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1. Introduction

Let (M* T) be a closed smooth manifold dimension » with a dif-
ferentiable involution, and let F” be the union of the m-dimensional
components of the fixed point with the normal bundle »,. The aim of
this paper is to give some relations among the Whitney numbers of
(lF™ v.]}, which are used to investigate involutions fixing a projective
space and a point. Let S<*>(£) be the characteristic class of an #n-di-
mensional vector bundle £ which is given by replacing the i-th ele-
mentary symmetric polynomial of «; by the i-th Whitney class W,(£) in
the symmetric polynomial

ail a;z...a"n
ig+igF =k "

The main theorem will be:

Tueorem 1.1. Let [F"] e H,(F"; Z,) be the fundamental class of F". Then
@ X S (w), [F]>=0
Osmsn

@ 5 mSw o)+ 5 (F)5 08 )+ (1S, (e (F)), IFa]>=0

where S,( ) indicates the characteristic class corvesponding to the symmetric
polynomial 3 af, and f<n-—1.

The paper is organized as follows. In § 2 we get some relations
among the characteristic classes which will be used to calculate the Wu
classes of the real projective space bundle P(¢) associated with a
smooth vector bundle & in §3, and to calculate the Gysin homomor-
phism of the classifying map f: P(§)-»RP¥ for the canonical line bundle
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over P(¢) in § 4. Making use of the results obtained in § 2, the Boa-
rdman homomorphism and the Quillen theorem instead of the results
of Kosniowski and Stong [8], we prove Theorem 1.1 in § 4. In § 5 we
show that an involution fixing a (2m+1)-dimensional real projective
space RP*"*' and a point is bordant to the Z,-manifold (RP**+:, T) with

T[xo, Kiyeseey Xopya] = [—x, %1y...., Xampz)

and we investigate the dimension of a Z,-manifold fixing RP*" and a
point.

2. The structure of the cohomology ring of a projective space bundle

Let £ be a differentiable vector bundle of dimension 2+1 over an
n-dimensional smooth manifold M”. Denote by P(&) the projective
space bundle. The cohomology ring H*(P(&); Z;) is a H*(M"; Z,)-mo
dule with

ax=n*(a) Ux,

where =n: P(§)—>M" is the projection. Let 7., be the canonical line
bundle over P(§) and let ¢ be the first Whitney class of .. The Leray-
Hirsch theorem implies that H*(P(&) ; Z;) is a free H*(M* ; Z,)-module
with a basis 1, ¢, ¢,...., ¢*, and

@D =W+ W(O) oo+ W (E) e+ Wipa (6)
where W,(€) denotes the i-th Whitney class of £.
Applying the splitting principle to a (k+1)-dimensional vector bun-
dle &, we formally write
WO =1 (1+a)
Denote by S<*>(&) the characteristic class corresponding to the symme-
tric polynomial

4ot qiret
. oyt Q%A
fyhigt oty

Then we have the following
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ProrosITION 2. 2. Let

(2.3) cttt=fi 10+ [ e f O S,
Then
(1) f1u=W;'(é>
@) fin=5(8)
@) [, =S@OW(E)+S (O Wi (E) + - + S22 () Wieya ()

Proor. (1) is an immediate result of (2.1). It follows from
(2.1) and (2.3) that

(fr+1.1 =fin Wi(§) +fx.z

J fr+ .= fm WZ(E) +fn3
2.4) b e

J f:+xm =fi W, (&) +ft.k+1

Vs =fin Wk+1(5)-

Let f,=f,,, for brevity. Then we have
2.5) fir=fi W& +fiaWo(&) + - +fips W) +Fie Wern (6)

We comprehend W,(¢) to be the j-th elementary symmetric polynomial
&;(a) of a;, and so we have

(2- 6) fz+1 =f1@1(05) +fz—1@z(a) + .- +ft—k+1@k (a) +f[—k@k+l (Ci)

Let fi"=f{"+a, fi7:? where f=f+a, f,_1. Proceeding inductively to subs-
titute fi® for fi- in (2.6), we finally obtain

) _ £k
fj+l— § K1

and

®) __ i+l
J41== Qg1 -

We now suppose as the inductive hypothesis that

‘
= 20 aeeagy
fg+tippy=g

Since fP=f,+a.f;.,, it follows that
L= +a fRF b P+ a2 P+ al [P+ af

and we have f,=S<>(¢). (38) is an immediate result of (2) and (2.4).
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3. On the Wu classes of the projective space bundle associated with a real
vector bundle.

According to Adams [1], the KO-group KZ)(RP") of the #s-dimension-
al projective space RP" is the cyclic group Z/2" with a generator 7,
—1, where 7, is the canonical line bundle over RP" and f, is a number
of a set {s] 0<s<m, s=1,2,4 modulo 8}. Let & be a real vector bundle
of dimension k+1 over RP" with £é~,x7,. It means that there exist
trivial bundles ¢ and §’ such that £éP0=wu~»,56’. Applying the splitting

principle, we have

S<r> (5) = Z all gl el
fi+ig+ e Higar=l ki

@1

— 3 gty (_u)x:
J1Hdp iy =1 I

where x=W,(3,) is a generator of H'(RP"; Z,). The i-th Whitney cla-
ss W,(&) of £ is (i‘)x' Using Propositon 2.2, we obtain

ProrosITION 3. 2.

_ ko R+l )
C!H—t:( tu)ckx:_,‘_s‘g (t—zfs) (Szl)ck—lxul_*_s-zl (t-——uZ) (sﬁz)ck—zxt—u

—Uu u Rt gt tim1 ., —Uu u +r
+15s§_,+z(t—s)(i+s~l)c AT +(t—1)(k+1)x’

where ¢ is the first Whitney class of the canonical liné bundle ». of the projective
space bundle associated with £.

The tangent bundle of the projective space bundle P(&) associated
with a vector bundle £ over RP" is stably equivalent to

7. ED (n+1)7,

where 7: P(§)—RP" is the projection. The Wu class v,(M) of a mani-
fold M of dimension m is defined by <{S¢'x,[M]) = <{xv,(M),[M])>, where
[M] indicates the fundamental class of M. We use Proposition 3.2 to
have the following (cf. [5]).

ProrosiTiON 3. 3. Let

V,(P(E))=A X+, X7 e+, X722+ oo+ A X TE CF,
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If E~sun, then

=3, () () 6):

4. A proof of Theorem 1.1.

Let £&—F be a smooth real vector bundle of dimension k2+1 over an
m-dimensional closed smooth manifold F, and let f: P(&)—RP" be the
classifying map for the canonical line bundle 7.. We now investigate
the Gysin homomorphism

fii H(PE); Z2) 2 Hpor ((P(D) Z)&HMH(RP”; Zz)g}f”""“"”(RP”; Zz)

where D is the Poincare duality isomorphism.

ProrositiON 4.1. Let a ¢ H (F; Z,) and c=W,(3.). Then
fx(ac“)=<S<’""’>(E)a, [F]>x1v~m~k+p+a

where % indicates the generator of H'(RP"; Z,).

Proor. Take the dual class (£¥-"*2*9), ¢ Hy_4_psr.o(RPY) which e-
quals to x"**-*-« N [RP¥],Let fi(ac®) = Ax¥-""*+*+¢ Since f*(x)=c, Propo-
sition 2.2 implies that

A=xmrrme, fi(ac' 0 [P(E)]) >
=ac"*** [P(&)]>
=aS<"*> (&) ¢, [P(O]>
=<aS<** (&), [F]>

We now recall the Boardman map (¢f. [6])
B: %*(X)'——)‘H*(X; ZZ)[[th tl:““]}

which is a multiplicative natural transformation satisfying
(1) for the cobordism first characteristic class W{(») of a line
bundle 7

BW.(D)=W.() + (W)}t + -+ {Wi(9) ) 14+
(2) for finite CW complex X, § is injective.

We next recall the Conner-Floyd characteristic class (cf. [2], [6])

¢.: Vect(X)->H*(X; Z,)[[4, t,....]]
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which is a map assiging a real vector bundle over X to a formal power
series of #, with the coefficient in H*(X; Z,) such that

@ ah&)=r(d
@ caE@m=c(&)ec(n)
(3) for a line bundle 7
Cz(’/) =1+ Wit +{W.(p) Yot + -

Denoting by D,: N*(N)->N.(N) the Atiyah Thom Poincare duality
isomorphism. Then we have the Umkehrung homomorphism f for a
map f: M—N between closed manifolds M and N:

fir RO LR (M5 Ry (N T (V)

which satisfies Dy fi(1)=[M—>N] & R (N). For the bordism group N
of Z,-manifolds of dimension #», the bordism group >.,., N.(BO(¥)) of
vector bundles and the bordism group R,.,(BO(1)) of free Z;-maifolds,
there exists an exact sequence (cf. [7])

(4.2) 0—>R= -’> 23 R(BO®)) = R,y (BO(1) > 0

where j*[M,T] =3, [F,v], F, the fixed point component of (M, T)
and v, the normal bundle of F, and 3[M, ¢]=[P(&) 5 RPY ¢ BOQ)], f
the classifying map for the canonical line bundle. We now remark that

4.3 BUND)=rfie(vy),
where v, is the virtual normal bundle of f: M— N (cf. [9]).

A Proor Or THrEOREM 1.1. The exact sequence (4.2) implies that
>WOlF", v,]=0. Let f,: P(v,)—> RP" be the classifying map for the cano-
nical line bundle 7. (4.3) implies 3} f.1(c,(v;,))=0. We now compute

B FEle,(p) Nt
faelr =l G treary)

_ N+l L
=c(7)"* [c‘(%’m R al V,”)cr(n!r(F"‘))}

Denote by ® an ideal genereated by (&, f,...., o1, £, tgi1,....}. By
virtue of the splitting principle, we have

€70y @ ) =1+ {Gr—m) '+ 33 (fj) S,(nlv,) ¢*4) ¢, mod D



On fixed point sets of differentiable involutions 7

and
¢ (ale (F))=1+s,(z'r(F))t, mod D .

Since ¢,(7y) is an invertible element, by making use of Proposition 4.
1 we complete the proof.

5. Involutions fixing real projective spaces

Suppose that RP" is embedding in M" with the normal bundle p
which is stably equivalent to #7,. Then

Lemma 5. 1.
) S;,(v)=ux’ in H*(RP"; Z,)
@) S,PW)=ulc+x)'+m+m+u)c'+ (m+1x in H*(PQ); Z,) where
x is the generator of H'(RP"; 7,), and c=W,(»,).
PROOF. g~ &' implies that S,(§)=S,(&’) and (1) follows. 7(P())
~; 7 ® av Hm+1) aly, and
S, c(PW))=S,(, @ wty)+@m+1x'.
Let v ® 0=u», & 6’, with trivial bundles § and §’. Then
Si(vu &> 7-;[ V)+dim s)(?v)zu Si(’?v ® ”! 77!:1)+dim 6, sl(’?u)
and S, (9, R 7ty)=ulc+2)'+m+m+un) c. Q. E. D.
Let (M, T) be a closed Z,-manifold of dimension # fixing the disjoint
union >, RP™ of real projective spaces, and let v, be the normal
bundle of RP™ which is stably equivalent to u, 7., where u, is a non-

negative integer. Then it follows from Theorem 1.1 and Lemma 5.1
that

ProposITION 5. 2.

@O X (_u:)= 0 mod 2

15iss m

@ 53, 0 (o) 52, (5) (o ) () omt )= 0 mod 2
() if B=2' then

2, (';n”f) + (u+m,+1) (mjf‘g)}=0 mod 2

We then have the following
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CoROLLARY 5. 3. Suppose that a close Z,-manifold (M, T) fixing RP"+
{a point} has the normal bundle v of RP" with v~ up,. Then

(1) if m is odd, then u is odd.
2) if m=2¢, then u is odd.

Proor. (1) is the immediate result of Proposition 5.2 (1). Applying
Proposition 5.2 (3) to f=2¢, we have

m (7;:) + (—lé> (u+m+1)=0 mod 2.

and #+1=0. Q. E. D.
We also obtain

CorOLLARY 5.4. There is no involution fixing 2k copies of RP" and a
point such that the normal bundles of the projective spaces arve stably equivalent
each other.

THEOREM 5.5. A Z,-manifold fixing a projective space RP**' of dime-
nsion 2n+1 and a point is bordant to a Z,-manifold RP**+* with the action T [x,,

Kiyeerny Xag2] = [ =Ko, Xiyeeery Xapyz)-

Proor. Suppose that (M, T) is a Z,-manifold whose fixed point set
is RP**'+{q point} and the normal bundle y of RP*+! is stably equivalent
to #7,,,,, where v is of dimension %42+1. By Corollary 5.3 (1) # is odd.
Conner and Floyd proved that Euler characteristic numbers modulo 2
of M and the fixed point set coincide. We use this fact to prove that
x(M)=1, where y( ) denotes the Euler characteristic modulo 2. Suppose
that % is odd, then the dimension of M is odd and x(M)=0. This is
a contradiction. Therefore %2 is even. Generalized Whitney numbers
(W,(N)g*(»), [N]> for a singular manifold (N—Y) determines the
bordism class [N —Y] in 9,(Y) (cf. [7]). Since % is even and # is odd,
the first Whitney class of P(y) is c+x. Let us compare the following
characteristic numbers of [P(y) —’;RP‘V] and [RP**+! - RP"], where f is

the classifying map for the line bundle 7,:

WL (P) —fE(x) e+t [P(W)]1>=0 if £>0
and
Wy (RP+¥) — (%) ettt [RPentsti]y =1,

Therefore k=0 and v is equivalent to 7;,.;. Then we have
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7*([M, T]) = [RP**, 7;,1] + [{a point}, 6],
where 6 is the trivial bundle. Let (RP*+, T) be a Z,-manifold with a
Z,-action
T [%o, X1yeeeey Xappz] =[—%o, Xiyenr, Xouyz)
Then
F*([RP+2, T]=*([M, T])
and the exact sequence (4.2) deduces that (M, T) is bordant to (RP**+?,
D.
Q. E. D.
THEOREM 5.6. Suppose that an imvolution (M", T) fixes RP*"+ {a point},

m>0. Let v be the normal bundle of RP*" with v~ u7,,. Then u is odd and
n<dm+1.

Proor. We firstly assume that # is even. Then Lemma 5.1 im-
plies that S,(r(P(v))=#n ¢’+x'. We compare generalized Whitney nu-
mbers of [P(v)>RP"], f the classifying map of 7, and [RP*' ¢ RPY].
If #>2m, then

LS (r(PW))) —n f*(x*), [P ] >=1
and
Lz Y S, (r(RP*Y)) —ni*(x2™)), [RP* '] >=0

where x=W,(»,_,), x=Wi,(»y) and ¢=W,(»,). This is a contradiction.
Then if # is even, dim M=2m. This means that some component of
M with the involution has a fixed point set consisting of a point.
Since there is no involution fixing a point except the involution on a zero
dimensional manifold, if m is positive, then « is odd. We next assume
that # is odd. Then Lemma 5.1 implies that

S,(c(PW))=(c+x)’'+(n+1)c'+.
If n>4m+1, then

A=c""*"Sn  (tPO)) + B+ D) + [Sona: (t (P (D))
+ +Df*(E) ] [San(t P (D)) + (r+ D f*(£)*"]}

=cn—4m—2(c+x)2m+l X2 = o m2m—1 g2m

and
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B=x""2(S,,,,(t(RP* ™)) + (n+1)i* (%) + [Sym.: (r (RP*1))
+ (D) [Sen (e (RP")) + (4 1) (£)*"]) =0

Therefore <A4,[P(v)]>=1 and < B, [RP"']>= 0. This is a contradiction.
Then the theorem follows.

The homogenuous space SU(#)/SO(n) is diffeomorphic to a manifold
X,={P ¢ SUn) | 'P=P}. Let Z, act on X, by P— P~'. Denote by F(X,,
Z,) the fixed point set. Then we have

ProrosiTION 5. 7. F(X,, Z,) is a disjoint union of the Grassmann mani-
folds {G;,(R"); k=0,1,2,....}.

Proor. Each. element P of F(X,, Z;) belongs to SO(#) and ‘P=P.
Let F,.(X,, Z.) consist of elements of F(X,, Z, whose trace is n-—
4k. Letting each P of F,,(X,, Z;) correspond to the subspace {x|Px=
—x} in R*, we see that F,,(X,, Z;) is diffeomorphic to the Grassmann
manifold G, (R*).

Q. E. D.

Hence we obtain the 3-dimensional projective space RP® with the
involution [x,, %1, %,, %3] = [—%,, %1, %, %3] whose fixed point set is RP*+
{a point} and the 5-dimensional manifold X; with the involution P— P!
whose fixed point set is RP*+ {a point}.
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