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Cyclotomic complexes

D. Kaledin

Abstract. We construct a triangulated category of cyclotomic complexes
(homological analogues of the cyclotomic spectra of Bökstedt and Madsen)
along with a version of the topological cyclic homology functor TC for
cyclotomic complexes and an equivariant homology functor (commuting
with TC) from cyclotomic spectra to cyclotomic complexes. We also prove
that the category of cyclotomic complexes essentially coincides with the
twisted 2-periodic derived category of the category of filtered Dieudonné
modules, which were introduced by Fontaine and Lafaille. Under certain
conditions we show that the functor TC on cyclotomic complexes is the
syntomic cohomology functor.

Keywords: cyclotomic spectrum, cyclotomic complex, filtered Dieudonné
module.
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Introduction

This paper is a sequel to [1]. The goal of both papers is to try to understand
how some of the purely topological notions used in [2] are related to the topological
cyclic homology of [3]. This has turned out to be a rather lengthy project since one
has to construct the appropriate homological counterparts of several of the notions
in stable homotopy theory.

In [1] we dealt with derived Mackey functors, the homological analogues of the
genuine G-equivariant spectra in [4]. Although the Abelian category of Mackey
functors is very well known in stable homotopy theory and plays an important role,
its most naive derived generalization is not completely well behaved. Therefore
a slightly different derived version of the Mackey functors was constructed and
studied in [1].

In the present paper we deal with the cyclotomic spectra considered in [5] and [6].
To construct their homological counterparts, one must go beyond [1]: by definition,
cyclotomic spectra are equivariant with respect to the circle group S1 while [1]
deals only with finite groups G. We cannot construct good homological analogues
of all S1-spectra, but we construct a category DMΛ(Z) of ‘cyclic Mackey functors’

This paper was written with the partial support of RFBR (grant no. 12-01-33024), the Russian
Government programme (contract 11.G34.31.0023) and the Dynasty Foundation.

AMS 2010 Mathematics Subject Classification. 19D55, 14A22, 18G55.

c© 2013 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.



856 D. Kaledin

which captures those parts of the equivariant stable category that are relevant
to topological cyclic homology. We can then introduce the triangulated category
DΛR(Z) of ‘cyclotomic complexes’.

Ideally, the relation between cyclotomic complexes and cyclotomic spectra should
be expressible in the form of a commutative diagram,

DΛR(Z)

��

// Cycl

��
D(Z) // StHom

(0.1)

of ‘brave new schemes’, which can be understood, for example, as tensor trian-
gulated categories with some enhancement. Here StHom is the stable homotopy
category, D(Z) is the derived category of Abelian groups, and Cycl is the category
of cyclotomic spectra. This diagram must be ‘almost Cartesian’. More precisely,
it must become Cartesian after replacing Cycl by the subcategory Cyclo ⊂ Cycl of
cyclotomic spectra T with trivial geometric fixed points ΦS1

T with respect to the
whole of the group S1.

At present, such a nice picture seems a long way beyond our reach. Besides the
obvious difficulties in making the ‘brave new’ notions precise, it seems that no-one
has yet constructed Cycl even as a triangulated category.1 Thus in practice we
confine ourselves to the following two things.

(i) For every cyclotomic spectrum T we construct an equivariant homology cyclo-
tomic complex C q(T ). This ought to correspond to the top arrow in (0.1).

(ii) We construct a topological cyclic homology functor TC on the category
DΛR(Z) in such a way that for every cyclotomic spectrum T, the complexTC(C q(T ))
can be naturally identified with the homology of the spectrum TC(T ).

We can then give another and very simple description of the category DΛR(Z).
It turns out that cyclotomic complexes are essentially equivalent to the ‘fil-
tered Dieudonné modules’ in [7]. Filtered Dieudonné modules are rather simple
linear-algebraic gadgets with a deep meaning: they supply a p-adic counterpart
of Deligne’s notion of a mixed Hodge structure. Hence the whole story acquires
a distinctly motivic flavour. This is discussed in more detail in [8].

Filtered Dieudonné modules arise naturally as the crystalline cohomology of alge-
braic varieties over Zp, while cyclotomic spectra appear as topological Hochschild
homology spectra of ring spectra A. In view of the equivalence established by us,
there are many situations in which one can compare these two constructions. We
make no attempt to do this here. We focus instead on pure linear algebra and leave
the geometric applications for future research. The only comparison result that
we prove says that for profinitely complete cyclotomic complexes, the topological
cyclic homology TC coincides with the syntomic cohomology of [9], familiar in the
theory of Dieudonné modules.

The paper is organized as follows. To begin the story, we need a model for
S1-equivariant spaces and their homology; for better or for worse, we have cho-
sen a combinatorial approach using Connes’ category Λ. The basic facts about Λ
and related categories are contained in § 1. In § 2 we construct the cyclic Mackey

1After submission of our paper, this was done by Blumberg and Mandell, arXiv:1303.1694.
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functors. § 3 deals with cyclotomic complexes. In § 4 we construct equivariant
homology functors from S1-spectra to DMΛ(Z) and from cyclotomic spectra to
DΛR(Z). A theorem comparing cyclotomic spectra and filtered Dieudonné mod-
ules is proved in § 5. Finally, in § 6 we briefly discuss topological cyclic homology
and prove comparison theorems for TC. The appendix, § 7, contains some techni-
calities, mostly from [1].

Acknowledgements. Many discussions on the subject with G. Merzon were very
inspirational and helpful. I owe a lot to L. Hesselholt for his patient explanation
about topology (this goes both for this paper in particular, and for the whole project
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ules. It is a pleasure to thank A. Beilinson, V. Drinfeld, V. Ginzburg, D. Kazhdan,
and J. P. May for their interest in this work. A part of the paper was finished at
the Hebrew University of Jerusalem, and another part was done while visiting the
University of Chicago; the hospitality of both places is gratefully acknowledged.

§ 1. Cyclic categories

1.1. Connes’ cyclic category. We recall that Connes’ cyclic category Λ is a small
category whose objects [n] are indexed by positive integers n. Maps from [n] to [m]
can be defined in various equivalent ways; for the convenience of the reader, we
recall two of them.
Topological description. The object [n] is to be thought of as a ‘wheel’: a cellular
decomposition of the circle S1 with n 0-cells, called vertices, and n 1-cells, called
edges. A continuous map f : S1 → S1 induces a map f̃ : R → R between the
universal coverings. We say that f is monotone if f̃(a) > f̃(b) for all a, b ∈ R,
a > b. Then the morphisms from [n] to [m] in Λ are the homotopy classes of
monotone continuous maps f : [n]→ [m] of degree 1 that send vertices to vertices.
Combinatorial description. Consider the category Λbig of totally ordered sets
equipped with an order-preserving endomorphism τ . Let [n] ∈ Λbig be the set
Z with its natural total order and the endomorphism τ : Z→ Z, τ(a) = a + n. Let
Λ∞ ⊂ Λbig be the full subcategory spanned by [n], n > 1. For any [n], [m] ∈ Λ∞,
τ acts on the set Λ∞([n], [m]) (on the left or on the right; by definition it does not
matter). We define the set Λ([n], [m]) of maps in the category Λ by putting

Λ([n], [m]) = Λ∞([n], [m])/τ. (1.1)

There are other descriptions (see [10], Pt. 6, and [11], Appendix).
For every [n] ∈ Λ, the set V ([n]) of vertices of the corresponding decomposition

of the circle can be naturally identified with the set Λ([1], [n]) of maps from [1]
to [n], and the set E([n]) of edges can be identified with Λ([n], [1]). In particular,
E(−) is a contravariant functor (geometrically, the pre-image of an edge is con-
tained in exactly one edge). The automorphism group Aut([n]) is the cyclic group
Z/nZ generated by the clockwise rotation. We denote the generator by σ. In the
combinatorial description, σ corresponds to the map Z→ Z, a 7→ a + 1.

Given any integer p > 2, we define a category Λp by taking the same set of
objects [n], n > 1, and putting

Λp([n], [m]) = Λ∞([n], [m])/τp.
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The category Λp is intermediate between Λ∞ and Λ. In particular, the obvious
projections Λ∞([n], [m])/τp → Λ∞([n], [m])/τ together determine a functor

πp : Λp → Λ.

The functor πp is a bifibration whose fibre ptp = [1/(Z/pZ)] is the groupoid with
one object and automorphism group Z/pZ. On the other hand, one can identify
Λp([n], [m]) with the set of maps f : [np] → [mp] in Λ such that f ◦ σn = σm ◦ f .
This determines a canonical functor

ip : Λp → Λ

such that ip([n]) = [np] on the objects. We denote by

ΛI =
∐
p>1

Λp (1.2)

the disjoint union of all the categories Λp, p > 1. Then all functors ip and πp

together may be regarded as two functors

i, π : ΛI → Λ. (1.3)

The category Λ is self-dual: there is an equivalence Λ ∼= Λopp sending every
object to itself, and a morphism [n]→ [m] represented by a map f : Z→ Z goes to
the morphism represented by f] : Z→ Z, where

f](a) = max{b ∈ Z | f(b) 6 a}. (1.4)

In the topological description, the duality interchanges edges and vertices and cor-
responds to taking the dual cellular decomposition.

For any [n], [m] ∈ Λ, the set Λ([n], [m]) of maps is finite. The groups Aut([n]) and
Aut([m]) act on Λ([n], [m]) by composition, and both these actions are stabilizer-free.
We shall use the following slightly more general fact.

Lemma 1.1. Let m, n, l be integers such that m, l > 1, n > 2, and let f : [nl]→ [m]
be a map in Λ such that

f ◦ σl = σl1 ◦ f

for some integer l1, 0 6 l1 < m. Then m = nl1.

Proof. We use the combinatorial description of Λ. Then f is represented by a mono-
tone map f̃ : Z→ Z such that

f̃(a + nl) = f̃(a) + m, f̃(a + l) = f̃(a) + l1 + bm (1.5)

for all a ∈ Z, where b is a fixed integer independent of a. Since a 6 a+ l 6 a+nl, it
follows from (1.5) that 0 6 l1 + bm 6 m, whence either l1 = 0 and b = 1, or b = 0.
The first case is impossible since σl acts on Λ([nl], [m]) without fixed points. Thus
b = 0, and the desired assertion follows from (1.5). �
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The category Λ/[1] of objects [n] ∈ Λ equipped with a map [n]→ [1] is naturally
equivalent to the category ∆ of non-empty finite totally ordered sets. (Geometri-
cally, Λ/[1] is the category of wheels with a fixed edge. Removing this edge, we
get a canonical ‘clockwise’ total order on the set of vertices of the wheel.) Thus
we have a natural discrete fibration ∆ ∼= Λ/[1] → Λ, which induces a cofibration
jo : ∆opp → Λopp. Dually, the category [1] \ Λ of objects [n] ∈ Λ equipped with
a map [1] → [n] is equivalent to ∆opp, whence we get a natural discrete fibration
j : ∆ → Λopp (geometrically, ∆opp is the category of wheels with a fixed vertex).
The same construction works for the categories Λn, n > 2. In particular, we obtain
a canonical functor

jn : ∆→ Λopp
n

and we have π ◦ jn = j for any n > 2. Let ∆n → ∆ be the bifibration given by the
Cartesian square

∆n

��

// Λopp
n

πn

��
∆

jn // Λopp

Then the functor jn gives a splitting ∆ → ∆n of this bifibration, so that we have
∆n
∼= ∆×ptn. In more down-to-earth terms, this means that the group Z/nZ acts

on jn. Taking the composite of jn with the embedding in, we get a commutative
diagram

∆

rn

��

jn // Λopp
n

in

��
∆

j // Λopp

where rn : ∆→ ∆ is the edgewise subdivision functor given by the formula

rn([m]) = [n]× [m]. (1.6)

Here [m] (resp. [n]) is a totally ordered set of m (resp. n) elements and [n]× [m] is
endowed with the left-to-right lexicographic order.

1.2. The cyclotomic category. We now introduce the following definition, which
is based on the topological description of the category Λ.

Definition 1.2. The cyclotomic category ΛR is a small category with the same
objects [n], n > 1, as Λ. If we regard [n] as an n-tuple of marked points on the
circle S1, then the morphisms [n] → [m] in ΛR are homotopy classes of monotone
continuous maps f : [n]→ [m] that send marked points to marked points and have
positive degree, deg f > 1.

The only difference between ΛR and Λ is that the morphisms are allowed to have
degree greater than 1. A typical new map is obtained as follows. For every n-tuple
of points on the circle and every positive integer l > 1 we consider the l-fold étale
covering πl : S1 → S1 and the nl-tuple of pre-images of the n marked points. Then
π determines a well-defined morphism πn,l : [nl] → [n] in ΛR. Moreover, every
morphism f : [m] → [m] of degree l in ΛR factors as a composite f = πn,l ◦ f ′ for
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some f ′ : [m]→ [nl] of degree 1, and such a factorization is unique up to the action
of the group Z/lZ of deck transformations of the covering πl : S1 → S1. Thus the
set ΛRl([m], [n]) of morphisms of degree l from [m] to [n] can be naturally identified
with the quotient

ΛRl([m], [n]) = Λ([m], [nl])/(Z/lZ) (1.7)

by the action of the group Z/lZ generated by σn : [nl] → [nl]. In particular,
ΛRl([m], [n]) is finite for all [m], [n] and l.

Definition 1.3. A map f : [m] → [n] in ΛR is horizontal if it is of degree 1.
A map f : [m] → [n] of degree l > 1 is vertical if the map f ′ : [m] → [nl] in the
decomposition f = πn,l ◦ f ′ is invertible.

It follows from the discussion above that the vertical and horizontal morphisms
form a factorization system on ΛR in the sense of Definition A.2 (see § 7). The
subcategory ΛRh formed by the horizontal maps is by definition equivalent to Λ.
Moreover, for any group G, let OG be the category of finite G-orbits, that is,
finite sets equipped with a transitive G-action. Then the subcategory ΛRv ⊂ ΛR
formed by the vertical maps is obviously equivalent to the orbit category OZ. The
equivalence sends [n] ∈ ΛR to the orbit Z/nZ (all finite Z-orbits are of this form).

Lemma 1.4. For any pair consisting of a horizontal map h : [m1]→ [m] and a ver-
tical map v : [m2]→ [m] in ΛR there is a Cartesian square

[m12]

v1

��

h1 // [m2]

v

��
[m1]

h // [m]

with horizontal h1 and vertical v1.

Proof. This is clear. �

Composing the functors i and π in (1.3) with the natural embeddings Λ ∼=
ΛRh ↪→ ΛR, we obtain functors

ĩ, π̃ : ΛI → ΛR.

Moreover, the factorization maps πn,l, n, l > 1, together determine a vertical map

ṽ : ĩ→ π̃. (1.8)

Let Λ̃I be the category of vertical maps v : [m] → [m′] in ΛR, where the mor-
phisms from v1 : [m1]→ [m′1] to v2 : [m2]→ [m′2] are given by commutative squares

[m1]

v1

��

f // [m2]

v2

��
[m′1]

f ′ // [m′2]

(1.9)
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with horizontal f , f ′. Sending a ∈ ΛI to ṽ : ĩ(a)→ π̃(a), we get a functor

ΛI → Λ̃I. (1.10)

Lemma 1.5. The functor (1.10) is an equivalence of categories.

Proof. This is clear. �

Sending a wheel [n] ∈ ΛR to its vertex set V ([n]), we get a functor ΛR→ Sets.
Let

∆R
ej // ΛRopp (1.11)

be the discrete fibration corresponding to V in the Grothendieck construction.

Lemma 1.6. The functor δ = deg ◦j̃ : ∆R → [1/N∗] is a cofibration with fibre ∆.
The transition functor rm corresponding to m ∈ N∗ is given by the edgewise sub-
division functor.

Proof. By definition, ∆R is opposite to the full subcategory in the slice category
[1] \ ΛR spanned by the horizontal maps h : [1] → [n], [n] ∈ ΛR. Moreover, ∆R
inherits the vertical/horizontal system from ΛR. It follows that vertical maps are
Cartesian with respect to δ, and the fibre of δ is spanned by horizontal maps. �

1.3. Extended categories. Let N∗ be the monoid of positive integers l > 1 with
respect to multiplication, and let [1/N∗] be the category with one object 1 and

Hom[1/N∗](1, 1) = N∗.

Sending every morphism to its degree, we get a functor

deg : ΛR→ [1/N∗]. (1.12)

This functor has a section: the fully faithful embedding α : [1/N∗] → ΛR which
sends 1 to [1] ∈ ΛR (any map [1] → [1] is uniquely determined by its degree).
Moreover, let

I = 1 \ [1/N∗]

be the category of objects a ∈ [1/N∗] equipped with a map 1 → a (the slice
category). Equivalently, I is N∗ regarded as a partially ordered set (with order
given by divisibility) and made into a small category in the standard way. Then
we have a natural cofibration

I → [1/N∗], (1.13)

whose fibre is the set N∗ regarded as a discrete category. By the Grothendieck
construction, this corresponds to a functor [1/N∗] → Sets that sends 1 to N∗ or,
in other words, to an action of the monoid N∗ on itself. That action is by right
multiplication.

We now suppose that N∗ acts on itself both on the right and on the left, and
let I be the corresponding category cofibred over [1/N∗] × [1/N∗] with fibre N∗.
Equivalently, I is given by the Cartesian square

I

��

// I

��
[1/N∗]× [1/N∗] // [1/N∗]
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where the bottom map is induced by the product map N∗ ×N∗ → N∗. Composing
the cofibration I→ [1/N∗]× [1/N∗] with the projection onto the right factor [1/N∗],
we get a cofibration

I→ [1/N∗] (1.14)

with fibre I. We also have a natural Cartesian functor I → I. On fibres, it is given
by the inclusion of the discrete category N∗ in I (which is nothing but N∗ regarded
as a partially ordered set). Explicitly, the objects of I are positive integers n > 1
and the morphisms are generated by the morphisms

Fl, Rl : n→ nl (1.15)

for all n, l > 1 modulo the relations

Fn ◦ Fm = Fnm, Rn ◦Rm = Rnm, Fn ◦Rm = Rm ◦ Fn

for all n, m > 1. The category I is opposite to the category introduced by Good-
willie [12].

Definition 1.7. The extended cyclic category ΛZ is the fibre product

ΛZ = ΛR×[1/N∗] I,

and the extended cyclotomic category Λ̃R is the fibre product

Λ̃R = ΛR×[1/N∗] I,

where ΛR → [1/N∗] is the degree functor deg in (1.12), and I → [1/N∗] (resp.
I→ [1/N∗]) is the cofibration (1.13) (resp. (1.14)).

The section α : [1/N∗] → ΛR of the degree functor deg : ΛR → [1/N∗] induces
a functor

α̃ : I→ Λ̃R. (1.16)

By definition, we have cofibrations

λ : ΛZ→ ΛR, λ̃ : Λ̃R→ ΛR, (1.17)

whose fibres are identified with N∗ and I respectively. The objects in ΛZ and Λ̃R
are explicitly given by pairs 〈[n] ∈ ΛR, m ∈ N∗〉. We denote such a pair by [n|m].
A morphism from [n|m] to [n′|m′] in ΛZ (resp. Λ̃R) is a morphism f : [n] → [n′]
in ΛR such that m′ = m deg f (resp. m′ = lm deg f for some integer l > 1). Then
the vertical/horizontal factorization system induces analogous vertical/horizontal
factorization systems on ΛZ and Λ̃R. We use the symbols ΛZv, ΛZh⊂ΛZ and Λ̃Rv,
Λ̃Rh⊂ Λ̃R for the subcategories spanned by the vertical and horizontal maps res-
pectively. Then ΛZh and Λ̃Rh decompose as follows:

ΛZh =
∐
m>1

ΛZm
h
∼= N∗ × Λ, Λ̃Rh = I × Λ, (1.18)
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where ΛZm
h is the full subcategory spanned by the objects [n|m], n > 1. For

every m, the category ΛZm
h is naturally equivalent to Λ. On the other hand, the

category ΛZv decomposes as follows:

ΛZv =
∐
n>1

ΛZn
v
∼=

∐
n>1

OZ/nZ, (1.19)

where ΛZn
v is the full subcategory spanned by the objects [n′|m′] with n = n′m′. For

every n, the category ΛZn
v is naturally equivalent to OZ/nZ. These decompositions

are induced by the identifications ΛRh
∼= Λ, ΛRv

∼= OZ.

1.4. More on the extended cyclic category. We state some further simple
properties of the category ΛZ. By Yoneda’s lemma, the category ΛZ is fully and
faithfully embedded in the category Fun(ΛZopp,Sets). Restricting this embedding
to Λ = ΛZ1

h ⊂ ΛZ, we obtain a functor

Y : ΛZ→ Fun(Λopp,Sets).

This gives an alternative purely combinatorial description of the category ΛZ
because of the following lemma.

Lemma 1.8. The functor Y is fully faithful.

Proof. By definition, Y ([n|1]) is the functor h[n] : Λopp → Sets represented by
[n] ∈ Λ. On the other hand, (1.7) shows that Y ([n|m]) for m > 2 is the quotient
h[nm]/(Z/mZ) of the functor h[nm] by the action of the cyclic group Z/mZ ⊂
Aut([nm]). Thus we have

Hom(Y ([n|m]), Y ([n′|m′])) = Hom(h[nm], h[n′m′]/(Z/m′Z))Z/mZ

=
(
Λ([nm], [n′m′])/(Z/m′Z)

)Z/mZ
,

and, by Lemma 1.1, this set is non-empty if and only if m′ = lm for some l and
coincides with the set Λ([n, n′l])/(Z/lZ). Again using (1.7), we conclude that the
last set coincides with ΛZ([n|m], [n′|m′]) = ΛRl([n], [n′l]). �

Lemma 1.9. For every pair consisting of a horizontal map h : [n1|m]→ [n|m] and
a vertical map v : [n′|m′]→ [n|m] there is a Cartesian square

[n′1|m′]

v′

��

h′ // [n′|m′]

v

��
[n1|m] h // [n|m]

(1.20)

in ΛZ with horizontal h′ and vertical v′.

Proof. Use Lemma 1.4 and notice that deg v1 = deg v. �

Lemma 1.9 enables us to define a new category Λ̂Z in the following way. The
objects are the same as in ΛZ, and the morphisms from c to c′ are the isomorphism
classes of the diagrams

c c1
voo h // c′ (1.21)
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with vertical v and horizontal h. Composition is given by the fibre product. Note
that the diagrams (1.21) have no non-trivial automorphisms. Therefore Λ̂Z has
a natural factorization system whose horizontal (resp. vertical) maps are given by
the diagrams with invertible v (resp. h). As above, we denote the corresponding
subcategories by Λ̂Zh, Λ̂Zv ⊂ Λ̂Z. We have decompositions

Λ̂Zv =
∐
n>1

Oopp
Z/nZ, Λ̂Zh = N∗ × Λ,

induced by (1.19) and (1.18). Hence Λ̂Zv
∼= ΛZopp

v and Λ̂Zh
∼= ΛZh. Note that the

equivalence Λ ∼= Λopp in (1.4) gives an equivalence

ΛZh
∼= N∗ × Λ→ ΛZopp

h
∼= N∗ × Λopp. (1.22)

Lemma 1.10. There is an equivalence of categories

Λ̂Z ∼= ΛZopp

which restricts to the identity functor Λ̂Zv
∼= ΛZopp

v → ΛZopp
v ⊂ ΛZopp and induces

the equivalence Λ̂Zh
∼= ΛZh → ΛZopp

h ⊂ ΛZopp in (1.22).

Proof. The form of the equivalence Λ̂Z ∼= ΛZopp is prescribed by the conditions:
it is identical on the objects and vertical morphisms and sends every horizontal
morphism h lying in some category ΛZm

h ⊂ ΛZ, ΛZm
h
∼= Λ to h]. To see that this

definition is consistent, we must check that for every Cartesian square (1.20) the
diagram

[n′1|m′]
v′ // [n1|m]

[n′|m′]

h′]

OO

v // [n|m]

h]

OO

is commutative. This follows immediately from the construction: the maps h and
h′ can be represented by the same map [n1m]→ [nm]. �

1.5. Homological properties. The geometric realization |Λ| of the nerve of the
category Λ is homotopy equivalent to BU(1), the classifying space of the unit
circle group U(1). In particular, the cohomology of the category Λ ∼= Λopp with
coefficients in the constant functor Z is given by

H
q
(Λopp, Z) = H

q
(Λ, Z) ∼= Z[u],

where u is a generator of degree 2. To represent u ∈ H2(Λ, Z) in an explicit
way, we associate with a wheel [n] ∈ Λ its cellular cohomology complex C

q
([n], Z).

Topologically, every wheel is the circle S1 ∼= U(1). Therefore we have an exact
sequence

0 // Z // C0([n], Z) // C1([n], Z) // Z // 0
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for every [n] ∈ Λ. Since this sequence depends functorially on [n], we get an exact
sequence

0 // Z
b0 // j∗Z

B // jo
! Z b1 // Z // 0 (1.23)

of functors in Fun(Λopp, Z), where we have made the identifications

C1([n], Z) ∼= Z[E([n])] ∼= (jo
! Z)([n]), C0([n], Z) ∼= Z[V ([n])]∗ ∼= (j∗Z)([n]).

Here j : ∆→ Λopp and jo : ∆opp → Λopp are as in § 1.1. The exact sequence (1.23)
represents by Yoneda an element u ∈ Ext2(Z, Z). This is the generator of the
polynomial algebra Ext

q
(Z, Z) = H

q
(Λopp, Z).

The cellular cohomology complexes are also functorial with respect to maps of
degree greater than 1. Hence the exact sequence (1.23) extends to the category
Fun(ΛR, Z). The extended sequence takes the form

0 // Z
b0 // j̃∗Z

B // E
b1 // deg∗ Z(1) // 0, (1.24)

where j̃ is as in (1.11), E ∈ Fun(ΛRopp, Z) stands for the functor [n] 7→ C1([n], Z),
and Z(1) ∈ Fun([1/N∗], Z) is the functor corresponding to Z, where every n ∈ N∗
acts as multiplication by n.

Using the functors i, π in (1.3), we can pull back the sequence (1.23) to the
category ΛIopp in two different ways, and the map (1.8) induces a map between
these pullbacks. Fixing a positive integer n > 2 and restricting all sequences
to Λopp

n ⊂ ΛIopp, we obtain a commutative diagram

0 // Z

id

��

// i∗nj∗Z

ηn

��

i∗nB // i∗njopp
! Z

vn

��

// Z

n id

��

// 0

0 // Z // π∗nj∗Z
π∗nB // π∗njopp

! Z // Z // 0

(1.25)

where the vertical maps ηn are isomorphisms. The geometric realization |Λn| of
the category Λn has the same homotopy type as |Λ|, and the functor in : Λn → Λ
induces a homotopy equivalence between the realizations. The first row in (1.25)
represents by Yoneda the generator u ∈ H2(Λopp

n , Z) of the cohomology algebra

H
q
(Λopp

n , Z) ∼= H
q
(Λopp, Z) ∼= Z[u].

On the other hand, the functor πn : Λn→Λ does not induce a homotopy equivalence
of realizations: at the level of the realizations |Λn| ∼= |Λ| ∼= BU(1), the map induced
by πn corresponds to the n-fold covering U(1) → U(1). The second row in (1.25)
represents the element π∗nu = ν ∈ H2(Λopp

n , Z).

1.6. Homological vanishing. We shall use some results on the vanishing of
cohomology for the small categories ∆R and ΛRopp. We first recall that if we take
any p > 1 and let rp : ∆ → ∆ be the edgewise subdivision functor (1.6), then the
natural map

H
q
(∆, r∗pM)→ H

q
(∆,M)
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is an isomorphism for every M ∈ D(∆, k) (see, for example, [2], Lemma 1.14,
although this fact is very well known). By adjunction, this means that the natural
map

rp!k → k (1.26)

is a quasi-isomorphism for every p > 1 (here k stands for the constant functors).

Lemma 1.11. Let h : ∆ ∼= ∆Rh → ∆R be the natural embedding and let M ∈
D(∆Ropp, Z) be an object such that H

q
(∆,M) = 0. Then H

q
(∆R,M) = 0.

Proof. Let δ : ∆R → [1/N∗] be the cofibration in Lemma 1.6. It suffices to prove
that R

q
δ∗M = 0. Equivalently,

H
q
(∆̃R, κ∗M) = 0,

where ∆̃R is the category of objects [n] ∈ ∆R equipped with a map δ([n]) → 1
(that is, with a number m ∈ N∗) and κ : ∆̃R → ∆R is the forgetful functor. For
every l > 1 let ιl : ∆ → ∆̃R be the embedding sending [n] to itself equipped with
the number l. We also have the forgetful functor δ : ∆̃R→ I induced by δ : ∆R→
[1/N∗]. By Lemma 1.6, this is a cofibration with transition functors rn. Therefore
the functor i∗l im! : D(∆, k) → D(∆, k) is trivial unless m = lp for some p and is
isomorphic to rp! in that case. Then, by (1.26), the conjugation map il!k → k is an
isomorphism at ιp(∆) ⊂ ∆̃R for all p dividing l. Therefore,

k ∼= lim
→

il!k,

and it suffices to prove that

RHom
q
(il!k, κ∗M) = 0

for any l. By adjunction, this means that H
q
(∆, ι∗l κ

∗M) = 0, while we have
κ ◦ ιl = id. �

Corollary 1.12. For every M ∈ Fun(ΛRopp, k) we have

H
q
(ΛRopp,M ⊗ E) = 0,

where E ∈ Fun(ΛRopp, k) is as in (1.24).

Proof. As in Lemma 1.10 of [2], (1.24) yields by dévissage that

H
q
(∆R, j̃∗(M ⊗ E)) = 0,

and by Lemma 1.11 it suffices to prove that H
q
(∆, j∗h∗(M ⊗E)) = 0. This is dual

to Lemma 1.10 in [2]. �

By Corollary 1.12, (1.24) induces a long exact cohomology sequence

H
q
(ΛRopp,M) // H

q
(∆R, j̃∗M) // H

q−1(ΛRopp,M ⊗ deg∗ Z(1)) //

(1.27)
for every M ∈ Fun(ΛRopp, Z).
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Proposition 1.13. Let M ∈ Fun(ΛRopp, Z) be a profinitely complete functor.
Then the natural map

H
q
(ΛRopp,M)→ H

q
(∆R, j̃∗M) (1.28)

is an isomorphism.

Proof. By the projection formula we have

H
q(

ΛRopp,M ⊗ deg∗ Z(1)
) ∼= H

q(
[1/N∗], Z(1)⊗R

q
deg∗M

)
and, by (1.27), it suffices to prove that (1.28) is tautologically equal to 0. Since
R

q
deg∗ commutes with profinite completion, it suffices to prove the following

lemma. �

Lemma 1.14. For any profinitely complete M ∈ Fun([1/N∗], Z) we have

H
q(

[1/N∗],M ⊗ Z(1)
)

= 0.

Proof. Every profinitely complete Abelian group M can be decomposed as follows:

M =
∏
p

Mp,

where the product is taken over all primes p, and Mp is pro-p-complete. Therefore
we can assume that M is pro-p-complete for some prime p. We decompose the
monoid N∗ into the product N∗ = N× N∗{p}, where Np ⊂ N consists of all integers
prime to p, and N ⊂ N∗ is the monoid of all powers pn, n > 0. Then, by the
Künneth formula, it suffices to prove that

H
q(

[1/N], Z(1)⊗M
)

= 0.

But H
q
([1/N],M ′) can be computed for every M ′ ∈ Fun([1/N], Z) by means of the

two-term complex

M ′
id−t // M ′,

where t : M ′ → M ′ is the action of the generator 1 ∈ N. In our case we have
M ′ = M ⊗ Z(1), M ′ is pro-p-complete and t is divisible by p. Therefore the
map id−t is invertible. �

§ 2. Cyclic Mackey functors

2.1. Description in terms of the quotient category. We consider the wreath
product ΛZ oΓ of the enhanced cyclic category ΛZ and the category Γ of finite sets.
Explicitly, ΛZ o Γ can be identified with the full subcategory of Fun(Λopp,Sets)
spanned by the finite disjoint unions of objects [n|m] ∈ ΛZ ⊂ Fun(Λopp,Sets). (In
particular, we have a natural full embedding ΛZ ⊂ ΛZ o Γ).) A morphism∐

s∈S

[ns|ms]→
∐

s′∈S′

[ns′ |ms′ ]
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between two such unions indexed by finite sets S, S′ consists of a map f : S → S′

and a map fs : [ns|ms] → [nf(s)|mf(s)] for every s ∈ S. A map 〈f, {fs}〉 is said
to be vertical (resp. horizontal) if fs is vertical for every s (resp. f is invertible
and fs is horizontal for every s). Clearly, the vertical and horizontal maps form
a factorization system on ΛZ o Γ and we have the following result.

Lemma 2.1. For any vertical map v : [a]→ [b] in ΛZ oΓ and any map f : [b′]→ [b]
there is a Cartesian square

[a′]

v′

��

f ′ // [a]

v

��
[b′]

f // [b]

with vertical v′.

Proof. Since the vertical and horizontal maps form a factorization system on ΛZ oΓ,
we can assume that f is either horizontal or vertical. In the first case, the desired
assertion follows from Lemma 1.9, and in the second it suffices to prove that the
category (ΛZ o Γ)v = ΛZv o Γ has pullbacks. This follows from (1.19) since, for
every m, the category OZ/mZ o Γ has pullbacks (it is equivalent to the category of
finite sets equipped with an action of the group Z/mZ). �

Our definition of (derived) cyclic Mackey functors mimicks that of derived Mackey
functors given in [1], § 3.4. For any two objects c, c′ ∈ ΛZ we let QoΛZ(c, c′) be the
category of diagrams

c c1
voo f // c′ (2.1)

in ΛZ o Γ with vertical v. Morphisms from a diagram c ← c1 → c′ to a diagram
c ← c2 → c′ are given by maps g = 〈g, {gs}〉 : c1 → c2 such that g commutes with
f and v, and each of the components gs is invertible.

We have QoΛZ(c, c′) = Q(ΛZ(c, c′))oΓ, where QΛZ(c, c′) ⊂ QoΛZ(c, c′) is the sub-
category of diagrams (2.1) with c1 ∈ ΛZ ⊂ ΛZ oΓ and invertible maps between such
diagrams. This identification determines the projection functor ρc,c′ : Qo(c, c′)→ Γ
that sends a diagram c ← c1 → c′ to the finite set S of components of the object
c1 =

∐
s∈S [ns|ms] ∈ ΛZ o Γ. Let

Tc,c′ = ρ∗T ∈ Fun(Qo(c, c′), Z)

be the functor from Qo(c, c′) to the category of Abelian groups obtained by taking
the pullback of the functor T ∈ Fun(Γ, Z), T (S) = Z[S].

By Lemma 2.1, for any c, c′, c′′ ∈ ΛZ we have a natural functor

mc,c′,c′′ : Qo(c, c′)×Qo(c′, c′′)→ Qo(c, c′′)

given by pullback. This operation is associative, so that we have a 2-category QΛZ
with the same objects as ΛZ, and with morphism categories Qo(−,−). As in (3.7)
in [1], we have natural maps

µc,c′,c′′ : Tc,c′ � Tc′,c′′ → m∗c,c′,c′′Tc,c′′ ,
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and these maps are associative on triple products. Therefore, by § 1.6 in [1] we have
an A∞-category B q with the same objects as ΛZ, with morphisms given by the bar
complexes of the categories Qo(c, c′) with coefficients in the functors Tc,c′ :

B q(c, c′) = C q(Qo(c, c′), Tc,c′),

and with compositions induced by the functors mc,c′ and the maps µc,c′,c′′ .
For any Abelian category Ab we consider the derived category D(Boppq ,Ab)

of A∞-functors from the opposite category Boppq to the category of complexes of
objects of Ab. By definition, the category ΛZ is embedded in the 2-category QΛZ.
The embedding functor q : ΛZ → QΛZ is the identity on objects and sends mor-
phisms to diagrams (2.1) with v = id. For any c, c′ ∈ ΛZ the restriction q∗Tq(c),q(c′)

is the constant functor Z. Hence restriction determines a natural functor

q∗: D(Boppq ,Ab)→ D(ΛZopp,Ab). (2.2)

Let h : ΛZh → ΛZ be the natural embedding. Composing q∗ with h∗, we obtain
a restriction functor

D(Boppq ,Ab)→ D(ΛZopp
h ,Ab).

Definition 2.2. A cyclic Mackey functor with values in an Abelian category Ab
is an A∞-functor M ∈ D(Boppq ,Ab) whose restriction h∗q∗M ∈ D(ΛZopp

h ,Ab) is
locally constant in the sense of Definition A.1 in § 7.

The cyclic Mackey functors form a full triangulated subcategory of D(Boppq ,Ab).
We denote it by DMΛ(Ab) ⊂ D(Boppq ,Ab). In this paper we shall use only the
case when Ab = k-mod is the category of modules over a commutative ring k. To
simplify the notation, we put DMΛ(k-mod) = DMΛ(k).

By definition, for every m > 1 the embedding OZ/mZ ∼= ΛZm
v ⊂ ΛZ (see (1.19))

extends to a 2-functor
im : QoOZ/mZ → QΛZ, (2.3)

where QoOZ/mZ is the 2-category in [1], § 3.4, and QoOZ/mZ ⊂ QoOZ/mZ is the
full subcategory spanned by the Z/mZ-orbits. This 2-functor is compatible with
the coefficients Tc,c′ ∈ Fun(Qo(c, c′), Z) and, therefore, extends to an A∞-functor

B̃OZ/mZq → B q,
where B̃OZ/mZq is as in [1], § 3.5. The category B̃OZ/mZq is self-dual by definition.
Hence, for any commutative ring k, restriction determines a natural functor

i∗m: D(Boppq , k)→ DM(Z/mZ, k),

where DM(Z/mZ, k) is the category of derived Z/mZ-Mackey functors constructed
in [1]. We also have the left-adjoint functor

im! : DM(Z/mZ, k)→ D(Boppq , k).
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2.2. Geometric fixed points. We now consider the category Λ̂Z in § 1.4. It is
also embedded in QΛZ. The embedding functor q̂ : Λ̂Z → QΛZ is the identity on
objects and sends a diagram (1.21) to the corresponding diagram (2.1) (we recall
that the diagrams (1.21) have no automorphisms and, therefore, this construction
involves no choices). As in the case of the functor q in (2.2), the functor q̂ is
compatible with the coefficients Tc,c′ , whence we obtain the restriction functor

q̂ ∗: D(Boppq , k)→ D(Λ̂Zopp, k).

For every positive integer m > 1, the 2-functor im restricts to the embedding
OZ/mZ → Λ̂Z. Hence we have a functorial isomorphism

i∗m ◦ q̂ ∗ ∼= q̂ ∗m ◦ i∗m, (2.4)

where q̂ ∗m is the restriction with respect to the 2-functor q̂m : OZ/mZ → Qo(OZ/mZ)
considered in [1], § 5.3 (and denoted by q there).

We now recall that we have decompositions (1.19), (1.18) and the identification
ΛZh

∼= Λ̂Zh
∼= N∗ × Λ. Define a functor

ν : Fun(ΛZopp, k) = Fun(Λ̂Zopp
h , k)→ Fun(Λ̂Zopp, k)

by putting ν(M)([n|m]) = M([n|m]) for any M ∈ Fun(Λ̂Zopp
h , k), [n|m] ∈ Λ̂Z, and

ν(M)(f) =

{
M(v ◦ h), v is invertible,
0, v is not invertible,

(2.5)

where f = v ◦ h is the horizontal/vertical factorization of a morphism f in Λ̂Zh.
This construction is easily seen to be well defined and yields an exact functor ν.
We denote its extension to the derived categories again by ν. There is a left-adjoint
functor ϕ : Fun(Λ̂Zopp, k)→ Fun(ΛZopp

h , k), and its derived functor

L
q
ϕ : D(Λ̂Zopp, k)→ D(ΛZopp

h , k)

is left adjoint to ν : D(ΛZopp
h , k)→ D(Λ̂Zopp, k).

Definition 2.3. The geometric fixed-point functor

Φ: D(Boppq , k)→ D(ΛZopp
h , k)

is given by
Φ = L

q
ϕ ◦ q̂ ∗.

We note that, by definition, the fixed-point functor Φ splits into components

Φm : D(Boppq , k)→ D((ΛZm
h )opp, k) ∼= D(Λopp, k)

labelled by positive integers m. We will need some results on the compatibil-
ity of Φ with the geometric fixed-point functors constructed in [1]. Namely, we
fix a positive integer m > 1 and consider the embedding im in (2.3) and the



Cyclotomic complexes 871

corresponding restriction functor i∗m. Let OZ/mZ be the category of Z/mZ-orbits
and their isomorphisms. We define a functor

νm : Fun(OZ/mZ, k)→ Fun(OZ/mZ, k)

by the formula (2.5) for the functor ν (that is, νm(M)(v) is equal to M(v) for
invertible v and is 0 otherwise). Let ϕm : Fun(OZ/mZ, k) → Fun(OZ/mZ, k) be the
left-adjoint functor for νm, and let L

q
ϕm be the derived functor of ϕm. Then

we have an obvious isomorphism

i∗m ◦ ν ∼= νm ◦ i∗m. (2.6)

By adjunction, the isomorphisms (2.4) and (2.6) induce base-change maps

i∗m ◦ L
q
ϕ→ L

q
ϕm ◦ i∗m, im! ◦ q̂ ∗m → q̂ ∗ ◦ im!, (2.7)

where im stands for the 2-functor (2.3) and its restrictions

im : OZ/mZ → Λ̂Zopp, im : OZ/mZ → Λ̂Zopp
h

to q̂m(OZ/mZ) and q̂m(OZ/mZ) respectively.

Lemma 2.4. The base-change maps (2.7) are invertible for all integers m > 1.

Proof. Let ĥ : Λ̂Zopp
h → Λ̂Zopp and hm : OZ/mZ → OZ/mZ be the tautological

embeddings. Then we obviously have ĥ∗ ◦ ν ∼= id and h∗m ◦ ν∗m
∼= id, whence

by adjunction,
L

q
ϕ ◦ ĥ!

∼= id, L
q
ϕm ◦ hm!

∼= id.

On the other hand, we have the horizontal/vertical factorization system on Λ̂Z
opp ∼=

ΛZ, and Lemma A.4 (see § 7) yields that

i∗m ◦ ĥ!
∼= hm! ◦ i∗m.

Hence the map
i∗m ◦ L

q
ϕ ◦ ĥ! → L

q
ϕm ◦ i∗m ◦ ĥ!

is invertible and, therefore, the first of the maps (2.7) becomes an isomorphism after
evaluation at any object E ∈ D(Λ̂Z

opp
, k) of the form E = ĥ!E

′, E′ ∈ D(Λ̂Zopp
h , k).

Since the category D(Λ̂Zopp, k) is generated by objects of this form, the map
i∗m ◦ L

q
ϕ→ L

q
ϕm ◦ i∗m is itself an isomorphism.

For the second of the maps (2.7), we put ĥ′ = q̂ ◦ ĥ, h′m = q̂m ◦ hm. Then the
horizontal/vertical factorization system on Λ̂Z oΓ also shows that every diagram of
the form (2.1) decomposes as

c c1
voo v1 // c2

h // c′

with vertical v, v1 and horizontal h. It follows that

i∗m ◦ ĥ′∗
∼= h′m∗ ◦ i∗m.
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The proof is the same as in Lemma A.4 except that the Hom-sets Λ̂Zopp(−,−),
Λ̂Zopp

v (−,−) in (A.3) must be replaced by the Hom-categories QoΛ̂Z(−,−),
Qo(OZ/mZ)(−,−) respectively. Therefore the base-change map

i∗m(q̂ ∗E)→ q̂ ∗m(i∗mE)

is an isomorphism for every E ∈ D(Λ̂Zopp, k) of the form E = ĥ′∗E
′, E′ ∈

D(Λ̂Zopp
h , k). Since the objects of this form generate the derived category, we have

i∗m ◦ q̂ ∗ ∼= q̂ ∗m
∼= i∗m. By adjunction, this gives the desired assertion. �

Corollary 2.5. For any M ∈ D(Boppq , k) and all positive integers m,n > 1 we
have a natural isomorphism

Φm(M)([n]) = Φ(M)([n|m]) ∼= Φ[(Z/nmZ)/(Z/mZ)]i∗mnM,

where [(Z/nmZ)/(Z/mZ)] ∈ OZ/nmZ is understood as a Z/nmZ-orbit, and Φc,
c ∈ OZ/nmZ, is the geometric fixed-point functor in [1], § 5.1. Moreover, for every
derived Mackey functor M ∈ DM(Z/mnZ, k) we have a natural isomorphism

Φm(imn!M) ∼= imn!(Φ[(Z/nmZ)/(Z/mZ)]M). (2.8)

Proof. This follows immediately from Lemma 2.4 and [1], Proposition 6.5. �

2.3. Description in terms of coalgebras. We now adopt the constructions
in [1], § 6, and use the fixed-point functor Φ to obtain another description of the
category DMΛ(k) of cyclic Massey functors.

2.3.1. A∞-coalgebras. Consider the cyclotomic category ΛR in § 1.2 with its ver-
tical/horizontal factorization system. For any object [m] ∈ ΛR let [m] \ΛR be the
category of objects [m′] ∈ ΛR equipped with a map [m]→ [m′]. The factorization
system on ΛR induces a factorization system on [m] \ ΛR for every [m].

Lemma 2.6. For any vertical map v : [a]→ [b] in [m]\ΛR and any map f : [b′]→ [b]
there is a Cartesian square

[a′]

v′

��

f ′ // [a]

v

��
[b′]

f // [b]

with vertical v′.

Proof. Arguing as in the proof of Lemma 2.1, we see that the wreath product
category ΛR oΓ has fibre products. Therefore so does the category [m]\ (ΛR oΓ). It
remains to notice that the embedding [m] \ ΛR→ [m] \ (ΛR o Γ) has a left adjoint
(any S ∈ ΛR o Γ is a disjoint union of objects in ΛR, and any map [m]→ S factors
uniquely through one of these objects). �
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Given any morphism f : [m′] → [m] in ΛR and any integer n > 0, we consider
all diagrams

[m′]
g // [m0]

v0 // · · ·
vn−1 // [mn]

vn // [m] (2.9)

in ΛR with vertical vi, 0 6 i 6 n, non-invertible vn, and f = vn ◦ · · · ◦ v0 ◦ g. Let
Vn(f) be the groupoid of all such diagrams and isomorphisms between them. Since
the category ΛR is small, the groupoid Vn(f) is small for all f , n.

Suppose that f = f (1) ◦ f (2) for some [m′′] ∈ ΛR and some morphisms f (1):
[m′′] → [m], f (2): [m′] → [m′′]. Then for every l > 1 and any diagram α ∈ Vn(f)
of the form (2.9) we can use Lemma 2.6 to construct a commutative diagram

[m′]
g // [m0]

v0 // · · ·
vn−1 // [mn]

vn // [m]

[m′]
g′ // [m′0]

f
(1)
0

OO

v′0 // · · ·
v′n−1 // [m′n]

f(1)
n

OO

v′n // [m′′]

f(1)

OO

where f (2) = v′n ◦ · · · ◦v′0 ◦g′ and all the commutative squares are Cartesian squares
in the category [m′] \ ΛR. For any i, 0 6 i 6 n, we have a natural vertical map
νi = v′n ◦ · · · ◦ vi : [m′i]→ [m′′]. Take the minimal i such that νi is an isomorphism.
Let α(2) be the diagram

[m′]
g′ // [m′0]

v′0 // · · ·
v′i−2 // [m′i−1]

νi◦v′i−1 // [m′′]

in Vi(f (2)), and let α(1) be the diagram

[m′′]
f
(1)
i ◦ν

−1
i // [mi]

vi // · · · vn // [m]

in Vn−i(f (1)). Sending α to α(1) × α(2), we get a well-defined functor

Vn(f)→
∐

06i6n

Vi(f (1))× Vn−i(f (2)). (2.10)

This construction is obviously associative: for every l-tuple f1, . . . , fl of composable
morphisms in ΛR we can compose the functors (2.10) and obtain a functor

Vn(f1 ◦ · · · ◦ fl)× Il →
∐

n1+···+nl=n

Vn1(f1)× · · · × Vnl
(fl), (2.11)

where Il is the lth groupoid of the monoidal category operad in Definition A.8.
These functors are compatible with the natural operad structure on I q in the obvious
sense.

For every i, 1 6 i6n, forgetting the object [mi] in the diagrams (2.9) yields
a functor δi : Vn(f) → Vn−1(f), and these functors satisfy the relations between
simplicial face maps (not only up to an isomorphism, but on the nose). Therefore
we can define a bicomplex T q, q(f) by setting

T q, q(f) = C q(V q(f), Z), (2.12)
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where C q(V q(f), Z) is the bar complex of the groupoid V q(f) with coefficients in
the constant functor Z. One of the differentials in the bicomplex (2.12) comes from
the bar complex, and the other is given by d = d1 − d2 + · · · ± dn, where di is the
map induced by the functor δi. The coproduct operations (2.11) strictly commute
with the functors δi, whence we obtain canonical operations

C q(Il, Z)⊗ T q(f1 ◦ · · · ◦ fl)→ T q(f1)⊗ · · · ⊗ T q(fn),

which are also compatible with the asymmetric operad structure on C q(I q, Z).
Fixing a map Ass∞ → C q(I q, Z) as in § 7, we equip T q(−) with the structure of
a ΛR-graded A∞-coalgebra in the sense of [1], § 1.5.4.

In what follows we shall use some elementary properties (given in the following
lemma) of the ΛR-graded A∞-coalgebra T q.
Lemma 2.7. (i) The A∞-coalgebra T q is augmented and we have Tl(f) = 0 for
every horizontal map f and all l > 1.

(ii) For any composable maps f1, f2 with f1 horizontal, the coproduct map

b2 : T q(f2 ◦ f1)→ T q(f1)⊗ T q(f2) ∼= T q(f2)

is an isomorphism.
(iii) Let f1, . . . , fn be an n-tuple of composable maps in ΛR, where n > 3 and fi

is horizontal for i > 2. Then the corresponding A∞-operation

bn : T q(fn ◦ f1)→ T q(f1)⊗ · · · ⊗ T q(fn) ∼= T q(fn)

is equal to zero.

Proof. Part (i) is obvious: for every f , the set V0(f) is by definition a single point,
and if f is horizontal, then Vl(f) is empty for l > 1. To verify (ii), we note that
since f1 is horizontal, the only non-trivial term in the coproduct (2.10) is the map

Vl(f2 ◦ f1)→ Vl(f2)× V0(f1) = Vl(f2). (2.13)

Sending a diagram α ∈ Vn(f2) of the form (2.9) to the diagram

[m′]
g◦f1 // [m0]

v0 // · · ·
vn−1 // [mn]

vn // [m],

we get a map Vn(f2)→ Vn(f2◦f1) which is strictly inverse to (2.13). Moreover, this
inverse map construction is obviously strictly associative, so that for any n-tuple of
composable maps f1, . . . , fn with horizontal f2, . . . , fn for n > 3 we obtain a single
map

Vl(fn)→ Vn(fn ◦ · · · ◦ f1).

Therefore the coproduct map (2.10) is also strictly associative, that is, the map
(2.11) factors through the map In → pt. By definition, this means that the A∞-
operation bn vanishes. This proves (iii). �

Lemma 2.8. Let h : ΛRh
∼= Λ → ΛZ and i : ΛRv

∼= OZ → ΛZ be the tautological
embeddings. Then h∗T q is the trivial Λ-graded A∞-coalgebra, h∗T q(f) ∼= Z for
any morphism f in Λ, and i∗mT q is isomorphic to the OZ-graded A∞-coalgebra
in [1], § 6.3.3.
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Proof. The first assertion follows from Lemma 2.7. To prove the second, we note
that if f is vertical, then all the diagrams (2.9) consist of vertical maps and, there-
fore, coincide with the diagrams used in [1], § 6.3.3. �

2.3.2. The comparison theorem. We now consider the natural cofibration λ:
ΛZ→ ΛR in (1.17), and let λ∗T q be the ΛZ-graded coalgebra obtained by pulling
back. For any ring k we consider the derived category D(ΛZ, λ∗T q, k) of A∞-
comodules over λ∗T q. By Lemma 2.8, the pullback h∗λ∗T q with respect to the tau-
tological embedding h : ΛZh → ΛZ is the trivial ΛZh-graded A∞-coalgebra. Hence
we have a natural pullback functor

h∗: D(ΛZ, λ∗T q, k)→ D(ΛZopp
h , k).

Let DMΛT (k) ⊂ D(ΛZ, λ∗T q, k) be the full subcategory spanned by the objects M
whose restriction h∗M is locally constant in the sense of Definition A.1. We want to
show that the category DMΛT (k) is naturally equivalent to the category DMΛ(k)
of k-mod-valued cyclic Mackey functors.

To construct a comparison functor between these two categories, let Vl([n|m]),
[n|m] ∈ ΛZ, l > 0, be the groupoid of diagrams

[n1|m1]
v1 // · · ·

vn−1 // [nl|ml]
vn // [n|m]

in ΛZ with v1, . . . , vn vertical and vn non-invertible. Let σl : Vl([n|m]) → Λ̂Z be
the functor sending such a diagram to [n1|m1] ∈ Λ̂Z or to [n|m] if l = 0. For any
A∞-functor E q from B q to the category of complexes of k-modules, let Φ[n|m]q (E q)
be the total complex of the triple complex

C q(V q([n|m]), σ∗l q̂ ∗E q),
where two of the differentials are induced by the differentials in E q and in the bar
complex, and the third is as in [1], § 6.3.1. Then the construction in [1], § 6.3.2,
shows that Φ[n|m]q (E q) has the natural structure of an A∞-comodule over λ∗T q.
Hence we obtain a functor

Φ q : D(Boppq , k)→ D(ΛZ, λ∗T q, k). (2.14)

Choose an integer m > 1 and consider the embedding im : OZ/mZ∼=ΛZm
v →ΛZ.

The composite λ◦im : OZ/mZ→ΛR factors through the natural embedding OZ/mZ⊂
OZ = ΛRv → ΛR. Therefore, by Lemma 2.8, the OZ/mZ-graded A∞-coalgebra
i∗mλ∗T q is isomorphic to the A∞-coalgebra in [1], § 6.3.3, and we have a natural
pullback functor

i∗m: D(ΛZ, λ∗T q, k)→ DM(Z/mZ, k),

where DM(Z/mZ, k) is the category of k-valued derived Mackey functors in [1] for
the group Z/mZ. We have an obvious isomorphism

i∗m ◦ h∗ ∼= h∗m ◦ i∗m, (2.15)

where hm :OZ/mZ→OZ/mZ is the tautological embedding and h∗m:DM(Z/mZ, k)→
D(OZ/mZ, k) is the corresponding pullback functor. We note that h∗m admits
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a right-adjoint functor hm∗ by Lemma 6.18 in [1]. Moreover, by construction,
the comparison functor Φ q in (2.14) restricts to give the corresponding functor
for OZ/mZ. In other words, we have a canonical isomorphism

Φ[m]q ◦ i∗mE ∼= i∗m ◦ Φ q, (2.16)

where Φ[m]q is the functor Φ q in [1], Theorem 6.17, for C = OZ/mZ.

Lemma 2.9. The functor h∗: D(ΛZ, λ∗T q, k)→D(ΛZopp
h , k) admits a right adjoint

h∗ : D(ΛZopp
h , k)→ D(ΛZ, λ∗T q, k).

For every m > 1, the base-change map i∗m ◦ h∗ → hm∗ ◦ i∗m induced by (2.15) is an
isomorphism.

Proof. This follows immediately from Lemmas A.6, A.7. �

Lemma 2.10. Let D′ be a triangulated subcategory of D(ΛZ, λ∗T q, k). Suppose
that D′ is closed with respect to arbitrary products and contains all the objects
h∗M , M ∈ D(ΛZopp

h , k). Then D′ = D(ΛZ, λ∗T q, k).

Proof. For any integer n > 1 let hn : Λ ∼= ΛZn
h ⊂ ΛZh be the embedding of the nth

component of the decomposition (1.18). For every M ∈ D(ΛZopp
h , k) we define the

support Supp(M) ⊂ N∗ as the set of all n > 1 such that h∗l M is non-zero for some l
dividing n. For every M ∈ D(ΛZ, λ∗T q, k) we put SuppM = Supph∗M . Note that
h∗n′ ◦h∗ ◦hn∗ = 0 for all integers n, n′ > 1 unless n divides n′, and h∗n ◦h∗ ◦hn∗ ∼= id
(by Lemma 2.9 it suffices to verify both statements after applying the functors i∗m,
m > 1, and then they follow immediately from Lemma 6.18 in [1]). Therefore,
in particular, for every n > 1 and all M ∈ D(ΛZ, λ∗T q, k) we have

Supp(h∗hn∗h
∗
nh∗M) ⊂ Supp(M).

Moreover, given an object M ∈ D(ΛZ, λ∗T q, k), let M [1] be the cone of the adjunc-
tion map

M → h∗(h∗M)m,

where m is the smallest integer in Supp(M). Then

Supp(M [1]) = Supp(M) \ {m}.

By induction, we put M [n] =(M [n−1])[1] for all n > 1. Then we have natural maps
M [n] → M whose cones M̃ [n] lie in D′ and form an inverse system. We have
a compatible system of maps ηn : M → M̃ [n], n > 1. By induction, for all n >

n′ > 1, the transition map M̃ [n+1] → M̃ [n] becomes an isomorphism after applying
h∗n′h

∗, and so does the map ηn. We put

M̃ = holim M̃ [n],

where holim is defined by the telescope construction, and let η : M → M̃ be the
natural map. Then, for every n > 1, the inverse system h∗nh∗M̃ [n′] stabilizes for
n′ > n, and h∗nh∗(η) is an isomorphism. Thus η is an isomorphism. But, by
construction, M̃ lies in the category D′. �
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Lemma 2.11. The composite

h∗ ◦ Φ q : D(Boppq , k)→ D(ΛZopp
h , k)

is isomorphic to the fixed-point functor Φ in Definition 2.3.

Proof. By construction, the image h∗Φ q(E) of any E ∈ D(Boppq , k) depends only
on the restriction q̂ ∗E ∈ D(Λ̂Zopp, k): the construction of the functor Φ q also gives
a functor ϕ q : D(Λ̂Zopp, k)→ D(ΛZopp

h , k), and we have h∗◦Φ q ∼= ϕ q◦ q̂ ∗. For every
object E ∈ Fun(Λ̂Zopp, k), the degree-0 homology of the complex ϕ q(E) is easily
seen to be isomorphic to ϕ(E), and this isomorphism is functorial in E. Thus,
by the universal property of the derived functor, it extends to a map

e : ϕ q → L
q
ϕ.

We claim that e : ϕ q(E) → L
q
ϕ(E) is an isomorphism for every E ∈ D(Λ̂Zopp, k)

of the form E = q̂ ∗E′, E′ ∈ D(Boppq , k). Indeed, it suffices to prove that

i∗m(e) : i∗m ◦ h∗ ◦ Φ q → im ◦ Φ (2.17)

is an isomorphism for all m > 1. By (2.16) and (2.15), the left-hand side of (2.17) is
isomorphic to h∗m ◦ Φ[m]q ◦ i∗m, and by Lemma 6.15 in [1], the functor h∗m ◦ Φ[m]

is isomorphic to the direct sum of the functors Φ[(Z/nmZ)/(Z/mZ)] in Corollary 2.5.
To complete the proof, it suffices to use Corollary 2.5. �

Proposition 2.12. The functor Φ q in (2.14) is an equivalence of categories, and
it identifies DMΛ(k) ⊂ D(Boppq , k) with DMΛT ⊂ D(ΛZ, λ∗T q, k).

Proof. As in Lemma A.6, we write D′ ⊂ D(ΛZ, λ∗T q, k) for the subcategory of
objects M in the category D(ΛZ, λ∗T q, k) such that the functor Hom(Φ q(−),M)
from D(Boppq , k) to D(k) is representable. The geometric fixed-point functor Φ
obviously has a right adjoint. Therefore, by Lemma 2.11, the subcategory D′
satisfies all the hypotheses of Lemma 2.10. Thus D′ is the whole of the category
D(ΛZ, λ∗T q, k) and Φ q admits a right-adjoint functor

Φ−1q : D(ΛZ, λ∗T q, k)→ D(Boppq , k).

By Lemma 2.11, the composite Φ−1q ◦ h∗ is right adjoint to the geometric fixed-
point functor Φ in Definition 2.3. Moreover, for every m > 1, the functor Φ[m]q
in (2.16) is an equivalence of categories by Theorem 6.17 in [1]. Let Φ−1

m be the
inverse equivalence. Then, by Corollary 2.5, the base-change map

i∗m ◦ Φ−1q ◦ h∗ → Φ−1
m ◦ hm∗ ◦ i∗m,

being adjoint to the direct product of the isomorphisms (2.8), is itself an isomor-
phism. Hence Lemma 2.9 yields that the base-change map

i∗m(Φ−1q (M))→ Φ−1
m (i∗m(M))

is an isomorphism for every M ∈ D(ΛZ, λ∗T q, k) of the form M = h∗M
′, M ′ ∈

D(ΛZopp, k). By Lemma 2.10, this implies that it is an isomorphism for all M .
Thus we have

i∗m ◦ Φ q ◦ Φ−1 ∼= Φ[m] ◦ Φ−1
m ◦ i∗m, i∗m ◦ Φ−1 ◦ Φ q ∼= Φ−1

m ◦ Φ[m] ◦ i∗m
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for all m > 1. Since Φ[m]q and Φ−1
m are mutually inverse equivalences of categories,

it follows that the adjunction maps Id→ Φ−1 ◦Φ q, Φ−1 ◦Φ q → Id become isomor-
phisms after restricting to ΛZv. Since the restriction functor is obviously conserva-
tive, we conclude that Φ q and Φ−1 are mutually inverse equivalences of categories.
To prove that Φ q identifies DMΛ(k) and DMΛT (k), note that h∗ ◦ Φ q ∼= h∗. �

2.4. Restriction and corestriction. We make some further observations on
cyclic Massey functors for later use. Recall that there are 2-functors q : ΛZ→ QΛZ
and q̂ : Λ̂Z→ QΛZ, which agree on horizontal maps: q ◦ h ∼= q̂ ◦ ĥ. Hence we have
an isomorphism h∗ ◦ q∗ ∼= ĥ∗ ◦ q̂ ∗.

Lemma 2.13. The base-change map

ĥ! ◦ h∗ → q̂ ∗ ◦ q!

induced by the isomorphism h∗ ◦ q∗ ∼= ĥ∗ ◦ q̂ ∗ is itself an isomorphism.

Proof. For reasons explained in the proof of Lemma 2.4, this can be proved in the
same way as in the proof of Lemma A.4. �

In particular, Lemma 2.13 shows that we have natural identifications

h∗ ◦ Φ q ◦ q!
∼= Φ ◦ q!

∼= L
q
ϕ ◦ q̂ ∗ ◦ q!

∼= L
q
ϕ ◦ ĥ! ◦ h∗. (2.18)

Since L
q
ϕ◦ ĥ! is adjoint to ĥ∗ ◦ν = Id, the right-hand side of (2.18) is just h∗. One

can actually say more: the composite

Φ q ◦ q!: D(ΛZopp, k)→ D(ΛZ, λ∗T q, k)

is naturally isomorphic to the corestriction functor ξ∗ with respect to the augmen-
tation map of the augmented ΛZ-graded A∞-coalgebra λ∗T q (to construct an iso-
morphism, we resolve a functor E ∈ Fun(ΛZopp, k) by functors of the form im!Em,
Em ∈ Fun(Oopp

Z/mZ, k) and use Lemma 6.20 in [1]). Therefore the corestriction func-
tor ξ∗ admits a right adjoint ξ∗. It is given by

ξ∗ = q∗ ◦ Φ−1q : D(ΛZ, λ∗T q, k)→ D(ΛZopp, k).

We also have

h∗ ◦ ξ∗ ◦ ξ∗ ∼= h∗ ◦ q∗ ◦ q!
∼= ĥ∗ ◦ q̂ ∗ ◦ q!

∼= ĥ∗ ◦ ĥ! ◦ h∗. (2.19)

To compute the right-hand side of (2.17) more effectively, it is useful to consider
the category ΛI ∼= Λ̃I in Lemma 1.5. We also consider the product ΛI × N∗ and
define projections i, π : ΛI × N∗ → Λ̂Zopp

h
∼= ΛZh

∼= Λ× N∗ by putting

i = i× id, π = π × ρm on Λm × N∗ ⊂ ΛI × N∗, (2.20)

where ρm : N∗ → N∗ is the map of multiplication by the integer m > 1.
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Lemma 2.14. We have a natural isomorphism

ĥ∗ ◦ ĥ!
∼= π! ◦ i∗.

Proof. Under the identification Λ̂Zopp ∼= ΛZ, the functor ĥ becomes the tautological
embedding h : ΛZh → ΛZ. Let ΛI be the category of vertical maps v : a→ a′ in ΛZ
whose morphisms are given by commutative squares

a1

v1

��

f // a2

v2

��
a′1

f ′ // a′2

with horizontal f (and arbitrary f ′). Let s : ΛI → ΛZh (resp. t : ΛI → ΛZ) be the
functor sending a map to its source (resp. target). Then t is a cofibration and
s has a left adjoint ι : ΛZh → ΛI that sends every object a ∈ ΛZ to its identity
endomorphism. We have ĥ = t ◦ ι, whence

h!
∼= t! ◦ ι! ∼= t! ◦ s∗.

It remains to note that we have a natural Cartesian square

Λ̃I × N∗

π

��

h // ΛI

t

��
LZh

h // ΛZ

Hence h∗ ◦ t! ∼= π! ◦ h∗ by base change, and we have s ◦ h = i. �

§ 3. Cyclotomic complexes

We can now introduce the main subject of this paper: the notion of a cyclotomic
complex. Fix a commutative ring k. Consider the cyclotomic category ΛR and the
ΛR-graded A∞-coalgebra T q in § 2.3. Let λ̃ : Λ̃R→ ΛR be the cofibration in (1.17),
and let h : Λ̃Rh

∼= Λ × I → Λ̃R be the natural embedding. By Lemma 2.7, the
restriction h∗λ̃∗T q is the trivial Λ̃Rh-graded A∞-coalgebra, h∗λ̃∗T q(f) = Z for any
morphism f in Λ̃Rh, and we have a restriction functor

h∗: D(Λ̃R, λ̃∗T q, k)→ D(ΛRh, k).

Definition 3.1. A cyclotomic complex over k is an A∞-comodule M q over λ̃∗T q
with values in the category k-mod such that the restriction h∗M q ∈ D(Λ̃Rh, k) is
locally constant in the sense of Definition A.1.

The derived category of cyclotomic complexes over k will be denoted by DΛR(k).

3.1. Normalized ΛR-graded coalgebras. Definition 3.1 is short, but neither
explicit nor convenient for computations since the A∞-coalgebra T q is given by
an implicit and rather complicated construction. In this section we provide more
explicit descriptions of the categories DΛR(k). This will also result in a more con-
venient description of the category DMΛ(k) in § 2. We start with the following
reduction, which is similar to the results in [1], §§ 7.5, 7.6.
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Definition 3.2. Let G be a finite group. A complex E q of Z[G]-modules is
strongly acyclic with respect to G if, for any subgroup H ⊂ G, H 6= G, and
any Z[H]-module V we have

lim
n→

H
q
(H,V ⊗ FnE q) = 0,

where F
q
E q is the stupid filtration on E q. A map f : E q→E′q between Z[G]-modules

is a strong quasi-isomorphism with respect to G if its cone is strongly acyclic.

Definition 3.3. A ΛR-graded A∞-coalgebra R q is said to be normalized if it
possesses properties (i)–(iii) in Lemma 2.7.

In particular, the coalgebra T q is normalized (by Lemma 2.7). For every nor-
malized ΛR-graded A∞-coalgebra R q and any map f : [m] → [m′] in the cate-
gory ΛR, the complex R q(f) is by definition equipped with an action of the cyclic
group Aut([m]).

Definition 3.4. An A∞-map ξ : R q → R′q between normalized ΛR-graded A∞-
coalgebras is a strong quasi-isomorphism if, for any map f : [m] → [m′], the cor-
responding map ξ : R q(f) → R′q(f) is a strong quasi-isomorphism with respect to
the subgroup Aut(f) ⊂ Aut([m]) consisting of all g ∈ Aut([m]) such that f ◦g = f .

Proposition 3.5. For every strong A∞-quasi-isomorphism ξ : R q → R′q between
normalized ΛR-graded A∞-coalgebras and any commutative ring k, the corestric-
tion functors

ξ∗: D(Λ̃R, λ̃∗R q, k)→ D(Λ̃R, λ̃∗R′q, k),

ξ∗: D(ΛZ, λ∗R q, k)→ D(ΛZ, λ∗R′q, k)

between the derived categories of A∞-comodules are equivalences of categories.

Proof. Lemmas 2.9 and 2.10 hold with any normalized ΛR-graded A∞-coalgebra
instead of T q and with the same proof. They also hold for Λ̃R instead of ΛZ (again
with the same proof). Thus, as in the proof of Proposition 2.12, the functors ξ∗

admit right adjoints

ξ∗ : D(Λ̃R, λ̃∗R′q, k)→ D(Λ̃R, λ̃∗R q, k),

ξ∗ : D(ΛZ, λ∗R′q, k)→ D(ΛZ, λ∗R q, k).

Moreover, for every integer m > 1 we have a natural embedding im: OZ/mZ ∼=
ΛRm

v → ΛR and the corresponding restriction functors

i∗m: D(Λ̃R, λ̃∗R q, k)→ D(OZ/mZ, i∗mλ̃∗R q, k),

i∗m: D(Λ̃R, λ̃∗R′q, k)→ D(OZ/mZ, i∗mλ̃∗R′q, k).

For ΛZ, these functors were already considered in § 2. For either ΛZ or Λ̃R, we have
an obvious isomorphism ξ∗m◦i∗m ∼= i∗m◦ξ∗, where ξm = i∗m(ξ), and the corresponding
base-change map i∗m ◦ξ∗ → ξm∗ ◦ i∗m is also an isomorphism, as in Lemma 2.9. Thus
it suffices to prove that ξ∗m and ξm∗ are mutually inverse equivalences of categories
for every m. This is done in [1], Lemma 7.14. �



Cyclotomic complexes 881

3.2. Reduced ΛR-graded coalgebras. The first corollary of Proposition 3.5 is
analogous to the reduction made in [1], § 7.5.

Definition 3.6. A normalized ΛR-graded A∞-coalgebra R q is said to be reduced
if, for any map f in ΛR of degree n > 1, we have R(f) = 0 unless n is prime. The
reduction Rredq of a normalized ΛR-graded A∞-coalgebra R q is defined by setting

Rredq (f) =

{
R q(f) if the degree of f is 1 or a prime,
0 otherwise,

with the same A∞-operations as in R q when it makes sense, and 0 otherwise.

For every normalized ΛR-graded A∞-coalgebra R q, we obviously have a canon-
ical map Rredq → R q.
Lemma 3.7. For every normalized ΛR-graded A∞-coalgebra R q, the canonical
map Rredq → R q induces equivalences of categories

D(Λ̃R, λ̃∗Rredq , k) ∼= D(Λ̃R, λ̃∗R q, k), D(ΛZ, λ∗Rredq , k) ∼= D(ΛZ, λ∗R q, k).

Proof. By Lemma 7.15(ii) in [1], the map Rredq → R q is a strong quasi-isomorphism
in the sense of Definition 3.4. Hence the desired assertion follows from Proposi-
tion 3.5. �

We now observe that reduced ΛR-graded A∞-coalgebras are essentially linear
objects: all potentially non-linear comultiplication maps are 0 by definition. To
make this assertion precise, we put

ΛIred =
∐

p is prime

Λp ⊂ ΛI,

where ΛI is the category (1.2).

Definition 3.8. An A∞-functor from a small category C to an Abelian category Ab
is said to be normalized if, for any n-tuple of composable invertible morphisms
f1, . . . , fn in C with n > 3, the corresponding A∞-operation bn is equal to 0.

Lemma 3.9. The category of reduced normalized ΛR-graded A∞-coalgebras and
A∞-maps between them is equivalent to the category of normalized A∞-functors
from ΛIopp

red to Z-mod and A∞-maps between them.

Proof. Let R q be a reduced normalized ΛR-graded A∞-coalgebra. For every object
[m] ∈ ΛR we have the category ΛRh/[m] of horizontal maps f : [n]→ [m], [n] ∈ ΛR.
Since R q is normalized, for every map g : [m] → [m′] we can define a functor Rgq
from (ΛRh/[m])opp to complexes of Abelian groups by putting

Rgq(f) = R q(g ◦ f).

This functor is constant (all transition maps are isomorphisms). We put

P q(g) = lim
←
Rgq(f),
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where the limit is taken over the category (ΛRh/[m])opp. Moreover, every horizontal
map h : [m] → [m′] induces a functor ΛRh/[m] → ΛRh/[m′], f 7→ h ◦ f . For
every map g : [m′] → [m′′], restriction with respect to this functor gives a natural
map

h∗: P q(g)→ P q(g ◦ h),

and this construction is associative.
Recall that we have the equivalence (1.10). Restrict it to ΛIred ⊂ ΛI. For every

object a ∈ ΛIred we put
P q(a) = P q(v(a)).

Then P q(−) has the natural structure of a normalized A∞-functor from ΛIopp
red

to complexes of Abelian groups: for every n-tuple

ip(a0)

v0

��

f1 // ip(a1)

v1

��

f2 // · · · fn // ip(an)

vn

��
πp(a0)

f ′1 // πp(a1)
f ′2 // · · ·

f ′n // πp(an)

of maps of the form (1.9), the A∞-operation P q(an) → P q(a0) is the composite of
the map

(fn ◦ · · · ◦ f1)∗: P q(an)→ P q(vn ◦ fn ◦ · · · ◦ f1) = P q(f ′n ◦ · · · ◦ f ′1 ◦ v0)

and the map
P q(f ′n ◦ · · · ◦ f ′1 ◦ v0)→ P q(v0) = P q(a0)

induced by the A∞-operation on R q.
Conversely, let P q be a normalized A∞-functor from ΛIopp

red to complexes of
Abelian groups. For every morphism f : [m] → [n] of prime degree in ΛR, let
C(f) be the category of diagrams

[m] h // [m′] v // [n]

with vertical v, horizontal h and f = v◦h. Sending such a diagram to P q(v), we get
a functor P q(f) from C(f) to complexes of Abelian groups. We put

R q(f) = lim
←

P q(f),

where the limit is taken over Cf . It remains to verify that the structure of an
A∞-functor on P q induces the structure of a reduced normalized A∞-coalgebra
on R q(−) and that both constructions are mutually inverse. �

We can now make our final reduction. A normalized A∞-functor M q from ΛIopp
red

to Z-mod is said to be admissible if, for every object [a] ∈ Λp ⊂ ΛIred, we have

Mi([a]) =

{
0 for i < 0,

Z for i = 0,



Cyclotomic complexes 883

and Mi([a]) is a free Z[Z/pZ]-module for i > 1. A reduced normalized ΛR-graded
A∞-coalgebra R q is said to be admissible if the A∞-functor E q that corresponds
to R q under the equivalence in Lemma 3.9 is admissible. Note that the A∞-
coalgebra T q is admissible by Proposition 7.8 in [1].

Lemma 3.10. For all admissible reduced normalized ΛR-graded A∞-coalgebras
R q, R′q and any ring k we have canonical equivalences

D(Λ̃R, λ̃∗R′q, k) ∼= D(Λ̃R, λ̃∗R q, k), D(ΛZ, λ∗R′q, k) ∼= D(ΛZ, λ∗R q, k).

Proof. We choose a projective resolution P̃ q of the constant functor Z∈Fun(ΛIopp
red , Z)

and put P0 = Z, Pi = P̃i−1 for i > 1. Then P q is an admissible normalized A∞-
functor from ΛIopp

red to Z-mod, and P̃ q is h-projective by Lemma A.5. Therefore for
any other admissible normalized A∞-functor P ′q we have an A∞-map

ξ : P q → P ′q.
Moreover, for every [m] ∈ Λp ⊂ ΛIred, the map ξ([m]) is a strong quasi-isomorphism
with respect to Z/pZ ⊂ Aut([m]). Let P ′q be the A∞-functor corresponding to
the A∞-coalgebra R q, and let R̂ q be the A∞-coalgebra corresponding to the A∞-
functor P q. Then ξ induces a map

ξ : R̂ q → R q,
which is a strong quasi-isomorphism in the sense of Definition 3.4. Therefore,
by Proposition 3.5, the corestriction functors corresponding to λ̃∗ξ and λ∗ξ are
equivalences of categories (and similarly for R′q). �

3.3. Comodules. We now consider the category Λ̃Rh
∼= Λ× I and the products

ΛIred × N∗ ⊂ ΛIred × I. Define the functors

i, π : ΛIred × I → Λ̃Rh

by the formulae (2.20). Moreover, let τ : ΛIred × I → ΛIred be the tautological
projection.

Any complex P q of functors in Fun(ΛIopp
red , Z) is in particular a normalized

A∞-functor from ΛIopp
red to Z-mod. We fix the complex P q in such a way that

it is admissible in the sense of Lemma 3.10. For every commutative ring k we con-
sider the category of pairs 〈V q, ϕ〉 formed by a complex V q in Fun(Λ̃Ropp

h , k) and
a map

ϕ : π∗V q → i∗V q ⊗ τ∗P q.
Inverting quasi-isomorphisms in this category, we obtain a triangulated category
and denote it by D(Λ̃Rh, P q, k). Forgetting the map ϕ, we get a functor

h̃∗: D(Λ̃Rh, P q, k)→ D(Λ̃Ropp
h , k).

In a similar vein, let D(ΛZ, P q, k) be the category of pairs 〈V q, ϕ〉 formed by a com-
plex V q in Fun(ΛZopp

h , k) and a map

ϕ : π∗V q → i∗V q ⊗ τ∗P q,
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with inverted quasi-isomorphisms, where i and π are as in (2.20). Restricting from
Λ̃Rh to ΛZh gives a forgetful functor

D(Λ̃Rh, P q, k)→ D(ΛZh, P q, k), (3.1)

and we have the restriction functor

h∗: D(ΛZh, P q, k)→ D(ΛZopp
h , k).

Let R q be the reduced normalized Λ̃R-graded A∞-coalgebra corresponding
to P q under the equivalence in Lemma 3.9. We consider the derived categories
D(ΛZ, λ̃∗R q, k), D(Λ̃R, λ̃∗R q, k).

Lemma 3.11. There are canonical equivalences of categories

D(ΛZh, P q, k) ∼= D(ΛZ, λ∗R q, k), D(Λ̃Rh, P q, k) ∼= D(Λ̃R, λ̃∗R q, k)

commuting with the restriction functors h∗ and h̃∗ respectively.

Proof. By Lemma A.5 we can modify the definition of the derived category
D(Λ̃Rh, P q, k): replace the complexes in Fun(Λ̃Ropp

h , k) by A∞-comodules over the
trivial Λ̃Ropp

h -graded A∞-coalgebra (and similarly for ΛZ). The resulting category
of complexes is tautologically equivalent to the category of A∞-comodules over
λ̃∗R q (resp. λ∗R q), and the equivalence commutes with h̃∗ (resp. h∗). In particu-
lar, the equivalence preserves quasi-isomorphisms and hence descends to the derived
categories. �

We write Dc(Λ̃Rh, P q, k) ⊂ D(Λ̃Rh, P q, k) for the full subcategory spanned by
all M ∈ D(Λ̃Rh, P q, k) such that h∗M ∈ D(Λ̃Ropp

h , k) is locally constant in the
sense of Definition A.1. Let Dc(ΛZh, P q, k) ⊂ D(ΛZh, P q, k) be the full subcategory
spanned by all M ∈ D(ΛZh, P q, k) such that h∗M is locally constant. Then Lem-
mas 3.11, 3.7, 3.10 together yield the following effective description of the categories
DMΛ(k), DΛR(k) of k-valued cyclic Mackey functors and k-valued cyclotomic com-
plexes.

Proposition 3.12. For every admissible complex P q of functors from ΛIred to
Z-mod there are canonical equivalences

DMΛ(k) ∼= Dc(ΛZh, P q, k), DΛR(k) ∼= Dc(Λ̃Rh, P q, k)

of triangulated categories.

Moreover, restricting from Λ̃R to ΛZ as in (3.1), we get restriction functors

h∗: D(Λ̃Ropp, k)→ D(ΛZopp, k), h∗: D(Λ̃Rh, P q, k)→ D(ΛZopp, k).

Let Dw(Λ̃Ropp
h , k) ⊂ D(Λ̃Ropp

h , k) and Dw(Λ̃Rh, P q, k) ⊂ D(Λ̃Rh, P q, k) be the full
subcategories spanned by all M such that h∗M ∈ D(ΛZopp, k) is locally constant.
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Proposition 3.13. (i) The restriction functor h̃∗ has a right adjoint

h̃∗: D(Λ̃Ropp
h , k)→ D(Λ̃Rh, P q, k),

which sends the subcategory Dw(Λ̃Ropp
h , k) ⊂ D(Λ̃Ropp

h , k) into the subcategory
Dw(Λ̃Rh, P q, k) ⊂ D(Λ̃Rh, P q, k).

(ii) Let D′ ⊂ Dw(Λ̃Rh, P q, k) be a triangulated subcategory such that D′ is
closed with respect to arbitrary products and contains all the objects h∗M , M ∈
D(ΛZopp

h , k). Then D′ = Dw(Λ̃Rh, P q, k).

Proof. At the level of categories of complexes, the forgetful functor h̃∗ has an obvi-
ous adjoint given by

h̃∗V q = π∗(i∗V q ⊗ τ∗P q)
with the tautological map ϕ. Since every complex in Fun(ΛRopp

h , k) has an h-
injective replacement, this functor descends to the derived categories.

Lemma 3.14. For any l > 0 let F lP q ⊂ P q be the lth term of the stupid filtration
on P q (in other words, (F lP q)m is equal to Pm for m 6 l and zero otherwise). Let
V q be any h-injective complex in Fun(Λ̃Ropp

h , k). Then the natural map

π∗(i∗V q ⊗ τ∗P q)→ lim
l→

R
q
π∗(i∗V q ⊗ τ∗F lP q) (3.2)

is a quasi-isomorphism.

Proof. Clearly, we have

i∗V q ⊗ τ∗P q ∼= lim
l→

i∗V q ⊗ τ∗F lP q.
Hence it suffices to prove that the map

π∗(i∗V q ⊗ τ∗F lP q)→ R
q
π∗(i∗V q ⊗ τ∗F lP q)

is a quasi-isomorphism for every l > 0. This reduces by induction to proving that
for all integers m, l > 0, n > 1 we have

Rnπ∗(i∗Vm ⊗ τ∗Pl) = 0.

This can be checked after evaluating at any object a ∈ Λ̃Rh. By the base-change
theorem, it suffices to prove that

Hn(Z/pZ, i∗Vm(b)⊗ Pl(τ(b))) = 0

for every b ∈ Λp × I ⊂ ΛIred × I. Since V q is h-injective, V q(c) is an h-injective
complex of Z[Aut(c)]-modules for any c ∈ Λ̃Rh and, therefore, i∗Vm(b) is a free
Z/pZ-module. Hence so is the product i∗Vm(b)⊗ τ∗Pl(b). �
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Now, by Proposition 3.12, the category D(Λ̃Rh, P q, k) is independent of the
choice of the admissible complex P q. Choose P q in such a way that F lP q is quasi-
isomorphic to the shift Z[l] of the constant functor Z ∈ Fun(ΛIopp

red , k) for every
even integer l > 0. Let π : ΛIred × N∗ → ΛZh be the restriction of the functor π
to ΛIred × N∗. Then h∗ ◦R

q
π∗ ∼= R

q
π∗ ◦ h∗ by base change, and

R
q
π∗ : D(ΛIopp

red , k)→ D(ΛZopp
h , k)

obviously sends Dc(ΛIopp
red , k) to Dc(ΛZopp

h , k). Therefore, restricting to even l on
the right-hand side of (3.2), we see that, for every V q ∈ Dw(Λ̃Ropp

h , k),

h̃∗h̃∗V q ∼= lim
l→

R
q
π∗i
∗V q[2l]

does indeed lie in Dw(Λ̃Ropp
h , k). This proves part (i).

Part (ii) can now be proved by arguing as in the proof of Lemma 2.10. �

§ 4. Equivariant homology

4.1. Generalities on equivariant homotopy. To fix notation, we start by
recalling some general facts from equivariant stable homotopy theory [4] (we mostly
follow the exposition in [6], which contains everything we will need in a concise
form).

Let G be a compact Lie group. A G-CW-complex X is a pointed CW-complex X
equipped with a continuous action of G preserving the distinguished point and
satisfying the following condition: for every g ∈ G, the subset Xg ⊂ X of fixed
points is a subcomplex. Consider the category of pointed G-topological spaces and
G-equivariant maps between them modulo G-equivariant homotopy. Let G-Top be
the full subcategory spanned by spaces homotopy equivalent to G-CW-complexes,
and let H ⊂ G be a closed Lie subgroup. Sending a space X to the set XH ⊂ X of
fixed points, we get a well-defined functor

G-Top→WH -Top,

where WH = NH/H, with NH ⊂ G being the normalizer of H.
Given any finite-dimensional representation V of G over R, we shall write SV for

the one-point compactification of V , with infinity being the distinguished point. For
any X ∈ G-Top we put ΣV X = X ∧ SV and denote the set of pointed continuous
maps from SV to X by ΩV X. Clearly, the functors ΣV ,ΩV : G-Top → G-Top are
adjoint.

A G-universe is an R-vector space U equipped with a continuous linear G-action
and a G-invariant positive definite scalar product. For any G-universe U , a G-
prespectrum X indexed by U is a set of G-CW-complexes X(V ), one for each finite-
dimensional G-invariant subspace V ⊂ U , and G-equivariant continuous maps

X(V )→ ΩW X(V ⊕W ), (4.1)

one for each pair of transversal mutually orthogonal finite-dimensional G-invariant
subspaces V,W ⊂ U , subject to an obvious associativity condition. The cate-
gory of G-prespectra indexed by U and homotopy classes of maps between them is
denoted by G-sp(U).
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A G-prespectrum is a spectrum if the maps (4.1) are homeomorphisms. The
category of G-spectra indexed by U and homotopy classes of maps between them
is denoted by G-Sp(U). We have the tautological embedding G-Sp(U)→ G-sp(U).
It admits a left-adjoint spectrification functor L given by

Lt(V ) = lim
W→

ΩW ΣW X(V ⊕W ), (4.2)

where the limit is taken over all finite-dimensional G-invariant subspaces W ⊂ U
orthogonal to V .

For every inclusion u : U1 ⊂ U2 of G-universes we have an obvious restriction
functor ρ#(u) : G-sp(U2) → G-sp(U1), called change of universe. This functor has
a left adjoint ρ#(u) : G-sp(U1)→ G-sp(U2) given by

ρ̃#(u)(t)(V ) = ΣV−(V ∩u(U1))t(u−1(V )),

where V − (V ∩ u(U1)) ⊂ V is the orthogonal complement of the intersection
V ∩ u(U1) ⊂ V . The functor ρ#(u) sends spectra to spectra. The corresponding
functor ρ#(u): G-Sp(U2)→ G-Sp(U1) has a left adjoint ρ# : G-Sp(U1)→ G-Sp(U2)
given by

ρ#(u) = Lρ̃#(u),

where L is the spectrification functor (4.2).
In particular, spectra indexed by the trivial universe U = 0 are just G-spaces, and

the restriction G-Sp→ G-Top with respect to the inclusion 0 ↪→ U is the forgetful
functor sending a G-spectrum to its value at 0. Its right adjoint is called the sus-
pension spectrum functor and is denoted by Σ∞ : G-Top → G-Sp(U). Explicitly,
Σ∞X = LΣ̃∞X, where Σ̃∞X ∈ G-sp(U) is given by

Σ̃∞X(V ) = ΣV X.

Among the non-trivial G-universes, there are two particularly important types.
(i) U = R∞ with the trivial G-action (where ∞ is assumed to be countable).

The G-spectra indexed by U are called naive equivariant G-spectra. We denote the
category G-Sp(U) by G-Spnaive.

(ii) A G-universe is said to be complete if every finite-dimensional represen-
tation V of the compact Lie group G appears in U countably many times. All
complete G-universes are isomorphic. A G-spectrum indexed by a complete G-
universe U is called a genuine equivariant G-spectrum. We denote G-Sp(U) simply
by G-Sp.

Note that G-Spnaive and G-Sp are triangulated categories, with shifts given by

X[n](W ) = X(W ⊕ Rn).

In addition, for every finite-dimensional representation V , the category G-Sp has an
auto-equivalence ΣV : G-Sp → G-Sp given by the formula ΣV X(W ) = X(W ⊕ V )
(to make this definition precise, one must fix an isomorphism U ⊕ V ∼= U , or
U ⊕ Rn ∼= U in the naive case, and apply the functor of change of universe).
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Let H ⊂ G be a closed Lie subgroup. Then UH is a WH -universe for every
G-universe U , and UH is complete if U is complete. For every G-spectrum X ∈
G-Sp(U), the Lewis–May fixed point spectrum XH ∈ WH -Sp(UH) is given by
putting

XH(V ) = X(V )H

for all finite-dimensional V ⊂ UH ⊂ U . There is another fixed point functor
ΦH: G-Sp(U) → H-Sp(UH) called the geometric fixed-point functor. To define it,
we choose a finite-dimensional G-invariant subspace W (V ) ⊂ U for every finite-
dimensional WH -invariant subspace V ⊂ UH in such a way that V = W (V )H and⋃

V⊂UH

W (V ) = U.

Then we put
ϕHt(V ) = t(W (V ))H (4.3)

for all t ∈ G-sp(U) and
ΦHX = LϕHX

for any G-spectrum X ∈ G-Sp(U). Here ϕH depends on the choice of the subspaces
W (V ), but the spectrification ΦH is independent of this choice (a more invariant
description of ΦH , which is manifestly independent of this choice, can be found
in [6], Lemma 1.1). For every X ∈ G-Sp there is a natural map

XH → ΦHX,

and this map is functorial in X.
For naive G-spectra, the two fixed-point functors coincide. In the genuine case we

fix a complete G-universe U . Then UG ⊂ U is isomorphic to R∞, whence G-Sp(UG)
is G-Spnaive, and the inclusion u : UG → U induces a pair of adjoint functors
ρ#(u) : G-Sp → G-Spnaive, ρ#(u): G-Spnaive → G-Sp. We have commutative
diagrams

G-Top

(−)H

��

Σ∞ // G-Spnaive

(−)H

��

ρ#(u) // G-Sp

ΦH

��
WH -Top Σ∞ // WH -Spnaive

ρ#(u′) // WH -Sp

G-Spnaive

(−)H

��

G-Sp
ρ#(u)oo

(−)H

��
WH -Spnaive WH -Sp

ρ#(u′)oo

(4.4)

where u′ is the embedding UG ⊂ UH (and the WH -universe UH is obviously com-
plete).
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4.2. Cyclic sets. From now on, let G = S1 = U(1) be the unit circle. Then it is
well known that G-spaces are related to cyclic sets. We recall this relation (see, for
example, [10] for details and references).

For any object [n] ∈ Λ let |[n]| be its geometric realization: the union of points
labelled by the vertices v ∈ V ([n]) and open intervals Ie labelled by the edges
e ∈ E([n]), with the natural topology making |[n]| a circle. Given a function
a : E([n])→ R with a > 0, we can endow |[n]| with the structure of a metric space
|[n]|(a) by declaring a(e) to be the length of the interval Ie. Let R([n])o be the
space of pairs 〈a, b〉 formed by a function a : E([n]) → R, a > 0, and a metric-
preserving monotone continuous map b : |[n]|(a) → S1 to the unit circle S1 ⊂ C.
Such a map b exists if and only if a1 + · · · + an = 2π, and the space of all such
maps can be identified non-canonically with S1. Hence we have a non-canonical
homeomorphism

R([n])o ∼= S1 × To
n−1,

where To
m ⊂ Tm is the interior of the standard m-simplex Tm for every m > 0.

We embed R([n])o in a compact space R([n]) by allowing a to take zero values (and
admitting degenerate metrics on |[n]|). Then we have

R([n]) ∼= S1 × Tn−1.

This decomposition is non-canonical, but the space R([n]) is completely canonical
and, by construction, carries a continuous G-action.

For every map f : [n]→ [m] and any pair 〈a, b〉 ∈ R([m]) we put

f(a)(e) =
∑

f(e′)=e

s(e′).

Then there is an obvious metric-preserving map g : |[n]|(f(a))→|[m]|(a). We denote
the composite of g and b by f(b). This endows R with the structure of a contravari-
ant functor from Λ to G-Top. We make this functor covariant by using the duality
Λopp ∼= Λ. The result is a functor

R : Λ→ G-Top. (4.5)

By the standard Kan extension procedure, (4.5) extends uniquely to a colimit-
preserving realization functor

Real : Λopp Sets→ G-Top

such that Real ◦ Y ∼= R, where Y : Λ → Λopp Sets is the Yoneda embedding. We
also have the right-adjoint functor

S : G-Top→ Λopp Sets,

which is such that
S(X)([n]) = MapsG(R([n]), X)

for every X ∈ G-Top, where MapsG(−,−) is the space of G-equivariant non-based
maps.
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It is well known that the realization Real(A) of any A ∈ Λopp Sets is homeo-
morphic to the ordinary geometric realization of the simplicial set j∗A ∈ ∆opp Sets
and, for every X ∈ G-Top, the adjunction map

Real(S(X))→ X

is a homotopy equivalence (see [10], or [13] for a modern treatment). In particular,
writing Z[A] for the free Abelian group spanned by an arbitrary set A and applying
this construction pointwise to S(X) : Λ→ Sets, we get

H q(Λopp, Z[S(X)]) ∼= H q(XhG, Z), (4.6)

where XhG is the homotopy quotient of X by the G-action.
The functors Z[S(X)] ∈ Fun(Λopp, Z) are inconvenient for our purposes since

they are not locally constant in the sense of Definition A.1. To remedy this, we
note that all the sets S(X)([n]) carry a natural topology.

Definition 4.1. For every X ∈ G-Top, the chain complex C q(X) is the complex
in Fun(Λopp, Z) given by

C q(X)([n]) = C q(S(X)([n]), Z),

where C q(−, Z) is the normalized singular chain complex with coefficients in Z.

Since all the maps R([n]) → R([n′]) are homotopy equivalences, the chain com-
plex C q(X) (unlike Z[S(X)]) is locally constant in the sense of Definition A.1. More
explicitly, C q(X) is obtained as follows. Define a functor R̃ : Λ × ∆ → G-Top by
the formula

R̃([n]× [m]) = R([n])× Tm−1,

where [m] ∈ ∆ is the totally ordered set of m elements. The functor R̃ extends to
a pair of adjoint functors

R̃eal : Fun(Λopp ×∆opp,Sets)→ G-Top,

S̃ : G-Top→ Fun(Λopp ×∆opp,Sets).

To obtain C q(S(X)), we take Z[S̃(X)] ∈ Fun(Λopp ×∆opp, Z) and apply the con-
struction of the normalized chain complex fibrewise with respect to the projection
τ : Λ×∆→ Λ.

To explain the relation between Z[S(X)] and C q(X), we define an embedding
ιm : Λ → Λ ×∆ for every m > 1 by putting ι([n]) = [n] × [m]. Then ι1 is adjoint
to τ . Hence for every A ∈ Fun(Λopp×∆opp,Sets) there is a natural adjunction map

τ∗ι∗1A→ A. (4.7)

We apply (4.7) to S̃(X) for some X ∈ G-Top. By definition, we have ι∗1S̃(X) ∼=
S(X). Taking the free Abelian groups spanned by these sets and passing to nor-
malized chain complexes, we obtain a natural map

Z[S(X)]→ C q(X). (4.8)
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Lemma 4.2. Let A ∈ Fun(Λopp × ∆opp,Sets) be such that, for every morphism
f : [m]→ [n] in ∆, the corresponding map

ι∗nA→ ι∗mA

induces a homotopy equivalence of geometric realizations. Then the map

Real(ι∗A) ∼= R̃eal(τ∗ι∗A)→ R̃eal(A)

induced by (4.7) is a homotopy equivalence.

Proof. Let
RealΛ : Fun(Λopp ×∆opp,Sets)→ ∆opp-Top

be the functor of fibrewise geometric realization with respect to the projection
Λ×∆→ ∆. Then the assumption on A means that (4.7) already becomes a homo-
topy equivalence after applying RealΛ. �

For every X ∈ G-Top we have ι∗mS̃(X) ∼= S(Maps(∆m−1, X)), whence S̃(X)
automatically satisfies the hypotheses of Lemma 4.2. In particular, the natural
map Real(S(X))→ R̃eal(S̃(X)) is a homotopy equivalence, and the map

H q(Λ, Z[S(X)]
)
→ H q(Λ, C q(X)) (4.9)

induced by (4.8) is an isomorphism. More generally, if we denote the functor left
adjoint to the embedding Dc(Λ, Z) ⊂ D(Λ, Z) by C : D(Λ, Z) → Dc(Λ, Z), then
C(Z[S(X)]) ∼= C q(X).

The complexes C q(X) are usually rather big. We shall use smaller models for the
standard G-orbit spaces G/Cn, where Cn = Z/nZ ⊂ G is the group of nth roots
of unity. To obtain these models, we consider the functors jn : ∆ → Λopp

n in § 1.1
with the natural Cn-action on them. Define functors Jn : Λopp ×∆opp → Sets by
putting

Jn([m]× [l]) = Λ
(
injn([l]), [m]

)
/Cn, (4.10)

where Cn acts through its action on jn.

Lemma 4.3. For every n > 1 we have a natural homotopy equivalence

R̃eal(Jn) ∼= G/Cn.

Proof. By Lemma 4.2, it suffices to construct equivalences Real(ι∗l Jn) ∼= G/Cn

for any [l] ∈ ∆. By definition, we have

ι∗l Jn
∼= Y (jn([l]))/Cn = Y ([nl])/Cn,

where Y ([nl]) ⊂ Λopp Sets is the Yoneda image of [nl] ∈ Λ. Since Real preserves
colimits, we have homeomorphisms

Real(Y ([nl])/Cn) ∼= Real(Y ([nl]))/Cn
∼= R([nl])/Cn,

and R([nl]) is indeed homotopy equivalent to G. �
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We now consider the subsets of fixed points. By Lemma 1.8, the functor R
in (4.5) extends to a functor

R = Real ◦ Y : ΛZ→ G-Top,

whence we obtain a pair of adjoint functors

Real : Fun(ΛZopp,Sets)→ G-Top, S : G-Top→ Fun(ΛZopp,Sets).

We keep the same notation because these functors are direct extensions of the
functors Real and S considered above. Indeed, the realization functor Λopp Sets→
Fun(ΛZopp,Sets) admits a fully faithful left adjoint

L : Λopp Sets→ Fun(ΛZopp,Sets),

and we have S ∼= L ◦ S, Real ∼= Real ◦ L. Restricting L(A) to Λ ∼= ΛZm
h ⊂ ΛZ,

we explicitly have
L(A)|ΛZm

h
= πm∗i

∗
mA, (4.11)

where the adjoint πm∗ : Λopp
m Sets →Λopp Sets to the pullback functor π∗m is obtained

by taking the Z/mZ-fixed points fibrewise, and the vertical morphisms in ΛZ
act by natural inclusions of fixed points.

As above, we extend the functors S and Real to the product category ΛZ×∆.
For any X ∈ G-Top we define its extended chain complex C̃ q(X) of functors
in Fun(ΛZopp, Z) by putting

C̃ q(X) = C q(S(X)) = N(Z[S̃(X)]),

where N is the normalized chain complex functor applied fibrewise to the projection
ΛZ×∆→ ΛZ. We also define the reduced chain complex C q(X) by putting

C q(X)([n|m]) = C̃ q(X)([n|m])/Z[o],

where o ∈ MapsS1(R([m|n]), X) is the distinguished point. Then the standard
shuffle map induces a natural quasi-isomorphism

C q(X)⊗ C q(Y )→ C q(X ∧ Y ) (4.12)

for all X, Y ∈ G-Top, where X ∧ Y is the smash product, and the tensor product
on the right-hand side of (4.12) is the pointwise tensor product in the category
Fun(ΛZopp, Z).

The reduced chain complex functor C q(−) easily extends to the category G-Spnaive

of naive G-equivariant spectra. Namely, for any X ∈ G-Spnaive and all integers
i, j > 0, the transition maps (4.1) induce (by adjunction) maps

ΣiX(R⊕j)→ X(R⊕i+j),

which give rise to maps

C q(X(R⊕i))[−i] ∼= C q(ΣiX(R⊕j))→ C q(X(R⊕i+j)). (4.13)
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Definition 4.4. The equivariant homology complex Cnaiveq (X) of a naive G-
spectrum X ∈ G-Spnaive is given by

Cnaiveq (X) = lim
i→

C q(X(R⊕i))[i] ∈ D(ΛZopp, Z),

where the limit is taken with respect to the maps (4.13).

4.3. Cyclic Massey functors. To extend the equivariant homology complex in
Definition 4.4 to genuine G-spectra, we must pass to the category DMΛ(Z) of cyclic
Massey functors in § 2. We shall use the model given in Proposition 3.12, with an
appropriately chosen complex P q.

We begin with the following observation. For every n > 1 let Pnq be the complex
in Fun(ΛZopp, Z) obtained as the cone of the natural augmentation map

N(L(Jn))→ Z,

where Z ∈ Fun(ΛZopp, Z) is the constant functor, and Jn : Λopp ×∆opp → Sets is
as in (4.10). We note that Pnq ([m|l]) is a finite-length complex of finitely generated
free Abelian groups for every [m|l] ∈ ΛZ. Let C(1) be the standard complex
representation of the group G = U(1). We put C(n) = C(1)⊗n and regard C(n) as
a 2-dimensional real representation by restriction of scalars. We also put

Σn = ΣC(n): G-Top→ G-Top.

Lemma 4.5. For every X ∈G-Top we have a natural functorial quasi-isomorphism

Pnq ⊗ C q(X)→ C q(ΣnX).

Proof. Note that SC(n) is homeomorphic to the non-equivariant suspension Σ(G/Cn)
of the standard orbit G/Cn: SC(n) ∼= Σ(G/Cn). The homotopy equivalence in
Lemma 4.3 induces by adjunction a map

Jn → S̃(G/Cn),

which in turn induces a quasi-isomorphism

Pnq → C q(SC(n)).

Combining this with (4.12), we get the desired assertion. �

We now fix a complete G-universe U by taking

U =
⊕
n>0

C(n)∞, (4.14)

where ∞ means the sum of countably many copies (this universe is complete since
C(−n) ∼= C(n) as real representations).

A map ν : N → N is said to be admissible if ν(i) 6= 0 for at most finitely many
values of i. Given any admissible sequence ν, we put

V (ν) =
⊕

i

C(i)⊕ν(i) ⊂ U
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and

Σν = ΣV (ν) = (Σi1)
ν(i1) ◦ · · · ◦ (Σin)ν(in), P νq =

⊗
16l6n

(
P ilq )⊗ν(il),

where i1 6 · · · 6 in are all integers such that ν(il) 6= 0. Then Lemma 4.5 immedi-
ately gives canonical quasi-isomorphisms

P νq ⊗ C q(X)→ C q(Σν(X)). (4.15)

We will call the subspaces V (ν) ⊂ U cellular. The set of all cellular subspaces is
obviously cofinal in the set of all finite-dimensional G-invariant subspaces V ⊂ U .

We are now ready to define the complex P q in Fun(ΛIopp
red , Z). Note that for

all m, l > 1 the natural Cm-action on i∗mJn([l]) = Jn([ml]) factors through a free
action of the quotient group Cm/(Cm ∩ Cn). Therefore for any vertical morphism
v : a→ b in ΛZ, the corresponding map

v : Pnq (b)→ Pnq (a)

is an isomorphism if deg(v) divides n, and is the natural inclusion Z = Pn
0 (b) →

Pnq (a) otherwise. Moreover, for every prime p not dividing n, the restriction i∗p(P
nq )

with respect to the functor ip : Λp → Λ ∼= ΛZ1
h ⊂ ΛZ is the constant functor Z in

degree 0, while i∗pP
n
i ([m]) is a free Z/pZ-module for every [m] ∈ Λp and all i > 1.

We now define a complex P q of functors in Fun(ΛIopp
red , Z) by putting

P q = lim
→

i∗pP
νq on Λp ⊂ ΛIred,

where the limit with respect to the natural inclusions Z → Pnq is taken over all
admissible sequences ν such that ν(pl) = 0, l ∈ N. Then P q is admissible in the
sense of Proposition 3.12 and we have a canonical equivalence

DMΛ(Z) ∼= D(ΛZh, P q, Z).

Remark 4.6. To help the reader visualize the complex P q, we note that on Λp ⊂
ΛIred it is essentially given by

i∗p lim
V→

C q(SV ),

where the limit is taken over all cellular subspaces in U orthogonal to UCp ⊂ U . The
only difference is that we use more economical simplicial models for the spheres.

By definition, for every n the complex P νq gives an object in the category D(ΛZh,
P q, Z). The corresponding complex is h∗P νq (the restriction of P νq with respect
to the embedding h : ΛZh → ΛZ) and the map ϕ : π∗h∗P νq → i∗h∗P νq is induced by
the action of the vertical maps on Pnuq . To be more explicit, we define a map νp

by the formula

νp(m) =

{
ν(m), m = pl, l > 1,

0 otherwise.
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Then P νq = P νpq ⊗ P ν−νpq , and the Λp-component ϕp of ϕ is the product of the
isomorphism

π∗ph∗P νpq ∼= i∗ph
∗P νpq

and the natural inclusion

Z ∼= π∗ph∗P ν−νpq → i∗ph
∗P ν−νpq .

If we treat the complexes Pnq up to quasi-isomorphism, then the following equality
holds on ΛZm

h ⊂ ΛZh:

h∗Pnq =

{
Z[2], n = ml, l > 1,

Z otherwise.

We now fix a projective resolution Q q of the constant functor Z ∈ Fun(ΛZopp
h , Z)

and define a complex Qnq by putting

Qnq =

{
Z[−2], n = ml, l > 1,

Z otherwise

on ΛZm
h ⊂ ΛZh. Then Qnq ⊗ h∗Pnq is quasi-isomorphic to the constant functor Z.

Since Q q is projective, there is an actual quasi-isomorphism

εn : Q q → Qnq ⊗ h∗Pnq .

Moreover, given any admissible ν : N→ N and any m > 1, we put

d(m, ν) =
∑
l>1

ν(ml)

and write Qνq for a complex in Fun(ΛZopp
h , Z) given by Q q[−2d(m, ν)] on ΛZm

h ⊂
ΛZh. Then, taking the tensor product of the maps εn, we obtain a system of quasi-
isomorphisms

εν : Z→ Qνq ⊗ h∗P νq (4.16)

for all admissible ν. For every prime p we have a natural map

εν−νp
: π∗pQνq → i∗p(Q

νq ⊗ P ν−νpq ).

Composing these maps with the natural embeddings i∗pP
ν−νpq → P q, we equip Qνq

with the natural structure of an object of D(ΛZh, P q, Z).
We are now ready to define our equivariant homology functor. Let t ∈ G-sp(U)

be a prespectrum. For all admissible ν, ν′ : N→ N we have a transition map

Σν′t(V (ν))→ t(V (ν + ν′))

adjoint to the map (4.1). By (4.15), these maps induce canonical maps

P ν′q ⊗ C q(t(V (ν)))→ C(V (ν + ν′)).
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Let ξ∗: D(ΛZopp, Z)→ D(ΛZ, λ∗T q, Z) ∼= DMΛ(Z) be the corestriction functor with
respect to the augmentation map of the A∞-coalgebra λ∗T q. Then the composites
of these maps with the maps (4.16) induce transition maps

ξ∗C q(t(V (ν)))→ Qνq ⊗ ξ∗P νq ⊗ ξ∗C q(t(V (ν)))→ Qνq ⊗ ξ∗C q(t(V (ν + ν′))). (4.17)

Definition 4.7. The equivariant chain complex C q(X) ∈ DMΛ(Z) of a G-
prespectrum t ∈ G-sp(U) is given by

C q(t) = lim
ν→

Qνq ⊗ ξ∗C q(X(V (ν))), (4.18)

where the limit is taken over all admissible maps ν : N → N with respect to the
transition maps (4.17).

Lemma 4.8. For any t ∈ G-sp(U) with spectrification Lt, the adjunction map
t→ Lt induces an isomorphism

C q(t)→ C q(Lt).

Proof. Since cellular subspaces are cofinal, it suffices to take the limit in (4.2) over
cellular subspaces. Then, substituting (4.2) in (4.18), we see that

C q(Lt) = lim
ν6ν′→

Qνq ⊗ ξ∗C q(ΩV (ν′−ν)t(V (ν′))),

where the limit is taken over all pairs ν 6 ν′ of admissible maps ν, ν′: N→ N. Since
the subset of all pairs with ν = ν′ is cofinal in this set, it suffices to take the limit
over such pairs. This is exactly C q(t). �

Corollary 4.9. For every X ∈ G-Top we have

C q(Σ∞X) ∼= ξ∗C(X).

For every X ∈ G-Spnaive we have

C q(ρ#(u)X) ∼= C q(X), (4.19)

where ρ#(u) is the change-of-universe functor associated with the embedding R⊕∞=
UG ⊂ U .

Proof. Using Lemma 4.8, we can replace Σ∞ and ρ#(u) by Σ̃∞ and ρ̃#(u) respec-
tively. Then for t = Σ̃∞X all the transition maps in the filtered limit of (4.18) are
quasi-isomorphisms, and for t = ρ̃#(u)X the only possibly non-trivial transition
maps are those appearing in (4.13). �

4.4. Cyclotomic complexes. For every m > 1 we denote the group of mth roots
of unity by Cm = Z/mZ ⊂ G = U(1). The m-power map gives an isomorphism
pm : G/Cm → G, and we have pm ◦ pn = pnm, m,n > 1. There are obvious
canonical G-equivariant isomorphisms

um : UCm ∼= U,

where U is the complete G-universe (4.14) and we have um ◦ un = unm, n, m > 1.
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Definition 4.10. For every X ∈ G-Sp = G-Sp(U) and all m > 1, the extended
geometric fixed-point spectrum Φ̂m(X) ∈ G-Sp is given by

Φ̂m(X) = ρ#(um)ΦCm(X),

and the extended Lewis–May fixed-point spectrum Ψ̂m(X) ∈ G-Sp is given by

Ψ̂m(X) = ρ#(um)XCm .

For any m > 1 let ρm : I → I be multiplication by m, as in (2.20). It commutes
with the N∗-action and, therefore, induces an endofunctor

ρ̃m : ΛZ→ ΛZ

commuting with the projection λ : ΛZ→ ΛR. By (4.11) we have

ρ̃ ∗mLA ∼= LACm

for all A ∈ Λopp Sets. In particular, for any X ∈ G-Top we have quasi-isomorphisms

ρ̃ ∗mC q(X) ∼= C q(XCm). (4.20)

By (4.13) they induce quasi-isomorphisms

ρ̃ ∗mC q(X) ∼= C q(XCm) (4.21)

for every naive G-spectrum X ∈ G-Spnaive. We want to obtain a version of this
construction for genuine G-spectra. Since λ ◦ ρ̃m = λ, we tautologically have
ρ̃ ∗λ∗T q ∼= λ∗T q. This gives rise to a pullback functor

ρ̃ ∗m : DMΛ(Z)→ DMΛ(Z).

Lemma 4.11. For any m > 1 and all X ∈ G-Sp we have a natural functorial
isomorphism

C q(Φ̂m(X)) ∼= ρ̃ ∗mC q(X).

Proof. For every map ν : Z→Z we define r(ν) : Z→Z by the formula r(ν)(ma+ b) =
ν(a), a ∈ Z, 0 6 b < n. If ν is admissible, then so is r(ν).

Using Lemma 4.8, we can replace Φ̂m by the functor ϕm = ρ̃#(um) ◦ ϕCm .
Choose the subspaces W (V ) ⊂ U in such a way that W (V (ν)) = V (r(ν)) for all
admissible ν : Z→ Z. Then

C q(ϕmX) = lim
ν→
Qνq ⊗ ξ∗C q(X(V (rν))Cm) (4.22)

and, since the sequences r(ν) are cofinal in the set of all admissible sequences,

ρ̃ ∗mC q(X) = lim
ν→

ρ̃ ∗mQr(ν)q ξ∗C q(X(V (rν))). (4.23)
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By definition, the pullback functor commutes with the corestriction: ρ̃ ∗m ◦ ξ∗ ∼=
ξ∗◦ρ̃ ∗m, and we have the isomorphisms (4.20). It remains to note that, by definition,

ρ̃ ∗mQr(ν)q ∼= Qνq
for all admissible ν. �

We now consider the right adjoint ξ∗ : DMΛ(Z)→D(ΛZopp, Z) of the corestric-
tion functor ξ∗, as in § 2.4. Then the isomorphism (4.19) induces a base-change map

C q(ρ#(u)(X))→ ξ∗C q(X) (4.24)

for every X ∈ G-Sp. By (4.21) and (4.4) we have a natural isomorphism

ρ̃ ∗mC q(ρ#(u)(X)) ∼= C q(Ψ̂m(X))

for every genuine G-spectrum X ∈ G-Sp and all m > 1.

Lemma 4.12. The base-change map (4.24) is an isomorphism for every X ∈G-Sp,
whence

C q(Ψ̂m(X)) ∼= ρ̃ ∗mξ∗C q(X)

for all m > 1.

Proof. It suffices to prove that the map (4.24) becomes an isomorphism after
evaluation at any object [n|m] ∈ ΛZ. By (4.4) and the definition of the equiv-
ariant homology complex C q(−) of a naive G-spectrum, we have a natural quasi-
isomorphism

C q(ρ#(u)(X))([n|m]) ∼= C q(XCm),

where XCm is regarded as a non-equivariant spectrum, and C q(−) on the right-hand
side is obtained from the usual non-equivariant functor C q(−, Z) of reduced singular
chain complex by passing to the limit as in Definition 4.4 (n is irrelevant since the
functors in Definition 4.1 are locally constant). Thus we must prove that, for all
n, m > 1, the natural map

C q(XCm)→ (ξ∗C q(X))([n|m])

induced by (4.24) is an isomorphism.
On the other hand, by the definition of the functor C q : G-Sp → DMΛ(Z) we

have an isomorphism
ΣV ◦ C q ∼= C q ◦ ΣV

for any V = V (ν) ⊂ U , and the base-change map

C q ◦ (ΣV )−1 → (ΣV )−1 ◦ C q
is also an isomorphism. Therefore (4.24) is an isomorphism for some X ∈ G-Sp
if and only if it is an isomorphism for ΣV X. Since every X ∈ G-Sp is a filtered
colimit of spectra of the form (ΣV )−1Σ∞Y , Y ∈ G-Top, it suffices to prove that
(4.24) is an isomorphism for the suspension spectra Σ∞Y . By Corollary 4.9 we
have a quasi-isomorphism

C q(Σ∞Y ) ∼= ξ∗C q(Y ).
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Thus we must prove that for every Y ∈ G-Top and all [n|m] ∈ ΛZ, the natural map

C q((Σ∞Y )Cm)→ (ξ∗ξ∗C q(Y ))([n|m])

induced by (4.24) is an isomorphism. The right-hand side can be computed using
(2.19) and Lemma 2.14:

(ξ∗ξ∗C q(Y ))([n|m]) ∼=
⊕

l,p>1, lp=m

C q(Z/lZ, C q(Y )([nl|p])
)
,

where, by definition, C q(Y )([nl|p]) is equal to the reduced chain complex of the
fixed point set Y Cp :

C q(Y )([nl|p]) ∼= C q(Y Cp , Z).

Then the desired isomorphism becomes the tom Dieck–Segal splitting (see, for
example, [6], § 1). �

We recall another fundamental notion (again following [6]).

Definition 4.13. A cyclotomic structure on a genuine G-spectrum T ∈G-Sp is
given by homotopy equivalences

rm : Φ̂mT ∼= T,

one for each integer m > 1, such that r1 = id and rn ◦ rm = rnm for all integers
n, m > 1.

Example 4.14. Let X be a pointed CW-complex and let LX = Maps(S1, X)
be its free loop space. Then, for every finite subgroup C ⊂ S1, the isomorphism
S1 ∼= S1/C induces a homeomorphism

Maps(S1, X)C = Maps(S1/C,X) ∼= Maps(S1, X),

and these homeomorphisms provide a canonical cyclotomic structure on the sus-
pension spectrum Σ∞LX.

By Lemma 4.11, a cyclotomic structure {rm} on T induces a set of quasi-
isomorphisms

rm : ρ̃ ∗mC q(T )→ C q(T ), m > 1,

with rm ◦ rn = rnm. If we regard the equivariant chain complex C q(T ) as an object
〈h∗C q(T ), ϕ〉 in the category D(ΛZh, P q, Z), then the maps rm extend h∗C q(T ) to
a complex in the category Fun(Λ̃Ropp, Z), and this extension is compatible with
the map ϕ. Therefore C q(T ) canonically determines an object C̃ q(T ) in the derived
category D(Λ̃Rh, P q, Z). By Proposition 3.12, this makes C q(T ) into a cyclotomic
complex. Thus we can finally justify our terminology by introducing the following
definition.

Definition 4.15. The cyclotomic complex C̃ q(T ) ∈ DΛR(Z) is called the equiv-
ariant chain complex of the cyclotomic spectrum T .
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§ 5. Filtered Dieudonné modules

5.1. Definitions. We now want to compare cyclotomic complexes with another
(and simpler) algebraic notion, which appeared earlier in another context: the
notion of a filtered Dieudonné module.

Definition 5.1. Let k be a finite field of characteristic p with its Frobenius map,
and let W be its ring of Witt vectors with the canonical lifting of the Frobenius
map. A filtered Dieudonné module over W is a finitely generated W -module M
equipped with a decreasing filtration F

q
M (indexed by all integers) and a family

of Frobenius-semilinear maps ϕi : F iM →M , one for each integer i, such that
(i) ϕi|F i+1M = pϕi+1;
(ii) the map

∑
ϕi :

⊕
i F iM →M is surjective.

This definition was introduced by Fontaine and Lafaille [7] as a p-adic analogue of
the notion of a Hodge structure. Under certain assumptions, the de Rham cohomol-
ogy H

q
DR(X) of a smooth compact algebraic variety X/W has the natural structure

of a filtered Dieudonné module, where F
q
is the Hodge filtration and the maps ϕ

q
are induced by the Frobenius endomorphism of the special fibre Xk = X ⊗W k.

The category of filtered Dieudonné modules is obviously additive, but one can
say more: just as for mixed Hodge structures, a small miracle happens and the
category is actually Abelian. The normalization condition (ii) of Definition 5.1
plays a crucial role here. This condition can be dropped if one is prepared to work
with non-Abelian additive categories. The following notion is convenient for our
purposes.

Definition 5.2. A generalized filtered Dieudonné module (gFDM for short) is an
Abelian group M equipped with

(i) a decreasing filtration F
q
M indexed by all integers and satisfying M =⋃

F iM , and
(ii) a family of maps ϕp

i,j : F iM → M/pjM (for all integers i, positive inte-
gers j > 1, and primes p) such that ϕp

i,j+1 = ϕp
i,j mod pj and ϕp

i,j = pϕp
i+1,j

on F i+1M ⊂ F iM .

The differences between Definitions 5.2 and 5.1 are that we no longer require
the normalization condition (ii), consider only prime fields rather than finite fields,
and combine the structures over all primes. Note, however, that if M is finitely
generated over Zp, then all other primes act as invertible maps on M , whence all
the extra maps ϕlq, q, l 6= p, are equal to zero. Indeed, for every prime p and every
integer i we can combine all the maps ϕp

i, q into a single map

ϕp
i : F iM → (̂M)p,

where (̂M)p stands for the pro-p-completion of the Abelian group M . If M is
finitely generated over Zp, then (̂M)p

∼= M and (̂M)l = 0 for l 6= p.
Complexes of gFDM are defined in the obvious way. A map between such com-

plexes is a quasi-isomorphism if it induces a quasi-isomorphism of the associated
graded quotients grF . Inverting such quasi-isomorphisms, we obtain a triangulated
‘derived category of gFDM’. We denote it by FDM.
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For every gFDM M and any integer i, let M(i) be the same M with filtration
F

q
twisted by i (that is, F jM(i) = F j−iM). Under this convention we introduce

the following ‘twisted 2-periodic’ version of the category FDM.

Definition 5.3. The triangulated categoryFDMper is obtained by inverting quasi-
isomorphisms in the category of complexes of gFDMs M q equipped with an isomor-
phism M ∼= M [2](1).

We can now state the main result of this section.

Theorem 5.4. There is a natural equivalence

FDMper ∼= DΛR(Z)

between the twisted 2-periodic derived category of gFDMs, on the one hand, and
the derived category of cyclotomic complexes of Abelian groups in the sense of Def-
inition 3.1, on the other.

We shall prove this (in a more precise version given by Proposition 5.17) in § 5.5
after the necessary preparations. We start with some generalities on filtered objects.

5.2. Filtered objects. By a filtered object in an Abelian category Ab we shall
understand an object E ∈ Ab equipped with a decreasing filtration F

q
indexed by

all integers. Maps and complexes of filtered objects are defined in the obvious way.

Definition 5.5. A map f : E q → E′q between complexes of filtered objects in Ab
is a filtered quasi-isomorphism if the induced map

f : F iE q/F i+1E q → F iE′q/F i+1E′q
is a quasi-isomorphism for every integer i.

Remark 5.6. We do not require a filtered quasi-isomorphism to induce a quasi-
isomorphism, neither of the complexes E q, E′q of objects in Ab nor of the individual
pieces F iE q, F iE′q of the filtrations.

The filtered derived category DF(Ab) is obtained by inverting filtered quasi-
isomorphisms in the category of filtered complexes and filtered maps. The periodic
filtered derived category DFper(Ab) is obtained in a similar way from the category
of complexes of filtered objects V q in Ab equipped with an isomorphism

u : V q ∼= V q−2(1),

where V (1) stands for the twist of the filtration. Explicitly, such a complex is
determined by two filtered objects V0, V1 and two filtered maps

d1 : V1 → V0, d0 : V0 → V1(1) ∼= V−1

such that d1 ◦ d0 = 0 = d0 ◦ d1. The other terms in the complex are then given
by V2 q = V0, V2 q+1 = V1 with the same differentials d0, d1.

If Ab is the category of Abelian groups, then we obtain the periodic filtered
derived category DFper(Z) of filtered Abelian groups. For any integer n, let Z(n) ∈
DFper be the object V given by V0 = Z, V1 = 0, with the filtration FnV0 = V0

and Fn+1V0 = 0. Then the objects Z(n), n ∈ Z, generate the category DFper(Z)
in the following sense.
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Lemma 5.7. Any triangulated subcategory D′ ⊂ DFper(Z) closed under arbitrary
sums and products and containing Z with the trivial filtration F 0Z = Z, F 1Z = 0,
is equal to the whole of DFper(Z).

Proof. Since D′ is closed under taking cones, it contains any filtered complex
〈V q, F q〉 with bounded filtration F

q
(that is, F iV q = 0, F jV q = V q for some inte-

gers i, j). Let 〈V q, F q〉 be an arbitrary filtered complex. Then the natural maps

V q ←− lim
i→

F−iV q −→ lim
i→

lim
j←

F−iV q/F jV q (5.1)

induce isomorphisms on grF and, therefore, become isomorphisms in DFper(Z).
Hence we can replace V q by the double limit on the right-hand side of (5.1). The
direct limit can be computed by the telescope construction. Moreover, for every i,
the inverse system F iV q/F

q
V q satisfies the Mittag–Leffler condition, so that the

inverse limit can also be computed by the telescope construction. Since D′ is
closed under sums and products, it is also closed under telescopes and, therefore,
it contains V q. �

Note that by (5.1) we can represent every object in DFper(Z) by a filtered
complex 〈V q, F q〉 which is admissible in the following sense: the natural maps

lim
i→

F−iV q → V q, V q → lim
i←

V q/F iV q
are isomorphisms of complexes.

Working with filtered Abelian groups, it is convenient to use Rees objects. Con-
sider the algebra Z[t] of polynomials in one variable t. A module M over Z[t] is
said to be t-adically complete if the natural map

M → lim
i←

M/tiM

is an isomorphism (thus, in our terminology, completeness presupposes separabil-
ity). We make Z[t] into a graded ring by assigning degree −1 to the generator t.

Lemma 5.8. The filtered derived category DF(Z) is equivalent to the full subcat-
egory of the derived category of the Abelian category of Z-graded Z[t]-module M q
spanned by the t-adically complete modules.

Proof. For every filtered Abelian group 〈M,F
q〉, the corresponding graded Z[t]-

module M̃ q is called the Rees object of M q and is given by

M̃ q =
⊕

lim
i→

F
q
M/F

q+iM,

where t is induced by the natural embeddings F
q
M → F

q−1M . We note that M̃ q
is automatically t-adically complete, and a filtered quasi-isomorphism of complexes
of Abelian groups induces a quasi-isomorphism of Rees objects.

To get the inverse correspondence, we note that every graded Z[t]-module M q
has a finite resolution by modules with no t-torsion. Hence it suffices to consider
the graded modules M q with injective maps t. Such a module M q is sent to

M̃ = lim
t→

M q,
and F iM̃ ⊂ M̃ is the image of the natural embedding Mi → M̃ for every integer i. �
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The equivalence in Lemma 5.8 has an obvious periodic version. A model of
the category DFper(Z) in terms of Rees objects is obtained by inverting quasi-
isomorphisms in the category of pairs 〈M̃ q, q, u〉 formed by a complex M̃ q, q of graded
t-adically complete Z[t]-modules M q and an isomorphism

ũ : M̃ q, q ∼= M̃ q+1, q−2. (5.2)

5.3. Cyclic expansion and subdivision. Now let Ab = Fun(Λopp, Z) be the
category of cyclic Abelian groups. We put I0 = jo

! Z, I1 = j∗Z as in (1.23) and
define d1 = B : I1 → I0, d0 = b0 ◦ b1 : I0 → I1, where b0, b1 and B are again
as in (1.23). Since the sequence (1.23) is exact, we have d1 ◦ d0 = 0 = d0 ◦ d1.
Moreover, if we define filtrations F

q
on I0 and I1 by putting F 0Il = Il, F 1Il = 0,

l = 0, 1, then d0 and d1 are filtered maps and we have a periodic filtered complex I q
of objects in Fun(Λopp, Z).

Definition 5.9. For any object in DFper(Z) represented by a periodic complex V q
of admissible filtered Abelian groups, we define its cyclic expansion Exp(V q) as the
complex of cyclic Abelian groups

Exp(V q) = F 0(V q ⊗Z[u] I q),
where u is the periodicity map on V q and I q, and F 0 is taken with respect to the
product filtration.

In terms of the corresponding periodic complex Ṽ q, q of Rees objects, the cyclic
expansion is given by

Exp(V q)i = (Ṽ0, q ⊗ I1)[1]⊕ (Ṽ0, q ⊗ I0) (5.3)

with the differential d = dV ⊗ id + dI , where dV is the differential on Ṽ0, q and
dI is equal to id ⊗ d1 on the first summand and to tũ ⊗ d0 on the second, with
ũ : Ṽ q, q ∼= Ṽ q+1, q−2 as in (5.2). In particular, for every object [n] ∈ Λ, the complex
Exp(V q)([n]) is a sum of finitely many copies of Ṽ0, q and of its shift Ṽ0, q[1]. Hence
cyclic expansion commutes with arbitrary sums and products.

Lemma 5.10. Cyclic expansion induces an equivalence of categories

Exp: DFper(Z) ∼= Dc(Λopp, Z)

between DFper(Z) and the full subcategory Dc(Λopp, Z) ⊂ D(Λopp, Z) spanned by
the objects that are locally constant in the sense of Definition A.1.

Proof. Since the sequence (1.23) is exact, F 1I q = I<0 is a resolution of the con-
stant functor Z ∈ Fun(Λ, Z). It follows by induction that the homology functors
H q(Exp(V q)) ∈ Fun(Λopp, Z) of any periodic filtered complex V q are given by

Hi(Exp(V q)) ∼= (F 0Vi/F 1Vi)⊗ Z.

In particular, a filtered quasi-isomorphism of periodic filtered complexes induces
a quasi-isomorphism of their cyclic expansions and, therefore, Exp induces a trian-
gulated functor from the category DFper(Z) to the full subcategory Dc(Λopp, Z) ⊂
D(Λopp, Z). Moreover, for every integer n we have

Exp(Z(n)) ∼= Z[2n].
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Since the fundamental group π1(|Λ|) ∼= π1(BU(1)) is trivial, every locally constant
functor Λopp → Z-mod is constant. Therefore Z generates the triangulated category
Dc(Λopp, Z) in the sense of Lemma 5.7. Since Exp commutes with arbitrary sums
and products, it suffices to prove that Exp is fully faithful on the objects Z(n) or,
in other words, that the natural map

Exp: RHom
q
DFper(Z)(Z(n), Z(m))→ RHom

q
D(Λopp,Z)(Z[2n], Z[2m])

is a quasi-isomorphism for all integers n, m. This follows immediately from the
isomorphism H

q
(Λopp, Z) ∼= Z[u]. �

Let n > 1 be an integer, and let δn: Z[t] → Z[t] be the map sending t to nt.
Since the ideal (nt) ⊂ Z[t] lies inside (t) ⊂ Z[t], the direct image δn

∗M of a t-adically
complete Z[t]-module M is automatically t-adically complete.

Definition 5.11. Let n > 1 be a positive integer and let M be a filtered Abelian
group with corresponding admissible Rees object M q as in Lemma 5.8. Then the
nth subdivision Divn(M) is the filtered Abelian group corresponding to the graded
Abelian group δn

∗M q.
In other words, M q remains the same as a graded Abelian group, but the map t is

replaced by its multiple nt. We note that the underlying filtered Abelian group M
may change under subdivision. For example, if M = Z(0) = Z, then

Divn(M) ∼= Q

with filtration F 1Q = 0, F iQ = niZ ⊂ Q for i 6 0.
Clearly, Divn is an endofunctor of the category of filtered Abelian groups for

every n. It descends to an endofunctor

Divn : DFper(Z)→ DFper(Z)

of the periodic derived category DFper(Z).
We fix an integer n > 1 and consider the functors in, πn : Λn → Λ in § 1.1.

Lemma 5.12. For every periodic complex V q of admissible Abelian groups we have
a functorial isomorphism

πn∗i
∗
nExp(V q) ∼= Exp(Divn(V q)).

Proof. We put I ′l = πn∗i
∗
nIl, d′l = πn∗i

∗
ndl, l = 0, 1. Applying the functor πn∗i

∗
n

to (5.3), we see that the complex πn∗i
∗
nExp(V q) is given by

πn∗i
∗
nExp(V q)i = (Ṽ0, q ⊗ I1)[1]⊕ (Ṽ0, q ⊗ I0)

with the differential d = dV ⊗ id + dI , where dV is the differential on Ṽ0, q and dI

is equal to id ⊗ d′1 on the first summand and to tũ ⊗ d′0 on the second. By (1.25)
we have canonical isomorphisms I ′0

∼= I0, I ′1
∼= I1. Under these isomorphisms,

d′1 = d1 and d′0 = nd0. Therefore tũ⊗ d′0 = ntũ⊗ d0, and πn∗i
∗
nExp(V q) is exactly

isomorphic to the expression (5.3) for the complex Exp(Divn(V q)). �
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5.4. Stabilization. For every filtered Abelian group M with admissible Rees
object M q we have a tautological map M → M(1). Applying the subdivision
functor Divn, we obtain a natural map

Divn(M)→ Divn(M(1)). (5.4)

Definition 5.13. In the situation of Definition 5.11, the stabilized nth subdivision
Stabn(M) is given by

Stabn(M) = lim
l→

Divn(M(l)),

where the limit is taken with respect to the tautological maps (5.4).

Lemma 5.14. For every filtered Abelian group M which is admissible in the sense
of § 5.2 and any prime p > 2 we have

Stabp(M) ∼= M̂p ⊗Zp
Qp

with the filtration
F lM̂p = plM̂p,

where M̂p = lim l←
M/plM is the pro-p-completion of the group M .

Proof. At the level of Rees objects,

M q = lim
→

Divp(M) q
is isomorphic to M in every degree l, Ml

∼= M , and t ∈ Z[t] acts by multiplication
by p. However, this module is not t-adically complete. Thus, when we apply the
equivalence in Lemma 5.8, the result is

lim
l←

M/tlM q ∼= M̂p,

as required. �

As a corollary, we see that the periodic derived category FDMper of generalized
filtered Dieudonné modules in § 5.1 is equivalent to the category of filtered periodic
complexes V q of Abelian groups equipped with a map

ϕp : V q → Stabp(V q)
for any prime p > 2.

Now let I q be the periodic complex of functors in Fun(Λ, Z) as introduced in § 5.3,
and let P q ⊂ I q be its canonical truncation at 0. Explicitly we have P0 = Z (the
constant functor) and

P2l−1 = I1, P2l = I0

for all l > 1. The complex P q is acyclic. Moreover, the pullback i∗P q with respect
to the functor i : ΛIred → Λ in § 3.3 is admissible in the sense of Lemma 3.10.

Let η+: Z→ F 0I q and η−: Z ∼= P0 → P q be the natural embeddings. We define
a map

η : I q → P q ⊗ (F 0I q)
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by putting

η =

{
η− ⊗ id on Il, l 6 0,

id⊗ η+ on Il, l > 0.
(5.5)

Let F lP q, l > 0, be the stupid filtration on the complex P q. Then, for every l > 0,
the map η induces a map

η : F−lI q → F 0I q ⊗ F 2lP q (5.6)

and this map is a quasi-isomorphism (both sides are quasi-isomorphic to Z[2l]).

Lemma 5.15. For any n > 1, l > 0 and any complex V ∈ Fun(Λopp
n , Z), the

natural map

η : πn∗(V ⊗ i∗nF−lI q)→ πn∗(V ⊗ i∗nF 0I q ⊗ i∗nF 2lP q) (5.7)

is a quasi-isomorphism.

Proof. Both sides of (5.7) are finite-length complexes in Fun(Λopp
n , Z). After evalua-

tion at an object [m] ∈ Λn, they give complexes of free Z[Z/nZ]-modules. Therefore
we can replace πn∗ by its derived functor R

q
πn∗. Then the desired assertion follows

immediately since (5.6) is a quasi-isomorphism. �

Corollary 5.16. For every integer n > 1 and any twisted periodic complex V q of
filtered Abelian groups, the map η in (5.5) induces a quasi-isomorphism

Exp(Stabn(V q)) ∼−→ lim
l→

πn∗i
∗
n(Exp(V q)⊗ F lP q).

Proof. By Lemma 5.12 and Definition 5.13 we have

Exp(Stabn(V q)) ∼= lim
l→

πn∗i
∗
nExp(V q(l))

and, by the definition of cyclic expansion,

Exp(V q(l)) = F 0(V q ⊗ F−lI q)
for all integers l > 0. �

5.5. Comparison. We consider the category D(ΛRh, i∗P q, k) in § 3.3 with the
specific choice of the complex P q made in § 5.4. Let τ : ΛRh

∼= Λ × I → Λ be
the tautological projection and let V q be any twisted periodic complex of Abelian
groups. Then the set of maps ϕp : V q → Stabp(V q) for all primes p induces a map

η ◦ τ∗Exp(ϕ) : τ∗Exp(V q)→ π∗i
∗τ∗(Exp(V q)⊗ P q),

which gives by adjunction a map

ϕ̃ : π∗τ∗Exp(V q)→ i∗(τ∗Exp(V q)⊗ i∗P q).
Sending 〈V q, {ϕp}〉 to 〈τ∗Exp(V q), ϕ̃ 〉, we get a comparison functor

Exp: FDMper → Dc(ΛRh, P q, Z). (5.8)
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By Proposition 3.12, the following result immediately yields Theorem 5.4.

Proposition 5.17. The functor Exp in (5.8) is an equivalence of categories.

To prove this result, we generalize it. Consider the twisted periodic derived cate-
gory DFper(Iopp, Z) of functors from Iopp to Abelian groups. The cyclic expansion
functor gives a functor

Exp: DFper(Iopp, Z)→ Dw(ΛRopp
h , Z), (5.9)

where Dw(ΛRopp
h , Z) ⊂ D(ΛRopp

h , Z) is as in Proposition 3.13. It follows imme-
diately from Lemma 5.10 that the functor Exp is an equivalence of categories.
Moreover, for every n > 1 let νn : I → I be the functor given by multiplication
by n, as in (2.20). For every twisted periodic filtered complex M ∈ DFper(Iopp, Z)
we put

S̃tabn(M) = ν∗nStabn(M).

Let F̃DMper be the derived category of such complexes M equipped with a family
of maps

ϕp : M → S̃tabp(M)

for all primes p. We denote the forgetful functor by h̃∗: F̃DMper → DFper(Iopp, Z).
It has an obvious right adjoint h̃∗ given by

h̃∗(M)(n) = M ⊕
∏
p|n

Stabp(M), (5.10)

where the product is taken over all prime divisors of the integer n ∈ I. Moreover,
the construction of the functor Exp in (5.8) also gives a functor

Ẽxp: F̃DMper → Dw(ΛRh, i∗P q, Z) (5.11)

and, by construction, we have

h̃∗ ◦ Ẽxp ∼= Exp ◦ h̃∗, (5.12)

where h̃∗ on the left-hand side is the restriction functor of Proposition 3.13.

Proposition 5.18. The functor (5.11) is an equivalence of categories.

Proof. As in the proof of Proposition 2.12, it follows from Proposition 3.13(ii) that
the functor Ẽxp has a right adjoint

K : Dw(ΛRh, i∗P q, Z)→ F̃DMper.

Moreover, by (5.10), Corollary 5.16 and Lemma 3.14, the base-change map

Ẽxp ◦ h̃∗ → h̃∗ ◦ Exp
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induced by (5.12) is an isomorphism. Therefore, by adjunction,

h̃∗ ◦K ∼= Exp−1 ◦ t̂ ∗,

where Exp−1 is the equivalence inverse to (5.9). We conclude that

h̃∗ ◦K ◦ Ẽxp ∼= Exp−1 ◦ Exp ◦ h̃∗, h̃∗ ◦ Ẽxp ◦K ∼= Exp−1 ◦ Exp ◦ h̃∗.

As in the proof of Proposition 2.12, the functor h̃∗ is conservative, whence Exp
and Exp−1 are mutually inverse equivalences of categories. Therefore so are the
functors Ẽxp, K. �

Proof of Proposition 5.17. The tautological projection τ : I → pt induces a functor

τ∗: DFper(Z)→ DFper(Iopp, Z).

This is a full embedding onto the full subcategory spanned by the locally constant
functors. The adjoint functor is given by

τ∗ = R
q
lim
Iopp
←

.

By Lemma 5.14, the operation of stabilized subdivision commutes with arbitrary
products, so that τ∗ ◦ S̃tabp

∼= Stabp ◦ τ∗. Hence τ∗ and τ∗ extend to an adjoint
pair of functors between FDMper and F̃DMper and, therefore, FDMper is iden-
tified with the full subcategory in F̃DMper spanned by all objects M with locally
constant h̃∗M . By (5.12), the equivalence in Proposition 5.18 identifies this sub-
category with DΛR(Z) ∼= Dc(ΛRh, i∗P q, Z) ⊂ Dw(ΛRh, i∗P q, Z). �

§ 6. Topological cyclic homology

We conclude the paper with a brief discussion of topological cyclic homology
(again following [6]).

We fix the G-universe U as in § 4.4 and recall that for every m > 1 there are
canonical endofunctors Ψ̂m, Φ̂m of the category G-Sp = G-Sp(U). We also have
natural maps can: Ψ̂m → Φ̂m. For every T ∈ G-Sp and all integers r, s > 1 there
is a canonical non-equivariant map

Fr,s : TCrs → TCr .

On the other hand, assume that T is equipped with a cyclotomic structure. Then
there is a natural map

Rr,s : TCrs ∼= (Ψ̂s(T ))Cr
can // (Φ̂s(T ))Cr

rs // TCr ,

where rs comes from the cyclotomic structure on T . Taken together, the maps Fr,s

and Rr,s determine a functor I(T ) from the category Iopp (see § 1.3) to the category
of non-equivariant spectra: we put I(T )(n) = TCn for all n ∈ I, and the morphisms
Fr, Rr : s→ rs act by the maps Fr,s, Rr,s respectively.
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Definition 6.1. The topological cyclic homology TC(T ) of a cyclotomic spectrum T
is the non-equivariant spectrum

TC(T ) = holimIopp I(T ).

Let M ∈ DΛR(Z) be a cyclotomic complex. We consider the functor α̃ : I→ Λ̃R
of (1.16).

Definition 6.2. The topological cyclic homology TC q(M) of a cyclotomic complex
M ∈ DΛR(Z) is equal to H

q
(Iopp, α̃∗ξ∗M), where

ξ∗ : DΛR(Z) ∼= Dc(Λ̃R, λ̃∗T q, Z)→ Dc(Λ̃Ropp, Z)

is the right adjoint of the corestriction functor.

In particular, take any G-spectrum T and consider its equivariant chain complex
C q(T ) ∈ DMΛ(Z) as defined in § 4.3.

Proposition 6.3. For every cyclotomic spectrum T there is a natural isomorphism

TC q(C q(T )) ∼= H q(TC(T ), Z),

where H q(−, Z) stands for the homology of a non-equivariant spectrum with coeffi-
cients in Z.

Proof. By Lemma 4.12 we have

α̃∗ξ∗C q(T )(m) ∼= C q(TCm)

for all m ∈ I. Hence α̃∗ξ∗C q(T ) ∈ D(Iopp, Z) is isomorphic to C q(I(T ), Z), the
non-equivariant chain homology complex of the system of spectra I(T ) used in
Definition 6.1. �

In view of the equivalence proved in Theorem 5.4, it would be desirable to express
the topological cyclic homology functor TC q of Definition 6.2 in terms of filtered
Dieudonné modules. A natural notion of homology for filtered Dieudonné modules
is given by the following definition.

Definition 6.4. The syntomic cohomology of a generalized filtered Dieudonné
module M ∈ FDMper(Z) is equal to RHom

q
(Z,M), where Z ∈ FDMper is the

trivial filtered Dieudonné module.

In general, syntomic cohomology differs from topological cyclic homology. How-
ever, we have the following comparison result.

Theorem 6.5. Assume that M ∈ DΛR(Z) ∼= FDMper(Z) is profinitely complete.
Then we have a natural isomorphism

TC q(M) ∼= RHom
q
(Z,M).
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Proof. In terms of cyclotomic complexes, the trivial Dieudonné module Z corre-
sponds to the corestriction ξ̃∗Z of the constant functor Z ∈ Fun(Λ̃Ropp, Z). By
adjunction, we have

RHom
q
(Z,M) ∼= H

q
(Λ̃Ropp, ξ∗M).

Thus it suffices to prove that for every profinitely complete M ∈ D(Λ̃Ropp, Z), the
natural map

H
q
(Iopp, α̃∗M)→ H

q
(Λ̃Ropp,M)

is an isomorphism. Equivalently, we must prove that the map

H
q
([1/N∗], λ̃∗α̃∗M)→ H

q
(ΛRopp, λ̃∗M)

is an isomorphism. By base change, λ̃∗α̃
∗ ∼= α∗λ̃∗. Since right-derived Kan

extensions commute with profinite completions, Proposition 1.13 enables us to
replace ΛR by ∆R. But we know that j̃∗λ̃∗M becomes locally constant after
restricting to ∆ ⊂ ∆R, and we claim that the map

H
q
([1/N∗], α∗M ′)→ H

q
(∆R,M ′)

is an isomorphism for every M ′ ∈ D(∆R, Z) with locally constant h∗M ′ ∈ D(∆, k).
Indeed, by Lemma 1.6, we can compute the direct image δ! fibrewise and, since
h∗M ′ is locally constant, the adjunction map

δ∗δ!M
′ →M ′

is an isomorphism. Then

H
q
(∆R,M ′) ∼= H

q
(∆R, δ∗δ!M

′) ∼= H
q
([1/N∗], δ!M

′).

Since δ ◦ α = id, the right-hand side is precisely equal to H
q
([1/N∗], α∗M ′). �

In conclusion, let me say that to obtain an analogous comparison isomorphism for
an arbitrary cyclotomic spectrum T , one must modify the definition of topological
cyclic homology TC(T ) by replacing the fixed-point spectra TCm in the system I(T )
by their homotopy fixed points

(
TCm

)hG with respect to the residual action of the
group G = U(1) (the result should be related to the usual TC by an exact triangle
analogous to (1.27)). I do not know whether this makes sense from a topological
point of view. I am very grateful to L. Hesselholt for explaining to me why this
does not matter in the profinitely complete case.

§ 7. Appendix

Here we collect some facts used earlier in the paper. Most of them are well
known, but our terminology may be non-standard.

First, a piece of abstract nonsense. Consider a square of categories and functors

A

a

��

b // B

c

��
C

d // D
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and assume that a and c admit left-adjoint functors a!, c!. Then an isomorphism
d ◦ a ∼= c ◦ b induces by adjunction a map

c! ◦ b→ a! ◦ b.

This map and various adjoints of it are referred to as base-change maps induced by
the isomorphism d ◦ a ∼= c ◦ b.

Given any category C and objects c, c′ ∈ C, we write C(c, c′) for the set of
morphisms from c to c′ and Copp for the opposite category: Copp(c, c′) = C(c′, c).
For every small category C and any category A we denote the category of functors
from C to A by Fun(C, A). For every functor f : C → C′, the pullback with respect
to f is denoted by f∗: Fun(C′, A)→ Fun(C, A) and the left and right Kan extensions
are denoted by f! and f∗ respectively (when they exist). If A is Abelian, then we
denote the derived category of the category Fun(C, A) by D(C, A) and, abusing
notation, write f! and f∗ for the derived functors of the Kan extensions. When
A = k-mod is the category of modules over a ring k, we abbreviate the symbols
Fun(C, k-mod), D(C, k-mod) to Fun(C, k), D(C, k). The homology H q(C, k) and
cohomology H

q
(C, k) of a small category C are defined by taking the derived Kan

extensions with respect to the projection C → pt. As usual, H
q
(C, k) is an algebra,

and H q(C, k) is a module over H
q
(C, k). The homology can be computed using an

explicit bar complex C q(C, k).
We also introduce the following slightly non-standard definition.

Definition A.1. Let C be a small category. An object E q ∈ D(C, k) is said to be
locally constant if, for every morphism f : a → b in C, the map E q(f) : E q(a) →
E q(a) is a quasi-isomorphism.

We make free use of the notions in [14]: Cartesian map, fibration, cofibration,
bifibration and so on. See [2], § 1, for a brief overview with exactly the same notation
as in this paper. We freely use the base-change isomorphism and projection formula
([2], Lemma 1.7). We also use the following notion from [15].

Definition A.2. A factorization system on a category C is given by two subcat-
egories Cv, Ch ⊂ C such that all isomorphisms in C lie both in Cv and Ch, any
morphism f in C can be decomposed as f = v ◦ h, v ∈ Cv, h ∈ Ch, and such
a decomposition is unique up to a unique isomorphism.

Example A.3. If γ : C → C′ is a fibration, then the fibrewise morphisms and
Cartesian morphisms form a factorization system on C.

Factorization systems are very useful gadgets, although they are traditionally
relegated to appendices and introductions (and we follow that tradition). Defini-
tion A.2 has several corollaries and/or equivalent reformulations. For example, one
can show that Cv ∩ Ch consists precisely of the isomorphisms in C. Moreover, mor-
phisms in Cv have a unique lifting property with respect to morphisms in Ch, and
vice versa (see [15]). We shall need a result which is not in [15]. Let C be a small
category and let C be the category of all objects in C and all isomorphisms between
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them. Hence we have a Cartesian square

C

h

��

v // Ch

h

��
Cv

v // C

where v, h, v, h are embedding functors. Then the isomorphism v∗ ◦ h∗ ∼= h∗ ◦ v∗

induces a base-change map
h! ◦ v ∗ → v∗ ◦ h! (A.1)

of functors from D(Ch, k) to D(Cv, k).

Lemma A.4. The base-change map (A.1) is an isomorphism.

Proof. Since the category D(Ch, k) is generated by representable functors of the
form

kc(c′) = k[Ch(c, c′)], c, c′ ∈ Ch,

it suffices to show that (A.1) becomes an isomorphism after application to any of
the functors kc ∈ Fun(Ch, k), c ∈ Ch. To do this, note that h! sends representable
functors to representable functors, whence we have

v∗h!kc(c′) = h!kc(c′) = k[C(c, c′)] (A.2)

for every c′ ∈ C. But the definition of a factorization system yields a natural
isomorphism

C(c, c′) =
∐

c′′∈C
(Ch(c, c′′)× Cv(c′′, c′))/ Aut(c′′), (A.3)

and the actions of the groups Aut(c′′) are free. Therefore (A.2) is isomorphic to

h!

( ⊕
c′′∈C

k[Ch(c, c′′)]
)

,

and the expression in the brackets is equal to v ∗kc. �

We also use the technique of A∞-algebras. A brief introduction to the relevant
part of it is contained in [1], § 1.5. Here we merely recall that an A∞-algebra is an
algebra over a certain asymmetric operad Ass∞ of complexes of Abelian groups.
Namely, Ass∞ is a cofibrant resolution of the associative asymmetric operad Ass.
An A∞-coalgebra is an A∞-algebra in the opposite category. Since operads are
asymmetric, one can define algebras in an arbitrary tensor category. In particular,
for any set S one can consider the category of Abelian groups graded by S × S,
with tensor product

(V ⊗ V ′)s,s′ =
⊕
s′′∈S

Vs,s′′ ⊗ V ′s′′,s.

An A∞-algebra in this category is a small A∞-category whose set of objects is S.
More generally, given a small category C with objects C0 and morphisms C1, one



Cyclotomic complexes 913

can consider the category of C1-graded Abelian groups with tensor product

(V ⊗ V ′)f =
⊕

f=f ′◦f ′′
Vf ′ ⊗ V ′f ′′ .

A C-graded A∞-coalgebra is an A∞-coalgebra in this category.
The derived category D(B q,Ab) of A∞-functors from a small A∞-category B q to

the category of complexes of objects in an Abelian category Ab is constructed by
considering the DG-category of all such functors and A∞-maps between them and
by inverting quasi-isomorphisms. The inversion procedure presents no difficulties
since the DG-category is well behaved (at least if Ab is large enough, for example,
when Ab = k-mod for a ring k). Every object has an h-projective replacement and
an h-injective replacement. For every A∞-morphism f : B q → B′q we have the pull-
back functor f∗: D(B′q,Ab) → D(B q,Ab), which admits the left- and right-adjoint
functors

f∗, f! : D(B q,Ab)→ D(B′q,Ab).

Given a C-graded A∞-coalgebra R q, we consider the DG-category of C-graded
k-valued A∞-comodules over R q. One can still invert quasi-isomorphisms to obtain
the triangulated derived category D(C,R q, k). For any A∞-map f : R q → R′q
we have the corestriction functor

f∗: D(C,R q, k)→ D(C,R′q, k).

For any functor f : C′ → C we have the pullback C′-graded A∞-coalgebra f∗R q and
the pullback functor

f∗: D(C,R q, k)→ D(C′, f∗R q, k).

However, h-projective replacements do not usually exist at all, and there is no gen-
eral procedure for constructing h-injective replacements. Therefore the existence of
adjoints is non-trivial. One case when an adjoint does exist is that of the embed-
ding functor i : pt → C of the point category onto an object c ∈ C. In this case,
an adjoint to the pullback functor i∗: D(C, T q, k) → D(k) is given by the cofree
A∞-comodule functor that sends M ∈ D(k) to the A∞-comodule Mc with

Mc(c′) ∼= M ⊗
⊕

f : c′→c

T q(f).

Another situation where things are easy is that of the trivial C-graded A∞-coalgebra
R q given by R0(f) = Z for every f ∈ C1 and Ri = 0 for i 6= 0.

Lemma A.5. Let C be a small category and let R be the trivial C-graded A∞-
coalgebra. Then every h-projective complex of functors from Copp to k-mod is
h-projective as an A∞-comodule over R, and the natural embedding

D(Copp, k)→ D(C,R, k)

is an equivalence of categories.
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Proof. Let B q(c, c′) = Z[C(c, c′)] be the free additive category generated by C. We
regard it as an A∞-category. Then, by definition, an A∞-comodule over the triv-
ial A∞-coalgebra R is the same thing as an A∞-functor from Boppq to complexes
of k-modules. Hence it suffices to prove the assertion for A∞-categories, where
it is well known. �

Lemma A.6. Let C be a small category, T q a C-graded A∞-coalgebra, and ρ :
C′ → C a functor from a small category C′ such that ρ∗T q is isomorphic to the triv-
ial C′-graded A∞-coalgebra. Then the pullback functor ρ∗: D(C, T q, k) → D(C′, k)
admits a right-adjoint functor

ρ∗ : D(C′, k)→ D(C, T q, k).

Proof. By definition, we must prove that for every object M ∈ D(C′, k), the functor

N 7→ Hom(ρ∗N,M) (A.4)

from D(C, T q, k) to the category of k-modules is representable. By the cobar con-
struction, every object M ∈ D(C′, k) is the cone of an endomorphism of an object
M ′ ∈ D(C′, k) of the form

M ′ =
∏

Mi,

where each Mi =M ′a is the corepresentable functor from C′ to k-mod corresponding
to an object a ∈ C′ and a module M ′ ∈ k-mod. Hence it suffices to prove that the
functor (A.4) is representable when M = M ′a. The representing object is given by
the cofree A∞-comodule M ′ρ(a) ∈ D(C, T q, k). �

Lemma A.7. Let C be a small category equipped with a factorization system as
in Lemma A.4, and let T q be a C-graded A∞-coalgebra such that h∗T q is a trivial
Ch-graded A∞-coalgebra as in Lemma A.6. Then the base-change map

v∗ ◦ h∗ → h∗ ◦ v ∗

of functors from D(Copp
h , k) to D(Cv, v∗T q, k) induced by the obvious isomorphism

v ∗ ◦ h∗ ∼= h
∗ ◦ v∗ is itself an isomorphism.

Proof. This is proved as in Lemma A.4, with the adjoints constructed using
Lemma A.6. �

All the categories of A∞-comodules considered in this paper ought to be sym-
metric tensor categories. However, to construct the tensor product, one would need
to equip the A∞-coalgebras with some sort of Hopf algebra structure, and this is too
heavy technically. Therefore we generally avoid tensor products. We nevertheless
need them in one easy case. A C-graded A∞-coalgebra R q is said to be augmented
if Ri = 0 for i < 0 and R0(f) = Z for every morphism f in C. Then we have an
obvious augmentation map ξ : ZC → R q and the corresponding corestriction functor

ξ∗: D(Copp, k)→ D(C,R q, k).
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Even more can be said: for every complex M q in Fun(Copp, k) and every A∞-
comodule E q over R q we can define the tensor product E q ⊗ ξ∗M q by putting

(E q ⊗ ξ∗M q)(c) = E q(c)⊗M q(c), c ∈ C,

with the A∞-operations being the products of the A∞-operations in E q and the
structure maps of the functor M q. This construction is obviously associative with
respect to M q.

Finally, in order to construct A∞-categories and A∞-coalgebras, we use various
categorical constructions that are associative ‘up to isomorphism’. Here is the
prototypical example (see [1], § 1.6, for more details). Let C be a small monoidal
category with an associativity isomorphism satisfying the usual pentagon equation.
Then C is actually an algebra over the following asymmetric operad.

Definition A.8. The monoidal category operad In is an operad of groupoids
defined by the following conditions.

(i) On objects, In is the free operad generated by a single binary operation.
(ii) There is exactly one morphism between any two objects of In.

The bar complex C q(C, k) is automatically an algebra over the operad C q(I q, Z).
But C q(I q, Z) is a resolution of the associative operad Ass. The A∞-operad Ass∞
is another resolution of Ass, and it is cofibrant. Therefore the augmentation map
Ass∞ → Ass factors through the map Ass → C q(I q, Z). Fixing such a decomposi-
tion, we make the bar complex C q(C, k) into an A∞-algebra over k.
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