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1. Introduction

The goal of this paper is to compare two rather different approaches to the theory 
of ∞-operads. Both theories are based on and to some extent parallel the theory of 
∞-categories. Ordinary category theory arose in algebraic topology, in the analysis of 
functoriality of constructions in the homotopy category of spaces or spectra and related 
categories like the derived category of an abelian category. In this context, it was soon 
realised that the naive notions of limit and colimit are of little practical use. Instead, 
one needs the notions of homotopy limits and colimits, the description of which requires 
higher categorical structure. One of the standard solutions is to equip the category of 
spaces (or spectra, or chain complexes, etc.) with the additional structure of a Quillen 
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model category [34,35]. Another and closely related way of encoding much of the same 
information is by a simplicial category constructed as the Dwyer–Kan localization [16].

Geometric problems have subsequently led to the analysis of the totality of homotopy 
categories — these are, for example, problems of homotopical descent, where one needs to 
consider a homotopy category which is ‘glued’ from ‘smaller’ homotopy theories consist-
ing of locally given objects. To efficiently study these questions, one needs a ‘homotopy 
theory’ of these higher structures, or what is sometimes referred to as a ‘homotopy the-
ory of homotopy theories’. As a consequence various concepts have arisen, among which 
we mention Rezk’s theory of complete Segal spaces [36], the category of simplicial cate-
gories equipped with their so-called Dwyer–Kan model category structure [9], as well as 
the category of simplicial sets itself, but endowed with a weaker model structure than 
the classical Quillen one, namely the Joyal model structure [25]. These approaches are 
all equivalent, at least to the extent that they can be related by (zig-zags of) Quillen 
equivalences. All these approaches yield what is now called a theory of ∞-categories, or 
more precisely of (∞, 1)-categories: morally, they describe higher categorical objects for 
which nontrivial arrows of all degrees exist, but all higher arrows are invertible up to 
homotopy.

The existence of a zig-zag of Quillen equivalences does not, unfortunately, allow one to 
automatically translate constructions from one formalism of (∞, 1)-categories to another. 
For some specific applications a certain formalism may be more convenient than another. 
The Joyal model is, in a sense, the most ‘economical’. Moreover, it bears a close relation 
to classical ideas of weak and categorical structures in homotopy theory of Boardman 
and Vogt [10], since its fibrant objects are precisely the weak Kan complexes of [10]. The 
effectiveness of this model is shown by recent applications to the theory of higher topoi 
and higher algebra, as for example in Lurie’s books [28,29]. It plays an important role 
in current advances in derived algebraic geometry, specifically chiral homology [18,29], 
geometric representation theory [1,5,6,19–21] and mirror symmetry [33].

As several of these references illustrate, any attempt to study algebraic structures in 
the context of ∞-categories leads one to the notion of an ∞-operad. Here it is to some 
extent possible to work with simplicial operads, equipped with a model structure which 
extends the one on simplicial categories mentioned above [13]. However, this approach 
has several difficulties. First and foremost, to be able to work with algebras over sim-
plicial operads, one has to convert the ∞-category under consideration into a simplicial 
category, using one of the Quillen equivalences mentioned above. Also, for a well-behaved 
homotopy theory of algebras over an operad, one often needs a cofibrant (or ‘almost cofi-
brant’) resolution of this operad. Many naturally occurring simplicial operads are not 
cofibrant and the necessary (almost) cofibrant replacement is a non-trivial procedure. 
A third point concerns the Boardman–Vogt tensor product of operads. It plays an im-
portant role in the study of the little cubes operads En (see [10,30]); roughly speaking, 
tensor products of such operads again yield little cubes operads [15,17]. Unfortunately, 
the Boardman–Vogt tensor product is not compatible with the model structure on sim-
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plicial operads (i.e. this is not a monoidal model structure), which complicates the study 
of its homotopical properties.

Two approaches to the theory of ∞-operads will be discussed in this paper, namely 
Lurie’s theory of preoperads [29] and the theory of dendroidal sets [32,11]. These address 
the issues raised above as follows. Both Lurie’s theory and the theory of dendroidal sets 
are naturally adapted to Joyal’s model structure on simplicial sets; they allow one to 
work directly with algebras in an ∞-category. (In fact, there are variants of the theory 
of dendroidal sets [12] adapted to the theory of complete Segal spaces [36] and Segal 
categories [23].) Also, all objects in Lurie’s model category of preoperads are cofibrant. 
This is not quite true for dendroidal sets, but there cofibrant objects are easily recognised 
and cofibrant replacement is an easy and explicit procedure. Both Lurie’s category and 
the category of dendroidal sets carry a tensor product. In Lurie’s category, this tensor 
product is compatible with the model structure, but is not symmetric. In the dendroidal 
category, it is symmetric, but only compatible with the model structure on the subcate-
gory modelling operads without constants. In this paper we compare Lurie’s approach to 
the dendroidal approach and to the theory of simplicial operads. While the first two are 
both based on the theory of ∞-categories [25,28], these two theories have rather different 
starting points.

At a rather naive level, these starting points can already be explained within ordinary 
category theory. On the one hand, a coloured operad in the category of sets can be seen 
as a generalization of a category, where instead of arrows f : x → y with one input 
one has arrows f : x1, . . . , xn → y with multiple inputs. With this picture in mind, 
a search for a homotopy-coherent notion of operad leads to the dendroidal theory. On 
the other hand, a coloured operad can be seen as a weak kind of monoidal (or tensor) 
category, in which tensor products x1 ⊗ · · · ⊗ xn are defined only as covariant functors 
y �→ Hom(x1 ⊗ · · · ⊗ xn, y) which are not necessarily representable. This leads one to a 
homotopy-coherent notion of a coloured operad as a weakened version of the notion of 
a symmetric monoidal infinity-category and to Lurie’s approach [29]. These two points 
of view are reflected in the various terms used to refer to coloured operads, such as 
(symmetric) ‘multicategories’ [26] and ‘pseudo-tensor categories’ [4].

The category of dendroidal sets is designed to bear the same relation to the category 
of operads (in Sets) as the category of simplicial sets bears to the category of (small) 
categories. In particular, there is a nerve functor from operads to dendroidal sets, ex-
tending the usual nerve functor from categories to simplicial sets. To achieve this, the 
simplex category Δ is replaced by a category Ω of finite rooted trees, which contains 
Δ as a full subcategory. The category of dendroidal sets is the category of presheaves 
on Ω and carries a model structure which extends (in a precise sense) the Joyal model 
structure on presheaves on Δ, i.e. on simplicial sets. This model structure is used to 
develop a theory of ∞-operads, which can now simply be defined as the fibrant objects 
in this model structure on the category of dendroidal sets. This dendroidal approach to 
∞-operads has several advantages. For example, it is completely parallel to the simpli-
cial theory of ∞-categories. An important aspect of this dendroidal theory is that every 
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∞-operad can be strictified, in the sense of being equivalent to the homotopy coherent 
nerve of an ordinary (simplicial or topological) coloured operad [13]. A disadvantage of 
the theory, at least in its current state, is that laying the groundwork for it requires 
the analysis of rather a lot of delicate combinatorial properties of finite trees, surely not 
unlike those of simplices and shuffles from the early days of (semi-)simplicial topology 
and homological algebra in the 1950s and 1960s, but more involved. The reader will see 
some illustrations of this phenomenon in this paper as well, for example in the proofs of 
Propositions 3.6.2, 4.2.7 and 4.2.8.

Lurie’s theory on the other hand does not parallel the theory of ∞-categories, but 
builds structure on top of it. Following an old idea of Graeme Segal [37], one can define 
a symmetric monoidal category as a (pseudo-)functor (satisfying some conditions) from 
the category of finite pointed sets to the category of small categories. One can deal with 
simplicial or topological symmetric monoidal categories in the same way. Alternatively, 
such a structure can be presented by a (simplicial) category cofibered over (i.e., endowed 
with a coCartesian fibration to) the category of finite pointed sets. In a similar way, 
the more general notion of an operad can be modelled as a category that is ‘partially’ 
cofibered (partially, much like a vector bundle can carry a partial connection) over the 
category of finite pointed sets. This leads to the definition of an ∞-operad as a simplicial 
set which is partially cofibered (in the appropriate weak, up-to-homotopy sense) over the 
simplicial set defined as the nerve of the category of finite pointed sets. In order to be able 
to efficiently work with such objects, a Quillen model category structure is constructed 
on the ambient category of so-called preoperads — marked simplicial sets over the nerve 
of the category of finite pointed sets. One can then model ∞-operads as the fibrant 
objects in this model category.

From the beginning of the development of these two theories, the general feeling was 
that they should be equivalent in the precise sense of there being a Quillen equivalence 
between the two model categories. This was already stated explicitly in the early install-
ments of Lurie’s DAG-series [27] and later in his Higher Algebra [29]. In this paper we will 
establish a (zig-zag of) Quillen equivalence(s), under the assumption that the ∞-operads 
have no constant (i.e. nullary) operations. No direct comparison seems to be possible; 
there are several different aspects to our somewhat indirect approach. In hindsight, the 
first step is a quite logical one: in Lurie’s approach, the representable objects are much 
like those in dendroidal sets, with one big difference, namely that they correspond to 
‘forests’ (i.e. disjoint unions of trees), rather than just trees. To bring the two categories 
more in line with each other, we first develop a theory of ‘forest sets’, close to dendroidal 
sets and Quillen equivalent to it. It is somewhat non-trivial to develop such a theory 
and the proof that it is equivalent to dendroidal sets requires the theory of dendroidal 
complete Segal spaces and its forest analogue, which takes up a large part of the paper 
(Chapter 3).

A second difference is that in the theory of dendroidal sets, ‘equivalences’ are treated 
by means of the infinite-dimensional sphere J like in Joyal’s original approach [24], while 
Lurie deals with equivalences through markings on simplicial sets. Again, to bring these 
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in line, we extend the theory of dendroidal sets and of forest sets to marked dendroidal 
and forest sets. A slightly different (in fact, more general) theory of marked dendroidal 
sets had already been developed earlier in [22].

Finally, a somewhat awkward feature is that in Lurie’s approach there is a non-trivial 
zero-object 〈0〉, which is not the initial object, but acts as an initial object only in a 
homotopy-theoretic sense. However, this complication is easily overcome by moving to 
the Quillen equivalent slice category of objects under 〈0〉.

These constructions together result in the following diagram of model categories, 
the arrows between which we will comment on below. The names of the categories in 
this diagram are as follows: dSets for dendroidal sets, fSets for forest sets and POp
for Lurie’s category of ∞-preoperads. A superscript plus indicates that the objects of 
the category are endowed with ‘markings’. A subscript o indicates the restriction to 
subcategories modelling the theory of ∞-operads without constants.

dSetsΔ
op

o fSetsΔ
op

o

u∗

dSetso

(−)�

fSetso
u∗

(−)�

dSets+
o fSets+

o

u∗

ω̄∗

POpo

ω!

〈0〉!

〈0〉/POpo.

The arrows in this diagram all denote left Quillen equivalences that we will construct. 
The functors (−)� are equivalences which are left adjoint to the right Quillen equivalences 
which forget the markings, exactly as in Chapter 3 of [28]. The functor u∗ is an obvious 
restriction functor from presheaves on forests to presheaves on trees, but we are only able 
to show that it is a left Quillen equivalence by passing through the categories of complete 
dendroidal and forest Segal spaces on top of the diagram. The main functors connecting 
the ‘Lurie side’ of the diagram to the dendroidal side are the functors ω! and ω̄∗, which 
we will construct in Chapter 5. It is in the proofs that these are left Quillen functors 
where much of the combinatorial aspects of our work lie, see Sections 5.4 and 5.5.

As mentioned above, both Lurie’s model and the dendroidal model come with a notion 
of tensor product. Roughly speaking, the tensor product P ⊗ Q of two ∞-operads can 
be characterized by the fact that algebras over P ⊗ Q correspond to P-algebras in the 
category of Q-algebras, or equivalently Q-algebras in the category of P-algebras. We will 
show that (the derived functors of) ω! and ω̄∗ respect these tensor products up to weak 
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equivalence. Although the monoidal structure on the category POp of preoperads is not 
symmetric in the usual sense, it is symmetric up to weak equivalence. This observation 
can be exploited to give the homotopy category of POp a symmetric monoidal structure. 
We will demonstrate that our equivalence between the two models gives an equivalence 
of symmetric monoidal homotopy categories (see Section 6.2).

One useful and immediate corollary of our work is a strictification result for Lurie’s 
∞-operads. Indeed, the model category of dendroidal sets is known to be Quillen equiv-
alent to the model category of simplicial operads [13]. Therefore our results produce a 
zig-zag of Quillen equivalences between the model category of simplicial operads without 
constants and Lurie’s model category POpo of preoperads without constants. However, 
there is also a straightforward direct construction of a functor from the category of (fi-
brant) simplicial operads to the category POpo. In Section 6.1 we compare this functor 
to the zig-zag just described and prove that they are equivalent in an appropriate sense, 
thereby obtaining a direct equivalence between the associated homotopy categories.

2. Several models for the theory of ∞-operads

We briefly review three different models for the theory of ∞-operads, namely the 
∞-operads in the sense of Lurie, dendroidal sets and simplicial operads. The equivalence 
of the latter two approaches has already been shown in [13]. The goal of this paper is 
to establish an equivalence between the first two. At the end of this chapter we describe 
our results. The rest of the paper is devoted to their proofs.

2.1. Operads

Throughout this paper the term operad will always mean symmetric coloured operad. 
An operad P in a given closed symmetric monoidal category V with tensor unit I consists 
of a set of colours col(P) and, for each tuple (c1, . . . , cn, d) of such colours, an object

P(c1, . . . , cn; d)

of V. This object is to be thought of as parametrizing operations of P with n inputs of 
the respective colours c1, . . . , cn and an output of colour d. (The set of inputs is allowed 
to be empty.) There should be composition maps

P(d1, . . . , dn; e) ⊗ P(c11, . . . , c
m1
1 ; d1) ⊗ · · · ⊗ P(c1n, . . . , cmn

n ; dn) −→ P(c11, . . . , cmn
n ; e)

and, for each c ∈ col(P), an identity (or unit)

I −→ P(c; c).

Finally, permutations σ ∈ Σn should act on the right by transformations

P(c1, . . . , cn; d) −→ P(cσ(1), . . . , cσ(n); d).
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All of these data are required to satisfy various well-known associativity, equivariance and 
unit axioms. A morphism of operads f : P −→ Q consists of a map f : col(P) −→ col(Q)
together with a collection of morphisms

P(c1, . . . , cn; d) −→ Q(f(c1), . . . , f(cn); f(d))

which are compatible with the given compositions, units and symmetric group actions. 
The cases of most interest to us here will be those where V is either the category of sets 
or that of simplicial sets, the symmetric monoidal structure coming from the categorical 
product in both cases. We denote the category of operads in sets (resp. simplicial sets) 
by Op (resp. sOp). We will say an operad is non-unital if P(−; d) = ∅ for every colour d
of P; in other words, if P does not contain any nullary operations. A special role will be 
played by the operad Com− parametrizing non-unital commutative algebras; it has one 
colour, one operation of every strictly positive arity and no nullary operations. Observe 
that the category of non-unital operads in Sets is precisely the slice category Op/Com−, 
and similarly for non-unital simplicial operads. We will denote those categories by Opo

and sOpo respectively. Note that these are full subcategories of Op and sOp.
When V = Sets we get special examples of (non-unital) operads from categories. 

Indeed, if C is a (small) category we can define an operad ι!C whose colours are the 
objects of C by setting

ι!C(c1, . . . , cn; d) :=
{

C(c1, d) if n = 1
∅ otherwise.

This procedure is part of an adjunction

ι! : Cat Op : ι∗

between the category of small categories and the category of operads (which in fact 
factors uniquely through Opo). The right adjoint ι∗ is given by discarding all non-unary 
operations. Note that the left adjoint ι! is fully faithful.

For later use, we will introduce the construction of the category of operations associ-
ated to an operad. First we need some notation.

Definition 2.1.1. Given finite sets A and B, a partial map f : A −→ B is a pair (A′, f ′), 
where A′ ⊆ A is a subset of A and f ′ : A′ −→ B is an ordinary map of sets. We will use 
the notation 〈n〉 for the set {1, . . . , n}. Denote by F the category which has as objects 
the sets 〈n〉 for n ≥ 0 (where 〈0〉 is the empty set by convention) and as morphisms the 
partial maps between those sets.

Note that F is a skeleton of the category of all finite sets and partial maps between 
them, which in turn is the opposite of Segal’s category Γ. In [29] Lurie uses the category 
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Fin∗, which is a skeleton of the category of pointed finite sets. There is a canonical 
functor

Fin∗ −→ F

given by forgetting the basepoint and assigning to a map f : A −→ B of pointed finite 
sets the obvious partial map with domain of definition f−1(B\{∗}). This functor is an 
isomorphism of categories.

Definition 2.1.2. A morphism f : A −→ B in F is said to be inert if the preimage of any 
element of B consists of exactly one element of A. A morphism f : A −→ B in F is active
if its domain of definition is all of A. For n ≥ 1 and 1 ≤ i ≤ n denote by ρi : 〈n〉 −→ 〈1〉
the unique inert partial map whose domain of definition is precisely {i}.

Let us now describe the functor which assigns to an operad in Sets its category of 
operations. Given P ∈ Op we define a category cat(P) as follows:

(1) The objects of cat(P) are (possibly empty) tuples (c1, . . . , cm) of colours of P.
(2) A morphism

f : (c1, . . . , cm) −→ (d1, . . . , dn)

in cat(P) is a morphism φ : 〈m〉 −→ 〈n〉 in F together with a collection of operations

fi ∈ P
(
(cj)j∈φ−1{i}; di

)
for 1 ≤ i ≤ n.

(3) The composition in cat(P) is given by composition in F and use of the composition 
maps of the operad P.

There is an obvious functor

πP : cat(P) −→ F.

To provide motivation for one of the definitions of an ∞-operad to be given later on, we 
make the following observations:

(1) Suppose we are given an inert morphism φ : 〈m〉 −→ 〈n〉 in F and an object 
(c1, . . . , cm) of cat(P). These data canonically give rise to a morphism (φ, {fi}1≤i≤n)
in cat(P) where the fi are all identities. This morphism has the special property that 
it is πP-coCartesian.

(2) Let (c1, . . . , cm) and (d1, . . . , dn) be two objects of cat(P) and let f : 〈m〉 −→ 〈n〉 be 
a partial map. Recall the inert morphisms ρi : 〈n〉 −→ 〈1〉 described above. Consider 
the canonical lifts (as described in (1)) of these maps to morphisms

(d1, . . . , dn) −→ (di).
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Then these morphisms induce bijections

cat(P)
(
(c1, . . . , cm), (d1, . . . , dn)

)
f
−→

n∏
i=1

cat(P)
(
(c1, . . . , cm), di

)
ρi◦f .

The subscript f on the left-hand side indicates that one only considers morphisms 
projecting to f under πP, the subscript on the right has the analogous meaning.

(3) There is a canonical equivalence (even an isomorphism) of categories

π−1
P (〈n〉) −→ π−1

P (〈1〉)×n.

The construction of the category of operations admits a straightforward extension to 
the case where P is a simplicial operad, in which case cat(P) is a simplicial category 
over F, the latter now regarded as a discrete simplicial category. We will return to 
this construction later. Also, observe that the category of operators of the non-unital 
commutative operad Com− is precisely the category of finite sets and surjective partial 
maps. We will denote this category by Fo.

2.2. The category of ∞-preoperads

In [29] Lurie introduces a formalism for the theory of ∞-operads. He organizes 
his ∞-operads into an ∞-category Op∞ and exhibits this category as the under-
lying ∞-category of a simplicial model category POp∞, the category of so-called 
∞-preoperads. We will review the relevant definitions now. Also, we will abbreviate the 
notation POp∞ to POp from now on.

We will be interested in the category sSets/NF of simplicial sets over the nerve of F. 
Given an object p : X −→ NF of that category and an object 〈n〉 of F, we will use the 
shorthand X〈n〉 to denote the fiber of p over the corresponding vertex of NF. For p an 
inner fibration, the reader should also recall [28] the notion of a p-coCartesian edge of X, 
whose definition we do not repeat here.

Definition 2.2.1. A (Lurie) ∞-operad is an inner fibration of simplicial sets p : O −→ NF
which satisfies the following:

(1) For every inert morphism f : 〈m〉 −→ 〈n〉 in F and every vertex C ∈ O〈m〉 there 
exists a p-coCartesian edge f ′ : C −→ C ′ in O such that p(f ′) = f . In particular, 
we can associate to f a map of simplicial sets f! : O〈m〉 −→ O〈n〉, uniquely up to 
homotopy.

(2) Let C ∈ O〈m〉 and C ′ ∈ O〈n〉 be two vertices and let f : 〈m〉 −→ 〈n〉 be a partial map. 
Let MapO(C, C ′)f be the preimage of f ∈ F(〈m〉, 〈n〉) under p. Choose p-coCartesian 
lifts C ′ −→ C ′

i of the maps ρi : 〈n〉 −→ 〈1〉 defined above. We obtain a map (unique 
up to homotopy) as follows:
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MapO(C,C ′)f −→
n∏

i=1
MapO(C,C ′

i)ρi◦f .

This is a homotopy equivalence.
(3) Using (1) we obtain for each n ≥ 0 a collection of maps {ρi! : O〈n〉 −→ O〈1〉}1≤i≤n. 

These induce equivalences of ∞-categories

O〈n〉 −→ O×n
〈1〉 .

We will now introduce the terminology necessary to describe the model category POp. 
A marked simplicial set is a pair (X, E), where X is a simplicial set and E is a subset 
of the set of 1-simplices of X. We require E to contain all the degenerate edges of X. 
The category of marked simplicial sets, which we will denote by sSets+, has as objects 
marked simplicial sets and as morphisms those maps of simplicial sets that map marked 
edges to marked edges. We define the marked simplicial set

NF� := (NF, I)

where NF is the nerve of the category F and I is the collection of all inert morphisms 
in F. The category of ∞-preoperads is defined by

POp := sSets+/NF�.

This category is naturally tensored over simplicial sets. Indeed, for X ∈ POp and 
K ∈ sSets one sets X ⊗K := X ×K�, where K� denotes K with all its edges marked. 
By adjunction this tensoring induces the structure of a simplicial category on POp.

Given an ∞-operad p : O −→ NF, we will say that an edge f of O is inert if it is a 
p-coCartesian lift of an inert morphism of F. Set O� := (O, IO), where IO is the collection 
of inert edges of O. The following is due to Lurie [29]:

Proposition 2.2.2. There exists a model structure on POp which is characterized by the 
following properties:

(C) A morphism is a cofibration precisely if its underlying map of simplicial sets is a 
monomorphism.

(F) Fibrant objects are precisely objects of the form O�, for O an ∞-operad.

Furthermore this model structure is left proper, combinatorial and simplicial with respect 
to the simplicial structure described above.

As we noted earlier, the construction of the category of operators can be extended 
to simplicial operads. For a given simplicial operad P, this construction now yields a 
simplicial category over F, the latter regarded as a discrete simplicial category. Let
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N : sCat −→ sSets

denote the homotopy-coherent nerve. The following result (see [29]) provides many ex-
amples of ∞-operads:

Proposition 2.2.3. Let P be a fibrant simplicial operad, i.e. an operad for which the 
simplicial sets P(c1, . . . , cn; d) are all Kan complexes. Then

N(cat(P)) −→ NF

is an ∞-operad.

In this paper we will mostly restrict our attention to non-unital ∞-operads. To be 
precise, we will say an ∞-operad p : O −→ NF is non-unital if p factors through NFo. 
Since the map NFo → NF is a monomorphism, such a factorization is necessarily unique 
(if it exists). We will denote by POpo the slice category

POp/NF�
o

and refer to it as the category of non-unital ∞-preoperads. Note that this category 
inherits a model structure from POp to which the description of cofibrations and fibrant 
objects of Proposition 2.2.2 still applies. Let (sOpo)f denote the full subcategory of sOpo

spanned by the fibrant non-unital simplicial operads. Then using the previous result we 
obtain a functor

ν : (sOpo)f −→ POpo : P �−→
(
N(cat(P))� −→ N(Fo)�

)
.

We will see later that this functor in fact induces an equivalence of homotopy categories.

2.3. Dendroidal sets

2.3.1. The category of dendroidal sets
In this section we review the basic definitions concerning the category of dendroidal 

sets. For more details we refer the reader to [11,31] and [32]. As in these references, we 
write Ω for the following category of trees. Objects of Ω are finite rooted trees. Such a 
tree has internal (or inner) and external (or outer) edges. Internal edges connect two 
vertices, while external edges are attached to only one vertex. One of the external edges 
is designated as being the root, all the others are called leaves. The choice of root gives 
a canonical notion of direction on the tree (namely ‘towards the root’), which allows us 
to speak of the input edges and output edge of every vertex. The number of input edges 
is called the valence of the vertex. We refer to the vertex connected to the root edge as 
the root vertex and to a vertex all of whose inputs are leaves as a leaf vertex. A vertex 
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with no input edges is called a stump. The collection of external (or outer) vertices is 
formed by the leaf vertices, the stumps and the root vertex. For example, the tree

a

p
b

e f

q

c d
r

with the root edge a drawn at the bottom, has three leaves c, d and f and three vertices 
p, q and r which are all external and have valence 3, 2 and 0 respectively. There exists 
one tree which has no vertices at all, in which the root edge is also a leaf; it is pictured 
as

We will denote this tree by η.
Each tree T in Ω generates a (symmetric, coloured) operad Ω(T ) in Sets. The colours 

of this operad are the edges of the tree and the operations are generated by the vertices. 
One way to select a set of generators is by fixing a planar structure on the tree T . For 
example, for the tree pictured above with the planar structure as drawn, the natural 
generators are

p ∈ Ω(T )(b, e, f ; a)

q ∈ Ω(T )(c, d; b)

r ∈ Ω(T )(−; e)

and the other operations are either identities or obtained from p, q and r by symmetriza-
tion and composition. Thus, for example, Ω(T ) also has operations like

1b ∈ Ω(T )(b; b) (identity)
p ◦e r ∈ Ω(T )(b, f ; a) (composition)
q · τ ∈ Ω(T )(d, c; b) (symmetry)

where τ is the nontrivial element in the symmetric group Σ2, etc. Another planar struc-
ture on the tree T defines a different set of generators, but the same operad Ω(T ).

Arrows in the category Ω from a tree S to a tree T are maps of operads Ω(S) −→ Ω(T ). 
This completes the definition of the category Ω.

The simplex category Δ admits a natural inclusion into Ω by the functor

i : Δ −→ Ω
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which sends an object [n] to the linear tree with n vertices and n + 1 edges, labelled 
0, . . . , n, where 0 is the leaf and n is the root:

0

1

n

Just like in the category Δ, the arrows in the category Ω are generated by a family 
of arrows that one can describe in simple terms. In Ω there are faces and degeneracies, 
extending the corresponding notions in Δ, and also isomorphisms of trees. Any arrow 
S −→ T decomposes as a composition of degeneracies followed by an isomorphism fol-
lowed by a composition of faces. For example, with the tree T as pictured above in the 
centre, we have the following morphisms:

σs

∂b

∂q τ
p

b

c d

q

b1

b2

s

b

v
c
d

d c

w
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The arrow σs is a degeneracy; as a map of operads, it sends the generating operation 
s to the identity operation of the edge b. The arrow ∂q corresponds to chopping off 
the vertex q and is called an external face of T . As a map of operads, it is simply the 
obvious inclusion. (Such an external face exists for any vertex with exactly one inner 
edge attached to it; any leaf vertex satisfies this condition, the root vertex might or 
might not.) The arrow ∂b corresponds to contracting the inner edge b and is called an 
inner face. As a map of operads, it sends the generator v to p ◦b q. The arrow τ is the 
isomorphism of trees interchanging c and d. As a map of operads, it sends the generator 
w to q · τ .

We mentioned above that any morphism in Ω factors into a composition of degenera-
cies, an isomorphism and a composition of faces. Let us illustrate a typical example of 
such a factorization. Take the morphism

p
b

c d

q
b1

b2

s

p

sending b1 and b2 to b. Then it factors as

∂q
p

b

c d

q
b1

b2

s

p
b

p

where the first map is a degeneracy and the second is the face ∂q already featuring in 
our earlier picture.

The category of dendroidal sets is the category of presheaves on Ω:

dSets := SetsΩ
op
.

The inclusion i induces an adjoint pair (left adjoint on the left)

i! : sSets dSets : i∗.

The functor i! is fully faithful and allows us to regard any simplicial set as a dendroidal 
set. In the other direction, each dendroidal set X has an underlying simplicial set i∗X. 
Let us list several examples of dendroidal sets.
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Example 2.3.1. Every tree T ∈ Ω gives rise to a representable dendroidal set, which we 
denote by Ω[T ]. This notation resembles the notation Δ[n] for representable simplicial 
sets and we have

i!Δ[n] = Ω[i[n]].

Example 2.3.2. For a tree T ∈ Ω, the boundary ∂Ω[T ] of T is the subpresheaf of Ω[T ]
obtained as the union of all proper monomorphisms (i.e. monomorphisms which aren’t 
isomorphisms) into Ω[T ]. The map ∂Ω[T ] −→ Ω[T ] can be obtained as the union of all 
the face inclusions

∂x : Ω[S] −→ Ω[T ]

where x ranges over inner edges and those outer vertices of T attached to only one inner 
edge (i.e. all leaf vertices and possibly the root vertex).

Example 2.3.3. For an inner edge e in a tree T , the inner horn Λe[T ] corresponding to e
is the subpresheaf of Ω[T ] obtained as the union of all proper monomorphisms into Ω[T ]
having the edge e in their image. It can be obtained as the union of all faces of T except
the one given by contracting e.

Example 2.3.4. For an operad P in Sets, its (dendroidal) nerve Nd(P) is the dendroidal 
set defined by

Nd(P)(T ) := Op(Ω(T ),P).

This defines a fully faithful functor

Nd : Op −→ dSets

which has a left adjoint denoted

τd : dSets −→ Op.

These functors are compatible with the similar pair τ and N relating categories and 
simplicial sets, in the sense that the following two squares, of right and left adjoints 
respectively, commute:

sSets
τ

i!

Cat
N

ι!

dSets

i∗

τd
Op.

ι∗

Nd
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We need some discussion of open dendroidal sets. First of all, we will say a tree T is 
open if it contains no stumps (i.e. nullary vertices). Denote by Ωo the full subcategory 
of Ω on the open trees. We will refer to the category of presheaves on Ωo as the category 
of open dendroidal sets and denote it by dSetso. The inclusion Ωo → Ω induces a fully 
faithful functor dSetso → dSets, which canonically factors through dSets/NdCom−. 
In fact, this gives an isomorphism of categories

dSetso � dSets/NdCom−

and we will often blur the distinction between these two categories, regarding dendroidal 
sets as either presheaves on Ωo or dendroidal sets equipped with a (necessarily unique) 
map to NdCom−. The reader should note that the dendroidal nerve of a non-unital 
operad in Sets is an open dendroidal set. Also, the embedding i! : sSets → dSets
factors canonically through the category of open dendroidal sets.

2.3.2. A model structure on dendroidal sets

Definition 2.3.5. A dendroidal set X is called normal if for each tree T , the action of 
Aut(T ) on X(T ) is free. More generally, a monomorphism X −→ Y of dendroidal sets 
is called normal if for each tree T , the group Aut(T ) acts freely on the complement of 
the image of X(T ) in Y (T ).

Definition 2.3.6. A map X −→ Y of dendroidal sets is called an inner Kan fibration, or 
just an inner fibration, if it has the right lifting property with respect to all inner horn 
inclusions

Λe[T ] −→ Ω[T ]

for all trees T ∈ Ω and all inner edges e of T . A dendroidal inner Kan complex is a 
dendroidal set X for which the map X −→ 1 to the terminal object is an inner Kan 
fibration. These dendroidal inner Kan complexes are also referred to more briefly as 
(dendroidal) ∞-operads.

Together with Cisinski, the third author established the following (cf. [11]):

Theorem 2.3.7. There exists a model structure on the category dSets characterized by 
the following two properties:

(C) The cofibrations are the normal monomorphisms.
(F) The fibrant objects are the dendroidal ∞-operads.

We should recall the following additional properties of this model structure:

(a) The model structure is combinatorial (so in particular cofibrantly generated) and 
left proper. The boundary inclusions ∂Ω[T ] −→ Ω[T ] form a set of generating cofi-
brations.
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(b) For the representable dendroidal set η, the slice category dSets/η is isomorphic 
to the category of simplicial sets, by an isomorphism which identifies the forgetful 
functor

dSets/η −→ dSets

with the functor

i! : sSets −→ dSets.

Under this isomorphism, the induced model structure on dSets/η corresponds to 
the Joyal model structure on sSets.

(c) The fibrations between fibrant objects can be characterized explicitly as those inner 
fibrations X −→ Y with the additional property that the functor τi∗(X) −→ τi∗(Y )
is a categorical fibration. Recall that a functor f : A −→ B is a categorical fibration 
if, for any isomorphism θ : b � b′ in B, any lift of b to an object a of A (i.e. f(a) = b) 
can be extended to a lift of θ to an isomorphism a � a′ for some object a′ of A.

Remark 2.3.8. The category dSets carries a symmetric tensor product related to the 
Boardman–Vogt [10] tensor product of operads (see [31,32]). In particular, using this 
tensor product and the functor i!, the model category dSets of the theorem becomes 
enriched in sSets with the Joyal model structure, in a sense explicitly discussed in 
Section 3.5. In addition, the tensor product restricts to a tensor product on the category 
dSetso (because of the fact that NdCom− ⊗ NdCom− = NdCom−), and this tensor 
product is compatible with the restricted model structure on dSetso (see [14]).

2.4. Simplicial operads

The category sOp of simplicial operads carries a model structure [13] analogous to 
the Bergner model structure [9] on the category of simplicial categories. The functor

Ω(−) : Ω −→ Op

can be lifted to a functor

W : Ω −→ sOp

by means of the Boardman–Vogt W -resolution with respect to the simplicial interval Δ1:

W (T ) := W (Δ1,Ω(T ))

where the right-hand side corresponds to the notation of [7]. This functor W induces an 
adjoint pair
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W! : dSets sOp : W ∗.

We will refer to W!(X) as the Boardman–Vogt resolution of the dendroidal set X and 
to W ∗(P) as the homotopy-coherent nerve of the simplicial operad P. When restricted 
to simplicial sets on the left and simplicial categories on the right, the above adjunction 
reduces to the adjoint pair that is denoted (C, N) in [28]. The following result, which 
can be viewed as a strictification result for dendroidal ∞-operads, was proved in [13]:

Theorem 2.4.1. The adjoint pair (W!, W ∗) defines a Quillen equivalence between the 
category of dendroidal sets equipped with the model structure of Theorem 2.3.7 and the 
category of simplicial operads equipped with the model structure established in [13].

Remark 2.4.2. The pair (W!, W ∗) restricts to an adjunction between the categories of 
open dendroidal sets and non-unital simplicial operads, providing a Quillen equivalence 
between these model categories.

Remark 2.4.3. We should mention one more fact concerning simplicial operads. A sim-
plicial operad P is called Σ-cofibrant if the symmetric group actions inherent in the 
definition of P are all free. A cofibrant simplicial operad P is Σ-cofibrant, but the converse 
of this statement generally fails to hold. It is not hard to verify that if P is Σ-cofibrant, 
then the dendroidal set W ∗P is normal and thus cofibrant in the model structure on 
dSets discussed above.

2.5. Main results

The goal of this paper is to show that there exists a chain of Quillen equivalences 
connecting the categories dSetso and POpo, both equipped with their respective model 
structures as described above. A key ingredient is the construction of an auxiliary cate-
gory fSets, the category of forest sets. Just like dSets, this is a presheaf category. The 
indexing category Φ is a category of forests. There exists a fully faithful functor

u : Ω −→ Φ

which by left and right Kan extension induces adjunctions

u! : dSets fSets : u∗

and

u∗ : fSets dSets : u∗.

We will define the category fSets in detail in Chapter 3, as well as its full subcategory 
fSetso of open forest sets. The main result there is:
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Theorem 2.5.1. The category of forest sets carries a model structure, homotopically en-
riched (see Section 3.5) over the Joyal model structure on simplicial sets, for which 
the adjoint pair (u∗, u∗) forms a Quillen equivalence with the category of dendroidal 
sets.

Later, in Section 6.2, we will show that when restricted to open forest sets, this model 
structure as well as the Quillen pair (u∗, u∗) are compatible with tensor products.

To continue, two more auxiliary categories are needed. These are dSets+ and fSets+

(and their ‘open’ variants), the categories of marked dendroidal sets and marked forest 
sets respectively. We will construct these categories in Chapter 4. Both these categories 
are closely related to their unmarked analogues, and in fact the main result of that 
chapter will be:

Theorem 2.5.2. There exists a commutative square of left Quillen functors as fol-
lows:

dSets

(−)�

fSets

(−)�

u∗

dSets+ fSets+.
u∗

All these functors induce Quillen equivalences and are compatible with tensor prod-
ucts.

With all these preliminaries in place, we can finally relate the category of open den-
droidal sets to the category POpo. In Chapter 5 we construct the dendrification functor

ω : Δ/NFo −→ fSetso.

Here Δ/NFo denotes the Grothendieck construction of the simplicial set NFo, also 
called its category of simplices. Roughly speaking, one can visualize a simplex in NFo

by drawing a picture of a layered forest. For example, we can draw the 2-simplex

A : Δ2 −→ NFo

given by

〈6〉
f

〈3〉
g

〈1〉

f(1) = f(2) = f(3) = 1, f(4) = 2, f(5) = f(6) = 3, g(1) = g(2) = 1

as follows:
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0

1

2

The forest ω(A) is then simply the forest obtained from this picture by forgetting the 
layered structure.

Using ω, we construct an adjunction

ω! : POpo fSets+
o : ω∗.

The main result of this paper is:

Theorem 2.5.3. The pair (ω!, ω∗) is a Quillen equivalence.

From Theorems 2.5.2 and 2.5.3 we conclude the following:

Corollary 2.5.4. There is a zig-zag of Quillen equivalences as follows (left adjoints on 
top):

dSetso
(−)�

dSets+
o POpo.

u∗ω!

Chapter 5 is devoted to the proof of Theorem 2.5.3. In Section 6.2 we will investigate 
the behaviour of the relevant functors with respect to tensor products. We will prove the 
following:

Theorem 2.5.5. The equivalence of Corollary 2.5.4 is monoidal on the level of homotopy 
categories. More precisely, for X, Y ∈ POpo there exists a natural weak equivalence of 
cofibrant marked forest sets as follows:

ω!(X � Y ) 

ω!(X) ⊗ ω!(Y )

where � (resp. ⊗) denotes the tensor product on POpo (resp. fSets+
o ).

The following corollary is not a purely formal consequence of this theorem, but will 
follow easily once we have studied the functor ω∗.

Corollary 2.5.6 (See Corollary 6.2.5). For cofibrant objects P, Q ∈ fSets+
o there is a 

natural weak equivalence

ω∗(P ) � ω∗(Q) −→ ω∗(P ⊗Q).
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The tensor product on POpo is ‘symmetric up to weak equivalence’. This can be used 
to construct a symmetric monoidal structure on the homotopy category Ho(POpo). 
We will show in Section 6.2 that the tensor product of open dendroidal sets, which is 
symmetric, is associative up to weak equivalence (in a precise sense), which endows the 
homotopy category Ho(dSetso) with a symmetric monoidal structure as well. We will 
finish Section 6.2 by relating these structures:

Proposition 2.5.7. The zig-zag of Quillen equivalences between dSetso and POpo induces 
an equivalence of symmetric monoidal categories between Ho(dSetso) and Ho(POpo).

Remark 2.5.8. With a little more care, one can extract symmetric monoidal ∞-categories 
from the model categories dSetso and POpo and show that our Quillen adjunctions 
induce equivalences between these. We will not belabour the details of such a construction 
here.

2.6. Strictification

The chain of Quillen equivalences between the categories of open dendroidal sets 
and non-unital ∞-preoperads, as expressed by Corollary 2.5.4, allows us to transfer 
various properties of the model category of dendroidal sets to that of preoperads and 
vice versa. By way of illustration, we will in this section give an example of this, namely 
the strictification of non-unital (Lurie) ∞-operads (i.e. fibrant objects in POpo).

Recall that Lurie’s definition of an ∞-operad O involves various choices: for an inert 
1-simplex f : 〈m〉 → 〈n〉 one has to choose coCartesian 1-simplices of O lying over it and 
one uses these to construct a map

f! : O〈m〉 −→ O〈n〉

of simplicial sets. This map is only unique up to homotopy (or rather, up to a contractible 
space of choices) and functorial in the weak sense that for another inert morphism 
g : 〈l〉 → 〈m〉, the composition f!g! is homotopic, not necessarily equal, to (fg)!. In 
analogy with the theory of (co)fibered categories, we call an ∞-operad split if it comes 
equipped with explicit choices of coCartesian 1-simplices over inert maps f : 〈m〉 → 〈n〉, 
as well as explicit choices of corresponding maps f! : O〈m〉 → O〈n〉, functorial in the sense 
that f!g! = (fg)!. If P is an arbitrary ∞-operad, a splitting of P is a weak equivalence 
P → P′, where P′ is a split ∞-operad.

Theorem 2.6.1. Every non-unital ∞-operad admits a splitting.

This result follows from our equivalence between open dendroidal sets and non-unital 
preoperads, since the image of any open dendroidal ∞-operad under this equivalence 
admits a canonical splitting. In fact, even more is true: for O an ∞-operad obtained 
from a dendroidal set, the natural choice of splitting will induce an isomorphism
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O〈n〉 � O×n
〈1〉

rather than just an equivalence.
Our results also provide a zig-zag of Quillen equivalences between the category POpo

and the category of non-unital simplicial operads, by composing the equivalence

W ∗ : sOpo −→ dSetso

with the chain of equivalences of Corollary 2.5.4. A careful inspection (cf. Section 6.1) of 
the functors involved will show that, on the level of homotopy categories, this equivalence 
between simplicial operads and POpo agrees with the functor ν described in Section 2.2, 
so that we obtain a ‘strictification’ of Lurie’s ∞-operads as actual simplicial operads:

Theorem 2.6.2. The functor

ν : (sOpo)f −→ POpo : P �−→
(
Ncat(P)� → NF�

o

)
induces an equivalence on the level of homotopy categories.

Remark 2.6.3. In fact, the result we will prove is stronger. It shows that the functor ν
induces an equivalence of relative categories, in the language of [3], or equivalently, an 
equivalence between the simplicial localizations of the categories involved [2,16]. On the 
other hand, the functor ν does not arise from a Quillen adjunction. Indeed, the reasons 
are best explained by considering the simpler case of simplicial categories and marked 
simplicial sets. To every fibrant simplicial category one associates its homotopy-coherent 
nerve with equivalences marked; no extension of this functor to all simplicial categories 
can have a left adjoint. Such an adjoint would have to send the marked 1-simplex to the 
simplicial category on two objects representing a ‘universal equivalence’, which does not 
exist.

3. Forest sets

In this chapter we will introduce another model for the homotopy theory of ∞-operads, 
closely related to dendroidal sets, but with trees replaced by forests. The plan for this 
chapter is as follows. First, we will introduce the category Φ of forests. The category of 
presheaves on Φ is the category of forest sets. Next, we discuss a special class of maps 
between forest sets, namely the normal monomorphisms. Afterwards, we will establish 
a model category structure on this presheaf category. The chapter will end with a proof 
that the model category of forest sets is Quillen equivalent to dendroidal sets.

3.1. The category Φ of forests

We recall the category Ω of trees from Chapter 2. Its objects are trees, its arrows 
between trees S −→ T are maps Ω(S) −→ Ω(T ) between the operads freely generated 
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by S and T . Any tree induces a natural partial order on its edges, where e ≤ e′ if the 
unique path from e′ to the root of T contains e. (There is of course a similar partial order 
on the vertices of T .) Two edges of T are called incomparable, or independent, if they are 
not related in this partial order. Two sets of edges A and B are called independent if any 
two edges a ∈ A and b ∈ B are incomparable. Thus, a collection {Ai} of sets of edges of 
T is pairwise independent if any path from the root of T to any leaf of T intersects at 
most one of the sets Ai.

We can now define the category Φ, which can be thought of as obtained from Ω
by freely adjoining sums of trees and “independent” maps. An object of Φ is a finite 
non-empty collection

F = {Si ∈ Ω | i ∈ I}.

We will call such objects forests and we will also write

F =
⊕
i∈I

Si

while referring to such an F as the direct sum of the trees Si. If G =
⊕

j∈J Tj is another 
forest, an arrow

(α, f) : F −→ G

is a pair consisting of a function α : I −→ J and for each i ∈ I a map fi : Si −→ Tα(i)
in Ω. Moreover, if α(i) = j = α(i′), where i �= i′, then fi and fi′ should have independent 
images in Tj . In other words, if e ∈ Si and e′ ∈ Si′ are two edges, then fi(e) and fi′(e′)
are incomparable in the partial order on the edges of Tj.

Observe that the operation assigning to two forests F and G their direct sum F ⊕
G equips Φ with the structure of a (non-unital) symmetric monoidal category. Note, 
however, that this operation is not a coproduct in Φ. Indeed, a would-be codiagonal 
S ⊕ S −→ S does not satisfy the independence condition on morphisms and is therefore 
not an arrow in Φ.

There is an obvious full and faithful functor

u : Ω −→ Φ

which sends a tree T to the forest u(T ) consisting of only the tree T . We will often be 
somewhat informal and view Ω as a subcategory of Φ and we’ll sometimes just write T
for u(T ) when it is clear that we are considering the tree T as an object of Φ. However, 
some care is needed when it comes to the discussion of faces (and in the next section, of 
boundaries and horns), as we will now explain.

The arrows in Ω are generated by “elementary” face maps, degeneracy maps and 
isomorphisms. In fact, every arrow can uniquely be written as a composition of degen-
eracies, followed by an isomorphism, followed by a composition of face maps (see [31]). 
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The elementary faces of a tree T in Ω come in two kinds: inner faces given by the contrac-
tion of an inner edge in T and external faces chopping off a vertex on the top of a tree, 
or, in case the root vertex has only one internal edge attached to it, the face obtained 
by deleting the root vertex and all external edges attached to it. In Φ, however, there 
is a root face of a different kind: regardless of the number of inner edges of T attached 
to the root vertex, we can delete the root vertex and the root edge and what remains is 
a forest which we denote by ∂root(u(T )), or by ∂r(u(T )) if it is clear that r is the root 
vertex. Note that there is an evident inclusion in the category Φ,

∂root(u(T )) −→ u(T ),

which looks like

⊕ ⊕
· · · · · · · · ·

· · · · · · · · ·

In other words, the tree T viewed as a forest u(T ) has top external faces just like T
in Ω and moreover it will always have a root face, at least if T is not the tree η or the 
unique tree with one edge and one vertex of valence zero (the “stump”). This root face 
is a proper forest (i.e. an object of Φ not in the image of Ω −→ Φ), unless the root of T
is a unary vertex. Also, if ∂root(T ) does exist in Ω, then there is a map

u(∂root(T )) −→ ∂root(u(T ))

which is an isomorphism only if the root vertex is unary.
We should be explicit about our conventions concerning corollas, i.e. trees with just 

one vertex. For the corolla Cn with leaves 1, . . . , n and root edge 0, there are n + 1 faces 
in Ω,

η
i

Cn

which are all external. In Φ there is one such for i = 0 and if n > 0 there is one other, 
namely the n-fold direct sum of copies of η, as follows:

η ⊕ · · · ⊕ η = ∂root(Cn) Cn.

The following lemma also explains some aspects of the difference between the category 
Ω of trees and the category Φ of forests.
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Lemma 3.1.1. The category Φ is obtained from Ω as follows. The objects of Φ are obtained 
by formally closing the objects of Ω under non-empty finite direct sums. The arrows are 
generated by

(i) all arrows u(S) −→ u(T ) arising from arrows S −→ T in Ω,
(ii) inclusions F −→ F ⊕G of summands,
(iii) inclusions of the form ∂root(u(T )) −→ u(T ),

subject to the condition that ⊕ is functorial in both variables, symmetric and associative.

Proof. Consider a map

(α, f) :
⊕
i∈I

Si −→
⊕
j∈J

Tj

in Φ. Using maps as in (ii) and the stated condition on ⊕, such a map can be obtained 
from maps where J is a singleton. So consider a map⊕

i∈I

Si −→ T.

If I has precisely one element, then it is a map of type (i). If I has more than one element, 
then the independence condition on morphisms in Φ implies that our map factors as a 
composition ⊕

i∈I

Si −→ ∂rootT −→ T.

One can now finish the proof by induction on the size of the fibers of α. �
Definition 3.1.2.

(i) If S −→ S′ is an elementary degeneracy in Ω (i.e. a map identifying two adjacent 
edges of S), then we call any map of the form

S −→ S′ or S ⊕ F −→ S′ ⊕ F

in Φ an elementary degeneracy, or just a degeneracy. (We sometimes use the word 
elementary to stress the fact that S has exactly one more vertex than S′ and to 
distinguish this from a composition of several degeneracies.)

(ii) For an object of Φ consisting of a single tree S, an elementary face of S is a map in 
Φ of one of the following two kinds:
(a) A map S′ −→ S which is induced by an internal face or a leaf face in Ω.
(b) The root face inclusion ∂rootS −→ S.
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More generally, an elementary face of a forest S ⊕F (where S is a tree) is a map in 
Φ of one of the following three kinds:
(a) A map S ⊕ F −→ S′ ⊕ F induced by a map S −→ S′ which is an internal face 

or a leaf face in Ω.
(b) A map of the form ∂rootS⊕F −→ S⊕F induced by the root face inclusion of S, 

regarded as a forest.
(c) A map of the form F −→ η ⊕ F which is the identity on the F summand.

Note that elementary degeneracies are surjective on edges and reduce the number 
of edges by one. Elementary faces are injective on edges and increase the number of 
vertices by one or in case (c) keep the number of vertices equal but increase the number 
of connected components of the forest by one. Exactly as in Ω, one has the following 
factorization of arrows in Φ:

Lemma 3.1.3. Any arrow F −→ G in Φ can be decomposed uniquely as

F F ′ 

G′ G,

where the first map is a composition of degeneracies, the second map is an isomorphism 
and the third map is a composition of faces. Note that a map in Φ is an isomorphism if 
it induces a bijection on connected components and the restriction to every component 
is an isomorphism in Ω.

Proof. Consider an arbitrary map (α, f) :
⊕

i∈I Si −→
⊕

j∈J Tj as before. Factor each 
fi : Si −→ Tα(i) as

Si S′
i



T ′
α(i) Tα(i)

using the known factorization of morphisms in Ω. This gives a composition of maps in 
Φ as follows:

⊕
i∈I Si

⊕
i∈I S

′
i


 ⊕
i∈I T

′
α(i)

⊕
j∈J Tα(i).

The first map is clearly a composition of degeneracies. The last one is a composition of 
maps of the form

( ⊕
i∈α−1(j)

T ′
α(i)

)
⊕G −→ Tj ⊕G.

Using an induction as in the proof of the previous lemma, we can write each ⊕
i∈α−1(j) T

′ −→ Tj as a composition of faces, where one uses elementary faces of 
α(i)
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type (b) if α−1(j) has more than one element and of type (c) if α−1(j) is empty. Unique-
ness follows straightforwardly by using the uniqueness of the factorization in Ω. �
Remark 3.1.4. The previous lemma in fact shows that, like Ω, the category Φ is a 
dualizable generalized Reedy category in the sense of [8]. Explicitly, one defines Φ+ to 
consist of maps which are injective on edges and Φ− as consisting of those which are 
surjective. We will use the resulting Reedy model structure on simplicial presheaves in 
Section 3.9.

3.2. Presheaves on the category of forests

In this section we discuss some constructions in, and properties of, the category of 
set-valued presheaves on Φ. (Presheaves with values in simplicial sets will feature in 
Section 3.9.) We will refer to such presheaves as forest sets and denote the category of 
these as

fSets := SetsΦ
op
.

Let us notice right away that the inclusion functor

u : Ω −→ Φ

induces a triple of adjoint functors relating forest sets to dendroidal sets:

dSets

u!

u∗

fSets.u∗

Also notice that since u is fully faithful, so are u! and u∗. In particular, for any dendroidal 
set X the canonical maps

u∗u∗X −→ X −→ u∗u!X

are isomorphisms.
The functors u! and u∗ provide many examples of forest sets coming from dendroidal 

sets. Also, each forest F defines a representable forest set which we denote by Φ[F ]. 
Thus, for a tree T , we have the relation

u!Ω[T ] = Φ[u(T )] (or simply Φ[T ]).

When no confusion can arise, we will often just write T for Ω[T ] and uT or u!T for 
Φ[u(T )].
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Direct sums. The category fSets has all (small) colimits, so we can extend the oper-
ation ⊕ on Φ to a symmetric monoidal structure on fSets as follows. We first define it 
on representables as

Φ[F ] ⊕ Φ[G] := Φ[F ⊕G].

Next, for a fixed forest F , we view Φ[F ] ⊕ Φ[−] as a functor

Φ −→ Φ[F ]/fSets

and extend it (in a way that is unique up to unique isomorphism) to a colimit preserving 
functor

Φ[F ] ⊕− : fSets −→ Φ[F ]/fSets.

This defines Φ[F ] ⊕X for any forest F and any object X of fSets. Note that Φ[F ] ⊕X

comes equipped with a map X −→ Φ[F ] ⊕X, naturally in F . Thus we have a functor

−⊕X : Φ −→ X/fSets

which we can again extend to a colimit preserving functor

−⊕X : fSets −→ X/fSets.

This procedure defines a symmetric monoidal structure on the category fSets which we 
will refer to as direct sum, with the initial object ∅ as the unit. Also note that there is 
a canonical monomorphism

X � Y −→ X ⊕ Y

from the coproduct to the direct sum, which is never an isomorphism if X and Y are 
nonempty.

Remark 3.2.1. The functor X ⊕− : fSets −→ X/fSets has a right adjoint, denoted

(X → Z) �−→ Z �X.

Thus, there is a natural bijective correspondence between maps X ⊕ Y −→ Z under X
and maps Y −→ Z�X. Since ⊕ is symmetric, these also correspond to maps X −→ Z�Y

if Z is viewed as an object under Y .

Tensor product. The (“Boardman–Vogt”) tensor product on dendroidal sets induces 
another tensor product on fSets, completely determined up to unique isomorphism by 
the following conditions on X ⊗ Y for forest sets X and Y :



898 G. Heuts et al. / Advances in Mathematics 302 (2016) 869–1043
(i) X ⊗ Y preserves colimits in each variable separately.
(ii) The functor X ⊗− distributes over ⊕.
(iii) The functor u! : dSets −→ fSets preserves the tensor product (up to natural 

isomorphism).

More explicitly, for forests F =
⊕

i∈I Si and G =
⊕

j∈J Tj , one defines

F ⊗G :=
⊕

(i,j)∈I×J

u!(Si ⊗ Tj)

and one then extends this operation from representable objects F and G to arbitrary 
objects in fSets, by writing the latter as colimits of representables. If one extends the 
definition of shuffles of trees (as in [31,32]) to forests, then the tensor product F ⊗ G

can also be described as the union of all shuffles of the forests F and G, just like for 
dendroidal sets. We will recall the Boardman–Vogt tensor product and the combinatorics 
of shuffles in some more detail in Section 3.4.

For later reference we summarize some of the properties of these structures on fSets
and their relations to the corresponding notions on dSets:

Proposition 3.2.2. The category fSets carries two symmetric tensor products, ⊗ and ⊕, 
satisfying the following properties:

(i) ⊗ distributes over ⊕.
(ii) There are canonical maps X → X ⊕ Y ← Y and the functor

X ⊕− : fSets −→ X/fSets

has a right adjoint.
(iii) The functor u! : dSets −→ fSets is compatible with ⊗, i.e. there is a natural 

isomorphism

u!(X ⊗ Y ) � u!(X) ⊗ u!(Y )

for any two dendroidal sets X and Y .
(iv) The functor u∗ : fSets −→ dSets is compatible with ⊗ and sends direct sums to 

coproducts:

(a) u∗(X ⊗ Y ) � u∗(X) ⊗ u∗(Y ),

(b) u∗(X ⊕ Y ) � u∗(X) � u∗(Y ).

Proof. Only property (iv) has not been discussed before. Since u∗ preserves colimits, 
for (b) it suffices to prove that for a collection of trees S1, . . . , Sn we have
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u∗(S1 ⊕ · · · ⊕ Sn) = u∗(S1) � · · · � u∗(Sn).

This is clear from the definitions. Since ⊗ distributes over ⊕, (iv)(a) now follows from 
u∗u! = id. �
Remark 3.2.3. One can define a Grothendieck topology on the category Φ, generated by 
covering families of the form

{Sj −→
⊕
i∈I

Si}j∈I .

The topos Sh(Φ) of sheaves for this topology is canonically equivalent to dSets, as the 
topology forces the direct sum to be the coproduct in this category of sheaves. We will 
use a homotopy theoretic version of this observation later on, when we compare dSets
and fSets as model categories.

As for dendroidal sets before, there is a full subcategory Φo of Φ of open forests, i.e. 
forests whose constituent trees are open. We will write fSetso for the full subcategory of 
fSets consisting of presheaves on Φo. It is again a slice category of fSets over a subobject 
of the terminal object, namely u∗Nd(Com−). Note that the functors u!, u∗, u∗, as well 
direct sums and tensor products all restrict to open objects.

3.3. Normal monomorphisms and boundaries in fSets

Exactly as for dendroidal sets, we will call a monomorphism X −→ Y between forest 
sets normal if for every forest F , the group Aut(F ) acts freely on the complement of the 
image of X(F ) −→ Y (F ). An object Y in fSets is called normal if ∅ −→ Y is a normal 
monomorphism, i.e. if Aut(F ) acts freely on Y (F ) for every F in Φ. The following is 
clear from the definition:

Lemma 3.3.1. If X −→ Y is a map of forest sets and Y is normal, then X is normal as 
well.

Remark 3.3.2. Given normal forest sets X and Y , the map

X � Y −→ X ⊕ Y

is a normal monomorphism.

Lemma 3.3.3. The functor u∗ : fSets −→ dSets sends normal monomorphisms to nor-
mal monomorphisms.

Proof. This is clear from the identities u∗(X)(T ) = X(uT ) and AutΩ(T ) = AutΦ(uT ), 
the second one following from the fact that u is fully faithful. �
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Remark 3.3.4 (Warning). The functor u! : dSets −→ fSets does not send normal 
monomorphisms to normal monomorphisms. In fact, it does not even send them to 
monomorphisms in general. Consider the following example. Let T be the tree

r

a

b

u

c f

v

d e

w

g h

Now, the map ∂b(T ) ∪ ∂r(T ) −→ T is a normal monomorphism in dSets; in fact, 
every mono into a representable is. On the other hand, consider

u!(∂b(T ) ∪ ∂r(T )) = lim−−→
R

u!(R)

where the colimit is over all R −→ T in Ω which factor through ∂b(T ) or ∂r(T ) (or 
both). The two corollas with vertices v and w give rise to two different maps

u!C2 ⊕ u!C2 −→ u!(∂b(T ) ∪ ∂r(T )).

Indeed, there is one factoring through u!(∂b(T )) and another one factoring through 
u!(∂r(T )); these two maps only agree on the subobject

u!C2 � u!C2 ⊆ u!C2 ⊕ u!C2.

Hence the map

u!(∂b(T ) ∪ ∂r(T )) −→ u!(T )

is not a monomorphism.
On the other hand, one easily checks that the composition

sSets
i! dSets

u! fSets

does send monos to normal monos.

We will now discuss the skeletal filtration of a normal forest set. Its description in 
Proposition 3.3.5 below makes use of the notion of nondegenerate elements and of bound-
aries of forests, which we discuss first.
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Boundaries. For a forest F , we will write ∂Φ[F ], or simply ∂F , for

lim−−→
G�F

Φ[G]

where the colimit ranges over all maps G −→ F which strictly increase the number of 
edges. Thus, for direct sums we have

∂(F ⊕G) = ∂F ⊕G ∪ F ⊕ ∂G,

so the calculation of the boundary of a forest reduces to that of the boundaries of its 
constituent trees T . There we have

∂(uT ) =
⋃

F�T

F

where F ranges over the faces of T . Compared to the boundary of T as computed in 
dendroidal sets, the only new face which arises is the root face, except in the two special 
cases T = η and T = C0 where there is no root face. Note that we have

∂η = ∅

and for a corolla Cp we have

∂(u!Cp) = η � p · η

where the first copy of η corresponds to the root of Cp and

p · η :=
p⊕

i=1
η

is the “crown” of Cp, i.e. the direct sum of its leaves. If p = 0, this crown is empty. Also 
notice that from these formulas and Proposition 3.2.2 it follows easily that

u∗(∂F ) = ∂u∗(F )

for any forest F .
Non-degenerate elements. Let X be a forest set and F ∈ Φ a forest. An element 

x ∈ X(F ) is called degenerate if there exists an α : F −→ G in Φ and a y ∈ X(G) with 
x = α∗(y), while G has strictly fewer edges than F . Notice that if this is the case, the 
generalized Reedy structure on Φ allows us to factor α as

F
β

H
γ

G,
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where β ∈ Φ− and γ ∈ Φ+. Therefore x = α∗(y) = β∗(z) with z = γ∗(y) ∈ X(H). Thus 
x ∈ X(F ) is degenerate if and only if there is a nontrivial degeneracy β : F −→ H such 
that x is the restriction of an element in X(H) along β.

Clearly, when writing X as a colimit of a diagram consisting of representables, we only 
need to take representables into account which correspond to non-degenerate elements 
of X and it suffices to take just one in each isomorphism class.

Skeletal filtration. To set up a useful skeletal filtration, we need a notion of size of a 
forest F , in such a way that a face of F has strictly smaller size than F . We cannot just 
count vertices (as we do in dSets), because of face inclusions like

F F ⊕ η

and we cannot just count edges because of the face

η C0.

Therefore, let us define the size |F | as the sum of the number of edges and the number 
of vertices of F .

Let X be a forest set. As noted above, X can be written canonically as a colimit of 
representables corresponding only to non-degenerate elements. For n ≥ 0, let X(n) ⊆ X

be the subobject obtained as the colimit of the subdiagram of this canonical diagram 
consisting only of forests of size at most n + 1. This yields an exhaustive filtration

X(0) ⊆ X(1) ⊆ X(2) ⊆ · · ·
∞⋃
i=0

X(i) = X.

Proposition 3.3.5. Let X be a normal forest set. Then for each n ≥ 0 the following 
diagram is a pushout:

∐
[e] ∂Fe X(n−1)

∐
[e] Fe X(n).

Here the coproduct ranges over all isomorphism classes of elements e ∈ X(n), corre-
sponding to maps e : Fe −→ X where Fe is a forest of size exactly n + 1. We have 
adopted the convention X(−1) = ∅.

Proof. The forest set X(0) is a disjoint union of copies of η and the diagram is clearly a 
pushout for n = 0. We proceed by induction. We’ll write P (0) = X(0) and P (n) (if n > 0) 
for the pushout
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∐
[e] ∂Fe P (n−1)

∐
[e] Fe P (n).

Then it suffices to prove for each n ≥ 0 that the evident map P (n) −→ X is mono. 
Assuming this is the case for all k < n (so that P (k) = X(k) in those cases), the fact 
that P (n) −→ X(n) is also mono follows from the following two assertions:

(a) For each e as above, the diagram

∂Fe X(n−1)

Fe X

is a pullback.
(b) If e1 : Fe1 −→ X and e2 : Fe2 −→ X are two non-isomorphic elements of X(n), then

Fe1 ×X Fe2 ⊆ X(n−1) ×X X(n−1).

Note that the latter object is simply X(n−1).

To prove (a), suppose

G
α

Fe
e

X

factors through X(n−1). Then x = e ◦ α can also be obtained as x = z ◦ β as in

G
α

β
x

Fe

e

G′ z
X

where G′ has size strictly less than n + 1. If α factors through ∂Fe we are done, so we 
may assume α is surjective. Choose a section σ of α and factor β ◦ σ : Fe −→ G′ as

Fe
ε

H
δ

G′.

Then

e = eασ = xσ = zβσ = zδε

contradicting the fact that e is non-degenerate.
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To prove (b), suppose x ∈ X(n) can be written in two ways, say e1α = x = e2β as in

G
β

x
α

Fe2

e2

Fe1 e1
X.

We can assume α and β are surjective, because otherwise x ∈ X(n−1) and there is nothing 
to prove. Choose sections u of α and v of β. Then e2 = e2βv = e1αv, so αv must be an 
isomorphism because e2 is non-degenerate (and Fe1 and Fe2 have the same size). But 
then e1 and e2 are isomorphic, contradicting the assumption. �
Remark 3.3.6. Since we are counting edges and vertices, the skeleta grow somewhat 
differently from the way they do in dendroidal sets. For example, for the corolla Cp

viewed as a forest set – let us write u!(Cp) for emphasis – we have

u!(Cp)(0) =
p∐

i=0
η,

u!(Cp)(p−1) = η � p · η = ∂(u!(Cp)),

u!(Cp)(p+1) = u!(Cp).

More generally, consider any dendroidal set X and form the colimit

V := lim−−→Fe

over all e : Fe −→ u!X where Fe has no vertices. This can be a much more complicated 
object than just a disjoint union of copies of η, which is what we would get by forming a 
similar colimit in dSets, giving the 0-skeleton of X in that category. Indeed, the colimit 
diagram for V can contain objects of the form

p · η = η ⊕ · · · ⊕ η

and maps between them. If X is normal, these maps are all monomorphisms. These 
monos are all obtained by pushout and composition of monos of the form

∂(p · η) −→ p · η

as expressed by Proposition 3.3.5. The same need not be true if X is not normal, as one 
sees by considering objects of the form (η ⊕ η)/Σ2, where Σ2 acts by interchanging the 
two copies of η. Indeed, the map ∅ → (η ⊕ η)/Σ2 can not be written as a composition 
of pushouts of boundary inclusions into representables.

In exactly the same way as Proposition 3.3.5 one can prove the following:
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Proposition 3.3.7. Let f : X −→ Y be a normal monomorphism and form the relative 
skeleta

Y
(n)
X = Y (n) ∪f X ⊆ Y.

Then for each n, the diagram

∐
[e] ∂Fe Y

(n−1)
X

∐
[e] Fe Y

(n)
X

is a pushout, where the coproduct ranges over isomorphism classes of non-degenerate 
elements e ∈ Y (Fe) −X(Fe) and where Fe has size exactly n + 1.

Corollary 3.3.8. The class of normal monomorphism in fSets is the saturation of the set 
of boundary inclusions ∂F −→ F . More specifically, every normal monomorphism is a 
transfinite composition of pushouts of maps of the form ∂F −→ F .

Applying Quillen’s small object argument, we get:

Corollary 3.3.9. Every map X −→ Y in fSets can be factored as X � Z → Y , where 
X � Z is a normal monomorphism and Z → Y has the right lifting property with respect 
to all normal monomorphisms.

As for dendroidal sets, this corollary leads to the following definition:

Definition 3.3.10. A normalization of a forest set Y is a map Y ′ −→ Y from a normal 
object Y ′, having the right lifting property with respect to all normal monomorphisms.

In particular, the previous corollary shows that every forest set admits a normalization.

3.4. Tensor products and normal monomorphisms

In this section we investigate the behaviour of normal monomorphisms with respect 
to tensor products. The arguments are of a rather technical nature; the reader might 
want to skip this section on first reading, only noting the following crucial result:

Proposition 3.4.1. Let X → Y and U → V be normal monomorphisms between forest 
sets and assume one of the following two conditions is satisfied:

(i) Either Y or V is a simplicial set, i.e. is in the essential image of the functor 
u! ◦ i! : sSets → fSets.

(ii) Both Y and V are open forest sets.



906 G. Heuts et al. / Advances in Mathematics 302 (2016) 869–1043
Then the pushout-product

X ⊗ V ∪X⊗U Y ⊗ U −→ Y ⊗ V

is a normal monomorphism.

By standard arguments, this proposition is a consequence of the following result:

Proposition 3.4.2. Let F and G be forests and assume one of the following two conditions 
is satisfied:

(i) Either F or G is a simplex, i.e. is in the essential image of the functor u ◦i : Δ → Φ.
(ii) Both F and G are open forests.

Then the pushout-product

∂F ⊗G ∪∂F⊗∂G F ⊗ ∂G −→ F ⊗G

is a normal monomorphism.

In what follows in this section and the rest of this paper, we will carry out many 
technical arguments involving the tensor product. To aid the reader and fix our termi-
nology, we include a brief review of the Boardman–Vogt tensor product of operads and 
the notion of shuffles of trees. For operads P and Q of sets, the operad P ⊗ Q has as 
its set of colours the product of the sets of colours of P and Q; we write c ⊗ d for such 
colours, where c (resp. d) is a colour P (resp. Q). The operations of P ⊗Q are generated 
by operations of the form p ⊗ d and c ⊗ q, where now p (resp. q) is an operation of P
(resp. Q). These are subject to evident relations of composition and symmetry, related 
to those of the operads P and Q. There is one further relation, which we will refer 
to as the Boardman–Vogt interchange relation (or simply Boardman–Vogt relation). If 
p ∈ P(c1, . . . , cn; c) and q ∈ Q(d1, . . . , dm; d), it states

(p⊗ d) ◦ (c1 ⊗ q, . . . , cn ⊗ q) = σ∗
n,m

(
(c⊗ q) ◦ (p⊗ d1, . . . , p⊗ dm)

)
,

where σn,m is the appropriate element of Σnm that makes sense of this formula, i.e. 
the permutation relating the sequences (c1 ⊗ d1, . . . , c1 ⊗ dm, . . . , cn ⊗ d1, . . . , cn ⊗ dm)
and (c1 ⊗ d1, . . . , cn ⊗ d1, . . . , c1 ⊗ dm, . . . , cn ⊗ dm) corresponding to the two choices 
of lexicographic ordering. This relation can be interpreted graphically in terms of the 
dendroidal nerves of these operads. Indeed, the Boardman–Vogt relation states that the 
operation obtained from
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c2 ⊗ qc1 ⊗ q c3 ⊗ q

p⊗ d

by contracting all inner edges of this tree coincides with the one obtained from

p⊗ d2p⊗ d1

c⊗ q

by the same procedure, where we have taken n = 3 and m = 2.
The tensor product of dendroidal sets is defined using this Boardman–Vogt tensor 

product of operads. For trees S, T ∈ Ω one sets

S ⊗ T := Nd(Ω(S) ⊗ Ω(T )).

The dendroidal set S⊗T is usually no longer representable, but it is the union of a finite 
set of representables called the shuffles of S and T . These are most easily explained in 
a typical example. Let S and T be the following two trees:

Then the set of shuffles of S and T looks as follows:
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One of these shuffles is given by simply grafting a copy of S onto each leaf of T ; all other 
shuffles can be obtained by ‘percolating’ the vertices of S down through T , so that one 
finally ends up with the shuffle given by grafting copies of T onto the leaves of S. Note 
that this percolation process gives a partial order on these shuffles, as also indicated 
in our picture. The intersection between a shuffle and one immediately preceding it in 
this partial order is dictated by the Boardman–Vogt relation and given by contracting 
certain inner edges, exactly like in our earlier picture illustrating the interchange.

The rest of this section is devoted to proving Proposition 3.4.2. We will, as before, 
suppress the functors u! and i! from the notation, simply writing Δn for the forest set 
obtained by applying u! and i! to the n-simplex. First, we need an easy way to establish 
that certain maps we encounter are monomorphisms.

Definition 3.4.3. An operad P in Sets is called thin if for every tuple (c1, . . . , cn, d) of 
colours of P, the set of operations P(c1, . . . , cn; d) is either empty or a singleton.

Examples of thin operads are the operads Ω(T ) freely generated by trees in Ω. Observe 
that the class of thin operads is closed under small limits and, as a consequence of the 
Boardman–Vogt relation, contains tensor products of the form Ω(S) ⊗ Ω(T ). We will 
make frequent use of the following obvious lemma:

Lemma 3.4.4. A map of thin operads is a monomorphism if and only if it is injective on 
colours.

Note that monomorphisms of operads give rise to monomorphisms of forest sets by 
applying the functor u∗ ◦Nd, which we will in this section also refer to as the nerve. To 
prove Proposition 3.4.2, we need some discussion of the intersections between different 
faces of a forest. So, let F be a forest and let H1 and H2 be two elementary faces of F . 
For simplicity, assume F consists of only one tree (although the general case is no more 
difficult). There is one ‘exceptional’ and one ‘generic’ case to consider:

Case 1. The forest F has a leaf vertex v attached to an inner edge e and we have 
H1 = ∂vF and H2 = ∂eF . To describe their intersection, let us denote by w the vertex 
attached to the bottom of e. One of the leaves of w is e; label the others by l1, . . . , ln (the 
siblings of e). Denote the outgoing edge of w by r. Let us write F/li for the maximal 
subtree of F with li as its root and r/F for the tree obtained from F by chopping off 
everything above the edge r. Then we have

∂vF ∩ ∂eF = r/F � (F/l1 ⊕ · · · ⊕ F/ln).

In particular, this is not a representable forest set, unless e is the only leaf of the vertex w.
Case 2. For any choice of H1 and H2 which is not of the type described in Case 1, 

the intersection of the two is representable, i.e. is just a forest, which is simultaneously 
a face of H1 and of H2.

Proposition 3.4.2 is a consequence of the following three lemmas.
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Lemma 3.4.5. Let F and G be forests, assume G is open and let H1, H2 be elementary 
faces of F . Then the natural map

(H1 ×F H2) ⊗G −→ (H1 ⊗G) ×F⊗G (H2 ⊗G)

is an isomorphism. In words, tensoring with G preserves the intersection of H1 and H2.

Proof. For simplicity, we will use the symbol ∩ for intersections instead of writing pull-
backs as in the statement of the lemma; this should not cause confusion. To avoid 
cluttering up the exposition, let us assume that both F and G consist of a single tree. 
The modifications for the general case are trivial. Also, we will assume F has at least 
two vertices; the cases where F is either η or a corolla are trivial. Recall the discussion 
above about the intersection of faces. If we are in Case 2 discussed there, both the forest 
sets mentioned in the map above are the nerves of thin operads. It is therefore immedi-
ate from Lemma 3.4.4 that the stated map is a monomorphism. To prove surjectivity, 
suppose S is a shuffle of the tensor product H1⊗G. If we can prove that the intersection 
S ∩ (H2 ⊗G) is contained in (H1 ∩H2) ⊗G, we are done (as far as Case 2 is concerned). 
Let us distinguish the following possibilities:

(a) The face H2 is obtained by contracting an inner edge e of F , which is also an inner 
edge of H1. Then the intersection S ∩ (H2 ⊗ G) is the forest obtained from S by 
contracting all the edges of the form e ⊗ g in S, where g ranges over the edges of G. 
Note that these are indeed inner edges and that the resulting forest is a shuffle of 
the tensor product (H1 ∩H2) ⊗G.

(b) The face H2 is obtained by contracting an inner edge e of F , which is not an inner 
edge of H1. Since we are in Case 2, this means H1 must be the root face of F ; we 
can then interchange the roles of H1 and H2 and move to (c) below.

(c) The face H2 chops off the root vertex of F . Let us call the root that is being deleted r. 
The shuffle S has a connected subtree containing the root, containing precisely all 
the edges of S whose colour is of the form r ⊗ g for some colour g of G. By taking 
iterated root faces, we may delete all these edges. The intersection S ∩ (H2 ⊗G) is 
the forest resulting from this procedure. Again, it is clear that this forest is precisely 
a shuffle of the tensor product (H1 ∩H2) ⊗G.

(d) The face H2 chops off a leaf vertex v of F , with leaves l1, . . . , ln. Since we are in 
Case 2, v is also a leaf vertex of H1. The shuffle S potentially contains inner edges 
of the form li⊗ g. First contract all these. There are then potentially leaf corollas of 
S left with leaves of the form li ⊗ g. Take the iterated outer face chopping off these 
leaf corollas. The intersection S ∩ (H2 ⊗G) is precisely the resulting tree. This tree 
is a shuffle of (H1 ∩H2) ⊗G.

The reader should observe that so far we haven’t used the assumption that G is open. 
This assumption will only play a role when the choice of H1 and H2 is as in Case 1 
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above, which we will deal with now. We use the same notation introduced there, with 
the addition that we label the leaves of v by k1, . . . , km (in case v has any leaves). In the 
case at hand, the left-hand side of the map stated in the lemma is not quite the nerve of 
a thin operad, but rather a coproduct of such nerves, and it is still clear that the stated 
map is mono. To establish surjectivity, we should argue that for any shuffle S of H1⊗G, 
the intersection S ∩ (H2 ⊗G) splits as

S ∩
(
(r/F � F/l1 ⊕ · · · ⊕ F/ln) ⊗G

)
.

This follows if we can show that there is no dendrex of S∩(H2⊗G) whose root edge is of 
the form r⊗g and whose leaves are of the form li⊗gi, for colours g, gi of G. First assume 
v is not nullary. By our assumption that G is open, any dendrex of H2 ⊗G with a leaf 
of colour li ⊗ gi must also contain a leaf of colour ki ⊗ g′i (in fact, for each 1 ≤ i ≤ m). 
Since these colours are not in S, the intersection can have no such dendrex. In the case 
where v is a nullary vertex, observe that any dendrex of S with root edge of the form 
r ⊗ g and at least one leaf of the form li ⊗ gi must also have a leaf of the form e ⊗ g′

(again using the assumption that G is open). But such an edge is not in H2 ⊗G, so that 
such a dendrex cannot be in the intersection of S with H2 ⊗G. �
Remark 3.4.6. The assumption on G is necessary (cf. [14]). A counterexample to the 
statement of the lemma in the case of a non-open G is the following:

e
v

r
f gF : G:

Let H1 = ∂vF and H2 = ∂eF . Then H1∩H2 is the disjoint union of two η’s, corresponding 
to the edges r and f . Hence

(H1 ∩H2) ⊗G � C0 � C0.

On the other hand, one verifies that H1 ⊗G ∩H2 ⊗G is the following tree:

r ⊗ g

f ⊗ g

Lemma 3.4.7. Let F = Δn and let 0 ≤ i < j ≤ n. Then for any forest G, the natural 
map

∂i∂jΔn ⊗G −→ ∂iΔn ⊗G ∩ ∂jΔn ⊗G

is an isomorphism.
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Proof. Note that both forest sets appearing in the map above are nerves of thin operads. 
Therefore Lemma 3.4.4 shows that the stated map is a monomorphism. To establish 
surjectivity, observe that for a tuple of colours

(k1 ⊗ c1, . . . , km ⊗ cm, l ⊗ d)

of Δn ⊗G, there exists an operation

(k1 ⊗ c1, . . . , km ⊗ cm) −→ l ⊗ d

of (the operad underlying) ∂iΔn ⊗ G ∩ ∂jΔn ⊗ G if and only if none of the k1, . . . , km
and l equal i or j, all of the k1, . . . , km are less than or equal to l and there exists an 
operation

(c1, . . . , cm) −→ d

of G. But clearly such an operation also exists in ∂i∂jΔn ⊗G. �
Lemma 3.4.8. Let F and G be forests and suppose at least one of the two is open. (In 
particular, this is the case if one of the two is a simplex.) Let ∂xF be a face of F and 
∂yG a face of G. Then

∂xF ⊗G ∩ F ⊗ ∂yG = ∂xF ⊗ ∂yG.

Proof. Without loss of generality, assume F is open. Again, a straightforward application 
of Lemma 3.4.4 shows that the natural map

∂xF ⊗ ∂yG −→ ∂xF ⊗G ∩ F ⊗ ∂yG

is a monomorphism. To establish surjectivity, consider a shuffle S of ∂xF ⊗G. We need 
to show that the intersection S ∩ (F ⊗ ∂yG) is contained in ∂xF ⊗ ∂yG. Using the same 
procedure as in Case 2 of the proof of Lemma 3.4.5, depending on what type of face ∂yG
is, we form an associated face of S (possibly of high codimension) and observe that it is 
a shuffle of the tensor product ∂xF ⊗ ∂yG. �
Remark 3.4.9. Again, the assumption that one of the two forests is open is necessary. 
A counterexample without this assumption is given by setting F = G = C0, the 0-corolla.

Remark 3.4.10. In the proofs of the previous lemmas, we repeatedly made the following 
type of observation. Suppose F is a forest, S is a shuffle of the tensor product Δn ⊗ F

and R is a face of S, satisfying one of the following conditions:

– The forest R does not contain any edges of the form i ⊗ e, for some fixed colour e
of F .
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– The forest R does not contain any vertices of the form i ⊗ v, for some fixed vertex v
of F .

Then R is contained in Δn ⊗ A, for A a face of F corresponding to the relevant case 
above; in particular, R is contained in Δn⊗∂F . By a standard argument, the analogous 
observation holds if Δn is replaced by an arbitrary simplicial set.

3.5. Homotopically enriched model categories

Before establishing a model structure on the category fSets, we will have to construct 
simplicial mapping objects hom(X, Y ) between forest sets X and Y . These mapping 
objects will not quite be part of a simplicial enrichment, but a slightly weaker structure. 
In this section we discuss the general setup of such weakly simplicial categories (or 
weakly enriched categories), as well as the compatibility of such a structure with a 
model structure, in order to facilitate later discussion.

Let E be a category and S a monoidal category. In our motivating example, E will be 
fSets and S will be sSets. For convenience we will denote the tensor product and unit 
of S by × and 1 respectively, although it is irrelevant whether the monoidal structure on 
S is Cartesian.

We will assume that E is weakly enriched, tensored and cotensored over S, meaning 
that it is equipped with functors

Eop × E −→ S : (X,Y ) �−→ hom(X,Y ),

S× E −→ E : (M,X) �−→ M ⊗X,

Sop × E −→ E : (M,X) �−→ XM ,

which are adjoint in the sense that there exist isomorphisms

S(M,hom(X,Y )) � E(M ⊗X,Y ) � E(X,Y M )

natural in the objects M ∈ S and X, Y ∈ E. Furthermore, there should be natural 
associativity and unit maps

αM,N,X : (M ×N) ⊗X −→ M ⊗ (N ⊗X),

αX : 1 ⊗X −→ X,

satisfying the following conditions:

(i) The map αX : 1 ⊗X → X is an isomorphism.
(ii) The following associativity diagram, using the associator of the monoidal structure 

of S, commutes:
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(L × (M × N)) ⊗ X
α

L ⊗ ((M × N) ⊗ X)

L⊗α

((L × M) × N) ⊗ X

α

L ⊗ (M ⊗ (N ⊗ X)).

(L × M) ⊗ (N ⊗ X)

α

In case S is additionally a symmetric monoidal category, we will say that the weak 
enrichment of E is symmetric if it is equipped with natural isomorphisms

M ⊗ (N ⊗X) −→ N ⊗ (M ⊗X)

which make the following diagram, involving the symmetry of the monoidal structure 
on S, commute:

(M ×N) ⊗X
α

M ⊗ (N ⊗X)

(N ×M) ⊗X
α

N ⊗ (M ⊗X).

We will now describe our main examples of weakly enriched categories, namely fSets
and dSets. Recall that we have an embedding

sSets
i! dSets.

Using the tensor product of dendroidal sets, we can then define the following functor:

−⊗− : sSets × dSets −→ dSets : (M,X) �−→ i!(M) ⊗X.

This functor preserves colimits in each variable separately. We can then define 
hom(X, Y ) and XM , for dendroidal sets X, Y and a simplicial set M , by the adjointness 
formulas above. Next, we should define maps

αM,N,X : (M ×N) ⊗X → M ⊗ (N ⊗X).

Let us assume M , N and X are representable; the general case then follows by extending 
by colimits. So, set M = Δm, N = Δn and X = T . These objects are the dendroidal 
nerves of the operads [m], [n] and Ω(T ) respectively. Moreover, there is a natural iso-
morphism

Δm ⊗ (Δn ⊗ T ) � Nd([m] ⊗ ([n] ⊗ Ω(T ))),
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where the tensor product on the right is the Boardman–Vogt tensor product of operads. 
By adjunction, supplying a map

(Δm × Δn) ⊗ T −→ Nd([m] ⊗ ([n] ⊗ Ω(T )))

is equivalent to supplying a map

τd((Δm × Δn) ⊗ T ) −→ [m] ⊗ ([n] ⊗ Ω(T )).

But on the left-hand side τd distributes over the tensor product, so that this expression 
is naturally isomorphic to

(τd(Δm) ⊗ τd(Δn)) ⊗ τd(T ) = ([m] ⊗ [n]) ⊗ Ω(T ).

By associativity of the tensor product of operads, a natural map to [m] ⊗ ([n] ⊗ Ω(T ))
exists (and is in fact an isomorphism).

Remark 3.5.1. The map αM,N,X is typically not an isomorphism. A more elaborate 
discussion of the tensor product of dendroidal sets and its associativity properties is 
given in Section 6.3.

Furthermore, there is an evident natural isomorphism

αX : 1 ⊗X −→ X.

Using the distributivity of the tensor product over direct sums, we can make com-
pletely analogous definitions with the category of dendroidal sets replaced by that of 
forest sets. The proof of the following proposition is a straightforward verification given 
the definitions above; we leave the details to the reader.

Proposition 3.5.2. With the structure described above, the categories dSets and fSets
become weakly enriched, tensored and cotensored over sSets. Furthermore, these weak 
enrichments are symmetric.

Now suppose E is a model category, which is weakly tensored, cotensored and enriched 
over a monoidal model category S. To finish this section, we describe how the weak 
enrichment can interact with these model structures. First we introduce an analogue of 
the usual axiom of enriched model categories.

Definition 3.5.3. Under the assumptions above, we say that the weak enrichment of E
over S satisfies axiom (H1) if, for any cofibrations i : M → N in S and j : X → Y in E, 
the pushout-product

M ⊗ Y ∪M⊗X N ⊗X −→ N ⊗ Y

is a cofibration in E, which is trivial if either i or j is trivial.



G. Heuts et al. / Advances in Mathematics 302 (2016) 869–1043 915
There is one further axiom we might impose. Consider cofibrations i : M → M ′, 
j : N → N ′ in S and a cofibration k : X → X ′ in E. For the sake of brevity, let us write 
i ×̂ j for the pushout-product of the maps i and j with respect to the monoidal structure 
of S and j ⊗̂ k for the pushout-product of j and k with respect to the (weak) tensoring 
of E over S, as in the previous definition. Now write f : A → B for the map

(i ×̂ j) ⊗̂ k

and similarly write g : C → D for the map

i ⊗̂ (j ⊗̂ k).

Note that α induces maps A → C and B → D, which give a commutative diagram

A

f

C

g

B B ∪A C

h

D.

Definition 3.5.4. The weak enrichment of E over S satisfies axiom (H2) if, for any choice 
of cofibrations i, j and k as above, the map

h : B ∪A C −→ D

as just constructed is a trivial cofibration. We say that E is homotopically enriched over 
S if it satisfies (H1) and (H2).

If E is homotopically enriched over S, then by taking the domains of i, j and k to be 
initial objects we see that a map of the form

αM,N,X : (M ×N) ⊗X −→ M ⊗ (N ⊗X)

is a trivial cofibration for any choice of cofibrant objects M , N and X.
Let us note a straightforward consequence of our definitions. For objects X, Y ∈ E

and M ∈ S, there is a natural map

βM,X,Y : hom(X,Y M ) −→ hom(X,Y )M .

Indeed, for N ∈ S, the map αM,N,X allows us to form the sequence of maps

S(N,hom(X,Y M )) � E(M⊗(N⊗X), Y ) −→ E((M×N)⊗X,Y ) � S(N,hom(X,Y )M ),

which, by the Yoneda lemma, defines the map βM,X,Y .
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Lemma 3.5.5. Suppose the weak enrichment of E over S satisfies axiom (H2). If M ∈ S

and X ∈ E are cofibrant and Y ∈ E is fibrant, then βM,X,Y is a trivial fibration.

Proof. For K → L a cofibration in S, the lifting problem

K hom(X,Y M )

L hom(X,Y )M

is equivalent to the lifting problem

M ⊗ (K ⊗X) ∪(M×K)⊗X (M × L) ⊗X Y.

M ⊗ (L⊗X)

The latter admits a solution since Y is fibrant and the left vertical map is a trivial 
cofibration by assumption. �
3.6. Tensor products, inner horns and Segal cores

In the next section we will establish a model structure on the category of forest sets. 
Before we can do so, we need to understand the behaviour of inner horn inclusions with 
respect to tensor products. Also, we will investigate Segal cores and their relation to 
inner horns. We will later need these Segal cores to obtain a convenient description of 
the trivial cofibrations between forest sets.

To begin with, let us be more precise about these inner horns. Recall for a forest F
its boundary ∂F � F , the union of all its faces, as well as the fact that this operation 
satisfies a ‘derivation rule’:

∂(F ⊕G) = ∂F ⊕G ∪ F ⊕ ∂G.

If e is an inner edge of F , i.e. an inner edge in one of the constituent trees of F , then 
Λe[F ] (the inner horn associated to e) is defined to be the union of all the faces of F
except the one given by contraction of e, or equivalently, the union of all the faces whose 
image contains the edge e. Notice that for an inner edge in such a forest F , one has the 
identity

Λe[F ⊕G] = Λe[F ] ⊕G ∪ F ⊕ ∂G.

In particular, if the inner edge e lies in the tree T where F � uT ⊕G, then

Λe[F ] = Λe[uT ] ⊕G ∪ uT ⊕ ∂G. (1)
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We will call a map of forest sets inner anodyne if it can be written as composition 
of pushouts of inner horn inclusions. By induction over skeleta, we can immediately 
conclude the following:

Corollary 3.6.1. For any normal monomorphism A −→ B of forest sets, the map

Λe[F ] ⊕B ∪ F ⊕A −→ F ⊕B

is an inner anodyne map. In particular, for a normal forest set A the map Λe[F ] ⊕A −→
F ⊕ A is again inner anodyne. More generally, for any inner anodyne map C −→ D, 
the map

C ⊕B ∪D ⊕A −→ D ⊕B

is inner anodyne again.

We should emphasize that if F = uT consists of a single tree, this ‘forestial’ inner 
horn is generally larger than the ‘dendroidal’ one, because of the extra root face (cf. 
Section 3.3). In general, we have

Λe[uT ] = Im(u!(Λe[T ])) ∪ ∂root(uT )

where Im denotes the image as a subpresheaf of uT , while Λe[uT ] = Im(u!(Λe[T ])) only 
if the root vertex in T is unary.

The statements in Propositions 3.6.2 and 3.6.8 below are analogues of basic facts about 
dendroidal sets, cf. [12,32]. However, their proofs do not carry over to the present setting, 
because of the difference between the boundary of a tree in dSets and its boundary in 
fSets.

Proposition 3.6.2. Let F and G be two forests. Suppose either that F or G is a simplex 
or that both F and G are open. For an inner edge e in F , the map

Λe[F ] ⊗G ∪ F ⊗ ∂G −→ F ⊗G

is inner anodyne.

The proof of this proposition requires a fair amount of combinatorics; we will first set 
up some terminology.

Definition 3.6.3. Let T be a tree. A pruning of T is a subtree P ⊆ T such that the root of 
P coincides with the root of T and so that the inclusion map of P into T can be written 
as a composition of outer face maps. In other words, P is obtained from T by iteratively 
chopping off leaf corollas.
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Proof of Proposition 3.6.2. Observe that by Proposition 3.4.1 the map in the statement 
of the proposition is a normal monomorphism. Let us first prove this proposition in 
the case where F and G are just trees, say S and T respectively. The vertices of the 
constituent shuffles of the tensor product S⊗T are all of the form v⊗ t or s ⊗w, where v

(resp. w) is a vertex of S (resp. T ) and s (resp. t) is a colour of S (resp. T ). We will 
loosely refer to vertices of the first kind as ‘vertices of S’ and vertices of the second kind 
as ‘vertices of T ’. Throughout this proof we will draw vertices of S as being black and 
vertices of T white, as follows:

vertex of S

...

...

vertex of T

...

...

The set of shuffles of the tensor product S⊗T has a natural partial ordering in which 
the smallest element is the shuffle given by grafting copies of T onto the leaves of S:

S

T T

· · ·

If a shuffle R2 is obtained from another shuffle R1 by percolating a vertex of T down 
through a vertex of S, as in the picture below, then R1 < R2 in this partial order;

R1

...

...

−→ R2

...

...
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Let us first consider the case where T is a simplex, i.e. a linear tree. Denote by ve the 
bottom vertex attached to the inner edge e in S. The shuffle R will contain a vertex of 
the form ve ⊗ t, where t is a colour of T . This vertex has a leaf (or incoming edge) e ⊗ t

and we will refer to this edge of R as the special edge. It is the lowest occurrence of a 
colour of the form e ⊗ t in R, where t is any colour of T .

With all this terminology set up, we can begin our induction. Define

A0 := Λe[uS] ⊗ uT ∪ uS ⊗ ∂(uT ).

Choose a linear ordering on the set of shuffles of S ⊗ T extending the partial order 
described above. By adjoining these shuffles one by one, we obtain a filtration

A0 ⊆ A1 ⊆ · · · ⊆
⋃
i

Ai = uS ⊗ uT.

We will show that each of the inclusions in this filtration is inner anodyne. Say Ai+1 is 
obtained from Ai by adjoining a shuffle R. Define a further filtration

Ai =: A0
i ⊆ A1

i ⊆ · · · ⊆
⋃
j

Aj
i = Ai+1

by adjoining all prunings of R one by one, in an order that extends the partial order 
of inclusion of prunings. Consider an inclusion Aj

i ⊆ Aj+1
i given by adjoining a pruning 

P of R. We may assume that the special edge of R is also an inner edge (not a leaf) 
of P , because otherwise P is already contained in A0. Write eP for this special edge and 
define

HP := I(P ) − {eP }

where I(P ) denotes the set of inner edges of P . For each subset H ⊆ HP , define the 
tree P [H] as the tree obtained from P by contracting all edges in HP −H. Pick a linear 
order on the subsets of HP extending the partial order of inclusion and adjoin the trees 
P [H] to Aj

i in this order to obtain a filtration

Aj
i =: Aj,0

i ⊆ Aj,1
i ⊆ · · · ⊆

⋃
k

Aj,k
i = Aj+1

i .

Finally, consider one of the inclusions Aj,k
i ⊆ Aj,k+1

i in this filtration, given by adjoining 
a tree P [H]. If the map

P [H] −→ uS ⊗ uT

factors through Aj,k
i , then the inclusion under consideration is the identity and there is 

nothing to prove. If it does not, we can say the following:
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– Any outer face chopping off a leaf corolla factors through Aj
i by our induction on 

the size of the prunings.
– The outer face chopping off the root of P [H] factors through A0.
– An inner face contracting an edge that is not special factors through Aj,k

i by our 
induction on the size of H.

– We claim that the inner face Q of P [H] contracting the special edge cannot factor 
through an earlier stage of the filtration (see (a)–(c) below).

We conclude that the map Aj,k
i ⊆ Aj,k+1

i is a pushout of the map

ΛeP [uP [H]] −→ uP [H]

and hence inner anodyne. It remains to verify the claim we made in the last item above, 
which we do in several steps:

(a) The face Q cannot be contained in Λe[S] ⊗T . If it was, then it would factor through 
∂xS ⊗ T for some face ∂xS other than the inner face corresponding to e. Since Q is 
obtained from P [H] by contracting an edge of the form e ⊗ t, this would imply that 
P [H] itself is contained in ∂xS ⊗ T , which is a contradiction.

(b) The face Q cannot be contained in S ⊗ ∂T . Indeed, suppose it factored through 
S ⊗ ∂tT for some colour t of T , where ∂tT denotes the face of T not containing the 
colour t. This means that Q does not contain any edges of the form s ⊗ t, where s
ranges through the colours of S. However, the special edge of P [H] must have colour 
e ⊗ t, because otherwise P [H] itself would factor through S ⊗ ∂tT (this observation 
uses the fact that T is a linear tree). All edges of the pruning P of the form s ⊗ t

occurring below e ⊗ t must have been contracted to form P [H]; indeed, they do not 
occur in Q. Write w for the vertex of T which has t as its incoming edge (note that 
t cannot be the root of T , so that this makes sense). Then there is a vertex s ⊗w in 
P on the path from ve ⊗ t to the root of P and all the inner edges on this path have 
been contracted in forming P [H] out of P . But this implies that P [H] factors through 
a previous shuffle, namely one where the vertex w has been shuffled up once; this 
uses the fact that T is linear, so that w has only one incoming edge. This conclusion 
contradicts the assumption that P [H] does not factor through a previous stage of 
the filtration.

(c) By (a) and (b), Q is not contained in A0. Also, it cannot factor through an earlier 
shuffle by the way special edges are defined. Given this, it is clear that it also cannot 
factor through Aj′

i for j′ ≤ j because of the size of the pruning P under consideration 
or through Aj,k′

i for k′ ≤ k by the definition of the prunings P [H′] corresponding to 
those k′.

This finishes the proof under the assumption that F and G are trees S and T and 
moreover T is a simplex. We will now explain how to modify the argument to apply to 
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the cases where S is a simplex but T is a general tree or where both S and T are open. 
Both can be treated simultaneously:

– One reverses the order of the shuffles, now starting with ‘S on top of T ’ and shuffling 
the vertices of S down through T .

– One defines a special edge in a shuffle R to be the highest occurrence of a colour of the 
form e ⊗ t, rather than the lowest. Note that there can now be multiple special edges; 
denote the collection of inner edges of P that are special by ΣP and correspondingly 
set HP = I(P ) −ΣP . One may assume ΣP is non-empty, because otherwise P would 
already be contained in Λe[S] ⊗ T and hence in A0.

– One has to argue that any face Q of P [H] obtained by contracting a special edge (or 
multiple special edges) cannot factor through an earlier stage of the filtration. The 
only necessary modification is in item (b), which one replaces with the following. 
Suppose Q factors through S⊗T ′ for a face T ′ of T . If T ′ is the root face, then P [H]

itself is contained in S ⊗ T ′, giving a contradiction. If T ′ is an outer face chopping 
off a leaf vertex w, then no vertices of the form s ⊗ w (or vertices arising from it 
by contracting inner edges in P ) can occur in Q, for s ranging through the colours 
of S. But, since S is an open tree, this means that such vertices also cannot occur 
in P [H], so that P [H] is also contained in S ⊗ T ′, again giving a contradiction. (This 
argument potentially fails if S has nullary vertices.) The only remaining option is 
T ′ = ∂tT for some inner edge t of T . Write w for the vertex at the top of t. Since 
the colour w does not occur in Q, it can only occur in P [H] at the special edges, but 
not above them. Pick such a special edge e ⊗ t, whose top vertex in P is ve⊗ t. Since 
all the inner edges with T -colour t above ve ⊗ t have been contracted in P [H], the 
tree P [H] is in fact contained in a previous shuffle, where the vertex ve ⊗ t has been 
shuffled up once. Again, this contradicts the assumption that P [H] is not contained 
in a previous stage of the filtration.

– Finally, one concludes that Aj,k
i ⊆ Aj,k+1

i is a pushout of the map

ΛΣP [uP [H]] −→ uP [H],

where ΛΣP [uP [H]] is the union of all faces of P [H] except the inner faces corresponding 
to edges in ΣP . Such a map is easily seen to be inner anodyne, cf. Lemma 3.6.7(b).

Let us now show how to remove the restriction that F and G be single trees rather 
than forests, which is a formal matter. For maps of forest sets f : A → B and g : C → D, 
we will use the notation f⊗̂g for the pushout-product map

A⊗D ∪A⊗C B ⊗ C → B ⊗D

and similarly f⊕̂g for the ‘pushout-sum’

A⊕D ∪A⊕C B ⊕ C → B ⊕D.
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First, say G has multiple connected components but F is still just a single tree. We work 
by induction on the number of constituent trees of G, given that we have already proved 
the case of one tree. For G consisting of multiple trees, write G = G1 ⊕ G2 for strictly 
smaller forests G1 and G2 and recall that

∂G = ∂G1 ⊕G2 ∪G1 ⊕ ∂G2.

Our aim is to show that the map

F ⊗ (∂G1 ⊕G2 ∪G1 ⊕ ∂G2) ∪ Λe[F ] ⊗ (G1 ⊕G2)
ϕ−→ F ⊗ (G1 ⊕G2)

is inner anodyne. Factor this map into the following two maps:

F ⊗ (∂G1 ⊕G2 ∪G1 ⊕ ∂G2) ∪ Λe[F ] ⊗ (G1 ⊕G2)

ϕ1

F ⊗ (∂G1 ⊕G2 ∪G1 ⊕ ∂G2) ∪ (F ⊗G1 ⊕ Λe[F ] ⊗G2)

ϕ2

F ⊗ (G1 ⊕G2).

The map ϕ1 is a pushout of the map

(F⊗∂G1⊕Λe[F ]⊗G2)∪(F⊗G1⊕Λe[F ]⊗∂G2)∪Λe[F ]⊗(G1⊕G2)
ψ−→ F⊗G1⊕Λe[F ]⊗G2.

One can rewrite the domain of this map as(
(Λe[F ] ⊗G1 ∪ F ⊗ ∂G1) ⊕ Λe[F ] ⊗G2

)
∪ (F ⊗G1 ⊕ Λe[F ] ⊗ ∂G2)

and thus observe that ψ equals the map[
(Λe[F ] → F )⊗̂(∂G1 → G1)

]
⊕̂
[
Λe[F ] ⊗ (∂G2 → G2)

]
.

The pushout-product within the first pair of square brackets is inner anodyne by the 
inductive hypothesis on the number of components of G. The tensor product in the 
second summand is a normal monomorphism by Proposition 3.4.1. By Corollary 3.6.1
the map ψ is inner anodyne, so that ϕ1 is inner anodyne as well. Now observe that the 
domain of ϕ2 may be written as(

F ⊗G1 ⊕ (F ⊗ ∂G2 ∪ Λe[F ] ⊗G2)
)
∪ (F ⊗ ∂G1 ⊕ F ⊗G2).

From this description it is clear that ϕ2 equals the map
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[
F ⊗ (∂G1 → G1)

]
⊕̂
[
(Λe[F ] → F )⊗̂(∂G2 → G2)

]
which is inner anodyne by an argument completely analogous to the one we just gave 
for ψ. We conclude that ϕ = ϕ2ϕ1 is inner anodyne.

Finally we remove the restriction that F be a single tree, working by induction on the 
number of constituent trees of F . If it consists of more than one tree, write F = F1 ⊕F2
with F1 containing the inner edge e. Recall that

Λe[F ] = Λe[F1] ⊕ F2 ∪ F1 ⊕ ∂F2.

We wish to show that the map

(Λe[F1] ⊕ F2 ∪ F1 ⊕ ∂F2) ⊗G ∪ (F1 ⊕ F2) ⊗ ∂G
ϕ−→ (F1 ⊕ F2) ⊗G

is inner anodyne. This time, factor it as

(Λe[F1] ⊕ F2 ∪ F1 ⊕ ∂F2) ⊗G ∪ (F1 ⊕ F2) ⊗ ∂G

ϕ1

(Λe[F1] ⊕ F2 ∪ F1 ⊕ ∂F2) ⊗G ∪ (F1 ⊗G⊕ F2 ⊗ ∂G)

ϕ2

(F1 ⊕ F2) ⊗G.

Similarly to before, one verifies that ϕ1 is a pushout of the map ψ defined as[
(Λe[F1] → F1)⊗̂(∂G → G)

]
⊕̂
[
(∂F2 → F2) ⊗ ∂G

]
.

The map within the first pair of square brackets is inner anodyne by the inductive hy-
pothesis on the number of components of F , whereas the map in the second summand 
is again a normal monomorphism by Proposition 3.4.1. Another application of Corol-
lary 3.6.1 shows that this ψ is inner anodyne, so that ϕ1 is inner anodyne as well. For ϕ2, 
one rewrites its domain as(

F1 ⊗G⊕ (∂F2 ⊗G ∪ F2 ⊗ ∂G)
)
∪ (Λe[F1] ⊗G⊕ F2 ⊗G)

to identify it as the map[
(Λe[F1] → F1) ⊗G

]
⊕̂
[
(∂F2 → F2)⊗̂(∂G → G)

]
which is seen to be inner anodyne by the same reasoning as before. �

We now wish to give a more efficient description of the class of inner anodyne maps 
using the notion of Segal core. Recall from [12] that for a tree T , its Segal core Sc(T ) � T
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in the category dSets is the union of all the corollas contained in T . Its analogue for 
forests is the following:

Definition 3.6.4. Let F be a forest. Its (forest) Segal core

fSc(F ) � F

is the colimit over all embeddings G � F of subforests (i.e. compositions of outer face 
maps) whose constituent trees all have at most one vertex. (In other words, the trees in 
G are all either a copy of the unit tree η or a corolla.)

Remark 3.6.5. (a). As an example, consider the following tree T :

r

a b

qp

Then its dendroidal Segal core is

C2 ∪ C3 ∪ C4 � T

where the union is the pushout under the copy of η corresponding to the edge a, respec-
tively b. The forest Segal core of T is

C2 ∪η⊕η (C3 ⊕ C4) � uT.

(b). The obvious formula

fSc(F ⊕G) = fSc(F ) ⊕ fSc(G)

reduces the calculation of Segal cores to trees.
(c). For a tree T , one has the following recursive formulas for its Segal core:

fSc(η) = η,

fSc(Cp) = Cp,

fSc(Cp � (T1, . . . , Tp)) = Cp ∪p·η
(
fSc(T1) ⊕ · · · ⊕ fSc(Tp)

)
.

Here Cp is the corolla with p leaves and Cp � (T1, . . . , Tp) is the tree obtained by gluing 
the trees T1, . . . , Tp onto the leaves of this corolla, while p ·η denotes the forest η⊕· · ·⊕η, 
as before.
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Proposition 3.6.6. For any forest F , the inclusion fSc(F ) � F is inner anodyne (cf. [12]
for the dendroidal case).

For the proof of this proposition we need a few simple observations concerning faces 
and boundaries in fSets. These are analogues of similar facts in the dendroidal case, 
cf. [12]. For a tree T and a set B of inner edges of T , we shall write ΛB[uT ] for the 
union of all the faces of uT except the ones given by contraction of an edge in B. In 
other words, ΛB[uT ] is the union of all the faces of uT which still contain all the edges 
in B.

Lemma 3.6.7. Let T be a tree and let A be a non-empty set of inner edges of T .

(a) For any other inner edge e /∈ A,

∂e(uT ) ∩ ΛA∪{e}[uT ] = ΛA∂e(uT ).

(b) The map ΛA[uT ] � uT is inner anodyne.
(c) For any tree T with at least one inner edge, the inclusion

∂ext(uT ) � uT

of the union of all external faces is inner anodyne.

Proof. (a). Clearly ΛA∂e(uT ) ⊆ ∂e(uT ) ∩ ΛA[uT ]. For the reverse inclusion, one checks 
the different kinds of faces ∂x(uT ) involved in forming ΛA[uT ]. If x is an internal edge 
other than e, or an external (leaf or root) vertex not attached to e, then

∂e(uT ) ∩ ∂x(uT ) = ∂x∂e(uT ).

If e is attached to the root, write Td for the subtree of T with root edge d (the tree 
‘above’ d), where d is any input edge of the root vertex in T . Then

∂root(uT ) ∩ ∂e(uT ) = ∂root(uTe) ⊕
(⊕
d�=e

uTd

)
= ∂root∂e(uT ).

Finally, if x is a leaf vertex of the tree T and e is attached to x, then ∂x(uT ) ∩ ∂e(uT ) is 
more complicated; but any forest contained in it will also be contained in ∂root∂e(uT ) or 
in ∂y∂e(uT ) for some leaf vertex y in T other than x, so ∂x(uT ) ∩ ∂e(uT ) ⊆ ΛA∂e(uT )
as well.
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(b). From part (a) we conclude that for B = A ∪ {e} one has a pushout diagram

ΛA∂e(uT ) ΛB [uT ]

∂e(uT ) ΛA[uT ]

and fact (b) follows by induction on the size of A, the case where A has one element 
being true by definition.

(c). This is the special case of (b) where A is the set of all inner edges. �
Proof of Proposition 3.6.6. By Remark 3.6.5(b) and Corollary 3.6.1 above, it suffices to 
check this for trees. Notice that fSc(uT ) � uT is an isomorphism if T has at most one 
vertex and an inner horn if T has two vertices. For larger T we consider subforests of T , 
i.e. maps F � T obtained as a composition of external faces. Write An,k for the union 
of all subforests with at most k vertices, in which every constituent tree has at most n
vertices. Write

An =
⋃
k≥0

An,k.

This is in fact a finite union of course, bounded by the number N of vertices in T . Also 
An,k ⊆ An−1 if k < n and

A1 = fSc(uT ) � uT

while

AN−1 = ∂ext(uT ) � uT

which is inner anodyne by the previous lemma. So it suffices to prove by induction

An−1 ∪An,k � An−1 ∪An,k+1

is inner anodyne. Let F0, . . . , Fp be all the subforests with exactly k+1 vertices, in which 
every tree has at most n vertices and in which at least one tree has exactly n vertices. 
Write

Sj = F0 ∪ · · · ∪ Fj (j = 0, . . . , p)

and write A = An−1 ∪An,k just for now. We claim that each of the maps

A → A ∪ S0 → A ∪ S1 → · · · → A ∪ Sp = Ak−1 ∪An,k+1
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is inner anodyne. Indeed, A → A ∪ S0 is a pushout of A ∩ S0 → S0, i.e. of A ∩ F0 → F0, 
and

A ∩ F0 = (An−1 ∩ F0) ∪ (An,k ∩ F0)

= ∂ext(F0)

because An,k∩F0 = ∂ext(F0) and An−1∩F0 is contained in ∂ext(F0), since F0 contains at 
least one tree with n vertices. Similarly A ∪Sj−1 → A ∪Sj is a pushout of the morphism 
(A ∪ Sj−1) ∩ Fj → Fj and

(A ∪ Sj−1) ∩ Fj = (An−1 ∩ Fj) ∪ (An,k ∩ Fj) ∪
⋃
j<i

Fj ∩ Fi

which is ∂ext(Fj) again. This proves the proposition. �
We say a class A of normal monomorphisms in fSets is hypersaturated if it is closed 

under pushouts, retracts, (transfinite) composition, direct sums and also satisfies the 
following cancellation property: if

A
i

B
j

C

are normal monomorphisms such that i and ji are in A, then j is also in A. As a kind 
of converse to Proposition 3.6.6, we now prove that the Segal cores generate the inner 
horn inclusions in the following sense:

Proposition 3.6.8. Let A be a hypersaturated class of normal monomorphisms containing 
all the Segal cores fSc(uT ) � uT of trees. Then A contains all inner horn inclusions 
Λe[uT ] � uT .

Proof. For the duration of this proof, let us simply write T for uT , which should not 
cause confusion; everything we do is to be considered in fSets. We will argue by induction 
on T and prove first that all three of the inclusions

fSc(T ) −→ fSc(T ) ∪ ∂root(T ) −→ ∂ext(T ) −→ Λe[T ]

belong to A. This is clear if T has at most two vertices, since all these maps are then 
isomorphisms. For a larger tree T , write

T = Cp � (T1, . . . , Tp)

where p is the valence of the root vertex r of T and ∂r(T ) = T1 ⊕ · · · ⊕ Tp. Then by the 
inductive assumption and the fact that A is assumed to be closed under direct sums, we 
find that
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fSc(T1) ⊕ · · · ⊕ fSc(Tp) −→ T1 ⊕ · · · ⊕ Tp = ∂r(T )

belongs to A and hence by a pushout so does its union with Cp, the corolla at the root:

fSc(T ) = Cp ∪ (fSc(T1) ⊕ · · · ⊕ fSc(Tp)) −→ Cp ∪ (T1 ⊕ · · · ⊕ Tp) = fSc(T ) ∪ ∂root(T ).

This proves that the first of the three maps above is in A. Now, let v be any leaf vertex 
and let ∂v(T ) be the corresponding external face. Consider the pushout

Cp ∪
(
∂v(T ) ∩ ∂root(T )

)
Cp ∪ ∂root(T )

∂v(T ) Cp ∪ ∂root(T ) ∪ ∂v(T ).

Since ∂v(T ) ∩∂root(T ) = ∂root(∂v(T )) and Cp∪∂root(∂v(T )) = fSc(∂v(T )) ∪∂root(∂v(T )), 
the left-hand vertical map belongs to A by induction. Hence so does the right-hand 
vertical map. Next, if we have shown that

Cp ∪ ∂root(T ) −→ ∂root(T ) ∪ ∂v1(T ) ∪ · · · ∪ ∂vk(T )

belongs to A for a sequence of leaf vertices v1, . . . , vk of T , we can adjoin another leaf 
face ∂vk+1(T ) in exactly the same way. Having done this for all the leaf faces, we conclude 
that the map

fSc(T ) ∪ ∂root(T ) = Cp ∪ ∂root(T ) −→ ∂ext(T )

belongs to A.
Finally, we will adjoin the inner faces ∂ai

(T ) for all the inner edges a1, . . . , an in T
other than e and show that each of

∂ext(T ) ∪ ∂a1(T ) ∪ · · · ∪ ∂ai
(T ) −→ ∂ext(T ) ∪ ∂a1(T ) ∪ · · · ∪ ∂ai+1(T )

belongs to A, for i = 0, . . . , n − 1. Indeed, this map is a pushout of

(
∂ext(T ) ∪ ∂a1(T ) ∪ · · · ∪ ∂ai

(T )
)
∩ ∂ai+1(T )

= ∂ext∂ai+1(T ) ∪ ∂a1∂ai+1(T ) ∪ · · · ∪ ∂ai
∂ai+1(T ) −→ ∂ai+1(T ),

so the assertion follows by induction on T and i, since the base of the induction was 
already established at the start of our proof.

We have now shown that in the following diagram, the vertical and skew maps are 
in A:
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fSc(T )

Λe[T ] T.

By the assumed closure property of A, we conclude that it also contains the inner horn 
inclusion Λe[T ] � T . �

The following result is crucial when showing that the weak enrichment of the category 
of forest sets satisfies axiom (H2) of Definition 3.5.4.

Proposition 3.6.9. For simplices Δm, Δn and a forest F , consider the map

α : (Δm × Δn) ⊗ F −→ Δm ⊗ (Δn ⊗ F ).

If A is a hypersaturated class of normal monomorphisms containing all the Segal cores 
fSc(uT ) � uT of trees, then A contains α.

Proof. Form the following commutative square:

(
fSc(Δm) × fSc(Δn)

)
⊗ fSc(F ) fSc(Δm) ⊗

(
fSc(Δn) ⊗ fSc(F )

)

(Δm × Δn) ⊗ F Δm ⊗ (Δn ⊗ F ).

The vertical maps are in A by Proposition 3.6.2 and the fact that A contains the inner 
anodynes, by Proposition 3.6.8. Therefore it suffices to show that the top horizontal map 
is in A. This is a composition of pushouts of maps involving only 1-simplices, corollas 
and sums of such. Since tensor products distribute over sums, it suffices to prove that 
the map

α : (Δ1 × Δ1) ⊗ Ck −→ Δ1 ⊗ (Δ1 ⊗ Ck)

is inner anodyne (for every k ≥ 0). For notational simplicity we treat the case k = 2; the 
higher cases are completely analogous. The tensor product Δ1 ⊗ (Δ1 ⊗ C2) is the nerve 
of the operad [1] ⊗ ([1] ⊗ Ω(C2)). It can be described as the union of all the shuffles of 
the three trees Δ1, Δ1 and C2. The forest set (Δ1 × Δ1) ⊗ C2 is the union of only a 
subset of all these shuffles. Let us label the leaves of C2 by a and b. Then the ‘missing 
shuffles’ in (Δ1 × Δ1) ⊗ C2 are the following:
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S1

11a

01a

00a

11b

10b

00b

S2

11a

10a

00a

11b

01b

00b

In words, they are those shuffles of Δ1 ⊗ (Δ1 ⊗ C2) where we place one shuffle of 
Δ1 × Δ1 on the leaf a and the other shuffle of Δ1 × Δ1 on the leaf b. (In this picture, 
a label like 00a is shorthand for 0 ⊗ 0 ⊗ a.) We will demonstrate how to adjoin S1 to 
(Δ1 × Δ1) ⊗ C2 by an inner anodyne map; the argument for subsequently adjoining S2
is completely analogous. Consider the following external face R of S1:

R

11a

01a

11b

10b

Then the map (Δ1×Δ1) ⊗C2 → R∪(Δ1×Δ1) ⊗C2 is a pushout of the map ΛE[R] → R, 
where E is the set of inner edges {11a, 11b}. Subsequently, consider the external face T1
(resp. T2) obtained from S1 by chopping off the leaf 00a and its adjacent vertex (resp. the 
leaf 00b and its adjacent vertex). Then T1 (and then T2) can be adjoined by a pushout 
along the inner horn inclusion ΛE [T1] → T1 (and then along ΛE [T2] → T2). Finally, we 
can then adjoin S1 itself by a pushout along the inner horn inclusion ΛE[S1] → S1. �
3.7. The operadic model structure on fSets

In this section we will use the weak enrichment of the category of forest sets to establish 
a model structure on this category.

Definition 3.7.1. An object E of fSets is operadically local if it satisfies the following 
three conditions:

(1) For every normal monomorphism between normal forest sets A � B, the map

hom(B,E) −→ hom(A,E)
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is a categorical fibration of simplicial sets (i.e. a fibration in the Joyal model struc-
ture).

(2) For any two normal forest sets C and D, the map

hom(C ⊕D,E) −→ hom(C �D,E)

is a trivial fibration of simplicial sets (in the Joyal model structure, or equivalently, 
in the Kan–Quillen model structure).

(3) For every inner horn inclusion of a forest Λe[F ] � F , the map

hom(F,E) −→ hom(Λe[F ], E)

is a trivial fibration of simplicial sets.

In particular, by applying condition (1) to the map ∅ −→ A, the simplicial set 
hom(A, E) is an ∞-category for any normal forest set A and operadically local ob-
ject E.

We denote by J the forest set which is the nerve of the groupoid interval, i.e. the 
category with two objects labelled 0, 1 and an isomorphism between them. It comes with 
maps

{0} � {1}
i0�i1

J
ε

η

where {0} and {1} denote copies of η. We will use the short-hand notation

∂J := {0} � {1}.

Here is a reformulation and simplification of the previous definition:

Lemma 3.7.2.

(i) A forest set E is an operadically local object if and only if E has the right lifting 
property with respect to all maps of the following types:

(a) Λn
k ⊗B ∪ Δn ⊗A −→ Δn ⊗B,

(b) J ⊗A ∪ {0} ⊗B −→ J ⊗B,

(c) Δn ⊗ (C �D) ∪ ∂Δn ⊗ (C ⊕D) −→ Δn ⊗ (C ⊕D),

(d) Δn ⊗ Λe[F ] ∪ ∂Δn ⊗ F −→ Δn ⊗ F.

Here we assume 0 < k < n, the map A � B is a normal monomorphism between 
normal objects, C and D are normal forest sets and Λe[F ] → F is an inner horn 
inclusion.
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(ii) A forest set E is an operadically local object if and only if E has the right lifting 
property with respect to all maps of the following types:

(a) Λe[F ] −→ F,

(b) J ⊗ ∂F ∪ {0} ⊗ F −→ J ⊗ F,

(c) Δn ⊗ (F �G) ∪ ∂Δn ⊗ (F ⊕G) −→ Δn ⊗ (F ⊕G),

where F and G are representable forest sets and Λe[F ] → F is an inner horn inclu-
sion.

Proof. Recall that a map between ∞-categories is a categorical fibration if and only if 
it has the right lifting property with respect to the maps

Λn
k −→ Δn, 0 < k < n,

{0} −→ J.

The statement of part (i) of the lemma is then clear from the definitions. We should verify 
part (ii). First, note that by Proposition 3.6.2 the maps of (i)(a) and (i)(d) are inner 
anodyne, which allows us to replace them by (ii)(a). We can reduce (i)(b) to (ii)(b) by 
the characterization of normal monomorphisms given in Corollary 3.3.8. Finally, (i)(c) 
can be reduced to (ii)(c) by a standard skeletal induction argument (see the proof of 
Proposition 3.8.5 for a typical example). �
Definition 3.7.3. The class of operadic anodyne maps is the saturation of the class of 
maps occurring in the lemma, i.e. the closure of (i)(a)–(d), or equivalently (ii)(a)–(c), 
under pushouts, transfinite compositions and retracts. We will call the maps in (ii)(a)–(c) 
the generating operadic anodyne maps. Note that these maps are all defined as pushout-
products of a monomorphism of simplicial sets and a normal monomorphism of forest 
sets, so that they are all normal monomorphisms by Proposition 3.4.1(i). When A and 
B range over simplicial sets, recall that the saturation (within the category of simplicial 
sets) of the class of maps in (i)(a) and (i)(b) is called the class of J-anodyne maps of 
simplicial sets.

For later use, let us record the following elementary property:

Lemma 3.7.4. For an operadic anodyne map A → B between forest sets and a cofibration 
M → N between simplicial sets, the pushout-product

M ⊗B ∪N ⊗A −→ N ⊗B

is again an operadic anodyne map.
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Proof. Clearly it suffices to treat the case where A → B is a generating operadic anodyne. 
If it is of the form (ii)(a), then the desired conclusion follows from Proposition 3.6.2. Now 
suppose A −→ B is a map of the form

{0} ⊗ F ∪ J ⊗ ∂F −→ J ⊗ F

for a forest F . We have to consider the map

M ⊗B ∪N ⊗A −→ N ⊗B.

Explicitly, it can be written as

M ⊗
(
J ⊗ F

)
∪N ⊗

(
{0} ⊗ F ∪ J ⊗ ∂F

)
−→ N ⊗

(
J ⊗ F

)
.

By the symmetry of the enrichment, this is isomorphic to the map

{0} ⊗
(
N ⊗ F

)
∪ J ⊗

(
M ⊗ F ∪N ⊗ ∂F

)
−→ J ⊗

(
N ⊗ F

)
.

This is an operadic anodyne, since the map

M ⊗ F ∪N ⊗ ∂F −→ N ⊗ F

is a normal monomorphism by virtue of Proposition 3.4.1. The case where A −→ B is 
of the form

Δn ⊗ (C �D) ∪ ∂Δn ⊗ (C ⊕D) −→ Δn ⊗ (C ⊕D)

is treated similarly. �
Also, we immediately conclude the following:

Proposition 3.7.5.

(i) For any forest set X there exists an operadic anodyne map X −→ Xf into an 
operadically local object Xf .

(ii) For a monomorphism X −→ Y and any choice of X −→ Xf as in (i), there exists 
an operadic anodyne Y −→ Yf such that Yf is an operadically local object and there 
is a commutative square of monomorphisms as follows:

X Y

Xf Yf .
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(iii) If X is countable, Xf can be chosen to be countable as well.
(iv) If A ⊆ Yf is countable, then there exists a countable X and a commutative square 

of monomorphisms

X Y

Xf Yf

such that the map A −→ Yf factors through Xf .

Proof. The first two parts follow from standard arguments involving the small object 
argument. The rest is clear from the finiteness of the objects involved in the maps of 
Lemma 3.7.2(ii)(a)–(c). �

We now define the classes of maps involved in the operadic model structure.

Definition 3.7.6.

(i) A map X −→ Y in fSets is called a cofibration if it is a normal monomorphism.
(ii) A map X −→ Y in fSets is called an operadic weak equivalence if there exists a 

commutative diagram

X ′ Y ′

X Y

where the vertical maps are normalizations and X ′ −→ Y ′ induces an equivalence 
of ∞-categories

hom(Y ′, E) −→ hom(X ′, E)

for every operadically local object E. (One could construct the diagram so that the 
map X ′ −→ Y ′ is in addition a cofibration, in which case the stated map between 
∞-categories will in fact be a trivial fibration.)

(iii) A map X −→ Y is called an operadic fibration if it has the right lifting property 
with respect to all trivial cofibrations, i.e. those cofibrations that are also operadic 
weak equivalences.

Another useful concept is that of J-homotopy:

Definition 3.7.7. Two maps f, g : X −→ Y between forest sets are J-homotopic if there 
exists a dashed arrow as indicated in the following diagram:
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{0} � {1}
f�g

hom(X,Y ).

J

Remark 3.7.8. The previous definition gives rise to an obvious notion of J-homotopy 
equivalence between forest sets. Using the fact that J-homotopy equivalences of simplicial 
sets are equivalences in the Joyal model structure, it is easy to see that a J-homotopy 
equivalence of normal forest sets is an operadic weak equivalence.

The rest of this section and the next will be devoted to a proof of the following 
theorem. We will give a proof using fairly elementary methods to stress the essential 
simplicity of the arguments involved.

Theorem 3.7.9.

(i) The normal monomorphisms, operadic weak equivalences and operadic fibrations 
define a model structure on fSets, to be referred to as the operadic model structure.

(ii) The operadic model structure is cofibrantly generated and left proper.
(iii) The fibrant objects in this model structure are exactly the operadically local objects.
(iv) The fibrations between fibrant objects are precisely the maps having the right lifting 

property with respect to the operadic anodyne morphisms.
(v) The operadic model structure is homotopically enriched over the Joyal model struc-

ture on the category of simplicial sets.

Before embarking on the proof, let us draw an immediate consequence.

Corollary 3.7.10. The adjoint functors

u∗ : fSets dSets : u∗

form a Quillen pair between the operadic model structure on fSets and the model struc-
ture on dSets of Theorem 2.3.7.

Proof of Corollary. It suffices to show that u∗ preserves cofibrations and that u∗ pre-
serves fibrant objects and fibrations between fibrant objects. The fact that u∗ preserves 
cofibrations was already discussed in Section 3.3. Part (iv) of the theorem now shows 
that it suffices to prove that u∗ sends operadic anodynes to trivial cofibrations in dSets. 
Since the model structure on dSets is homotopically enriched over the Joyal model 
structure, this is clear from the fact that u∗ preserves tensor products and sends direct 
sums to coproducts. �

Let us now turn our attention to the proof of Theorem 3.7.9. We will begin with several 
lemmas concerning the weak equivalences. The first one shows that the definition of 
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operadic weak equivalence is independent of the chosen square involving normalizations 
of X and Y .

Lemma 3.7.11. If X −→ Y is an operadic weak equivalence and we have a square

X ′ Y ′

X Y

in which the vertical maps are normalizations, then the induced map

hom(Y ′, E) −→ hom(X ′, E)

is an equivalence of ∞-categories for any operadically local object E.

Proof. First, construct a square

X ′′ Y ′′

X Y

by choosing a normalization X ′′ of X and then factoring the composite map X ′′ −→ Y

into a normal mono X ′′ −→ Y ′′ followed by a map Y ′′ −→ Y having the right lifting 
property with respect to all normal monos, which is therefore a normalization of Y . We 
will now show that any other square of normalizations as described in the lemma is 
equivalent to this one in an appropriate sense. Choose lifts as indicated by the dashed 
arrows in the squares

∅ X ′ X ′ Y ′

X ′′

f

X, X ′ �X′′ Y ′′ Y.

This gives a commutative diagram

X ′′ Y ′′

X ′ Y ′

X Y.
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It now suffices to show that the induced map

hom(X ′, E) −→ hom(X ′′, E)

is an equivalence of ∞-categories (and similarly for the map induced by Y ′′ −→ Y ′). 
This follows from the fact that normalizations are unique up to J-homotopy equivalence. 
Indeed, successively lifting in the squares

∅ X ′′

X ′

g

X

and

X ′ �X ′ id�fg
X ′ X ′′ �X ′′ id�gf

X ′′

X ′ ⊗ J X X ′′ ⊗ J X

produces such an equivalence between X ′ and X ′′. The fact that the left vertical maps 
in both squares are cofibrations follows from Proposition 3.4.1. �
Lemma 3.7.12. A map in fSets which has the right lifting property with respect to all 
normal monomorphisms is an operadic weak equivalence.

Proof. Let f : Y −→ X be such a map. It will suffice to show the existence of a square

Y ′ f ′

X ′

Y
f

X

in which the vertical maps are normalizations and f ′ is a J-homotopy equivalence. To 
do this, choose a normalization X ′ −→ X and lift in the square

∅ Y

f

X ′

s

X.

Now factor the lift s as
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X ′ s

i

Y

Y ′
t

where i is a normal mono and t is a normalization. Finally, lift in

X ′

i

X ′

Y ′

f ′

ft
X.

Then clearly f ′i = idX′ and we claim that if ′ is J-homotopic to idY ′ . Indeed, ft has the 
right lifting property with respect to all normal monomorphisms, so we can lift in

∂J ⊗ Y ′ ∪ J ⊗X ′ φ
Y ′

ft

J ⊗ Y ′
ψ

X

where φ = (if ′, idY ′) ∪ iε and ψ = ftε, with ε : J −→ η the obvious collapse map. 
Here we use the fact that the left vertical map is a normal mono, which follows from 
Proposition 3.4.1. Recall that ∂J is shorthand for {0} � {1}. �
Lemma 3.7.13. A pushout of an operadic trivial cofibration (i.e. a cofibration that is also 
an operadic weak equivalence) is again an operadic trivial cofibration.

Proof. Consider a pushout

A
∼

B

C D

and suppose A −→ B is a trivial cofibration as indicated. First assume all objects in this 
square are normal. If E is an operadically local object, then in the pullback square

hom(D,E) hom(C,E)

hom(B,E) ∼ hom(A,E)
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the bottom horizontal map is a trivial fibration. Hence so is the top horizontal map, 
so that C −→ D is an operadically weak equivalence. We now show how to reduce the 
general case to this one. Choose a normalization

D′ D

and pull back along this map to produce a cube

A′ C ′

B′ D′

A C

B D.

In this cube, both horizontal faces are pushouts and all vertical faces are pullbacks. Using 
Lemma 3.3.1 we see that all objects in the top face are normal, so that all vertical maps 
are in fact normalizations. Now A′ −→ B′ is a trivial cofibration between normal objects 
and we use the argument above to conclude that C ′ −→ D′ is as well. �
Lemma 3.7.14. Operadic anodyne maps are trivial cofibrations.

Proof. Since compositions and retracts of trivial cofibrations are clearly trivial cofibra-
tions again and the same is true for pushouts by the preceding lemma, it suffices to 
prove that the generating operadic anodynes of Definition 3.7.3 are trivial cofibrations. 
We claim that if U −→ V is a generating operadic anodyne and E an operadically local 
object, then

hom(V,E) −→ hom(U,E)

is a trivial fibration of simplicial sets. Indeed, it has the right lifting property with respect 
to boundary inclusions ∂Δm → Δm, since the pushout-product

∂Δm ⊗ V ∪ Δm ⊗ U −→ Δm ⊗ V

is an operadic anodyne map, by Lemma 3.7.4. �
We now turn to the study of arbitrary trivial cofibrations.

Lemma 3.7.15. Every trivial cofibration is a retract of a pushout of a trivial cofibration 
between normal objects.
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Proof. Let u : A −→ B be a trivial cofibration. Choose a normalization B′ −→ B of B
and form the pullback

A′ u′

p

B′

q

A
u

B.

Then u′ is a trivial cofibration between normal objects. Now form the pushout

A′ u′

p

B′

r

A
v

P

which gives a canonical map s : P −→ B. It now suffices to prove that s has the right 
lifting property with respect to all cofibrations, because this would make u a retract of 
v by lifting in the square

A
v

u

P

s

B B.

So, consider a lifting problem

∂F P

s

F B.

Pull our previous pushout diagram back along ∂F −→ P to form the cube

E D

A′ B′

C ∂F

A P
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in which the front and back face are pushouts and all other faces are pullbacks. Then 
E −→ C is a normalization and all objects in the back face are normal, so E −→ C has 
a section and hence so does the pushout D −→ ∂F . Using this section, we can form a 
commutative diagram

∂F D B′

q

F B

in which a lift as indicated exists, which also gives a solution to our previous lifting 
problem. �
Lemma 3.7.16. A trivial cofibration between normal and operadically local objects is a 
J-deformation retract.

Proof. Let f : A −→ B be such a trivial cofibration. Then the map

f∗ : hom(B,A) −→ hom(A,A)

is a trivial fibration of simplicial sets and therefore surjective on vertices. This allows 
us to pick a map r : B −→ A such that rf = idA. We find a J-homotopy fr � idB by 
lifting in the diagram

∂J
(idB ,fr)

hom(B,B)

f∗

J hom(A,B)

where the bottom horizontal arrow is the constant map with value f . �
Lemma 3.7.17. Let u : X −→ Y be a trivial cofibration between normal objects in fSets. 
Then for any countable subpresheaves A ⊆ X and B ⊆ Y , there exist intermediate 
countable subpresheaves A ⊆ Ã ⊆ X and B ⊆ B̃ ⊆ Y which fit into a pullback diagram

Ã X

u

B̃ Y

and in which Ã −→ B̃ is also a trivial cofibration.
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Proof. We use Proposition 3.7.5 to complete u : X −→ Y into a diagram

X

u

Xf

v

Y Yf .

Then Xf −→ Yf is again a trivial cofibration (by Lemma 3.7.14 and the obvious two-
out-of-three property of operadic weak equivalences) and hence a deformation retract by 
the previous lemma. Write r : Yf −→ Xf for the retraction and

h : J ⊗ Yf −→ Yf

for the homotopy. Let A0 = A and B0 = B. Then we can ‘close’ A0 and B0 inside Xf

and Yf respectively, to find countable A′
0 and B′

0 with A0 ⊆ A′
0 ⊆ X and B0 ⊆ B′

0 ⊆ Y

and

v−1(B′
0) = A′

0,

r(B′
0) = B′

0,

h(J ⊗B′
0) = B′

0.

In other words, the diagram

A′
0 Xf

B′
0 Yf

is a pullback and r and h restrict to a deformation retract between A′
0 and B′

0. Next use 
Proposition 3.7.5(iv) to find countable A1 ⊆ X and B1 ⊆ Y with u−1(B1) = A1 and

A′
0 ⊆ (A1)f ⊆ Xf and B′

1 ⊆ (B1)f ⊆ Yf .

Repeat the above construction to find A′
1 and B′

1 with A′
0 ⊆ A′

1 ⊆ X and B′
0 ⊆ B′

1 ⊆ Yf

for which v−1(B′
1) = A′

1 while r and h restrict to a deformation retract between A′
1

and B′
1. Iterating this process countably many times, we obtain a ladder

A0 A1 A2 · · · X

A′
0 A′

1 A′
2 · · · Xf

B0 B1 B2 · · · Y

B′
0 B′

1 B′
2 · · · Yf
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where the vertical maps in the front are all deformation retracts and where A′
n ⊆ (An+1)f

and B′
n ⊆ (Bn+1)f . Let Ã =

⋃
n An and B̃ =

⋃
n Bn. Then in the diagram

Ã X

(Ã)f Xf

B̃ Y

(B̃)f Yf

the map (Ã)f −→ (B̃)f is the colimit of the deformation retracts A′
n −→ B′

n, hence is 
itself a deformation retract (by the same maps r and h). Thus (Ã)f −→ (B̃)f is a weak 
equivalence, hence so is Ã −→ B̃. �
Lemma 3.7.18. The class of trivial cofibrations is generated by the trivial cofibrations 
between countable and normal objects.

Proof. We already know that every trivial cofibration is a retract of a pushout of a 
trivial cofibration between normal objects (Lemma 3.7.15). Therefore it suffices to show 
that every trivial cofibration X � Y between normal objects lies in the saturation of the 
countable such maps. Well-order the elements of Y −X as {yξ | ξ < λ}, so λ is an ordinal 
of the cardinality of Y −X. By induction we will construct factorizations X � Wξ � Y

of X � Y into trivial cofibrations, such that for ξ < ξ′ there is a commutative diagram

X Wξ

Wξ′ Y

and such that

– yξ ∈ Wξ+1,
– X � Wξ lies in the saturation of the class of trivial cofibrations between countable 

normal objects.

Then Wλ+1 must equal Y , which completes the proof. If Wξ has been constructed for 
all ξ < ζ, we construct Wζ as follows. First, let

W−
ζ := lim−−→

ξ<ζ

Wξ.

(Note that W−
ξ+1 is Wξ, so this is only relevant if ζ is a limit ordinal.) Let
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Ã W−
ζ

B̃ Y

be a pullback diagram as in Lemma 3.7.17, with yζ ∈ B̃, and construct the pushout

Ã W−
ζ

B̃ Wζ .

The universal property of the pushout gives us a unique map Wζ � Y compatible with 
the earlier maps. This map is mono since W−

ζ � Y is and since the previous square is 
a pullback. This finishes the proof. �

We are now ready to complete the proof of parts (i)–(iii) of the main theorem. We 
defer the proofs of (iv) and (v) to the next section.

Proof of Theorem 3.7.9(i)–(iii). (i) We will check the usual axioms CM1–5 from [35]. 
The axioms (CM1) for existence of limits and colimits, (CM2) for two-out-of-three for 
weak equivalences and (CM3) for retracts evidently hold (and in fact we have already 
used (CM2)). As to the factorization axiom (CM5), Corollary 3.3.9 states that every map 
can be factored as a cofibration followed by a map having the right lifting property with 
respect to all cofibrations and the latter is a trivial fibration by Lemma 3.7.12. Similarly, 
any map X −→ Y can be factored as X � Z → Y where X � Z lies in the saturation 
of the class of trivial cofibrations between countable normal objects and Z → Y has the 
right lifting property with respect to this class. Lemma 3.7.18 shows that Z → Y is a 
fibration. Finally, for the lifting axiom (CM4), consider a commutative square

A

i

f
Y

p

B
g

X

where i is a cofibration and p is a fibration. If i is a weak equivalence, then a lift exists by 
definition of the fibrations. If p is a weak equivalence, one applies the standard retract 
arguments: factor Y −→ X as a cofibration Y � Z followed by a map Z −→ X having 
the right lifting property with respect to all cofibrations. Then Y � Z is a trivial 
cofibration and successive liftings in
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A Y Z Y Y

B X Z X

will give the required lift B −→ Y .
(ii) We have already seen that the model structure is cofibrantly generated (Lem-

ma 3.7.18 and Corollary 3.3.8). To see it is left proper, consider a pushout

A C

B D

in which A −→ B is a weak equivalence and A −→ C is a cofibration. We can ‘normalize’ 
the pushout by pulling back along a normalization of D (as in the proof of Lemma 3.7.13) 
to get a cube

A′ C ′

B′ D′

A C

B D

in which the top square is again a pushout. Then the diagram of simplicial sets

hom(D′, E) hom(B′, E)

hom(C ′, E) hom(A′, E)

is a pullback for any object E and the bottom horizontal map is a categorical fibration. 
If E is operadically local, all the simplicial sets in this diagram are ∞-categories and 
the right vertical map is an equivalence of ∞-categories. The square is then a homotopy 
pullback square in the Joyal model structure, so that the left vertical map is also an 
equivalence.

(iii) Lemma 3.7.14 shows that any fibrant object is an operadically local object. Con-
versely, let X be any operadically local object. Then X has the right lifting property 
with respect to maps A −→ B which are trivial cofibrations between normal objects, 
because in this case

hom(B,X) −→ hom(A,X)
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is a trivial fibration of simplicial sets and therefore surjective on vertices. It now follows 
from Lemma 3.7.15 that X has the right lifting property with respect to arbitrary trivial 
cofibrations. �
3.8. Further properties of the operadic model structure

In this section we will establish parts (iv) and (v) of Theorem 3.7.9. Also, we give a 
convenient characterization of the trivial cofibrations in the operadic model structure in 
Proposition 3.8.4 and a characterization of the weak equivalences between fibrant objects 
in Proposition 3.8.5.

Lemma 3.8.1. Let i : M → M ′ and j : N → N ′ be monomorphisms of simplicial sets 
and let k : X → X ′ be a normal monomorphism of forest sets. Then the map h of 
Definition 3.5.4 is a trivial cofibration, i.e. the weak enrichment of the category of forest 
sets over the category of simplicial sets satisfies axiom (H2).

Proof. By standard arguments it suffices to treat the case where i, j and k are of the 
form

i : ∂Δm → Δm, j : ∂Δn → Δn and k : ∂F → F.

The map h may somewhat informally be written as

h : (Δm×Δn)⊗F∪∂Δm⊗(Δn⊗F )∪Δm⊗(∂Δn⊗F )∪Δm⊗(Δn⊗∂F ) −→ Δm⊗(Δn⊗F ).

To check that it is a normal monomorphism, we need to verify the following:

(Δm × Δn) ⊗ F ∩ ∂Δm ⊗ (Δn ⊗ F ) = (∂Δm × Δn) ⊗ F,

(Δm × Δn) ⊗ F ∩ Δm ⊗ (∂Δn ⊗ F ) = (Δm × ∂Δn) ⊗ F,

(Δm × Δn) ⊗ F ∩ Δm ⊗ (Δn ⊗ ∂F ) = (Δm × Δn) ⊗ ∂F.

All of these identities follow by the same reasoning as was applied in Section 3.4, specif-
ically the type of observation mentioned in Remark 3.4.10.

By Proposition 3.6.9 we know that αM,N,X is a trivial cofibration in case M , N and X
are representable. It follows that αM,N,X is a weak equivalence for any choice of cofibrant 
objects M , N and X by the usual induction on skeletal filtrations. We can now deduce 
formally that the map h is a weak equivalence as well. Indeed, consider the square

A C

B B ∪A C

h

D
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of Definition 3.5.4. We know that the map B → D is a trivial cofibration, since it is 
the map α described above. Similarly, we deduce that the map A → C is a trivial 
cofibration, being a composition of pushouts of maps of the form αM,N,X . Therefore the 
map B → B ∪A C, being a pushout of a trivial cofibration, is a trivial cofibration itself. 
By two-out-of-three we conclude that h is a weak equivalence. �
Lemma 3.8.2. If M → N is a monomorphism of simplicial sets and A → B is a trivial 
cofibration between forest sets, then the pushout-product

N ⊗A ∪M ⊗B −→ N ⊗B

is a trivial cofibration.

Proof. By Lemma 3.7.15 there is no loss of generality if we assume that A and B are 
both normal. We should verify that for every operadically local E, the map

hom(N ⊗B,E) −→ hom(N ⊗A ∪M ⊗B,E)

= hom(N ⊗A,E) ×hom(M⊗A,E) hom(M ⊗B,E)

is a trivial fibration of simplicial sets. We already know it is a fibration, since by Proposi-
tion 3.4.1 the pushout-product of the lemma is a normal monomorphism between normal 
objects. Write P for the pullback occurring as the codomain of the map above and sim-
ilarly write Q for the pullback

hom(A,E)N ×hom(A,E)M hom(B,E)M .

Using the maps β of Lemma 3.5.5 we may form the diagram

hom(N ⊗B,E) hom(B,E)N

P Q.

By Lemmas 3.8.1 and 3.5.5 we know that the horizontal maps are trivial fibrations. Fur-
thermore, the right vertical map is a trivial fibration. Indeed, hom(B, E) → hom(A, E)
is a trivial fibration by assumption, so that this follows from the fact that the Kan–
Quillen model structure on simplicial sets is Cartesian. We may now conclude that the 
left vertical map in our diagram is a trivial fibration as well. �

We can now provide the promised characterization of fibrations between fibrant ob-
jects in the operadic model structure:
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Proof of Theorem 3.7.9(iv). Let f : Y −→ X be a map between fibrant objects. If it 
is a fibration, Lemma 3.7.14 shows that it has the right lifting property with respect to 
operadic anodyne maps. Conversely, suppose f has this right lifting property. Factor the 
map as

Y
i

Z
p

X

where p is a fibration and i is a trivial cofibration. Since Y is fibrant, the map i has a 
retract r : Z −→ Y . Next, recalling the interval J with maps

∂J = {0} � {1} i0�i1−−−−→ J
ε−→ η,

we see that the map

J ⊗ Y ∪ ∂J ⊗ Z −→ J ⊗ Z

is a trivial cofibration by Lemma 3.8.2. Thus we can lift in the diagram

J ⊗ Y ∪ ∂J ⊗ Z
fε∪(p,fr)

X

J ⊗ Z

because X is fibrant as well. This gives a homotopy h from fr to p relative to Y . Finally, 
let (J ⊗ Y ) ∪Y Z be the pushout along i0 : Y −→ J ⊗ Y and lift in

(J ⊗ Y ) ∪Y Z
ε∪r

Y

f

J ⊗ Z

k

h
X.

This is possible because the map on the left is an operadic anodyne. Then r′ = k1 has 
the property that fr′ = h1 = p and r′i = εi1 = idY . So f is a retract of p over X and 
hence a fibration, since p is. �
Lemma 3.8.3. The class of operadic trivial cofibrations is the smallest class C of cofibra-
tions between forest sets containing the operadic anodynes and satisfying the following 
cancellation property: if

A
i

B
j

C

are cofibrations such that j and ji are in C, then so is i.
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Proof. These arguments are standard. Suppose f : X −→ Y is a trivial cofibration 
between forest sets. Construct a square

X

f

X ′

g

Y Y ′

in which the top and bottom horizontal maps are operadic anodyne, X ′ and Y ′ are 
fibrant and g is a trivial cofibration. If we can prove that g is an operadic anodyne 
then we are done. But this follows from the fact that all trivial cofibrations with fibrant 
codomain are operadic anodyne. Indeed, if p : C −→ D is such a trivial cofibration, then 
factor it as an operadic anodyne q : C −→ C ′ followed by a map r : C ′ −→ D having 
the right lifting property with respect to all operadic anodynes. Since D is fibrant, C ′ is 
also fibrant. Now, by the characterization of fibrations between fibrant objects given in 
Theorem 3.7.9(iv) we conclude that r is a trivial fibration. Lifting in the square

C

p

q
C ′

r

D D

exhibits p as a retract of the operadic anodyne q. �
The operadic trivial cofibrations can be characterized even a little more efficiently:

Proposition 3.8.4. In the operadic model structure on fSets, the class of trivial cofibra-
tions is the smallest hypersaturated class C containing the morphisms listed below.

(a) The inner horn inclusions

Λe[uT ] −→ uT

for any tree T and any inner edge e of T .
(b) For any tree T , the map

{0} ⊗ uT ∪ J ⊗ ∂(uT ) −→ J ⊗ uT.

(c) For any non-empty sequence of trees T1, . . . , Tk, the map

T1 � · · · � Tk −→ T1 ⊕ · · · ⊕ Tk.

In fact, we may replace (a) by the following:
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(a′) For any tree T , the Segal core

fSc(uT ) −→ uT.

Proof. It is clear that all the stated maps are trivial cofibrations and that the class 
of trivial cofibrations has the stated closure property. Conversely, consider the smallest 
class C having the stated closure properties and containing (a) and (b) for any forest F
(instead of uT ) and the maps described in Lemma 3.7.2(ii)(c), i.e. the inclusions

Δn ⊗ (F �G) ∪ ∂Δn ⊗ (F ⊕G) −→ Δn ⊗ (F ⊕G)

for forests F and G. Then Lemmas 3.7.2 and 3.8.3 show that this class is in fact the 
class of trivial cofibrations in the operadic model structure.

Let us first show that it suffices to include only the n = 0 version of the maps just 
listed, i.e. only the maps

F �G −→ F ⊕G. (2)

Indeed, the more general map listed before is of the form

A�B ∪A′ ⊕B′ −→ A⊕B (3)

for normal monomorphisms A′ � A and B′ � B. Let us first treat the case where 
B′ = B (which, by symmetry, will also cover the case A′ = A). Such a map is in the 
saturation of the class of maps of the form

F �G ∪ ∂F ⊕G −→ F ⊕G. (4)

Form the following diagram, in which the square is a pushout and the vertical maps and 
the top right horizontal map are in the saturation of the class of maps of the form in (2):

∂F �G

∗

F �G
∗

∗

F ⊕G.

∂F ⊕G F �G ∪ ∂F ⊕G

By two-out-of-three, we get the map of (4) and hence by saturation the maps of (3) in 
the special cases A′ = A or B′ = B. To remove this restriction, consider arbitrary normal 
monos A′ � A and B′ � B and form the following diagram, in which the square is a 
pushout:
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A′ �B ∪A′ ⊕B′ ∗
A′ ⊕B

A�B ∪A′ ⊕B′
∗ A�B ∪A′ ⊕B ∗ A⊕B.

The top horizontal and right bottom horizontal map are of the special form just de-
scribed. Composing the bottom two horizontal maps gives the map of (3), so we have 
succeeded in reducing to (2). We now wish to get the maps of (2) from the maps listed in 
(c) of the proposition. For this, write F =

⊕
i Si and G =

⊕
j Tj and form the diagram

(S1 ⊕ · · · ⊕ Sm) � (T1 ⊕ · · · ⊕ Tn) (S1 ⊕ · · · ⊕ Sm) ⊕ (T1 ⊕ · · · ⊕ Tn).

(S1 � · · · � Sm) � (T1 � · · · � Tn)

The skew map is of the form (c) and the vertical map is a coproduct of such maps.
We still have to demonstrate that it suffices to include the maps (a) and (b) of the 

proposition, rather than their analogues with uT replaced by a forest F . This is done 
similarly, using the two-out-of-three property and what we already know about sums. 
For example, for a direct sum F = S ⊕ T of two trees, the map

{0} ⊗ (S ⊕ T ) ∪ J ⊗ ∂(S ⊕ T ) −→ J ⊗ (S ⊕ T )

fits into a diagram

{0} ⊗ (S ⊕ T ) ∪ J ⊗ ∂(S ⊕ T ) J ⊗ (S ⊕ T )

{0} ⊗ (S ⊕ T ) ∪ J ⊗ (∂S ⊕ T ∪ S ⊕ ∂T )

{0} ⊗ (S ⊕ T ) ∪ J ⊗ (∂S � T ∪ S � ∂T ) J ⊗ (S � T )

where the lower left and the right map are in the saturation of the class (c) as just argued 
and the lower horizontal map is an isomorphism. We leave the remaining case (a) to the 
reader. To replace (a) by (a′) one uses Propositions 3.6.6 and 3.6.8. �

Let us now prove that the operadic model structure is homotopically enriched:

Proof of Theorem 3.7.9(v). By Lemma 3.8.1 we know that the weak enrichment of fSets
satisfies axiom (H2). It remains to verify (H1). By definition, the statement we have to 
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prove is that given a cofibration Y −→ Z of forest sets and a cofibration M −→ N of 
simplicial sets, the map

N ⊗ Y ∪M⊗Y M ⊗ Z −→ N ⊗ Z

is a cofibration, which is trivial if either Y −→ Z is an operadic weak equivalence or 
M −→ N is a weak equivalence in the Joyal model structure. We already know it is a 
cofibration by Proposition 3.4.1.

(i) Assume Y −→ Z is trivial. Then the conclusion follows from Lemma 3.8.2.
(ii) Assume M −→ N is trivial. As before, Lemma 3.7.15 shows there is no loss of 

generality if we assume that Y and Z are both normal. Let us write A → B for the 
pushout-product map

N ⊗ Y ∪M⊗Y M ⊗ Z −→ N ⊗ Z.

Now consider an arbitrary K → L of simplicial sets and write A′ → B′ for the similar 
pushout-product map with M → N replaced by K → L. By symmetry of the enrich-
ment,

hom(B,E) −→ hom(A,E)

has the right lifting property with respect to K → L if and only if

hom(B′, E) −→ hom(A′, E)

has the right lifting property with respect to M → N . It has this lifting property because 
it is a fibration in the Joyal model structure, since A′ → B′ is a normal monomorphism 
between normal objects. Consequently, the map hom(B, E) → hom(A, E) is a trivial 
fibration of simplicial sets and A → B is an operadic weak equivalence, as was to be 
shown. �

We finish this section with a characterization of the weak equivalences between fibrant 
objects in the operadic model structure:

Proposition 3.8.5. Let X and Y be operadically local objects of fSets. A map f : X −→ Y

is a weak equivalence in the operadic model structure if and only if the following two 
conditions hold:

(i) For every corolla Cn, the map

hom(Cn, X) −→ hom(Cn, Y )

is an equivalence of ∞-categories.
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(ii) The map i∗u∗X −→ i∗u∗Y of underlying ∞-categories is an equivalence.

Remark 3.8.6. The ‘fully faithful’ part of (ii) is already implied by (i), since i∗u∗X =
hom(η, X) and hom(C1, X) = i∗u∗XΔ1 . So we may replace (ii) by the weaker condition 
that the functor

τi∗u∗X −→ τi∗u∗Y

between ordinary small categories is essentially surjective.

Proof of Proposition 3.8.5. For the direct implication, note that the operadic model 
structure being homotopically enriched in particular implies that

hom(A,−) : fSets −→ sSets

is a right Quillen functor for any cofibrant forest set A and therefore preserves weak 
equivalences between fibrants. For the converse, we will first show that

hom(A,X) −→ hom(A, Y )

is a weak equivalence for every normal forest set A. In case A is a tree T , consider the 
diagram

hom(T,X) hom(T, Y )

hom(fSc(T ), X) hom(fSc(T ), Y )

where the vertical maps are trivial fibrations. To prove that the top horizontal map is 
weak equivalence, it suffices to prove that the lower horizontal map is a weak equiv-
alence. Now fSc(T ) is a colimit of a finite diagram whose objects are direct sums of 
corollas and copies of η and whose maps are normal monomorphisms. One deduces 
that this diagram is in fact a homotopy colimit and that similarly the diagram formed 
by applying hom(−, X) to it is a homotopy limit diagram. Therefore, to check that 
hom(fSc(T ), X) −→ hom(fSc(T ), Y ) is a weak equivalence, it suffices to check this as-
sertion with fSc(T ) replaced by the constituent objects of the homotopy colimit diagram 
for fSc(T ). The map is then a weak equivalence by our assumptions (i) (for corollas) 
and (ii) (for η). Note that we are using the fact that X and Y are operadically local to 
reduce from sums of corollas to individual corollas here. Similarly, this also allows us to 
treat the case where A is a forest F rather than just a single tree T . To handle the case 
where A is a general normal object, we proceed by skeletal induction. Indeed, suppose 
we are given a pushout
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∂F A

F B

and assume that the statement is true for ∂F , F and A. Then in the cube

hom(B,E1) hom(B,E2)

hom(F,E1)
∼ hom(F,E2)

hom(A,E1)
∼ hom(A,E2)

hom(∂F,E1)
∼ hom(∂F,E2)

all vertices are ∞-categories and the vertical maps are all fibrations. Therefore the left 
and right squares, which are pullbacks, are in fact also homotopy pullbacks and the map

hom(B,E1) −→ hom(B,E2)

must be an equivalence of ∞-categories as well, which finishes the induction. To deduce 
that X → Y is a weak equivalence, construct a square

X ′ f ′

Y ′

X
f

Y

in which the vertical maps are normalizations. By what we just proved, the map

f ′
∗ : hom(Y ′, X ′) −→ hom(Y ′, Y ′)

is an equivalence of ∞-categories and hence a J-homotopy equivalence. Choose a homo-
topy inverse φ of f ′

∗ and set g′ = φ(idY ′). Then clearly f ′ and g′ are part of a J-homotopy 
equivalence between X ′ and Y ′. In particular f ′, and hence f , is an operadic weak equiv-
alence. �
3.9. The equivalence of forest sets and dendroidal sets

The goal of this section is to prove the following result:
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Theorem 3.9.1. The Quillen pair

u∗ : fSets dSets : u∗

between dendroidal sets and forest sets equipped with the operadic model structure is a 
Quillen equivalence.

Remark 3.9.2. Note that although u∗u∗ is isomorphic to the identity functor, u∗(X) is 
never cofibrant (for non-empty X), since elements of X(T ) restrict along the codiagonal 
T � T −→ T to elements of

u∗X(T ⊕ T ) = dSets(T � T,X)

which are invariant under the twist isomorphism of T⊕T . So we cannot conclude a similar 
identity for the composition (Lu∗)(Ru∗) of derived functors. Similarly, u∗ of a fibrant 
object is rarely fibrant because u! does not send all inner horns to monomorphisms, cf. 
Remark 3.3.4 above. So the calculation of the composition (Ru∗)(Lu∗) is far from that 
of u∗u

∗. For these reasons, we’ll have to prove the theorem above in a rather roundabout 
way, using simplicial presheaves.

Simplicial presheaves on Ω. We recall some results from [12] concerning simplicial 
presheaves on Ω, i.e. dendroidal spaces. The category of dendroidal spaces is of course 
identical to that of simplicial objects in dendroidal sets,

dSetsΔ
op

= Sets(Δ×Ω)op = sSetsΩ
op
,

so we can study its homotopy theory in two ways: one departing from the Reedy model 
structure on dSetsΔ

op
, the other departing from the generalized Reedy model structure 

(cf. [8]) on sSetsΩ
op

. For the first of these, the adjoint functors

dSets
con

dSetsΔ
op

ev0

given by the constant simplicial objects and the evaluation at the object [0] of Δ form a 
Quillen pair. This Quillen pair can easily be turned into a Quillen equivalence by forcing 
the fibrant (i.e. ‘local’) objects in dSetsΔ

op
to be homotopically constant. More precisely, 

we can consider the left Bousfield localization of dSetsΔ
op

whose local objects X have 
the property that the face maps di : Xn −→ Xn−1, which are fibrations for any object 
that is Reedy fibrant, are actually trivial fibrations of dendroidal sets. Equivalently, one 
can force the maps

Xn = Hom(Δn, X) −→ Hom(Λn
k , X)
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to be trivial fibrations of dendroidal sets for 0 ≤ k ≤ n. Thus, the localized model 
structure which makes dSetsΔ

op
equivalent to dSets is completely characterized by 

forcing three classes of normal monomorphisms (i.e. Reedy cofibrations) to be trivial 
cofibrations:

(α) For any tree T , any inner edge e in T and any n ≥ 0,

∂Δn × T ∪ Δn × Λe[T ] −→ Δn × T.

(β) For any tree T and any n ≥ 0,

∂Δn × (J ⊗ T ) ∪ Δn × ({0} ⊗ T ∪ J ⊗ ∂T ) −→ Δn × (J ⊗ T ).

(γ) For any tree T and any 0 ≤ k ≤ n,

Λn
k × T ∪ Δn × ∂T −→ Δn × T.

Indeed, the right lifting property with respect to the first two characterizes being Reedy 
fibrant, while the last one corresponds to being homotopically constant.

Now let us start from the category sSetsΩ
op

of dendroidal spaces. The fibrant objects 
for the (generalized) Reedy structure are now exactly the ones having the right lifting 
property with respect to the class of maps (γ). So if one localizes further, to ask local 
objects to have the right lifting property with respect to (α) and (β), one obtains an 
identical model category. For a Reedy fibrant dendroidal space, the right lifting property 
with respect to (α) means that the fibration of simplicial sets

hom(T,X) −→ hom(Λe[T ], X)

is a trivial fibration. The right lifting property with respect to (β) means that

ev0 : XJ −→ X

is a trivial fibration. The first is a Segal condition, the second is a completeness condition 
similar to the condition for Rezk’s complete Segal spaces. Therefore, the Reedy fibrant 
dendroidal spaces which are local with respect to (α) and (β) are called dendroidal 
complete Segal spaces. In conclusion, we have the following theorem, originally proved 
in [12]:

Theorem 3.9.3. There are Quillen equivalences

dSets
con (

dSetsΔ
op
)

Reedy,conev0

(
sSetsΩ

op
)

Reedy,Segal,complete
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where the middle category is equipped with the Reedy model structure localized for homo-
topically constant objects and the right-hand one is equipped with the generalized Reedy 
model structure localized for dendroidal complete Segal spaces.

Exactly the same pattern of reasoning applies to the category fSets with its operadic 
model structure:

Theorem 3.9.4. There are Quillen equivalences

fSets
con (

fSetsΔ
op
)

Reedy,λev0

(
sSetsΦ

op
)

Reedy,μ

where λ is the localization of the Reedy model structure for homotopically constant objects 
and μ is the corresponding localization of the generalized Reedy model structure.

We will need the explicit descriptions of λ and μ later and these will also constitute 
a proof of the theorem.

Proof. For a Reedy fibrant object X in the middle category, the localization λ forces 
each

Hom(Δn, X) −→ Hom(Λn
k , X)

to be a trivial fibration in fSets. So the fibrant (i.e. local) objects in 
(
fSetsΔ

op)
Reedy,λ

are completely characterized by having the right lifting property with respect to the 
following four classes of cofibrations in 

(
fSetsΔ

op)
Reedy:

(fα) For any tree T , any inner edge e in T and any n ≥ 0,

∂Δn × uT ∪ Δn × Λe[uT ] −→ Δn × uT.

(fβ) For any tree T and any n ≥ 0,

∂Δn × (J ⊗ uT ) ∪ Δn × ({0} ⊗ uT ∪ J ⊗ ∂uT ) −→ Δn × (J ⊗ uT ).

(fβ′) For any n ≥ 0 and any non-empty sequence of trees T1, . . . , Tk,

∂Δn × (uT1 ⊕ · · · ⊕ uTk) ∪ Δn × (uT1 � · · · � uTk) −→ Δn × (uT1 ⊕ · · · ⊕ uTk).

(fγ) For any forest F and any 0 ≤ k ≤ n,

Λn
k × F ∪ Δn × ∂F −→ Δn × F.
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Here the right lifting property with respect to the first three classes expresses Reedy 
fibrancy with respect to the operadic model structure, while the last one relates to being 
homotopically constant. So we let λ be the localization with respect to (fγ). Notice that 
in the presence of (fβ′), it is equivalent to require (fγ) only for trees.

To prove the theorem, we have to describe a set μ which when added to the generating 
family of trivial cofibrations for the generalized Reedy model structure on sSetsΦ

op
yields 

the family given by (fα), (fβ), (fβ′) and (fγ). But notice that (fγ) expresses precisely 
Reedy fibrancy in sSetsΦ

op
, so we let μ be the class of maps given by (fα) (for ‘Segal 

forest spaces’), (fβ) (for ‘complete’ ones) and (fβ′) (for locality with respect to sums). 
This proves the theorem. �

For the proof of Theorem 3.9.1, we will first consider a different but Quillen equiva-
lent model structure on simplicial presheaves, viz. the projective one. For an arbitrary 
small category C, the projective model structure on the category sSetsC

op
of simpli-

cial presheaves is characterized by the fact that a map X −→ Y is a fibration or a weak 
equivalence precisely if it is ‘pointwise’ so, i.e. if X(C) −→ Y (C) is one for every object C
of C (with respect to the Quillen model structure on sSets). Its generating cofibrations 
are of the form

∂Δn × C −→ Δn × C

where C ranges over the objects of C, viewed as representable presheaves.

Lemma 3.9.5.

(i) With respect to the projective model structures, the embedding u : Ω −→ Φ induces
two Quillen pairs:

sSetsΩ
op u!

sSetsΦ
op

u∗

u∗

sSetsΩ
op
.

u∗

(ii) For the left Bousfield localization of sSetsΦ
op

with respect to the maps (fβ′), both 
pairs are Quillen equivalences.

Proof. (i). Since u! preserves representables, it is clear that u∗ preserves fibrations and 
weak equivalences. So u∗ and u! form a Quillen pair. But u∗ sends representables to 
coproducts of representables, hence sends generating cofibrations to cofibrations. Thus 
u∗ is also a left Quillen functor, so u∗ and u∗ form a Quillen pair as well.

(ii). Since u∗ sends direct sums to coproducts, the pair (u∗, u∗) is also a Quillen pair for 
the localized model structure on sSetsΦ

op
, while this is automatic for the pair (u!, u∗). 

So again, u∗ is both a left and a right Quillen functor. Now let X be a fibrant object 
in sSetsΩ

op
(always with respect to the projective model structure in this proof). To 
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calculate (Lu∗)(Ru∗)(X) = (Lu∗)u∗(X), take a cofibrant resolution C −→ u∗(X). Then 
this map is a pointwise weak equivalence and hence so is u∗C −→ u∗u∗(X), which shows 
that the derived counit

(Lu∗)(Ru∗)(X) = u∗(C) ∼
u∗u∗(X) 


X

is a weak equivalence. On the other hand, for a generating cofibrant object Δn × F in 
sSetsΦ

op
, the counit map u!u

∗(Δn × F ) −→ Δn × F is of the form

Δn × (T1 � · · · � Tk) −→ Δn × (T1 ⊕ · · · ⊕ Tk),

hence a weak equivalence for the localized structure. By the usual induction on skele-
tal filtrations, this shows that u!u

∗(X) −→ X is a weak equivalence for any cofibrant 
object X. But then, if X is cofibrant as well as fibrant, we have that

Lu!Ru∗(X) = Lu!Lu∗(X) = u!u
∗(X) −→ X

is a weak equivalence. Thus at the level of homotopy categories, the derived functor of 
u∗ has both a left and a right inverse (up to natural isomorphism), hence must be an 
equivalence of categories. �
Lemma 3.9.6. Let f! : F � E : f∗ be a Quillen pair and let λ be a set of cofibrations 
between cofibrant objects. Write Fλ for the left Bousfield localization forcing the cofi-
brations in λ to become trivial (assuming it exists) and write f!(λ) for the image of λ
under f!.

(i) A fibrant object E in E is local with respect to f!(λ) if and only if f∗(E) is local 
with respect to λ.

(ii) The same functors also define a Quillen pair f! : Fλ � Ef!(λ) : f∗ (assuming the 
localizations exist).

(iii) If the original pair F � E is a Quillen equivalence, then so is the induced pair 
Fλ � Ef!(λ).

Proof. Property (i) is clear from the equivalence Map(f!A, E) � Map(A, f∗E) and (ii) 
is immediate from the universal property of left Bousfield localization. For (iii), let us 
now write f ! : Fλ � Ef!(λ) : f∗ for the induced Quillen pair. Since the cofibrations and 
trivial fibrations haven’t changed and since fibrant objects in Ef!(λ) are a fortiori fibrant 
in E, we find for such a fibrant object X that

(Lf !)(Rf
∗)(X) = (Lf!)(Rf∗)(X) = (Lf!)f∗(X)

which maps to X via a weak equivalence by assumption (even a weak equivalence in F, 
without localizing). This shows that Rf

∗ is fully faithful when considered as a functor 
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HoEf!(λ) −→ HoFλ, so it suffices to prove it is also essentially surjective. Let Y be 
a fibrant and cofibrant object in Fλ. Since f! and f∗ form an equivalence, the map 
Y −→ (Rf∗)(Lf!)(X) is a weak equivalence in F. In other words, if f!(Y ) −→ W is 
a fibrant replacement in E, then Y −→ f∗W is a weak equivalence. But then f∗W is 
local with respect to λ since Y is (because being local is evidently invariant under weak 
equivalence between fibrant objects). Hence W is local with respect to f!λ by part (i), i.e. 
fibrant in Ef!(λ). This proves that Rf

∗ is essentially surjective as a functor on homotopy 
categories. �
Proof of Theorem 3.9.1. Considering the projective as well as the Reedy model structures 
on our presheaf categories, we have a diagram of left Quillen functors

(
sSetsΦ

op
)

proj

u∗ (
sSetsΩ

op
)

proj

(
sSetsΦ

op
)

Reedy

u∗ (
sSetsΩ

op
)

Reedy

where the vertical identity functors are Quillen equivalences. Now consider the localiza-
tions with respect to sums (i.e. (fβ′)) on the left. By Lemmas 3.9.5 and 3.9.6 this turns 
the left and top functors in the diagram into Quillen equivalences. Hence we also obtain 
a left Quillen equivalence

(
sSetsΦ

op
)

Reedy,(fβ′)

u∗ (
sSetsΩ

op
)

Reedy
.

Now observe that u∗ sends the maps in the classes (fα), (fβ) and (fγ) to the similar 
classes (α), (β) and (γ). Lemma 3.9.6(iii) yields an equivalence

(
sSetsΦ

op
)

Reedy,μ

u∗ (
sSetsΩ

op
)

Reedy,u∗μ
.

Now consider the diagram

fSets u∗

con

dSets

(
sSetsΦ

op
)

Reedy,μ

u∗ (
sSetsΩ

op
)

Reedy,u∗μ

in which the vertical functors are left Quillen equivalences by Theorems 3.9.3 and 3.9.4. 
We conclude that the top functor is also a left Quillen equivalence. �
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4. Marked dendroidal and forest sets

Before we can set up a useful functor relating the category POpo of non-unital pre-
operads to the category of open forest sets, we have to introduce markings into our 
categories. We will treat the categories dSets+ and fSets+ of marked dendroidal sets
and marked forest sets respectively, which are defined analogously to the category of 
marked simplicial sets. We will establish (simplicial, combinatorial) model structures on 
these categories and show that they are Quillen equivalent to dSets and fSets (with 
their operadic model structures) respectively. The results of this chapter can be summa-
rized in a commutative square of left Quillen functors, all of which are part of Quillen 
equivalences:

dSets

(−)�

fSetsu∗

(−)�

dSets+ fSets+.
u∗

The introduction of markings somewhat complicates notation. To not clutter things up 
too much, we will in this chapter mostly omit the functors u! and i! from the notation. 
When we write T for a tree, it should be clear from the context whether it is to be 
interpreted as a representable dendroidal set or a representable forest set. We will also 
use the notations C1 and Δ1 interchangeably for the 1-corolla as a representable forest 
set, which would strictly speaking have to be u!C1 and u!i!Δ1, respectively.

4.1. Marked forest sets

For now, we will focus on the category of marked forest sets. In this section we will 
summarize the main definitions and results. Most proofs are deferred to the following 
sections. The corresponding results for marked dendroidal sets are established in com-
pletely analogous fashion; we will briefly summarize what we need in the last section of 
this chapter.

A marked forest set is a pair (X, E) where X is a forest set and E is a subset of its set 
of 1-corollas X(C1) containing all degenerate 1-corollas. A morphism of marked forest 
sets is a map of forest sets sending marked 1-corollas to marked 1-corollas. We denote 
the category of such marked forest sets by fSets+. A marked forest set is open if its 
underlying forest set is open and we denote the full subcategory of open marked forest 
sets by fSets+

o .
There is an obvious forgetful functor a : fSets+ −→ fSets. This functor has a left ad-

joint (−)� and a right adjoint (−)�. These three functors obviously preserve the property 
of being open. For a forest set X, the marked forest set X� is X with only degenerate 
1-corollas marked and X� is X with all its 1-corollas marked. The tensor product on 
fSets can be used to define a tensor product on fSets+ by simply setting
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(X,EX) ⊗ (Y,EY ) := (X ⊗ Y,EX × EY ).

Similarly, we can use this tensor to supply fSets+ with a weak enrichment over the 
category of marked simplicial sets as follows. Define a marked simplicial set Map+(X, Y )
by

Map+(X,Y )n = fSets+((Δn)� ⊗X,Y ),

EMap+(X,Y ) = fSets+((Δ1)� ⊗X,Y ).

Also, define simplicial mapping objects by

Map�(X,Y ) := aMap+(X,Y )

(i.e. forget the markings) and let Map�(X, Y ) be the simplicial subset of Map�(X, Y )
consisting of the simplices all of whose edges are marked in Map+(X, Y ). These mapping 
objects can be characterized by the following natural isomorphisms, for K a simplicial 
set:

sSets(K,Map�(X,Y )) � fSets+(K� ⊗X,Y ),

sSets(K,Map�(X,Y )) � fSets+(K� ⊗X,Y ).

Note that on the right-hand side we interpret K as a forest set via the embedding 
u!i! : sSets −→ fSets. For the second isomorphism we have used the fact that the 
functor (−)� : sSets −→ sSets+ is left adjoint to the functor taking a marked simplicial 
set to the simplicial set consisting of all simplices whose edges are marked.

Let us now introduce the terminology and notation necessary to describe the model 
structure on fSets+ that we need:

Definition 4.1.1. A map f : X −→ Y of marked forest sets is called a normal monomor-
phism if the underlying map a(f) between forest sets is a normal monomorphism. Also, 
a marked forest set X is normal precisely if aX is a normal forest set. A normalization
of a marked forest set X is a map X ′ −→ X from a normal marked forest set X ′ to X, 
having the right lifting property with respect to all normal monomorphisms.

Remark 4.1.2. The class of normal monomorphisms in fSets+ is the smallest saturated 
class containing the following maps:

(i) All boundary inclusions of forests, with minimal markings. In other words, for every 
forest F , the map (∂F )� −→ F �.

(ii) The map (C1)� −→ (C1)�.
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By the small object argument, every map between marked forest sets can be factored 
into a normal mono followed by a map having the right lifting property with respect to 
all normal monos. In particular, every marked forest set admits a normalization.

Definition 4.1.3. If E is an operadically local forest set, then an equivalence in E is a 
1-corolla of E which is an equivalence in the underlying ∞-category i∗u∗E of E. We 
denote by E� the marked forest set obtained from E by marking all 1-corollas which are 
equivalences in E.

The following result should provide intuition for the role the markings play. We will 
prove it in Section 4.3.

Proposition 4.1.4. Let A be a marked forest set and let E be an operadically local forest 
set. Suppose that A is normal. Then Map�(A, E�) is an ∞-category and Map�(A, E�) is 
the largest Kan complex contained in it.

Definition 4.1.5. A map f : X −→ Y between marked forest sets is called a marked 
equivalence if there exists a commutative square

X ′ Y ′

X Y

where the vertical maps are normalizations and X ′ −→ Y ′ induces an equivalence of 
∞-categories

Map�(Y ′, E�) −→ Map�(X ′, E�)

for every operadically local forest set E.

Remark 4.1.6. This definition of marked equivalence is independent of the choice of 
normalizations. More precisely, if X −→ Y is a marked equivalence, then for any com-
mutative square

X ′′ Y ′′

X Y

in which the vertical arrows are normalizations, the induced map

Map�(Y ′′, E�) −→ Map�(X ′′, E�)
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is an equivalence of ∞-categories. The proof of this fact is virtually identical to that of 
Lemma 3.7.11, so we leave it to the reader.

The following theorem is the main result of this chapter. We will prove it in Section 4.4, 
after treating the necessary technical preliminaries in Sections 4.2 and 4.3.

Theorem 4.1.7. There exists a left proper, cofibrantly generated model structure on the 
category fSets+ such that:

(C) The cofibrations are the normal monomorphisms.
(W) The weak equivalences are the marked equivalences.

Furthermore, this model structure enjoys the following properties:

(i) An object is fibrant if and only if it is of the form E�, for an operadically local forest 
set E.

(ii) A map f between fibrant objects is a fibration if and only if it has the right lifting 
property with respect to all marked anodyne morphisms (see Definition 4.3.1).

(iii) With the simplicial structure on fSets+ corresponding to the mapping objects 
Map�(−, −), the model structure is homotopically enriched over simplicial sets with 
the Kan–Quillen model structure.

Corollary 4.1.8. The adjunction

(−)� : fSets fSets+ : a

is a Quillen equivalence, as is its restriction to the corresponding subcategories of open 
objects.

Proof. Clearly (−)� preserves normal monomorphisms. Considering the definitions, we 
see that it suffices to show this functor preserves weak equivalences between cofibrant 
objects in order for it to be left Quillen. So let X −→ Y be a weak equivalence between 
normal forest sets. We have to check that for every operadically local forest set E, the 
map

Map�(Y �, E�) −→ Map�(X�, E�)

is an equivalence of ∞-categories. But note that we can canonically identify this map 
with the map

hom(Y,E) −→ hom(X,E)

which is an equivalence by assumption.
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Now let us show the adjunction is in fact a Quillen equivalence. Suppose we are given 
a map

f : X� −→ Y �

where X is a cofibrant forest set and Y � is a fibrant object of fSets+. We have to show 
that f is a weak equivalence if and only if the adjoint map X −→ a(Y �) = Y is a weak 
equivalence. Again, making the canonical identifications

Map�(X�, E�) � hom(X,E),

Map�(Y �, E�) � hom(Y,E)

it is clear that this is indeed the case. Note that for the second isomorphism we use the 
fact that a map between operadically local objects automatically preserves equivalences. 
This is immediate from the corresponding fact for ∞-categories. �
4.2. Equivalences in ∞-operads

We will need some properties of equivalences in operadically local forest sets which are 
analogues of similar properties of equivalences in ∞-categories established by Joyal (cf. 
Proposition 1.2.4.3 of [28]) and equivalences in dendroidal ∞-operads (cf. Theorems 4.2 
and A.7 of [11]).

Theorem 4.2.1. Suppose E is an operadically local forest set. Also, suppose we have a 
forest F containing a tree T with at least two vertices and having a unary root corolla, 
whose root we denote by r. Then for any lifting problem

Λr[F ] E

F

such that the root corolla corresponding to r maps to an equivalence in E under the 
horizontal map, a lift exists.

Remark 4.2.2. In fact, the statement of the theorem is only interesting if the forest F
consists of only the one tree T . If it has multiple components, then a lift will always exist 
by the fact that E is local with respect to sums. However, the given formulation of the 
theorem will be convenient in the next section.

Remark 4.2.3. We can reformulate the theorem as follows: given an operadically local 
forest set E, the marked forest set E� has the right lifting property with respect to all 
maps of the form
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(Λr[F ],E ∩ Λr[F ]) −→ (F,E)

where F is a forest as described above and E consists of all degenerate 1-corollas of F
together with the root corolla corresponding to r.

For later use and ease of reference, let us make the following definition:

Definition 4.2.4. The class of root anodynes is the smallest saturated class of morphisms 
containing the maps

(Λr[F ],E ∩ Λr[F ]) −→ (F,E)

where F is a forest containing a tree T with a root corolla of valence one, Λr[F ] is the 
horn of F corresponding to that root and E consists of all degenerate 1-corollas of F
together with that root corolla.

Note that, unlike the formulation of Theorem 4.2.1, we are not requiring the tree T
to have at least two vertices, so the class of root anodynes also includes the map

{1} −→ (Δ1)�.

We will also need the following ‘dual’ version of the previous result:

Theorem 4.2.5. Suppose E is an operadically local forest set. Also suppose we have a 
forest F containing a tree T with at least two vertices and having a unary leaf corolla, 
whose leaf we denote by l. Then for any lifting problem

Λl[F ] E

F

such that the leaf corolla corresponding to l maps to an equivalence in E under the 
horizontal map, a lift exists.

Remark 4.2.6. This result admits a similar reformulation, this time in terms of lifting 
properties with respect to leaf anodynes, i.e. compositions of pushouts of maps of the 
form

(Λl[F ],E ∩ Λl[F ]) −→ (F,E)

where F is a forest containing a tree T with a leaf corolla of valence one, Λl[F ] is the 
horn of F corresponding to that leaf and E consists of all degenerate 1-corollas of F
together with that leaf corolla.
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Fortunately, both these theorems can be derived fairly easily from their dendroidal 
counterparts. We will show how to do this for the first one, the second is similar.

Proof of Theorem 4.2.1. We first recall a useful fact from the theory of model categories. 
Suppose we have a model category C, a cofibration between cofibrant objects i : A −→ B, 
a fibrant object X and a lifting problem

A
f

i

X.

B

If there exists a commutative diagram

A
[f ]

[i]

X

B

in the homotopy category hoC of C (i.e. a ‘lift up to homotopy’), then the actual lifting 
problem in C admits a solution. The proof of this fact is straightforward. If needed, it 
can be found in [28] as Proposition A.2.3.1.

We will apply this fact as follows. First, recall that we only have to prove the theorem 
in case F consists of a single tree T ; otherwise a lift automatically exists since E is local 
with respect to sums. Also, we may assume E is cofibrant. Now consider the diagram

Λr[uT ] E
∼ (Ru∗)u∗E.

uT

To solve the lifting problem in the theorem, it suffices (by the fact just mentioned) to 
find a dashed arrow as in this diagram. But this is equivalent to finding a lift in the 
following diagram in dSets:

Λr[T ] (u∗E)f .

T

Here the subscript f indicates a fibrant replacement of u∗E and we have used the fact 
that u∗Λr[uT ] = Λr[T ]. Such a lift exists by Theorem 4.2 of [11]. �
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Before we move on, it is worthwile to record an important property of the root and 
leaf anodynes mentioned above.

Proposition 4.2.7. Given a root anodyne f : X −→ Y between marked forest sets and a 
normal monomorphism g : A −→ B between forest sets, the pushout-product

X ⊗B� ∪ Y ⊗A� −→ Y ⊗B�

is a composition of root anodynes and inner anodynes, provided that either Y or B is 
simplicial or both Y and B are open.

Proposition 4.2.8. Given a leaf anodyne f : X −→ Y between marked forest sets and a 
normal monomorphism g : A −→ B between simplicial sets, the pushout-product

X ⊗B� ∪ Y ⊗A� −→ Y ⊗B�

is a composition of leaf anodynes and inner anodynes.

The proof of the second result is not formally dual to the first in any reasonable 
sense and in fact requires a little more care. Also note the restriction that g is a map of 
simplicial sets rather than forest sets. More general forms are possible, but we will not 
need them here.

Proof of Proposition 4.2.7. By standard arguments, it suffices to prove this in the case 
where f is of the form

(Λr[F ],E ∩ Λr[F ]) −→ (F,E)

as described in Remark 4.2.3 and g is of the form ∂G −→ G for some forest G. Let us 
abbreviate notation by writing

f : Λr[F ]� −→ F �.

In fact, we will now restrict our attention to the case where F (resp. G) consists of a 
single tree S (resp. T ). The general case may be deduced from this one by a method 
completely analogous to the one at the end of the proof of Proposition 3.6.2. Also, let 
us write vr for the root vertex of S.

First we treat the case where S is a simplex, or where both S and T are open. As 
in the proof of Proposition 3.6.2 these may be treated simultaneously. We consider the 
constituent shuffles of the tensor product S� ⊗ T �. We pick the partial ordering on 
those such that the minimal element is obtained by grafting copies of S onto the leaves 
of T :
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T

S S

· · ·

The maximal element in this partial order can be pictured as follows:

S

r
vr

T T

· · ·

Of course, all our shuffles in fact carry markings induced from S� and T �. We will not 
make this explicit in the notation. To begin with our induction, define

A0 := Λr[S]� ⊗ T � ∪ S� ⊗ ∂T �

and notice that the map A0 → S� ⊗T � is a normal monomorphism by Proposition 3.4.1
and our assumptions. Choose a linear ordering on the set of shuffles of S�⊗T � extending 
the partial order described above. Adjoin these shuffles one by one in that order to obtain 
a filtration

A0 ⊆ A1 ⊆ · · · ⊆
⋃
i

Ai = S� ⊗ T �.

Consider one of the inclusions Ai ⊆ Ai+1 in this filtration. We have to distinguish two 
cases:

Case 1. The root vertex of the shuffle R that we are adjoining to Ai is not of the form 
vr ⊗ t, where t is the root colour of T and vr is the root vertex of S. In this case 
we will show that the map Ai ⊆ Ai+1 is inner anodyne.
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Case 2. The root vertex of the shuffle R that we are adjoining to Ai is of the form vr⊗ t. 
In this case we will show that the map Ai ⊆ Ai+1 is root anodyne.

Case 1. (This case bears great similarity to what we did in the proof of Proposition 3.6.2.) 
The shuffle R will have one or several vertices of the form vr ⊗ t, none of which are root 
vertices. We will refer to the outgoing edges r⊗ t of these vertices as special edges. Note 
that all these are inner edges of R, since the vr ⊗ t are not root vertices. Now define a 
further filtration

Ai =: A0
i ⊆ A1

i ⊆ · · · ⊆
⋃
j

Aj
i = Ai+1

by adjoining all prunings of R one by one, in an order that extends the partial order 
of size (i.e. number of vertices of prunings). Consider an inclusion Aj

i ⊆ Aj+1
i given by 

adjoining a pruning P of R. Let ΣP denote the intersection of the set of special edges of 
R with I(P ), the set of inner edges of P . We may assume this intersection is non-empty: 
if it is empty, then P will in fact already be contained in A0. Define

HP := I(P ) − ΣP .

For each subset H ⊆ HP , define the tree P [H] as the tree obtained from P by contracting 
all edges in HP −H. Pick a linear order on the subsets of HP extending the partial order 
of inclusion and adjoin the trees P [H] to Aj

i in this order to obtain a further filtration

Aj
i =: Aj,0

i ⊆ Aj,1
i ⊆ · · · ⊆

⋃
k

Aj,k
i = Aj+1

i .

Finally, consider one of the inclusions Aj,k
i ⊆ Aj,k+1

i in this filtration, given by adjoining 
a tree P [H]. If the map

P [H] −→ S� ⊗ T �

factors through Aj,k
i , then the inclusion under consideration is the identity and there is 

nothing to prove. If it does not, we can say the following:

– Any outer face chopping off a leaf corolla factors through Aj
i by our induction on 

the size of the prunings.
– The outer face chopping off the root of P [H] factors through A0.
– An inner face contracting an edge that is not special (i.e. not contained in ΣP ) factors 

through Aj,k
i by our induction on the size of H.

– An inner face contracting a special edge, or a composition of inner faces contracting 
several special edges, cannot factor through A0. The argument is identical to the 
one given in the proof of Proposition 3.6.2. Furthermore, it cannot factor through 
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an earlier shuffle by the way special edges are defined. Given this, it is clear that it 
also cannot factor through Aj′

i for j′ ≤ j because of the size of the pruning P under 
consideration or through Aj,k′

i for k′ ≤ k by the definition of the P [H′].

We conclude that the map Aj,k
i ⊆ Aj,k+1

i is a pushout of the map

ΛΣP [P [H]]� −→ (P [H])�

which is inner anodyne.
Case 2. The root vertex of the shuffle R is of the form vr ⊗ t and the root corolla is 

marked. Again, define a further filtration

Ai =: A0
i ⊆ A1

i ⊆ · · · ⊆
⋃
j

Aj
i = Ai+1

by adjoining all prunings of R one by one in an order that extends the partial order 
of size of prunings. Consider an inclusion Aj

i ⊆ Aj+1
i given by adjoining a pruning P

of R. This time, we consider subsets H ⊆ I(P ) and corresponding trees P [H] given by 
contracting all edges of P contained in I(P ) − H. Adjoin all the trees P [H] to Aj

i one 
by one in an order extending the partial order of inclusion of subsets to obtain a further 
filtration

Aj
i =: Aj,0

i ⊆ Aj,1
i ⊆ · · · ⊆

⋃
k

Aj,k
i = Aj+1

i .

Now consider one of the inclusions Aj,k
i ⊆ Aj,k+1

i given by adjoining a tree P [H]. If the 
map

P [H] −→ S� ⊗ T �

factors through Aj,k
i there is nothing to prove. Note that this is in particular the case if H

does not contain the incoming edge of the root vertex. Indeed, if this edge is contracted 
the resulting tree will factor through A0 if the vertex above the root vertex is black, or 
through Ai by the Boardman–Vogt relation in case the vertex above the root vertex is 
white. So let us assume P [H] does not factor through Aj,k

i and therefore in particular 
that the root vertex of P [H] is of the form vr ⊗ t. We observe:

– Any outer face chopping off a leaf corolla of P [H] factors through Aj
i by induction 

on the size of the prunings.
– Any inner face factors through Aj,k

i by our induction on the size of H.
– The outer face chopping off the unary root corolla of P [H] cannot factor through any 

earlier stage of the filtration. Indeed, it cannot factor through Λr[S] ⊗ T or S ⊗ ∂T

or through an earlier shuffle. Also, it cannot factor through Aj′

i for j′ ≤ j because of 
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the size of the pruning P under consideration and it cannot factor through Aj,k′

i for 
k′ ≤ k by the definition of the P [H′].

We conclude that the inclusion Aj,k
i ⊆ Aj,k+1

i is a pushout of the map

Λroot[P [H]]� −→ (P [H])�

where the superscript � again indicates that the only non-degenerate marked corolla is 
the root corolla of P [H]. In particular, Ai ⊆ Ai+1 is a composition of pushouts of root 
anodynes and hence root anodyne.

We should still cover the case where T is a simplex and S a general tree (with unary 
root corolla, of course). We claim that the map

Λr[S]� −→ S�

is a retract of the inclusion

(Δ1)� ⊗ Λr[S]� ∪ {1} ⊗ S� −→ (Δ1)� ⊗ S�.

To see this, consider the evident inclusion

i : S� � {0} ⊗ S� −→ (Δ1)� ⊗ S�

and the retraction

r : (Δ1)� ⊗ S� −→ S�

defined by sending an edge of colour i ⊗ s to the edge s, except when i = 1 and s is the 
incoming edge of the root vertex vr, in which case it is sent to r. It is easily verified that 
r is well-defined and indeed gives the desired retraction. It now suffices to show that the 
pushout-product map(

(Δ1)� ⊗ Λr[S]� ∪ {1} ⊗ S�)⊗ T � ∪
(
(Δ1)� ⊗ S�)⊗ ∂T � −→ ((Δ1)� ⊗ S�) ⊗ T �

is a composition of root and inner anodynes. But this map is isomorphic to

(Δ1)� ⊗
(
Λr[S]� ⊗ T � ∪ S� ⊗ ∂T �

)
∪ {1} ⊗ (S� ⊗ T �) −→ (Δ1)� ⊗ (S� ⊗ T �),

which is the pushout-product of {1} → (Δ1)� with a monomorphism of marked forest 
sets. Therefore it is covered by the case of the proposition with S simplicial, which we 
proved above. �
Proof of Proposition 4.2.8. It suffices to prove this in the case where f is of the form
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(Λl[F ],E ∩ Λl[F ]) −→ (F,E)

as described in Remark 4.2.6 and g is a boundary inclusion ∂Δn −→ Δn, for some 
forest G. Again, for the duration of this proof we abbreviate notation by writing

f : Λl[F ]� −→ F �.

Also, the map of the proposition is a normal monomorphism. To avoid excessive book-
keeping, we again focus on the case where F is just a single tree S (and we will write T
for Δn, to keep our notation consistent with earlier proofs). As before, one may use the 
method of the last part of the proof of Proposition 3.6.2 to deduce the general case from 
this one. Let us write vl for the vertex of the leaf corolla of S under consideration. The 
leaf or incoming edge of this corolla is l and we denote its outgoing edge by m.

Consider the shuffles of the tensor product S�⊗T � and put the partial order on these 
in which the minimal element is given by grafting copies of T onto the leaves of S. This 
partial order is the opposite of the one considered in the previous proof, but coincides 
with the first one used in the proof of Proposition 3.6.2. The ideas we are going to employ 
are similar to what was done before, but for this proof we have to modify our definition 
of prunings slightly. Given a shuffle R, let us define an l-pruning of R to be a pruning 
P of R, i.e. a subtree obtained by iteratively chopping off leaf corollas, satisfying the 
following extra property:

– If there is a vertex vl ⊗ t of R whose outgoing edge m ⊗ t is contained in P , then 
vl ⊗ t is itself contained in P .

Let us start our induction. Define

A0 := Λl[S]� ⊗ T � ∪ S� ⊗ ∂T �.

Choose a linear ordering on the shuffles of S� ⊗ T � that extends the partial order we 
fixed before. Adjoin these shuffles one by one in this order to obtain a filtration

A0 ⊆ A1 ⊆ · · · ⊆
⋃
i

Ai = S� ⊗ T �.

Consider an inclusion Ai ⊆ Ai+1 in this filtration given by adjoining a shuffle R. Define 
a further filtration

Ai =: A0
i ⊆ A1

i ⊆ · · · ⊆
⋃
j

Aj
i = Ai+1

by adjoining the l-prunings of R one by one, in an order extending the partial order of 
size. Now consider an inclusion Aj

i ⊆ Aj+1
i given by adjoining an l-pruning P of R. We 

have to distinguish two cases:
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Case 1. The pruning P does not have any leaf vertices of the form vl ⊗ t, for t a colour 
of T . In this case we will show that the map Aj

i ⊆ Aj+1
i is inner anodyne.

Case 2. The pruning P does have at least one leaf vertex of the form vl ⊗ t (which is 
then necessarily marked). In this case we will show that the map Aj

i ⊆ Aj+1
i is 

leaf anodyne.

Case 1. We may assume the tree P has one or several vertices of the form vl ⊗ t, none 
of which are leaf vertices since we are in Case 1. (Indeed, if P does not contain any such 
vertices then it is easily verified that P is already contained in A0: by the definition of 
l-pruning, P cannot contain any edges of the form m ⊗t and must therefore be contained 
in ∂mS� ⊗ T �, which is itself contained in Λl[S]� ⊗ T �.) We will refer to the incoming 
edges l⊗ t of the vertices vl ⊗ t as special edges. All of these are inner edges of P and we 
denote the collection of these special edges by ΣP . Define

HP := I(P ) − ΣP .

As usual, we consider trees P [H] obtained from P by contracting the inner edges in 
HP − H, where H ranges over the subsets of HP . These subsets are partially ordered 
by inclusion and we adjoin the trees P [H] one by one in an order extending this partial 
order to obtain a further filtration

Aj
i =: Aj,0

i ⊆ Aj,1
i ⊆ · · · ⊆

⋃
k

Aj,k
i = Aj,k+1

i .

Consider one of the inclusions Aj,k
i ⊆ Aj,k+1

i in this filtration, given by adjoining a tree 
P [H]. If P [H] is already contained in Aj,k

i , there is nothing to prove. If it does not, we 
can say the following:

– Any leaf face of P [H] will factor through Aj
i by our induction on the size of l-prunings. 

Indeed, the leaf vertices of P are assumed not to be of the form vl ⊗ t, so chopping 
a leaf vertex off of P yields another l-pruning.

– The root face of P [H] will factor through A0.
– An inner face contracting an edge that is not in ΣP factors through Aj,k

i by our 
induction on H.

– An inner face contracting a special edge or a composition of inner faces contracting 
several special edges cannot factor through any earlier stage of the filtration (as in 
the proof of Proposition 3.6.2).

We conclude that Aj,k
i ⊆ Aj,k+1

i is a pushout of

ΛΣP [P [H]]� −→ (P [H])�

and hence inner anodyne.
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Case 2. The pruning P has at least one (unary) leaf vertex of the form vl ⊗ t and the 
corolla with this vertex is marked. Consider subsets H ⊆ I(P ) and corresponding trees 
P [H] given by contracting the edges in I(P ) −H. Adjoin these trees to Aj

i in an order 
compatible with the natural partial order on the subsets of I(P ) to obtain a filtration

Aj
i =: Aj,0

i ⊆ Aj,1
i ⊆ · · · ⊆

⋃
k

Aj,k
i = Aj+1

i .

Now consider an inclusion Aj,k
i ⊆ Aj,k+1

i given by adjoining a tree P [H]. If P [H] is 
contained in Aj,k

i there is nothing to prove. Note that this is in particular the case if 
H does not contain any edges of the form m ⊗ t corresponding to a leaf corolla vl ⊗ t: 
if all such edges are contracted, the resulting tree factors either through ∂mS� ⊗ T � (if 
they connect two black vertices), or through a previous shuffle, and hence through Ai, by 
the Boardman–Vogt relation (if they connect the black vertices vl ⊗ t to white vertices). 
Hence, we may assume P [H] has at least one marked unary leaf corolla of the form vl⊗ t. 
Let us denote the collection of such corollas by L. We find the following:

– Any leaf face not chopping off a vertex of the form vl ⊗ t factors through Aj
i , by the 

induction on l-prunings.
– The root face of P [H] factors through A0.
– Any inner face factors through Aj,k

i by the induction on H.
– Any face chopping off a (marked) leaf corolla of the form vl⊗t cannot factor through 

an earlier stage of the filtration. Indeed, it cannot be contained in Λl[S] ⊗T or S⊗∂T . 
Also, such a face cannot factor through an earlier shuffle and chopping off such a 
corolla would not yield an l-pruning.

We conclude that the map Aj,k
i ⊂ Aj,k+1

i is a pushout of the map

ΛL[P [H]]� −→ (P [H])�

where the superscript � indicates that the leaf corollas in L are marked. It is easily verified 
that this is a composition of pushouts of leaf anodynes (analogous to Lemma 3.6.7(b)) 
and hence is itself leaf anodyne. �
4.3. Marked anodyne morphisms

The main technical device in proving Theorem 4.1.7 is a good supply of ‘anodynes’:

Definition 4.3.1. The class of strong marked anodyne morphisms is the smallest saturated 
class of maps in fSets+ containing the following:

(M1) For any forest F and any inner edge e in F , the inner horn inclusion
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Λe[F ]� −→ F �.

(M2) The root anodynes, i.e. the inclusions

(Λr[F ],E ∩ Λr[F ]) −→ (F,E)

where F is a forest containing a tree T with a root corolla of valence one, Λr[F ]
is the horn of F corresponding to that root and E consists of all the degenerate 
1-corollas of F together with that root corolla.

(M3) The map

(Λ2
1)� ∪(Λ2

1)� (Δ2)� −→ (Δ2)�.

(M4) The inclusion J� ⊆ J�.

Also, the class of marked anodyne morphisms is the smallest saturated class containing 
the strong marked anodynes and the following maps:

(M5) For any n ≥ 0 and any non-empty sequence T1, . . . , Tk of trees, the map

(∂Δn)� ⊗ (T1 ⊕ · · · ⊕ Tk)� ∪ (Δn)� ⊗ (T1 � · · · � Tk)� −→ (Δn)� ⊗ (T1 ⊕ · · · ⊕ Tk)�,

which is a normal monomorphism by Proposition 3.4.1.

Remark 4.3.2. It is useful to note that for any marked anodyne morphism f of marked 
simplicial sets, as defined in [28], the morphism u!i!f is a strong marked anodyne mor-
phism of marked forest sets.

The following fact is immediate from Corollary 3.1.1.7 of [28] and the previous remark:

Lemma 4.3.3. The map

(Λ2
2)� ∪(Λ2

2)� (Δ2)� −→ (Δ2)�

is strong marked anodyne.

For ease of reference, we record the following crucial property of strong marked ano-
dynes:

Lemma 4.3.4. Let f : X −→ Y be a strong marked anodyne and g : A −→ B a normal 
mono. If Y or B is simplicial or both Y and B are open, then the pushout-product

X ⊗B ∪ Y ⊗A −→ Y ⊗B

is also strong marked anodyne.
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Proof. By standard arguments, we may restrict our attention to the case where f is one 
of the generators listed in the previous definition and g is of the form (i) (i.e. ∂G� ⊆ G�) 
or (ii) (i.e. C�

1 ⊆ C�
1) as described in Remark 4.1.2. This gives us eight cases to check.

(M1)(i) In this case the pushout-product is again inner anodyne by Proposition 3.6.2.
(M1)(ii) The pushout-product is an isomorphism.
(M2)(i) The pushout-product is a composition of marked anodynes of types (M1) and 

(M2) by Proposition 4.2.7.
(M2)(ii) If F is just a 1-corolla, then the pushout-product is a composition of a pushout 

of a strong marked anodyne of type (M3) followed by a strong marked anodyne 
of the kind described in Lemma 4.3.3. If F is bigger than that, the pushout-
product is an isomorphism.

(M3)(i) If G = η, the pushout-product is isomorphic to the marked anodyne of type 
(M3). If G is bigger than that, the pushout-product is an isomorphism.

(M3)(ii) The pushout-product is a pushout of a marked anodyne of type (M3).
(M4)(i) If G = η, the pushout-product is isomorphic to the marked anodyne of type 

(M4). If G is bigger than that, the pushout-product is an isomorphism.
(M4)(ii) The pushout-product is a (possibly transfinite) composition of pushouts of 

marked anodynes of type (M3). �
Of course, we also have the following:

Lemma 4.3.5. Let f : A −→ B be a monomorphism of simplicial sets. Then the normal 
monomorphism obtained as the pushout-product of a marked anodyne of type (M5) with 
the map f � is a marked equivalence.

Proof. We have to show that for any operadically local E, the marked forest set E� has 
the right lifting property with respect to such a pushout-product. But this follows directly 
from the fact that the operadic model structure is homotopically enriched over the Joyal 
model structure and the observation that the underlying map of forest sets associated 
to a map of type (M5) is a trivial cofibration in the operadic model structure. �
Lemma 4.3.6. Suppose A −→ B is a cofibration between marked forest sets and E has 
the right lifting property with respect to all strong marked anodynes. Then the map

Map�(B,E) −→ Map�(A,E)

is an inner fibration and

Map�(B,E) −→ Map�(A,E)

is a right fibration.
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Proof. Consider a lifting problem

Λn
i Map�(B,E)

Δn Map�(A,E)

where 0 < i < n. This is equivalent to the lifting problem

(Δn)� ⊗A ∪ (Λn
i )� ⊗B E.

(Δn)� ⊗B

By Lemma 4.3.4 the left-hand map is a strong marked anodyne, so by our assumption 
on E there exists a lift. To prove the second statement, we have to solve lifting problems 
of the form

Λn
i Map�(B,E)

Δn Map�(A,E)

where 0 < i ≤ n. Note that (Λn
i )� −→ (Δn)� is strong marked anodyne (it is a pushout of 

a strong marked anodyne of type (M1), respectively (M2), for i < n, respectively i = n), 
so again by Lemma 4.3.4 we can find a lift in

(Δn)� ⊗A ∪ (Λn
i )� ⊗B E.

(Δn)� ⊗B

This completes the proof. �
Corollary 4.3.7. Let A be a normal marked forest set and let E be a marked forest 
set having the right lifting property with respect to all strong marked anodynes. Then 
Map�(A, E) is an ∞-category and Map�(A, E) is the largest Kan complex contained in 
it.

Proof. For any normal marked forest set A, we can apply the previous lemma to the 
inclusion ∅ −→ A to conclude that Map�(A, E) is an ∞-category and Map�(A, E) is a 
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Kan complex. Indeed, a right fibration over a point (or in fact over any Kan complex) 
is a Kan fibration. Also, applying Lemma 4.3.4 above, we see that Map+(A, E) has the 
right lifting property with respect to J� ⊆ J�, so that every equivalence in Map+(A, E) is 
marked. This shows the maximal Kan complex in Map�(A, E) is contained in Map�(A, E)
and the result follows. �

From the previous lemma we can in fact prove the following stronger statement.

Proposition 4.3.8. Suppose E has the right lifting property with respect to all strong 
marked anodynes. For a cofibration A −→ B, the map of simplicial sets

Map�(B,E) −→ Map�(A,E)

is a categorical fibration (i.e. a fibration in the Joyal model structure) and

Map�(B,E) −→ Map�(A,E)

is a Kan fibration.

Proof. We know that Map�(A, E) is a Kan complex and that Map�(B, E) −→
Map�(A, E) is a right fibration, so it is in fact a Kan fibration. To prove that 
Map�(B, E) −→ Map�(A, E) is a categorical fibration, it only remains to show it has the 
right lifting property with respect to the map {1} −→ J . By Corollary 4.3.7 any map 
J −→ Map�(A, E) factors through Map�(A, E), so it suffices to solve the lifting problem

{1} Map�(B,E)

J Map�(A,E).

The map on the right is a Kan fibration and the map on the left is a trivial cofibration 
in the Quillen model structure on simplicial sets, so a lift exists. �
Proposition 4.3.9. A marked forest set E has the right lifting property with respect to all 
marked anodynes if and only if aE is an operadically local forest set and E = (aE)�, i.e. 
precisely the equivalences in E are marked.

Proof. Suppose E is a marked forest set having the right lifting property with respect 
to marked anodynes. By Proposition 4.3.8 above, aE is an operadically local object. 
Since it has the right lifting property with respect to marked anodynes of type (M5) it is 
also local with respect to sums. Then the fact that it has the right lifting property with 
respect to marked anodynes of type (M1) implies it is operadically local. The right lifting 
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property with respect to marked anodynes of type (M4) implies that all equivalences in 
E are marked. Also, given a marked 1-corolla of E, the existence of lifts against marked 
anodynes of type (M2) implies it is an equivalence. (In fact, an easy exercise shows one 
only needs root horns of 2- and 3-simplices for this.)

Now suppose E is of the form (aE)� and we wish to show it has the right lifting 
property with respect to marked anodynes. Lifts against anodynes of types (M1), (M4) 
and (M5) exist by assumption. Lifts with respect to (M2) exist by Theorem 4.2.1 of the 
previous section. Lifts with respect to (M3) exist because equivalences are closed under 
composition. �
Proof of Proposition 4.1.4. Combine Corollary 4.3.7 with Proposition 4.3.9. �
Lemma 4.3.10. Let E be an operadically local forest set and let M be a simplicial set. Then 
the cotensor (E�)M� has the right lifting property with respect to all marked anodynes. 
In particular, EM is operadically local and we have

(E�)M
�

= (EM )�.

This statement can be rephrased by saying that the equivalences in EM are the ‘pointwise’ 
equivalences.

Proof. Using Proposition 4.3.9, note that it suffices to prove that for any marked anodyne 
map X −→ Y the map M �⊗X −→ M �⊗Y is again marked anodyne. For strong marked 
anodynes, this follows directly from Lemma 4.3.4. For marked anodynes of type (M5), 
this is clear by inspection. �
4.4. A model structure on fSets+

Before establishing our model structure on the category of marked forest sets, we still 
need a few observations concerning the marked equivalences and the trivial cofibrations.

Lemma 4.4.1. The class of marked trivial cofibrations (i.e. cofibrations that are also 
marked equivalences) is generated by the marked trivial cofibrations between countable 
and normal objects.

Proof. This is the direct analogue of Lemma 3.7.18. One can check that the proofs of that 
lemma and of its preliminaries can be applied to the present setting. The only necessary 
modification is to replace ‘operadic anodyne’ by ‘marked anodyne’ throughout. �
Lemma 4.4.2. Marked anodyne morphisms are marked trivial cofibrations.

Proof. Since compositions and retracts of marked trivial cofibrations are clearly marked 
trivial cofibrations again and the same is true for pushouts by the obvious analogue of 
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Lemma 3.7.13, it suffices to prove that the generating marked anodynes of Definition 4.3.1
are marked trivial cofibrations. Let f : X −→ Y be such a generating marked anodyne. 
We wish to show that for any operadically local forest set E, the map

Map�(Y,E�) −→ Map�(X,E�)

is a trivial fibration of simplicial sets. This is equivalent to E having the right lifting 
property with respect to maps of the form

N � ⊗X ∪M � ⊗ Y −→ N � ⊗ Y

where M −→ N is a monomorphism of simplicial sets. But this lifting property follows 
from Lemmas 4.3.4 and 4.3.5. �
Lemma 4.4.3. Any map of marked forest sets having the right lifting property with respect 
to all cofibrations is a marked equivalence.

Proof. The proof is a straightforward adaptation of the proof of Lemma 3.7.12. �
Proof of Theorem 4.1.7. First we establish a cofibrantly generated model structure as 
described in the statement of the Theorem. We check Quillen’s axioms CM1–5. As 
usual, the axioms (CM1) for existence of limits and colimits, (CM2) for two-out-of-
three for weak equivalences and (CM3) for retracts are obvious. For the factorization 
axiom (CM5), Remark 4.1.2 guarantees that every map can be factored as a nor-
mal monomorphism followed by a map having the right lifting property with respect 
to all normal monos and the latter is a trivial fibration by Lemma 4.4.3. Also, any 
map X −→ Y can be factored as X � Z → Y where X � Z lies in the satura-
tion of the class of trivial cofibrations between countable normal objects and Z → Y

has the right lifting property with respect to this class. By Lemma 4.4.1, this map 
is a fibration. It remains to verify the lifting axiom (CM4). Consider a commutative 
square

A

i

X

p

B Y

where i is a cofibration and p is a fibration. If i is a marked equivalence, then a lift 
exists by definition of the fibrations. If p is a weak equivalence, then one applies the 
same standard retract argument as in the proof of Theorem 3.7.9. We defer the proof 
of left properness to Lemma 4.4.5. Let us now establish claims (i) and (ii). We prove 
(iii) further on in this section, in Lemma 4.4.7, after having established a convenient 
characterization of the marked trivial cofibrations.
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(i). A fibrant object X has the right lifting property with respect to all marked ano-
dynes, by Lemma 4.4.2, and must therefore be of the form E� for some operadically local 
forest set E by Proposition 4.3.9. Conversely, assume we have a marked forest set which 
has the right lifting property with respect to all marked anodynes, i.e. something of the 
form E�. By Lemma 4.4.1, we only have to show that E� has the right lifting property 
with respect to trivial cofibrations between (countable) normal objects. So let A −→ B

be such a cofibration. The map

Map�(B,E�) −→ Map�(A,E�)

is a trivial fibration of simplicial sets. Indeed, it is a homotopy equivalence by assumption 
and a fibration by Proposition 4.3.8. But a trivial fibration is surjective on vertices, so 
any lifting problem of the form

A E�

B

admits a solution.
(ii). Let f : X −→ Y be a map between fibrant objects. If it is a fibration, then it has 

the right lifting property with respect to marked anodynes. Conversely, suppose it has 
this right lifting property. Choose a factorization

X
i

Z
p

Y

where i is a trivial cofibration and p is a fibration. Since X is fibrant, the map i has a 
retract r : Z −→ X. Next, note that the map

(Δ1)� ⊗X ∪ (∂Δ1)� ⊗ Z −→ (Δ1)� ⊗ Z

is a trivial cofibration, by the analogue of Lemma 3.8.2. Therefore we can find a lift h
in

(Δ1)� ⊗X ∪ (∂Δ1)� ⊗ Z
fs0∪(p,fr)

Y

(Δ1)� ⊗ Z

h

because Y is fibrant as well. (Note that this gives a ‘homotopy over (Δ1)�’ from p to fr
relative to X.) Finally, lift in
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(Δ1)� ⊗X ∪{1}⊗X {1} ⊗ Z
s0∪r

X

f

(Δ1)� ⊗ Z

k

h
Y.

This is possible because the map on the left is (strong) marked anodyne by Lemma 4.3.4. 
Then r′ = k0 has the property that fr′ = h0 = p and r′i = idX , so that the diagram

X
i

f

Z
r′

p

X

f

Y Y Y

exhibits f as a retract of p. In particular, f is a fibration. �
To establish left properness we need the following:

Proposition 4.4.4. Let f : X −→ Y be a map in fSets+ and let

X ′ f ′

Y ′

X
f

Y

be a commutative square in which the vertical arrows are normalizations. Then the fol-
lowing are equivalent:

(i) The map f is a marked equivalence.
(ii) For every operadically local forest set E, the map f ′ induces a homotopy equivalence 

of Kan complexes

Map�(Y ′, E�) −→ Map�(X ′, E�).

Proof. Assume (i). Then the map

Map�(Y ′, E�) −→ Map�(X ′, E�)

is an equivalence of ∞-categories and the map stated in (ii) is the induced map on 
maximal Kan complexes, so it is clear that (i) implies (ii).

Conversely, let us assume (ii). First, recall that a map C −→ D of ∞-categories is a 
categorical equivalence if and only if, for every simplicial set M , the map CM −→ DM

induces a homotopy equivalence between the maximal Kan complexes contained in the 
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∞-categories CM and DM (see for example Lemma 3.1.3.2 of [28]). We wish to show 
that

Map�(Y ′, E�) −→ Map�(X ′, E�)

is an equivalence of ∞-categories. To this end, we will prove that for an arbitrary sim-
plicial set M , the map

Map�(Y ′, E�)M −→ Map�(X ′, E�)M

induces a homotopy equivalence on the maximal Kan complexes contained in these 
∞-categories. Notice that this map fits into a square

Map�(Y ′, (E�)M�) Map�(X ′, (E�)M�)

Map�(Y ′, E�)M Map�(X ′, E�)M .

The vertical maps are trivial fibrations; indeed, this follows from the marked analogue of 
Proposition 3.6.9 (which has the same proof) and Lemma 3.5.5. Also, the top map induces 
an equivalence on maximal Kan complexes by our assumption and the isomorphism

(E�)M
� � (EM )�

following from Lemma 4.3.10. Therefore, the bottom map induces an equivalence on 
maximal Kan complexes as well. �
Lemma 4.4.5. The model structure of Theorem 4.1.7 is left proper.

Proof. Consider a pushout square

A
∼

B

C D

in which the top map is a marked equivalence and the left map is a cofibration. Choose 
a normalization D′ −→ D and pull the square back along this map to obtain another 
square

A′ ∼
B′

C ′ D′.
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This square is still a pushout and all the objects in it are normal. Now let E be an 
operadically local forest set and consider the pullback square

Map�(A′, E�) Map�(B′, E�)∼

Map�(C ′, E�) Map�(D′, E�).

By assumption, the top map is a homotopy equivalence of simplicial sets. By Proposi-
tion 4.3.8, the left map is a Kan fibration. Since the Quillen model structure on simplicial 
sets is right proper, the bottom map must then also be a homotopy equivalence. We now 
apply Proposition 4.4.4 to conclude that C −→ D is a marked equivalence. �

The following analogue of Proposition 3.8.4 will be convenient when establishing 
Quillen adjunctions:

Lemma 4.4.6. The class of marked trivial cofibrations is the smallest saturated class which 
is closed under two-out-of-three among cofibrations and contains the marked anodynes. 
In fact, it is enough to demand it contains the following morphisms:

(a) For any tree T , the Segal core inclusion

fSc(T )� −→ T �.

(b) The inclusions

(Λr[T ],E ∩ Λr[T ]) −→ (T,E)

where T is a tree with a root corolla of valence one, Λr[T ] is the horn of T corre-
sponding to that root and E consists of all degenerate 1-corollas of T together with 
that root corolla.

(c) The map

(Λ2
1)� ∪(Λ2

1)� (Δ2)� −→ (Δ2)�.

(d) For any Kan complex K, the inclusion K� ⊆ K�.
(e) For any non-empty sequence T1, . . . , Tk of trees, the map

(T1 � · · · � Tk)� −→ (T1 ⊕ · · · ⊕ Tk)�.

Proof. The statement of the first sentence is proved in the same way as Lemma 3.8.3, 
using the fact that fibrations between fibrant objects are ‘detected’ by the marked ano-
dynes. Next, reducing the inner anodynes to Segal core inclusions for (a) and reducing 
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from marked anodynes of type (M5) to the maps listed under (e) in the proposition was 
done in the previous chapter, cf. Proposition 3.8.4. Then for marked anodynes of the 
type

(Λr[F ],E ∩ Λr[F ]) −→ (F,E)

we can restrict to the case where the forest F consists of just one tree by what we 
already know about sums. The maps of types (c) and (d) simply correspond to the 
marked anodynes of types (M3) and (M4). �
Lemma 4.4.7. With the weak simplicial enrichment on fSets+ corresponding to the map-
ping objects Map�(−, −), the model structure of Theorem 4.1.7 is homotopically enriched 
over the Kan–Quillen model structure on simplicial sets.

Proof. Let i : A −→ B be a cofibration of marked forest sets and let j : M −→ N be a 
monomorphism of simplicial sets. We have to show that the pushout-product

N � ⊗A ∪M � ⊗B −→ N � ⊗B

is a cofibration, which is trivial if either i or j is a weak equivalence. The fact that it is a 
cofibration follows from the corresponding fact for fSets, since cofibrations are defined 
on the level of underlying forest sets. To prove the second part, first consider the case 
where i is trivial. By Lemma 4.4.6 it suffices to treat the case where i is marked anodyne. 
In this case the pushout-product is a trivial cofibration by Lemmas 4.3.4, 4.3.5 and 4.4.2. 
In case j is assumed to be a trivial cofibration of simplicial sets, we argue as follows. We 
will show that

Map�(N � ⊗B,E�) −→ Map�(N � ⊗A ∪M � ⊗B,E�)

is a trivial fibration of simplicial sets, for any operadically local E. Consider a lifting 
problem

∂Δn Map�(N � ⊗B,E�)

Δn Map�(N � ⊗A ∪M � ⊗B,E�).

By symmetry of the enrichment, this is equivalent to the lifting problem

M Map�((Δn)� ⊗B,E�)

N Map�((Δn)� ⊗A ∪ (∂Δn)� ⊗B,E�).
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The right vertical map is a Kan fibration by Proposition 4.3.8, so a lift exists. �
Finally, let us also note the following, which we will need in the next chapter.

Lemma 4.4.8. Leaf anodyne maps (see Remark 4.2.6) are marked equivalences.

Proof. Just as in the proof of Lemma 4.4.2 it suffices to check this for generating leaf 
anodynes. First, note that by Theorem 4.2.5 every fibrant object E� of fSets+ has the 
right lifting property with respect to leaf anodynes. Now, let X −→ Y be a generating 
leaf anodyne map and let E be an operadically local forest set. We have to show that 
the map

Map�(Y,E�) −→ Map�(X,E�)

is a categorical equivalence. It is in fact a trivial fibration; indeed, this now follows from 
the fact that for any monomorphism A −→ B of simplicial sets, the pushout-product

X ⊗B� ∪ Y ⊗A� −→ Y ⊗B�

is a composition of leaf anodynes and marked anodynes (which follows from Propo-
sition 4.2.8) and the fact that E� has the right lifting property with respect to such 
maps. �
4.5. Marked dendroidal sets

In much the same way as we did for forest sets, one can establish a category of marked 
dendroidal sets with a corresponding model structure. All proofs can be given in analogy 
with what was done for forest sets, or the relevant results can be derived from those 
for forest sets by applying u∗ and using that it preserves tensor products. We briefly 
summarize what we need.

A marked dendroidal set is a pair (X, E) where X is a dendroidal set and E is a subset 
of the set of 1-corollas of X containing all degenerate 1-corollas. Together with the maps 
preserving marked 1-corollas, marked dendroidal sets form a category dSets+. There is 
a forgetful functor

a : dSets+ −→ dSets

which has left and right adjoints (−)� and (−)� respectively. Using the tensor product 
on the category of dendroidal sets, we obtain a tensor product for marked dendroidal 
sets by defining

(X,EX) ⊗ (Y,EY ) := (X ⊗ Y,EX × EY ).



988 G. Heuts et al. / Advances in Mathematics 302 (2016) 869–1043
This tensor product can be used to construct simplicial mapping objects Map+(−, −), 
Map�(−, −) and Map�(−, −) as before. We define cofibrations, normalizations and 
marked equivalences of marked dendroidal sets by obvious analogy with the correspond-
ing definitions for marked forest sets. We can also define the marked anodyne maps of 
marked dendroidal sets to simply be the image under u∗ of the marked anodyne maps 
of forest sets. Of course, we do not have to worry about marked anodynes of type (M5), 
since these are all sent to isomorphisms by u∗. For the same reason, we only have to 
consider the tree versions of (M1) and (M2).

Theorem 4.5.1. There exists a left proper, cofibrantly generated model structure on the 
category dSets+ such that:

(C) The cofibrations are the normal monomorphisms.
(W) The weak equivalences are the marked equivalences.

Furthermore, this model structure enjoys the following properties:

(i) An object is fibrant if and only if it is of the form E�, for a dendroidal ∞-operad E.
(ii) A map f between fibrant objects is a fibration if and only if it has the right lifting 

property with respect to all marked anodyne morphisms.
(iii) With the weak simplicial enrichment on dSets+ corresponding to the mapping 

objects Map�(−, −), the model structure is homotopically enriched over the Kan–
Quillen model structure on simplicial sets.

Corollary 4.5.2. In the following commutative square all functors are left Quillen and 
induce Quillen equivalences:

dSets

(−)�

fSetsu∗

(−)�

dSets+ fSets+.
u∗

Proof. As in the proof of Corollary 4.1.8 one shows that the left vertical functor is part 
of a Quillen equivalence. We already know that the top and right functors induce Quillen 
equivalences and hence so does the bottom one. �
5. The dendrification functor

5.1. The functor ω

In this chapter we will finally relate the category of open forest sets to Lurie’s category 
of non-unital ∞-preoperads. We start by defining a functor
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ω : Δ/NFo −→ fSetso

taking simplices in the nerve of Fo to forest sets. We will refer to it as the dendrification 
functor (even though strictly speaking its values only become dendroidal sets after ap-
plying the functor u∗). We gave a heuristic description of this functor in Section 2.5; we 
now define it properly. Let us first describe ω on objects. Suppose we have a simplex

A : Δn −→ NFo.

If this simplex is the constant n-simplex with image 〈0〉, we define

ω(A) := ∅.

Otherwise, ω(A) will be a representable forest set defined as follows:

(i) The set of edges of the forest ω(A) is 
∐n

i=0 A(i).
(ii) For every a ∈ A(i), i > 0, there is a vertex va with output a (i.e. attached to the 

top of the edge a). An edge b ∈ A(i − 1) is an input of va, for a ∈ A(i), if the map 
A(i − 1) −→ A(i) sends b to a. In particular, A(0) is the set of leaves of the forest 
ω(A).

It might help the reader’s intuition to see how this works in a picture; a typical 
example was already drawn in Section 2.5.

Remark 5.1.1. It might seem odd that we do not construct ω in such a way that ω(A)
is always representable. We could add an object O to the category Φ representing the 
empty forest and define ω(〈0〉) = O. However, this causes several problems elsewhere. In 
particular, the functor ω̄∗ we construct later will not be left Quillen.

Let us now define the dendrification functor ω on morphisms in the category Δ/NFo. 
It suffices to do this on faces and degeneracies and check that the simplicial relations 
hold. We start with faces. So assume we have a diagram

Δn−1 ∂i

diA

Δn

A

NFo.

The cases where A or diA is the degenerate simplex at 〈0〉 are uniquely determined by 
the fact that ∅ is the initial object in fSetso, so let us assume that both ω(A) and 
ω(diA) are forests. The map of forests ω(diA) −→ ω(A) is induced by the evident map 
on edges. We can describe it explicitly as follows:
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i = 0: The map is a composition of external faces chopping off all edges in A(0) and all 
the vertices va for a ∈ A(1).

i > 0: The map is a composition of faces contracting all edges e in the domain of defini-
tion of the partial map A(i) −→ A(i +1) (these are all inner edges) and root faces 
chopping off vr and r for all r ∈ A(i) that are not in the domain of definition 
of that partial map (note that these are indeed roots of constituent trees of the 
forest ω(A)).

As an example, we can consider the maps d0A −→ A and d1A −→ A for the simplex 
A we drew in Section 2.5. They can be pictured as follows:

0

1

2

0

2

1

2

∂1 ∂0

Let us now consider a degeneracy map. Suppose we have a diagram

Δn+1
σj

sjA

Δn

A

NFo.

The map σj is the degeneracy identifying j and j + 1. Again, the map ω(sjA) −→ ω(A)
is the evident one on edges. All vertices va for a ∈ sjA(j + 1) are unary and they are 
mapped to ida in ω(A). In particular, the map ω(sjA) −→ ω(A) is a composition of 
degeneracies, one for each a ∈ A(j).

It remains to verify the simplicial relations in order for ω to define a functor. But a 
map of forests is uniquely determined by what it does on edges, so these relations must 
be satisfied, simply because the maps on edges satisfy them.
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5.2. Two Quillen pairs induced by ω

In this section we will discuss how the dendrification functor

ω : Δ/NFo −→ fSetso

induces two adjoint pairs of functors. These pairs are in fact Quillen pairs, but the proofs 
that they are will be postponed until Sections 5.4 and 5.5.

First of all, by left Kan extension, the functor ω induces an adjoint pair of functors

ω! : sSets/NFo fSetso : ω∗

completely determined (up to natural isomorphism) by the requirement that ω! agrees 
with ω on representables A : Δn −→ NFo. The following simple observation, which is 
clear from our definitions, will be of crucial importance later on:

Lemma 5.2.1. For a representable object A : Δn −→ NFo of sSets/NFo, the forest set 
ω!(A) is again representable, except when A is the degenerate simplex at 〈0〉. In that 
case, ω!(〈0〉) = ∅. So for an arbitrary forest set X, the set ω∗(X)(〈0〉) is a one-point 
set.

We now wish to lift this adjoint pair between the categories ‘without markings’ to an 
adjoint pair of functors

ω! : POpo fSets+
o : ω∗

between the categories ‘with markings’. If A : (Δ1)� −→ NF�
o is a marked 1-simplex over 

NFo, then ω!(A) is (the presheaf represented by) the marked forest given by marking 
(the corollas corresponding to) the unary vertices va for each a ∈ A(1). This completely 
determines the functor ω!. In the other direction, for a marked forest set X, the marked 
edges of ω∗(X) are determined by adjunction. Indeed, a 1-simplex in ω∗(X) is a map

(Δ1)� α

A

ω∗(X)

NF�
o

or equivalently, a map α̂ : ω!(A) −→ X. Such a map is marked precisely when A extends 
to a map (Δ1)� −→ NF�

o while α̂a : u!(C1)� −→ X is marked in X (i.e. factors through 
u!(C1)�) for every a ∈ A(1).

Lemma 5.2.2. The functor ω! : POpo −→ fSets+
o preserves cofibrations.



992 G. Heuts et al. / Advances in Mathematics 302 (2016) 869–1043
Proof. The generating cofibrations in POpo are

(Δ1)� α (Δ1)�

A

NF�
o

and

(∂Δn)� α (Δn)�

A

NF�
o.

The functor ω! maps the first one to a direct sum of maps which are either of the form

C�
1 −→ C�

1

(one for each a ∈ A(1)) or of the form

η � η

(one for each a ∈ A(0) at which A(0) −→ A(1) is undefined). As for the second generating 
cofibration: in the definition of ω! we saw that it sends a face inclusion to a composition of 
face maps (and hence a cofibration) in fSets+

o . In fact, a face diA is sent to the inclusion 
of the maximal subforest of ω!(A) not containing the edges corresponding to elements 
of A(i) (this uses that the maps in Fo are surjections, compare Remark 5.2.3). Using 
this observation one verifies that ω! sends an intersection of faces to the intersection of 
the corresponding subobjects of ω!(A), which then implies that it also sends the given 
boundary inclusion to a cofibration. �
Remark 5.2.3. The observation about the effect of ω! on a face inclusion fails when we 
consider an analogous functor ω! defined on all of NF. A minimal counterexample is the 
inclusion d0A → A, for A the unique 1-simplex 〈0〉 → 〈1〉 of NF. As a consequence, the 
obvious extension of ω! to a functor from POp to fSets+ does not preserve cofibrations. 
A counterexample is given by taking A to be the unique 2-simplex

〈1〉 → 〈0〉 → 〈1〉

and considering the inclusion

Λ2
2 Δ2

A

NF.
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Indeed, applying ω! to this diagram yields the map of forest sets

η ⊕ (C0 ∪η C0) −→ η ⊕ C0,

which is not a monomorphism, since it maps two different nullary operations to a single 
one.

In Section 5.4 we will prove the following:

Proposition (See Proposition 5.4.1). The pair

ω! : POpo fSets+
o : ω∗

is a Quillen pair.

Had it been the case that ω : Δ/NFo −→ fSetso mapped into the representable 
forest sets, then ω∗ would have had a further right adjoint. Now this cannot be the case 
because for the empty forest we have

ω∗(∅) = 〈0〉

where 〈0〉 stands for the one-point simplicial set over the vertex 〈0〉 ∈ NFo. Thus, 
ω∗ does not preserve colimits, so cannot have a right adjoint. To repair this, we will 
replace POpo by the slice category 〈0〉/POpo. This is a relatively innocent change 
because of the following easy lemma, the proof of which we leave to the reader.

Lemma 5.2.4.

(i) Let E be a model category. Then any arrow f : A −→ B in E induces a Quillen 
pair

f! : A/E B/E : f∗

for the induced model structures on these slice categories.
(ii) This Quillen pair is a Quillen equivalence if the map f : A −→ B is a trivial 

cofibration.
(iii) A left adjoint functor B/E −→ F into another model category F is left Quillen if 

and only if the composition

A/E −→ B/E −→ F

is so.

Applying this to the special case at hand, we obtain (part of) the following lemma.
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Lemma 5.2.5.

(i) The functors

〈0〉! : POpo 〈0〉/POpo : 〈0〉∗

defined by 〈0〉!(Y ) = 〈0〉 � Y and 〈0〉∗ the forgetful functor, form a Quillen equiva-
lence.

(ii) The left Quillen functor ω! : POpo −→ fSets+
o factors through a left Quillen functor 

ω̄! as in

POpo

〈0〉!

ω! fSets+
o .

〈0〉/POpo

ω̄!

Proof. Part (i) follows by applying Lemma 5.2.4 to the map ∅ −→ 〈0〉 in POpo. For 
part (ii), define

ω̄!(〈0〉 → X) = ω!(X).

Since ω!(〈0〉) = ∅, the diagram commutes. Moreover, ω̄! has a right adjoint because 
for any forest set Y , the object ω∗(Y ) in POpo has a unique map 〈0〉 −→ ω∗(Y ) (cf. 
Lemma 5.2.1). Thus there is a unique functor

ω̄∗ : fSetso −→ 〈0〉/POpo

with the property that 〈0〉∗ω̄∗ = ω∗. It is now trivial to check that ω̄∗ is indeed right 
adjoint to ω̄!. Finally, Lemma 5.2.4 gives that ω̄! is left Quillen since ω! is (cf. Proposi-
tion 5.4.1). �

As suggested already, the main reason for the change from ω∗ : fSets+
o −→ POpo to 

ω̄∗ : fSets+
o −→ 〈0〉/POpo is the following.

Lemma 5.2.6.

(i) The functor ω̄∗ : fSets+
o −→ 〈0〉/POpo has a right adjoint.

(ii) The functor ω̄∗ preserves cofibrations.

Proof. (i). On the underlying categories without markings, we can define a functor

ω̄∗ : 〈0〉/(sSets/NFo) −→ fSetso
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as follows. For an object (X, x0) where X ∈ sSets/NFo and x0 : 〈0〉 → X, and for a 
forest F , set

ω̄∗(X,x0)(F ) = Hom∗(ω̄∗(F ), (X,x0)).

Here Hom∗ denotes the set of pointed maps in sSets/NFo. (Recall that ω∗(F ) has a 
unique map 〈0〉 → ω∗(F ).) In order to prove that ω̄∗ is indeed right adjoint, it suffices to 
prove that ω̄∗ preserves colimits. But this is clear from the way colimits are computed 
in the slice 〈0〉/(sSets/NFo), together with the fact that

ω∗(Y )(A) = Hom(ω!A, Y )

where ω!A is representable unless A = 〈0〉, while ω!〈0〉 = ∅ so that ω∗(Y )(〈0〉) is a 
singleton, as already remarked. Finally, the markings on ω̄∗(X, x0) are determined by 
adjunction: the marked elements in ω̄∗(X, x0)(C1) are the maps ω̄∗(C�

1) −→ (X, x0) in 
〈0〉/POpo.

(ii). Being a right adjoint to the functor ω̄!, the functor ω̄∗ preserves monomorphisms. 
A fortiori, it preserves cofibrations. �

In Section 5.5 below we will in fact prove the following:

Proposition (See Proposition 5.5.11). The adjoint functors

ω̄∗ : fSets+
o 〈0〉/POpo : ω̄∗

form a Quillen pair.

We end this section with a discussion of the functor ω∗. More precisely, we will discuss 
the simplices of the object ω∗(F �), for F a representable forest set. The goal of this 
discussion is twofold. First, it will allow us to fix terminology to be used in Sections 5.3
and 5.5. Second, by giving an explicit description of ω∗(F �) in some particular cases we 
hope to provide the reader with some intuition regarding the behaviour of this functor, 
which should make subsequent sections easier to read.

Notation. For a simplex A : Δn −→ NFo, we will often use the notation

A = 〈a(0)〉 → 〈a(1)〉 → · · · → 〈a(n)〉,

where A(i) = 〈a(i)〉 denotes the object {1, . . . , a(i)} of Fo and the arrows are partial 
maps. An n-simplex of ω∗(F �) over A�, i.e. a diagram
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(Δn)�
ζ

A

ω∗(F �)

NF�
o

is by definition a map ω!(A�) −→ F � and so in particular gives for each i a map

ζ(i) : 〈a(i)〉 −→ edges(F )

whose image is a set of pairwise independent edges of F . The n-simplex ζ is completely 
determined by the sequence of maps ζ(i), although of course not every such sequence 
defines an n-simplex.

Terminology. We consider the following types of maps in Fo:

(type 1) î : 〈n〉 −→ 〈n− 1〉, (forget i)

(type 2) σ : 〈n〉 −→ 〈n〉, (permutation)

(type 3) μk,l : 〈k + l〉 −→ 〈1 + l〉.

The map of type 1 is the unique inert order-preserving partial map 〈n〉 → 〈n − 1〉 whose 
domain of definition is precisely {1, . . . , ̂i, . . . , n}, the hat denoting omission. The map of 
type 2 is an isomorphism of finite sets given by some element σ in the symmetric group 
Σn. The map of type 3 is the active morphism sending {1, . . . , k} to {1} and k+1, . . . , k+l

to 2, . . . , 1 + l respectively. Observe that every arrow in Fo is a composition of a sequence 
of arrows of these three types. Accordingly, any non-degenerate simplex of NFo is a face 
(possibly of high codimension) of a simplex A : Δn −→ NFo whose edges A(i) → A(i +1)
are all of the types just described. We call such a simplex A elementary.

For a forest F , we will now define corresponding notions of elementary 1-simplices of 
ω∗(F �):

Type 1. An independent set of edges e1, . . . , en of F (together with an order on them 
as indicated) determines a non-degenerate marked 1-simplex which we depict as

0

1

· · · · · ·
e1 ei−1 ei ei+1 en

It is a 1-simplex over î : 〈n〉 −→ 〈n − 1〉. The unary vertices in ω!(̂i) are sent to 
identities of the respective edges ej , j �= i. Thus, a 1-simplex of ω∗(F �) of type 1 involves 
no nontrivial vertices of F and only ‘forgets’ a single edge.

Type 2. An independent sequence of edges e1, . . . , en as above and a transposition 
(i, i +1) ∈ Σn determine a non-degenerate marked 1-simplex of ω∗(F �) which we picture 
as
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0

1

· · · · · ·
e1 ei ei+1 en

It is a 1-simplex lying over the transposition (i, i + 1) : 〈n〉 → 〈n〉. Again, vertices of 
ω!
(
(i, i +1)

)
are sent to identities and no non-trivial operations of F are involved. Similar 

1-simplices of course exist for any permutation σ ∈ Σn, which we will not attempt to 
draw.

Type 3. For a vertex v in F with input edges e1, . . . , ek and output edge d, and 
then l further independent edges a1, . . . , al (also independent from e1, . . . , ek), there is a 
1-simplex of ω∗(F �) depicted as

0

1

· · · · · ·
e1 ek

d

a1 al

It is a 1-simplex over μk,l sending the elements of 〈k+ l〉 to e1, . . . , ek, a1, . . . , al (in that 
order) and sending the k-ary vertex of ω!(μk,l) to v, while sending all the other (unary) 
vertices to the identities on a1, . . . , al respectively.

Every non-degenerate simplex of ω∗(F �) is a face of some n-simplex ζ such that each 
edge ζ(Δ{i,i+1}) is of one of the three types described above, where Δ{i,i+1} is the 
1-simplex in Δn with vertices i and i + 1. We will call such a simplex ζ elementary. In 
the special case that all those edges are in fact of type 1, we will say that ζ and every 
face of ζ is an obliviant simplex. Thus, an obliviant 1-simplex of ω∗(F �) is given by an 
independent sequence e1, . . . , en of edges of F and a subset of these which one ‘forgets’. 
A typical picture of such an obliviant 1-simplex looks as follows:

0

1

e1 e2 · · · en

Some examples. Let us consider the values of the functor ω∗ in several simple cases:

– F = η: In this case ω∗(F �) is the marked 1-simplex 〈1〉 −→ 〈0〉 ‘forgetting’ the single 
colour of F .

– F = η ⊕ η: The simplicial set ω∗(F �) has two non-degenerate n-simplices over

〈2〉 τ 〈2〉 τ · · · τ 〈2〉
ρi 〈1〉 〈0〉,
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the n-simplex of NF given by several repetitions of the non-trivial permutation τ
of 〈2〉, one of the two inert maps ρi, i = 1, 2, and the unique inert map 〈1〉 →
〈0〉. These two n-simplices are completely determined by the two possible bijections 
〈2〉 −→ edges(F ). Any other non-degenerate simplex of ω∗(F �) is a face of such a 
simplex. In particular, ω∗(F �) contains the classifying space BΣ2.

– F = C2: Again we have the simplices listed in the previous item (where η ⊕ η

corresponds to the two leaves of the corolla C2), but also simplices lying over

〈2〉 τ 〈2〉 τ · · · τ 〈2〉 〈1〉 〈0〉,

where the map 〈2〉 −→ 〈1〉 is now the unique active such map, which corresponds to 
the vertex of C2.

5.3. Proof of the equivalence

In the previous section we defined two pairs of adjoint functors

〈0〉/POpo

ω̄!

fSets+
o

ω̄∗

ω̄∗

〈0〉/POpo
ω̄∗

and stated, but did not yet prove, that these are Quillen pairs, cf. Propositions 5.4.1
and 5.5.11. These two propositions will be proved in Sections 5.4 and 5.5 respectively. 
Assuming that these pairs are indeed Quillen pairs, the goal of this section is to explain 
how to deduce that they are in fact Quillen equivalences. Once this is done, we will have 
related the model category dSetso of dendroidal sets and the model category POpo

of ∞-preoperads by a sequence of Quillen equivalences, which all fit into the following 
diagram. In this diagram, the arrows denote the left Quillen functors and the number 
next to an arrow indicates the section in which we prove that the functor is a left Quillen 
equivalence.

dSetso

(−)� 4.5

fSetso
u∗

3.9

(−)� 4.1

dSets+
o fSets+

o

u∗

4.5

ω̄∗

5.5

POpo

ω!

5.4

5.2 〈0〉!

〈0〉/POpo.
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The proofs in subsequent parts of this chapter require a detailed understanding of the 
trivial cofibrations in POpo. To state what we need, we recall Definition B.1.1 from [29]. 
Write 2 = Δ0 � Δ0 and 2� for the left cone on 2. Note that 2� � Λ2

0. Denote by Σ the 
collection of maps

p : (Λ2
0)� −→ NF�

o

given by

〈k〉 ←− 〈m〉 −→ 〈l〉

where the two inert morphisms induce a bijection 〈m〉 � 〈k〉 � 〈l〉.

Definition 5.3.1. The class of P-anodyne morphisms is the smallest saturated class of 
maps in POpo containing the following maps:

(A0) The inclusion

(Λ2
1)� ∪(Λ2

1)� (Δ2)� −→ (Δ2)�

for any map (Δ2)� −→ NF�
o.

(A1) The map Q� −→ Q� (for any map Q� −→ NF�
o), where Q = Δ0 �Δ{0,2}

Δ3 �Δ{1,3} Δ0.
(B0) The inclusion {0}� −→ (Δ1)�, for any map (Δ1)� −→ NF�

o.
(B1) Maps of the form 2 −→ (2�)�, for any map p : (2�)� −→ NF�

o contained in Σ.
(C0) Maps of the form

(Λn
0 )� ∪(Δ{0,1})� (Δ{0,1})� −→ (Δn)� ∪(Δ{0,1})� (Δ{0,1})�

for any map (Δn)� ∪(Δ{0,1})� (Δ{0,1})� −→ NF�
o. (Note that these are precisely leaf 

anodynes of marked simplicial sets.)
(C1) The inner horn inclusions (Λn

i )� −→ (Δn)�, for any 0 < i < n and any map 
(Δn)� −→ NF�

o.
(C2) Maps of the form

(∂Δn � 2)� ∪({n}�2)� ({n} � 2)� −→ (Δn � 2)� ∪({n}�2)� ({n} � 2)�,

where n ≥ 1 and ({n} � 2)� � (2�)� maps to NF�
o by a morphism in Σ.

Proposition 5.3.2. The class of trivial cofibrations in POpo is the smallest saturated class 
C of cofibrations that contains the P-anodynes and has the following closure property: if 
i : A −→ B and j : B −→ C are cofibrations such that j and ji are in C, then i is in C
as well.
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Proof. In the appendix to [29], Lurie proves that a map between fibrant objects in POp
is a fibration if and only if it has the right lifting property with respect to P-anodynes. 
In fact, the proof of this result follows the same standard pattern as our proof of part 
(ii) of Theorem 4.1.7. Given this, the same proof as that of Lemma 3.8.3 will give the 
desired conclusion here. �
Remark 5.3.3. In Definition 5.3.1, one may in fact replace the P-anodynes of type (B1) 
and (C2) by slightly more general families of maps, let us call them (B′

1) and (C ′
2) 

respectively, where instead of 2 one allows an arbitrary non-empty coproduct 
∐

j Δ0

over j = {1, . . . , j} and takes Σ to be those maps (j�)� −→ NF�
o given by a diagram

〈m〉

〈k1〉 〈k2〉 · · · 〈kj〉

in which the inert maps induce a bijection

〈m〉 �
j∐

i=1
〈ki〉.

Indeed, the original families (B1) and (C2) are special cases of this (for j = 2) and 
conversely it is a fairly straightforward exercise to show that these more general families 
of maps are indeed trivial cofibrations.

We now begin the proof of the main result of this section by investigating the unit 
morphism of the adjunction (ω̄!, ω̄∗).

Proposition 5.3.4. For any object X of 〈0〉/POpo, the unit ηX : X −→ ω̄∗ω̄!(X) is a 
weak equivalence between cofibrant objects.

From this proposition and the fact that ω̄∗ is also left Quillen, we immediately obtain 
the following consequence.

Corollary 5.3.5. The derived unit id −→ Rω̄∗ ◦ Lω̄! is a weak equivalence.

Remark 5.3.6. We have replaced the adjoint pair ω! and ω∗ with ω̄! and ω̄∗ in order 
to state that ω̄∗ is also left Quillen (in addition to being right Quillen). It follows from 
this that ω∗ acts like a left Quillen functor in all respects, except that it does not 
preserve all colimits. However, it does preserve pushouts and transfinite compositions 
(in fact, all connected colimits), as well as weak equivalences. This is all we will need. 
Note, in addition, that for an object X of 〈0〉/POpo, the unit X −→ ω̄∗ω̄!(X) is a 
weak equivalence in 〈0〉/POpo if and only if the unit 〈0〉∗(X) −→ ω∗ω!(〈0〉∗(X)) is 
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one in POpo. Indeed, this is clear from the fact that 〈0〉∗ preserves and reflects weak 
equivalences, together with the identity ω̄! = ω!〈0〉∗ which holds by construction of ω̄!. 
It also follows from this that X −→ ω̄∗ω̄!(X) is a weak equivalence for every object of 
〈0〉/POpo if and only if Y −→ ω∗ω!(Y ) is a weak equivalence in POpo for every object 
Y there. For this reason, we will from now on not drag the extra 〈0〉 along and in proving 
the proposition above often work with ω∗ and ω! instead of ω̄∗ and ω̄!.

The proof of Proposition 5.3.4 will consist of several lemmas.

Lemma 5.3.7.
(i) Consider a pushout square

X Y

X ′ Y ′

in POpo, in which X −→ X ′ is a cofibration. If the unit map id −→ ω∗ω! is a weak 
equivalence at X, X ′ and Y , then it is also a weak equivalence at Y ′.

(ii) Let X � Y be a trivial cofibration in POpo. If the unit map X −→ ω∗ω!(X) is a 
weak equivalence, then so is Y −→ ω∗ω!(Y ).

Proof. (i). This is a well-known special case of the ‘cube lemma’ in model categories. In 
one of its versions for a model category E, consider the Reedy category

R = (0 2
+ −

1).

A cofibrant object in ER is precisely a diagram

X ′ X Y

where X ′ ←− X is a cofibration while X and Y are cofibrant. The constant functor 
E −→ ER is easily seen to be right Quillen with respect to the Reedy model structure 
on ER. Therefore, its left adjoint preserves weak equivalences between cofibrant objects. 
Part (i) of the lemma now follows by applying this to the map represented by the vertical 
arrows in the diagram

X ′ X Y

ω∗ω!(X ′) ω∗ω!(X) ω∗ω!(Y ).

(We use here that ω∗ preserves cofibrations and pushouts, cf. Remark 5.3.6.)
(ii). In the square
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X
∼

Y

ω∗ω!(X) ω∗ω!(Y )

the lower arrow is also a trivial cofibration because ω̄∗ and ω! are both left Quillen, cf. 
Remark 5.3.6. Part (ii) is clear from this. �
Remark 5.3.8. It follows from part (i) of the lemma and the usual skeletal filtration of 
simplicial sets that it suffices to prove Proposition 5.3.4 for the special case where X is 
a representable object A : (Δn)� −→ NF�

o and for the marked 1-simplices A : (Δ1)� −→
NF�

o. Moreover, since for any such n-simplex A the inclusion

⋃n−1
i=0 (Δ{i,i+1})� (Δn)�

NF�
o

is a weak equivalence, it follows by part (ii) of the lemma that it suffices to prove the 
Proposition for representables A : (Δn)� −→ NF�

o of dimensions 0 and 1 only, together 
with the marked 1-simplices A : (Δ1)� −→ NF�

o mentioned above.

We begin with the case of 0-simplices.

Lemma 5.3.9. For any vertex A : Δ0 −→ NFo, the unit ηA : A −→ ω∗ω!(A) is a weak 
equivalence.

Proof. The vertex A is a finite set A(0). If A(0) = ∅ then the unit is an isomorphism, 
while if A(0) has one element then ω∗ω!(A) is the inert (marked) 1-simplex 〈1〉 −→ 〈0〉
of NF�

o, so that the unit is a P-anodyne morphism of the form {0} −→ (Δ1)�. If A(0)
has more elements, consider the ‘cone’ C constructed as the pushout in the following 
diagram:

∐
a∈A(0) Δ0

∼

∐
∂1 ∐

a∈A(0)(Δ1)�
∐

a∈A(0) Δ0
∐

∂0

Δ0

A

∼
C

NF�.
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Here the summand (Δ1)� indexed by a ∈ A(0) is the inert 1-simplex ρa : A(0) −→ {a}
over NF�

o and the corresponding vertex Δ0 −→ NFo on the right of the diagram is the 
one-point set {a}. The dotted slanted map on the right is a trivial cofibration of the 
form discussed in Remark 5.3.3, i.e. a generalized version of a P-anodyne of type (B′

1). 
In this way, we obtain a zigzag of weak equivalences

A
∼

C
∐

a∈A(0)〈a〉
∼

where we have written 〈a〉 for the vertex {a} : Δ0 −→ NFo. Since we already know that 
each η〈a〉 is a weak equivalence, it follows by Lemma 5.3.7 and two-out-of-three that ηA
is also a weak equivalence. �

We next turn to 1-simplices, possibly marked. Let us call a 1-simplex A connected if 
ω!(A) consists of a single tree or is empty. For a general 1-simplex A : Δ1 −→ NFo, i.e. 
a partial surjection of finite sets f : A(0) −→ A(1), we can write

ω!(A) =
⊕

a∈A(1)

Ca ⊕
⊕
b∈Uf

η.

Here Ca is the corolla with vertex va and f−1(a) as the set of its leaves, while Uf ⊆ A(0)
is the set of b ∈ A(0) on which f is undefined. Similarly, we will compare the 1-simplex 
A to its ‘decomposition’ into a family of connected 1-simplices

Aa = (f−1(a) −→ {a}) and Ab = ({b} −→ ∅)

indexed by all a ∈ A(1) and b ∈ Uf , which are all marked if A is (and in this case each 
f−1(a) is a singleton, of course). The following two lemmas now show that ηA : A −→
ω∗ω!(A) is a weak equivalence and complete the proof of Proposition 5.3.4. The first one 
deals with the case of a connected 1-simplex, the second reduces the general case to the 
connected one.

Lemma 5.3.10. Let B : (Δ1)� −→ NF�
o be a 1-simplex B(0) −→ B(1) in the nerve 

of F. Suppose that either B(1) = 〈1〉 and B is active, or B(1) = ∅ and B(0) = 〈1〉. 
Then ηB : B −→ ω∗ω!(B) is a weak equivalence, and similarly when (Δ1)� is replaced
by (Δ1)�.

Proof. We distinguish various cases:
(i). In case B is 〈1〉 −→ 〈0〉 (the second case in the statement), then

Δ0 ∂1 (Δ1)�/�

B

NF�
o

is a weak equivalence, so this case follows from Lemma 5.3.9.
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(ii). In case B is 〈1〉 −→ 〈1〉 (possibly marked), B is degenerate and we can again 
apply Lemma 5.3.9.

(iii). The more complicated case is where B is an active map 〈k〉 −→ 〈1〉, for k > 1, 
and ω!(B) is the corresponding corolla Ck. In this case ω∗ω!(B) = ω∗(Ck) is quite a bit 
larger: for example, it contains the entire classifying space BΣk of the symmetric group 
(cf. the example at the end of Section 5.2).

Let us fix an order on the leaves of Ck, viewed as an isomorphism α : 〈k〉 −→
leaves(Ck). The non-degenerate simplices of ω∗(Ck) are all faces of two kinds of sim-
plices, which we indicate by

(type 1) 〈k0〉

α0

σ1

�
〈k1〉

�
· · ·

σn

�
〈kn〉

leaves(Ck)

(type 2) 〈k0〉

α0

σ1

�
〈k1〉 · · ·

σn−2

�
〈kn−2〉

σn−1 〈1〉
σn

�
〈0〉

leaves(Ck) root(Ck)

For the simplices of type 1, we require that k0 = k, that 〈k0〉 is mapped to the leaves 
of Ck by the fixed map α = α0 and that each of the σi is inert and marked. For the 
simplices of type 2, the map σn−1 is active, each of the other σi for i < n −1 is necessarily 
an isomorphism, k0 = k and α0 = α again and every σi for i < n − 1 is marked, as is σn. 
Let us also define the following kind of simplices:

(type 2′) 〈k0〉

α0

σ1

�
〈k1〉

�
· · ·

σn−1

�
〈kn−1〉 〈1〉

leaves(Ck) root(Ck)

Obviously, these are faces of the type 2 simplices.
Now, the original simplex B is the unique 1-simplex of type 2′. The object ω∗ω!(B)

has a filtration

B ⊆ F ⊆ G = ω∗ω!(B),

B = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆
⋃
n

Fn = F,

F = G0 ⊆ G1 ⊆ G2 ⊆ · · · ⊆
⋃

Gn = G

n
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where Fn is obtained from Fn−1 by adding all n-simplices of type 1 and Gn is obtained 
from Gn−1 by adding all n-simplices of type 2. For n ≥ 1, the inclusion Fn−1 ⊆ Fn is a 
pushout of the form

∐
(Λn

0 )� Fn−1

∐
(Δn)� Fn

and hence P-anodyne. (Here the superscript � indicates that the 1-simplex Δ{0,1} is 
marked; the left vertical map is a coproduct of P-anodynes of type (C0).) The inclusion 
G0 ⊆ G1 is given by the pushout

Δ0

∂1

G0

(Δ1)� G1

(adjoining the inert 1-simplex 〈1〉 −→ 〈0〉) and is therefore also P-anodyne. For n ≥ 2, 
we factor the inclusion Gn−1 ⊆ Gn as Gn−1 ⊆ G′

n−1 ⊆ Gn, where Gn−1 ⊆ G′
n−1 is given 

by adding all (n − 1)-simplices of type 2′ and G′
n−1 ⊆ Gn is then given by adding all 

n-simplices of type 2. There are pushout diagrams

∐
(Λn−1

0 )� Gn−1

∐
(Δn−1)� G′

n−1

and ∐
(Λn

0 )� G′
n−1

∐
(Δn)� Gn.

This shows that each Fn−1 ⊆ Fn and Gn−1 ⊆ Gn is a trivial cofibration and hence that 
B −→ ω∗ω!(B) is. �

To complete the proof of Proposition 5.3.4, we have to reduce the case of a general 
1-simplex A to the case of a connected 1-simplex B, which was treated in the previous 
lemma. This reduction is given by the following lemma:
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Lemma 5.3.11. Let A be a 1-simplex of NF�
o, given by f : A(0) −→ A(1), with a ‘de-

composition’ into a family of 1-simplices Aa for a ∈ A(1) and Ab for b ∈ Uf (the set of 
b’s where f is undefined), as described before Lemma 5.3.10. Then there is a zig-zag of 
trivial cofibrations in POpo as follows:

A
∼

E (
∐

a∈A(1) Aa) � (
∐

b∈Uf
Ab).

∼

Proof. We will explicitly construct such an E. As a start, construct trivial cofibrations

A(1) ∼
C1

∐
a∈A(1)〈a〉

∼

as in Lemma 5.3.9. So A(1) and each 〈a〉 are vertices of NFo and C1 is a wedge of marked 
1-simplices connecting A(1) to each 〈a〉. In the same way, we can construct a wedge C0
which fits into a diagram

A(0) ∼
C0 (

∐
a∈A(1)〈f−1(a)〉) � (

∐
b∈Uf

〈b〉)∼

corresponding to writing A(0) as the disjoint sum of these f−1(a) and these b ∈ Uf . 
Next, attach A to C0 � C1 as in the pushout

∂A
∼

C0 � C1

A
∼

B.

Thus B is a simplicial set which can be pictured as

}
C0

}
C1

A

The arrows in the upper half of the picture together constitute C0, the arrows in the 
bottom half constitute C1. Next, attach (by an inner anodyne map) for each a ∈ A(1)
a 2-simplex σa to B with d2σa = A and d0σa = A(1) −→ 〈a〉;
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Also attach for each b ∈ Uf an inert ib : A(1) −→ 〈0〉 (by a pushout along {0} −→
(Δ1)�) and a 2-simplex σb with d2σb = A and d0σb = ib (by an inner anodyne). This 
gives a P-anodyne map B −→ D, where D looks like

Finally, attach for each such a and b a 2-simplex τa, respectively τb, as in

A(1)
�

τa

σa

〈f−1(a)〉 A(1)
�

τb

σb

〈b〉

A(0)
�

〈a〉 A(0)
�

〈0〉

by constructing the pushout

∐
a,b(Λ2

0)� D

∐
a,b(Δ2)� E.

This gives a trivial cofibration A � E by composition of A � B � D � E. The 
simplicial set E looks like a book with A as its spine and a page with margin Aa, 
respectively Ab, for each a ∈ A(1) and b ∈ Uf :

These embeddings of Aa into E as d0τa and of Ab into E as d0τb define a map

R =
∐

Aa �
∐

Ab −→ E.

a∈A(1) b∈Uf
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To complete the proof of the lemma, it now suffices to show that this map is a trivial 
cofibration. To this end, let us reconstruct E from the coproduct of 1-simplices R. First, 
we attach to R a wedge of marked 1-simplices of the form

A(1) −→ 〈a〉, A(1) −→ 〈0〉

and a wedge of marked 1-simplices

A(0) −→ 〈f−1(a)〉, A(0) −→ 〈b〉.

By pushouts along maps of type (B1)′ as described in Remark 5.3.3, this results in a 
trivial cofibration R � S = R ∪ C0 ∪ C1. This S looks like

Aa

Ab

We can then enlarge S by an inner anodyne map S � T by gluing in the 2-simplices τa
and τb; and finally, we can construct T � E by gluing in the 1-simplex A together with 
the σa using a pushout along a generalized form of a P-anodyne of type (C ′

2), again as 
described in Remark 5.3.3. This shows that R � E is a trivial cofibration and completes 
the proof of the lemma and hence the proof of Proposition 5.3.4. �

With Proposition 5.3.4 about the unit of the adjunction at hand, it is now easy to 
deal with the counit:

Proposition 5.3.12. For any cofibrant object Y in fSets+
o , the counit map ω̄!ω̄

∗(Y ) −→ Y

is a weak equivalence in fSets+
o .

Applying this proposition to objects Y which are both fibrant and cofibrant and using 
that ω̄∗ is also left Quillen, we immediately deduce:

Corollary 5.3.13. The derived counit Lω̄!Rω̄∗ −→ id is a weak equivalence.

Proof of Proposition 5.3.12. The initial steps in the proof are similar to those in the 
proof of Proposition 5.3.4. In particular, by using induction on the skeletal filtration 
of Y , one sees that it suffices to prove the proposition for the special case where Y is a 
forest F (possibly with some marked 1-corollas). Consider the Segal core fSc(F ) of F . 
We have a commutative square
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ω̄!ω̄
∗fSc(F ) ∼

ω̄!ω̄
∗(F )

fSc(F ) ∼
F

in which the horizontal arrows are weak equivalences. Indeed, we already know this for 
the bottom map (by Proposition 3.6.6) and for the top map it then follows since both ω̄!
and ω̄∗ are left Quillen functors. Thus, it suffices to prove the proposition in case Y is of 
the form fSc(F ). Such an object fSc(F ) is a union of forests which are each direct sums 
of corollas and copies of the unit tree. Up to weak equivalence we may replace direct 
sums by coproducts, which allows us to reduce to the case of a single corolla (marked 
or unmarked) or the unit tree η. But for any such object G, we can write G = ω!(A) for 
some object A of POpo (in fact, a marked or unmarked 1-simplex of NF�

o or a 0-simplex 
of NF�

o). Thus, the unit

ηA : A −→ ω∗ω!(A)

is a weak equivalence by Proposition 5.3.4 (and Remark 5.3.6) and hence so is ω!(ηA). We 
now conclude that the counit εG is a weak equivalence as well, by the triangle identity 
for the adjunction:

ω!A
∼

id

ω!ω
∗ω!(A) ω̄!ω̄

∗G

εG

ω!(A) G.

�

For the record, we combine Corollaries 5.3.5 and 5.3.13 into the main theorem.

Theorem 5.3.14. The Quillen pair

ω̄! : 〈0〉/POpo fSets+
o : ω̄∗

is a Quillen equivalence. Therefore the two Quillen pairs

ω! : POpo fSets+
o : ω∗

and

ω̄∗ : fSets+
o 〈0〉/POpo : ω̄∗

are also Quillen equivalences.
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5.4. The functor ω! is left Quillen

Proposition 5.4.1. The pair (ω!, ω∗) is a Quillen pair.

Proof. We already know from Lemma 5.2.2 that ω! preserves cofibrations. It remains to 
show that ω! preserves trivial cofibrations. Since the left Quillen functor u∗ : fSets+

o −→
dSets+

o is part of a Quillen equivalence, it reflects weak equivalences between cofibrant 
objects. Observing that every object in the image of ω! is cofibrant, we deduce that it 
suffices to check that the composition u∗ω! preserves trivial cofibrations. By Proposi-
tion 5.3.2, it thus suffices to check that u∗ω! sends P-anodynes to trivial cofibrations. 
We have seven cases to handle. The first four are easy; the cases (C0), (C1) and (C2) 
require some more attention.

(A0). The functor u∗ω! sends maps of this type to compositions of pushouts of the 
marked anodyne map of type (M3) (or rather, the map of dendroidal sets obtained from 
it by applying u∗), cf. Definition 4.3.1.

(A1). The simplicial set Q has the following important property: a map from Q to an 
∞-category must send all 1-simplices of Q to equivalences. In particular, any map from Q
to NF sends all 1-simplices to isomorphisms. Therefore the map u∗ω!(Q�) −→ u∗ω!(Q�)
is a coproduct of copies of the map i!Q� −→ i!Q

�, where we have included the i! in the 
notation for emphasis. From the property of Q mentioned above, it is easy to see that 
this map is a marked equivalence.

(B0). The inclusion u∗ω!({0}�) −→ u∗ω!((Δ1)�) is a coproduct of copies of the identity 
map of η� and copies of the inclusion of marked dendroidal sets {0}� −→ (Δ1)�. The 
latter is a leaf anodyne map and hence a trivial cofibration, by Lemma 4.4.8.

(B1). Applying u∗ω! to a map of type B1 yields a coproduct of maps of the form

{1}� −→ (Δ1)�

and is hence root anodyne, i.e. marked anodyne of type (M2).
(C0). Suppose we have a diagram

(Λn
0 )� ∪(Δ{0,1})� (Δ{0,1})�

A′

(Δn)� ∪(Δ{0,1})� (Δ{0,1})�

A

NF�
o.

We will show that the map u∗ω!(A′) −→ u∗ω!(A) is a leaf anodyne map of dendroidal 
sets. First of all, note that u∗ω!(A) is a coproduct of trees and that the stated map will 
in fact split as a coproduct of maps, one corresponding to each such tree. Therefore, 
we may restrict our attention to the case where the simplex A is connected. Also, once 
this restriction is made, we may assume it is totally active (i.e. every 1-simplex of A is 
active). If it isn’t, then A(n) = 〈0〉 and it is easily verified that the map ω!(A′) −→ ω!(A)
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is an isomorphism. Indeed, we would have ω!(dnA) = ω!(A) and dnA is already contained 
in A′.

With these assumptions in place, let us begin our induction. Note that A(0) is exactly 
the set of leaves of the tree ω!(A) and that all these leaves are attached to a unary corolla. 
Indeed, the edge A(0) −→ A(1) is inert and by our assumption on the connectedness 
of A it in fact maps to an isomorphism in Fo. Furthermore, all these leaf corollas are 
marked. Let us define a leaf pruning of the (marked) tree ω!(A) to be a pruning P of A
(as in Definition 3.6.3) satisfying the following two conditions:

– P contains at least one of the leaves of ω!(A).
– If P contains an edge corresponding to an element a ∈ A(1), then P also contains 

the top vertex va of ω!(A) attached to that edge (which is then necessarily a unary 
leaf vertex of P ).

By adjoining the leaf prunings to ω!(A′) one by one, in an order that extends the partial 
order of size, we obtain a filtration

ω!(A′) =: F0 ⊆ F1 ⊆ · · · ⊆
⋃
i

Fi = ω!(A).

Consider a map Fi ⊆ Fi+1 in this filtration, given by adjoining a leaf pruning P . If P is 
already contained in Fi, there is nothing to prove. If it doesn’t, we refine our filtration 
further. For a subset H ⊆ I(P ) of the inner edges of P , define (as usual) P [H] to be 
the tree obtained from P by contracting all inner edges in I(P ) −H. Extend the partial 
order of inclusion on the subsets of I(P ) to a linear order and adjoin the trees P [H] to 
Fi in this order to obtain a filtration

Fi =: F 0
i ⊆ F 1

i ⊆ · · · ⊆
⋃
j

F j
i = Fi+1.

Consider a map F j
i ⊆ F j+1

i , given by adjoining a tree P [H]. If this map is the identity 
there is of course nothing to prove. Note that this is in particular the case if H does not 
contain any of the inner edges of P corresponding to e ∈ A(1) ∩ I(P ). Indeed, if all these 
are contracted, then P [H] is contained in ω!(d1A). (Note that here we use the fact that 
edges e ∈ A(1) can never be outer edges of P , by the second condition in the definition 
of leaf pruning.) Now assume the map F j

i ⊆ F j+1
i is not the identity. In particular, by 

the previous observation, we may assume that at least one of the inner edges e ∈ A(1)
is in H. We find:

– The root face of the tree P [H] factors through ω!(dnA) and hence through ω!(A′).
– Any inner face of the tree P [H] factors through F j

i by induction on the size of H.
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– A leaf face of P [H] chopping off a vertex ve for some e ∈ A(1) ∩ H cannot factor 
through an earlier stage of the filtration, since chopping off such a vertex would not 
yield a leaf pruning.

– Any leaf face of P [H] other than the ones mentioned in the previous item will factor 
through an earlier leaf pruning and hence through Fi.

We conclude that F j
i ⊆ F j+1

i is a pushout of the map

(ΛL[P [H]],E ∩ ΛL[P [H]]) −→ (P [H],E)

where L denotes the set of leaves of P [H] attached to vertices ve for e ∈ A(1) ∩H and 
E is the union of the set of those leaf corollas with the degenerate corollas of P [H]. It is 
easily verified that this map is a composition of leaf anodynes and is therefore a trivial 
cofibration, by Lemma 4.4.8.

(C1). Suppose we have a diagram

(Λn
i )�

A′

(Δn)�

A

NF�
o

for 0 < i < n. We will show that the map u∗ω!(A′) −→ u∗ω!(A) is inner anodyne, i.e. 
a composition of pushouts of marked anodynes of type (M1) (or rather, the image of 
such a map under u∗). First of all, by the same argument used for (C0), we may assume 
that the simplex A is connected and totally active. Also, define E = A(i), which is a 
subset of the inner edges of the tree ω!(A).

We will again set up an induction using the prunings P of ω!(A) (cf. Definition 3.6.3). 
Adjoin all these prunings to ω!(A′) in an order extending the partial order of size to 
obtain a filtration

ω!(A′) =: F0 ⊆ F1 ⊆ · · · ⊆
⋃
i

Fi = ω!(A).

Consider one of the inclusions Fi ⊆ Fi+1, given by adjoining a tree P . Define

HP = I(P ) − (E ∩ I(P ))

and consider for each H ⊆ HP the tree P [H] defined by contracting all inner edges of 
P contained in HP −H. Adjoin the trees P [H] to Fi in an order extending the natural 
partial order on the subsets H of HP to obtain a filtration

Fi =: F 0
i ⊆ F 1

i ⊆ · · · ⊆
⋃

F j
i = Fi+1.
j
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Now consider one of the maps F j
i ⊆ F j+1

i , given by adjoining a tree P [H]. If it is not the 
identity, we can say the following:

– The root face of P [H] factors through ω!(dnA) and hence through ω!(A′).
– Any leaf face of P [H] factors through Fi by our induction on the size of the prunings.
– Any inner face contracting an edge of P [H] that is not in E factors through F j

i by 
our induction on the size of H.

- Any inner face contracting an edge of E cannot factor through an earlier stage of 
the filtration. Indeed, it cannot factor through an earlier pruning and given this, it 
is clear that it also cannot factor through an earlier P [H′].

We conclude that F j
i ⊆ F j+1

i is a pushout of

(ΛE∩I(P )[P [H]])� −→ (P [H])�

which is inner anodyne.
(C2). Suppose we have a diagram

(∂Δn � 2)� ∪({n}�2)� ({n} � 2)�

A′

(Δn � 2)� ∪({n}�2)� ({n} � 2)�

A

NF�
o

of the form described in Definition 5.3.1. We will show that the map u∗ω!(A′) −→
u∗ω!(A) is root anodyne, i.e. a composition of marked anodynes of type (M2). The 
marked dendroidal set u∗ω!(A) is a coproduct of (marked) trees and it is easy to see that 
the map u∗ω!(A′) −→ u∗ω!(A) splits as a coproduct of maps, one corresponding to each 
component of u∗ω!(A). Using this observation, one sees that it in fact suffices to consider 
diagrams of the form

(Λn+1
n+1)� ∪(Δ{n,n+1})� (Δ{n,n+1})�

B′

(Δn+1)� ∪(Δ{n,n+1})� (Δ{n,n+1})�

B

NF�
o

where B is a connected totally active simplex. Note that the root corolla of ω!(B) is 
unary and is in fact marked. Now set up a filtration

ω!(B′) =: F0 ⊆ F1 ⊆ · · · ⊆
⋃
i

Fi = ω!(B)

by adjoining the prunings of ω!(B) one by one, in an order respecting the size of prunings. 
(Again, prunings here in the usual sense, obtained from ω!(B) by an iteration of leaf 
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faces.) Consider one of the maps Fi ⊆ Fi+1 given by adjoining a pruning P . We filter 
this map again; consider subsets H ⊆ I(P ) of the inner edges of P and adjoin the trees 
P [H] (given by contracting all edges in I(P ) − H) one by one, in an order compatible 
with the natural partial order on the subsets of I(P ), to get

Fi =: F 0
i ⊆ F 1

i ⊆ · · · ⊆
⋃
j

F j
i = Fi+1.

Consider one of the maps F j
i ⊆ F j+1

i given by adjoining a tree P [H]. If P [H] is already 
contained in F j

i there is nothing to prove. Note that this is in particular the case if H
does not contain the unique element of B(n), which is the incoming edge of the unary 
root vertex of ω!(B). Indeed, if this edge is contracted, the resulting tree is contained in 
ω!(dnB) and hence in ω!(B′). So let us now assume H contains the unique edge in B(n). 
Then:

– Any external face chopping off a leaf corolla of P [H] is contained in Fi by our induc-
tion on the size of prunings.

– Any inner face of P [H] is contained in F j
i by our induction on H.

– The root face chopping off the unary marked root corolla of P [H] cannot factor 
through an earlier stage of the filtration.

Therefore F j
i ⊆ F j+1

i is a pushout of the map

Λroot[P [H]]� −→ (P [H])�

where the diamond, as usual, indicates that the only non-degenerate marked corolla is 
the unary root corolla. We conclude that this map is root anodyne, which also concludes 
the proof of the proposition. �
5.5. The functor ω̄∗ is left Quillen

We begin with a short digression on the compatibility of the functors ω! and ω∗

with the process of ‘taking underlying simplicial sets’. As discussed before, there is an 
embedding

u!i! : sSets+ −→ fSets+
o

which has a right adjoint i∗u∗. Similarly, there is an embedding

j! : sSets+ −→ POpo

which simply augments a marked simplicial set X with the constant map
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X −→ 〈1〉.

This functor too has a right adjoint j∗, which is given by taking the fiber over the vertex 
〈1〉. The following is clear from the definitions:

Lemma 5.5.1. The following diagram commutes (up to natural isomorphism):

POpo

ω! fSets+
o

sSets+.

j! u!i!

The diagram

POpo fSets+
o

ω∗

sSets+
j! u!i!

does not quite commute. However, the unit of the adjunction (ω!, ω∗) induces a natural 
transformation j! −→ ω∗ω!j! � ω∗u!i!, which we claim is a weak equivalence. To make 
this precise, let us introduce a construction.

Definition 5.5.2. Given an object (X −→ NF�
o) ∈ POpo, the right cone on this object 

has as underlying marked simplicial set

X� := X � {v} ∪(X0�{v})� (X0 � {v})�

and its map to NF�
o is uniquely determined by the requirement that the cone vertex 

{v} is sent to 〈0〉. In other words, the right cone on X is obtained by adding, for each 
n-simplex A of X, an (n + 1)-simplex A�, of which each edge ending in the final vertex 
v is marked.

Lemma 5.5.3. The inclusion X −→ X� is a trivial cofibration.

Proof. First form the pushout

∐
x∈X0

〈x〉
∐

∂1

X

∐
x∈X0

(Δ1)� Y
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to adjoin, for each vertex x of X, an inert 1-simplex with final vertex lying over 〈0〉 in 
NFo. Here 〈x〉 is shorthand for the vertex x : Δ0 −→ NFo. Then form the pushout

∐
x∈X0

〈0〉 Y

〈0〉 Z

crushing the final vertices of the 1-simplices just adjoined to a single vertex v lying over 
〈0〉. The left vertical map is a weak equivalence, so Y −→ Z is a weak equivalence as 
well. This follows from the fact that POpo is left proper, or one can use the fact that the 
pushout is in fact a homotopy pushout (all objects are cofibrant and the top horizontal 
map is a cofibration). Now filter the inclusion Z � X� as

Z = S1 ⊆ S2 ⊆ · · · ⊆
⋃
n

Sn = X�

where each Sn is the union of Z with all the n-simplices of X�. Then every inclusion 
Sn−1 ⊆ Sn is a pushout along a coproduct of P-anodynes of type (C2) and hence itself 
P-anodyne. �
Lemma 5.5.4. The natural transformation j! −→ ω∗u!i! is a weak equivalence.

Proof. This follows from the previous lemma, by observing that for any marked simplicial 
set K there is a canonical isomorphism

ω∗u!i!(K) � j!(K)�

and that under this identification j!(K) −→ ω∗u!i!(K) is precisely the map j!(K) −→
j!(K)� considered above. �

We can now move on to the main goal of this section. Lemma 5.2.6 already states that 
ω̄∗ preserves cofibrations, so it remains to prove that ω̄∗ preserves trivial cofibrations. It 
suffices to check that ω̄∗ sends the maps of Lemma 4.4.6(a)–(e) to trivial cofibrations in 
〈0〉/POpo. Note that this is equivalent to checking that ω∗ sends those maps to trivial 
cofibrations in POpo. Let us get the easy cases out of the way first:

Proposition 5.5.5. The functor ω∗ sends maps in fSets+
o of either of the following forms 

(see Lemma 4.4.6) to trivial cofibrations:

(c) The inclusion

u!i!
(
(Λ2

1)� ∪(Λ2
1)� (Δ2)� −→ (Δ2)�

)
.
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(d) For any Kan complex K, the inclusion

u!i!
(
K� −→ K�

)
.

Proof. By the previous lemma, it suffices to check that the maps

j!
(
(Λ2

1)� ∪(Λ2
1)� (Δ2)� −→ (Δ2)�

)
j!
(
K� −→ K�

)
are trivial cofibrations, which is clear. �

The rest of this section treats the three remaining cases, which require a little more 
work.

Proposition 5.5.6. For any non-empty sequence of trees T1, . . . , Tk, the map

ω∗((T1 � · · · � Tk)� −→ (T1 ⊕ · · · ⊕ Tk)�
)

is a trivial cofibration in POpo.

This proposition is a consequence of the following two lemmas:

Lemma 5.5.7. Suppose the functor ω∗ sends boundary inclusions ∂F � −→ F � to weak 
equivalences, for forests F which have at least two components. Then ω∗ sends the maps 
of Proposition 5.5.6 to weak equivalences.

Lemma 5.5.8. Let F be a disconnected forest, i.e. a forest consisting of at least two trees. 
Then the map

ω∗(∂F � −→ F �)

is a trivial cofibration.

Proof of Lemma 5.5.7. Let W denote the set of cofibrations in fSets+
o that are sent to 

weak equivalences by ω∗ and assume that W contains the maps ∂F � −→ F �, for all 
forests F consisting of at least two trees. Now let F = T1 ⊕ · · · ⊕ Tk be any such forest. 
We wish to show that

(T1 � · · · � Tk)� � u!u
∗F � −→ F �

is contained in W. We may factor the given map as

u!u
∗F � � ∂F � � F �.
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The second map is in W by assumption, so we have to show that the first map is as well. 
In fact we will prove something slightly stronger, namely that for any factorization

u!u
∗F � � A � ∂F �

where both arrows are monos, both these maps are in W. Such an A can be written as

A = u!u
∗F � ∪H�

1 ∪ · · · ∪H�
n

for subforests H1 � F, . . . , Hn � F and we may assume that each Hi is disconnected 
(i.e. each Hi consists of more than one tree), because otherwise it is contained in u!u

∗F . 
We proceed by induction on the size of F and the number n of forests in A. The smallest 
case is the one where F = η⊕η. Then ∂F = η�η and u!u

∗F � ∂F is an isomorphism, so 
there is nothing to prove. For general F , now assume that the assertion has been proved 
for all forests smaller than F , as well as for A′ = u!u

∗F ∪H1 ∪ · · · ∪Hn−1. Consider the 
diagram

P
h

H�
n

u!u
∗F �

f
A′ g

A

where P is the pullback in the square. Then the square is also a pushout (all maps in 
the diagram are monos) and the map h is the composition

h : (u!u
∗F ∩Hn)� ∪

⋃
i<n

(Hi ∩Hn)� � ∂H�
n � H�

n.

The first map is in W by the inductive hypothesis (since Hn is strictly smaller than F
and u!u

∗Hn is contained in the domain of h), the second map is in W by assumption and 
therefore h is in W. Thus g is in W since W is closed under pushouts. Also f ∈ W by 
the inductive assumption on n and therefore u!u

∗F � � A is in W. By letting A = ∂F �

we reach the desired conclusion. �
Proof of Lemma 5.5.8. To prove that ω∗(∂F � � F �) is a trivial cofibration, we will show 
that we can use P-anodynes to successively adjoin certain non-degenerate simplices to 
ω∗(∂F �), so that at the end every non-degenerate simplex of ω∗(F �) is a face of one of 
the simplices having been adjoined.

Consider an n-simplex e : A −→ ω∗(F �). For this simplex not to factor through 
ω∗(∂F �), every edge of F must occur in the image of some e(i) : 〈a(i)〉 → edges(F ). 
In particular, e(0) is a bijection to the set of all leaves of F and the image of e(n) is a 
subset of the set of roots of F . We will especially be interested in simplices where the 
image of e(n) consists of exactly one root of F , say the root of one of the constituent 
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trees T of F . In that case there will be a smallest number s, 0 ≤ s ≤ n, for which 
ω!(A|Δ{s,...,n}) is connected. If s = 0, then ω!(A) is connected so e : A −→ ω∗(F �) must 
factor through ω∗(∂F �). If s > 0, then e maps ω!(A|Δ{0,...,s−1}) into a sum of trees. In 
case the last vertex e(n) : 〈a(n)〉 → edges(F ) consists of more than one root, we will set 
s = n + 1. Let us also write t = n − (s − 1). This number t is the number of vertices 
s, . . . , n of the simplex A mapped into ω∗(T ). In this way, we have assigned to each 
n-simplex e : A −→ ω∗(F �) a size s and a tail length t. A typical (schematic) picture is 
this:

0

s− 1

...

n

Define a non-degenerate n-simplex e to be admissible if t ≥ 1 (tail of length at least 1) 
and the edge e|Δ{s−1,s} is obliviant (recall the terminology from Section 5.2). Note that 
any n-simplex of size s ≤ n is a face of an admissible m-simplex of the same size s (but 
with a longer tail, in general).

Now let V denote the collection of all admissible 1-simplices of ω∗(F �), necessarily 
having s = t = 1, and consider the map

ω∗(∂F �) −→ ω∗(∂F �) ∪ V.

If the forest F contains a vertex, then any simplex in V is in fact already contained 
in ω∗(∂F �). In particular, the given map is the identity. So the only non-trivial case is 
where F = k · η = ⊕k

i=1η, a sum of copies of the unit tree. In this case, the given map is 
a pushout of a generalized P-anodyne of type (B′

1), i.e. a trivial cofibration of the form 
described in Remark 5.3.3.

We will proceed by induction on the pair (s, t), lexicographically ordered. To this end, 
let W (s) denote the union of ω∗(∂F �) ∪ V with all the admissible simplices of size at 
most s and let W (s,t) denote the union of ω∗(∂F �) ∪ V with all admissible simplices of 
size at most s and tail length at most t. This defines filtrations(

ω∗(∂F �) ∪ V
)
⊆ W (1) ⊆ W (2) ⊆ · · · ⊆

⋃
s

W (s) = ω∗(∂F �),

W (s−1) ⊆ W (s,1) ⊆ W (s,2) ⊆ · · · ⊆
⋃

W (s,t) = W (s).

t
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It now suffices to show that the maps W (s−1) � W (s,1) and W (s,t−1) � W (s,t) are all 
trivial cofibrations.

The map W (s−1) � W (s,1): Since ω∗(∂F �) ∪ V = W (1,1), we may assume that s > 1. 
Consider an (s − 1)-simplex e : A → ω∗(F �) of size s that does not factor through 
W (s−1). Then A is necessarily of the form

〈a(0)〉 · · · 〈a(s− 1)〉

where all the maps are active, 〈a(0)〉 is in bijection with the set of leaves of F and 
〈a(s − 1)〉 is in bijection with the set of roots of F . Consider the collection Ve of all 
admissible simplices e : A → W (s,1) of the form

〈a(0)〉 · · · 〈a(s− 1)〉
ρi

〈1〉

which restrict to e on A|Δ{0,...,s−1} . Every simplex of W (s,1) that we’re adjoining is of 
this form, for some e. We have a pushout diagram

(∂Δs−1 � j)� ∪({s−1}�j)� ({s− 1} � j)� W (s−1)

(Δs−1 � j)� ∪({s−1}�j)� ({s− 1} � j)� W (s−1) ∪ Ve

where the left vertical map is a generalized P-anodyne of type (C ′
2), cf. Remark 5.3.3, 

with j being precisely the number of roots of F . Indeed, the faces di(e) � j will be 
admissible of smaller size for 0 ≤ i ≤ s − 2, the face ds−1(e) � j may not be admissible 
but is a face of an admissible simplex of smaller size (possibly with longer tail), and e
does not factor through W (s−1) by assumption. Now letting e vary, all the simplices of 
W (s,1) can be adjoined in similar fashion and we see that the map W (s−1) � W (s,1) is 
a trivial cofibration.

The map W (s,t−1) � W (s,t): Let e : A → ω∗(F �) be an admissible n-simplex of size 
s with tail length t > 1 that is not already contained in W (s,t−1). Its face dk(e) lies in 
W (s−1) for k < s and in W (s,t−1) for k > s. For k = s, the face dk(e) = ds(e) cannot lie 
in ω∗(∂F �) because e|Δ{s−1,s} is obliviant, so no edge of F is deleted in passing from e
to ds(e). The face ds(e) is a non-admissible simplex of size s and tail length t − 1 and 
it occurs as a face of a unique admissible n-simplex, viz. e itself. Thus, W (s,t) can be 
constructed from W (s,t−1) by a pushout along a coproduct of inner horn inclusions∐

(Λn
s )� −→ (Δn)�

ranging over all such admissible n-simplices of size s and tail size t (so n = s + t − 1). 
In particular, W (s,t−1) � W (s,t) is inner anodyne, which completes the proof of the 
proposition. �
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Proposition 5.5.9. For any tree T , the map

ω∗(fSc(T )� −→ T �
)

is a trivial cofibration.

Proof. We work by induction on the size of T . If T is η or T is a corolla, then fSc(T ) = T

and there is nothing to prove. Write W for the collection of all cofibrations in fSets+
o

that are sent to weak equivalences by ω∗. Now let T be an arbitrary (larger) tree and 
assume the statement has been proved for all trees smaller than T (i.e. all trees S that 
admit a monomorphism S � T that is not an isomorphism). As in the first part of the 
proof of Proposition 3.6.8, we conclude by induction that W contains the map

fSc(T )� � ∂ext(T )�,

where we use that W is closed under composition and pushout, but also under sums, 
invoking Proposition 5.5.6 above. So it remains to prove that

∂ext(T )� −→ T �

is in W. Write

T = Cp � (T1, . . . , Tp)

so that T is given by grafting the trees T1, . . . , Tp onto the leaves of Cp. Let us label 
the leaves of Cp by l1, . . . , lp (implicitly fixing an order on them). Let us consider a 
non-degenerate n-simplex e : A → ω∗(T �) that is not already contained in ω∗(∂ext(T )�). 
Then the image of e must contain the root of T . We will say that e is admissible (of 
size n) if A is of the form

〈a(0)〉 · · · 〈p〉 〈1〉
�

〈0〉

and furthermore the following conditions are satisfied:

– The final edge e|Δ{n−1,n} lying over 〈1〉 → 〈0〉 is marked, as indicated.
– The edge 〈p〉 → 〈1〉 is active and is sent to the root corolla Cp by e.
– The map e(n − 2) : 〈p〉 → leaves(Cp) maps i to li for 1 ≤ i ≤ p (i.e. is order-

preserving).

Note that any simplex of ω∗(T �) is a face of some admissible simplex. Write W (n) for 
the union of ω∗(∂ext(T )�) with all admissible simplices of size at most n. This gives a 
filtration
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ω∗(∂ext(T )�) = W (2) ⊆ W (3) ⊆ · · · ⊆
⋃
n

W (n) = ω∗(T �).

We wish to show that all of the maps in this filtration are P-anodyne. Consider an 
inclusion W (n−1) ⊆ W (n) given by adjoining a collection of admissible n-simplices. Let 
us first adjoin the n’th faces dn(e) of all these simplices (these are also not contained in 
W (n−1), since they are not admissible, or faces of admissible simplices already adjoined). 
This is done by a pushout

∐
e(Λ

n−1
n−2)� W (n−1)

∐
e(Δn−1)� W

(n−1)
.

Indeed, the faces di(dn(e)) for i < n − 2 are faces of admissible simplices of smaller 
size and are thus contained in W (n−1), whereas the face dn−1(dn(e)) is contained in 
ω∗(∂ext(T )�) since it ‘chops off the root’. The face dn−2(dn(e)) on the other hand is not a 
face of an admissible simplex of smaller size; the smallest admissible simplex it is a face 
of is in fact e itself. Also, it is not a face of an admissible simplex of size n other than e; 
indeed, the face dn−2(dn(e)) in fact uniquely determines the admissible simplex e. So, 
the map W (n−1) � W

(n−1) is inner anodyne. Now, we form another pushout

∐
e(Λn

n−2)� W
(n−1)

∐
e(Δn)� W (n)

which is established by similar reasoning. We conclude that W (n−1) � W (n) is inner 
anodyne, which also concludes the proof. �
Proposition 5.5.10. Consider an inclusion of the form

(Λr[T ],E ∩ Λr[T ]) −→ (T,E)

where T is a tree with a root corolla of valence one, Λr[T ] is the horn of T corresponding 
to that root and E consists of all degenerate 1-corollas of T together with that root corolla. 
The functor ω∗ sends this map to a trivial cofibration.

Proof. The proof is quite similar to that of the previous proposition. In what should by 
now be familiar notation, we will use the abbreviation

(Λr[T ])� −→ T �
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for the map under consideration. Consider a non-degenerate n-simplex e : A → ω∗(T �)
that is not already contained in ω∗((Λr[T ])�). For the purposes of this proof, we will say 
that e is admissible (of size n) if A is of the form

〈a(0)〉 · · · 〈1〉
�

〈1〉
�

〈0〉

and furthermore the following conditions are satisfied:

– The final edge e|Δ{n−1,n} lying over 〈1〉 → 〈0〉 is marked, as indicated.
– The edge A|Δ{n−2,n−1} : 〈1〉 → 〈1〉 is marked and is sent to the root corolla Cr of T .

In fact, the second condition is automatic by the requirement that e be non-degenerate 
and doesn’t factor through ω∗((Λr[T ])�), but it is worth emphasizing. Note that any 
simplex of ω∗(T �) is a face of an admissible simplex. Now, similar to the last proof, 
let us write W (n) for the union of ω∗((Λr[T ])�) with all admissible simplices of size at 
most n. We obtain a filtration

ω∗((Λr[T ])�) = W (1) ⊆ W (2) ⊆ · · · ⊆
⋃
n

W (n) = ω∗(T �).

Consider an inclusion W (n−1) ⊆ W (n) given by adjoining the collection of admissible 
n-simplices. Let us (again) first adjoin the n’th faces dn(e) of all these simplices (these 
are not contained in W (n−1) since they’re not admissible, or faces of admissible simplices 
already adjoined), which is achieved by forming a pushout

∐
e(Λ

n−1
n−1)� W (n−1)

∐
e(Δn−1)� W

(n−1)

where the superscript � now indicates that the edge Δ{n−2,n−1} is marked. This square 
is indeed a pushout: the faces di(dn(e)) for i < n − 1 are faces of admissible simplices of 
smaller size and hence contained in W (n−1), whereas the face dn−1(dn(e)) is not a face 
of an admissible simplex of smaller size, or a face of an admissible simplex of size n other 
than e. We deduce that the map W (n−1) � W

(n−1) is P-anodyne. To finish, we form 
the pushout

∐
e(Λn

n−1)� W
(n−1)

∐
e(Δn)� W (n)
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from which we see that W (n−1) ⊆ W (n) is inner anodyne and thus that W (n−1) � W (n)

is a trivial cofibration. �
Combining Propositions 5.5.5, 5.5.6, 5.5.9 and 5.5.10, we arrive at the following result:

Proposition 5.5.11. The adjoint pair

ω̄∗ : fSets+
o 〈0〉/POpo : ω̄∗

is a Quillen pair.

6. Some additional properties of dendrification

In the first section of this final chapter, we deduce from the existence of the Quillen 
equivalences of the previous chapter that the perhaps more evident nerve functor from 
non-unital simplicial operads to non-unital preoperads induces an equivalence on the level 
of homotopy categories. In the second section we prove that the Quillen equivalences 
between the model categories of open dendroidal sets and non-unital preoperads are 
compatible with tensor products. In the third section we investigate the associativity 
properties of the tensor product of dendroidal sets more closely. We will conclude that the 
Quillen equivalences of the previous chapter induce an equivalence of symmetric monoidal 
categories between the homotopy categories Ho(dSetso) and Ho(POpo). Sections 6.2
and 6.3 are independent of the first section.

6.1. Simplicial operads and ∞-preoperads

As we have seen, there are Quillen equivalences (left adjoints on top) as follows:

POpo

u∗ω!

dSets+
o

ω∗u∗ a
dSetso

(−)� W!

sOpo
W∗

relating the category of ∞-preoperads to the category of simplicial operads. However, as 
explained in Section 2.2, there is also a direct functor

ν : (sOpo)f −→ POpo : P �−→
(
Ncat(P)� → NF�

o

)
where the subscript f indicates the full subcategory of sOpo spanned by the fibrant 
simplicial operads. The goal of this section is to compare these two functors

(sOpo)f
ν

Rω∗u∗◦L(−)�◦RW∗
POpo
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and in fact show that they are weakly equivalent. In particular, this allows us to conclude 
that the functor ν induces an equivalence on the level of homotopy categories.

Mostly, we just have to unravel the definitions. First of all, let us take a closer look 
at the lower of these two functors. Assume that P is a fibrant simplicial operad. As was 
noted in Remark 2.4.3, the dendroidal set W ∗P is cofibrant if we assume that the operad 
P is Σ-cofibrant (in particular, if it is cofibrant), so that in this case we may take

L(−)� ◦ RW ∗(P) = W ∗(P)�.

To compute the effect of Rω∗u∗ we should fibrantly replace this marked dendroidal set. 
But that is easy: indeed, the map

W ∗(P)� −→ W ∗(P)�

is a weak equivalence. (This is clear directly, but one could also identify it as the derived 
counit of the ((−)�, a)-adjunction.) Therefore, we may take

Rω∗u∗ ◦ L(−)� ◦ RW ∗(P) = ω∗u∗(W ∗(P)�).

Our claim can then be formulated as follows:

Proposition 6.1.1. For P a fibrant and Σ-cofibrant non-unital simplicial operad, there is 
a natural weak equivalence

α : ω∗u∗(W ∗(P)�) −→ ν(P).

Proof. Let us construct the map α. First we define a map

ω∗u∗(W ∗(P)) −→
(
Ncat(P) → NFo

)
of underlying simplicial sets, where N as usual denotes the homotopy-coherent nerve. 
A simplex

Δn

A

ζ
ω∗u∗(W ∗(P))

NFo

corresponds by adjunction to a map

W!(u∗ω!(A)) −→ P

which in turn gives rise to a functor



1026 G. Heuts et al. / Advances in Mathematics 302 (2016) 869–1043
cat(W!(u∗ω!(A))) −→ cat(P). (5)

Note that we may write

W!(u∗ω!(A)) =
∐

p∈π0(A)

W!(u∗ω!(Ap))

where the coproduct is over the connected components of A, i.e. the trees constituting 
the forest ω!(A). Also, recall that W!(u∗ω!(Ap)) is the Boardman–Vogt resolution of the 
operad Ω(u∗ω!(Ap)), the free operad in Sets generated by the tree u∗ω!(Ap). For the 
rest of this proof, let us use the abbreviation Â = u∗ω!(A) to avoid awkward expressions. 
A simplex

Δn

A

ξ
Ncat(P)

NFo

is the same thing as a map

C(Δn) cat(P)

Fo

of simplicial categories over Fo, where the functor C is just the restriction of the func-
tor W! to simplicial sets (cf. Section 2.4), but we distinguish in notation to avoid 
possible confusion in what follows. There is a functor between simplicial categories 
over Fo

C(Δn)
φ

cat(W!Â)

Fo

which can be described as follows:

– On objects, φ(i) = A(i).
– Given the description of the Boardman–Vogt resolution in terms of labelled trees 

with ‘lengths’ assigned to inner edges of trees, there is an evident map

φi,j : C(Δn)(i, j) −→ cat(W!Â)(A(i), A(j)).
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Indeed, the simplicial set C(Δn)(i, j) is a cube whose vertices can be identified with 
maps v : {i +1, . . . , j−1} → {0, 1}, assigning lengths of either 0 or 1 to the inner edges 
of the simplex Δ{i,...,j}. To specify the corresponding vertex of cat(W!Â)(A(i), A(j)), 
we should specify for each inner edge of the forest ω!(A|Δ{i,...,j}) a length of either 0 
or 1. Each such inner edge e is an element of some A(k) for i < k < j and we simply 
assign v(k). The map φi,j is completely determined by this description.

Now precomposing the functor of (5) with the functor φ yields a map

ω∗u∗(W ∗(P))(A) −→ Ncat(P)(A).

Observe that this map is natural in A. Also, it respects markings: a marked 1-simplex 
of ω∗u∗(W ∗(P)) lying over an inert morphism f : 〈m〉 → 〈n〉 of Fo corresponds to a 
collection of equivalences {fi}i∈〈n〉 in the operad P and a collection of colours {ci}i∈Uf

, 
one for each i at which f is undefined. Clearly, this also corresponds to an inert 1-simplex 
of Ncat(P)(A) and hence to a marked 1-simplex of ν(P).

It remains to show that the map

α : ω∗u∗(W ∗(P)�) −→ ν(P)

is a weak equivalence. Since it is a map between fibrant objects of POpo, it suffices to 
check the following:

(i) The map α is essentially surjective.
(ii) For each active morphism f : 〈k〉 → 〈1〉 the induced map

αx,y : Map(x, y)f −→ Map(α(x), α(y))f

is a homotopy equivalence, for any x in the fiber over 〈k〉 and y in the fiber over 
〈1〉. Here, the Map on the left-hand side refers to a mapping space computed in 
ω∗u∗W ∗(P)�, the right-hand side to a mapping space in ν(P). Equivalently, we may 
also check this for the map

αL
x,y : MapL(x, y)f −→ MapL(α(x), α(y))f .

Recall (cf. [28]) that for an ∞-category C with vertices x and y, these mapping 
objects are defined as follows:

Hom(Δn,MapL(x, y))

= {x} ×Hom({0},C) Hom(Δn+1 �Δ{1,...,n+1} Δ0,C) ×Hom({1},C) {y}.

For (i), we note that α induces an isomorphism on vertices and hence is in particular 
essentially surjective. It remains to verify (ii). But the map αL

x,y above is in fact an 
isomorphism. Indeed, let T be the following tree:
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k leaves︷ ︸︸ ︷
· · ·

1
v

2

n + 1

Then the n-simplices of MapL(x, y)f (resp. MapL(α(x), α(y))f ) computed in
ω∗u∗(W ∗(P)�) (resp. ν(P)) canonically correspond to maps

W!(T ) �W!(∂vT ) W!(η) −→ P

sending the leaves of T to x and the root of T to y. The map α is compatible with these 
identifications. This concludes the proof. �
6.2. Compatibility with tensor products

Both the category POpo of non-unital ∞-preoperads and the category dSetso of 
open dendroidal sets carry a tensor product. Our goal in this section is to compare these 
two structures. Let us begin with a brief review of the relevant definitions.

Definition 6.2.1. There is a functor ∧ : F × F −→ F which can be described as fol-
lows:

(i) On objects, we have 〈m〉 ∧ 〈n〉 = 〈mn〉.
(ii) For morphisms f : 〈m〉 → 〈m′〉 and g : 〈n〉 → 〈n′〉, we have

(f ∧ g)((k − 1)n + l) = (f(k) − 1)n′ + g(l)

where 1 ≤ k ≤ m and 1 ≤ l ≤ n.

In other words, the operation ∧ is given by identifying 〈m〉 × 〈n〉 with 〈mn〉 via the 
lexicographical ordering.

The operation ∧ is strictly associative, but manifestly not symmetric. We can use it 
to define a monoidal structure on POp as follows:
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Definition 6.2.2. For objects X, Y ∈ POp, their tensor product X � Y is the composite

X × Y NF� ×NF� ∧
NF�.

Observe that the operation � restricts to a monoidal structure on the smaller category 
POpo of non-unital preoperads.

We have already used the tensor products on dSetso and fSetso several times in this 
paper. Recall that for trees S and T , their tensor product S ⊗ T can be written as a 
colimit over the shuffles of the trees S and T (cf. [32]). The tensor product on dSetso is 
completely determined by this description and the fact that it preserves colimits in each 
variable separately. Similarly, the tensor product on fSetso is determined by the formula 
u!S⊗u!T = u!(S⊗T ), the fact that it distributes over sums and the fact that it preserves 
colimits in each variable separately (cf. Section 3.2). These tensor products also induce 
tensor products on the categories dSets+

o and fSets+
o of open marked dendroidal and 

marked forest sets respectively, as explained in Chapter 4. Recall that all the left Quillen 
equivalences in the diagram

dSetso

(−)�

fSetso
u∗

(−)�

dSets+
o fSets+

o

u∗

are compatible with tensor products. The key ingredient for our comparison results on 
tensor products is the following:

Theorem 6.2.3.

(i) For X and Y objects in POpo there is a map

θX,Y : ω!(X � Y ) −→ ω!(X) ⊗ ω!(Y )

which is natural in X and Y .
(ii) The natural transformation θ is a weak equivalence.

We will now construct the map θ and establish its desired properties. The preceding 
theorem will follow from Proposition 6.2.4. Since � and ⊗ preserve colimits in each 
variable separately and since ω! preserves colimits, it suffices to define θ on representables 
X and Y (i.e. simplices, possibly with markings) and extend its definition by colimits. 
In fact, if one can prove that part (ii) of the theorem holds for simplices, it holds for all 
X and Y by induction on skeletal filtrations in view of the cube lemma (cf. the proof of 
Lemma 5.3.7) applied to cubes of the form
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ω!(∂A� Y ) ω!(X � Y )

ω!(A� Y ) ω!(X ′ � Y )

ω!(∂A) ⊗ ω!(Y ) ω!(X) ⊗ ω!(Y )

ω!(A) ⊗ ω!(Y ) ω!(X ′) ⊗ ω!(Y )

arising from a pushout

∂A X

A X ′.

This reduction to simplices using the skeletal filtration is standard and has already been 
used several times in this paper, so we omit the details.

Let us turn our attention to constructing the map θA,B for two (marked) simplices

A : (Δm,EA) −→ NF� and B : (Δn,EB) −→ NF�.

We first introduce some helpful terminology:

– Recall that the cartesian product Δm×Δn can also be described in terms of shuffles: 
this product is a union of m + n-simplices (each of which is called a shuffle), one 
corresponding to every way of linearly ordering m white vertices and n black vertices, 
respecting the order already existing on each colour. There are 

(
m+n
m

)
such shuffles.

– A layered forest is a forest F with a function λ : vertices(F ) → N, such that for 
any path from a leaf to a root, this function increases by 1 from any vertex to the 
next. In other words, given an inner edge e with bottom vertex w and top vertex v, 
we have λ(w) = λ(v) + 1. A layer of such a forest is simply a set of vertices of 
the form λ−1(i). The forests ω!(A) and ω!(B) are naturally layered in an obvious 
way; for example, given a vertex va of ω!(A) arising from some a ∈ A(i), we set
λ(va) = i.

– Given two layered forests F and G (with layerings λF and λG), we can consider 
the layered shuffles of F and G. To be precise, consider any shuffle S of F and G. 
A vertex of S corresponds to either a vertex of F or a vertex of G. We say S is 
layered if it admits the structure of a layering λS in such a way that each layer 
of S is precisely the set of vertices corresponding to either a layer of F or a layer 
of G.
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As an example, consider the 2-simplex A� and 1-simplex B� of NF� pictured below:

0

1

2

0

1
A: B:

The set of shuffles of the forests ω!(A) and ω!(B) looks as follows:

S1 S2

S3

S4

S5

However, the only shuffles that are layered are S1, S2 and S5. Now, for any two marked 
simplices

A : (Δm,EA) −→ NF�
o and B : (Δn,EB) −→ NF�

o

it should be clear that ω!(A �B) is the union of the layered shuffles of the forests ω!(A)
and ω!(B), corresponding precisely to the shuffles of the simplices Δm and Δn. On the 
other hand, ω!(A) ⊗ω!(B) is the union of all the shuffles of the forests ω!(A) and ω!(B). 
There is an evident inclusion

θA,B : ω!(A�B) −→ ω!(A) ⊗ ω!(B)

which is easily seen to be natural in A and B. This takes care of part (i) of Theorem 6.2.3. 
It remains to deal with part (ii):

Proposition 6.2.4. For simplices A and B as above, the map θA,B is a weak equivalence.

Proof. Just for simplicity of notation, we will not indicate markings in this proof and 
leave them implicit. They play no essential role here. First of all, we consider the Segal 
cores of A and B, which give trivial cofibrations
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Sc(A) =
m−1⋃
i=0

Δ{i,i+1} −→ A,

Sc(B) =
n−1⋃
i=0

Δ{i,i+1} −→ B.

By the fact that ω! is left Quillen and �, ⊗ are left Quillen in each variable separately, 
it suffices to prove that θSc(A),Sc(B) is a weak equivalence. Invoking the cube lemma 
again, we can now reduce to the case where A and B are both of dimensions 0 or 1. By 
Lemma 5.3.11, we may reduce further to the case where both A and B are ‘connected’ 
simplices, i.e. the case where the forests ω!(A) and ω!(B) each have at most one com-
ponent. Then we either have ω!(A) � ∅, ω!(A) � η or ω!(A) � Ck for some k ≥ 1 and 
similarly for B. In these cases, θA,B is an isomorphism. �

Let us prove a corollary that was already mentioned in Section 2.5:

Corollary 6.2.5. For cofibrant objects P, Q ∈ fSets+
o there is a natural weak equivalence

ω∗(P ) � ω∗(Q) −→ ω∗(P ⊗Q).

Proof. There are natural weak equivalences

ω!(ω∗(P ) � ω∗(Q)) −→ ω!ω
∗(P ) ⊗ ω!ω

∗(Q) −→ P ⊗Q,

the first one coming from Theorem 6.2.3, the second one from Proposition 5.3.12 and the 
fact that the functors ω∗ and ω̄∗ are weakly equivalent. We will denote their composition, 
which is a weak equivalence, by ψ. Now consider the diagram

ω∗(P ) � ω∗(Q) ω∗(P ⊗Q)

ω∗((P ⊗Q)f
)

where the subscript f denotes a fibrant replacement. The horizontal map is the adjoint 
of ψ. The skew map is a weak equivalence since the pair (ω!, ω∗) is a Quillen equivalence 
and ψ is a weak equivalence. The vertical map is a weak equivalence because ω∗ preserves 
weak equivalences between cofibrant objects: indeed, ω∗ is weakly equivalent to ω̄∗, which 
is a left Quillen functor. The result now follows by two-out-of-three. �
6.3. Homotopical monoidal structures

The tensor products on the categories dSets and fSets are not associative. We al-
ready encountered this defect in Section 3.5 when discussing the weak enrichments of 
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these categories over the category of simplicial sets. There we showed that the neces-
sary associativity constraints, although not isomorphisms, are weak equivalences. More 
generally, the tensor products of dendroidal sets and forest sets, while not being associa-
tive up to isomorphism, can be made associative up to weak equivalence. In particular, 
the homotopy categories of dSets and fSets are symmetric monoidal categories. In this 
section we will formalize such ‘weakly associative’ monoidal structures and their coher-
ence. We will show that the relevant coherence maps are again weak equivalences and 
we formulate a comparison to the monoidal structure on Lurie’s ∞-preoperads.

Recall that for a coloured operad P in Sets we write ι∗P for its underlying category, 
consisting of the unary operations of P. We call P corepresentable if, for any tuple 
(x1, . . . , xn) of colours of P, the functor

P(x1, . . . , xn;−) : ι∗P −→ Sets

is corepresentable.

Definition 6.3.1. For a category C, a lax symmetric monoidal structure on C is a corep-
resentable operad P with ι∗P = C. Dually (and more relevant to our examples), a colax 
symmetric monoidal structure on a category C is a lax symmetric monoidal structure 
on the opposite category Cop.

Our first goal in this section is to exhibit colax symmetric monoidal structures on 
the model categories dSets and fSets and their marked variants. We will give a more 
elaborate reformulation of this definition below, but first we need to introduce some 
notation.

We will need the category Ωpl of planar trees: the objects are trees, like the objects 
of Ω, but now also equipped with a planar structure. The maps in Ωpl are as in Ω, 
but with the extra requirement that they preserve the planar structure. In particular, 
every object in Ωpl has no other automorphisms than the identity. Also, we consider the 
category Ωs having the same objects as Ωpl, but now with all maps between trees, not 
necessarily preserving planar structures. There is an obvious embedding Ωpl → Ωs and 
a functor Ωs → Ω forgetting the planar structure on the objects. The latter functor is 
an equivalence of categories. Finally, we will consider the subcategories

Ωin
pl ⊆ Ωpl, Ωin

s ⊆ Ωs,

which have the same objects, but with arrows generated by inner face maps, degeneracies 
and isomorphisms only.

Let E be a category with a colax symmetric monoidal structure. This structure deter-
mines, by corepresentability, a sequence of functors

⊗n : En −→ E, n ≥ 0.
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For n = 0 this gives an object of E called the unit and denoted I. For n = 1, the functor 
⊗1 : E → E is the identity functor of E. For general n we just write X1 ⊗ · · · ⊗Xn for 
⊗n(X1, . . . , Xn). By induction on trees and composition of functors, this gives for each 
planar tree T ∈ Ωpl a functor

⊗T : El(T ) −→ E,

with l(T ) denoting the (ordered) set of leaves of T . Explicitly, if T is a corolla Cn then 
⊗T = ⊗n, if T = η then ⊗η = idE and if T = Cn � (T1, . . . , Tn) is the tree obtained by 
grafting trees T1, . . . , Tn onto the leaves of the corolla Cn, then ⊗T is the composition

⊗T = ⊗n ◦ (⊗T1 , . . . ,⊗Tn
).

The colax symmetric monoidal structure (specifically, composition of operations in 
the associated operad), determines an extension of the collection of these functors ⊗T to 
a contravariant functor on Ωin

pl. More precisely, the ⊗T are equipped with the following 
structure. Each morphism α : S → T in Ωin

pl induces an isomorphism l(α) : l(S) → l(T ). 
For each such α and X ∈ El(T ) there is a natural map

α∗ : ⊗T (X) −→ ⊗S(X ◦ l(α)).

These maps are functorial in α. (One can of course encode the collection of such α’s 
into a single functor from the category 

∫
Ωin

pl
El(−) back to E, where the first denotes the 

fibered category associated to the functor (Ωin
pl)op → Cat sending T to El(T ).)

Example 6.3.2. If α is the following map ∂e

∂e e

then

∂∗
e : X1 ⊗ (X2 ⊗X3) −→ X1 ⊗X2 ⊗X3,

while for

∂a a

we obtain a map

∂∗
a : X ⊗ I −→ X.
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In the examples relevant to us, all maps coming from contracting an edge below a 
nullary vertex are in fact isomorphisms. If this is the case, we say that the unit is strong. 
The symmetry of the colax monoidal structure provides a further extension of the above 
to a functor on Ωin

s . This symmetry gives for each (non-planar) isomorphism σ : T → T ′

of trees, with induced isomorphism l(σ) on leaves, an isomorphism

σ∗ : ⊗TX −→ ⊗T ′(X ◦ l(σ)), X ∈ El(T ).

These natural transformations σ∗ are completely determined by the maps associated 
to isomorphisms between corollas. The reader should observe that the colax symmetric 
monoidal structure on E is completely determined by the data of the tensor products ⊗n

and the maps α∗, σ∗ together with their functoriality described above.

Definition 6.3.3. A colax symmetric monoidal structure on a model category E is homo-
topical if for each morphism α : S → T in Ωin

s and each l(T )-indexed sequence X ∈ El(T )

consisting of cofibrant objects, the map α∗ is a weak equivalence.

The reader should observe that the homotopy category of a colax symmetric monoidal 
model category can naturally be made a symmetric monoidal category.

Theorem 6.3.4. The (binary) tensor product on dSets can be extended to a colax sym-
metric monoidal structure. When restricted to the subcategory dSetso of open dendroidal 
sets, this monoidal structure is homotopical. The analogous statements hold true for the 
categories of forest sets, marked dendroidal sets and marked forest sets (and their open 
variants).

The proof of this theorem takes some space and will be concluded with Propo-
sition 6.3.6. To begin the proof, let us construct the required tensor products and 
associativity maps α∗. We work in the category dSets, the other cases being analo-
gous. The tensor products ⊗T are to preserve colimits in each variable separately. Thus, 
it suffices to construct the tensor product

X1 ⊗ · · · ⊗Xn

of a sequence of representable dendroidal sets in functorial fashion. To this end, set

X1 ⊗ · · · ⊗Xn = Nd(τd(X1) ⊗ · · · ⊗ τd(Xn)),

where the tensor product on the right is the n-fold Boardman–Vogt tensor product of 
operads and (τd, Nd) is the usual adjunction relating dendroidal sets and operads in sets. 
Note that the functor τd distributes over tensor products in dSets: this follows from the 
fact that it preserves colimits and that τdNd = id, which establishes distributivity on 
representables.
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Next, we wish to construct the relevant associativity maps. If α is a degeneracy we 
can take α∗ to be the identity. Now, by a straightforward induction on trees, it suffices 
to define α∗ in the case where α is the inner face map

∂i : Cn+m−1 −→ Cn ◦i Cm,

where the right-hand side denotes the tree obtained by grafting Cm onto the i’th leaf 
of Cn. So, we are looking for a natural map

X1 ⊗ · · · ⊗Xi−1 ⊗ (Y1 ⊗ · · · ⊗ Ym) ⊗Xi+1 ⊗ · · · ⊗Xn

X1 ⊗ · · · ⊗Xi−1 ⊗ Y1 ⊗ · · · ⊗ Ym ⊗Xi+1 ⊗ · · · ⊗Xn.

The codomain is the nerve of an operad in sets, namely τd(X1) ⊗ · · · ⊗ τd(Xn). Using 
adjunction and the distributivity of τd over tensor products, it suffices to specify a map

τd(X1 ⊗ · · · ⊗Xi−1 ⊗ (Y1 ⊗ · · · ⊗ Ym) ⊗Xi+1 ⊗ · · · ⊗Xn)

τd(X1) ⊗ · · · ⊗ τd(Y1) ⊗ · · · ⊗ τd(Ym) ⊗ · · · ⊗ τd(Xn).

Using the distributivity of τd over tensor products in the domain, such a map is given 
by the associativity isomorphisms of the Boardman–Vogt tensor product of operads. It 
is routine to verify that the associativity maps thus defined for the tensor products on 
dSets have the required naturality and functoriality properties. Moreover, they can be 
made symmetric using the symmetry of the tensor product of operads. Also, the unit η
is strong.

We now wish to show that the colax symmetric monoidal structure on dSetso is 
homotopical. To be able to use skeletal induction, we need the following:

Lemma 6.3.5. Let X1, . . . , Xi−1, Xi+1, . . . , Xn be normal dendroidal sets, which are more-
over open. Then the functor

dSetso → dSetso : Xi �−→ X1 ⊗ · · · ⊗Xi−1 ⊗Xi ⊗Xi+1 ⊗ · · · ⊗Xn

preserves cofibrations and trivial cofibrations.

The case n = 2 follows from Propositions 3.4.1, 3.6.2 and 3.8.4 (and Lemma 4.3.4 in 
the marked case). Proving the analogous statement for higher n is done in completely 
analogous fashion; we omit the details. To prove that the colax symmetric monoidal 
structure is homotopical, we may now (using the previous lemma) apply the usual skeletal 
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induction to reduce to the case where all the Xi are representable dendroidal sets Ti. 
In fact, using the Segal core inclusions Sc(Ti) → Ti, which are trivial cofibrations, and 
applying the lemma again, we may reduce to the case where all the Xi are simply corollas. 
Theorem 6.3.4 is then a consequence of the following:

Proposition 6.3.6. For a tree T ∈ Ωin
s with n leaves, let α : Cn → T denote the map 

contracting all the inner edges of T . For a collection of corollas X1, . . . , Xn, the map

α∗ : ⊗T (X1, . . . , Xn) −→ X1 ⊗ · · · ⊗Xn

is a trivial cofibration of dendroidal sets.

Proof. Since the unit of the tensor product is strong, we can without loss of generality 
assume that T has no nullary vertices. Then the cases n = 1, 2 of the statement of the 
proposition are trivial. For n ≥ 3 and any collection of corollas X1, . . . , Xn, we will prove 
that the map

ι : X1 ⊗ (X2 ⊗ · · · ⊗Xn) −→ X1 ⊗X2 ⊗ · · · ⊗Xn

is inner anodyne. Afterwards, we will show how the statement of the proposition can be 
deduced from this. Note that ι is a special case of a map of the form α∗, for T a tree 
with a binary vertex at the root and a vertex of valence n − 1 attached to it.

The n-fold tensor product X1 ⊗ · · · ⊗ Xn is a union of the shuffles of the corollas 
X1, . . . , Xn as in the case of binary tensor products. The tensor product X1 ⊗ (X2 ⊗
· · · ⊗Xn) is the union of a subset of these shuffles (see the proof of Proposition 3.6.9 for 
a typical example). Consider the set of shuffles Σ of X1 ⊗ · · · ⊗Xn; it can be partially 
ordered by declaring S1 < S2 whenever S2 is obtained from S1 by shuffling vertices 
corresponding to the vertex of X1 downwards (i.e. towards the root). Extend this partial 
order to a linear order in an arbitrary fashion. Now filter the map ι by adjoining the 
shuffles in Σ one by one according to the chosen order to obtain a sequence of maps

X1 ⊗ (X2 ⊗ · · · ⊗Xn) =: A0 ⊆ A1 ⊆ · · · ⊆ AN = X1 ⊗ · · · ⊗Xn.

Consider an inclusion Ai ⊆ Ai+1 given by adjoining some shuffle S. The tree S has a 
set V of distinguished vertices corresponding to the vertex of the corolla X1. Define a 
V -pruning to be a subtree of S that contains all the vertices of V and is obtained from 
S by iteratively chopping off leaf vertices and root vertices. These V -prunings form a 
partially ordered set P by declaring P1 < P2 if P1 is a subtree of P2. This poset has a 
minimal element given by removing from S all vertices above V and all unary vertices 
at the root (if any). It also has a maximal element given by S itself. Note that the 
minimal V -pruning is already contained in A0. Extend the partial order on P to a linear 
order arbitrarily and adjoin all V -prunings one by one in this order to obtain a further 
filtration
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Ai =: A0
i ⊆ A1

i ⊆ · · · ⊆
⋃
j

Aj
i = Ai+1.

Consider an inclusion Aj
i ⊆ Aj+1

i given by adjoining a V -pruning P . Denote by E(P )
the collection of special edges of P : an edge is special if it is an input edge of a vertex 
in V and also an inner edge of P . Without loss of generality we may assume E(P ) to be 
non-empty: if not, the pruning P has no vertices above the vertices of V and is therefore 
already contained in A0. Let I(P ) denote the set of inner edges of P and write

H(P ) = I(P ) − E(P ).

Now, for any subset H ⊂ H(P ), denote by P [H] the tree obtained from P by contracting 
all the edges in H(P ) − H. Pick a linear order on the subsets of H(P ) that extends 
the partial order of inclusion and adjoin the trees P [H] to Aj

i in this order to obtain a 
filtration

Aj
i =: Aj,0

i ⊆ Aj,1
i ⊆ · · · ⊆

⋃
k

Aj,k
i = Aj+1

i .

Finally, consider an inclusion Aj,k
i ⊆ Aj,k+1

i given by adjoining a tree P [H]. If P [H] is 
already contained in Aj,k

i there is nothing to prove. If not, we can say the following:

– Any inner face of P [H] contracting a special edge, or a composition of inner faces 
contracting several special edges, is not contained in Aj,k

i . Indeed, P [H] is not con-
tained in Aj,k

i because the trees on top of the various vertices of V do not all stem 
from the same shuffle of Ck2 ⊗ · · · ⊗ Ckn

. For the same reason, a tree obtained by 
contracting any number of special edges is also not contained in Aj,k

i .
– Any inner face of P [H] contracting an edge that is not special is contained in Aj,k

i

by our induction on the size of H.
– Any outer face of P [H] contained in Aj,k

i is also contained in Aj
i by our induction on 

the size of prunings.

We conclude that the map Aj,k
i ⊆ Aj,k+1

i is a pushout of the inclusion

ΛE(P )[P [H]] −→ P [H]

and hence inner anodyne.
We have proved ι is a trivial cofibration (for all n ≥ 3). It remains to treat the general 

case of a map

α∗ : ⊗T (X1, . . . , Xn) −→ X1 ⊗ · · · ⊗Xn.

The left-hand side is the union of a subset of the shuffles that make up the right-hand side, 
so that α∗ is a normal monomorphism. Consider a maximal binary expansion β : T → T̂
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of the tree T : that is, a composition of inner face maps such that the tree T̂ contains 
only binary vertices. It is clear that such an expansion always exists. The composition 
β ◦ α : Cn → T̂ (which is itself a maximal binary expansion of Cn) may be factored into 
elementary expansions, i.e. maps of the following form:

v

· · · · · ·

· · ·

w

u

· · ·
· · ·

· · ·

The dots indicate that we are only picturing the relevant part of the trees in question: 
more may be attached to the roots and leaves of the corollas drawn. In words, an ele-
mentary expansion is a map decomposing a vertex v into a composition w ◦2 u, where w
is binary and u has valence one less than v. Let γ denote such an elementary expansion. 
By what we proved above, γ∗ is a trivial cofibration. Indeed, it is a tensor product of 
a map of the form ι with a sequence of normal and open dendroidal sets and hence 
itself a trivial cofibration by Lemma 6.3.5. We conclude that (β ◦ α)∗ is a trivial cofi-
bration. Similarly, the map β : T → T̂ may be factored into elementary expansions, so 
that β∗ is a trivial cofibration as well. By two-out-of-three, we conclude that α∗ must 
be a trivial cofibration. This concludes the proof of the proposition and hence also of 
Theorem 6.3.4. �

Since the category POpo is monoidal, its binary tensor product � can be used to 
construct a colax (non-symmetric) monoidal category for which all the associativity 
maps α∗ are isomorphisms. A straightforward elaboration of the proof of Theorem 6.2.3
then gives the following:

Lemma 6.3.7. For any objects X1, . . . , Xn ∈ POpo and T a tree with n leaves, there 
exists a weak equivalence

θTX1,...,Xn
: ω!

(
�T (X1, . . . , Xn)

)
−→ ⊗T (ω!X1, . . . , ω!Xn).

Furthermore, these equivalences are natural in the Xi and are compatible with the asso-
ciativity maps α∗ for the tensor products � and ⊗.

To be more specific, the map θTX1,...,Xn
is constructed as in the proof of Theorem 6.2.3. 

The fact that it is a weak equivalence is a consequence of Theorem 6.2.3, using a maximal 
binary expansion of T on both sides combined with the fact that the colax monoidal 
structures on POpo and fSets+

o are homotopical. Note that in this last step we are also 
using that all the objects involved are cofibrant (i.e. the Xi, ω!Xi and tensor products 
of such).
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We wish to conclude that ω! induces an equivalence of symmetric monoidal cate-
gories between Ho(POpo) and Ho(fSets+

o ). However, the tensor product on POpo is 
not symmetric. Still, it is symmetric ‘up to weak equivalence’ and can be used to give 
Ho(POpo) a symmetric monoidal structure. We briefly recall how this is done and then 
prove Proposition 6.3.10 below.

Definition 6.3.8. Let F : F×n
o −→ Fo be a functor. We will say F is an n-fold smash 

product if:

– F (〈1〉, . . . , 〈1〉) = 〈1〉;
– F preserves coproducts in each variable separately.

The functor ∧ we used to define � is a two-fold smash product. For every n, the 
collection of n-fold smash products and natural isomorphisms between them form a 
groupoid which is denoted S(n). Since there is a unique natural isomorphism between 
any two n-fold smash products, this groupoid is contractible. In fact, by composing smash 
products, these groupoids fit together into a (strict) operad in groupoids, which we will 
denote by S.

It is important to observe that for the construction of the natural transformation θ
of Theorem 6.2.3, the choice of (two-fold) smash product used to construct the tensor 
product � is completely irrelevant. To be more precise, the observations we made before 
will also prove the following:

Lemma 6.3.9. Let P1, . . . , Pn be objects of POpo, let σ be a k-simplex of the nerve of 
S(n) and define 

⊙
σ{Pi}1≤i≤n to be the composition

(Δk)� ×
∏n

i=1 Pi (Δk)� × (NF�
o)×n σ̄

NF�
o

where the map σ̄ corresponds to the simplex σ. Then there are natural weak equivalences

ω!
(⊙

σ

{Pi}1≤i≤n

)
−→ (Δk)� ⊗ ω!

( n⊙
i=1

Pi

)
−→ (Δk)� ⊗

n⊗
i=1

ω!(Pi),

the second map coming from Lemma 6.3.7.

Define a (symmetric) simplicial coloured operad 
(
POpo

)⊗
S

as follows:

– Let the colours of 
(
POpo

)⊗
S

be the fibrant (and automatically cofibrant) objects of 
POpo.

– For fibrant objects X1, . . . , Xn and Y , let the k-simplices of the simplicial set (
POpo

)⊗(X1, . . . , Xn; Y ) be commutative diagrams of the form

S
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(Δk)� ×
∏n

i=1 Xi Y

(Δk)� × (NF�
o)×n NF�

o

where the bottom horizontal arrow corresponds to a k-simplex of the nerve of S(n).
– Define composition using the operad structure on S(n).
– The symmetric group Σn acts by permuting the Xi and through its evident action 

on S(n).

Denote by Ho
((

POpo

)⊗
S

)
the operad in sets obtained by taking connected components 

of the simplicial sets defining the operations in 
(
POpo

)⊗
S

. This operad has underlying 
category Ho(POpo) and defines a symmetric monoidal structure on this category; this 
is immediate from the observation that the functor Ho

((
POpo

)⊗
S

)
(X1, . . . , Xn : −) is 

corepresented by X1 � · · · �Xn and the fact that this operad is symmetric.
Now for fibrant–cofibrant objects X1, . . . , Xn, Y ∈ fSets+

o , define a simplicial set as 
follows:

(
fSets+

o

)⊗
S

(X1, . . . , Xn;Y ) := Map�
( n⊗
i=1

Xi, Y
)
×S(n).

These simplicial sets do not naturally form a coloured operad. Indeed, the associativ-
ity maps α∗ go the wrong way if one were to try to define composition (the analogous 
construction for the opposite category of fSets+ would give a simplicial operad). How-
ever, taking the connected components of these simplicial sets does give an operad 
Ho

((
fSets+

o

)⊗
S

)
in sets; indeed, the associators α∗ have inverses in the homotopy cate-

gory Ho(fSets+
o ) which can be used to define composition. Again, this operad encodes 

the symmetric monoidal structure of Ho(fSets+
o ).

Proposition 2.5.7 now follows from the next result, together with the fact that fSets+
o

and dSetso are linked by a chain of symmetric monoidal Quillen equivalences:

Proposition 6.3.10. The functor ω∗ induces an equivalence of operads

Ho
((

fSets+
o

)⊗
S

)
→ Ho

((
POpo

)⊗
S

)
.

Proof. We will use ω∗ to define maps of simplicial sets

(
fSets+

o

)⊗
S

(X1, . . . , Xn;Y ) −→
(
POpo

)⊗
S

(ω∗X1, . . . , ω
∗Xn;ω∗Y )

which induce an equivalence of operads after passing to connected components. 
A k-simplex of the left-hand side is a map
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f : (Δk)� ⊗
n⊗

i=1
Xi −→ Y

and a k-simplex σ of S(n). We have to define a diagram

(Δk)� ×
∏n

i=1 ω
∗(Xi) ω∗(Y )

(Δk)� × (NF�
o)×n NF�

o.

By adjunction, this is equivalent to defining a map

ω!
(⊙

σ

{ω∗Xi}1≤i≤n

)
−→ Y.

Such a map is given by the composition

ω!
(⊙

σ

{ω∗Xi}1≤i≤n

)
−→ (Δk)� ⊗

n⊗
i=1

ω!ω
∗(Xi) −→ (Δk)� ⊗

n⊗
i=1

Xi −→ Y,

where the first arrow is the map θ provided by Lemma 6.3.9, the second one is induced by 
the counit of the adjunction and the last one is the map f . It is straightforward to verify 
that the definition of this map is natural and yields a map of operads after passing to 
connected components. The fact that ω∗ induces an equivalence of homotopy categories 
Ho(fSets+

o ) → Ho(POpo) combined with Lemma 6.3.7 proves that this map of operads 
is in fact an equivalence. �
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