HurG,c

n not pulled back from the cohomology of
configuration space, stabilized via multiplication by a single g ∈ c, is trivial.
To approach this, we start by studying the stable cohomology in terms of
Fox-Neuwirth/Fuks cells. Since we know the stabilization map is obtained
via a single group element, we can write down an explicit form for such
a cohomology class stabilized by a single group element. If we are able to
show this class is cohomologous to one in a sufficiently simple form, we
will be able to conclude using exactness of the stable K-complex, a complex
introduced in [EVW16, Theorem 4.2], which was the key to showing that
the homologies of these Hurwitz spaces stabilize. In order to massage the
element into the desired form, we extend the study of the K-complex and
introduce a new object of study, which we call the “two-sided K-complex,”
generalizing the K-complex. We compute the cohomology of a variant of a
particular two-sided K-complex in Proposition 3.4.10, via an explicit chain
homotopy. This allows us to massage x into the desired form, and hence
conclude the proof.

1.2. Outline of paper. We introduce notation for Hurwitz spaces in §2. In
§ 3, we compute the homology of a particular complex, which we call a
two-sided K-complex. In §4, we use this computation of the homology of
the two-sided K-complex to compute the part of the stable homology of
dihedral Hurwitz spaces stabilized by a single element g ∈ c. Finally, in
§5, we use this computation to prove Theorem 1.0.1, computing the stable
homology of dihedral group Hurwitz spaces.

1.3. Acknowledgements. We are grateful to Jordan Ellenberg for meticu-
lously reading and thinking through some of the most technical parts of
the argument, which led to a substantial improvement in the quality of the
writing of this paper. We thank Melanie Wood for listening to a detailed ex-
planation of our argument. We thank Jordan Ellenberg and Craig Westerland
for sharing with us a number of the ideas they tried while working on this
problem. We thank Nathalie Wahl and Melanie Wood for helpful sugges-
tions which led to a significant simplification of the proof of Theorem 3.4.3.
We also thank Andrea Bianchi for pointing out another chain homotopy
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which can be used, see Remark 3.4.8. We also thank Ahn Hoang for helpful
comments. Landesman was supported by the National Science Foundation
under Award No. DMS 2102955. Levy was supported by the NSF Graduate
Research Fellowship under Grant No. 1745302, and by the Clay Research
Fellowship.

2. NOTATION FOR HURWITZ SPACES

Notation 2.0.1. We let G denote the dihedral group of order 2ℓ for an odd
prime ℓ and let c ⊂ G denote the conjugacy class of order 2 elements. As
mentioned in the introduction, we use HurG,c

n , to denote the Hurwitz space
over the complex numbers which branched G-covers of the disk, with a
marked basepoint over the boundary, branched at n points, where the inertia
type of each branch point lies in the conjugacy class c ⊂ G. This has a model
as the homotopy quotient cn/Bn, where Bn is generated by the standard
elements σ1, . . . , σn−1 where σi twists strands i and i + 1, and the action is
given by σi(g1, . . . , gn) = (g1, . . . , gi−1, gi+1, g−1

i+1gigi+1, gi+2, . . . , gn).
We also define CHurG,c

n to be the union of connected components of HurG,c
n

which parameterize connected G covers of the disk. If S ⊂ cn is the subset of
tuples of n elements in c which generate G, then HurG,c

n has a model as the
homotopy quotient S/Bn.

Notation 2.0.2. Continuing with notation as in Notation 2.0.1, we can identify
the connected components of the pointed Hurwitz space HurG,c

n,C with orbits
of the Bn action on cn. Under this identification, x1, . . . , xn ∈ c we use
[x1] · · · [xn] to denote the connected component of HurG,c

n,C corresponding to
the Bn orbit of the tuple (x1, . . . , xn).

Notation 2.0.3. Fix G, c as in Notation 2.0.1. For β ∈ {0, 1}, we let HG,c
i,β

denote the vector space Hi(CHurG,c
n , Q) for n ≡ β (mod 2) sufficiently large.

We note this vector space is independent of n once n is sufficiently large by
[EVW16, Theorem 6.1] (with input from [EL23, Proposition A.3.1]). Here,
the isomorphism between Hi(CHurG,c

n , Q) and Hi+2(CHurG,c
n , Q) is given by

the stabilization operator ∑g∈c[g]2, where [g] corresponds to right multipli-
cation by a generator of H0(HurG,c

1 , Q) with monodromy g. At some points
throughout the text, we will consider the action of [g] on cohomology, in
which case it corresponds to the map dual to the map [g] on homology, see
Remark 4.0.1 for an explicit description of this map.

In particular, we use Hid,id
i,β to denote the stable rational homology of

configuration space on n points, which is well known to be 1-dimensional
4



if i = 0 or 1 and 0 dimensional otherwise; one may deduce this from the
computation of integral homology of ordered configuration space in [Ad69]
by rationalizing and taking Sn invariants.

Throughout this paper, it will be crucial to understand the connected
components of our Hurwitz spaces. For our dihedral groups of order 2ℓ, the
stable components turn out to be uniquely determined by their boundary
monodromy, as we explain next.

Lemma 2.0.4. Let H be an odd order abelian group, and G := H ⋊ Z/2Z, with
the generator of Z/2Z acting by inversion. We let c ⊂ G denote the conjugacy
class of order 2 elements. There is a map cn → G given by sending (g1, . . . , gn) 7→
g1 · · · gn. This map induces a map π0(HurG,c

n ) → G. We let CHurG,c,g
n denote

those connected components of CHurG,c
n mapping to g under the above map. For

n sufficiently large, there are # ∧2 H connected components of CHurG,c,g
n when

n mod 2 agrees with the image of g in Z/2Z under the projection G → G/H ≃
Z/2Z and 0 components otherwise. In particular, if H ≃ Z/ℓZ, for ℓ an odd
prime, there is at most one such component.

Remark 2.0.5. The only case of Lemma 2.0.4 we will use is the case H =
Z/ℓZ. It is not too difficult to show by hand that when H = Z/ℓZ, there
is a unique component of CHurG,c,g

n when n mod 2 agrees with the image
of g in Z/2Z and 0 components otherwise. However, we have opted to
prove the statement in the above generality, as it appears not to have been
completely spelled out in the literature.

Proof. The final statement follows from the first statement because when
H = Z/ℓZ, ∧2H is the trivial group.

To prove the first statement, there is a certain finite abelian group H2(G, c)
defined in [Woo21, Definition, p. 3], and which we will recall the definition
of in the next paragraph, with a map Sc → G. It follows from [Woo21,
Theorem 3.1, Theorem 2.5, and the Definition on p. 3] that H2(G, c) satisfies
the following property: the number of irreducible components of # CHurG,c,g

n
is identified with # ker(Sc → G), when the image of g in the abelianization
of G agrees with the image of n in the abelianization Z/2Z, and there are no
such components otherwise.

In our present situation, we claim the finite group H2(G, c) is identified
with the usual group homology H2(H, Z). This was outlined in [EVW12,
9.3.2] and is also closely related to the proof of [SW23, Theorem 3.1]. We
now recapitulate the argument. Let ⟨x, y⟩ denote the image of the canon-
ical generator [(1, 0)|(0, 1)] − [(0, 1)|(1, 0)] ∈ H2(Z

2, Z) under the map
H2(Z

2, Z) → H2(G, Z), induced by the map Z2 → G sending the first gen-
erator to x and the second generator to y. By definition the group H2(G, c)
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is the quotient of H2(G, Z) by all classes ⟨x, y⟩ for x ∈ c such that x and y
commute.

We next show that the quotient map H2(G, Z) → H2(G, c) is an iso-
morphism. Let ⟨x⟩ denote the subgroup of G generated by x ∈ c, iso-
morphic to Z/2Z. A direct computation shows that the only elements
of G commuting with x are {x, id}, and in either case, we have ⟨x, y⟩
lies in the image of H2(⟨x⟩, Z) → H2(G, Z). For A any abelian group,
H2(A, Z) = ∧2A, so H2(⟨x⟩, Z) ≃ ∧2(Z/2Z) is the trivial group, and hence
H2(G, Z) ≃ H2(G, c).

It is a standard group cohomology fact that H2(H, Z) ≃ ∧2H. Hence, to
conclude the proof, it suffices to show H2(H, Z) ≃ H2(G, Z). Indeed, this fol-
lows from the spectral sequence associated to the exact sequence H → G →
Z/2Z, as we now explain. We may observe that H0(Z/2Z, H1(H, Z)) is the
coinvariants of the odd order group H by the inversion action, and hence
vanishes. Additionally, H1(Z/2Z, H1(H, Z)) = H2(Z/2Z, H0(H, Z)) = 0
as both groups are 2-torsion but are also H-modules, and hence must vanish.
Therefore, the spectral sequence yields an isomorphism H0(Z/2Z, H2(H, Z)) ≃
H2(G, Z). Since Z/2Z acts trivially on H2(H, Z), we find H2(H, Z) ≃
H2(G, Z). □

Definition 2.0.6. We assume k is a field of characteristic 0. For G a dihedral
group of order 2ℓ with ℓ odd, g ∈ G, and ϕ : G → Z/2Z the surjection
given by quotienting by Z/ℓZ, we explained in Lemma 2.0.4 why there is
a bijection between components of CHurG,c

n and elements g with ϕ(g) ≡
n mod 2 for n sufficiently large.

We let CHurG,c,g
n denote the union of those connected components of

CHurG,c
n mapping to g under the map described in Lemma 2.0.4. We say

such components have boundary monodromy g. When n is sufficiently large,
it follows from Lemma 2.0.4 that CHurG,c,g

n is either empty or connected.
We let HG,c,g

i denote the subspace of the stable homology HG,c
i,β , which we

can identify with the subspace Hi(CHurG,c,g
n , k) ⊂ Hi(CHurG,c

n , k) for n ≡
β mod 2 sufficiently large. If x ∈ HG,c

i,ϕ(g), we say x has boundary monodromy

g ∈ G if x lies in HG,c,g
i .

3. COHOMOLOGY OF THE TWO-SIDED K COMPLEX

In this section, we introduce the two-sided K-complex associated to a pair
of modules and compute its homology for a particular pair of modules. In
§3.1, we first recall the usual (1-sided) K-complex introduced in [EVW16]
and refined in [RW20]. We then define the two-sided K-complex associated
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to a pair of modules in §3.2. In §3.3, we produce a simple nullhomotopy on
certain two-sided K-complexes. We then proceed to compute the homology
of another two-sided K-complex in §3.4. The main result from this section
we will use in the future is Proposition 3.4.10. This is essentially equivalent
to Theorem 3.4.3, which computes the homology of a certain two-sided K-
complex. Theorem 3.4.3, which is a bit easier to state than Proposition 3.4.10,
will help motivate our proof of Proposition 3.4.10. The key to both of these
results is an explicit nullhomotopy of a large subcomplex of the two-sided
K-complex given in Lemma 3.4.9.

3.1. Review of the usual K-complex. Fix a field k of arbitrary characteristic
and let A := ⊕n≥0C•(HurG,c

n , k) denote the algebra of singular k-chains
associated to the Hurwitz spaces parameterized by G and c. We use R :=
⊕n≥0H0(HurG,c

n , k) to denote the ring of components of Hurwitz spaces.
Note that A has a grading given by the index n parameterizing the number
of branch points.

We say M is a discrete graded A module if M is a chain complex concen-
trated in degree 0, which is a module for A. (In other words, M is just what
one usually thinks of as an R module.) The K-complex, K(M), introduced
in [EVW16, 4.1] and also [RW20, p. 16], is the chain complex

· · · → k{c}⊗n ⊗ M → k{c}⊗(n−1) ⊗ M → · · · → k{c} ⊗ M → M.(3.1)

The boundary maps in (3.1) are given by
(3.2)
d(g1 ⊗ · · · ⊗ gn ⊗ [m])

=
n

∑
i=1

(−1)ig1 ⊗ · · · gi−1 ⊗ gi+1 ⊗ · · · ⊗ gn ⊗ (g−1
n · · · g−1

i+1gigi+1 · · · gn) · [m].

Remark 3.1.1. Suppose A → R := ⊕n≥0H0(HurG,c
n , k) denotes the quotient

map. If M is an R module, Ellenberg Venkatesh and Westerland introduced
the K-complex K(M) associated to such an M [EVW16, 4.1]. As mentioned
in the last paragraph of [RW20, p. 16], K(M) is the Koszul complex for
computing the homology of the derived tensor product k ⊗L

A M.

3.2. Definition the two-sided K-complex. Generalizing the K-complex de-
scribed in § 3.1, we next introduce the two-sided K-complex. Still letting
A := ⊕n≥0C•(HurG,c

n , k) as in § 3.1, we now let M be a discrete right A
module and N be a discrete left A module.

Definition 3.2.1. Define the two-sided K-complex, K(M, A, N) to be the double
complex with (i, j) term given by ⊕α+β=jMα ⊗ k{c}i ⊗ Nβ. The the total
differential on this double complex is the sum of a “rightward” differential
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dr and a “leftward” differential dl which are given as follows. The rightward
differential is given by
(3.3)
dr([m]⊗ g1 ⊗ · · · ⊗ gn ⊗ [ω])

=
n

∑
i=1

(−1)i[m]⊗ g1 ⊗ · · · gi−1 ⊗ gi+1 ⊗ · · · ⊗ gn ⊗ (g−1
n · · · g−1

i+1gigi+1 · · · gn) · [ω],

while the leftward differential is given by
(3.4)

dl([m]⊗ g1 ⊗ · · · ⊗ gn ⊗ [ω])

=
n

∑
i=1

(−1)i[m] · gi ⊗ (g−1
i g1gi)⊗ · · · (g−1

i gi−1gi)⊗ gi+1 ⊗ · · · ⊗ gn ⊗ [ω].

It may be helpful to refer to Figure 1 for a visualization of a particular
summand of a two-sided K complex.

The next remarks are not needed in what follows, but may serve as some
motivation for our above definition.

Remark 3.2.2. There is an alternate, more abstract definition of the two sided
K complex, K(M, A, N). Namely, it is equivalent to the derived tensor prod-
uct M ⊗L

A N. To see this, note that M ⊗L
A N has a double filtration, induced

by filtering both M and N by their gradings. Taking the associated graded
with respect to both filtrations, we get (k ⊗L

A k)⊗k (M ⊗k N). Similarly to
§3.1, running the spectral sequence in each filtration direction, we find that
the spectral sequences collapses at the E2-page because of the discreteness
of M and N. We thus obtain a double complex whose underlying bigraded
vector space has homology agreeing with (k ⊗L

A k)⊗k (M ⊗k N) and whose
total complex is quasi-isomorphic to M ⊗L

A N. Concretely, one can show that
the E1 page of this spectral sequence can be viewed as a double complex
whose (i, j)th term agrees with K(M, A, N)i,j. Moreover, the differential
K(M, N)i,j to K(M, N)i−1,j can be shown to agree with the differential on
this E1 page of this spectral sequence (see [RW20, Theorem 6.2 and p. 16]).

Remark 3.2.3. In the case that M and N are modules coming from the action
of the Hurwitz space on a set, the two-sided K-complex can be viewed as a
cellular chain complex for the spaces in [LL24, Theorem A.4.9].

3.3. A nullhomotopy for two-sided K complexes. We next show that certain
types of two-sided K complexes are exact. The proof of the following lemma
is inspired by [EVW16, Lemma 4.11]. One can also deduce this by using
[LL24, Lemma 4.3.1].
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Lemma 3.3.1. Let A := ⊕n≥0C•(HurG,c
n , k) Suppose M is a left A module and N

is a right A module. Assume there is some h ∈ c so that either
(1) [h] acts invertibly on M and by 0 on N, or
(2) [h] acts invertibly on N and by 0 on M.

Then, there is a chain homotopy between the identity map on K(M, A, N) and the 0
map on K(M, A, N). In particular, K(M, A, N) is exact.

Proof. We just explain the second case that [h] acts invertibly on N and by 0
on M, as the first case is analogous. We now give an explicit chain homotopy
between the identity and 0.

We start with a warm up computation. Define S0
n,j by

S0
n,j : K(M, A, N) → K(M, A, N)

[m]⊗ g1 ⊗ · · · ⊗ gn ⊗ [ω] 7→ (−1)n+1[m]⊗ g1 ⊗ · · · ⊗ gn ⊗ h ⊗ [h]−1 · [ω].

Note that the definition of this chain map uses that [h] acts invertibly on N.
Using that [g1][g−1

1 g2g1] = [g2][g1], a routine computation similar (but easier
than) the computation in Lemma 3.4.9 verifies that

(dS0
n,j + S0

n−1,jd)([m]⊗ g1 ⊗ · · · ⊗ gn ⊗ [ω])

= [m]⊗ g1 ⊗ · · · ⊗ gn ⊗ [ω] + [m][h]⊗ h−1g1h ⊗ · · · ⊗ h−1gnh ⊗ [h]−1[ω].

Now, using that [m] · [h] = 0, the map S0
n,j gives a chain homotopy between

the identity and the 0 map. This implies that K(M, A, N) is exact. □

Notation 3.3.2. For g ∈ c, let k[g] be the graded A-bimodule that is k in each
natural number degree, such that left and right multiplication by [g] acts
by shifting. Moreover, for any g ̸= h ∈ c, [h] acts by 0. We use k[g, g−1] to
denote the analogous graded A modules with integer gradings. (So right
and left multiplication by [g] shifts the grading while [h] acts by 0 for h ̸= g.)

Note there are natural graded bimodule maps R → k[g] → k[g, g−1],
where the first map is given by quotienting out by elements that are not
multiples of g.

Lemma 3.3.3. The complex K(k, A, k[g, g−1]) is exact. In particular, the complex
K(M) associated to M := k[g, g−1], as defined in (3.1), is exact.

Proof. Since g acts by 0 on k and invertibly on k[g, g−1], it follows that
K(k, A, k[g, g−1]) is exact. Since K(k, A, k[g, g−1]) is a sum of Z many shifted
copies of K(M), so that, in particular, K(M) is a summand of K(k, A, k[g, g−1]),
we obtain K(M) is exact. □
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3.4. A particular two-sided K-complex. In this subsection, we investigate
the homology of a particular two-sided K complex. This two-sided K com-
plex will appear in the homology of Hurwitz spaces, and understanding
its homology is the crucial step in understanding the stable homology of
Hurwitz spaces.

Notation 3.4.1. We fix a group G and a conjugacy class c ⊂ G generating G
and a field k. We assume that the for any h ∈ c, the centralizer of h in c is
precisely h. We let A := ⊕n≥0C•(HurG,c

n , k) denote the algebra of singular
k-chains associated to the Hurwitz spaces parameterized by G and c. We let
B := C∗(Confn, k) denote the corresponding algebra of singular k-chains on
configuration space.

Remark 3.4.2. We note that this condition on the centralizer in Notation 3.4.1
will hold for dihedral groups, with c the conjugacy class of involutions.

Our goal in this section is to compute the homology of K(k[g], A, k[g, g−1]).
With notation as in Notation 3.4.1, There is a map B → A induced by the
inclusion Confn → CHurG,c

n with image the component of Hurwitz space
parameterizing covers whose monodromy is g at every branch point. (These
will be disconnected covers, unless G is already a cyclic group.)

Theorem 3.4.3. The map K(k[g], B, k[g, g−1]) → K(k[g], A, k[g, g−1]), induced
by the above map B → A, is an isomorphism.

We will prove Theorem 3.4.3 in §3.4.11. The following is a direct conse-
quence of the spectral sequence described in §3.2.

Lemma 3.4.4. There is a collection of double complexes Cz
•,•, indexed by z ∈ Z

so that the sum of the associated total complex,
⊕

z∈Z Cz
•,•, viewed as an object in

the derived category, is isomorphic to K(k[g], A, k[g, g−1]). Specifically, Cz
i,j =

k{c}z−i−j and there are differentials Cz
i,j → Cz

i,j+1 and Cz
i,j → Cz

i+1,j given by the
maps dr, dl of (3.3) and (3.4) associated to the modules M = k[g], N = k[g, g−1]
from Notation 3.3.2.

Remark 3.4.5. It follows immediately from the description of Lemma 3.4.4
that Cz

s,u can be identified with those terms of the form gs ⊗ k{c}t ⊗ gu where
s + t + u = z and s ≥ 0. Additionally, Cz

i,j ≃ Cz′
i,j+z−z′ , compatibly with the

differentials, for any z, z′, as follows from the definition. Hence, it follows
that these two complexes are isomorphic, up to a shift. To simplify notation
a bit, we write C•,• := C0

•,•. See Figure 1 for a picture of this complex.

Remark 3.4.6. Let δh,h′ be 1 if h = h′ and 0 otherwise, Using the definition of
the differentials for the two-sided K complex given in Definition 3.2.1, we
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k{c0} k{c0} k{c0} k{c0}

· · · k{c1} k{c1} k{c1}

k{c2} k{c2} k{c2}

· · · k{c3} k{c3}

k{c4} k{c4}

· · · k{c5}

k{c6}

· · ·

FIGURE 1. The complex above depicts the summand C•,• (de-
fined in Remark 3.4.5) of the two sided K-complex,
K(k[g], A, k[g, g−1]).

can describe the differentials on C•,• as
(3.5)
dr([gα]⊗ g1 ⊗ · · · ⊗ gn ⊗ [gβ])

=
n

∑
i=1

δg,g−1
n ···g−1

i+1gigi+1···gn
(−1)i[gα]⊗ g1 ⊗ · · · gi−1 ⊗ gi+1 ⊗ · · · ⊗ gn ⊗ [gβ+1].

and
(3.6)
dl([gα]⊗ g1 ⊗ · · · ⊗ gn ⊗ [gβ])

=
n

∑
i=1

δg,gi(−1)i[gα+1]⊗ (g−1
i g1gi)⊗ · · · (g−1

i gi−1gi)⊗ gi+1 ⊗ · · · ⊗ gn ⊗ [gβ].

Notation 3.4.7. Let C′
•,• denote the subcomplex of C•,• which is spanned

by all basis elements (g1, . . . , gn) ∈ cn with some gi ̸= g. In particular,
dim C′

i,j = |ci+j| − 1. Let Tn denote the total complex ⊕i+j=nC′
i,j associated

to C′
i,j.
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Consider a basis element v in C′
i,j of the form

(x1, . . . , xs, h, g, . . . , g︸ ︷︷ ︸
t times

)(3.7)

with h ̸= g. Define a filtration Fi
n ⊂ Tn spanned by those v as above with

t ≤ i. Consider the map σn : Tn → Tn+1 sending

(x1, . . . , xs, h, g, . . . , g︸ ︷︷ ︸
t times

) 7→ (−1)n · (x1, . . . , xs, hgh−1, h, g, . . . , g︸ ︷︷ ︸
t times

).

Remark 3.4.8. In [LL24] we use a geometric map which corresponds alge-
braically to the chain homotopy

(x1, . . . , xs, h, g, . . . , g︸ ︷︷ ︸
t times

) 7→ (−1)n · (gx1g−1, . . . , gxsg−1, g, h, g, . . . , g︸ ︷︷ ︸
t times

).

Similarly to Lemma 3.4.9, one can also verify this defines a chain homotopy
between an isomorphism and 0. This alternate chain homotopy was pointed
out to us by Andrea Bianchi.

Lemma 3.4.9. The map σ• : T• → T•+1 defines a chain homotopy between an
isomorphism and 0. Hence, the complex Tn

• is exact.

Proof. If σ• defines a chain homotopy between an isomorphism and 0, this
implies 0 acts the same on cohomology as an isomorphism, and so Tn

• is
exact.

We now show σ• defines a chain homotopy between an isomorphism and
0. Explicitly we wish to show σn−1dn + dn+1σn induces an isomorphism
Tn → Tn. To prove this, we will first show that this map preserves the
filtration Fi

n, and then that it induces isomorphisms on the associated graded
of the filtration Fi

n/Fi−1
n .

First, let us verify the map σn−1dn + dn+1σn preserves the filtration Fi
n.

Note that the map σj sends Fi
j to Fi

j+1 by construction. Therefore, to show
σn−1dn + dn+1σn preserves the filtration, it is enough to show dj sends Fi

j to
Fi

j−1. Moreover, since the differential d is a sum of dl + dr, it is enough to
show that dl and dr separately preserve the filtration. Using the definition of
these differentials appearing in (3.5) and (3.6), we see each such differential
is a sum of terms associated to each of the n entries of v, so it is enough
to show each of these terms lies in Fi

j−1. First, let us analyze the terms in
dl. For the terms associated to x1, . . . , xs for v as in (3.7), these terms do not
alter the t entries g on the right, and so the filtration is preserved for these
terms. For the term corresponding to h, (in position s + 1,) since h ̸= g, this
term must be 0. Finally, each of the terms associated to one of the rightmost

12



t entries g lie in the filtration Fi−1
j−1 , which indeed lies in Fi

j−1. To conclude,

we show dr sends Fi
j to Fi

j−1. For each of the terms associated one of the

t rightmost g’s, this sends Fi
j to Fi−1

j−1 , which indeed lies in Fi
j−1. The term

associated to h vanishes because the conjugate of h by any power of g is
not g since h ̸= g. Finally, we note that the term associated to one of the
x1, . . . , xs, for xi as in (3.7) lies in Fi

j−1 because the term is either 0 or of the
form ±(x1, . . . , xi−1, xi+1, . . . , xs, h, g, . . . , g).

Having shown the filtration is preserved, we conclude by checking that
the map induced by σn−1dn + dn+1σn on Ft

n/Ft−1
n is a multiple of the identity.

In other words, we assume there are precisely t elements g to the right of
h, for h the rightmost term not equal to g. Via the analysis above, the terms
associated to the right most t + 1 terms in dl and dr both vanish, and hence
we only need analyze the remaining terms. First, we will compute the map
induced by σn−1dn = σn−1dr + σn−1dl. Using the definition of the differential
from (3.6),

σn−1dl(v) = (−1)n−1
s

∑
i=1

δg,xi(−1)i

x−1
i x1xi, . . . , x−1

i xi−1xi, xi+1, . . . , xs, hgh−1, h, g, . . . , g︸ ︷︷ ︸
t times

 .

(3.8)

Similarly, using the definition of the right differential from (3.5),

σn−1dr(v) = (−1)n−1
s

∑
i=1

δg,(xi+1···xshgt)−1xi(xi+1···xshgt)(−1)i

(3.9)

x1, . . . , xi−1, xi+1, . . . , xs, hgh−1, h, g, . . . , g︸ ︷︷ ︸
t times

 .(3.10)

Next, we compute the map induced by dn+1σn = drσn + dlσn. Again, we
have two computations, which are nearly the same as (3.8) and (3.9). First,

σn(v) =

x1, . . . , xs, hgh−1, h, g, . . . , g︸ ︷︷ ︸
t times

 .

13



Therefore,

dlσn(v) = (−1)n
s

∑
i=1

δg,xi(−1)i

x−1
i x1xi, . . . , x−1

i xi−1xi, xi+1, . . . , xs, hgh−1, h, g, . . . , g︸ ︷︷ ︸
t times

 .

(3.11)

Note here that a priori there could have been an additional term associated
to hgh−1, but this vanishes because δg,hgh−1 = 0 since hgh−1 ̸= g, using the
assumption from (3.4.1) that g is its own centralizer and h ̸= g. We see from
(3.8) and (3.11) that

dlσn + σn−1dl = 0,(3.12)

since they have opposite signs.
Finally, we compute

(3.13)

drσn(v) = (−1)n
s

∑
i=1

δg,(xi+1···xs(hgh−1)hgt)−1xi(xi+1···xs(hgh−1)hgt)(−1)i

x1, . . . , xi−1, xi+1, . . . , xs, hgh−1, h, g, . . . , g︸ ︷︷ ︸
t times


+ (−1)n(−1)s+1(x1, . . . , xs, h, g, . . . , g︸ ︷︷ ︸

t times

).

Now, we claim the terms in the sum over i in (3.13) precisely cancels with
the corresponding terms in (3.9). To see this, we need only observe that

δg,(xi+1···xs(hgh−1)hgt)−1xi(xi+1···xs(hgh−1)hgt) = δg,(xi+1···xshgt)−1xi(xi+1···xshgt)

In other words, we wish to show

(xi+1 · · · xs(hgh−1)hgt)−1xi(xi+1 · · · xs(hgh−1)hgt) = g

if and only if

(xi+1 · · · xshgt)−1xi(xi+1 · · · xshgt) = g.

Conjugating both sides by gt+1 in the first equation, we obtain it is equivalent
to

(xi+1 · · · xsh)−1xi(xi+1 · · · xsh) = g.
14



This is also equivalent to the second equation conjugated by gt. Hence, the
two are equivalent, as claimed. This implies

(drσn + σn−1dr)(v) = (−1)n(−1)s+1(x1, . . . , xs, h, g, . . . , g︸ ︷︷ ︸
t times

) = (−1)n+s+1v.
(3.14)

Therefore, all in all, adding (3.12) and (3.14), we find that the map in-
duced by σn−1dn + dn+1σn is given by v 7→ (−1)n+s+1(v), and therefore is
an isomorphism, as we wished to show. □

The key result we will need from this section is the following consequence
of the fact that Tn

• is exact.

Proposition 3.4.10. For x ∈ Z≤0, let Dx
•,• denote the subcomplex of C′

•,• (defined
in Notation 3.4.7) which is equal to C′

i,j if i ≥ 0 and j ≥ x and is 0 otherwise.
(Pictorially, Dx

•,• makes a cone shape above C′
0,x ≃ k{c−x} in the picture Figure 1.)

Then, Dx
•,• is exact except possibly at position (0, x).

Proof. By Lemma 3.4.9, Tn
• is exact, or equivalently C′

•,• is exact. Define the
complex J• as follows: Let J−i := ker(C0,−i → C1,−i). Define the differential
J−i → J−i+1 to be given by dr by viewing J−i ⊂ C0,−i.

We claim J• ≃ C′
•,•. We use that C′

•,• has a filtration whose ith term is
D−i

•,•. The associated graded of this filtration is given by the complex C′
•,−i.

(This corresponds to a sequence of vector spaces pointing diagonally up
and left in Figure 1, starting with k{ci}.) Since C′

•,−i is a truncated sum-
mand of the usual K complex, it is exact except at C′

0,−i by Lemma 3.3.3.
Moreover, the homology of C′

•,−i is precisely J−i. This implies J• → C′
•,• is

a quasi-isomorphism, since it is a map inducing a quasi-isomorphism on
each associated graded part of the filtration D−i

•,• of C′
•,•. The same argument

moreover shows that the subcomplex J≥x, consisting of Jt for t ≥ x and 0 for
t < x, is quasi-isomorphic to the subcomplex Dx

•,•.
Note that, J• is exact because it is quasi-isomorphic to C′

•,•, which is an
exact complex, by Lemma 3.4.9. It follows that J≥x has only a single nonzero
homology group, which occurs in degree x. Hence, the same is true of Dx

•,•.
Concretely, this means that Dx

•,• is exact except possibly at position (0, x). □

Combining what we have done so far, we deduce Theorem 3.4.3.

3.4.11. Proof of Theorem 3.4.3.

Proof. Observe that the map Conf → HurG,c in Theorem 3.4.3 is induced
by functoriality of the Hurwitz space construction for Hur⟨g⟩,{g} → HurG,c.
Applying this functoriality with Lemma 3.4.4 and Remark 3.4.5, we can
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identify K(k[g], B, k[g, g−1]) → K(k[g], A, k[g, g−1]) as quasi-isomorphic to
the inclusion of a summand of ⊕zCz

•,•, where the cokernel of this inclusion
is isomorphic to a sum over z of complexes isomorphic to shifts of T•. The
result then follows from exactness of Tn

• , proven in Lemma 3.4.9. □

4. COMPUTING THE COHOMOLOGY STABILIZED BY A SINGLE MONODROMY

In this section, we compute the stable homology of Hurwitz space stabi-
lized by a single element g ∈ c, and killed by all other elements of c. The
main result of this section is Proposition 4.0.9, which has a somewhat elab-
orate proof which we break into steps. The aim of this proposition is to
show we can show that a cocycle well into the stable range can be put into a
particularly simple form, and we accomplish by using our computation of
the homology of the two-sided K-complex from the previous section. We
recognize this argument is a bit involved, so we run through the computation
for the stable first cohomology in Example 4.0.17. It may be helpful to read
this before going through the more general argument.

We fix G, c, k as in Notation 3.4.1. We now introduce the Fox-Neuwirth/Fuks
cell complex which is a cell complex computing the cohomology of Hurwitz
space. Define WG,c,i

n to be the free k-vector space spanned by tuples of n − i
words in c whose total length is n. That is, a basis element of WG,c,i

n is of the
form

w1 ⊗ · · · ⊗ wn−i(4.1)

where wj is a word of length vj such that ∑n−i
j=1 vj = n. This chain complex

has a differential

δ(w1 ⊗ · · · ⊗ wn−i) =
n−i−1

∑
j=1

(−1)j+1(w1 ⊗ · · · ⊗ wj−1 ⊗ sh(wj, wj+1)⊗ wj+2 ⊗ · · · ⊗ wn−i)

where sh(wj, wj+1) is the shuffle product defined explicitly as follows: Sup-
pose w = g1 · · · gs and w′ = h1 · · · ht. Then sh(w, w′) is the sum of words of
length s + t

sh(w, w′) = ∑
σ∈Ss,t

sgn(σ) shσ(g1, . . . , gs, h1, . . . , ht),

with the notation above defined as follows: We let Ss,t ⊂ Ss+t denote the
subset of permutations of s + t elements which preserves the relative order
of the first s elements and preserves the relative order of the last t elements.
We let sgn(σ) denote the sign of σ when viewed as an element of Ss+t.
Finally, shσ(g1, . . . , gs, h1, . . . , ht), denotes the word of length s + t whose
σ(i)th letter is hi−s for i > s and is α−1

i giαi for i < s, where αi = h1 · · · hv,
16



for v is the largest positive integer satisfying σ(s + v) < σ(i). By [ETW17,
Theorem 3.3], we can identify the cohomology of this cochain complex
with the cohomology of the Hurwitz space HurG,c

n , using the isomorphism
between the homology of the 1-point compactification of a space and the
cohomology of that space. We note that [ETW17, Theorem 3.3] is stated in the
language of local systems on configuration space, and if f : HurG,c

n → Confn
denotes the finite covering space, we use the isomorphism Hi(HurG,c

n , Q) ≃
Hi(Confn, f∗Q).

Remark 4.0.1. Suppose we start with an element z ∈ WG,c,i
n which we write

as ∑
f
j=1 cjw

j
1 ⊗ · · · ⊗ wj

n−i. Recall that we defined a map [g] on homology in
Notation 2.0.3. It follows from the definition above that multiplication by
the dual of the element [g] corresponds to sending z to ∑j|wj

n−i=g
cjw

j
1 ⊗ · · · ⊗

wj
n−i−1. By abuse of notation, we also denote the map dual to [g] by [g], so

that this dual [g] is a map on cohomology. In other words, the costabilization
by [g] map on cohomology picks out all terms whose last word is the length
1 word equal to g. Indeed, this is dual to the map on homology which sends
a tensor of words (in the dual basis to that described above) to that same
tensor with an additional g tacked on at the end.

The next proposition is the main result of this section. It will enable us to
run the inductive step and is really the crux of our argument. The proof will
be given later in §4.0.16.

Proposition 4.0.2. With notation for the stable homology groups as in Defini-
tion 2.0.6 and Notation 2.0.3, let i ≥ 0 and consider an element z ∈ ker(HG,c,g

i →
Hid,id

i,β ) (where id denotes the trivial group/element). Assume that for any j < i and

any g ∈ G, HG,c,g
j → Hid,id

j,β is an isomorphism. Assume that z[g]w[h] = 0 for any
w ≥ 0 and h ̸= g. Then z = 0.

Before reading the rest of this section, we recommend the reader jump
to Example 4.0.17, which runs through the special case of Proposition 4.0.2
where i = 1.

The next two lemmas show that in order to prove Proposition 4.0.2, it is
enough to show that z is cohomologous to a cocycle in a form ending in g;
the argument for this reduction is given in §4.0.16.

Lemma 4.0.3. Suppose x ∈ Hi(CHurG,c
n+1, k) is represented by a cocycle of the

form y ⊗ g for some y ∈ WG,c,i
n . Then, y is a cocycle and there is z ∈ WG,c,i

n−1 and
17



w ∈ WG,c,i−1
n−1 so that y − z ⊗ g = δ(w ⊗ g). In particular, y is cohomologous to

z ⊗ g and additionally z ∈ ZG,c,i
n−1 .

Proof. Note that the final sentence follows immediately from the penultimate
sentence.

To prove the penultimate sentence, we can write y = ∑i
j=0 ∑τ sτ

j ⊗ tτ
j for

sτ
j ∈ WG,c,i−j

n−j−1 ranging over a basis of this vector space (as τ varies for j fixed)

and tτ
j ∈ WG,c,j

j+1 is a linear combination of words in c of length j.
By assumption, y ⊗ g is a cocycle, and hence vanishes under the shuffling

coboundary map δ. This immediately implies y is a cocycle, since none of
the terms associated to shuffling together blocks in y can cancel with those
shuffling the rightmost block in y with g. In particular, we claim this implies
tτ

j ⊗ g ∈ WG,c,j
j+2 lies in the kernel of the coboundary map δ for each j with

0 ≤ j ≤ i and each τ. Indeed, this can be seen by expanding the image of
y ⊗ g under the coboundary map and noting that the sum of all terms whose
component in WG,c,i−j

n−j−1 equal to sτ
j is precisely δ(tτ

j ⊗ g). By Lemma 3.3.3,

we find that for each j, tτ
j = δ(rτ

j ⊗ g), for some rτ
j ∈ WG,c,j−1

j . Indeed this
is because the K-complex, K(k, A, k[g, g−1]) is exactly dual to the complex
whose jth cohomology group vanishing shows that there is no obstruction to
finding such an rτ

j . Now, consider the element ∑i
j=0 ∑τ sτ

j ⊗ rτ
j ⊗ g ∈ WG,c,i−1

n .
Applying the coboundary map δ to this, and using that δ(rτ

j ⊗ g) = tτ
j , we

obtain

δ(
i

∑
j=0

∑
τ

sτ
j ⊗ rτ

j ⊗ g) =
i

∑
j=0

∑
τ

δ(sτ
j ⊗ rτ

j )⊗ g + (−1)n−i
i

∑
j=0

∑
τ

sτ
j ⊗ tτ

j

=
i

∑
j=0

∑
τ

δ(sτ
j ⊗ rτ

j )⊗ g + (−1)n−iy.

We conclude the statement by taking

z := (−1)n−i+1
i

∑
j=0

∑
τ

δ(sτ
j ⊗ rτ

j ),

w := (−1)n−i
i

∑
j=0

∑
τ

sτ
j ⊗ rτ

j . □
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Lemma 4.0.4. Suppose n ≥ 0, i ≥ 0 and x ∈ Hi(CHurG,c
n , k) is represented by a

cocycle of the form y1 ⊗ g for some y1 ∈ WG,c,i
n−1 . Then x is cohomologous to 0.

Proof. Applying Lemma 4.0.3 yields

y1 ⊗ g = δ(w1 ⊗ g)⊗ g + y2 ⊗ g ⊗ g = δ(w1 ⊗ g ⊗ g) + y2 ⊗ g ⊗ g.

Hence, y1 ⊗ g is cohomologous y2 ⊗ g ⊗ g, where, y2 ∈ CWG,c,i
n−2 . Applying

Lemma 4.0.3 iteratively, we inductively find that for any 1 ≤ j ≤ n, there is
yj ∈ CWG,c,i

n−j for which

yj−1 ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
j−1 times

= δ(wj ⊗ g)⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
j−1 times

+yj ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
j times

= δ(wj ⊗ g ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
j−1 times

) + yj ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
j times

.

Hence, yj ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
j times

is cohomologous to x. When j = n, we find that x is

cohomologous to a multiple of g ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
n times

, and hence cohomologous to

0 because x ∈ Hi(CHurG,c
n , k). □

As mentioned prior to Lemma 4.0.3 our next goal will be to show that z is
cohomologous to a cocycle in a form ending in g. We now begin preparations
to accomplish this in Proposition 4.0.9.

Notation 4.0.5. We will use the notation CWG,c,i
n for the subspace of WG,c,i

n
spanned by those basis elements such that the union of g with those elements
of c appearing in that basis element generate all of G. More precisely, CWG,c,i

n
is generated by tensors of words of the form w1 ⊗ · · · ⊗ wn−i with wj =
gj,1 · · · gj,vj and the gs,t for 1 ≤ s ≤ n − i and 1 ≤ t ≤ vs all together

with g generate G. Note that CWG,c,•
n forms a subcomplex of the chain

complex WG,c,•
n . We will use ZG,c,i

n for the subspace of WG,c,i
n consisting of

cocycles, BG,c,i
n for the subspace of WG,c,i

n consisting of coboundaries, and
HG,c,i

n := ZG,c,i
n / BG,c,i

n .

Notation 4.0.6. Suppose we are in the situation of Proposition 4.0.2, In
particular, z[g]j[h] = 0 for any j ≥ 0 and h ̸= g. Choose some sufficiently
large n so that we may represent x by a class z ∈ CWG,c,i

n . (How large we
have to take n will be determined in the proof of Proposition 4.0.9.)

As previously mentioned, our aim will be to prove Proposition 4.0.2, which
amounts to showing z = 0, after modification by a coboundary. The next
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lemma translates the hypothesis that each [g]j[h], for h ∈ c − g and j ≥ 0,
kills z to a concrete description of the form of z.

Lemma 4.0.7. With notation as in Notation 4.0.5 and Notation 4.0.6, for any fixed
m, and every s < m, any cocycle z ∈ WG,c,i

n is cohomologous to an element whose
projection onto WG,c,i

n−s ⊗ k{c} ⊗ · · · ⊗ k{c}︸ ︷︷ ︸
s times

is of the form zs ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
s times

.

Proof. We first claim that, after modifying z by a coboundary, we may assume
z[g]s[h] for any fixed value of s. To see this, note that for any h ̸= g, we
know z[g]s[h] is a coboundary by Notation 4.0.6. If z[g]s[h] = δ(x), we then
find that z − δ(x ⊗ h ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸

s times

) = 0. Therefore, we may modify z by a

coboundary to assume that z[g]s[h] = 0 for all h ̸= g and any fixed value of
s.

Applying the above with s = 1 shows the lemma statement holds for s = 1.
By induction on s, assuming this holds for s − 1 we may assume the pro-
jection onto WG,c,i

n−(s−1) ⊗ k{c} ⊗ · · · ⊗ k{c}︸ ︷︷ ︸
s−1 times

is of the form zs−1 ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
s times

.

Then, again modifying z by a coboundary, we may assume [g]s[h] acts by
0 on z. We find zs−1 has projection onto WG,c,i

n−s ⊗k{c} with k{c} term in the
span of g. Hence, the projection onto WG,c,i

n−s ⊗ k{c} ⊗ · · · ⊗ k{c}︸ ︷︷ ︸
s times

is of the

form zs ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
s times

. □

We next wish to show that z is cohomologous to a cochain in a form to
which we can apply Lemma 4.0.7. The next lemma puts a serious constraint
on what z can look like.

Lemma 4.0.8. Keeping notation as in Notation 4.0.5 and Notation 4.0.6, for
2 ≤ j ≤ t ≤ i + 1, z is cohomologous to a cocycle whose projection to

(4.2) ⊕i+1−j
α=0 WG,c,i−j+1

n−j−α ⊗k{cj} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸
α times

is zero.
Moreover, the projection onto WG,c,i

n−s ⊗ k{c} ⊗ · · · ⊗ k{c}︸ ︷︷ ︸
s times

is of the form zs ⊗

g ⊗ · · · ⊗ g︸ ︷︷ ︸
s times

for s ≤ i + 2.
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We will prove Lemma 4.0.8 later in §4.0.15 after establishing some prelimi-
nary lemmas. Before proving this, let us see why this implies the following
proposition, which lets us write z with a g on the right.

Proposition 4.0.9. With notation as in Notation 4.0.5 and Notation 4.0.6, z is
cohomologous to a cocycle of the form y ⊗ g.

Proof. For t = i + 1, after modifying z by a coboundary, we may assume
it satisfies the conclusion of Lemma 4.0.8. We find z has zero projection to
WG,c,i−j+1

n−j ⊗k{cj} for all 2 ≤ j ≤ i + 1. This implies that z ∈ WG,c,i
n−1 ⊗k{c}.

The second condition of Lemma 4.0.8 with s = 1 implies that z = y ⊗ g for
some y ∈ WG,c,i

n−1 , as we wished to show. □

Summarizing, what we have accomplished so far, in order to prove Propo-
sition 4.0.2, it remains to prove Lemma 4.0.8; to see exactly why this suffices,
one may examine the proof of Proposition 4.0.2, given in § 4.0.16. This is
probably the most involved proof in the paper, and so we will require a
number of sublemmas. We first show certain projections of z have parts
which are cocycles.

Lemma 4.0.10. Using notation as in Lemma 4.0.8, suppose Lemma 4.0.8 holds
for t − 1. (This is vacuous if t = 2.) Then, for 2 ≤ j ≤ t, we may modify z by
a coboundary so that the conclusion of Lemma 4.0.8 still holds for t − 1 and the
projection of z onto

(4.3) ⊕i+2−j
α=0 WG,c,i−j+1

n−j−α ⊗k{cj} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸
α times

in fact lies in

(4.4) ⊕i+2−j
α=0 ZG,c,i−j+1

n−j−α ⊗k{cj} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸
α times

.

We note that (4.3) is very similar to (4.2) except that the index on α goes
up to i + 2 − j instead of only i + 1 − j.

Proof. To see this, let us show the projection prj(z) of z onto the summand of

(4.3) indexed by α lies in ZG,c,i−j+1
n−j−α ⊗k{cj}⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸

α times

, after modifying

z by a coboundary. If it did not, there would necessarily be a term in δ(prj(z))

of the form BG,c,i−j+1
n−j−α ⊗k{cj} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸

α times

. Hence, since δ(z) = 0 so

some term must cancel the above term in δ(prj(z)), there would be a term
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in z of the form WG,c,i−j+1
n−j−α ⊗k{cv} ⊗ k{cj−v} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸

α times

, (with v > 0

and j − v > 0) whose coboundary via shuffling the the words of length v and
j − v is nonzero. Now, if j > 2, we can modify z by a coboundary so that this
is impossible by our hypothesis for Lemma 4.0.8 (which we are assuming
holds for t − 1) with j replaced by j − v, as no such terms exist. (Note that
because j − v < j we obtain that i − (j − v) + 1 ≥ i − j + 2, so we obtain
this when α = i + 2 − j as well.) Finally, if j = 2, we must have v = 1 and
j − v = 1. Note that α ≤ i + 2− j = i, so α + 2 ≤ i + 2. Hence, we may apply
the second part of Lemma 4.0.8 for s = α + 2, (using that s is at most i + 2
as explained above,) such terms are of the form zα+2 ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸

α+2 times

, and the

coboundary of g ⊗ · · · ⊗ g︸ ︷︷ ︸
α+2 times

vanishes. □

We next wish to show the cocycles appearing in the statement of Lemma 4.0.10
can be expressed in terms of particular representatives, pulled back from the
cohomology of configuration space. We set up notation for these represen-
tatives and then show the cohomology can be expressed in terms of these
representatives in Lemma 4.0.12.

Notation 4.0.11. We keep notation as in Notation 4.0.5 and Notation 4.0.6.
Choose n large enough so that n − t − 1 is in the stable range for the (i − t +
1)st cohomology and such that Lemma 4.0.8 is true for t − 1. In particular,
we are assuming via Notation 4.0.6 that HG,c,g

j → Hid,id
j,β is an isomorphism

for any j < i and any g ∈ G. Hence, the stable cohomology classes in
(HG,c

i−t+1,β)
∨ are all pulled back from configuration space.

Since configuration space corresponds to a Hurwitz space for the triv-
ial group id, we use (Hid,id

i−t+1,β)
∨ as notation for the stable cohomology of

configuration space. For all n > 1 choose a sequence of cocycles wn ∈
Zid,id,i−t+1

n compatible with the costabilization map, which are 0 whenever
(Hid,id

i−t+1,β)
∨ = 0, and otherwise project to a nonzero element in (Hid,id

i−t+1,β)
∨.

For the readers benefit, we point out that (Hid,id
i,β )∨ = 0 unless i = 0, 1,

in which case it is 1-dimensional. Fixing a value of n mod 2, if we let
f : CHurG,c,g

n → CHurid,id
n denote the projection from the fixed stable com-

ponent with boundary monodromy g ∈ G, we obtain a sequence of cocycles
f ∗(wn) ∈ ZG,c,i−t+1

n compatible with the costabilization maps uniquely rep-
resenting a spanning cocycle for Hl−i+1(CHurG,c,g

n , k), for n in the stable
range.
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Lemma 4.0.12. Use notation from Notation 4.0.5, Notation 4.0.6, and Nota-
tion 4.0.11. Assume Lemma 4.0.8 holds for t − 1. (This is vacuous if t = 2.)
For 2 ≤ j ≤ t, we can modify z by coboundaries so its projection to (4.3) lies in
(4.4). Moreover, when this projection is expanded as a of simple tensors in terms
of a basis for ZG,c,i−j+1

n−j−α , we may assume each such basis element has component in

ZG,c,i−j+1
n−j−α equal to a multiple of the chosen representative f ∗(wn−j−α).

Proof. Since we are assuming Lemma 4.0.8 holds for t − 1, we can apply
Lemma 4.0.10. We can then assume the projection of z to (4.3) lies in (4.4).
Now, modifying the resulting element by a coboundary of an element in
⊕i+2−j

α=0 WG,c,i−j
n−j−α ⊗k{cj} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸

α times

so that we may assume each such

term has component in ZG,c,i−j+1
n−j−α equal to a multiple of f ∗(wn−j−α), as de-

sired. □

The next lemma further constrains the form of z by using the above con-
structed representatives to show that many projections of z vanish.

Lemma 4.0.13. Using notation as in Lemma 4.0.8, suppose Lemma 4.0.8 holds for
t − 1. (This is vacuous if t = 2.) Assume z has been modified by a coboundary to
satisfy the conclusion of Lemma 4.0.12. Suppose w ∈ WG,c,i

n is a basis vector in the
form (4.1), and w does not lie in

WG,c,i−t+1
n−t−α ⊗k{ct} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸

α times

⊕WG,c,i−t+1
n−t−α−1 ⊗k{ct} ⊗ k{c} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸

α times

.
(4.5)

Then, for 0 ≤ α ≤ i + 1 − t, prw(z) the projection of z onto any such w, the
projection of δ (prw(z)) to

(4.6) WG,c,i−t+1
n−t−1−α ⊗k{ct+1} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸

α times

vanishes. Moreover, the projection of z onto (4.5) lands in

ZG,c,i−t+1
n−t−α ⊗k{ct} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸

α times

⊕ZG,c,i−t+1
n−t−α−1 ⊗k{ct} ⊗ k{c} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸

α times

.
(4.7)

Proof. First, the final statement that the projection onto (4.5) factors through
(4.7) follows from Lemma 4.0.10. This importantly uses that α appearing in
the sum in (4.3) runs up to i + 2 − j while α appearing in (4.2) only runs up
to i + 1 − j, so that Lemma 4.0.10 applies to both terms in in (4.5).
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Using our inductive hypothesis that Lemma 4.0.8 holds for j with 2 ≤ j < t,
the projection of z onto all terms of the form

(4.8) WG,c,i−t+1
n−t−α ⊗k{cv} ⊗ k{ct−v} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸

α times

with 0 ≤ α ≤ i + 1 − t, v ≥ 1, and t − v ≥ 2 vanishes. (This uses that the
above condition holds when α ≤ i + 1 − (t − v), so it holds in particular
when α ≤ i + 2 − t.) The only other term whose coboundary can contribute
to the projection onto (4.6) is

WG,c,i−t
n−t−α−1 ⊗k{ct+1} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸

α times

.(4.9)

However, the contribution from the coboundary of this term to (4.6) neces-
sarily lies in

(4.10) BG,c,i−t+1
n−t−1−α ⊗k{ct+1} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸

α times

.

On the other hand, using notation from Notation 4.0.11, each simple tensor in
the expansion of the image of the projection of z to (4.7) along the ZG,c,i−t+1

n−t−α−1
factor consists of a cocycle that is a multiple of f ∗(wn−j−α).

Since such a cocycle is not a coboundary unless it is 0, the sum of the terms
lying in the subspace (4.10) must vanish. In other words, the projection of z
to (4.9) in fact lies in ZG,c,i−t

n−t−α−1 ⊗k{ct+1} ⊗ k{c} · · · ⊗ k{c}︸ ︷︷ ︸
α times

. This establishes

our claim. □

The above lemmas are relatively straightforward reductions that allow us
to significantly simplify the form of z. The next lemma is really the key step,
which uses the two-sided K-complex introduced in the previous section.
Exactness of that complex gives us exactness in the next lemma, which we
will then use to further simplify the form of z.

Lemma 4.0.14. Let α ≥ 0, t ≥ 2 and n ≥ 0 be integers with α+ t < n. Continuing
to use notation as in Notation 4.0.5 and Notation 4.0.6, the restriction of the
following three term sequence to the subcomplex spanned by tensors of elements
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which generate G is exact:

(4.11)

HG,c,i−t+1
n−t+1−α ⊗k{ct−1} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times

⊕ HG,c,i−t+1
n−t−α ⊗k{ct−1} ⊗ k{g} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times

⊕ HG,c,i−t+1
n−t−1−α ⊗k{ct−1} ⊗ k{g} ⊗ k{g} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times
µα−→HG,c,i−t+1

n−t−α ⊗k{ct} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸
α times

⊕ HG,c,i−t+1
n−t−1−α ⊗k{ct} ⊗ k{g} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times
να−→HG,c,i−t+1

n−t−1−α ⊗k{ct+1} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸
α times

.

Proof. First, if i − t + 1 /∈ {0, 1}, we are done, as this implies the above
complex is 0, using that we are inductively assuming (via Notation 4.0.6
via Proposition 4.0.2) the (i − t + 1)th cohomology is pulled back from
configuration space, and this vanishes in degrees more than 1.

Hence, we now assume i − t + 1 ∈ {0, 1}. In this case, since HG,c,i−t+1
n−t−1−α

is pulled back from configuration space, the module structure in the case
i − t + 1 = 1 is the same as the module structure in the case i − t + 1 = 0,

so we may assume i − t + 1 = 0. Let ˜HG,c,i−t+1
n−t−1−α ⊂ HG,c,i−t+1

n−t−1−α denote the
codimension 1 subspaces spanned by all components other than the one
with only monodromy g. There is a subcomplex of (4.11) given by replacing

each HG,c,•
• term with the corresponding codimension 1 subspace H̃G,c,•

• .
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Specifically, this subcomplex is given by

(4.12)

˜HG,c,i−t+1
n−t+1−α ⊗ k{ct−1} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times

⊕ ˜HG,c,i−t+1
n−t−α ⊗ k{ct−1} ⊗ k{g} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times

⊕ ˜HG,c,i−t+1
n−t−1−α ⊗ k{ct−1} ⊗ k{g} ⊗ k{g} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times

µα−→ ˜HG,c,i−t+1
n−t−α ⊗ k{ct} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times

⊕ ˜HG,c,i−t+1
n−t−1−α ⊗ k{ct} ⊗ k{g} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times

να−→ ˜HG,c,i−t+1
n−t−1−α ⊗ k{ct+1} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times

.

This subcomplex is in fact exact using Lemma 3.3.1, as we next explain.
The reason this is exact is that it can be identified, via the spectral se-
quence described in §3.2 as dual to part of the cohomology of the complex
˜HG,c,i−t+1
• ⊗A k[g, g−1]. (This identification is quite similar to the description

of C•,• in Lemma 3.4.4 and we omit further details.) The module ˜HG,c,i−t+1
•

is then spanned by modules on which some h ∈ c, h ̸= g acts invertibly,
and hence it follows from Lemma 3.3.1 that this subcomplex is exact. Now,

let HG,c,i−t+1
n−t−1−α := HG,c,i−t+1

n−t−1−α / ˜HG,c,i−t+1
n−t−1−α denote the 1-dimensional quotient.

Exactness of (4.12) implies that the cohomology of (4.11) is identified with
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the cohomology of the quotient complex, which is explicitly given by

(4.13)

HG,c,i−t+1
n−t+1−α ⊗ k{ct−1} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times

⊕ HG,c,i−t+1
n−t−α ⊗ k{ct−1} ⊗ k{g} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times

⊕ HG,c,i−t+1
n−t−1−α ⊗ k{ct−1} ⊗ k{g} ⊗ k{g} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times
µα−→HG,c,i−t+1

n−t−α ⊗ k{ct} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸
α times

⊕ HG,c,i−t+1
n−t−1−α ⊗ k{ct} ⊗ k{g} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸

α times
να−→HG,c,i−t+1

n−t−1−α ⊗ k{ct+1} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸
α times

.

To conclude, we wish to show the part of this complex spanned by tensors of
elements generating G is exact. This part of the quotient complex identified
as dual to the subcomplex D−t−1

•,• defined in Proposition 3.4.10. Hence, it is
exact by Proposition 3.4.10. □

Combining the above lemmas, we now prove Lemma 4.0.8.

4.0.15. Proof of Lemma 4.0.8. Note that the second part holds by Lemma 4.0.7,
so it remains to prove the first part, which we will do by induction on t. We
assume Lemma 4.0.8 holds for t − 1. (When t = 2, this condition is vacuous.)

After modifying z by a coboundary, we may assume the projection of z to
(4.7) lies in the kernel of να, defined in (4.11), by Lemma 4.0.13.

We next claim we can modify z by an element in the image of µα so
that the projection of z onto HG,c,i−t+1

n−t−α ⊗k{ct} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸
α times

vanishes.

First, when α = 0, this follows from exactness of (4.11), established in
Lemma 4.0.14. Applying this for each α with 0 ≤ α ≤ i − t, we can arrange
that the projection of z onto HG,c,i−t+1

n−t−α ⊗k{ct} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸
α times

vanishes.

Note we use here that the cocycles f ∗(wn) are closed under the costabilization
map.
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Finally, using Lemma 4.0.12, after modifying z by a coboundary, because
its projection to HG,c,i−t+1

n−t−α ⊗k{ct} ⊗ k{g} ⊗ · · · k{g}︸ ︷︷ ︸
α times

vanishes, we may also

assume its projection to (4.2) vanishes. □

4.0.16. Proof of Proposition 4.0.2. By Proposition 4.0.9, we may assume that,
after modifying z by a coboundary, z = y1 ⊗ g for y1 ∈ WG,c,i

n−1 . In fact, we
have, yi ∈ CWG,c,i

n−1 using the definition of CWG,c,i
n−1 and the assumption that

y1 ⊗ g ∈ CWG,c,i
n−1 using that z ∈ HG,c,g

i . We now conclude by Lemma 4.0.4.
□

Example 4.0.17. In this example, we run through the argument for Propo-
sition 4.0.2 in the case of i = 1, i.e., for the first (co)homology group. We
use notation as in Notation 4.0.5 and Notation 4.0.6. We fix an element
g ∈ c, assume n is sufficiently large, and assume we have an element
x ∈ H1(CHurG,c

n+1, k) such that x[h] = 0, x[g][h] = 0, and x[g]2[h] = 0
for all h ̸= g. We can choose a representative x ∈ ZG,c,1

n , projecting to x. We
can then also express x as an element of

WG,c,0
n−2 ⊗k{c2}

⊕ WG,c,0
n−3 ⊗k{c2} ⊗ k{c}

⊕ WG,c,0
n−4 ⊗k{c2} ⊗ k{c} ⊗ k{c}

⊕ WG,c,1
n−3 ⊗k{c} ⊗ k{c} ⊗ k{c}.

We picture x on the left of Figure 2.
We next carry out Lemma 4.0.7 explicitly in this case. Write x = x1 +

x2 + x3 + x4, where xj is in the jth component above. We know x[h] = 0.
This means x[h] = δ(x′h) for some x′h ∈ WG,c,0

n . Then, when we replace x by
x − ∑h ̸=g δ(x′h ⊗ h), we find that x[h] = 0. The condition that x[h] = 0 for all
h ̸= g implies that xi = yi ⊗ g for 2 ≤ i ≤ 4. By similarly modifying x by
a coboundary yet again, we can arrange that x[g][h] = 0 and x[g]2[h] = 0.
The condition that x[g][h] = 0 implies xi = zi ⊗ g ⊗ g for 3 ≤ i ≤ 4. Finally,
the condition that x[g]2[h] = 0 implies x4 = w4 ⊗ g ⊗ g ⊗ g. Hence, we have
that x lies in

WG,c,0
n−2 ⊗k{c2}

⊕ WG,c,0
n−3 ⊗k{c2} ⊗ k{g}

⊕ WG,c,1
n−4 ⊗k{c2} ⊗ k{g} ⊗ k{g}

⊕ WG,c,1
n−3 ⊗k{g} ⊗ k{g} ⊗ k{g}.
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FIGURE 2. The left is a picture of the Fox-Neuwirth/Fuks cell
structure of an element of the first stable cohomology. The
right hand side pictures some additional constraints we may
impose on the cell structure, as explained in Example 4.0.17.

We now carry out Lemma 4.0.10 explicitly in this case. Note that we
can write x1 as a sum of tensor products ∑j uj ⊗ vj, where uj ∈ WG,c,0

n−2 and
vj ∈ k{c2}. Using that δ(x) = 0, we can arrange that each vj satisfies
δ(vj) = 0 because 0 = δ(x) = δ(x1) + δ(x2) + δ(x3) + δ(x4) but δ(x2),
δ(x3), and δ(x3) all have no terms ending in k{c2}, using that the shuffle
of g with itself is 0. This shows that x1 lies in ZG,c,0

n−2 ⊗k{c2}. Similarly,
x2 ∈ ZG,c,1

n−3 ⊗k{c2} ⊗ k{g}. So, altogether, we obtain that x lies in

ZG,c,0
n−2 ⊗k{c2}

⊕ ZG,c,0
n−3 ⊗k{c2} ⊗ k{g}

⊕ WG,c,1
n−4 ⊗k{c2} ⊗ k{g} ⊗ k{g}

⊕ WG,c,1
n−3 ⊗k{g} ⊗ k{g} ⊗ k{g}.

We picture the present form on x on the right of Figure 2.
Now, using exactness of the two-sided K-complex, in the form of Proposi-

tion 3.4.10, we claim that there is some element

s = s1 + s2 + s3 ∈ HG,c,0
n−1 ⊗k{c} ⊕ HG,c,0

n−2 ⊗k{c} ⊗ k{g} ⊕ HG,c,0
n−3 ⊗k{c} ⊗ k{g} ⊗ k{g},

with s1 ∈ HG,c,0
n−1 ⊗k{c}, s2 ∈ HG,c,0

n−2 ⊗k{c} ⊗ k{g}, and s3 ∈ HG,c,0
n−3 ⊗k{c} ⊗

k{g} ⊗ k{g}, so that the projection of δ(s) to WG,c,0
n−2 ⊗k{c2} agrees with

x1. This uses that HG,c,0
n−3 = ZG,c,0

n−3 , as there are no coboundaries in the 0th
cohomology. We note that to work with the two sided K-complex, we really
need to ignore terms in the subcomplex spanned by g ⊗ · · · ⊗ g, but this is
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FIGURE 3. This is a picture of part of the two-sided K complex
used to compute the stable first cohomology, as relevant to
Example 4.0.17.

not a problem because our element starts in the cohomology of the connected
Hurwitz space. We picture s in the top row of Figure 3.

We now conclude the argument that x = 0. With notation as above, x −
δ(s) lies in WG,c,1

n−1 ⊗k{g}. So, after replacing x by its sum with a coboundary,
we can arrange that x ∈ WG,c,1

n−1 ⊗k{g}. Applying Lemma 4.0.3 shows we may
further assume x ∈ WG,c,1

n−2 ⊗k{g} ⊗ k{g}. Continuing to apply Lemma 4.0.3,
we may assume x lies in the span of g ⊗ · · · ⊗ g. Since we are assuming
x ∈ H1(CHurG,c

n+1, k), we must have x = 0.

5. COMPUTING THE STABLE HOMOLOGY

In this section, we complete the proof of our main result by computing
the stable homology of Hurwitz spaces associated dihedral groups. As a
preparatory lemma, we show that components with boundary monodromy
in G − c − id cannot have interesting stable homology. This argument es-
sentially appears in [BM23], and via personal communication, we learned it
was also known to Ellenberg, Venkatesh, and Westerland.

Lemma 5.0.1. For G and c as in Notation 2.0.1 and ζ ∈ Z/ℓZ ⊂ G a generator,
ker(HG,c,ζ

i → Hid,id
i,0 ) = 0.

Proof. This is a consequence of [BM23, Corollary C’] and the proof of [RW20,
Corollary 5.4]. The first identifies HG,c,ζ

i with the homology of one compo-
nent of the group completion of ⨿n≥0 HurG,c

n . The second shows that the
map from the homology of each component of the group completion of
⨿n≥0 HurG,c

n to Hid,id
i,0 is an isomorphism. □
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Lemma 5.0.2. For G and c as in Notation 2.0.1, for any g ∈ c and any h ∈ c with
h ̸= g, [h] acts by 0 on ker(HG,c,g

i → Hid,id
i,0 ). Moreover, [g]j[h] also acts by 0 on

ker(HG,c,g
i → Hid,id

i,0 ) for any j ≥ 0.

Proof. For h ̸= g, with h ∈ c, g ∈ c, we have that ζ := gh is a generator of
Z/ℓZ ⊂ G. Therefore, [h] maps ker(HG,c,g

i → Hid,id
i,0 ) onto ker(HG,c,ζ

i →
Hid,id

i,0 ), and the latter vanishes by Lemma 5.0.1.
To show [g]j[h] acts by 0, simply observe [g]j[h] = [h][h−1gh]j. So this acts

by 0 because [h] acts by 0. □

Finally, we are prepared to deduce our main result.

Theorem 5.0.3. With notation as in Definition 2.0.6 HG,c,g
i → Hid,id

i,β is an isomor-
phism.

Proof. One can see using transfer maps that the map HG,c,g
i → Hid,id

i,β is
a split surjection, so it suffices to show that the kernel of this map is 0.
First, we assume g ∈ c. Consider the stabilization map ∑h∈c[h]2 acting on
ker(HG,c,g

i → Hid,id
i,1 ) for g ∈ c. Each [h]2 for h ̸= g acts by 0 on this kernel

by Lemma 5.0.2, while [g]2 acts by 0 using Proposition 4.0.2. Note here that
we may apply Proposition 4.0.2 because the assumptions of Notation 4.0.6
are satisfied by Lemma 5.0.2. Overall, this implies ∑h∈c[h]2 acts as 0 on
ker(HG,c,g

i → Hid,id
i,1 ). But ∑h∈c[h]2 acts as the identity on this space by

Notation 2.0.3, implying ker(HG,c,g
i → Hid,id

i,1 ) = 0.
The case that g /∈ c follows from the case g ∈ c because each [h] for h ∈ c

acts as 0 on ker(HG,c,g
i → Hid,id

i,0 ), since it sends ker(HG,c,g
i → Hid,id

i,0 ) to

ker(HG,c,gh
i → Hid,id

i,1 ), which we have just shown to be 0, and ∑h∈c[h]2 is the
identity. □

REFERENCES

[Ad69] V. I. Arnol′ d. The cohomology ring of the group of dyed braids. Mat. Zametki,
5:227–231, 1969.

[BM23] Andrea Bianchi and Jeremy Miller. Polynomial stability of the homology of hur-
witz spaces. arXiv preprint arXiv:2303.11194v1, 2023.

[EL23] Jordan S Ellenberg and Aaron Landesman. Homological stability for generalized
hurwitz spaces and selmer groups in quadratic twist families over function fields.
arXiv preprint arXiv:2310.16286v2, 2023.

[ETW17] Jordan S Ellenberg, TriThang Tran, and Craig Westerland. Fox-neuwirth-fuks
cells, quantum shuffle algebras, and malle’s conjecture for function fields. arXiv
preprint arXiv:1701.04541v2, 2017.

31



[EVW12] Jordan S Ellenberg, Akshay Venkatesh, and Craig Westerland. Homological sta-
bility for hurwitz spaces and the cohen-lenstra conjecture over function fields, II.
arXiv preprint arXiv:1212.0923v1, 2012.

[EVW16] Jordan S. Ellenberg, Akshay Venkatesh, and Craig Westerland. Homological
stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function
fields. Ann. of Math. (2), 183(3):729–786, 2016.

[LL24] Aaron Landesman and Ishan Levy. The Cohen-Lenstra moments over function
fields via the stable homology of non-splitting Hurwitz spaces. In preparation,
2024.

[RW20] Oscar Randal-Williams. Homology of Hurwitz spaces and the Cohen-Lenstra
heuristic for function fields [after Ellenberg, Venkatesh, and Westerland].
Astérisque, (422):Exp. No. 1164, 469–497, 2020.

[SW23] Will Sawin and Melanie Matchett Wood. Conjectures for distributions of class
groups of extensions of number fields containing roots of unity. arXiv preprint
arXiv:2301.00791v1, 2023.

[Woo21] Melanie Matchett Wood. An algebraic lifting invariant of Ellenberg, Venkatesh,
and Westerland. Res. Math. Sci., 8(2):Paper No. 21, 13, 2021.

32


	1. Introduction
	1.1. Proof outline
	1.2. Outline of paper
	1.3. Acknowledgements

	2. Notation for Hurwitz spaces
	3. Cohomology of the two-sided K complex
	3.1. Review of the usual K-complex
	3.2. Definition the two-sided K-complex
	3.3. A nullhomotopy for two-sided K complexes
	3.4. A particular two-sided K-complex

	4. Computing the cohomology stabilized by a single monodromy
	5. Computing the stable homology
	References

