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1. Introduction

This paper calculates the relative algebigitheoryK., (k[x]/(x"), (x)) of a trun-
cated polynomial algebra over a perfect figldf positive characteristip. Since
the ideal generated byis nilpotent, we can apply McCarthy’s theorem: the rela-
tive algebraiK -theory is isomorphic to the relative topological cyclic homology,
[Mc], and it is the latter groups we actually evaluate.

The result is best expressed in terms of big Witt vectors.\Wei(k) denote
the big Witt vectors irk of lengthm, i.e. the multiplicative group

Wn(K) = (1 +xK[X]) * /(1 +x™K[x]) *,
and recall the Verschiebung map
Vi Wi(k) — Wnn(k)

given by the substitutioV,(f (x)) = f (x"). The relativeK -theory K (k[x]/(x"),
(x)) is given by the fibration sequence

K(K[X]/(x™), (x)) — K(K[x]/(x™)) — K(K),
with a corresponding exact sequence of homotopy groups
0 — Ku(K[x]/(x"), (X)) — Ki(K[x]/(x™)) — K.(k) — O.

The groupK. (k) were evaluted by Quillen in [Q] whek is a finite field. For a
general perfect field of characterisfic> 0 one knows that thp-adic K-groups

of k vanish in positive degrees by [K]. Theorem 4.2.10 below together with
McCarthy’s theorem gives

* Supported in part by NSF grant
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Theorem A. Let k be a perfect field of positive characteristic. Then
Kam—1(K[X]/(X"), (X)) = Wmn(K)/VaWmn(K)

and the groups in even degrees are zero.

The result extends calculations by Aisbett and Stienstk&E[x]/(x"), (X)).

It was announced in [M], but was there stated Kg,_1(k[x]/(x"), (X)) =
Wmn—l(k)/VnWm—l(k)-

In order to evaluate the topological cyclic homology AL bne begins with
the topological Hochschild spectru(A). This is anS-equivariant spectrum.
In the case wheré = k[x]/(x"), standard cyclic theory leads to an equivalence
of spectra

T(A) ~, T(K) ANY(I),

where N%(I1,) is the cyclic bar-construction of the pointed monald, =
{0,1,x,...,x""1}. Thus, for each closed subgro® c S!, the homotopy
groups of the fixed set§(A)° may be viewed as th€-equivariant homology
groupsT (k)S (N¥(I1,,)). Knowledge ofr, T(A)C in turn determine the topolog-
ical cyclic homology groups of. There is an equivariant splitting

N(IT,) ¥ \/ NY(I,;s),
s>0

whereN%(I1,,; 0) = S and fors > 1 a homeomorphism
NY(IIn;8) = S} A, (A%71/Cs - A5).

Here AS~1 is the standar@ — 1 simplex withCs-action given by cyclic permu-
tation of the vertices, ands—" c AS~1is the face spanned by the fist-n+1
vertices. Given [HM], the main difficulty we have faced in this paper is to de-
termine theSt-equivariant homotopy type of the right hand side in the equality
above. This is done in Sect. 3 below and is based on the concept of regular cyclic
polytopes. One considerds—! as embedded in the regular representafidy

by mapping the vertices to the group elements.d.et[(s — 1)/n], and consider

the projection

Tq:RCs — Va;  Va =C(&s) ® ... CED).

The image ofAS~1 is the regular cyclic polytop®s 4 in R, It containsQs g =
mq(Cs - AS™™), so we get a map

Tq: As‘l/Cs SAST — Psd/Qsa-

Fordn < s < (d + 1)n it turns out thatoPs ¢ C Qs ¢ and that 0f Qs ¢, and we
can therefore compose with the projection

r:Psd/Qsg — Psd/0Psg = SVa-

let s n =r omg denote the composite. = (d + 1)n, we project instead t¥y.1,
and use another projection into the join@f and SV



Cyclic polytopes and th& -theory of truncated polynomial algebras 75

r:Psd+1/Qs d+1 — Cp * SV,

Again, letfs, = r o mg+1. The following result is proved in paragraph 3 by a
mixture of geometry of cyclic polytopes and homological techniques based on
results from [BAG].

Theorem B. There are $-equivariant equivalences

St Ac, (AS71/Cs- AST)

N Sk Ac, SV if dn<s<(d+1)n
“st | SAc (Co*S¥) if s=(d+1)n

given by the mapsSic, s n.

We conjecture that the mags, are themselve€s-equivariant equivalences,
such that

o1 son SVe ,ifdn<s<(d+1)n
AT/Ce - AT g, { CoxS% ifs=(d+1)n
which of course implies Theorem B. £ , is not an equivalence its cofibXg |,
would be rather complicated in that thg—modulel—]*(xsm) has vanishing group
homology by Theorem B.

It is the simplicity of the answer in Theorem B which makes possible the
calculation of T (k)¢ (N%(I1,)) and hence the proof of Theorem X is anS*-
module soS! Ac, SV¢ = S1/Cs. A SYe and T (k) A SV¢ is the V4th deloop of the
Sl-spectrumT (k), so one really only needs to calculate the equivariant spectrum
homology of the circlesS*/Cs.

It is a pleasure to acknowledge the help we have received from other mathe-
maticians. First, we thank T. Geisser for urging us to use the topological cyclic
homology techniques to prove Theorem A, which he conjectured. Second, we
are grateful to L. Baerentzen for some very helpful computer calculations at an
early stage. Finally, we thank V. I. Arnold, M. Boij and B. Totaro for help with
the key Theorem 3.1.2. We had long ago conjectured it to be true, but had grave
difficulties in proving it. Arnold and Totaro sent us two independent proofs, at
the very same time as M. Boij supplied us with the final details in the proof we
present.

2. Topological Hochschild homology of truncated polynomial algebras

2.1.This section describes the Hochschild homology and its topological extension
for truncated polynomial algebras, and is mostly a recollection of results from
[BAG] and [HM], but the reader is also referred to [H] and [M].

We begin with the linear case. For any ridgand A-bimoduleM we write
HH(A; M), for the simplicial abelian group witk-simplices

HHA M), =M © A%K
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and simplicial structure maps

dimRa...0a) = MR...Qaa+1Q ... Q& ,0<i <k
Samea ®...Qa-1 =K
smMa...0a&) = MR..RaR1lRkau®...0a ,0<i k.

The homotopy groups of the realization H&klM), or equivalently, the ho-
mology of the associated chain complex, are the Hochschild homology groups
HH.(A;M). WhenM = A with its standardA-bimodule structure we shorten
notation to HHAQ),. The chain complex associated with HkiM), is derived

from the two-sided bar construction by tensoring withover A® A°P. Therefore

HH.(A;M) = Tor"®A"(A, M),

provided thatA is flat overZ, i.e. torsion free. When the rin§ is of the form
Z[X]/(f (x)), wheref (x) is @ monic polynomial, one has the much smaller (peri-
odic) resolution

(211) Af /Ax A®A AX A®A Af JAx A A
i AX o

—— A®A —— A—0Q,

whereAf = 1®f(x)—f(x)®1 andAx = 1@ x —x® 1. Specializing td (x) = x",
whereA is a truncated polynomial algebra, one getsbr= A,

(2.1.2)
7IX]/(x"), ifi=0
HH; (Z[x]/(x")) = ¢ xZ[x]/(x"), if i >0 and even
ZIX]/(x""Y @ Z/nZ{(x""1), if i is odd

The k-simplices HHE[x]/(x"))x has aZ-basis consisting ok @ ... ® x*k. We

give such a monomial the weight = ip + ... + ik, and note that the weight

is preserved by the face and degeneracy operators. Hence we get a direct sum
decomposition of simplicial abelian groups

(213) HHEZ[X]/(x"). = @) HH(ZIX]/(X"); 5).

s>0

The homology of the summand HH[x]/(x"); 0). is equal toZ concentrated

in degree zero. To evaluate the homology of the remaining summands, we note
that a chain homotopy equivalence from (2.1.1) to the two-sided bar construction
must have weightlk(/2)n, for k even, and € — 1)/2)n + 1, fork odd, cf. [HM],

6.3. Hence (2.1.2) shows that the non-zero groups are

(2.1.4)
HHoq (Z[X]/(x"); ) = HH2q+1(Z[X] /(X"); S) = Z, if n does not divides
HHoq41(Z[X]/(X"); S) = Z/nZ, if n dividess,

whered is the integer part
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The Buenos Aires Group in [BAG] worked out explicitely the chain homotopy
equivalence from (2.1.1) to the (normalized) two-sided bar construction, follow-
ing the standard procedure from e.g. [ML], p. 236. This gives us the following
formulas for the cycles in the Hochschild complex which carry the homology in
(2.1.4):

e = (DT ) xPextexexkoxe... oxMex,
ko+...+kg=s—d
(2.15) shE
e = (D)0 Y xdexextexexMex,

ko+...+kg=s—d—1
0<k <n—1

We note that since > dn, the lower bound ork; is redundant. The final result
we shall need from [BAG] is the value of ConneB-operator. On the chain
level,

(2.1.6) B (de) = —Sl2d+1,

andB is zero in odd degrees.

2.2.Let IT be a pointed monoid, i.e. a monoid with a designated base point such
that the product map factors to IT A IT — I1, and letA be a ring. The pointed
monoid algebra is the s&&(IT) = A[IT]/A[+] with the ring structure induced
from that onA[I7]. So in particular,

(22.1) AIX]/(x") = AIIn),

whereIT,, = {0,1,x,...,x"~1} considered as a pointed monoid with 0 as base
point andx" = 0.

The cyclic bar construction, introduced by Waldhausen, is the cyclic set
NE&Y(IT) with k-simplices

(2.2.2) NY(IT) = A&

and the Hochschild-like structure maps

di (oA . .. ATTK) = TOA .. AT T 41A - - - ATk ,0<i <k
= TRTOATIA - . . ATTK—1 ,i=k

S (moA ... ATTK) = TOA .. AT ALAT 1A .. AT ,0 < <K

Tk(TOA . . . ATTK) = TKATQA .« . . ATTK_1.

Its geometric realization, which we dend¥(I7), has a continuouSt-action.
Moreover, the reduced chaildN(IT)) and HHE(II)). are isomorphic sim-
plicial abelian groups, so

(2.2.3) H,(NY(II)) = HH.(Z(II)).

Under this isomorphism, ConneB-operator is given by the composition
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B: |:|*(N Cy(H)) [S—ll> |:|*+1(S+:-l A NCY(H)) . |:|*+1(N Cy(H))a

where the first map is exterior multiplication bg4] € Hy(S'), and the second
map is induced from the action map, cf. [H], Proposition 1.4.5.

The topological Hochschild spectrufi(A) of a ring A, is anS*-equivariant
spectrum. We refer the reader to [HM]L,, or [M], 2.3-2.4 for the definition and to
[LMS] for the notion of an equivariant spectrum. In the case of a pointed monoid
algebra, we have from [HM], Theorem 6.1, an equivalenceSbequivariant
spectra

(2.2.4) T(A(ID)) ~g T(A) ANY(T),

where the smash product on the right is formed in the categoB}-efquivariant
spectra.

We need to determine ttg!-spaceN%(11,). First, we have a decomposition
analogous to (2.1.4) of the cyclic set

(2.2.5) NH(IT,) = \/ N¥(ITy; 9),

s>0
and the realization decomposes accordingly. The isomorphism (2.2.3) is compati-
ble with these decompositions, so we know the reduced homoiddy (11, s))
by (2.1.4). However, to make use of (2.2.4), we need to determineSthe
equivariant homotopy type dl%¥(11,;s). We note thatN®(II,;s) as a cyclic
set is generated by the single simplex

x® =xa... Ax € NSCXl(Hn; s).

Let AS~1 be the cyclic ¢ — 1)-simplex, i.e. the cyclic set witk-simplices
A([K], [s—1]), cf. [L]. Its realization is homeomorphic 8! x AS~1. We choose
the homeomorphism from [HM], 6.2, where tkiz-action induced from th€s-
action in the second factor iri([k],[s — 1]) becomes the diagonal action of
St x As~1 which rotates the first factor bys2s and cyclically permutes the
vertices ofAS—1.

Lemma 2.2.6. The characteristic maps: A5~1 — N(I1,;s) which represents
x©® factors over G- A5~" and defines an Sequivariant homeomorphism

(A571/Cg - A57M)/Cs = NY(I1,; 9).

oyn—1
Proof. The compositioms—" & Y N (II,; s) is constant because
dg'x® = x"axa...ax = 0 and thereforerl ,A5~" also maps to zero, for
i =0,1,...,s—1. Hences factors overdS—1/Cs- AS~". On the other han&k®

is invariant under cyclic permutation, so we get

(A571/Cs - A57M) /Cs — NY(IT,; 8).

This is surjective becausd®(I1,;s) is generated by, and it is injective
because the only relation N%¥(/1,;s) comes fromx" = 0. O
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3. Cyclic polytopes and the structure ofN ®¥(I1,)

3.1.We _embedAS‘l in the regular representatidhCs by letting theith vertex
map tot', wheret € Cs is the generator, and letS—" c AS~! be the inclusion
onto the firsts + 1 — n vertices. TheCs-action onRC;s restricts to one oms—1

and we set
s—1

Cs- ASN = U ti CASTN o Asfl.
i=0
We may then restate Lemma 2.2.6 as

(3.11) N (IT,;8) ¥ S} Ac, (A571/Cs - A7),

where theS*-action onN%(I1,; s) corresponds to the inducedt-action on the
right hand. The purpose of this paragraph is to calculate explicitelySthe
equivariant homotopy type of the right hand side of (3.1.1).

The trigonometric moment curve irdXimensions is

x(t) = (", e*,...,eM) e ¢
or upon identifyingC? with R
x(t) = (cost, sint,cos 2,sin &, . .., cosdt, sindt) € R,

Consider thes pointsx, = x(27j/s), j = 0,1,...,s — 1, on the trigometric
moment curve. Their convex hull iR2 will be denotedP 4. It is the regular
cyclic s-polytope in 2I-space, [G]. Note thaPs ; is the regulars-gon in the
plane. Ifs < 2d + 1 thenPs 4 is an § — 1)-simplex.

The face structure oPs 4 is completely known. We shall only need the
structure of facets, i.e. codimension 1 faces, where one has Gale's evenness
criterion: Picture thes pointsx; on the circle (e.g. by projecting them orfeg ;).

Then a facet oPs 4 is the convex hull ofl pairs of points in the cyclic ordering,
that is,

F= <X517Xi1+1a R axid7xid+l>7

where( ) denotes the convex hull iR?®. Moreover, the facets are alld2- 1)-
simplices. The original and very readable account of this fact is [C]. See also
[B] and [Z].

The cyclic groupCs acts onPs 4 by cyclically permuting the vertices. This
action is linear. Indeed, I&fy denote the representation

Vo= C(&s) @ ... @ C(El).

Then the points, X, . . . , Xs—1 exactly form the orbit ofxs = (1,...,1) under
the action ofCs, and the action ofCs on Vy restricts to theCs-action of Ps g
which permutes the vertices.

Let (xo, ..., %) be the convex hull of the firsk(+ 1) pointsx, = x(2xv/s),
and letE be the convex hull
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E=x(t)|0<t<2rd/(d+1)).

We note that(xo, ..., X) C E whenk/s < d/(d +1).

Theorem 3.1.2.E does not contai®. In particular, 0 ¢ (xg, ..., %) for k/s <
d/(d +1).

Proof. Letto = 2r/d + 1, and letH be the linear subspace

H = Spar{x(0), x(to), . . . , x((d — L)to); X(to), - - . , X" ((d — L)to)}.

Sincex(0) +x(tp) + . .. + x(dtp) = 0, we havex(dtp) € H. Consider the distance
(with sign) fromH to x(t),

8(t) = deti(0), X(to), - - . , X((d — L)to), X' (to), - - . , X' ((d — L)to), X(t))

It is non-zero, since otherwise we would hakecC H, and this is impossible
since E is 2d-dimensional, andH has codimension at least 1. Na#(t) is a
trigonometric polynomial of degree,

d

5(t) = (ax coskt + by sinkt),
k=0

and therefore has at most 2oots counted with multiplicity in the interval
[0, dto] C [0, 27). (Write it as a polynomial ire'.) But 0 anddt, are roots and
to, ..., (d — 1)tp are double roots, so these are all roots. It follows #{&t has
constant sign on [@tg], 6(t) > 0 or é(t) < 0. Finally,

ENH C (X(O0),X(to), . .., x((d — Lto)).

This is a facet of thel-simplex(x(0), ..., x(dty)) and therefore does not contain
0, the barycenter. O

Remark 3.1.3The proof above is basically the same as Totaro’s proof. There is
a more combinatorial proof, pointed out by G. Ziegler and by B. Totaro, which
runs as follows.

The combinatorial structure & 4 does not depend on the choice of points
X = X(2rj /s). The convex hull of anys distinct points on the trigonometric
moment curve is combinatorially equivalentRgy. Let T consist ofs points in
the interval [Qdto] with {O,to,...,dtg} C T and letP(T) = (x(t) |t € T). Then
P(T) is a cyclic polytope and Gale’s evenness criterion shows that the set

F = (x(0),X(to), . . ., x(dlto))

is a face ofP(T). Now O is the barycenter d¥, so in particular, O is an interior
point of F. It follows that 0¢ P(T — {dip}). O
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We recall the structure of the regular representali@,
RCs = R & Vis_1)/2 (BR-),

where the sign representati@. occurs only for evers. In particular, we have
a projection

(3.1.4) mq: RCs — Vy

wheneverd < [(s — 1)/2]. By definitionPs 4 = mq AS~1, and we now leQs 4 =
mq(Cs - AS™M), or
s—1
Qsa =Cs- (X0, .., Xs—n) = U<Xi7xi+11 ooy Xits—n)-
i=0
If s < (d +1)n then the theorem shows that¢0Qs 4. Hence radial projection
away from 0 gives &s-equivariant map

(3.1.5) r:Psd/Qsd — Psd/0Psq = SV
to the one-point compacification of the representalign

Remark 3.1.61f s > nd then Qs 4 contains the boundargPs 4. Indeed, the
boundary is a union of the facets, given by Gale’'s evenness criterion. A facet

F = <Xi17 Xi1+la e 7Xidaxid+l>

is contained inQs g if there is a gap of at least — 1 points between some of
the vertices considered as points on the circle. The worst case is then the facet

F= <X07 X1, Xn, Xn+1, - - - aX(d—l)n7 X(d—l)n+l>7

or any of its cyclic consequences. But the gap betwggm),+1 andxg = Xs is
s—(d — 1)n — 2 which is greater than or equal to— 1 precisely whers > dn.

Suppose thatin < s < (d +1)n. We expect that in this case radial projection
away from O defines an equivariant strong deformation retra@sef C Ps g
onto the boundaryPs 4, such that the map above is &Cs-equivariant homotopy
equivalence. We shall not need this however.

3.2. In this section, we consider the case whereloes not divides; dn <
s < (d + 1)n. The facets of the convex polytog& 4 are (21 — 1)-dimensional
simplices, so we may triangulal® 4 by taking cones fronxy of the facets which
do not containxg,

Psd = U cong, (F).

Xo¢F

This triangulation is closely related to the Buenos Aires formula (2.1.5). Indeed,
let

Zia ={ko,... k)| Tk =s—d, 1<k}

(3.2.1) Ysd ={(ko,.... ka)| Tk =s—d, 1<k <n-—1}.
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A simple calculation in HHL[x]/(x")). shows that

dex®S = dgg,fdi T L dp X ®s

=xbgxioxoxkteox®... exkex,

such that we may rewrite (2.1.5) as

(3.2.2) lad = Z de®s.
ke %sq
Dually,
(3.2.3) d: A% — Ash o dé = @dheri@d)et. . (@t

gives a 2-face of AS~L. If we embedAS~! in RCs as above, thenl® is the
affine map given by the ordered set of vertices

(1’ tkl7 tkl+1, tk1+k2+1, tk1+k2+2, o tk1+~~+kd+d717 tkl+~»-+kd+d).

The projectionry: AS~! — Ps 4 of (3.1.4) mapg' to x;, so we get
ma(d*(4%) = cong,(Fx),
whereFy is the facet ofPs 4 = 7q(AS™1) given by

Fk = <Xk1; Xk1+17 Xk1+k2+17 Xk1+k2+27 ce 7Xk1+...+kd+d—17 Xk1+,..+kd+d>'

Conversely, by Gale’s evenness criterion any facet, which does not cogtain
has this form, and hence

(3.2.4) Psa= [J cong,(Fu).

ke‘}fé’d

The numbersg — 1,...,ky — 1 give the width of the gaps between the vertices
in the simplex cong(Fx). Hence the simplexyd*(A2%) is in Qs 4 if and only if
one of these gaps is at least 1, or equivalently, if and only ik € .2 ¢ — %4.q.

Lemma 3.2.5. The chain c= Zke%d d¥ is a cycle in G(AS™1, Cs- AS™"), and
r.mq.(C) generates k(SVe).

Proof. We note that the surk +k; of any pair of indices is strictly greater than
n — 1. For on the one hankh +...+ky =s —d > (n — 1)d, and on the other
hand eactk, < n — 1, and hence

k+k >Mn—-1)}d—-(n—-1)d-1)=n-1

In particular,dg(d¥) € C,(Cs - AS™), since the gap betwedtit-*ka*d gndtk
is ko + k; — 1 and hence greater than or equahte- 1.

Now considerd,dX. If k; = n — 1 then the gap between 1 atif! isn — 1
and hencay (d¥) € C,(CsAS ™). If ky < n— 2 then the remaining; are at least
2, so we also havee %4, where



Cyclic polytopes and th& -theory of truncated polynomial algebras 83

— (k07k1+1ak271ak37"';kd)7 IdeZ

' (ko— 1k + 1), "

But di(d¥) = dx(d") and the two faces appear with opposite sign in the boundary
of the chainc. The other facesi (d¥) are treated analogously. O

By Poincaé duality the 2ith homology ofPs 4/Qs 4 is free abelian of rank
equal to the number of connected componentBsef— Qs 4. The simplicial chain
74+(C) consists of simplices dPs ¢ which coversPs ¢ — Qs 4. Thus it represents
the sum of the generators of the summandslia(Ps 4, Qs .4). The mapr maps
the connected component Bf 4 — Qs 4 which contains 0 toSVe by a degree
one map, and it follows that, 7y, (C) generatesd,q(S"e).

Proposition 3.2.6. The map $Ac, (A571/CsAS™) — S! A, SV¢, induced from
the composition of r andy is a homotopy equivalence.

Proof. Both spaces are simply connected wliek 1, so it suffices to argue that
the map is a homology equivalence. To this end, we consider the commutative
diagram

L

A LGy A5 L ST AC AST/Cy - ASTN S NY(ITy; S)

I+ J+
Ps.d/Qs.d —— S Ac. Psd/Qsd
I I
SV R St A, SV,
wheref andg mapsu to [1, u]. We remarked above thairy.(C) represents the
generator. Sinc¥y extends to ars'-module,
St Ac, SVd = SY/Cou ASYE; [2,0] > [z, 20].

This implies thatg induces an isomorphism on homology in dimensiah &nd
that the composite

~ 1 ~ ~
Faa(SE Ac, S%) —1o Fpea(SEA (SEAc, %)) —— Flagea(SE Ac, SY),
is multiplication bys, cf. (2.2.3). On the other hand, singes a homeomorphism
by Lemma 2.2.6, the Buenos Aires formula (2.1.5) and the calculation (3.2.2)
shows thatf,(c) is the generator oHy (St Ac, (AS~1/Cs - AS~M)). Commuta-
tivity of the diagram shows thatd 74 induces an isomorphism on homology in
dimension @. To prove the same in dimensiond 2 1 we use the commutative
diagram

Foa(NY(ITn; 8) —— HFoars(NY(ITn; 8))

= |

Hoa(St Ac, SY) ——— Hagea(SH Ac, SV)
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and the fact that the upper horizontal morphism is ConBesperator, hence is
multiplication by —s according to (2.1.6). Since the lower map multipliessyy
the right hand vertical map is an isomorphism. O

3.3. We next treat the case wheredividess; s = (d + 1)n and V4 = C(&s) @
... ® C(£Y). There is a cofibration sequence @f-spaces

(331) Coe ASVe — P2, gV C, * SV,

whereCs acts via the projection ontG, and diagonally in the smash and join.
Indeed, the mapping cone of,is homeomorphic t&€, * SV /Cy, 0o andCp * oo
is contractible. Hence

(3.3.2) St Ac, (Cn x SY) > (ST U, €%) A SV,
Indeed, the left hand side is the cofiber
cof(St Ac, (Cn+ A S¥9) — St Ac, SY) 2 cof(S} Ac,,, SY — S Ac, SY)
= COf(Sl/C(d+l)+ A SVd — Sl/C3+ A\ Svd) = COf(Sl/C(d+1)+ — Sl/CS+) A\ Svd

> (Stu, €) A SVe,

Here the second homeomorphism uses thatGhenoduleVy is the restriction
of an St-module so that

St Ac, SV 2 SY/Co ASY,  [z,0] — [z,20],

where now on the right hand side ti&'-action is diagonal. In particular,
Had+1(St Ac, (Cq * SV)) = Z/nZ. It follows from (3.3.1) that

(3.3.3) Hag+1(Cn % SV9) = IC,,,
the augmentation ideal in the integral group rifiG,. We have
ICn/ICZ = C,,

since the left hand side ido(Cy; IC,) which is isomorphic tdH1(Cy; Z) by the
exact homology sequence associated \gith. |C,, — 7C, —=— 7Z — 0. The
isomorphism associates toc C, the classy — 1 in IC,/IC2.

Lemma 3.3.4. The mapy: C,, x SV¢ — St Ac, (C, * SV¢), g(u) = [1,u], induces
the natural map

IC, — IC,/IC2 >~ Z/nZ

on homology in dimensio?d + 1.
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Proof. Since the action byCs on St A (C, * SV) is free in the pointed sense,
orbits and homotopy orbits agree, so we have a spectral sequence

E? = H.(Cs, H.(S! A (Co + SY))) = H.(S! Ac, (Cn + SY)).
It is concentrated on two horizontal lines, since
Hag+1(SH A (Co # SY)) = Hagra(SF A (Co # SY4))
are the only non-zero groups. Thus both lines ldgéCs; IC,). But
H.(Cs; ZCn) = Hi(Ca1; Z)

by Frobenius reciprocity, cf. [Br], anti,(Cs; IC,) can be obtained from the
exact sequence

s H*(Cs; |Cn) - H*(Cs;zcn) - H*(Cs; Z) —

It follows thatH..(Cs; IC,) vanishes in odd degrees and is equal.fmZ in even
degrees.

By (3.3.2) the spectral sequence converges to a single cogd¥y/of. in
degree @ + 1. Hence alld?-differentials must be isomorphisms, and the edge
homomorphism

Ho(Cs; Hza+1(SF A (Cn % $%))) — Hagsa(S! Ac, (Cn % S*))

is an isomorphism. It follows that the induced map of the lemma can be
identified with

|:|2d+1(cn * SVd) — Ho(Cs; l:|2d+1(cn * SV )
which is precisely the mafC, — 1C,/IC2. 0

We are now ready to determir® Ac, (AS~1/Cs- AS~") whens =n(d + 1)
by an argument similar to that of Sect. 3.2. This makes use to the projection

Tge1i ASH/Cs - A% — P g41/Qs g1,

and of the associateth; = St Ac, 7g+1. We still have 0¢ Qs,d+1, but this time
Qs.d+1 does not contain all 0fPs 4+1. Indeed,

OPsdi1 = OPsdi1 — Qs.a+1 N OPs di1 = Cn - (X0, X1, Xn, Xn+1, - - - » Xdn, Xdn+1)
= in:701<xiaxi+lv'"1Xi+dnaxi+dn+l>7
which in turn is homotopy equivalent to a circle. This follows because each of the
involved facets are joins of twad(— 1)-simplices which each may be retracted
on their barycenters, and the resulting line segments form a circle.
We write Vig+1 = Vg @ C(€8%Y); €91 = ¢,. Then

(3.3.5) Qsar1 NCEIM ={¢ i =0,1,....,n—1}=C, - {1}
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where C(¢3*Y) = 0@ C(¢9*Y) C Vg+1. Indeed, projecting td/y we have Oc
(X0, - - -, Xnd) C Vg, namely,

0 (X0 +Xn ...+ Xnq)-

1
Td+1
The proof of (3.1.2) shows that this is the only representation of 0 in the cyclic
polytope(Xo, . . ., Xna) C Vg, and (3.3.5) follows.

Letn={2(& +&*) i =0,1,...,n—1}, the set of midpoints in the regular
n-gon in C(&,). Radial projection from & Vg1 gives a map

r:(F):;,d+1’ Qs,d+1) - (Ps,d+17 8Ps,d+1 - n)~

On the other hand,
aF:'s,d+1 = S(Vg) * S(C(&n))

and the general formuld Y — Yy ~ X*(Y —Yo) together with theCs-homotopy
equivalenceS(C(&n)) — n ~ C, - {1} show that

(3.3.6) OPsgs1 — N = CqxS(Va).
Thus we get &s-equivariant map
(3.3.7) r:Psd+1/Qsdr1 — XCn * S(Vg) = Cy + SV,

This may very well be an equivariant homotopy equivalence, but we shall do
with less.

The Buenos Aires formula, giving the generatgy., of I:|2d+1(N Y(I1y;8)) =
Z/nZ, has only one term, namely

X" texe...@x"tex € Z(Ng, (ITn;S).

This is the iterated facaly;,5da; * . .. dy ~* applied to the generatar®®, so dually
consider the face

c: A2d+l N Asfl; c= (dZ)nfl o (d2d+2)n71'
This is the affine map given by the ordered set of vertices
(1,t,t", "L tdn dnt

in AS~1 c RC, and maps to a facet @% 4+1 under the projectionrg+y. The
argument of Lemma 3.2.5 implies thabecomes a cycle i€, (AS™1, Cs- AS™).
Thus

7d+1(C) € Cog+1(Ps,d+1, Qs d+1),  I'mg+1(C) € Cog+1(Ps d+1, OPs g+1 — N)

are also cycles. In order to determine their homology class, we may instead
determine the homology class of

Or mg+1(C): DAY — 9P 441 — N ¥ S(Via1) — N.
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We know from (3.3.4) and (3.3.6) that
H2d+1(S(Va+1) — n) = 1Cy,.

The augmentation ide&C,, is isomorphic taZC,/(N), whereN is the norm ele-
ment. We saw above thaly(Cs; IC,)) = Z/nZ, and hence thatlo(Cs; ZC,/(N))

>~ 7Z/nZ. Indeed a specific isomorphism is induced from the augmentation
€:ZCn/(N) — Z/nZ.

Lemma 3.3.8. The cycledr y+1(c) represents an element obH{S(Vg+1) — ) =
ZCyq/(N) which augments t& +nZ.

Proof. The boundary ofr mq+1(C) is a 2-dimensional spher&® in S2+1 =
S(Vy4+1) Which does not interseat. Let D, andD_ be the two components of
S(Vg+1) — S%, say,rmg+1(c) = Ds+. The inclusionS® ¢ S(Vg4+1) — n induces an
injection on homology if and only ih, = D Nn andn_ = D_ Nn are both
non-empty, and$%%] € Ho4(S(Vg+1) — N) augments tav. € 7Z/nZ, n. = #n,.
This follows from Poinca duality. The dual of the homology sequence

- = Hag41(S(Vgs1) — N, $?) — Hzq(S™) — Haa(S(Vgsr)) — -
is the sequence
.. = HY(S(Var1) — %, n) — HX(S(Vgs1), S(Vas1) — S*)
— HY(S(Vga1),N) — ...
Now S(Vgs1) — S = D, UD_ and the lower sequence is isomorphic to
.= HODs,ny) & HYD_,n_) — (H°D:) ® HO(D_))/A
— H(ny) ®HO(n_))/A — ...

where A is the image oH °(S(Vg:1)). The element (10) € HO(D,) & H(D_)
represents the generator ld§q(S?) under duality and its image in

ZCn/(N) = (H°(ny) @ HO(n_))/A

has augmentationr# € 7Z/nZ as claimed.
We have left to check that, consists of one point. Note that

mg+1(C) = <X07 X1, Xn, Xn+15 - - - aanaan+1> = <X0>Xna ce aan> * <Xl7 Xn+1s - - - axdn+1>

in Vg+1, and moreover,

(X0, Xns - -y Xan) NCET™Y) = {1}, (X, Xne1, - -, Xaner) N C(EST) = {21},

Thus 74+1(C) is the line segment which joins 1 argd**, and the midpoint is
the only element of this line segment which also belongs.tdhis shows that
ma+1(C) N C(EY*Y Nn consists of a single point, amdc C(£3*1) so mg+1(c) NN
is a one point space. The linear projectiodoes not change this fact, iB.Nn
is also a one point space. O
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Proposition 3.3.9. For s = n(d+1), the mag o7r4+1 gives a homotopy equivalence
s Ny (ASil/Cs AT ~ 8! Ay (Cn * sY),

where \f = C(&) @ . .. @ C(£9).

Proof. Consider the diagram

ALCy A5 L ST A (ASTL/Co - ASTY) 5 NYY(ITy; S)

J/ﬂ-dﬂ lfrdﬂ

l:)s,d+1/Qs,d+1 — S+l 7AYo (Ps,d+1/Qs,d+1)

I I
C, * SV —2 Sl Ac (CyxSYe).

The cohomology class of the cycte € Cygs1(AS™1, Cs - AS™™) maps to the
generator oHzg.41(SE Ac, (Ch+SYe)) by Lemmas 3.3.5 and 3.3.8. Thiu$c] maps
onto this generator under the right hand vertical map. SHgdN % (I1,;s)) =
Z/nZ in degree & + 1, f o T4+ IS @ homology isomorphism. Both domain and
target are simply connected fdr> 1. Ford = 1, a direct geometric argument
gives the equivalence. O

Proof of Theorem BThe equivariant Whitehead theorem states th&-map
f: X — Y betweenG-CW-complexes@ a compact Lie group) is &-homotopy
equivalence if and only if the induced mép: X" — Y is a weak equivalence
for every closed subgroud C G, cf. [A], [LMS]. In the case at hand, we have
constructedCs-equivariant maps

SV yifdn<s<(d+1)n

. AS—1 . ASTh
Osn: A 2/Cs - A { C, * SVe ,if s=(d+21)n,

and proved that the inducedt-equivariant maps} Ac, 65, are weak homotopy
equivalences. Therefore, to prove Theorem B we must show that the same holds
on C-fixed sets for every close@ C S'. We note that ifG is an abelian group,

H c G a subgroup an&X anH -space, then

G/Ks A XK JifK CH
K — H/K '
(G Aw X) { ’ ifK ¢ H,
so it suffices to consider the subgroups ¢ Cs C St. We shall prove that in
this caseegjn may be identified withfs, ,. Then Theorem B follows from the
equivariant Whitehead theorem.

Let N; € RCs be the norm element of the subgroGp C Cs, i.e.

N, = 1+ts/r +t25/r +”.+t(r71)s/r’
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wheret € Cg is the generator. Then

(AH% = (N, HN, L HTTIN ) A8
Moreover Cs - A% = Cg - (A~ and

(Asfn)cr - (Asfl)cr ﬂAsfn ~ As/rfn c As/rfl

since the representation of an element in a simplex as a convex combination of
the vertices is unique. Hence

(As_l/CS . As—n)Cr ~ As/r—l/cs/r . As/r—n.
One readily verifies that a5, s-spaces

(SVis—o/m)Cr 2 GVis/r—v/m
and since X * Y)© = X® % Y© that

Cp * SVisri—o/m | if n dividess/r

Vits—1/n)Cr e
(Cn S ) { SVits/r—v/ml , if n does not divides/r.

Hence the mapégfn andfs,, , have the same domain and range, and one sees
similarly that the maps are equal. O

4. Topological cyclic homology ofk[x]/(x")

4.1. In this paragraph, we give a general formula for the topological cyclic
homology of a truncated polynomial algeb#fix]/(x"). We then calculate the
groups TG(K[x]/(x")) explicitely, when the coefficient ring is a perfect field of
characteristiq > 0. First, we recall some facts about big Witt vectors and refer
the reader to Bergman'’s lecture in [Mu] for details.

Let A be a commutative ring. The big Witt ring & is the setw(A) = A"
equipped with a new ring structure characterized by the requirement that the
ghost map

(4.11) w:W(A) — A"

given by the Witt polynomials
wn=ZdaQ/d, n>1
dn
be a natural transformation of functors from rings to rings, when the range is

given the componentwise ring structure. One has,

(@1, @2,...) + (0o, b1,...) = (s1(aq, b1), (a1, a2,b1,02),...)

(4.1.2) (@1, @z,...) - (bo,by,...) =(pa(as, b1), p2(as, a2, by, b2),...)
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where s, and p, are certain polynomials, which only depend on #he and
by whered dividesn. To see this, one proves that in the universal case
Z[ag,ay,...;by, by, ...] the ghost map identifieyV(A) with a subring ofAY.
The polynomialss, andp, are then defined by the formula (4.1.2), with the sum
and product on the left formed in this subring structure. Since the ring axioms
hold in the universal case, they hold in general.

There are operators

Fn :W(A) — W(A), (Frobenius)

(4.1.3) Vi :W(A) — W(A), (Verschiebung)

one for eacm > 1, characterized by

Fn(wm) = Wmn
if n dividesm
Vn(@m) :{ gm/n else.

By the same line of reasoning as in the case of the ring structure, one shows that
F, is well-defined and a ring homomorphism, thét is addivitive and that the
following formulas hold

Va(Fa(X)y) = XVa(y)
(4.12.4) FaVa=n,  VihFn = multy,
FnVm = ViFn, if (m,n) =1.

As noted above, the polynomiass and p, depend only on they and by,
where d divides n. We can therefore, in the above discussion, repldcby
any subsetS C N which is stable under division and get a rigs(A). We
call Ws(A) the truncated ring of big Witt vectors arflthe truncation set. For
example, we have the ring of big Witt vectors of lengthdefined by

(4.1.5) Wmn(A) =Wz my(A).

Evidently, if S ¢ S’ are two truncation sets, then the projectidfs/ (A) —
Ws(A) is a ring homomaorphism, and moreover, the Frobenius and Verschiebung
maps restrict to operators

Fn ‘Ws(A) — WS/n(A)v

(4.1.6) Vi tWs/n(A) — Ws(A),

whereS/n is the truncation se§/n = {m € N |nm € S}. WhenS is the empty
set, it is understood that/s(A) is the trivial ring.

Now let p be a prime. The ring op-typical Witt vectors is defined as the
truncated Witt ring

(4.1.7) W(A) =W pp2 . 1 (A).

If Ais aZ-algebra, one has a ring isomorphism
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(4.1.8) wE = [ we.
(d,p)=1

which on thedth factor is given by the composite ring map

la:W(A) — 2 wa) —" wA):

see [Mu]. More generally, we have the ring pitypical Witt vectors of length
S!

(419) WS(A) = W{17p7.__7p571}(A),
and, whenA is a Z,)-algebra, a ring isomorphism
(4.1.10) WA = J] W), p>'d <m<pd,
(d,p)=1
whosedth factor is the composite
. Fq pr
lg: Win(A) —— W[m/d](A) — W5(A).
Suppose thah = p'k with (p,k) = 1 and letd = ek. Then one readily shows
that the formulas (4.1.4) give a commutative square
Win(A) ——  Ws(A)
(4.1.11) JV" lkvpi
Winn(A) —— Wesi (A),

which describes the Verschiebung map under the splitting in (4.1.10).

Finally, we recall that the underlying additive group of the rgA) is
isomorphic to the multiplicative group of power seriesArwith constant term
11

(4112)  WE = @Q+XAXD”,  (@wa... )= [J@-ax),
i>1

and under this isomorphism
n
FaFOX) = (&), Valf(X)) = (X",
i=1
whereés, . .., &, are the formahth roots of X. Similarly,

Wm(A) = (1 +XA[XD) * /(1 +X™ALX]) *.

4.2. Given a ringA and a two-sided idedl, we let T(A, 1) denote the relative
topological Hochschild spectrum, that is, the homotopy fiber of the (&) —
T(A/1). We recall the equivalence &-spectra
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T(AX]/(x") ~a T(A) ANY(ITy),

where the smash product on the right is formed in the catego$*efpectra.
Thus forC c S*,

m (T(AIX] /(X)) = T(A) (NY(I)),

the C-equivariant homology of th&!-spaceN(I1,) with respect to theS!-
spectrumT (A). The St-spaceN®(I1,) splits equivariantly as a wedge

N(ITn) = \/ N¥(IIn;s)

s>0

and the summandN®(I1,;0) = S° corresponds to the copy of (A) in
T(A[X]/(x")). The equivariant homotopy type of the remaining summands is
given by Theorem B which we proved §8. Let againVy denote the represen-
tation Vg = C(€) @ ... ® C(¢Y) and let k] denote the largest integer less than or
equal tox. Then we have a cofibration sequenceSéfspectra

Ves1als TWV. s ASY/Copme —— Vo TR, , ASY/Cs
— T(AIX]/(x"), (x)).
Indeed, for any finite dimension&'-representatiov, T(A) A SV o T(A)v,

the Vth deloop of theS*-spectrumT (A), cf. [LMS], Theorem 1.7.9, and (4.2.1)
follows from Theorem B.

Recall from [HM], §1, thatT(A) is a cyclotomic spectrum so that we have
restriction maps

(4.2.1)

Rr T(A)Crs — T(A)P \/Cr’

wherepg V& indicatesV© considered as aﬁl representation through ttreh
root isomorphisnpc, : St — S/C,. In our case

* Cr ~
pCr [rsn—:l] - V[S;l]7
such that the restriction maps are
(4.2.2) R: T(A)\C,'js — T(A)VS "

We can then repeat the argument of [HNB, to get

Proposition 4.2.3. After profinite completion there is a cofibration sequence of
spectra

SholmT(A7, " SholimTAF , —— TCEAX]/(x"), (1)

The homotopy limits runs over the natural numbers ordered by division and
T(A)VS/n is understood to be the trivial spectrum when n does not dividels.

By cofmahty, the restriction of the homotopy limit on the left in (4.2.3) to
the natural numbers divisible hy gives an equivalence

H Cs/n ~ H C
(4.2.4) nOliMT(A)y.2, —— holimT(A)y_,
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We now fix a primep and consider, for everg with (d,p) = 1, the compo-
sition
hoimT(AS = —™ holimT(A)* = —— holimT(A):
—R V[SFI] “—R V[p"(::]—ll “—R V[prnil].
The first map is the restriction of the homotopy limit to the natural numbers of
the formp'd, r > 0, and the second map is the map of homotopy limits induced
from the inclusion map

Cora
\ prd—1
[

Cpr
N
(Pre-t)

Fq: T(A) ] — T(A)

We then have the following analog of (4.1.8).
Proposition 4.2.5. Suppose that A is a commutati¥g,-algebra. Then the map

. Cs ~ . C.r
oM TN, ., — Hwp=NOIMTAL, . -
whose dth factor is fo pry, is an equivalence.

Proof. Let .7 be the category associated with the poset of natural numbers
ordered after division, and le%, and.7 "’ be the full subcategories of natural
numbers which are powers pfand prime tgp, respectively. Then the homotopy
limit on the left in (4.2.5) is indexed by” and the homotopy limits on the
right are indexed by7,. As categories” =.% x .7’ and hence we have a
homeomorphism

hﬂmT(A)V[SS#] > hﬂm (hﬂmT(A)S[”;:’dnfl]).

7 T T

We claim that the map

Cor Cor
TA,, ~ 1T

[ [ 1
n e|d n

which on theeth factor is given byRy /eFe, is an equivalence. Given this, the
proposition follows. To prove the claim we need the following generalization
of [HM], Theorem 2.2: letT be a cyclotomic spectrum, lef be a prime and
let | be a natural number prime . Then there is a cofibration sequence of
(non-equivariant) spectra

N Cyil R
TV

G Ci—1
(4.2.6) (0&, TV ngy Toaver
If V =0 this is becaus&® is a g-cyclotomic spectrum. In general, it follows
from loc. cit, Proposition 2.1 and the proof of Proposition 2.3. We wdte
0 -..qm, whereqy, ..., qn are primes. Then (4.2.6) gives a cofibration sequence

N Cor Rq Cyr
(péT(A)\C/EP,dill)thi SR 7\ ST B SN

V org— V or 10
("4t (Pra/a=t
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where, for notational reasons, we have writtefor gy, i for ip, andl for p'd/q'.
Moreover, we have a map of cofibration sequences

r Ry r
(pC|T( )V o )hcqi _N ., T(A)Vpd —)— T(A )Vp d/q

fd 1 (pra/a—1,
n

[ I I+
(pCIT(A)V vos Jnci-s N, T(A)Vp;fd:qll _5 T(A)v”;,dd/fs .

where the left hand vertical map is the transfer of the projection going in the
opposite direction. We shall prove that tr is an equivalence such that the square
on the right is homotopy cartesian. The claim then readily follows by induction
onmandig, k=1,...,m.

Let us writeV for Vprq,/q—1)/n)- We note that multiplication by on mT(A)\C,|
is an isomorphism. Fo?l'(A)\C,' is a module spectrum over the ring spectrum
T(A)“. In particular, the homotopy groupaT(A)S' are modules over the ring
moT(A)%. By [HM], Addendum 3.3, this ring is isomorphic to the truncated big
Witt ring Wy (A), (I) = {d | d dividesl }, andq is a unit inW ,(A). Now, for
any S'-spectrumT, one has a first quadrant homology type spectral sequence

E2, = Hs(Cq; mT) = mou(Tc, ),

where the homotopy groups. T are trivial Cqi-modules because th&; -action
extends to arBl-action. The edge homomorphism of the spectral sequence is
the map on homotopy groups induced from the projeciior- Tthi- When
multiplication by q is an isomorphism om, T, the spectral sequence collapses
onto the axiss = 0, and the edge homomorphism is an isomorphism. This shows
that the projectionThch1 — Thcqi is an equivalence. But the composition

tr pr
e, —— Tre,s —— The,

induces multiplication byy on homotopy groups and is therefore also an equiv-
alence. Hence tr is an equivalence. This finishes the proof. O

We note that the individual terms in the homotopy limits on the right hand
side of (4.2.5) approximate the limit. More precisely, the fundamental cofibration
sequence, [HM], Theorem 2.2, and the fact that taking homotopy orbits preserves
connectivity, shows that the projection

. Cor
(4.2.7) @QT(A)v[pprd T(A)V o,
is 2[(pS**d — 1)/n]-connected. We also note that the proposition gives a splitting
of the left hand spectrum in (4.2.3). Indeed, if we write= p'k with (k,p) =1
then (4.2.4) and (4.2.5) show that the map

"ekl7

1 CS n r—i
(4.2.8) M@T(A)V[%l —— [ep- 1hoI|mT(A)Vp
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which on theeth factor is given byF. o pr,,, is an equivalence.

Addendum 4.2.9. Suppose that r= p'k with (p,k) = 1 and let d = ek. Then
there is a commutative diagram

. C, Feopr, . Cr_j
mholimT (A)”" —— m.holimT(A),”
“—R [ “—R [
lvn lkvp.
. Fqopr, . C
mholimT (A . —— m.holimT(A), .
—R (R R "

Proof. By naturality, we have a commutative square
. Cs/n Pry . Cora/n
PJO_“I’QT (A)V[ -1 - M@T (A)V[ prd—1,

n

I v

. pr, . Cyr
holimT (A)* =~ ——— holimT (A)"*
“—R (S “—R P dn—l

We recall from [HM], Lemma 2.3.1, that on the level of homotopy grobgé =
V; Fs, provided thati(,s) = 1. Since we have

Cyr

. Cyr .
holim T (A),” ~ |im 7. T(A
T x R ()V[pr171] R * ()V[prdn,l]

from (4.2.7), we get a commutative square

. C Fa/k . Cri
7. holimT (A" — 7, holimT (A)y"
Vopra—1 — Vopra—1
R o R "

% %

. C Fa/k . C
7 holimT(A)" " —Z =, holimT(A)", .
—R ("t “—R ("t

Finally, we can writeF4 o V,, as the composite

. C Vo . C % . C
holimT(A)"*"  —"— holimT(A),”"* “— holimT(A),""
R [ “—R [ “—R Py
F . C F . C
— holimT(A)"  — holimT(A)\",
“—R P “—R Py
n n
andFy o Vi induces multiplication by on homotopy groups. O

We now assume that the coefficient ring is a perfect fietaf positive char-
acteristicp and proceed to prove Theorem A of the introduction.

Theorem 4.2.10.Let k be a perfect field of characteristicp 0. Then the long
exact homotopy sequence associated with the cofibration sequence of (4.2.3) takes
the form
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0 — Wn(k) W, Win(k) —— TCom—1(K[X]/(X"), (X)) — O,

the groups in even degrees being zero.

Proof. We have from [HM], Proposition 9.1, and (4.2.7) that

Cor
Va1
[ n

(4.2.11) w1 holim T (k) =Wk,

with s determined by the inequalities
[(p°~*d — 1)/n] <j < [(p°d — 1)/n].
One readily checks that these inequalities are equivalent to the inequalities
p*~'d <n( +1) < p°d,
which appear in the decomposition in (4.1.10). Therefore, by (4.2.5)

1 Cs ~ )
o) M@T(k)vﬁll = Wi(+1)(K)
and the groups in odd degrees are zero. Similarly, we have

(4.2.12) my holim TR = W (K),
R 1

prd—1
o

with s determined by the same inequalities as above. Suppose thak and
letr =s —i. Then one immediately shows thais given by the inequalities
r—1

ple<j+l<pe

and hence

. Cs/n o
2 W_“fQT(k)v[S/;l] = Wi (K).

Finally, we recall from [HM], Proposition 9.1, that under the isomorphism of
(4.2.11) and (4.2.12) the map

pf —i

C
Vv p’d—ll
n

. . Cpf*\ .
V ..@rgT(k)v[prdn_ll — holimT(k)y

induces the Verschiebund, : Ws_; (k) — Ws(k) of Witt vectors. Now the theo-
rem follows from (4.1.11) and (4.2.9). O
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