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Abstract
Wegive a newconstruction of𝑝-typicalWitt vectorswith
coefficients in terms of ghost maps and show that this
construction is isomorphic to the one defined in terms
of formal power series from the authors’ previous paper.
We show that our construction recovers Kaledin’s poly-
nomial Witt vectors in the case of vector spaces over
a perfect field of characteristic 𝑝. We then identify the
components of the 𝑝-typical TR with coefficients, origi-
nally defined by Lindenstrauss and McCarthy and later
reworked by the second and third authors in joint work
with McCandless, with the 𝑝-typical Witt vectors with
coefficients. This extends a celebrated result of Hessel-
holt and Hesselholt–Madsen relating the components
of TR with the Witt vectors. As an application, we give
an algebraic description of the components of the Hill–
Hopkins–Ravenel norm for cyclic 𝑝-groups in terms of
𝑝-typical Witt vectors with coefficients.
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INTRODUCTION

In the paper [7], we define theWitt vectors𝑊(𝑅;𝑀) of a ring 𝑅with coefficients in an 𝑅-bimodule
𝑀. This construction extends the usual bigWitt vectors of a commutative ring, recovering it in the
casewhere𝑀 = 𝑅. Our approach is analogous to the construction ofWitt vectors of a commutative
ring in terms of power series (see, e.g. [6]), by replacing it with the completed tensor algebra. In
the present paper, we give an alternative description of the 𝑝-typicalWitt vectors with coefficients
which aligns with the original construction of Witt [24] based onWitt polynomials. In particular,
we show that for𝑀 = 𝑅, our construction recoversHesselholt’s definition of𝑝-typicalWitt vectors
for non-commutative rings of [9]. We also compare our construction to Kaledin’s definition of
polynomial Witt vectors from [15], as well as describing the components of topological restriction
homology TRwith coefficients as defined in [18] and [17], and, in particular, of the Hill–Hopkins–
Ravenel norm for cyclic 𝑝-groups, in terms of p-typical Witt vectors.
Let us fix a prime 𝑝. TheWitt polynomials are the 𝑛-variable polynomials𝑤𝑗 ∈ ℤ[𝑎0, … , 𝑎𝑛−1],

defined for 0 ⩽ 𝑗 < 𝑛 as

𝑤𝑗 = 𝑎
𝑝𝑗

0
+ 𝑝𝑎

𝑝𝑗−1

1
+ 𝑝2𝑎

𝑝𝑗−2

1
+⋯ + 𝑝𝑗−1𝑎

𝑝

𝑗−1
+ 𝑝𝑗𝑎𝑗.

The ring of𝑛-truncated𝑝-typicalWitt vectors𝑊𝑛(𝐴) of a commutative ring𝐴 can be characterised
as the unique ring structure on the set𝐴×𝑛 which is functorial in𝐴 and with the property that the
‘ghost maps’ 𝑤𝑗 ∶ 𝐴×𝑛 → 𝐴 defined by the Witt polynomials are ring homomorphisms for every
0 ⩽ 𝑗 < 𝑛. Given any ring 𝑅 and 𝑅-bimodule 𝑀, let us define a variant of these ghost maps, by
formally replacing the 𝑝th powers in the ghost map with tensor powers of𝑀. For a bimodule𝑀
over a ring 𝑅, we define an 𝑅-bimodule and an abelian group , respectively, by
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WITT VECTORS WITH COEFFICIENTS AND TR 3 of 62

where is the abelian subgroup generated by the elements 𝑟𝑚 −𝑚𝑟 for 𝑟 ∈ 𝑅 and
.We think of as 𝑝𝑗 copies of𝑀 tensored together around a circle, and these define

an abelian group with a natural action of the cyclic group 𝐶𝑝𝑗 . We then define an analogue of the
𝑗th ghost map

by sending a sequence 𝑎0, 𝑎1, … , 𝑎𝑛−1 to the invariant represented by

𝑤𝑗(𝑎0, 𝑎1, … , 𝑎𝑛−1) ∶= 𝑎
⊗𝑝𝑗

0
+

∑
𝜎∈𝐶

𝑝𝑗
∕𝐶

𝑝𝑗−1

𝜎
(
𝑎
⊗𝑝𝑗−1

1

)
+

∑
𝜎∈𝐶

𝑝𝑗
∕𝐶

𝑝𝑗−2

𝜎
(
𝑎
⊗𝑝𝑗−2

2

)
+⋯

+
∑
𝜎∈𝐶

𝑝𝑗

𝜎(𝑎𝑗),

where is the automorphism given by the cyclic action. Here, we write 𝑎⊗𝑝
𝑗−𝑖

𝑖
also for the corresponding equivalence class in the cyclic tensor product.We then define an equiv-
alence relation on by forcing the ghost map to be injective on free bimodules (see
Definition 1.3), and define the 𝑝-typical Witt vectors, as a set, as the quotient

by this relation. This situation is analogous to the Witt vectors for non-commutative rings𝑊𝑛(𝑅)

of [9], which as a set is a certain quotient of the product
∏𝑛−1

𝑖=0 𝑅. The following is the main result
of §1.1.

Theorem A. Let 𝑝 be a prime, 𝑛 ⩾ 1 an integer, 𝑅 a ring and 𝑀 an 𝑅-bimodule. There is a
unique abelian group structure and lax symmetric monoidal structure on𝑊𝑛,𝑝(𝑅;𝑀) such that 𝑤𝑗
is additive andmonoidal for all 0 ⩽ 𝑗 < 𝑛, and a natural monoidal isomorphism of abelian groups

𝑊𝑛,𝑝(𝑅;𝑀) ≅ 𝑊⟨𝑝𝑛−1⟩(𝑅;𝑀),
where𝑊⟨𝑝𝑛−1⟩(𝑅;𝑀) is the group of 𝑝-typical (𝑛 − 1)-truncated Witt vectors of [7].

When 𝑀 = 𝑅 with the canonical 𝑅-bimodule structure, there is a natural isomorphism of
abelian groups between𝑊𝑛,𝑝(𝑅; 𝑅) and Hesselholt’s group of 𝑝-typical 𝑛-truncated Witt vectors
of non-commutative rings of [9] (see Corollary 1.7). This follows from the fact that

and under this isomorphism, the ghost maps are given by the usual Witt polynomials. As an
immediate consequence of the symmetric monoidal structure,𝑊𝑛,𝑝 extends to a functor from the
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4 of 62 DOTTO et al.

category of algebras over commutative rings to rings, which sends commutative algebras to com-
mutative rings. In particular, when𝑅 is commutative the isomorphism above identifies𝑊𝑛,𝑝(𝑅; 𝑅)

with the usual ring of Witt vectors.
The groups𝑊𝑛,𝑝(𝑅;𝑀) also extend Kaledin’s construction of polynomialWitt vectors from [15]

and [16], as follows. We let 𝑄𝑛(𝑅;𝑀) be the abelian group defined as the cofibre of the transfer
map

Kaledin defines in [15] and [16] a functor𝑊𝑛 of ‘polynomialWitt vectors’ on the category of vector
spaces over a perfect field 𝑘 of characteristic 𝑝, in terms of the functor𝑄𝑛. The following theorem,
proved in §1.3, provides a similar description for 𝑊𝑛,𝑝, showing that 𝑊𝑛,𝑝 restricts to Kaledin’s
construction on the subcategory of 𝑘-vectors spaces.

Theorem B. For every prime 𝑝 and integer 𝑛 ⩾ 1, there is a surjective lax symmetric monoidal
natural transformation

𝑤𝑛 ∶ 𝑊𝑛,𝑝(𝑅∕𝑝;𝑀∕𝑝)⟶ 𝑄𝑛(𝑅;𝑀).

It is an isomorphism when 𝑅 is a commutative ring with no 𝑝-power torsion, 𝑅∕𝑝 is perfect and𝑀
is a free 𝑅-module. It follows that𝑊𝑛,𝑝(𝑘; 𝑉) is isomorphic to the polynomial Witt vectors𝑊𝑛(𝑉) of
[15] for every 𝑘-vector space 𝑉 and perfect field 𝑘 of characteristic 𝑝.

When𝑀 = 𝑅, the isomorphismof the theorem recovers the fact that if𝑅 has no𝑝-power torsion
and is commutative, with perfect 𝑅∕𝑝, then𝑊𝑛(𝑅∕𝑝) ≅ 𝑅∕𝑝𝑛.
In homotopy theory, the ring of Witt vectors arises when one considers the cyclotomic struc-

ture on topological Hochschild homology. Hesselholt and Madsen show in [12] and [9] that the
𝑝-typical Witt vectors of a ring 𝑅 are isomorphic to 𝜋0 of the 𝑝-typical topological restriction
homology spectrum TR(𝑅). In [18], Lindenstrauss and McCarthy define a version of TR with
coefficients in an 𝑅-bimodule, as the derived cyclic invariants

of a genuine 𝐶𝑝𝑛 -spectrum , which is the derived analogue of the algebraic cyclic tensor
product used in the definition of the Witt vectors. The foundations of this theory have been
reworked in [17] by McCandless and the second and third authors, in a way analogous to the
approach to topological cyclic homology of [19]. In particular, for every prime 𝑝 and integer 𝑛 ⩾ 0,
the authors give a description of TR as an equaliser

where THH(𝑅;𝑀) is the usual topological Hochschild homology spectrum with coefficients, and
THH(𝑅;𝑀∧𝑅𝑝

𝑖
) carries a certain action of the cyclic group 𝐶𝑝𝑖 . The maps of the equaliser are

defined from the canonical map from homotopy fixed points to the Tate construction, and from
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WITT VECTORS WITH COEFFICIENTS AND TR 5 of 62

certain Frobenius maps THH(𝑅;𝑀) → THH(𝑅;𝑀∧𝑅𝑝)𝑡𝐶𝑝 (see §2). From this equaliser formula,
one can easily deduce, for every spectrum 𝐴, an equivalence

TR⟨𝑝𝑛⟩(𝕊; 𝐴) = (𝑁
𝐶𝑝𝑛
𝑒 𝐴)𝐶𝑝𝑛

with the genuine fixed points of the norm construction of cyclic 𝑝-groups of Stolz [21] and Hill–
Hopkins–Ravenel [13]. The components of this norm have been computed by Mazur when 𝐴 =

𝐻𝔽𝑝 (see [2, Proposition 5.23]), and for 𝑝 = 2 and 𝑛 = 1 in [8, Proposition 5.5]. In Theorem 2.5, we
extend this calculation to all connective bimodules, showing the following:

Theorem C. Let 𝑅 be a connective ring spectrum and 𝑀 a connective 𝑅-bimodule. There is a
canonical isomorphism

𝑊⟨𝑝𝑛⟩(𝜋0𝑅; 𝜋0𝑀) ≅ 𝜋0 TR⟨𝑝𝑛⟩(𝑅;𝑀),
which is, moreover, natural in (𝑅;𝑀) and monoidal. In particular, for every connective spec-
trum 𝐴, this gives an isomorphism 𝑊⟨𝑝𝑛⟩(ℤ; 𝜋0𝐴) ≅ 𝜋0(𝑁

𝐶𝑝𝑛
𝑒 𝐴)𝐶𝑝𝑛 with the components of the

Hill–Hopkins–Ravenel norm construction, which is a ring isomorphism when 𝐴 is a ring spectrum.

The proof of this theorem is somewhat similar to Hesselholt and Madsen’s proof of the isomor-
phism between the usual 𝑝-typical Witt vectors 𝑊𝑛+1(𝐴) and the components of the 𝐶𝑝𝑛 -fixed
points of THH(𝐴), for a commutative ring 𝐴. The argument is by induction, by comparing cer-
tain fibre sequences for TR established in [17] with the exact sequences for the Witt vectors from
[7, §1.5]. A similar description of the components of the norm for any finite group 𝐺 has been
obtained by Read in [20], with a variation of our Witt vectors construction.
By a result of [17], the spectrum TR⟨𝑝𝑘⟩(𝑅;𝑀∧𝑅𝑝

𝑛−𝑘
) is the 𝐶𝑝𝑘 -fixed-points of a genuine 𝐶𝑝𝑛 -

spectrum TR⟨𝑝𝑛⟩(𝑅;𝑀), for every 0 ⩽ 𝑘 ⩽ 𝑛. For example, when 𝑅 is the sphere spectrum, this is
the cyclic norm construction

TR⟨𝑝𝑛⟩(𝕊; 𝐴) = 𝑁
𝐶𝑝𝑛
𝑒 𝐴

for every spectrum 𝐴. In Proposition 2.13, we identify the Mackey structure on 𝜋0TR⟨𝑝𝑛⟩(𝑅;𝑀)
in terms of the Witt vectors operators introduced in [7] and in §1.2. The characterisation of this
Mackey structure suggests a relationship between the Witt vectors with coefficients and the free
Tambara functor on a commutative ring. In [5, Theorem B], Brun describes the free 𝐶𝑝𝑛 -Tambara
functor on a commutative ring with trivial 𝐶𝑝𝑛 -action in terms of the usual ring of Witt vectors
𝑊𝑛+1(𝐴). In §2.3, we show that the Witt vectors with coefficients, in fact, compute the free 𝐶𝑝𝑛 -
Tambara functor on every commutative ring.

Corollary D. Let 𝐴 be a commutative ring, 𝑝 a prime and 𝑛 ⩾ 0 an integer. The association 𝐶𝑝𝑖 ↦
𝑊𝑖+1(ℤ;𝐴

⊗𝑝𝑛−𝑖 ) equippedwith the operators𝐹,𝑉 and𝑁 of §1.2 form a𝐶𝑝𝑛 -Tambara functor, which
is the free 𝐶𝑝𝑛 -Tambara functor on the commutative ring 𝐴.

1 THE 𝒑-TYPICALWITT VECTORSWITH COEFFICIENTS

In [7], we defined the Witt vectors with coefficients in a way analogous to the definition of the
(big) Witt vectors of a commutative ring in terms of power series [6]. In this section, we give an
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6 of 62 DOTTO et al.

alternative description of the 𝑝-typical Witt vectors with coefficients, more in line with the usual
construction of 𝑝-typical Witt vectors for commutative rings of [24].
We start by recalling the definition of Witt vectors with coefficients of [7]. Let 𝑅 be a ring and

𝑀 an 𝑅-bimodule. We let 𝑇(𝑅;𝑀) =
∏

𝑛⩾0 𝑀
⊗𝑅𝑛 be the completed tensor algebra, and 𝑆(𝑅;𝑀) =

1 ×
∏

𝑛⩾1 𝑀
⊗𝑅𝑛 ⊂ 𝑇(𝑅;𝑀) the multiplicative subgroup of special units. We denote the elements

of this group by power series

1 + 𝑚1𝑡 + 𝑚2𝑡
2 +⋯

with𝑚𝑖 ∈ 𝑀⊗𝑅𝑖 , and we let 𝜏∶ 𝑀 → 𝑆(𝑅;𝑀) be themap that sends𝑚 to the power series 1 − 𝑚𝑡.
The (big) Witt vectors of 𝑅 with coefficients in𝑀 are defined in [7] as the group

𝑊(𝑅;𝑀) =
𝑆(𝑅;𝑀)ab

𝜏(𝑟𝑚) ∼ 𝜏(𝑚𝑟)
,

where the relation runs over all 𝑚 ∈ 𝑀 and 𝑟 ∈ 𝑅, and the abelianisation and the quotient are
taken in Hausdorff topological groups, that is, we quotient by the closure of the normal subgroup
generated by the relations.
Given a truncation set 𝑆 ⊂ ℕ, one can define the 𝑆-truncated Witt-vectors as a quotient of

𝑊(𝑅;𝑀). In the present papers, we will be interested in the truncation sets consisting of the
powers of a prime, and in this case, the truncated Witt vectors are defined as follows.

Definition 1.1 [7]. Let 𝑝 be a prime and 𝑛 ⩾ 0 an integer. The 𝑝-typical (𝑛 + 1)-truncated Witt
vectors of 𝑅 with coefficients in 𝑀 is the abelian group 𝑊⟨𝑝𝑛⟩(𝑅;𝑀) defined as the quotient of
𝑊(𝑅;𝑀) by the closed subgroup generated by the elements of the form

1 − 𝑚1 ⊗⋯⊗𝑚𝑘𝑡
𝑘,

where 𝑘 ∉ {1, 𝑝, 𝑝2, … , 𝑝𝑛} and𝑚1,… ,𝑚𝑘 ∈ 𝑀.

The truncated Witt vectors have operators analogous to those of the usual Witt vectors, which
will play a crucial role in the rest of the paper. The functor𝑊⟨𝑝𝑛⟩ from the category biMod of pairs
(𝑅;𝑀) has a lax symmetric monoidal structure [7, Proposition 1.27]. The operators are defined in
[7, §1.3,1.5], and in the truncated case above, they take the form of natural transformations

The maps 𝐹 and 𝑅 are, respectively, called the Frobenius and restriction map, and they are
monoidal. The map 𝑉 is called the Verschiebung, and it is additive, whereas 𝜏 is called the Teich-
müller map and it is monoidal (with respect to the tensor product over ℤ on the source). The map
𝜎 is an automorphism of order 𝑘, which we call the Weyl action of 𝐶𝑘. These maps satisfy certain
relations which are detailed in [7, Proposition 1.31].
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WITT VECTORS WITH COEFFICIENTS AND TR 7 of 62

1.1 The 𝒑-typical Witt vectors with coefficients in Witt coordinates

In this section, we will give a description for𝑊⟨𝑝𝑛⟩(𝑅;𝑀) in terms of sequences of 𝑝-powers of
𝑀, which is more in line with the classical definition of the 𝑝-typical Witt vectors (see, e.g. [24]),
as well as Hesselholt’s construction of 𝑝-typical Witt vectors for non-commutative rings. Let us
define a map

by sending a sequence (𝑚0,𝑚1, … ,𝑚𝑛) to the equivalence class of
∏𝑛

𝑖=0(1 − 𝑚𝑖𝑡
𝑝𝑖 ), where the

product is taken in the completed tensor algebra (see, e.g. [11, Prop 1.14] for the case 𝑀 = 𝑅

commutative but notice the different sign convention).
In order to analyse this map, we make use of a version with coefficients of the ghost map. The

cyclic tensor power of𝑀 is defined for every 𝑗 ⩾ 0 as the abelian group

where is the abelian subgroup generated by the elements 𝑟𝑚 −𝑚𝑟 for 𝑟 ∈ 𝑅 and
. The cyclic group 𝐶𝑝𝑗 of order 𝑝𝑗 acts on this abelian group by cyclically permuting

the tensor factors, and for all 𝑙 ⩽ 𝑗, we write for the subgroup of invariants of a cyclic
subgroup 𝐶𝑝𝑙 ⩽ 𝐶𝑝𝑗 . The transfer maps for this cyclic action are denoted by

We also let (∙)⊗𝑝𝑘 be the composite

where the first map sends 𝑥 to the class of 𝑥⊗𝑝𝑘 in the cyclic tensor product, and the isomorphism
is induced by the canonical associativity isomorphism of the monoidal structure on 𝑅-bimodules.

Definition 1.2. The 𝑗th 𝑝-typical ghost map is themap defined by

𝑤𝑗(𝑚0, … ,𝑚𝑛) ∶=

𝑗∑
𝑖=0

tr
𝐶
𝑝𝑗

𝐶
𝑝𝑗−𝑖

(𝑚
⊗𝑝𝑗−𝑖

𝑖
),

for every 0 ⩽ 𝑗 < 𝑛 + 1. The product of thesemaps is called the
𝑝-typical ghost map.

We observe that for𝑀 = 𝑅, there are canonical isomorphisms of abelian groups and
, and 𝑤𝑗 corresponds to the usual Witt polynomial

𝑤𝑗(𝑟0, … , 𝑟𝑛) =

𝑗∑
𝑖=0

𝑝𝑖𝑟
𝑝𝑗−𝑖

𝑖
.
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8 of 62 DOTTO et al.

We recall that Hesselholt’s definition of the 𝑝-typical Witt vectors of a non-commutative ring 𝑅
of [9] is a complicated quotient of the product of copies of 𝑅. Thus, if we want our construction to
specialise to hiswhen𝑀 = 𝑅, we need to define an equivalence relation on . Informally,
we define the smallest equivalence relation which makes the ghost map injective when (𝑅;𝑀) is
free, and such that the resulting functor commutes with reflexive co-equalisers of bimodules.
We let biMod be the category of bimodules, whose objects are pairs (𝑅;𝑀) of a ring 𝑅 and

an 𝑅-bimodule 𝑀, and a morphism (𝑅;𝑀) → (𝑅′;𝑀′) is a pair (𝛼; 𝑓) of a ring homomorphism
𝛼∶ 𝑅 → 𝑅′ and amap of 𝑅-bimodules 𝑓∶ 𝑀 → 𝛼∗𝑀′. Clearly, the tensor power and cyclic tensor
powers introduced above are functors on the category biMod by applying themap 𝑓 factorwise on
elementary tensors, and we will often drop 𝛼 from the notation and denote a morphism only by
𝑓∶ 𝑀 → 𝑀′. We say that a bimodule (𝑅;𝑀) is free if 𝑅 is a free ring (that is a free associative ℤ-
algebra) and𝑀 is a free𝑅-bimodule. A free resolution of (𝑅;𝑀) is a reflexive co-equaliser diagram

in the category biMod, where (𝑆; 𝑄) and (𝑆; 𝑄) are free. For more details on free resolutions in
biMod, we refer to [7, §1.1], and we recall in particular that reflexive co-equalisers in biMod are
computed on the underlying pairs of sets.

Definition 1.3. Let𝑀 be an 𝑅-bimodule and a free resolution. We let

 be the equivalence relation on generated by

We denote the orbits of this relation by .

Proposition 1.4. The equivalence relation is independent of the choice of free resolution. Every
bimodule homomorphism 𝑓∶ 𝑀 → 𝑀′ induces a map

𝑓∗ ∶ 𝑊𝑛,𝑝(𝑅;𝑀)⟶𝑊𝑛,𝑝(𝑅
′;𝑀′)

defined as the quotient of the productmap
∏𝑛−1

𝑖=0 𝑓
⊗𝑅𝑝

𝑖 , making𝑊𝑛,𝑝 ∶ biMod → 𝑆𝑒𝑡 into a functor.
This functor commutes with reflexive co-equalisers, and, in particular, a free resolution of (𝑅;𝑀)
induces a reflexive co-equaliser of sets

The ghost map𝑤 descends to a natural transformation , which is
injective when (𝑅;𝑀) is free.
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WITT VECTORS WITH COEFFICIENTS AND TR 9 of 62

Proof. Let and be two free resolutions of
(𝑅;𝑀). We claim that there are vertical arrows

such that ℎ𝑓′ = 𝑓𝑘, ℎg ′ = g𝑘 and 𝜖ℎ = 𝜖′. By applying the functor to this diagram,
this immediately implies that the equivalence relation induced by the first resolution is coarser
than the second. By reversing the roles of the resolutions, the two relations are equal. Let us write
(𝑆′; 𝑄′) = 𝐹(𝑋, 𝑌) as the free bimodule generated by a pair of sets (𝑋, 𝑌). That is, 𝑆′ = ℤ{𝑋} is
the free ring on 𝑋 and 𝑄′ = (ℤ{𝑋} ⊗ ℤ{𝑋}𝑜𝑝)(𝑌) is the free 𝑆′-bimodule on 𝑌. We define ℎ as the
adjoint of the map of pairs of sets

ℎ∶ (𝑋, 𝑌)
𝜖′

⟶ (𝑈𝑅,𝑈𝑀)
𝑡

⟶ (𝑈𝑆,𝑈𝑄),

where 𝑡 is a section for the map 𝑈𝜖 in the category 𝑆𝑒𝑡 × 𝑆𝑒𝑡. In order to define 𝑘, let us write
(𝑆′; 𝑄′) = 𝐹(𝑍,𝑊) for some sets (𝑍,𝑊), and define the adjoint map 𝑘∶ (𝑍,𝑊) → 𝑈(𝑆; 𝑄) on
a pair of elements (𝑧, 𝑤) as follows. Since 𝑓, g and their common section are additive (both on
bimodules and underlying rings), the relation on 𝑄

𝑞 ∼ 𝑞′ if there is 𝑞 ∈ 𝑄 such that 𝑓(𝑞) = 𝑞 and g(𝑞) = 𝑞′

whose quotient is 𝑀 is already an equivalence relation, and similarly for the ring components.
Since 𝜖ℎ𝑓′(𝑧, 𝑤) = 𝜖ℎg ′(𝑧, 𝑤) and (𝑅;𝑀) is the co-equaliser of the second resolution, there
is an element (𝑠, 𝑞) ∈ (𝑆; 𝑄) such that 𝑓(𝑠, 𝑞) = ℎ𝑓′(𝑧, 𝑤) and g(𝑠, 𝑞) = ℎg ′(𝑧, 𝑤), and we set
𝑘(𝑧, 𝑤) ∶= (𝑠, 𝑞). By construction, the diagram above commutes, and this concludes the proof
of the independence on the free resolution.
Every bimodule (𝑅;𝑀) has a canonical free resolution provided by the free-forgetful adjunction

to Set × Set, given by

(see [7, §1.1]), which is functorial in (𝑅;𝑀). Using this resolution to compute the quotient, it is
immediate to verify that the tensor power of a morphism is well defined on the quotient, and
therefore, that𝑊𝑛,𝑝 is a functor. If (𝑅;𝑀) is free, by computing the quotient using the constant
resolution, we see that𝑊𝑛,𝑝(𝑅;𝑀) is exactly the quotient of the product which makes the ghost
map injective. It follows that the 𝑤𝑗 are well-defined maps out of𝑊𝑛,𝑝(𝑅;𝑀) for free (𝑅;𝑀), and
that they define a natural transformations on free modules.
Let us show that 𝑊𝑛,𝑝 of a free resolution is a reflexive co-equaliser. This will, in particular,

imply that 𝑤𝑗 descends to a well-defined natural transformation on 𝑊𝑛,𝑝(𝑅;𝑀) for all (𝑅;𝑀).
Given a general free resolution as above, we choose a common section 𝑠 ∶ 𝑆 → 𝑆, and we regard
𝑄 as an 𝑆-bimodule via this map. Since reflexive co-equalisers commute with tensor powers and
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10 of 62 DOTTO et al.

with products of 𝑆-bimodules, we obtain a reflexive co-equaliser of abelian groups

where𝑀 is regarded as an 𝑆-bimodule via the surjection 𝑆 → 𝑅. Since is surjective,
the diagram

is also a co-equaliser of abelian groups, and therefore of sets. By modding out the relation which
makes the ghost map injective from the first two sets, we obtain a commutative diagram

where 𝐶 is the co-equaliser of the bottom row. By definition, 𝑊𝑛,𝑝(𝑅;𝑀) is the quotient
of by the equivalence relation which makes the right vertical map injective, and
thus bijective.
Now let be a reflexive co-equaliser. By applying the functorial free

resolution given by the free forgetful adjunction, we obtain a commutative diagram

Since reflexive co-equalisers of bimodules are computed on underlying sets, 𝐹𝑈 commutes with
reflexive co-equalisers, hence the rows of this diagrams are reflexive co-equalisers. By applying
𝑊𝑛,𝑝, we obtain a diagram where all the columns and the upper two rows are co-equalisers, by
the previous argument. Since colimits commute with each other, the bottom row must also be a
co-equaliser, concluding the proof. □

Example 1.5.

1. If (𝑅;𝑀) is free,𝑊𝑛,𝑝(𝑅;𝑀) is the quotient of by the smallest equivalence relation
that makes 𝑤 into an injective map.

2. If 𝑅 is a commutative ring and 𝑀 = 𝑅, we have that as sets 𝑊𝑛,𝑝(𝑅; 𝑅) = 𝑅×𝑛. If 𝑅 has no
𝑝-torsion, this is because the ghost map
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WITT VECTORS WITH COEFFICIENTS AND TR 11 of 62

which is given by the usual Witt polynomials, is already injective. In general, one can resolve
(𝑅; 𝑅) by the bimodules (ℤ[𝑅]; ℤ[𝑅]) and (ℤ[ℤ[𝑅]]; ℤ[ℤ[𝑅]]) given by the free commutative
rings. Thus, the isomorphismwith the product in the free case induces an isomorphism on the
co-equaliser𝑊𝑛,𝑝(𝑅; 𝑅) = 𝑅×𝑛.

3. The 0th ghost map induces a natural bijection 𝑊1,𝑝(𝑅;𝑀) ≅ 𝑀∕[𝑅,𝑀]. This is clear when
(𝑅;𝑀) is free, and, in general, it is the case since both 𝑊1,𝑝(𝑅;𝑀) and 𝑀∕[𝑅,𝑀] commute
with reflexive co-equalisers.

4. When 𝑅 is a commutative ring and𝑀 is an 𝑅-module, we will see in Proposition 1.9 below that
there is a natural bijection

5. If 𝑅 is commutative and torsion-free, and𝑀 is a free 𝑅-module, there is a canonical bijection

but, in general, the higher truncations 𝑊𝑛,𝑝(𝑅;𝑀) are difficult to describe as sets (cf.
Proposition 1.16).

Before stating the main theorem of this section, we recall that the category biMod has a sym-
metric monoidal structure, defined by the componentwise tensor product over ℤ. We endow
the functors from biMod to 𝐶𝑝𝑗 -equivariant abelian groups with the canonical monoidal
structure

defined from the shuffle permutations, and their fixed points with the canonical induced lax-
monoidal structure.

Theorem 1.6. The map 𝛾 that sends (𝑚0,𝑚1, … ,𝑚𝑛) to the equivalence class of
∏𝑛

𝑖=0(1 − 𝑚𝑖𝑡
𝑝𝑖 )

descends to a bijection 𝛾∶ 𝑊𝑛+1,𝑝(𝑅;𝑀)
≅
⟶𝑊⟨𝑝𝑛⟩(𝑅;𝑀) for every integer 𝑛 ⩾ 0 and any prime 𝑝.

The diagram

commutes, where tlog⟨𝑝𝑛⟩ is the logarithmic derivative of [7, Propositions 1.18 and 1.41]. The abelian
group structure and the lax symmetric monoidal structure on𝑊𝑛+1,𝑝 which correspond to those of
𝑊⟨𝑝𝑛⟩ are the unique ones such that the ghost maps are additive
symmetric monoidal transformations for all 0 ⩽ 𝑗 < 𝑛 + 1.
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12 of 62 DOTTO et al.

Proof. Firstly, we show that is surjective. Any power series 1 +∑
𝑘⩾1 𝑎𝑘𝑡

𝑘 representing an element of𝑊(𝑅;𝑀) can be written uniquely as

1 +
∑
𝑘⩾1

𝑎𝑘𝑡
𝑘 =

∞∏
𝑖=1

(1 − 𝑏𝑖𝑡
𝑖)

in the completed tensor algebra, with 𝑏𝑖 ∈ 𝑀⊗𝑅𝑖 . Thus, any element 𝑥 of the quotient𝑊⟨𝑝𝑛⟩(𝑅;𝑀)
can be represented by an element of the form

∏𝑛
𝑖=0(1 − 𝑐𝑖𝑡

𝑝𝑖 ) with 𝑐𝑖 ∈ 𝑀⊗𝑅𝑝
𝑖 , that is,

𝛾(𝑐0, … , 𝑐𝑛) = 𝑥, which proves that 𝛾 is surjective.
Now let us show that 𝛾 descends to a well-defined isomorphism. Let us first assume that (𝑅;𝑀)

is free. In this case,𝑊𝑛+1,𝑝(𝑅;𝑀) is the quotient of by the relation thatmakes the ghost
map injective. The ghost map factors as

since tlog⟨𝑝𝑛⟩(1 − 𝑚𝑖𝑡
𝑝𝑖 ) = tr

𝐶
𝑝𝑖

𝑒 𝑚𝑖𝑡
𝑝𝑖 + tr

𝐶
𝑝𝑖+1

𝐶𝑝
𝑚
𝑝

𝑖
𝑡𝑝

𝑖+1
+⋯, so that the coefficient of 𝑡𝑝𝑗 in

tlog⟨𝑝𝑛⟩ 𝛾(𝑚0, … ,𝑚𝑛) is given by 𝑤𝑗(𝑚0, … ,𝑚𝑛). Thus, 𝛾 descends to a well-defined injection
𝑊𝑛+1,𝑝(𝑅;𝑀) → 𝑊⟨𝑝𝑛⟩(𝑅;𝑀). It is therefore an isomorphism, and the diagram of 1.6 commutes.
In general, we choose a free resolution of (𝑅;𝑀). Since 𝛾 is an isomorphism for the free

resolution, it induces an isomorphism on the co-equalisers 𝛾∶ 𝑊𝑛+1,𝑝(𝑅;𝑀) → 𝑊⟨𝑝𝑛⟩(𝑅;𝑀).
The ghost maps 𝑤𝑗 are additive and symmetric monoidal because tlog⟨𝑝𝑛⟩ is, by [7]. To see that

the additive structure and the symmetric monoidal structure are unique with this property, it is
sufficient to see this on the subcategory of free bimodules since𝑊𝑛+1,𝑝 commutes with reflexive
co-equalisers. In this case, the uniqueness follows by the injectivity of the ghost map. □

Corollary 1.7. For every ring𝑅, the abelian group𝑊⟨𝑝𝑛⟩(𝑅; 𝑅) is isomorphic to the𝑝-typical (𝑛 + 1)-
truncated Witt vectors𝑊𝑛+1(𝑅) of [9], naturally in 𝑅. If 𝑅 is moreover commutative,𝑊⟨𝑝𝑛⟩(𝑅; 𝑅) is
isomorphic to the usual 𝑝-typical (𝑛 + 1)-truncated Witt vectors of 𝑅 as a commutative ring.

Proof. The claim for commutative rings follows from the characterisation of the ring structure in
ghost components of 1.6 and the fact that in this case, as a set,𝑊𝑛+1,𝑝(𝑅; 𝑅) is 𝑅×𝑛+1 by 1.5. In the
non-commutative case, we need to make sure that the quotient of

∏𝑛
𝑖=0 𝑅

⊗𝑅𝑝
𝑖
= 𝑅×𝑛+1 defining

𝑊𝑛+1,𝑝(𝑅; 𝑅) agrees with the quotient defining𝑊𝑛+1(𝑅) from [10]. When 𝑅 is free, the projection
𝑅×𝑛+1 → 𝑊𝑛+1(𝑅) descends to an injection

𝑊𝑛+1,𝑝(𝑅; 𝑅)⟶𝑊𝑛+1(𝑅)

since the ghost map of𝑊𝑛+1(𝑅) is injective [10, 1.3.7]. This is therefore an isomorphism for free
rings, and it descends to an isomorphism in general since both sides commutes with reflexive
co-equalisers (𝑊𝑛+1(𝑅) does as a consequence of the identification with TR𝑛+10

(𝑅) of [10]). □

Remark 1.8. In [20], Read provides a more general construction of 𝐺-typical Witt vectors with
coefficients for any profinite group 𝐺. For 𝐺 = 𝐶𝑝𝑛 , Read’s construction specialises to the (𝑛 +
1)-truncated 𝑝-typical Witt vectors with coefficients defined above.
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WITT VECTORS WITH COEFFICIENTS AND TR 13 of 62

Proposition 1.9. Let 𝑅 be a commutative ring and𝑀 an 𝑅-module. Then the canonical projection
descends to a bijection

Proof. Suppose first that 𝑅 is torsion-free and that𝑀 is a free 𝑅-module. Let us first prove that the
transfer map

is injective. The composition of the transfer with the projection is mul-
tiplication by 𝑝. By writing 𝑀 as the free 𝑅-module 𝑅(𝑋) on a set 𝑋, we see that the
orbits

𝑅(𝑋×𝑝)𝐶𝑝 ≅ 𝑅(𝑋×𝑝∕𝐶𝑝)

also form a free𝑅-module, and since𝑅 has no torsionmultiplication by 𝑝 is injective. By [7, Propo-
sition 1.41], tlog⟨𝑝⟩ is injective, and by 1.6 so is the ghost map of 𝑊2,𝑝(𝑅;𝑀). Now consider the
commutative square of sets

where the unlabelled maps are the projections, the lower map 𝑤 is injective by the argument
above, and the vertical𝑤 is injective since the transfer is. The dashed arrow exists by the injectivity
of the right vertical map and surjectivity of the left vertical map. It is surjective by the surjectivity
of the top horizontal map, and injective by the injectivity of the lower horizontal map.
Without freeness assumptions on 𝑅 and 𝑀, the dashed map induces a bijection since both

𝑊2,𝑝(𝑅;𝑀) and commute with reflexive co-equalisers. □

Remark 1.10. In general, there is no product decomposition analogous to Proposition 1.9 for
𝑊𝑛,𝑝(𝑅;𝑀) for 𝑛 ⩾ 3, since in this case, the right vertical map 𝑤 of the diagram of the proof is
generally not injective (see, however, Proposition 1.16 for the free case).

In the rest of the section, we try to get a feeling of this construction by describing explicitly
the lower components of the addition and the symmetric monoidal structure of𝑊𝑛+1,𝑝 of Theo-
rem 1.6. As for the classicalWitt vectors, there is no closed formulas for the components of the sum
of two sequences 𝑎 = (𝑎0, 𝑎1, … , 𝑎𝑛) and 𝑏 = (𝑏0, 𝑏1, … , 𝑏𝑛). The characterisation in terms of ghost
components of Theorem 1.6 gives, however, an inductive procedure for calculating them. The
examples below in particular identify𝑊2,2(ℤ;𝐴) of a commutative ring 𝐴 with the ‘2-truncated
non-commutative ring of Witt vectors’𝑊⊗

2
(𝐴) of [8].
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14 of 62 DOTTO et al.

Example 1.11. Suppose that 𝑅 is commutative and 𝑀 is an 𝑅-module. Under the canonical
bijection of Proposition 1.9, we find that

𝑎 + 𝑏 =
⎛⎜⎜⎝𝑎0 + 𝑏0, 𝑎1 + 𝑏1 −

∑
{∅≠𝑈⊊𝑝}∕𝐶𝑝

𝑡𝑈1 (𝑎0, 𝑏0) ⊗⋯⊗ 𝑡𝑈𝑝 (𝑎0, 𝑏0)
⎞⎟⎟⎠,

where the sum runs through the orbits of the standard 𝐶𝑝-action on the set of proper non-empty
subsets of the 𝑝-elements set, and 𝑡𝑈

𝑖
(𝑎0, 𝑏0) = 𝑎0 if 𝑖 ∈ 𝑈, and 𝑡𝑈

𝑖
(𝑎0, 𝑏0) = 𝑏0 otherwise. For

example for the primes 𝑝 = 2, 3, these are, respectively,

𝑎 + 𝑏 = (𝑎0 + 𝑏0, 𝑎1 + 𝑏1 − 𝑎0 ⊗ 𝑏0),

𝑎 + 𝑏 = (𝑎0 + 𝑏0, 𝑎1 + 𝑏1 − 𝑎0 ⊗ 𝑏0 ⊗ 𝑏0 − 𝑏0 ⊗ 𝑎0 ⊗ 𝑎0).

This expression is not well defined in , as it requires a choice of orbit representatives of
. We observe the resemblance with the universal polynomials for the sum of the usual

Witt vectors. In fact, these are the usual universal polynomials when𝑀 = 𝑅.

Example 1.12. Let 𝑅 be a commutative ring and 𝑀 an 𝑅-algebra. The first two components of
the product of 𝑎 = (𝑎0, 𝑎1) and 𝑏 = (𝑏0, 𝑏1) in are

𝑎 ⋅ 𝑏 =
⎛⎜⎜⎝𝑎0 ⋅ 𝑏0, 𝑎⊗𝑝0 ⋅ 𝑏1 + 𝑎1 ⋅ 𝑏

⊗𝑝
0

+
∑
𝜎∈𝐶𝑝

𝑎1 ⋅ 𝜎(𝑏1)
⎞⎟⎟⎠.

The term 𝑎
⊗𝑝
0

⋅ 𝑏1 ∈ (𝑀⊗𝑅𝑝)𝐶𝑝 is clearly independent on the choice of orbit representative for 𝑏1,

and similarly for 𝑎1 ⋅ 𝑏
⊗𝑝
0
. The sum over 𝐶𝑝 is clearly independent on the choice of representative

for 𝑏1, and if we choose a different representative 𝜏(𝑎1) for some 𝜏 ∈ 𝐶𝑝, we have

∑
𝜎∈𝐶𝑝

𝜏(𝑎1) ⋅ 𝜎(𝑏1) = 𝜏
⎛⎜⎜⎝
∑
𝜎∈𝐶𝑝

𝑎1 ⋅ 𝜏
−1𝜎(𝑏1)

⎞⎟⎟⎠ = 𝜏
⎛⎜⎜⎝
∑
𝜎∈𝐶𝑝

𝑎1 ⋅ 𝜎(𝑏1)
⎞⎟⎟⎠ =

∑
𝜎∈𝐶𝑝

𝑎1 ⋅ 𝜎(𝑏1)

in the set of coinvariants (𝑀⊗𝑅𝑝)𝐶𝑝 . Thus, this expression is well defined in the coinvariants. It
is moreover not difficult to see that the last sum is symmetric in 𝑎 and 𝑏. In particular, we see
directly that𝑊2,𝑝(𝑅;𝑀) is a commutative ring when𝑀 is commutative.

1.2 𝒑-typical operators

In this section, we describe the operators on the truncated Witt vectors under the isomorphism
of Theorem 1.6, and investigate some of their properties. Under the isomorphism of Theorem 1.6,
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WITT VECTORS WITH COEFFICIENTS AND TR 15 of 62

the Witt vectors operators of [7, §1.5] take the form

It is not difficult to see that the maps 𝑉, 𝑅 and 𝜏 can be described on representatives by

𝑉(𝑥0, … , 𝑥𝑛−1) = (0, 𝑥0, … , 𝑥𝑛−1)

𝑅(𝑚0, … ,𝑚𝑛) = (𝑚0, … ,𝑚𝑛−1)

𝜏(𝑚) = (𝑚, 0, … , 0).

The Frobenius and the cyclic action do not, however, admit closed formulas on representatives.
Their lowest components are computed in the following examples over a commutative base ring.

Example 1.13. Suppose that 𝑅 is commutative and that𝑀 is an 𝑅-module. Under the bijection
, 𝐹 and 𝜎 are described as follows.

1. Let (𝑎0, 𝑎1, 𝑎2) represent an element 𝑎 ∈ 𝑊3,𝑝(𝑅;𝑀). The element 𝐹(𝑎) ∈ 𝑀⊗𝑅𝑝 × (𝑀⊗𝑅𝑝
2
)𝐶𝑝

is represented by a pair of the form (𝑤1(𝑎0, 𝑎1), 𝑥1). For 𝑝 = 2, the element 𝑥1 ∈ 𝑀⊗𝑅4 is given
by

𝑥1 = 𝑎2 + 𝜎2𝑎2 − 𝑎1 ⊗ (𝜎1𝑎1) − 𝑎
⊗2
0

⊗ (tr
𝐶2
𝑒 𝑎1) − 𝑧(𝑎1),

where 𝜎𝑖 generates 𝐶2𝑖 , and 𝑧(𝑎1) is a certain element of𝑀⊗𝑅4 such that

(𝜎1𝑎1)
⊗2 − 𝜎2(𝑎

⊗2
1
) = tr

𝐶2
𝑒 (𝑧(𝑎1)).

When 𝑀 is free, this difference can be uniquely expressed as a transfer, and 𝑧(𝑎1) is well-
defined modulo 𝐶2-coinvariants. In general, one needs to calculate 𝑧(𝑞1) where 𝑞1 is a lift of
𝑎1 to a free resolution 𝜖∶ 𝑄 ↠ 𝑀, and 𝑧(𝑎1) = 𝜖𝑧(𝑞1).

2. For every 𝑥0 ∈ 𝑀⊗𝑅𝑘, the difference (𝜎𝑘𝑥0)⊗𝑝 − 𝜎𝑘𝑝(𝑥
⊗𝑝
0
) is in the image of the transfer

tr
𝐶𝑝
𝑒 ∶ 𝑀⊗𝑅𝑘𝑝 → (𝑀⊗𝑅𝑘𝑝)𝐶𝑝 , where 𝜎𝑛 generates 𝑀⊗𝑅𝑛. This difference is zero on elemen-

tary tensors, and on their sums, it is a transfer by the binomial formula. When 𝑀 is free this
transferred term is unique, and

𝜎(𝑥0, 𝑥1) ∶= (𝜎𝑘𝑥0, 𝜎𝑘𝑝𝑥1 − (tr
𝐶𝑝
𝑒 )−1((𝜎𝑘𝑥0)

⊗𝑝 − 𝜎𝑘𝑝(𝑥
⊗𝑝
0
))).

When𝑀 is not free, one chooses a preimage of the transferred term in a free resolution of𝑀,
and then uses its image in𝑀 in the same formula.

The Verschiebung and Frobenius maps are equivariant with respect to the cyclic action of
𝐶𝑝, and, in fact, their iterations are invariant by the action of the higher order cyclic groups. In
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16 of 62 DOTTO et al.

particular, they define maps

The cokernel of the Verschiebung is, in fact, an iteration of 𝑅, since by [7, Proposition 1.43].
there are exact sequences

for every𝑛, 𝑘 ⩾ 1.Moreover,𝑉𝑘 is injectivewhen has no𝑝-torsion for all 𝑘 ⩽ 𝑙 ⩽ 𝑘 + 𝑛 −
1, by [7, Proposition 1.44] (e.g. if (𝑅;𝑀) is free), but not in general (see [10] for a counterexample
where𝑀 = 𝑅 with 𝑅 non-commutative). We now explore some consequences of the existence of
these exact sequences.
Let us denote by

𝜏𝑘 ∶ 𝑀⊗𝑅𝑝
𝑘
⟶𝑊𝑛,𝑝(𝑅;𝑀

⊗𝑅𝑝
𝑘
)

the Teichmüller map for the 𝑅-bimodule𝑀⊗𝑅𝑝
𝑘 . When 𝑅 = ℤ and𝑀 = ℤ(𝑋) is the free abelian

group on a set 𝑋, the ghost map of the Witt vectors𝑊⟨𝑝𝑛⟩(ℤ; ℤ(𝑋)) is injective with target a free
abelian group, and thus,𝑊⟨𝑝𝑛⟩(ℤ; ℤ(𝑋)) is also free abelian. In the following, we describe a basis,
analogous to the basis for the usual Witt vectors of ℤ from [11, Proposition 1.6].

Proposition 1.14. Let ℤ(𝑋) be the free abelian group on a set 𝑋. Then there is an isomorphism of
abelian groups

𝑊⟨𝑝𝑛⟩(ℤ; ℤ(𝑋)) ≅
𝑛⨁
𝑖=0

⨁
𝑥∈𝑋×𝑝

𝑖
∕𝐶

𝑝𝑖

ℤ ⋅ 𝑉𝑖𝜏𝑛−𝑖(𝑥1 ⊗⋯⊗ 𝑥𝑝𝑖 ).

Under this isomorphism, the monoidal structure map ⋆∶ 𝑊⟨𝑝𝑛⟩(ℤ; ℤ(𝑋)) ⊗𝑊⟨𝑝𝑛⟩(ℤ; ℤ(𝑌)) →
𝑊⟨𝑝𝑛⟩(ℤ; ℤ(𝑋) ⊗ ℤ(𝑌))multiplies two generators by the formula

𝑉𝑖𝜏𝑛−𝑖(𝑥1 ⊗⋯⊗ 𝑥𝑝𝑖 ) ⋆ 𝑉
𝑗𝜏𝑛−𝑗(𝑦1 ⊗⋯⊗ 𝑦𝑝𝑗 ) =

∑
𝜎∈𝐶

𝑝𝑖

𝑉𝑗(𝜏𝑛−𝑗((𝜎(⊗
𝑝𝑖

𝑙=1
𝑥𝑙))

⊗𝑝𝑗−𝑖 ⊗ (⊗
𝑝𝑗

ℎ=1
𝑦ℎ)))

if 𝑖 ⩽ 𝑗, and

𝑉𝑖𝜏𝑛−𝑖(𝑥1 ⊗⋯⊗ 𝑥𝑝𝑖 ) ⋆ 𝑉
𝑗𝜏𝑛−𝑗(𝑦1 ⊗⋯⊗ 𝑦𝑝𝑗 ) =

∑
𝜎∈𝐶

𝑝𝑗

𝑉𝑖(𝜏𝑛−𝑖((⊗
𝑝𝑖

𝑙=1
𝑥𝑙) ⊗ (𝜎(⊗

𝑝𝑗

ℎ=1
𝑦ℎ))

⊗𝑝𝑖−𝑗 )))

if 𝑗 ⩽ 𝑖.

Proof. There is a clear map from the free abelian group on the right to the Witt-vectors which
takes the sum. For 𝑛 = 0, the map is an isomorphism since it is the canonical isomorphism
𝑊⟨1⟩(ℤ; ℤ(𝑋)) ≅ ℤ(𝑋). Suppose by induction that the map is an isomorphism for 𝑛 − 1, and
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WITT VECTORS WITH COEFFICIENTS AND TR 17 of 62

consider the map of exact sequences

where the bottom row is exact since (ℤ; ℤ(𝑋)) is free. The maps of the top row are respectively
the projection and the inclusion of the summand 𝑖 = 𝑛, and the left square commutes by defini-
tion since the left vertical map sends the orbit of (𝑥1, … , 𝑥𝑝𝑛 ) to 𝑥1 ⊗⋯⊗ 𝑥𝑝𝑛 . The right square
commutes since 𝑅 is additive, 𝑅𝜏𝑘 = 𝜏𝑘−1 (with the convention 𝜏0 = id), 𝑅𝑉𝑖 = 𝑉𝑖𝑅 for 𝑖 > 0, and
𝑅𝑉 = 0. Thus, the middle map is also an isomorphism.
Let us now determine the multiplication of the generators. We show that case 𝑖 ⩽ 𝑗, the other

is similar. We have that

𝑉𝑖𝜏𝑛−𝑖(⊗
𝑝𝑖

𝑙=1
𝑥𝑙) ⋆ 𝑉

𝑗𝜏𝑛−𝑗(⊗
𝑝𝑗

ℎ=1
𝑦ℎ) = 𝑉𝑗((𝐹𝑗𝑉𝑖𝜏𝑛−𝑖(⊗

𝑝𝑖

𝑙=1
𝑥𝑙)) ⋆ (𝜏

𝑛−𝑗(⊗
𝑝𝑗

ℎ=1
𝑦ℎ)))

= 𝑉𝑗((𝐹𝑗−𝑖
∑

𝜎∈𝐶𝑝𝑛∕𝐶𝑝𝑛−𝑖

𝜎𝜏𝑛−𝑖(⊗
𝑝𝑖

𝑙=1
𝑥𝑙)) ⋆ (𝜏

𝑛−𝑗(⊗
𝑝𝑗

ℎ=1
𝑦ℎ)))

=
∑
𝜎∈𝐶

𝑝𝑖

𝑉𝑗((𝐹𝑗−𝑖𝜏𝑛−𝑖(𝜎(⊗
𝑝𝑖

𝑙=1
𝑥𝑙))) ⋆ (𝜏

𝑛−𝑗(⊗
𝑝𝑗

ℎ=1
𝑦ℎ)))

=
∑
𝜎∈𝐶

𝑝𝑖

𝑉𝑗((𝜏𝑛−𝑗((𝜎(⊗
𝑝𝑖

𝑙=1
𝑥𝑙))

⊗𝑝𝑗−𝑖 )) ⋆ (𝜏𝑛−𝑗(⊗
𝑝𝑗

ℎ=1
𝑦ℎ)))

=
∑
𝜎∈𝐶

𝑝𝑖

𝑉𝑗(𝜏𝑛−𝑗((𝜎(⊗
𝑝𝑖

𝑙=1
𝑥𝑙))

⊗𝑝𝑗−𝑖 ⊗ (⊗
𝑝𝑗

ℎ=1
𝑦ℎ))),

where the first equality holds by Frobenius reciprocity and the last by the monoidality of 𝜏, from
[7, Proposition 1.27]. The second equality is the double-coset formula from [7, Proposition 1.32,
5)], and the third follows from the equivariance of 𝜏 of [7, Proposition 1.25]. Finally, the fourth
equality is the fact that for every 𝑘 ⩽ 𝑙, bimodule (𝑅;𝑀), and𝑚 ∈ 𝑀

𝐹𝑘𝜏𝑙(𝑚) = 𝜏𝑙−𝑘(𝑚⊗𝑝𝑘)

in 𝑊⟨𝑝𝑙−𝑘⟩(𝑅;𝑀⊗𝑅𝑝
𝑘
), which by the standard resolution argument can be verified in ghost

components, where

𝑤𝑗𝐹
𝑘𝜏𝑙(𝑚) = 𝑤𝑗+𝑘(𝑚, 0, … , 0) = 𝑚⊗𝑝𝑗+𝑘 = (𝑚⊗𝑝𝑘 )⊗𝑝

𝑗
= 𝑤𝑗(𝜏

𝑙−𝑘(𝑚⊗𝑝𝑘)). □

Proposition 1.15. A single Verschiebung is injective when 𝑅
is a commutative ring and𝑀 is an 𝑅-module (considered as a bimodule with the same left and right
action).
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18 of 62 DOTTO et al.

Proof. By resolving in the subcategory of pairs of commutative rings and modules, we can con-
struct a reflexive co-equaliser were 𝑆 and 𝑆 are free commutative rings,
𝑄 is a free 𝑆-module and 𝑄 is a free 𝑆-module. Since𝑊𝑛,𝑝 commutes with reflexive co-equalisers,
we obtain a commutative diagram

where the rows are reflexive co-equalisers. The middle vertical map is injective by [7, Proposition
1.44], since for 𝑄 = 𝑆(𝑋) = ⊕𝑋𝑆 the free module on a set 𝑋, we have that

is a free 𝑆-module, which is torsion-free since 𝑆 is torsion-free. The same argument applies to the
left vertical map. Let 𝑥 = (𝑥0, … , 𝑥𝑛−1) represent an element of such that 𝑉(𝑥) is

zero in the co-equaliser𝑊𝑛+1,𝑝(𝑅;𝑀). Then, there is an element 𝑞 = (𝑞0, … , 𝑞𝑛) in such

that 𝑤𝑓∗𝑞 = 𝑤𝑉(𝑥) and 𝑤g∗𝑞 = 0 in . In particular, since 𝑄 is an 𝑆-module

g(𝑞0) = 𝑤0g∗𝑞 = 0 = 𝑤0𝑓∗𝑞 = 𝑓(𝑞0)

as elements of 𝑄∕[𝑆, 𝑄] = 𝑄, and therefore, g(𝑞0)⊗𝑝
𝑖
= 𝑓(𝑞0)

⊗𝑝𝑖 = 0 for all 𝑖 ⩾ 0. It follows that

𝑤𝑓∗(0, 𝑞1, … , 𝑞𝑛) = 𝑤𝑉(𝑥) and 𝑤g∗(0, 𝑞1, … , 𝑞𝑛) = 0,

or in other words that

𝑤𝑉𝑓∗(𝑞1, … , 𝑞𝑛) = 𝑤𝑉(𝑥) and 𝑤𝑉g∗(𝑞1, … , 𝑞𝑛) = 0.

Since 𝑉 and 𝑤 on the Witt vectors of 𝑄 are injective, we have that 𝑓∗(𝑞1, … , 𝑞𝑛) = 𝑥 and
g∗(𝑞1, … , 𝑞𝑛) = 0 in , that is, that 𝑥 and zero define the same class in the
co-equaliser . □

Proposition 1.16. A choice of sections of the quotients determines a
bijection

where𝑉𝑖 is the iterated Verschiebung . In particular, when𝑀 = 𝑅, a
choice of section for𝑅 → 𝑅∕[𝑅, 𝑅] determines a bijection𝑊𝑛+1,𝑝(𝑅) ≅

∏𝑛
𝑖=0 𝑅∕[𝑅, 𝑅]when𝑅∕[𝑅, 𝑅]

has no 𝑝-power torsion, as in [10]. If 𝑅 is commutative with no 𝑝-power torsion, and 𝑀 is a free
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WITT VECTORS WITH COEFFICIENTS AND TR 19 of 62

𝑅-module, there is a canonical bijection

Proof. A choice of section of , followed by the map 𝜏, determines a
splitting (as a map of sets) of the right-hand map of the exact sequence

from [7, Proposition 1.43], and thus a bijection

A straightforward diagram chase on the diagram with exact rows

shows that the top sequence stays exact after quotienting by the kernel of𝑉𝑖 , for every 𝑖 = 0, … , 𝑛.
A section of , followed by the map 𝜏, determines a splitting (as a map
of sets) of the right-hand map of the top sequence quotiented by the kernel of 𝑉𝑖 . Moreover, the
kernel of

is equal to the kernel of 𝑉𝑖+1. Thus, by downward induction on 𝑖, we obtain a sequence of
bijections

If 𝑅 is commutative without 𝑝-power torsion and𝑀 = 𝑅(𝑋) is a free 𝑅-module, 𝑉 is injective
by [7, Proposition 1.44] and the projection maps
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20 of 62 DOTTO et al.

have canonical sections, induced by the maps (𝑋×𝑝𝑘 )𝐶
𝑝𝑘
≅ hom(𝑝𝑘∕𝐶𝑝𝑘 , 𝑋) → hom(𝑝𝑘, 𝑋) =

𝑋×𝑝
𝑘 which pre-compose with the quotient map 𝑝𝑘 → 𝑝𝑘∕𝐶𝑝𝑘 (here we denoted 𝑝𝑘 the set with

𝑝𝑘-elements). □

Using the maps 𝑅, we can also define

𝑊∞,𝑝(𝑅;𝑀) ∶= lim(𝑊1,𝑝(𝑅;𝑀)
𝑅
⟵𝑊2,𝑝(𝑅;𝑀)

𝑅
⟵ …).

It follows from Theorem 1.6 and [7, Lemma 1.37] that𝑊∞,𝑝(𝑅;𝑀) ≅ 𝑊⟨𝑝∞⟩(𝑅;𝑀), where ⟨𝑝∞⟩ is
the truncation set of all powers of 𝑝.

Proposition 1.17. Let 𝑅 be a commutative 𝔽𝑝-algebra and𝑀 an 𝑅-algebra. Then, 𝑉𝑛(1) = 𝑝𝑛 in
𝑊𝑛+𝑚+1,𝑝(𝑅;𝑀) for all 𝑛,𝑚 ⩾ 0, and

𝑊∞,𝑝(𝑅; −) = lim(𝑊1,𝑝(𝑅; −)
𝑅
⟵𝑊2,𝑝(𝑅; −)

𝑅
⟵ …)

takes commutative 𝑅-algebras to commutative rings of characteristic zero.

Proof. Since 𝑅 is an 𝔽𝑝-algebra, there is a map of bimodules 𝜄 ∶ (𝔽𝑝; 𝔽𝑝) → (𝑅;𝑀). By naturality
of 𝑉, we have that

𝑉𝑛(1) = 𝑉𝑛(𝜄(1)) = 𝜄𝑉𝑛(1),

where the last Verschiebung 𝑉𝑛 is for the ring 𝔽𝑝, and it sends 1 to 𝑝𝑛.
The ring homomorphism 𝜂∶ 𝑅 → 𝑀 defines a map of bimodules (𝑅;𝑀) → (𝑀;𝑀), and the

induced map sends 𝑝𝑛 in 𝑊∞,𝑝(𝑅;𝑀) to 𝑝𝑛 in 𝑊∞,𝑝(𝑀). When 𝑀 is commutative, the Ver-
schiebung of 𝑊∞,𝑝(𝑀) is injective and therefore 𝑉𝑛(1) = 𝑝𝑛 ≠ 0 ∈ 𝑊∞,𝑝(𝑀). Thus, it must be
non-zero already in𝑊∞,𝑝(𝑅;𝑀). □

Remark 1.18. Classically, 𝑊∞,𝑝(𝐴) is 𝑝-complete when 𝐴 is a commutative semi-perfect
𝔽𝑝-algebra. With coefficients, we do always have a natural isomorphism

𝑊∞,𝑝(𝑅;𝑀) = lim
𝑛⩾1

𝑊𝑛,𝑝(𝑅;𝑀) ≅ lim
𝑛⩾1

𝑊∞,𝑝(𝑅;𝑀)∕𝑉
𝑛.

In other words, the ℤ-module 𝑊∞,𝑝(𝑅;𝑀) is complete with respect to the sequence of
submodules

Im𝑉 ⊃ Im(𝑉2) ⊃⋯ ⊃ Im(𝑉𝑛) ⊃ … .

When𝐴 is a semi-perfect commutative 𝔽𝑝-algebra, the image of𝑉𝑛 on the classicalWitt vectors
is 𝑝𝑛𝑊∞,𝑝(𝐴), and the 𝑉-completeness statement above shows that𝑊∞,𝑝(𝐴) is 𝑝-complete. This
characterisation of 𝑉 follows from Frobenius reciprocity, the identity 𝑉(1) = 𝑝, and the fact that
𝐹 is surjective since for 𝔽𝑝-algebras, it is of the form

𝐹(𝑎0, 𝑎1, … ) = (𝑎
𝑝
0
, 𝑎

𝑝
1
, … ).
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WITT VECTORS WITH COEFFICIENTS AND TR 21 of 62

In pursuing a similar argument for the Frobenius of𝑊∞,𝑝(ℤ;𝐴) for a ring𝐴, one would need the
𝑝th power map (−)⊗𝑝 ∶ 𝐴 → 𝐴⊗𝑝 to be additive. This is the case modulo the image of the trans-
fer map tr

𝐶𝑝
𝑒 ∶ 𝐴⊗𝑝 → 𝐴⊗𝑝, and therefore one would require that tr

𝐶𝑝
𝑒 = 0. This is, however, the

case only when 𝐴 = 𝔽𝑝 and this just recovers the standard completeness of𝑊(𝔽𝑝). Indeed, since

𝜇𝑝 tr
𝐶𝑝
𝑒 1 = 𝑝 ∈ 𝐴, the condition that tr

𝐶𝑝
𝑒 = 0 forces𝐴 to be an 𝔽𝑝-algebra. By choosing a basis of

𝐴 as an 𝔽𝑝-vector space, we further see that𝐴 is of rank 1. Thus,𝑊∞,𝑝(ℤ;𝐴) = 𝑊∞,𝑝(𝔽𝑝; 𝐴) does
not seem to be 𝑝-complete for any ring except for 𝐴 = 𝔽𝑝.

When 𝑀 is a commutative 𝑅-algebra, we show below that the Teichmüller map 𝜏∶ 𝑀 →

𝑊𝑛+1,𝑝(𝑅;𝑀) factors through multiplicative norm maps

This map extends the norm map of the Witt vectors introduced by Angeltveit in [1] in the case
where 𝑅 = 𝑀. Let us consider the multiplicative map
defined by

𝑁𝑤(𝑦0, 𝑦1, … , 𝑦𝑛−1) ∶=
⎛⎜⎜⎝𝜇𝑝𝑦0,

∏
𝜎∈𝐶𝑝

𝜎𝑦0,
∏

𝜎∈𝐶𝑝2∕𝐶𝑝

𝜎𝑦1, … ,
∏

𝜎∈𝐶𝑝𝑛∕𝐶𝑝𝑛−1

𝜎𝑦𝑛−1

⎞⎟⎟⎠,
where is the multiplication map. Here, we are using that, since 𝑅 is commutative
and𝑀 is an 𝑅-module, so that the product of cyclic tensors is well defined, as well
as the commutativity of𝑀 so that this product is independent of the cyclic ordering.

Proposition 1.19. Let 𝑀 be a commutative 𝑅-algebra. There is a unique natural map of
sets , which we call the norm, such that 𝑤𝑁 = 𝑁𝑤𝑤. It is
multiplicative, unital, and it satisfies the identities

for every , where 𝜎 is the Weyl action.

Proof. It is sufficient to show that such a unique natural transformation exists on pairs (𝑅;𝑀)
where 𝑅 is a free commutative ring and 𝑀 is a free commutative 𝑅-algebra. The map 𝑁 for a
general pair will then be defined as the reflexive co-equaliser of the map induced on the Witt
vectors of a free resolution (the fact that 𝑁 is not a ring homomorphism is not an issue since
reflexive co-equalisers of commutative rings are computed in sets). The map will be independent
on the choice of resolution since different free resolutions can be compared by a map as in the
proof of 1.4.
Let us then suppose that (𝑅;𝑀) is such a free pair and denote by 𝑤̂ the ghost map of

. We remark that since the ghost map 𝑤 of𝑊𝑛+1,𝑝(𝑅;𝑀) is injective, the existence
and uniqueness of𝑁 follow if we can prove that the image of𝑁𝑤𝑤̂ is included in the image of 𝑤.
In order to verify this, we use a version of the Dwork lemmawith coefficients which characterises
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22 of 62 DOTTO et al.

the image of 𝑤. The proof of the lemma is technical and is deferred to Theorem A.8. It states that
when (𝑅;𝑀) is free (or more generally if it has an ‘external Frobenius’), there are additive maps

such that a sequence (𝑏0, 𝑏1, … , 𝑏𝑛) of lies in the image of the ghost map 𝑤 if and
only if

𝜙𝑗(𝑏𝑗) ≡ 𝑏𝑗+1 mod tr
𝐶
𝑝𝑗+1

𝑒

for every 0 ⩽ 𝑗 < 𝑛, where the congruence is modulo the image of the additive transfer map
. Thus, we need to verify that the sequence

⎛⎜⎜⎝𝜇𝑝𝑤̂0,
∏
𝜎∈𝐶𝑝

𝜎𝑤̂0,
∏

𝜎∈𝐶𝑝2∕𝐶𝑝

𝜎𝑤̂1, … ,
∏

𝜎∈𝐶𝑝𝑛∕𝐶𝑝𝑛−1

𝜎𝑤̂𝑛−1

⎞⎟⎟⎠
satisfies these congruences. We start by separately analysing the first congruence

𝜙𝜇𝑝𝑤̂0𝑥0 = 𝜙𝜇𝑝𝑥0 = 𝜙𝑤0𝜇𝑝𝑥0 ≡ 𝑤1(𝜇𝑝𝑥0) ≡ (𝜇𝑝𝑥0)
⊗𝑝 =

∏
𝜎∈𝐶𝑝

𝜎𝑥0 mod tr
𝐶𝑝
𝑒 ,

where the third equality is from the Dwork Lemma, and the last one can be easily verified on
elementary tensors. Now let us take 𝑗 ⩾ 1. When 𝑀 is a free commutative 𝑅-algebra, the maps
𝜙𝑗 are moreover multiplicative (see Example A.5). They are defined before taking invariants, and
they satisfy 𝜙𝑗−1𝜎𝑗−1 = 𝜎𝑗𝜙𝑗−1 where 𝜎𝑘 denotes the action of a generator of 𝐶𝑝𝑘 (Lemma A.6).
Moreover, the maps

satisfy the Dwork Lemma for the free 𝑅-module𝑀⊗𝑅𝑝 (Lemma A.11). We can now verify that

𝜙𝑗
∏

𝜎∈𝐶
𝑝𝑗
∕𝐶

𝑝𝑗−1

𝜎𝑤̂𝑗−1 =

𝑝∏
𝑙=1

𝜙𝑗𝜎
𝑙
𝑗
𝑤̂𝑗−1 =

𝑝∏
𝑙=1

𝜎𝑙
𝑗+1

𝜙𝑗𝑤̂𝑗−1 =
∏

𝜎∈𝐶
𝑝𝑗+1

∕𝐶
𝑝𝑗

𝜎𝜙𝑗𝑤̂𝑗−1

=
∏

𝜎∈𝐶
𝑝𝑗+1

∕𝐶
𝑝𝑗

𝜎Φ𝑗−1𝑤̂𝑗−1 =
∏

𝜎∈𝐶
𝑝𝑗+1

∕𝐶
𝑝𝑗

𝜎

(
𝑤̂𝑗 + tr

𝐶
𝑝𝑗

𝑒

)

=
⎛⎜⎜⎝

∏
𝜎∈𝐶

𝑝𝑗+1
∕𝐶

𝑝𝑗

𝜎𝑤̂𝑗

⎞⎟⎟⎠ + tr
𝐶
𝑝𝑗+1

𝑒 ,

and therefore, that 𝑁𝑤𝑤̂ lands in the image of 𝑤. The last equality follows from the Tambara
reciprocity relations of the 𝐶𝑝𝑗+1 -Tambara functor (see, e.g. [14, Corollaries 2.6 and 2.9]). It
can also be verified directly as follows. For every subset 𝑉 ⊂ {1, … , 𝑝} and 1 ⩽ 𝑙 ⩽ 𝑝, let us define
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WITT VECTORS WITH COEFFICIENTS AND TR 23 of 62

𝑡𝑉
𝑙
∶= 𝜎𝑙

𝑗+1
𝑤̂𝑗 if 𝑙 ∉ 𝑉, and 𝑡𝑉

𝑙
∶= 𝜎𝑙

𝑗+1
tr
𝐶
𝑝𝑗

𝑒 if 𝑙 ∈ 𝑉. Then,

∏
𝜎∈𝐶

𝑝𝑗+1
∕𝐶

𝑝𝑗

𝜎(𝑤̂𝑗 + tr
𝐶
𝑝𝑗

𝑒 ) =
∑

𝑉⊂{1,…,𝑝}

𝑡𝑉1 𝑡
𝑉
2 … 𝑡

𝑉
𝑝 =

⎛⎜⎜⎝
∏

𝜎∈𝐶
𝑝𝑗+1

∕𝐶
𝑝𝑗

𝜎𝑤̂𝑗

⎞⎟⎟⎠ +
∑

∅≠𝑉⊂{1,…,𝑝}

𝑡𝑉1 𝑡
𝑉
2 … 𝑡

𝑉
𝑝

=
⎛⎜⎜⎝

∏
𝜎∈𝐶

𝑝𝑗+1
∕𝐶

𝑝𝑗

𝜎𝑤̂𝑗

⎞⎟⎟⎠ +
𝑝∑
𝑙=1

∑
𝑙∈𝑉⊂{1,…,𝑝}

𝑡𝑉1 … 𝑡
𝑉
𝑙−1

(
𝜎𝑙
𝑗+1

tr
𝐶
𝑝𝑗

𝑒

)
𝑡𝑉
𝑙+1

… 𝑡𝑉𝑝

=
⎛⎜⎜⎝

∏
𝜎∈𝐶

𝑝𝑗+1
∕𝐶

𝑝𝑗

𝜎𝑤̂𝑗

⎞⎟⎟⎠ +
𝑝∑
𝑙=1

∑
𝑙∈𝑉⊂{1,…,𝑝}

𝜎𝑙
𝑗+1

tr
𝐶
𝑝𝑗

𝑒

=
∏

𝜎∈𝐶
𝑝𝑗+1

∕𝐶
𝑝𝑗

𝜎(𝑤̂𝑗) + tr
𝐶
𝑝𝑗+1

𝑒 ,

where the third equality holds by Frobenius reciprocity.
The relations between 𝑁, 𝑅, 𝐹 are easily verified in ghost components and are natural, and

therefore they hold in Witt coordinates by the usual resolution argument. □

Remark 1.20. There are relations between 𝑁 and 𝑉 and 𝑁 and the sum which are difficult to
express without the help of exponential diagrams. These are the Tambara reciprocity conditions
for norms and transfers and norms and sums of [22, (2.1)(v)] (see also [14, Corollaries 2.6 and 2.9]).
They can be directly verified in ghost coordinates using Tambara reciprocity for the 𝐶𝑝𝑗 -Tambara
functors .

Proposition 1.21. When 𝑀 is a commutative 𝑅-algebra, the map 𝜏∶ 𝑀 → 𝑊𝑛+1,𝑝(𝑅;𝑀) agrees
with the composite

where 𝑢(𝑚) = 𝑚 ⊗ 1⊗⋯⊗ 1.

Proof. In ghost components, the iterated norm 𝑁 sends to

𝑤𝑁𝑛(𝑥) =
⎛⎜⎜⎝𝜇𝑛𝑝(𝑥),

∏
𝜎∈𝐶𝑝

𝜎𝜇𝑛−1𝑝 (𝑥),
∏
𝜎∈𝐶𝑝2

𝜎𝜇𝑛−2𝑝 (𝑥), … ,
∏
𝜎∈𝐶𝑝𝑛

𝜎(𝑥)
⎞⎟⎟⎠,

where 𝜇𝑛−𝑖𝑝 is the composite of the multiplication maps

𝑀⊗𝑅𝑝
𝑛 𝜇𝑝
⟶𝑀⊗𝑅𝑝

𝑛−1 𝜇𝑝
⟶𝑀⊗𝑅𝑝

𝑛−2 𝜇𝑝
⟶ ⋯

𝜇𝑝
⟶𝑀⊗𝑅𝑝

𝑖
.
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24 of 62 DOTTO et al.

After pre-composing with , this sends 𝑎 ∈ 𝑀 to

𝑤𝑁𝑛(𝑎 ⊗ 1 ⊗⋯⊗ 1) = (𝑎, 𝑎⊗𝑝, 𝑎⊗𝑝
2
, … , 𝑎⊗𝑝

𝑛
) = 𝑤(𝑎, 0, … , 0),

showing that the maps agree in ghost components. By the usual resolution argument, they agree
in Witt coordinates. □

1.3 The comparison with Kaledin’s polynomial Witt vectors

Kaledin defines in [15] and [16] a functor𝑊𝑛 (denoted by𝑊𝑛 in [15]) of ‘polynomial Witt vectors’
from the category of vector spaces over a perfect field 𝑘 of characteristic𝑝 to the category of abelian
groups. We show that on 𝑘-vector spaces our functor𝑊𝑛,𝑝 can be described as the cokernel of a
transfer map, and use this to identify𝑊𝑛,𝑝 with𝑊𝑛.
For any 𝑅-bimodule𝑀, we let 𝑄𝑝𝑛(𝑅;𝑀) denote the cokernel of the transfer map

The canonical lax symmetric monoidal structure of (as defined in [7]) descends to a lax
symmetric monoidal structure on the functor 𝑄𝑝𝑛 . We let 𝑅[𝑚] denote the𝑚-torsion subgroup of
𝑅 for every integer𝑚.

Theorem 1.22. Let 𝑀 be an 𝑅-bimodule. For every integer 𝑛 ⩾ 1, there is a surjective natural lax
symmetric monoidal transformation

𝑤𝑛 ∶ 𝑊𝑛,𝑝(𝑅;𝑀∕𝑝) = 𝑊𝑛,𝑝(𝑅∕𝑝;𝑀∕𝑝) ↠ 𝑄𝑝𝑛(𝑅;𝑀).

It is an isomorphism when 𝑅 is commutative, 𝑅∕𝑝 is perfect, 𝑀 is a free 𝑅-module and the
multiplication by 𝑝𝑙-map 𝑝𝑙 ∶ 𝑅[𝑝𝑙+1] → 𝑅[𝑝] is surjective for every 1 ⩽ 𝑙 ⩽ 𝑛 − 1.

Remark 1.23. When𝑀 = 𝑅, this, in particular, states that for commutative rings without 𝑝-power
torsion and with perfect 𝑅∕𝑝, there is a ring isomorphism 𝑊𝑛,𝑝(𝑅∕𝑝) ≅ 𝑅∕𝑝𝑛. For example,
𝑊𝑛,𝑝(𝔽𝑝) = ℤ∕𝑝𝑛.

Proof of 1.22. We start by observing that the top ghost component 𝑤𝑛 of 𝑊𝑛+1,𝑝(𝑅;𝑀) modulo
transfer descends along the restriction map

This is because the summand of 𝑤𝑛(𝑎0, … , 𝑎𝑛) which depends on 𝑎𝑛 is tr
𝐶𝑝𝑛
𝑒 (𝑎𝑛) and it therefore

vanishes in 𝑄𝑝𝑛(𝑅;𝑀). We claim that this map further descends along the map 𝑊𝑛,𝑝(𝑅;𝑀) →
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WITT VECTORS WITH COEFFICIENTS AND TR 25 of 62

𝑊𝑛,𝑝(𝑅;𝑀∕𝑝) induced by the modulo 𝑝 reduction 𝑀 → 𝑀∕𝑝. We start by computing that for
every 0 ⩽ 𝑖 ⩽ 𝑛 − 1, the 𝑖th summand of 𝑤𝑛(𝑎0 + 𝑝𝑥0, … , 𝑎𝑛 + 𝑝𝑥𝑛) is

tr
𝐶𝑝𝑛

𝐶
𝑝𝑛−𝑖

(𝑎𝑖 + 𝑝𝑥𝑖)
⊗𝑝𝑛−𝑖 = tr

𝐶𝑝𝑛

𝐶
𝑝𝑛−𝑖

∑
𝑓∶ 𝑝𝑛−𝑖→2

𝑠𝑓(1) ⊗⋯⊗ 𝑠𝑓(𝑝𝑛−𝑖)

= tr
𝐶𝑝𝑛

𝐶
𝑝𝑛−𝑖

(𝑎𝑖
⊗𝑝𝑛−𝑖 + (𝑝𝑥𝑖)

⊗𝑝𝑛−𝑖 +

𝑝𝑛−𝑖−1∑
𝑙=0

∑
{
𝑓∶ 𝑝𝑛−𝑖→2
stab(𝑓)=𝐶

𝑝𝑙
}∕𝐶

𝑝𝑛−𝑖

tr
𝐶
𝑝𝑛−𝑖

𝐶
𝑝𝑙

(𝑠𝑓(1) ⊗⋯⊗ 𝑠𝑓(𝑝𝑛−𝑖))),

where 𝑠1 = 𝑎𝑖 and 𝑠2 = 𝑝𝑥𝑖 , and the sum is the decomposed according to the orbits of the 𝐶𝑝𝑛−𝑖 -
action on the set of maps 𝑝𝑛−𝑖 → 2 by pre-composition. Every non-constant 𝑓∶ 𝑝𝑛−𝑖 → 2 with
stabiliser𝐶𝑝𝑙 needs to have value 2 on at least𝑝𝑙 points. Thus each tensor product above is divisible
by 𝑝𝑙, and

tr
𝐶𝑝𝑛

𝐶
𝑝𝑛−𝑖

(𝑎𝑖 + 𝑝𝑥𝑖)
⊗𝑝𝑛−𝑖 = tr

𝐶𝑝𝑛

𝐶
𝑝𝑛−𝑖

(𝑎
⊗𝑝𝑛−𝑖

𝑖
) +

𝑝𝑛−𝑖∑
𝑙=0

tr
𝐶𝑝𝑛

𝐶
𝑝𝑙
𝑝𝑙𝑦𝑙,

for some 𝐶𝑝𝑙 -invariant . But then 𝑝𝑙𝑦𝑙 = tr
𝐶
𝑝𝑙

𝑒 𝑦𝑙, and the right-hand side is congru-

ent to tr
𝐶𝑝𝑛

𝐶
𝑝𝑛−𝑖

(𝑎
⊗𝑝𝑛−𝑖

𝑖
) modulo the image of tr

𝐶𝑝𝑛
𝑒 . Note that this is not quite enough to conclude

that the map 𝑤𝑛 factors over𝑊𝑛,𝑝(𝑅;𝑀∕𝑝) as one needs to handle the kernel of𝑊𝑛,𝑝(𝑅;𝑀) →

𝑊𝑛,𝑝(𝑅;𝑀∕𝑝). Let 𝑀′ denote the 𝑠𝑢𝑏-𝑅-bimodule of 𝑀 ×𝑀 of those pairs (𝑥, 𝑦) ∈ 𝑀 with
𝑥 − 𝑦 ∈ 𝑝𝑀. Then, we get a reflexive co-equaliser

where the section is the diagonal and 𝑎 and 𝑏 are the projections. Consider the diagram

From the above congruences, we know that 𝑤𝑛𝜋𝑎∗ = 𝑤𝑛𝜋𝑏∗ and hence, since the left-hand dia-
gram commutes, we get that 𝑤𝑛𝑎∗𝜋 = 𝑤𝑛𝑏∗𝜋. But 𝜋 is surjective and therefore 𝑤𝑛𝑎∗ = 𝑤𝑛𝑏∗.
Since

is a co-equaliser, this gives a well-defined additive natural transformation

𝑤𝑛 ∶ 𝑊𝑛,𝑝(𝑅;𝑀∕𝑝)⟶ 𝑄𝑝𝑛(𝑅;𝑀)
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26 of 62 DOTTO et al.

for every 𝑅-bimodule𝑀, factoring 𝑤𝑛 ∶ 𝑊𝑛,𝑝(𝑅;𝑀)⟶ 𝑄𝑝𝑛(𝑅;𝑀). It is lax symmetric monoidal
because 𝑤𝑛 is. It is surjective because the fixed points are generated additively by
elements of the form

tr
𝐶𝑝𝑛

𝐶
𝑝𝑛−𝑖

𝑎
⊗𝑝𝑛−𝑖

𝑖
= 𝑤𝑛(0, … , 𝑎𝑖, … , 0)

for 0 ⩽ 𝑖 ⩽ 𝑛, where (this can be verified first for free bimodules, and then by resolving
(𝑅;𝑀) by a free bimodule).
Let us now suppose that 𝑅 is commutative with perfect 𝑅∕𝑝, and that𝑀 = 𝑅(𝑋) ∶= ⊕𝑋𝑅 is a

free 𝑅-module. Under the isomorphism , we write the transfer as the map

tr
𝐶𝑝𝑛
𝑒 ∶ 𝑅(𝑋×𝑝

𝑛
)⟶ 𝑅(𝑋×𝑝

𝑛
)𝐶𝑝𝑛 ,

which sends a basis element (𝑥1, … , 𝑥𝑝𝑛 ) to
∑
𝜎∈𝐶𝑝𝑛

𝜎(𝑥1, … , 𝑥𝑝𝑛 ). For 𝑛 = 1, the invariants
𝑅(𝑋×𝑝)𝐶𝑝 decompose as

𝑅(𝑋×𝑝)𝐶𝑝 ≅ 𝑅(𝑋×𝑝∕𝐶𝑝) ≅ 𝑅(𝑋) ⊕ 𝑅((𝑋×𝑝∖Δ)∕𝐶𝑝),

where the first summand is generated by the diagonal elements (𝑥, … , 𝑥), and the second sum-
mand by the transferred elements. Thus, the second summand is quotiented off in 𝑄𝑝(𝑅; 𝑅(𝑋)),
and the first summand is hit by the multiplication by 𝑝 map. This provides the identification

𝑤1 ∶ 𝑊1,𝑝(𝑅; 𝑅(𝑋)∕𝑝) = 𝑅∕𝑝(𝑋)
≅
⟶ 𝑄𝑝(𝑅; 𝑅(𝑋))

that sends 𝑟𝑥 to 𝑟𝑝(𝑥, … , 𝑥) for every 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑋.
Now suppose inductively that𝑤𝑛 is an isomorphismand that𝑝𝑛 ∶ 𝑅[𝑝𝑛+1] → 𝑅[𝑝] is surjective,

and let us show that 𝑤𝑛+1 is also an isomorphism. The abelian group of invariants 𝑅(𝑋×𝑝
𝑛
)𝐶𝑝𝑛

decomposes as

𝑅(𝑋×𝑝
𝑛
)𝐶𝑝𝑛 ≅ 𝑅(𝑋×𝑝

𝑛
∕𝐶𝑝𝑛) ≅ 𝑅(𝑋) ⊕ 𝑅((𝑋×𝑝∖𝑋)∕𝐶𝑝) ⊕⋯⊕ 𝑅((𝑋×𝑝

𝑛
∖𝑋×𝑝

𝑛−1
)∕𝐶𝑝𝑛),

where 𝑋×𝑝𝑖−1 ⊂ 𝑋𝑝
𝑖 via the 𝑝𝑖−1-power of the diagonal map Δ∶ 𝑋 → 𝑋×𝑝, and the isomorphism

sends a basis element (𝑥1, … , 𝑥𝑝𝑖 ) in 𝑋×𝑝
𝑖
∖𝑋×𝑝

𝑖−1 to

tr
𝐶𝑝𝑛

𝐶
𝑝𝑛−𝑖

(𝑥1, … , 𝑥𝑝𝑖 , 𝑥1, … , 𝑥𝑝𝑖 , … , 𝑥1, … , 𝑥𝑝𝑖 ).

The transfer map hits the 𝑋×𝑝𝑖∖𝑋×𝑝𝑖−1 summand with the multiplication by 𝑝𝑛−𝑖 map, thus
inducing an isomorphism

𝑄𝑝𝑛(𝑅; 𝑅(𝑋)) ≅ 𝑅∕𝑝𝑛(𝑋) ⊕ 𝑅∕𝑝𝑛−1((𝑋×𝑝∖𝑋)∕𝐶𝑝) ⊕⋯⊕ 𝑅∕𝑝((𝑋×𝑝
𝑛−1
∖𝑋×𝑝

𝑛−2
)∕𝐶𝑝𝑛−1).

We can therefore define a map 𝑅∶ 𝑄𝑝𝑛+1(𝑅; 𝑅(𝑋)) → 𝑄𝑝𝑛(𝑅; 𝑅(𝑋)) which under this decompo-
sition collapses the last summand, and which on the summand 𝑋×𝑝𝑖∖𝑋×𝑝𝑖−1 is the sum of the
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WITT VECTORS WITH COEFFICIENTS AND TR 27 of 62

modulo 𝑝𝑛−𝑖 reductions 𝑅∕𝑝𝑛+1−𝑖 → 𝑅∕𝑝𝑛−𝑖 . We claim that there is a short exact sequence

where is also a free 𝑅-module, and the 𝐶𝑝-action on is induced
by the Weyl action on . Indeed, under the decomposition
above, the kernel 𝐾𝑛 of 𝑅𝑛 is

𝐾𝑛 ≅ 𝑅∕𝑝𝑛(𝑋) ⊕ 𝑅∕𝑝𝑛((𝑋×𝑝∖𝑋)∕𝐶𝑝) ⊕ 𝑅∕𝑝𝑛−1((𝑋×𝑝
2
∖𝑋×𝑝)∕𝐶𝑝2) ⊕ …

⊕ 𝑅∕𝑝((𝑋×𝑝
𝑛
∖𝑋×𝑝

𝑛−1
)∕𝐶𝑝𝑛)

≅ 𝑅∕𝑝𝑛(𝑋×𝑝∕𝐶𝑝) ⊕ 𝑅∕𝑝𝑛−1((𝑋×𝑝
2
∖𝑋×𝑝)∕𝐶𝑝2) ⊕⋯⊕ 𝑅∕𝑝((𝑋×𝑝

𝑛
∖𝑋×𝑝

𝑛−1
)∕𝐶𝑝𝑛)

≅ (𝑅∕𝑝𝑛(𝑋×𝑝) ⊕ 𝑅∕𝑝𝑛−1((𝑋×𝑝
2
∖𝑋×𝑝)∕𝐶𝑝) ⊕⋯⊕ 𝑅∕𝑝((𝑋×𝑝

𝑛
∖𝑋×𝑝

𝑛−1
)∕𝐶𝑝𝑛−1))𝐶𝑝

≅ 𝑄𝑝𝑛(𝑅; 𝑅(𝑋
×𝑝))𝐶𝑝 ,

where the first isomorphism is due to the fact that since 𝑝𝑛 ∶ 𝑅[𝑝𝑛+1] → 𝑅[𝑝] is surjective, the
kernel of the 𝑝-reduction map 𝑅∕𝑝𝑛+1 → 𝑅∕𝑝 is 𝑅∕𝑝𝑛. The second isomorphism collects the first
two summands. The third isomorphism commutes the quotient 𝑆(𝑌)𝐶𝑝 ≅ 𝑆(𝑌∕𝐶𝑝) for the free 𝑆-
module on a 𝐶𝑝-set 𝑌. The last one is again by the decomposition of 𝑄𝑝𝑛 above using that 𝑅(𝑋×𝑝)
is free. Thus, the bottom row of the commutative diagram

is exact, where the bottommap𝑉 is induced by tr
𝐶𝑝𝑛+1

𝐶𝑝𝑛
∶ 𝑅(𝑋×𝑝

𝑛+1
)
𝐶𝑝𝑛

𝐶𝑝
→ 𝑅(𝑋×𝑝

𝑛+1
)
𝐶𝑝𝑛+1 . The top

row is exact by Proposition 1.15 since 𝑅 is commutative. Moreover, 𝑤𝑛 is an isomorphism by the
inductive assumption. The right vertical map is the map 𝑅∕𝑝(𝑋) → 𝑅∕𝑝(𝑋) which sends 𝑟 ⋅ 𝑥 to
𝑟𝑝

𝑛
⋅ 𝑥, which is an isomorphism since 𝑅∕𝑝 is assumed to be perfect. It follows that 𝑤𝑛+1 is an

isomorphism. □

In [16, Cor. 2.5], Kaledin shows that there is a unique functor 𝑊𝑛 from 𝔽𝑝-vector spaces
to abelian groups such that 𝑊𝑛(𝐴∕𝑝) = 𝑄𝑝𝑛(ℤ;𝐴) for every free abelian group 𝐴. Thus,
Theorem 1.22 immediately gives the following.

Corollary 1.24. There is a natural isomorphism of abelian groups𝑊𝑛 ≅ 𝑊𝑛,𝑝(𝔽𝑝; −).

This construction is lifted in [15, Prop 2.3] to a functor𝑊𝑛 from 𝑘-modules to𝑊𝑛,𝑝(𝑘)-modules
for every perfect field 𝑘 of characteristic 𝑝 (and, in fact, further to a category of Mackey functors).
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28 of 62 DOTTO et al.

It is determined by a similar formula

𝑊𝑛(𝐸∕𝑝) = 𝑄𝑝𝑛(𝑊𝑚,𝑝(𝑘); 𝐸)

for every free𝑊𝑚,𝑝(𝑘)-module 𝐸 and every𝑚 ⩾ 𝑛.

Corollary 1.25. Let 𝑘 be a perfect field of characteristic𝑝,𝑚 ⩾ 𝑛 ⩾ 1 integers and𝑉 a 𝑘-vector space.
There is a natural isomorphism of𝑊𝑛,𝑝(𝑘)-modules

𝑊𝑛,𝑝(𝑘; 𝑉) ≅ 𝑊𝑛(𝑉)

with the polynomial Witt vectors𝑊𝑛(𝑉) of [15] and [16].

Proof. ByKaledin’s characterisation of the functor𝑊𝑛, it is sufficient to show that𝑊𝑛,𝑝(𝑘; 𝐸∕𝑝) ≅

𝑄𝑝𝑛(𝑊𝑚,𝑝(𝑘); 𝐸) for every free𝑊𝑚,𝑝(𝑘)-module𝐸. Since 𝑘 is perfect of characteristic𝑝 and𝑚 ⩾ 𝑛,
the commutative ring𝑊𝑚,𝑝(𝑘) satisfies the conditions of Theorem 1.22 and

𝑊𝑛,𝑝(𝑘; 𝐸∕𝑝) ≅ 𝑊𝑛,𝑝(𝑊𝑚,𝑝(𝑘)∕𝑝; 𝐸∕𝑝)
𝑤𝑛
⟶ 𝑄𝑝𝑛(𝑊𝑚,𝑝(𝑘); 𝐸)

is an isomorphism. Since 𝑤𝑛 is symmetric monoidal, this is an isomorphism of 𝑊𝑛,𝑝(𝑘; 𝑘) =

𝑊𝑛,𝑝(𝑘)-modules. □

Remark 1.26. The first corollary can be deduced by the second one as follows. Let 𝐴 be a
free abelian group. Since 𝐴∕𝑝 ≅ (𝐴 ⊗ ℤ∧𝑝)∕𝑝, the corollary for the perfect field 𝑘 = 𝔽𝑝 gives an
isomorphism

𝑊𝑛,𝑝(𝔽𝑝; 𝐴∕𝑝) ≅ 𝑊𝑛,𝑝(𝔽𝑝; (𝐴 ⊗ ℤ∧𝑝)∕𝑝) ≅ 𝑄𝑝𝑛(ℤ
∧
𝑝; 𝐴 ⊗ ℤ∧𝑝) ≅ 𝑄𝑝𝑛(ℤ;𝐴) ⊗ ℤ∧𝑝 ≅ 𝑄𝑝𝑛(ℤ;𝐴),

where the last isomorphism holds because 𝑝𝑛 = tr
𝐶𝑝𝑛
𝑒 (1) acts as zero on 𝑄𝑝𝑛(ℤ; ℤ).

2 WITT VECTORSWITH COEFFICIENTS IN HOMOTOPY THEORY

The topological restriction homology (TR) of a ring spectrum𝑅with coefficients in an𝑅-bimodule
𝑀 was introduced by Lindenstrauss and McCarthy in [18], as a version with coefficients of the
cyclic bar construction. It is defined for every integer 𝑛 ⩾ 0 as the fixed points of a genuine 𝐶𝑛-
spectrum , a homotopical analogue of the algebraic cyclic tensor powers appearing earlier in
the present paper, constructed as the geometric realisation of a simplicial objectwith 𝑘-simplicies

and with a simplicial structure analogous to that of the 𝑛-fold subdivision of the cyclic bar con-
struction of 𝑅. The underlying spectrum is, in fact, equivalent to THH(𝑅;𝑀∧𝑅𝑛). In order to derive
this construction appropriately and obtain a genuine equivariant spectrum, the authors employed
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Bökstedt’s model for the smash product, and, in turn, defined TR⟨𝑛⟩ as the fixed points

The foundations of this theory have been reworked in [17] by McCandless and the second and
third authors, and we now review the bases of this construction.

Definition 2.1 [17]. A polygonic spectrum 𝑋 consists of a spectrum 𝑋𝑑 with an action of the cyclic
group 𝐶𝑑 for every integer 𝑑 ⩾ 1, together with 𝐶𝑑-equivariant Frobenius maps

𝜙𝑝,𝑑 ∶ 𝑋𝑑 ⟶ (𝑋𝑑𝑝)
𝑡𝐶𝑝

for every prime 𝑝 and 𝑑 ⩾ 1, where (−)𝑡𝐶𝑝 denotes the Tate construction of the 𝐶𝑝-action.
Given a truncation set 𝑇 (a subset ofℕ>0 such that if 𝑥𝑦 ∈ 𝑇, then 𝑥 ∈ 𝑇 and 𝑦 ∈ 𝑇), a 𝑇-typical

polygonic spectrum is a polygonic spectrum with 𝑋𝑑 = 0, whenever 𝑑 ∉ 𝑇. We will mainly focus
on the case where 𝑇 = ⟨𝑛⟩ is the truncation set of divisors of an integer 𝑛 ⩾ 1, especially when 𝑛
is a power of a prime 𝑝.

In [17], the authors introduce a stable and presentable ∞-category PgcSp of polygonic spec-
tra, and the full ∞-subcategory PgcSp𝑇 of 𝑇-typical polygonic spectra. Given an inclusion
of truncation sets 𝑇′ ⊂ 𝑇, the corresponding inclusion PgcSp𝑇′ ↪ PgcSp𝑇 has a left adjoint
Res𝑇

𝑇′
∶ PgcSp𝑇 → PgcSp𝑇′ which is a localisation, by [17, Section 2 and Construction 2.11]. On

objects Res𝑇
𝑇′
sends a 𝑇-typical polygonic spectrum 𝑋 = {𝑋𝑑}𝑑⩾1 to the 𝑇′-typical polygonic spec-

trum Res𝑇
𝑇′
(𝑋) = {𝑌𝑑}𝑑⩾1 with 𝑌𝑑 = 𝑋𝑑 whenever 𝑑 ∈ 𝑇′ and𝑌𝑑 = 0 otherwise. In particular, we

have the localisation

whenever 𝑛 divides𝑚.
The ∞-category PgcSp is symmetric monoidal by [17, Construction 2.14]. The symmetric

monoidal structure comes from levelwise tensoring the entries and using the lax symmetric
monoidality of the Tate construction.

Example 2.2.

1. Any cyclotomic spectrum 𝑋 as in [19] defines a polygonic spectrum, with 𝑋𝑑 = 𝑋 for all 𝑑 ⩾ 1,
and 𝜙𝑝,𝑑 ∶ 𝑋 → 𝑋𝑡𝐶𝑝 the cyclotomic Frobenius of 𝑋 for every 𝑑 and any prime 𝑝. In particular,
any spectrum 𝑋 with trivial action defines a polygonic spectrum 𝑋triv , for example, the sphere
spectrum 𝕊triv . By applying the truncation, we obtain a 𝑇-typical polygonic spectrum 𝑋triv

𝑇
=

Res𝑇 𝑋
triv , for any truncation set 𝑇.

Further, any 𝑝-typical cyclotomic spectrum 𝑋 as in [19] defines a ⟨𝑝∞⟩-typical polygonic
spectrum, where ⟨𝑝∞⟩ is the truncation set consisting of all the powers of 𝑝. It consists of the
spectra 𝑋𝑝𝑘 = 𝑋 for all 𝑘 ⩾ 0 with maps 𝜙𝑝,𝑝𝑘 ∶ 𝑋 → 𝑋𝑡𝐶𝑝 the cyclotomic Frobenius of 𝑋 for
every 𝑘 ⩾ 0, and 𝑋𝑑 = 0 if 𝑑 is not a power of 𝑝. After applying Res⟨𝑝∞⟩⟨𝑝𝑛⟩ , we get a ⟨𝑝𝑛⟩-typical
polygonic spectrum with 𝑋𝑝𝑘 = 𝑋 for all 0 ⩽ 𝑘 ⩽ 𝑛.
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30 of 62 DOTTO et al.

2. Every space 𝑀 defines a polygonic spectrum Σ∞+𝑀
×, with (Σ∞+ 𝑀

×)𝑛 = Σ∞+𝑀
×𝑛 and with the

Frobenius maps defined by the composite of the canonical maps

Σ∞+𝑀
×𝑛 → Σ∞+ (𝑀

×𝑝𝑛)ℎ𝐶𝑝 → (Σ∞+ 𝑀
×𝑝𝑛)ℎ𝐶𝑝 → (Σ∞+ 𝑀

×𝑝𝑛)𝑡𝐶𝑝 ,

where the first map is the diagonal, the second is the unique map into the limit and the last
map is the canonicalmap from the homotopy fixed points to the Tate construction. By applying
the appropriate truncation functors, we also obtain its 𝑇-typical versions. In particular, we get
a ⟨𝑝𝑛⟩-typical polygonic spectrum Res⟨𝑝𝑛⟩ Σ∞+𝑀× with (Res⟨𝑝𝑛⟩ Σ∞+𝑀×)𝑝𝑘 = Σ∞+𝑀

×𝑝𝑘 for 0 ⩽
𝑘 ⩽ 𝑛.

3. For every ring spectrum 𝑅 and 𝑅-bimodule𝑀, there is a polygonic spectrum THH(𝑅;𝑀) with
THH(𝑅;𝑀)𝑛 = THH(𝑅;𝑀∧𝑅𝑛) and Frobenius maps

𝜙𝑝,𝑛 THH(𝑅;𝑀
∧𝑅𝑛)⟶ THH(𝑅;𝑀∧𝑅𝑝𝑛)𝑡𝐶𝑝

defined on the cyclic bar construction from the Tate diagonals, see [17, Construction 6.31].

Definition 2.3 [17]. For any 𝑇-typical polygonic spectrum 𝑋, one defines TR𝑇(𝑋) to be the
mapping spectrum out of the sphere spectrum

TR𝑇(𝑋) = MapPgcSp𝑇 (𝕊
triv
𝑇 , 𝑋).

For a ring spectrum 𝑅 and 𝑅-bimodule𝑀, we let TR𝑇(𝑅;𝑀) ∶= TR𝑇(Res𝑇 THH(𝑅;𝑀)).

Since 𝕊triv
𝑇

is the unit of the monoidal structure on 𝑇-typical polygonic spectra, we have that
TR𝑇 is a lax monoidal functor. Let biMod𝕊 denote the ∞-category of spectral bimodules. Then,
the functor

THH∶ biMod𝕊 → PgcSp

sending (𝑅;𝑀) to THH(𝑅;𝑀) is a lax symmetric monoidal functor, by [17, Section 6]. Hence,
all in all we conclude that TR𝑇(𝑅;𝑀) is a lax symmetric monoidal functor from biMod𝕊 to
spectra.
In [17, Proposition 2.10], the authors provide an equaliser formula for TR𝑇(𝑋) analogous to

the description of topological cyclic homology of [19] and [3]. In the case of 𝑇 = ⟨𝑝𝑛⟩, this is the
equaliser

One of the maps of the equaliser is the composite

𝑛∏
𝑖=0

THH(𝑅;𝑀∧𝑅𝑝
𝑖
)
ℎ𝐶

𝑝𝑖 →

𝑛−1∏
𝑖=0

THH(𝑅;𝑀∧𝑅𝑝
𝑖
)
ℎ𝐶

𝑝𝑖 ⟶

𝑛−1∏
𝑖=0

(THH(𝑅;𝑀∧𝑅𝑝
𝑖+1
)𝑡𝐶𝑝 )

ℎ𝐶
𝑝𝑖
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WITT VECTORS WITH COEFFICIENTS AND TR 31 of 62

of the projection and the product of the homotopy fixed points of the Frobenius maps. The other
map in the equaliser is the composite

𝑛∏
𝑖=0

THH(𝑅;𝑀∧𝑅𝑝
𝑖
)
ℎ𝐶

𝑝𝑖 →

𝑛∏
𝑖=1

THH(𝑅;𝑀∧𝑅𝑝
𝑖
)
ℎ𝐶

𝑝𝑖 ⟶

𝑛∏
𝑖=1

(THH(𝑅;𝑀∧𝑅𝑝
𝑖
)𝑡𝐶𝑝 )

ℎ𝐶
𝑝𝑖−1

of the other projection followed by the product of the homotopy 𝐶𝑝𝑖−1 -fixed points of canonical
maps THH(𝑅;𝑀∧𝑅𝑝

𝑖
)ℎ𝐶𝑝 → THH(𝑅;𝑀∧𝑅𝑝

𝑖
)𝑡𝐶𝑝 .

Example 2.4. Let (𝑅;𝑀) be a bimodule spectrum, where 𝑅 and𝑀 are connective.

1. By definition, TR⟨1⟩(𝑅;𝑀) = THH(𝑅;𝑀) is the topological Hochschild homology of 𝑅 with
coefficients in𝑀. Thus, 𝜋0 TR⟨1⟩(𝑅;𝑀) ≅ 𝜋0𝑀∕[𝜋0𝑅, 𝜋0𝑀] ≅ 𝑊⟨1⟩(𝜋0𝑅; 𝜋0𝑀).

2. When 𝑅 = 𝑀, we have that TR⟨𝑝𝑛⟩(𝑅; 𝑅) = TR𝑛+1(𝑅) is the classical 𝑝-typical TR of [4]. Thus,
by the calculations of [12] and [9], there is a natural isomorphism

𝑊⟨𝑝𝑛⟩(𝜋0𝑅; 𝜋0𝑅) ≅ 𝜋0 TR⟨𝑝𝑛⟩(𝑅; 𝑅),
which is multiplicative when 𝑅 is commutative.

3. When 𝑅 = 𝕊 is the sphere spectrum and 𝑀 = 𝐴 is a connective spectrum, there is a natural
equivalence

TR⟨𝑝𝑛⟩(𝕊; 𝐴) = (𝑁
𝐶𝑝𝑛
𝑒 𝐴)𝐶𝑝𝑛 ,

where the right-hand side is the genuine fixed points of the Hill–Hopkins–Ravenel norm of 𝐴
of [13]. Indeed, THH(𝕊;𝐴) = 𝐴, and the Frobenius maps above

𝜙∶ 𝐴∧𝑝
𝑖
→ (𝐴∧𝑝

𝑖+1
)𝑡𝐶𝑝

are by construction the Tate diagonals of the spectra 𝐴∧𝑝𝑖 . By identifying the geometric fixed-
points spectrum (𝑁

𝐶𝑝𝑛
𝑒 𝐴)

Φ𝐶
𝑝𝑖 with 𝐴∧𝑝𝑛−𝑖 , we find that the equaliser formula for TR⟨𝑝𝑛⟩(𝕊; 𝐴)

above is equivalent to the iterated pullback of [19, Corollary II.4.7] which describes the genuine
fixed-points spectrum (𝑁

𝐶𝑝𝑛
𝑒 𝐴)𝐶𝑝𝑛 . When 𝐴 = 𝐻𝔽𝑝, the components of this norm is the ring

of (𝑛 + 1)-truncated 𝑝-typical Witt vectors

𝜋0(𝑁
𝐶𝑝𝑛
𝑒 𝐻𝔽𝑝)

𝐶𝑝𝑛 ≅ 𝑊⟨𝑝𝑛⟩(𝔽𝑝),
by work of Mazur (see [2, Proposition 5.23]). For the prime 𝑝 = 2, on the other hand, there is a
natural ring isomorphism

𝜋0(𝑁
𝐶2
𝑒 𝐻𝐴)𝐶2 ≅ 𝑊⟨2⟩(ℤ;𝐴),

for every ring 𝐴 by [8, Proposition 5.5] (compare with 1.11).
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32 of 62 DOTTO et al.

2.1 Witt vectors with coefficients and TR with coefficients

We now state the main result of this section, which extends the calculations of Example 2.4 to all
bimodules.

Theorem 2.5. Let 𝑅 be a connective ring spectrum and 𝑀 a connective 𝑅-bimodule. There is an
isomorphism

𝑊⟨𝑝𝑛⟩(𝜋0𝑅; 𝜋0𝑀) ≅ 𝜋0 TR⟨𝑝𝑛⟩(𝑅;𝑀),
which is, moreover, natural in (𝑅;𝑀) and monoidal. In particular, for every connective spectrum 𝐴,
this gives an isomorphism 𝑊⟨𝑝𝑛⟩(ℤ; 𝜋0𝐴) ≅ 𝜋0(𝑁

𝐶𝑝𝑛
𝑒 𝐴)𝐶𝑝𝑛 with the Hill–Hopkins–Ravenel norm

construction, which is a ring isomorphism when 𝐴 is a ring spectrum.

Remark 2.6. When 𝐴 = Σ∞+ 𝑋 is the suspension spectrum of a space 𝑋, the norm 𝑁
𝐶𝑝𝑛
𝑒 (Σ∞+ 𝑋) ≅

Σ∞+ 𝑋
×𝑝𝑛 is again a suspension spectrum, and the tom Dieck splitting provides a canonical

isomorphism of abelian groups

𝜋
𝐶𝑝𝑛

0
𝑁
𝐶𝑝𝑛
𝑒 (Σ∞+ 𝑋) ≅

𝑛⨁
𝑖=0

𝜋0(Σ
∞
+ ((𝑋

×𝑝𝑛)
𝐶
𝑝𝑛−𝑖 ))ℎ𝐶

𝑝𝑖
≅

𝑛⨁
𝑖=0

(ℤ(𝜋0𝑋)
⊗𝑝𝑖 )𝐶

𝑝𝑖
,

whereℤ(𝜋0𝑋) is the free abelian group generated by𝜋0𝑋. Thus, by Theorem 2.5, the group ofWitt
vectors𝑊⟨𝑝𝑛⟩(ℤ; ℤ(𝜋0𝑋)) is isomorphic to the direct sumof the (ℤ(𝜋0𝑋)⊗𝑝

𝑖
)𝐶

𝑝𝑖
≅ ℤ((𝜋0𝑋

×𝑝𝑖 )𝐶
𝑝𝑖
),

and it is in particular free abelian. This product decomposition matches with the algebraic one of
Proposition 1.14.

The proof of Theorem 2.5 will occupy the rest of the section. To set up our proof, and in particu-
lar to construct themap giving the isomorphism of the statement, we need to discuss the spectrum
level analogue of theWitt vectors operators of the previous section. For describing these operators,
wewill use the stable∞-category Spℤ

qfgen
of quasi-finitely genuineℤ-spectrawhichwas constructed

in [17] following ideas of Kaledin. We briefly recall the setup, and refer to [17, Sections 4-6] for
further details.
The ∞-category Spℤ

qfgen
is defined as the ∞-category of spectral Mackey-functors on spans

of quasi-finite ℤ-sets (i.e. those sets with a ℤ-action which have finite fixed points for every
non-trivial subgroup of ℤ, and all the stabilisers are non-trivial). In particular, any quasi-finitely
genuine ℤ-spectrum 𝑌 has genuine and geometric fixed-points spectra 𝑌𝑑ℤ and 𝑌Φ𝑑ℤ for any
integer 𝑑 ⩾ 1. By [17, Proposition 5.2, Theorem 5.4], there is an adjunction

which restricts to an equivalence of∞-categories on uniformly bounded below objects. The left
adjoint 𝐿 is defined by sending a quasi-finitely genuine ℤ-spectrum 𝑌 to the polygonic spec-
trum 𝐿𝑌 = {𝑋𝑑}𝑑⩾1 consisting of the geometric fixed-points spectra𝑋𝑑 = 𝑌Φ𝑑ℤwith their residual
𝐶𝑑 ≅ ℤ∕𝑑ℤ-action. The Frobenius maps come from the canonical map from the 𝐶𝑝-geometric
fixed points to the 𝐶𝑝-Tate construction. The right adjoint TR sends a polygonic spectrum 𝑋 to
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WITT VECTORS WITH COEFFICIENTS AND TR 33 of 62

a quasi-finitely genuine ℤ-spectrum with genuine fixed points TR(𝑋)𝑛ℤ = TR(sh𝑛 𝑋), where by
definition (sh𝑛 𝑋)𝑑 = 𝑋𝑛𝑑 for 𝑛 ⩾ 1, with the obvious actions and Frobenius maps [17, Propo-
sition 5.2.(1)]. This equivalence is symmetric monoidal since the geometric fixed points are
symmetric monoidal. In particular, for uniformly bounded below, polygonic spectra TR is sym-
metric monoidal. However, since genuine fixed points are only lax symmetric monoidal, this
shows that the functor TR(𝑋) is only lax symmetric monoidal which agrees with our observation
above.
For a connective pair (𝑅;𝑀), the topological Hochschild homology spectrum THH(𝑅;𝑀) has

a canonical structure of polygonic spectrum given by the sequence of spectra with 𝐶𝑑-action
THH(𝑅;𝑀)𝑑 = THH(𝑅;𝑀∧𝑅𝑑) for 𝑑 ⩾ 1 (see [17, §6]). We write TR(𝑅;𝑀) for the corresponding
quasi-finitely genuine ℤ-spectrum. We then have formulas for the genuine and geometric fixed
points of TR(𝑅;𝑀), given, respectively, by

TR(𝑅;𝑀)𝑛ℤ ≃ TR(𝑅;𝑀∧𝑅𝑛) and TR(𝑅;𝑀)Φ𝑛ℤ ≃ THH(𝑅;𝑀∧𝑅𝑛),

where the identification of the geometric fixed points follows from the fact that 𝐿 and TR are
mutual inverses on uniformly bounded below objects. By construction, any quasi-finitely genuine
ℤ-spectrumcomes equippedwith transfer and restrictionmaps, andWeyl actions. Thus,TR(𝑅;𝑀)
admits a Weyl 𝐶𝑛-action, whose generator we denote by

𝜎⟨𝑛⟩ ∶ TR(𝑅;𝑀∧𝑅𝑛) → TR(𝑅;𝑀∧𝑅𝑛),

a restriction map

𝐹∶ TR(𝑅;𝑀) → TR(𝑅;𝑀∧𝑅𝑛)ℎ𝐶𝑛

which we call Frobenius, and a transfer

𝑉∶ TR(𝑅;𝑀∧𝑅𝑛)ℎ𝐶𝑛 → TR(𝑅;𝑀)

which we call Verschiebung, for every integer 𝑛 ⩾ 1. Let us now produce truncated versions of
these structure maps.
As mentioned above, the∞-category of ⟨𝑝𝑛⟩-typical polygonic spectra PgcSp⟨𝑝𝑛⟩ is a localisa-

tion of PgcSp, where the localisation functor annihilates the values on integers which are not of
the form 𝑝𝑘, for 0 ⩽ 𝑘 ⩽ 𝑛. Under the equivalence above for uniformly bounded below spectra,
this corresponds to the full subcategory of Spℤ

qfgen
of those ℤ-spectra 𝑋 with 𝑋Φ𝑑ℤ = 0 unless

𝑑 = 1, 𝑝, …𝑝𝑛. The geometric fixed-points functor (−)Φ𝑝𝑛ℤ ∶ Spℤ
qfgen

→ Sp𝐶𝑝𝑛 to genuine 𝐶𝑝𝑛 -
spectra is a localisation whose right adjoint inflation inf l𝑝𝑛ℤ ∶ Sp𝐶𝑝𝑛 → Spℤ

qfgen
[17, Construction

4.20] is fully faithful with the essential image given by the latter full subcategory of Spℤ
qfgen

. This
shows (see also [17, Example 2.9]) that the functor

TR(−)Φ𝑝
𝑛ℤ ∶ PgcSp⟨𝑝𝑛⟩ ⟶Sp𝐶𝑝𝑛

is an equivalence on the full subcategories of bounded below objects.
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34 of 62 DOTTO et al.

Proposition 2.7. For every 𝑛 ⩾ 0, there is a symmetric monoidal functor TR⟨𝑝𝑛⟩ ∶ biMod⩾0
𝕊
→

Sp𝐶𝑝𝑛 from connective spectral bimodules to genuine 𝐶𝑝𝑛 -spectra, and a natural equivalence

TR⟨𝑝𝑛⟩(𝑅;𝑀)𝐶𝑝𝑘 ≃ TR⟨𝑝𝑘⟩(𝑅;𝑀∧𝑅𝑝
𝑛−𝑘
)

for every 0 ⩽ 𝑘 ⩽ 𝑛.

Proof. Consider the ⟨𝑝𝑛⟩-typical polygonic spectrum Res⟨𝑝𝑛⟩(THH(𝑅;𝑀)) with corresponding
quasi-finitely genuine ℤ-spectrum 𝑌 = TR(Res⟨𝑝𝑛⟩(THH(𝑅,𝑀))) (with vanishing 𝑑ℤ-genuine
and geometric fixed points unless 𝑑 = 1, 𝑝, …𝑝𝑛). By the equaliser formula of [17, Proposition
2.10], the genuine fixed-points spectrum 𝑌𝑝

𝑛−𝑘ℤ is equivalent to TR⟨𝑝𝑘⟩(𝑅;𝑀∧𝑅𝑝
𝑛−𝑘
) for all 0 ⩽

𝑘 ⩽ 𝑛. Define

TR⟨𝑝𝑛⟩(𝑅;𝑀) = 𝑌Φ𝑝
𝑛ℤ ∈ Sp𝐶𝑝𝑛 .

Since 𝑌 is in the essential image of the inflation inf l𝑝𝑛ℤ, we have a good control on its genuine
fixed points. Indeed, by definition of the inflation,

(TR⟨𝑝𝑛⟩(𝑅;𝑀))𝐶𝑝𝑘 = (𝑌Φ𝑝
𝑛ℤ)

𝐶
𝑝𝑘 = (𝑌Φ𝑝

𝑛ℤ)
𝑝𝑛−𝑘ℤ∕𝑝𝑛ℤ

= 𝑌𝑝
𝑛−𝑘ℤ ≃ TR⟨𝑝𝑘⟩(𝑅;𝑀∧𝑅𝑝

𝑛−𝑘
).

The symmetric monoidality follows from the definition since the functors (−)Φ𝑝𝑛ℤ and TR and
THH are all symmetric monoidal. □

As a consequence of the latter theorem, we obtain a 𝐶𝑝𝑘 -action on TR⟨𝑝𝑛−𝑘⟩(𝑅;𝑀∧𝑅𝑝
𝑘
), with

generator

𝜎𝑘 ∶ TR⟨𝑝𝑛−𝑘⟩(𝑅;𝑀∧𝑅𝑝
𝑘
) → TR⟨𝑝𝑛−𝑘⟩(𝑅;𝑀∧𝑅𝑝

𝑘
),

given by the action of the Weyl group 𝐶𝑝𝑛∕𝐶𝑝𝑛−𝑘 ≅ 𝐶𝑝𝑘 , and maps

𝐹∶ TR⟨𝑝𝑛⟩(𝑅;𝑀)⟶ TR⟨𝑝𝑛−1⟩(𝑅;𝑀∧𝑅𝑝)ℎ𝐶𝑝 𝑉∶ TR⟨𝑝𝑛−1⟩(𝑅;𝑀∧𝑅𝑝)ℎ𝐶𝑝 ⟶ TR⟨𝑝𝑛⟩(𝑅;𝑀)
corresponding, respectively, to the restriction and transfer of a spectral Mackey functor, thus
satisfying the homotopy coherent analogue of the double-coset formula of usual Mackey func-
tors. Analogous maps were also defined in [18, Lemma 4.10 and Corollary 5.7]. We also observe
that TR⟨𝑝𝑛⟩(𝑅;𝑀) is naturally lax symmetric monoidal since TR is symmetric monoidal and the
genuine fixed-points functor is lax symmetric monoidal.
There are also maps 𝑅∶ TR⟨𝑝𝑛⟩(𝑅;𝑀) → TR⟨𝑝𝑛−1⟩(𝑅;𝑀), which under the equaliser for-

mula for TR⟨𝑝𝑛⟩ above correspond to projections of product factors, and therefore fit into fibre
sequences

THH(𝑅;𝑀∧𝑅𝑝
𝑛
)ℎ𝐶𝑝𝑛

𝑉
⟶ TR⟨𝑝𝑛⟩(𝑅;𝑀) 𝑅

⟶ TR⟨𝑝𝑛−1⟩(𝑅;𝑀)
for every 𝑛 ⩾ 1 (see also [18, Corollary 5.7]).
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WITT VECTORS WITH COEFFICIENTS AND TR 35 of 62

The final structure that we need on TR⟨𝑝𝑛⟩ is a topological analogue of the Teichmüller char-
acter map. We recall its construction, from [17, Construction 6.33]. Given a connective bimodule
(𝑅,𝑀), there is a 𝐶𝑛-equivariant map

𝑀∧𝑛 → THH(𝑅;𝑀∧𝑅𝑛)

for any𝑛 ⩾ 1. If we identify𝑀∧𝑛withTHH(𝕊;𝑀∧𝕊𝑛), this is themap induced by themapof bimod-
ules (𝕊,𝑀) → (𝑅,𝑀). In particular, these maps for all 𝑛 ⩾ 1 assemble into a natural morphism of
polygonic spectra. We then consider the composite

Σ∞+ (Ω
∞𝑀)×𝑛 → Σ∞+ (Ω

∞(𝑀∧𝑛)) → 𝑀∧𝑛 → THH(𝑅;𝑀∧𝑅𝑛),

where the first map is induced by the canonical map from the product to the smash product of
spaces and the lax monoidal structure of Ω∞, and the second map is the counit of the (Σ∞+ ,Ω

∞)-
adjunction. The source of this map admits a polygonic structure by Example 2.2, where the
Frobenius maps are induced by the diagonal. Similarly, the second term in this sequence can also
be assembled into a polygonic spectrum via the polygonic structure on𝑀∧(−) and the diagonals,
and these maps form a sequence of morphisms of polygonic spectra when 𝑛 runs through natural
numbers. The spectrum Σ∞+ (Ω

∞𝑀)×𝑛 is the geometric fixed points (Σ∞+ 𝑀)
Φ𝑛ℤ of the suspension

spectrum Σ∞+𝑀, where𝑀 is the quasi-finitely genuine ℤ-space assigning to any finite orbit 𝑆 the
space (Ω∞𝑀)×𝑆 , in particular𝑀𝑛ℤ = (Ω∞𝑀)×𝑛. Hence, we can interpret the latter composite as
a morphism of polygonic spectra

𝐿(Σ∞+ 𝑀) → THH(𝑅;𝑀),

which by adjunction gives the map of quasi-finitely genuine ℤ-spectra

𝜏∶ Σ∞+ 𝑀 → TR(𝑅;𝑀).

This is the topological analogue of the Teichmüller map. Let us now produce a truncated version
of this map. By composing with the unit of the localisation, we get a map of quasi-finitely genuine
ℤ-spectra

Σ∞+𝑀 → TR(𝑅;𝑀) → inf l𝑝𝑛ℤ(TR⟨𝑝𝑛⟩(𝑅;𝑀)),
and by adjoining a map of genuine 𝐶𝑝𝑛 -spectra

𝜏∶ Σ∞+ (Ω
∞𝑀)×𝑝

𝑛
≃ (Σ∞+ 𝑀)

Φ𝑝𝑛ℤ → TR⟨𝑝𝑛⟩(𝑅;𝑀)
also denoted by 𝜏. By adjoining and taking 𝐶𝑝𝑘 -fixed-points spaces this gives, using the
equivalence of Proposition 2.7, a map of spaces

𝜏∶ (Ω∞𝑀)×𝑝
𝑛−𝑘

→ Ω∞ TR⟨𝑝𝑘⟩(𝑅;𝑀∧𝑅𝑝
𝑛−𝑘
)

for any 0 ⩽ 𝑘 ⩽ 𝑛.
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36 of 62 DOTTO et al.

Next, we give a conceptual description of the maps 𝑅∶ TR⟨𝑝𝑛⟩(𝑅;𝑀) → TR⟨𝑝𝑛−1⟩(𝑅;𝑀) which
will explain why they are compatible with Frobenius, Verschiebung and Weyl actions.

Proposition 2.8. For any 𝑛 ⩾ 0, there is a natural morphism of genuine 𝐶𝑝𝑛+1 -spectra

𝑅∶ TR⟨𝑝𝑛+1⟩(𝑅;𝑀) → inf l𝐶𝑝𝑛 (TR⟨𝑝𝑛⟩((𝑅;𝑀))),
where inf l𝐶𝑝𝑛 ∶ Sp𝐶𝑝𝑛 → Sp

𝐶𝑝𝑛+1 is the right adjoint of the geometric fixed points (−)Φ𝐶𝑝 . For 0 ⩽
𝑘 ⩽ 𝑛 + 1, the genuine 𝐶𝑝𝑘 -fixed points of this map is equivalent to

𝑅∶ TR⟨𝑝𝑘⟩(𝑅;𝑀∧𝑅𝑝
𝑛+1−𝑘

) → TR⟨𝑝𝑘−1⟩(𝑅;𝑀∧𝑅𝑝
𝑛+1−𝑘

),

where the target is interpreted as zero when 𝑘 = 0.

Proof. By adjunction, we have the truncation map of polygonic spectra

𝑅∶ Res⟨𝑝𝑛+1⟩(THH(𝑅;𝑀)) → Res⟨𝑝𝑛⟩(THH(𝑅;𝑀)).
After passing to TR, we get the a map of quasi-finitely genuine ℤ-spectra

𝑅∶ TR(Res⟨𝑝𝑛+1⟩(THH(𝑅;𝑀))) → TR(Res⟨𝑝𝑛⟩(THH(𝑅;𝑀))).
We claim that by taking 𝑝𝑛+1ℤ-geometric fixed points, we obtain the map of the statement. By
definition, the 𝑝𝑛+1ℤ-geometric fixed points of the source are TR⟨𝑝𝑛+1⟩(𝑅;𝑀). For the target, we
use that TR is an equivalence of categories on bounded below objects, and that under this equiva-
lence, the localisation onto the subcategory of ⟨𝑝𝑛⟩-typical polygonic spectra corresponds to that
onto the genuine 𝐶𝑝𝑛 -spectra. Thus,

Φ𝑝
𝑛+1ℤTR(Res⟨𝑝𝑛⟩(THH(𝑅;𝑀))) ≃ TR⟨𝑝𝑛+1⟩(Res⟨𝑝𝑛+1⟩ Res⟨𝑝𝑛⟩(THH(𝑅;𝑀)))

≃ TR⟨𝑝𝑛+1⟩(Res⟨𝑝𝑛⟩(THH(𝑅;𝑀)))
≃ inf l𝐶𝑝𝑛 (TR⟨𝑝𝑛⟩((𝑅;𝑀))). □

Lemma 2.9. Let𝑓∶ (𝑅;𝑀) → (𝑆;𝑁) be amorphism of connective spectral bimodules. Suppose that
𝑓 is 1-connected, that is, it induces isomorphisms on𝜋0 and surjections on𝜋1 between the underlying
rings and the underlying bimodules. Then, the induced map

TR⟨𝑝𝑛⟩(𝑅;𝑀)⟶ TR⟨𝑝𝑛⟩(𝑆;𝑁)
is 1-connected for any 𝑛 ⩾ 0 and any prime 𝑝.

Proof. For any 𝑛 ⩾ 0, the induced map

THH(𝑅;𝑀∧𝑅𝑝
𝑛
)⟶ THH(𝑆;𝑁∧𝑆𝑝

𝑛
)
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WITT VECTORS WITH COEFFICIENTS AND TR 37 of 62

is 1-connected. This follows by looking at the homotopy fibres and noticing that the property of
being 1-connected is preserved under smash products and geometric realisations. In particular,
the claim holds for 𝑛 = 0. The general case is proved inductively, by considering the commutative
diagram

where the left-hand map is 1-connected by the previous paragraph, and the right-hand map by
the inductive assumption. Hence, so is the middle map by the five lemma. □

Corollary 2.10. Let (𝑅;𝑀) be a connective bimodule spectrum. For any 𝑛 ⩾ 0 and prime 𝑝, the
canonical map induces a natural isomorphism

𝜋0 TR⟨𝑝𝑛⟩(𝑅;𝑀) ≅ 𝜋0 TR⟨𝑝𝑛⟩(𝐻𝜋0𝑅;𝐻𝜋0𝑀).
With this lemma at hand and by using Theorem 1.6, in order to prove Theorem 2.5, we can

equivalently show that for every (discrete) bimodule (𝑅;𝑀), there is an isomorphism

𝑊𝑛+1,𝑝(𝑅;𝑀) ≅ 𝜋0 TR⟨𝑝𝑛⟩(𝐻𝑅;𝐻𝑀),
natural in (𝑅;𝑀) and lax symmetric monoidal. In what follows unless necessary, we will often
suppress𝐻 and just write (𝑅;𝑀) instead of (𝐻𝑅;𝐻𝑀), keeping in mind that (𝑅;𝑀) is discrete.
We want to single out the formal properties and structure of TR which makes it possible to

construct the desired isomorphism. Let us define a functor 𝑛+1 ∶ biMod → Ab for every 𝑛 ⩾ 0,
by

𝑛+1(𝑅;𝑀) ∶= 𝜋0 TR⟨𝑝𝑛⟩(𝑅;𝑀),
wherewemake the prime implicit to lighten up the notation. This functor inherits a lax symmetric
monoidal structure from the one of TR⟨𝑝𝑛⟩, as well as operators

defined by taking 𝜋0 of the corresponding maps of TR⟨𝑝𝑛⟩. These operators enjoy the following
properties, and these are all we need for proving Theorem 2.5.

Proposition 2.11.

(i) 𝑅,𝐹 and𝑉 and𝜎𝑖 are natural grouphomomorphisms,with𝑅 and𝐹monoidal transformations,
and 𝜏 is a natural set valued map.
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38 of 62 DOTTO et al.

(ii) For all 𝑛 ⩾ 1, the diagrams

commute. Here, we use the convention that 0 = 0.
(iii) For any 𝑖, 𝑘 ⩾ 0, we have 𝜎𝑝

𝑖

𝑖
= id, 𝑅𝜎𝑖 = 𝜎𝑖𝑅, and 𝜎𝑘 = 𝜎

𝑝𝑖

𝑖+𝑘
as maps

Moreover, the maps

and

are equivariant with respect to the projection 𝐶𝑝𝑖+1 → 𝐶𝑝𝑖+1∕𝐶𝑝 ≅ 𝐶𝑝𝑖 which sends 𝜎𝑖+1 to 𝜎𝑖 .

(iv) The following identity holds: .
(v) For any 𝑛 ⩾ 1, the diagrams

commute. The map 𝜏∶ 𝑀 → 1(𝑅,𝑀) is additive, it sends [𝑅,𝑀] to zero and induces an
isomorphism

𝑀∕[𝑅,𝑀] ≅ 1(𝑅;𝑀).

In particular, we have , and under this isomorphism, the action of 𝜎𝑛 is
given by permuting the cyclic tensor factors.

(vi) For any 𝑛 ⩾ 1, the sequence

is exact.
(vii) For any 𝑛 ⩾ 1, the functor 𝑛 commutes with reflexive co-equalisers.

Proof. Part (i) follows from the naturality of the operators on TR and the fact that 𝐹, 𝑉, and the
action of the cyclic generator are maps of spectra and the monoidality of 𝑅 and 𝐹 follows from the
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WITT VECTORS WITH COEFFICIENTS AND TR 39 of 62

lax monoidality of TR and TR⟨𝑝𝑛⟩. Part (ii) follows from Proposition 2.8. Parts (iii) and (iv) follow
from Propositions 2.7 and 2.8 and the fact that 𝐹 and 𝑉 are, respectively, restriction and transfer
of the 𝐶𝑝𝑛 -Mackey functor 𝜋0 of TR⟨𝑝𝑛⟩(𝑅;𝑀), and 𝜎𝑖 its Weyl action.
The first diagram in Part (v) commutes by definition of 𝜏 for TR⟨𝑝𝑛⟩ via the truncation of

𝜏∶ Σ∞+ 𝑀 → TR(𝑅;𝑀) and by Proposition 2.8. Let us show that the second diagram commutes.
Since 𝜏 is defined from a map of 𝐶𝑝𝑛+1 -spaces, it is compatible with the Frobenius. Thus, the
diagram

commutes, where 𝜏𝑝 is the value at 𝐶𝑝𝑛+1∕𝐶𝑝𝑛 of the map on 𝜋0-coefficient systems induced by
the morphism of 𝐶𝑝𝑛+1 -spaces 𝜏. It is then sufficient to show that 𝜏𝑝 factors as the composite

of the canonical map and the map 𝜏 for the bimodule (recall
that we are assuming that 𝑅 and𝑀 are discrete). By adjoining the infinite loop space and TR, this
is the case if the diagram of polygonic spectra

commutes, where the horizontal maps are the maps defining 𝜏 under the adjunction, and the
vertical map is induced by the canonical map . This holds by definition of the
horizontal maps.
The properties of 1(𝑅;𝑀) follow from the fact that TR⟨1⟩(𝑅;𝑀) = THH(𝑅;𝑀) (Example 2.4)

and the definition of the cyclic action on THH(𝑅;𝑀∧𝑅𝑝). Part (vi) follows from the fibre sequence
involving the map 𝑅 for TR⟨𝑝𝑛⟩(𝑅;𝑀). Let us show Part (vii). Given a reflexive co-equaliser

in the category biMod of (discrete) bimodules, we need to show that

is a co-equaliser of abelian groups. Using the right Kan extension, the diagram

can be extended to a simplicial object (𝑅∙;𝑀∙) in biMod (explicitly, this can be done by tak-
ing iterated pullbacks which are computed underlying, as limits in biMod are). Upon taking
Eilenberg–MacLane spectra, we obtain a simplicial object (𝐻𝑅∙;𝐻𝑀∙) in the category of bimod-
ule spectra. Since smash powers and smash products of spectra commute with sifted colimits,
THH(𝑅;𝑀∧𝑅𝑝

𝑘
) commutes with sifted colimits of bimodule spectra for every 𝑘 ⩾ 0. Thus, by
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40 of 62 DOTTO et al.

induction on the fibre sequences

THH(𝑅;𝑀∧𝑅𝑝
𝑘
)ℎ𝐶

𝑝𝑘

𝑉
⟶ TR⟨𝑝𝑘⟩(𝑅;𝑀) 𝑅

⟶ TR⟨𝑝𝑘−1⟩(𝑅;𝑀)
so does TR⟨𝑝𝑘⟩ for all 𝑘 ⩾ 0. It follows that

|TR⟨𝑝𝑛−1⟩(𝐻𝑅∙;𝐻𝑀∙)| ≃ TR⟨𝑝𝑛−1⟩(|𝐻𝑅∙|; |𝐻𝑀∙|).
After applying 𝜋0 on both sides and using Corollary 2.10, we get an isomorphism

𝜋0|TR⟨𝑝𝑛−1⟩(𝐻𝑅∙;𝐻𝑀∙)| ≅ 𝜋0 TR⟨𝑝𝑛−1⟩(𝐻𝜋0|𝐻𝑅∙|; 𝐻𝜋0|𝐻𝑀∙|) ≅ 𝜋0 TR⟨𝑝𝑛−1⟩(𝑅;𝑀) = 𝑛(𝑅;𝑀).

On the other hand, 𝜋0|TR⟨𝑝𝑛−1⟩(𝐻𝑅∙;𝐻𝑀∙)| fits into the co-equaliser diagram

which proves the desired result. □

Remark 2.12. The proof of Theorem 2.5 that we give just belowworks for any collection of functors
𝑛 with operators which satisfy the conditions of Proposition 2.11.

Proof of Theorem 2.5. Let (𝑅;𝑀) be a bimodule. We start by defining a map

𝐼𝑛+1 ∶ 𝑊𝑛+1,𝑝(𝑅;𝑀)⟶ 𝑛+1(𝑅;𝑀)

by taking a representative (𝑚0,𝑚1, … ,𝑚𝑛) of a class in𝑊𝑛+1,𝑝(𝑅;𝑀) to

𝐼𝑛+1(𝑚0,𝑚1, … ,𝑚𝑛) ∶=

𝑛∑
𝑖=0

𝑉𝑖𝜏𝑛−𝑖(𝑚𝑖),

where 𝜏𝑛−𝑖 ∶ 𝑀⊗𝑅𝑝
𝑖
→ 𝑛+1−𝑖(𝑅;𝑀

⊗𝑅𝑝
𝑖
) is the map 𝜏 for the bimodule 𝑀⊗𝑅𝑝

𝑖 , and we wrote
𝑉𝑖 ∶ 𝑛+1−𝑖(𝑅;𝑀

⊗𝑅𝑝
𝑖
) → 𝑛+1(𝑅;𝑀) for the iteration of the map 𝑉. In order to show that 𝐼𝑛+1

is well defined, and ultimately an isomorphism, we need to define an analogue of the ghost maps
for 𝑛+1(𝑅;𝑀). Define for 0 ⩽ 𝑗 < 𝑛 + 1,

where for the latter identification, we used (v). We want to verify that under the map 𝐼𝑛+1, this
map corresponds to the usual ghost map, that is, that the diagram
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WITT VECTORS WITH COEFFICIENTS AND TR 41 of 62

commutes. To see this, we first observe that using (iii)–(iv), the following identities hold:

𝐹𝑗𝑉𝑗 = 𝐹𝑗−1𝐹𝑉𝑉𝑗−1 = 𝐹𝑗−1

(
𝑝−1∑
𝑘=0

𝜎𝑘1

)
𝑉𝑗−1 =

(
𝑝−1∑
𝑘=0

𝜎𝑘
𝑗

)
𝐹𝑗−1𝑉𝑗−1

=

(
𝑝−1∑
𝑘=0

𝜎𝑘
𝑗

)(
𝑝−1∑
𝑘=0

𝜎
𝑘𝑝

𝑗

)
𝐹𝑗−2𝑉𝑗−2 = …

=

(
𝑝−1∑
𝑘=0

𝜎𝑘
𝑗

)(
𝑝−1∑
𝑘=0

𝜎
𝑘𝑝

𝑗

)
⋯

(
𝑝−1∑
𝑘=0

𝜎
𝑘𝑝𝑗−1

𝑗

)
=

𝑝𝑗−1∑
𝑘=0

𝜎𝑘
𝑗
=

∑
𝜎∈𝐶

𝑝𝑗

𝜎,

as endomorphisms of . It then follows that

𝑤𝑗𝐼𝑛+1(𝑚0, … ,𝑚𝑛) = 𝐹𝑗𝑅𝑛−𝑗
𝑛∑
𝑖=0

𝑉𝑖𝜏𝑛−𝑖(𝑚𝑖)

= 𝐹𝑗
𝑗∑
𝑖=0

𝑉𝑖𝑅𝑛−𝑗𝜏𝑛−𝑖(𝑚𝑖),

where we used (ii) and in particular that 𝑅𝑛−𝑗𝑉𝑖 = 0 on if 𝑖 > 𝑗. Further using
(v), (iii) and the previous paragraph, we get

𝐹𝑗
𝑗∑
𝑖=0

𝑉𝑖𝑅𝑛−𝑗𝜏𝑛−𝑖(𝑚𝑖) =

𝑗∑
𝑖=0

∑
𝜎∈𝐶

𝑝𝑗
∕𝐶

𝑝𝑗−𝑖

𝜎𝐹𝑗−𝑖𝜏𝑗−𝑖(𝑚𝑖)

=

𝑗∑
𝑖=0

∑
𝜎∈𝐶

𝑝𝑗
∕𝐶

𝑝𝑗−𝑖

𝜎𝑚
⊗𝑝𝑗−𝑖

𝑖
= 𝑤𝑗(𝑚0, … ,𝑚𝑛),

which shows that the triangle above commutes.
Before showing that the map 𝐼𝑛+1 descends to Witt vectors, we check that the morphism

is injective when (𝑅;𝑀) is free (or more generally when is injective,
see [7, Lemma 1.4 and Proposition 1.18]). For 𝑛 = 0, the map 𝑤 is just the isomorphism

1(𝑅;𝑀) ≅ 𝑀∕[𝑅,𝑀].

Now inductively assume that
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42 of 62 DOTTO et al.

is injective. Consider the diagram with exact rows

where the left-hand diagram commutes because of (ii), (iv) and (v). The commutativity of the
right-hand diagram is clear. The left-hand vertical map is injective since (𝑅;𝑀) is free. Assuming
inductively that the right-hand map is also injective, the standard diagram chase shows that the
middle map is injective as well.
For free (𝑅;𝑀), since 𝑤 is injective, the definition of the relation defining𝑊𝑛+1,𝑝(𝑅;𝑀) shows

that 𝐼𝑛+1 descends to a well-defined group homomorphism

𝐼𝑛+1 ∶ 𝑊𝑛+1,𝑝(𝑅;𝑀)⟶ 𝑛+1(𝑅;𝑀),

which is moreover injective. To see that it is also surjective, we consider the diagram

The right-hand square commutes by the construction of 𝐼𝑛 and from the fact that𝑅 commuteswith
𝑉 and 𝜏. The left-hand square commutes by the description of
of Section 1.2. The exactness of the top row follows from the results of [7] (see Section 1.2). Now
𝐼0 is surjective by (v), and by induction, so is the middle map by the standard diagram chase.
We have thus constructed a natural isomorphism

𝐼𝑛+1 ∶ 𝑊𝑛+1,𝑝(𝑅;𝑀) ≅ 𝑛+1(𝑅;𝑀)

for any free bimodule (𝑅;𝑀). Using the fact that both the source and target commutewith reflexive
co-equalisers, this uniquely extends to a natural isomorphism on the whole category biMod. Also
using the naturality, one can see that the formula for the general 𝐼𝑛 is given as claimed above.
Finally, let us show that 𝐼𝑛+1 ismonoidal. Again, since𝑛+1 and𝑊𝑛+1,𝑝 commutewith reflexive

co-equalisers, we may show this on the full subcategory of free bimodules. It is then sufficient to
see that

𝑤𝑗(𝐼𝑛+1(𝑎) ∗ 𝐼𝑛+1(𝑏)) = 𝑤𝑗𝐼𝑛+1(𝑎 ∗ 𝑏)

holds for all 0 ⩽ 𝑗 ⩽ 𝑛. By definition 𝑤𝑗 = 𝐹𝑗𝑅𝑛−1−𝑗 and therefore it is monoidal by 𝑖), and

𝑤𝑗(𝐼𝑛+1(𝑎) ∗ 𝐼𝑛+1(𝑏)) = 𝑤𝑗(𝐼𝑛+1(𝑎)) ∗ 𝑤𝑗(𝐼𝑛+1(𝑎)) = 𝑤𝑗(𝑎) ∗ 𝑤𝑗(𝑏)

= 𝑤𝑗(𝑎 ∗ 𝑏) = 𝑤𝑗𝐼𝑛−1(𝑎 ∗ 𝑏). □
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WITT VECTORS WITH COEFFICIENTS AND TR 43 of 62

2.2 The Mackey structure on the components of TR

We now identify the operators of TR and theWitt vectors under the isomorphism of Theorem 2.5.
By Proposition 2.7, there is a genuine𝐶𝑝𝑛 -spectrum TR⟨𝑝𝑛⟩(𝑅;𝑀)whose genuine𝐶𝑝𝑘 -fixed points
are the spectra TR⟨𝑝𝑘⟩(𝑅;𝑀∧𝑅𝑝

𝑛−𝑘
), and, in particular, the next result identifies the Mackey

structure of its components.

Proposition 2.13. Let 𝑅 be a connective ring spectrum and 𝑀 a connective 𝑅-bimodule. For any
𝑛 ⩾ 1, the following diagrams commute:

In particular, the maps 𝐼𝑘 , for 1 ⩽ 𝑘 ⩽ 𝑛 + 1, determine a monoidal isomorphism of 𝐶𝑝𝑛 -Mackey
functors between 𝜋0TR⟨𝑝𝑛⟩(𝑅;𝑀) and the Mackey functor equipped
with the restriction maps 𝐹 and the transfers 𝑉 of §1.2.

Proof. By Corollary 2.10, we can assume that (𝑅;𝑀) is discrete, and we prove this theorem
for 𝑊𝑛,𝑝(𝑅;𝑀). Our argument will moreover work for any collection of functors 𝑛 satisfying
Proposition 2.11.
The commutativity of the first diagram follows from the construction of the map 𝐼𝑛. Indeed, it

suffices to show that the diagram commutes after pre-composing with the projection

We then compute

𝑉𝐼𝑛(𝑚0, …𝑚𝑛−1) = 𝑉

𝑛−1∑
𝑖=0

𝑉𝑖𝜏𝑛−1−𝑖(𝑚𝑖) =

𝑛−1∑
𝑖=0

𝑉𝑖+1𝜏𝑛−1−𝑖(𝑚𝑖)

=

𝑛∑
𝑖=1

𝑉𝑖𝜏𝑛−1−(𝑖−1)(𝑚𝑖−1) =

𝑛∑
𝑖=1

𝑉𝑖𝜏𝑛−𝑖(𝑚𝑖−1) = 𝐼𝑛+1(0,𝑚0, … ,𝑚𝑛−1) = 𝐼𝑛+1𝑉(𝑚0, … ,𝑚𝑛−1).
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44 of 62 DOTTO et al.

Here, we use the description of 𝑉 on representatives as in Section 1.2 (see also [7, Proposition
1.23]), the identification

and that under these identifications,

which follows from the naturality of 𝜏.
Next, we check 𝑅𝐼𝑛+1 = 𝐼𝑛𝑅. Again, it suffices to check that the identity holds after

pre-composing with the projection

and we get that

𝑅𝐼𝑛+1(𝑚0, … ,𝑚𝑛) = 𝑅

(
𝑛∑
𝑖=0

𝑉𝑖𝜏𝑛−𝑖(𝑚𝑖)

)
=

𝑛∑
𝑖=0

𝑅𝑉𝑖𝜏𝑛−𝑖(𝑚𝑖)

=

𝑛−1∑
𝑖=0

𝑉𝑖𝜏𝑛−1−𝑖(𝑚𝑖) = 𝐼𝑛𝑅(𝑚0, …𝑚𝑛).

Here, we have used the description of 𝑅∶ 𝑊𝑛+1,𝑝(𝑅;𝑀) → 𝑊𝑛,𝑝(𝑅;𝑀) as in Section 1.2, as well
as (ii) and (v). In particular, we have used 𝑅𝑉𝑛(𝑚𝑛) = 0.
For checking the commutativity of the next two diagrams, we employ the ghost components.

We first check that

𝑤𝐹𝐼𝑛+1 = 𝑤𝐼𝑛𝐹

in . This implies the result when (𝑅;𝑀) is free since in this case 𝑤 is injective as
observed above. For general (𝑅;𝑀), the result then follows by naturality. We verify the latter
identity for every component 0 ⩽ 𝑗 ⩽ 𝑛 − 1:

𝑤𝑗𝐼𝑛𝐹 = 𝑤𝑗𝐹 = 𝑤𝑗+1 = 𝑤𝑗+1𝐼𝑛+1 = 𝐹𝑗+1𝑅𝑛−𝑗−1𝐼𝑛+1 = 𝐹𝑗𝑅𝑛−𝑗−1𝐹𝐼𝑛+1 = 𝑤𝑗𝐹𝐼𝑛+1,

where we have used (ii) and [7, Proposition 1.25].
For the fourth diagram, we check that the identity 𝜎𝑖𝐼𝑛 = 𝐼𝑛𝜎𝑖 holds. We can again assume that

(𝑅;𝑀) is free and compute componentwise that for 0 ⩽ 𝑗 ⩽ 𝑛 − 1:

𝑤𝑗𝐼𝑛𝜎𝑖 = 𝑤𝑗𝜎𝑖 = 𝜎𝑖+𝑗𝑤𝑗 = 𝜎𝑖+𝑗𝑤𝑗𝐼𝑛 = 𝑤𝑗𝜎𝑖𝐼𝑛,

where we used (iii).
The compatibility with 𝜏 is immediate from the definition of 𝐼𝑛.
In order to identify, the full Mackey structure simply notices that for every 0 ⩽ 𝑘 ⩽ 𝑛, there is

an equivalence of 𝐶𝑝𝑘 -equivariant spectra

Res
𝐶𝑝𝑛

𝐶
𝑝𝑘
(TR⟨𝑝𝑛⟩(𝑅;𝑀)) ≃ TR⟨𝑝𝑘⟩(𝑅;𝑀∧𝑅𝑝

𝑛−𝑘
).
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WITT VECTORS WITH COEFFICIENTS AND TR 45 of 62

It follows that the transfer of TR⟨𝑝𝑛⟩(𝑅;𝑀) from 𝐶𝑝𝑘−1 to 𝐶𝑝𝑘 agrees with the same transfer for
TR⟨𝑝𝑘⟩(𝑅;𝑀∧𝑅𝑝

𝑛−𝑘
), which by the first part of Proposition 2.13 applied to the bimodule 𝑀∧𝑅𝑝

𝑛−𝑘

agrees with the Witt vectors Verschiebung. A similar argument identifies the lower restrictions
and the Weyl actions. □

Remark 2.14. As in Remark 2.12, the proof of Proposition 2.13 works for any collection of functors
𝑛 with operators which satisfy the conditions of Proposition 2.11. In fact, the isomorphisms 𝐼𝑛
are the unique isomorphisms which satisfy Proposition 2.13.

Remark 2.15. Suppose that 𝑅 is a connective 𝐸∞-ring spectrum and𝑀 a connective 𝐸∞-𝑅-algebra.
In this case, we expect that analogously to themap 𝜏 (Section 2.1), one can constructmultiplicative
maps

𝑁∶ 𝜋0 TR⟨𝑝𝑛−1⟩(𝑅;𝑀∧𝑅𝑝)⟶ 𝜋0 TR⟨𝑝𝑛⟩(𝑅;𝑀)
for every 𝑛 ⩾ 1 which endow 𝜋0TR⟨𝑝𝑛⟩(𝑅;𝑀) with the structure of a 𝐶𝑝𝑛 -Tambara functor. These
maps should be characterised algebraically by the commutative diagram

where the map 𝑁 on the left is the norm operator of Proposition 1.19. In particular, the maps
𝐼𝑘, for 1 ⩽ 𝑘 ⩽ 𝑛 + 1, should determine an isomorphism of 𝐶𝑝𝑛 -Tambara functors between
𝜋0TR⟨𝑝𝑛⟩(𝑅;𝑀) and the Tambara functor equipped with the
restriction maps 𝐹 and the transfers 𝑉 and the norm 𝑁 of §1.2.
We leave these observations about the norms onTR as open questions and encourage interested

readers to work out the details.

2.3 Free Tambara functors andWitt vectors

In this section, we describe the free𝐶𝑝𝑛 -Tambara functor in terms ofWitt vectorswith coefficients.
This is a result analogous to Brun’s [5, TheoremB] which establishes a relationship between these
Tambara functors and the usual Witt vectors of a commutative ring.
We recall that a 𝐶𝑝𝑛 -Tambara functor 𝑇 consists of a commutative ring 𝑇(𝐶𝑝𝑘 ) with a 𝐶𝑝𝑛−𝑘 -

action for every 0 ⩽ 𝑘 ⩽ 𝑛, together with equivariant maps

for all 0 ⩽ 𝑘 ⩽ 𝑛 − 1, where𝐹 is a ring homomorphism,𝑉 is additive and𝑅 ismultiplicative. These
satisfy certain relations, which can be encoded by declaring 𝑇 to be a finite products preserving
functor on a certain category of double spans (see [22]). We already saw in Remark 1.20 that for
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46 of 62 DOTTO et al.

every commutative ring 𝐴, the functor𝑊⟨𝑝𝑛⟩(ℤ;𝐴) that sends 𝐶𝑝𝑘 to the commutative ring
𝑊⟨𝑝𝑛⟩(ℤ;𝐴)(𝐶𝑝𝑘 ) ∶= 𝑊⟨𝑝𝑘⟩(ℤ;𝐴⊗𝑝𝑛−𝑘 )

and equipped with the operators of §1.2 is a 𝐶𝑝𝑛 -Tambara functor. Let 𝑈 be the forgetful functor
that takes a 𝐶𝑝𝑛 -Tambara functor 𝑇 to the underlying commutative ring 𝑇(1).

Proposition 2.16. The functor that takes a commutative ring 𝐴 to𝑊⟨𝑝𝑛⟩(ℤ;𝐴) is left adjoint to𝑈.
Proof. Let us start by defining a natural transformation

hom𝐶𝑝𝑛 -Tamb(𝑊⟨𝑝𝑛⟩(ℤ;𝐴), 𝑇)⟶ homRing(𝐴, 𝑇(1))

from themorphism set in the category of Tambara functors to that of the category of commutative
rings.We send amorphismof Tambara functors𝛼∶ 𝑊⟨𝑝𝑛⟩(ℤ;𝐴) → 𝑇 to the ring homomorphism

𝑓∶ 𝐴
id⊗1⊗⋯⊗1
�����������→ 𝐴⊗𝑝

𝑛 𝛼0
��→ 𝑇(1),

where 𝛼0 is the value at the trivial group of the natural transformation 𝛼. We notice that by
assumption, 𝛼0 is 𝐶𝑝𝑛 -equivariant, and therefore, 𝑓 does not depend on the choice of ordering
made in the first map. Moreover, 𝛼0 can be recovered from 𝑓, since by equivariance

𝛼0(𝑎1 ⊗⋯⊗ 𝑎𝑝𝑛) = 𝛼0(𝑎1 ⊗ 1 ⊗⋯⊗ 1) ⋅ ⋯ ⋅ 𝛼0(1 ⊗⋯⊗ 1⊗ 𝑎𝑝𝑛) =

𝑝𝑛∏
𝑙=1

𝜎𝑙𝑝𝑛𝑓(𝑎𝑙),

where 𝜎𝑝𝑛 ∈ 𝐶𝑝𝑛 is a generator (in other words, 𝐴⊗𝑝
𝑛 is the free commutative 𝐶𝑝𝑛 -ring on the

commutative ring 𝐴).
In order to see that the map above defined on hom sets is a bijection, we first assume that

𝐴 = ℤ[𝑋] is the polynomial ring on a set𝑋. We can then define an inverse as follows. Given a ring
homomorphism 𝑓∶ ℤ[𝑋] → 𝑇(1), we define 𝛼0 ∶ ℤ[𝑋]⊗𝑝

𝑛
→ 𝑇(1) by the formula above. In order

to define 𝛼𝐶
𝑝𝑘
for 0 < 𝑘 ⩽ 𝑛, we recall from Proposition 1.14 that the group𝑊⟨𝑝𝑘⟩(ℤ; ℤ[𝑋]⊗𝑝𝑛−𝑘 ) is

free abelian, generated by the elements𝑉𝑖𝜏𝑘−𝑖(𝑚1 ⊗⋯⊗𝑚𝑝𝑖 ), where 0 ⩽ 𝑖 ⩽ 𝑘, and (𝑚1, … ,𝑚𝑝𝑖 )

ranges through the orbits of the𝐶𝑝𝑖 -action on the 𝑝𝑖-fold product of additive generators of the free
abelian group ℤ[𝑋]⊗𝑝𝑛−𝑘 , that is on the monomials 𝑚𝑙 in the set 𝑋⨿𝑝

𝑛−𝑘 . Since 𝜏 relates to 𝑁 by
Proposition 1.21 and 𝛼 needs to be compatible with the Tambara structure, we must define 𝛼𝐶

𝑝𝑘

by

𝛼𝐶
𝑝𝑘
(𝑉𝑖𝜏𝑘−𝑖(𝑚1 ⊗⋯⊗𝑚𝑝𝑖 )) = 𝑉𝑖𝑁𝑘−𝑖𝛼0((𝑚1 ⊗⋯⊗𝑚𝑝𝑖 ) ⊗ 1⊗(𝑝

𝑘−𝑖−1)),

where 𝑉 and 𝑁 on the right-hand side are the transfer and norm maps of 𝑇, and 1 is the unit of
ℤ[𝑋]⊗𝑝

𝑛−𝑘+𝑖 . Since these are free generators, this gives a well-defined additive map

𝛼𝐶
𝑝𝑘
∶ 𝑊⟨𝑝𝑘⟩(ℤ; ℤ[𝑋]⊗𝑝𝑛−𝑘 )⟶ 𝑇(𝐶𝑝𝑘 ),

for every 0 ⩽ 𝑘 ⩽ 𝑛. This map is moreover multiplicative, since by the formula of Proposition 1.14,
𝛼𝐶

𝑝𝑘
sends the product of two generators, with 𝑖 ⩽ 𝑗, to (abusing notation below, we will denote
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WITT VECTORS WITH COEFFICIENTS AND TR 47 of 62

the unit of some tensor powers of 𝐴 just by 1)

𝛼𝐶
𝑝𝑘

(
𝑉𝑖𝜏𝑘−𝑖(⊗

𝑝𝑖

𝑙=1
𝑢𝑙) ⋅ 𝑉

𝑗𝜏𝑘−𝑗(⊗
𝑝𝑗

ℎ=1
𝑣ℎ)

)
= 𝛼𝐶

𝑝𝑘

⎛⎜⎜⎝
∑
𝜎∈𝐶

𝑝𝑖

𝑉𝑗(𝜏𝑘−𝑗((𝜎(⊗
𝑝𝑖

𝑙=1
𝑢𝑙))

⊗𝑝𝑗−𝑖 ⋅ (⊗𝑝𝑗

ℎ=1
𝑣ℎ)))

⎞⎟⎟⎠
=

∑
𝜎∈𝐶

𝑝𝑖

𝑉𝑗𝑁𝑘−𝑗𝛼0

(
((𝜎(⊗

𝑝𝑖

𝑙=1
𝑢𝑙))

⊗𝑝𝑗−𝑖 ⋅ (⊗𝑝𝑗

ℎ=1
𝑣ℎ)) ⊗ 1⊗(𝑝

𝑘−𝑗−1)
)

=
∑

𝜎∈𝐶
𝑝𝑘
∕𝐶

𝑝𝑘−𝑖

𝑉𝑗𝑁𝑘−𝑗𝛼0

×
⎛⎜⎜⎝

∏
𝜔∈𝐶

𝑝𝑘−𝑖
∕𝐶

𝑝𝑘−𝑗

𝜔𝜎((𝑢1 ⊗⋯⊗ 𝑢𝑝𝑖 ) ⊗ 1⊗(𝑝
𝑘−𝑖−1)) ⋅ ((𝑣1 ⊗⋯⊗ 𝑣𝑝𝑗 ) ⊗ 1⊗(𝑝

𝑘−𝑗−1))
⎞⎟⎟⎠

= 𝑉𝑖𝑁𝑘−𝑖𝛼0((𝑢1 ⊗⋯⊗ 𝑢𝑝𝑖 ) ⊗ 1⊗(𝑝
𝑘−𝑖−1)) ⋅ 𝑉𝑗𝑁𝑘−𝑗𝛼0((𝑣1 ⊗⋯⊗ 𝑣𝑝𝑗 ) ⊗ 1⊗(𝑝

𝑘−𝑗−1))

= 𝛼𝐶
𝑝𝑘
(𝑉𝑖𝜏𝑘−𝑖(⊗

𝑝𝑖

𝑙=1
𝑢𝑙)) ⋅ 𝛼𝐶

𝑝𝑘
(𝑉𝑖𝜏𝑘−𝑗(⊗

𝑝𝑗

ℎ=1
𝑣ℎ)).

The fourth equality holds by an argument analogous to the calculation of the multiplicative
structure of Proposition 1.14, by using the Mackey and Tambara identities of 𝑇.
Let us now show that the collection of maps 𝛼 is compatible with the Tambara structures. The

map 𝛼 commutes with the transfer maps, since these are additive and on generators

𝑉𝛼𝐶
𝑝𝑘
(𝑉𝑖𝜏𝑘−𝑖(𝑚1 ⊗⋯⊗𝑚𝑝𝑖 )) = 𝑉𝑉𝑖𝑁𝑘−𝑖𝛼0((𝑚1 ⊗⋯⊗𝑚𝑝𝑖 ) ⊗ 1⊗(𝑝

𝑘−𝑖−1))

= 𝑉𝑖+1𝑁𝑘+1−(𝑖+1)𝛼0((𝑚1 ⊗⋯⊗𝑚𝑝𝑖 ⊗ 1⊗(𝑝
𝑘+1−(𝑖+1)−1))

= 𝛼𝐶
𝑝𝑘+1

(𝑉𝑖+1𝜏𝑘+1−(𝑖+1)(𝑚1 ⊗⋯⊗𝑚𝑝𝑖 ))

= 𝛼𝐶
𝑝𝑘+1

(𝑉𝑉𝑖𝜏𝑘−𝑖(𝑚1 ⊗⋯⊗𝑚𝑝𝑖 )).

A similar argument shows that 𝛼 commutes with the restrictionmaps 𝐹 on generators, and there-
fore on all elements since 𝐹 is additive. Finally, let us show that 𝛼 is compatible with the norms.
The norm of a sum of elements is the sum of the norms of those elements plus a sum of transfer
terms, see, for example, [1, Lemma 5.2] for a precise formula. Since we already showed that 𝛼 is
compatible with transfers and multiplication, it is sufficient to show that it commutes with the
norms on additive generators. By [14, Corollary 2.9], for abelian 𝑝-groups, norm of a transfer can
be described as a transfer applied to a specific polynomial only depending on the group under
the consideration. Since we know that 𝛼 is multiplicative and commutes with transfers and Weyl
actions, this shows that 𝛼 also commutes with norms.
This shows that 𝛼 is a well-defined map of Tambara functors. Using again that the Witt vectors

above are free as abelian groups, one can easily see that the map that sends 𝑓 to 𝛼 is an inverse
for the map above, showing that the Witt vectors are a left adjoint on the subcategory of free
commutative rings.
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48 of 62 DOTTO et al.

Now assume that𝐴 is any commutative ring, and consider the functorial reflexive co-equaliser
diagram of bimodules

Since the category of Tambara functors is a category of product-preserving functors, and reflexive
co-equalisers of product-preserving functors are computed pointwise, the diagram

is a co-equaliser in the category of 𝐶𝑝𝑛 -Tambara functors. Thus, for every 𝐶𝑝𝑛 -Tambara functor 𝑇,
there is a bijection

where the third isomorphism follows from the free case above. It is moreover not difficult to see
that this bijection coincides with the natural transformation defined above. □

Remark 2.17. It is also possible to prove Proposition 2.16 from the results of [23], by identify-
ing 𝑊⟨𝑝𝑛⟩(ℤ;𝐴) with the components of the norm via Remark 2.15, and use that 𝑁

𝐶𝑝𝑛
𝑒 is the

left adjoint of the forgetful functor from genuine 𝐶𝑝𝑛 -commutative equivariant ring spectra to
𝐸∞-ring spectra.

Example 2.18. Let us describe explicitly the free 𝐶𝑝-Tambara functor on a commutative ring 𝐴.
This is the diagram

where the 𝐶𝑝-action on 𝐴⊗𝑝 is the standard one, and

𝐹(𝑎, [𝑥]) = 𝑎⊗𝑝 +
∑
𝜎∈𝐶𝑝

𝜎𝑥

𝑉(𝑥) = (0, [𝑥])

𝑁(𝑥) = (𝜇𝑝(𝑥), 0),

where 𝜇𝑝 ∶ 𝐴⊗𝑝 → 𝐴 is the multiplication map. The ring structure on the right-hand term is that
described explicitly in Examples 1.11 and 1.12.
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WITT VECTORS WITH COEFFICIENTS AND TR 49 of 62

We now explain the relationship between this result and [5, Theorem B]. Let𝑈′ be the forgetful
functor from 𝐶𝑝𝑛 -Tambara functors to commutative rings with 𝐶𝑝𝑛 -action, which sends 𝑇 to 𝑇(0)
with its 𝐶𝑝𝑛 -action. Let 𝐿′ denote its left adjoint.

Theorem 2.19 [5]. Let𝐴 be a commutative ring, and let us regard𝐴 as a commutative ring with the
trivial 𝐶𝑝𝑛 -action. There is a natural ring isomorphism

𝐿′(𝐴)(𝐶𝑝𝑛∕𝐶𝑝𝑛) ≅ 𝑊⟨𝑝𝑛⟩(𝐴).
We remark that since the restriction of the 𝐶𝑝𝑛 -Tambara functor 𝜋0TR⟨𝑝𝑛⟩(𝐴) to the subgroup

𝐶𝑝𝑛−1 is the 𝐶𝑝𝑛−1 -Tambara functor 𝜋0TR⟨𝑝𝑛⟩(𝐴), Brun’s theorem, in fact, provides a natural
isomorphism of Tambara functors

𝐿′(𝐴)(𝐶𝑝𝑛∕𝐶𝑝𝑖 ) ≅ 𝑊⟨𝑝𝑖⟩(𝐴),
where the Tambara structure on𝑊⟨𝑝(−)⟩(𝐴) is defined by the Frobeniusmaps 𝐹, the Verschiebung
𝑉, and the norm maps 𝑁 of [1]. The unit and the multiplication map of 𝐴 define a morphism
of commutative monoids (ℤ;𝐴⊗𝑝𝑛−𝑖 ) → (𝐴;𝐴) in the category of bimodules, and thus a ring
homomorphism

𝔪∶ 𝑊⟨𝑝𝑖⟩(ℤ;𝐴⊗𝑝𝑛−𝑖 )⟶𝑊⟨𝑝𝑖⟩(𝐴;𝐴) = 𝑊⟨𝑝𝑖⟩(𝐴),
which by naturality of the operators is a natural morphism of Tambara functors.

Proposition 2.20. For every commutative ring𝐴, there is a commutative diagram of 𝐶𝑝𝑛 -Tambara
functors

where the upper isomorphism is from Proposition 2.16 and the lower isomorphism is from
Brun’s Theorem.

Proof. For convenience, we denote by𝔪 also the map 𝐿(𝐴) → 𝐿′(𝐴) obtained by transporting𝔪
through the horizontal isomorphisms. Since 𝐿′ is a left adjoint, the maps𝔪 and 𝐿′(𝜇𝑝𝑛) agree if
and only if

(𝑈′𝐿′(𝜇𝑝𝑛)) ◦ 𝜂 = 𝑈′(𝔪) ◦ 𝜂,

where 𝜂∶ id → 𝑈′𝐿′ is the unit of the adjunction. These agree since

𝑈′𝐿′(𝜇𝑝𝑛) = 𝜇𝑝𝑛 = 𝑈′(𝔪)

are both the 𝑝𝑛-fold multiplication map. □
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50 of 62 DOTTO et al.

APPENDIX: THE DWORK LEMMA

A.1 Congruences of tensor 𝒑-powers
Once and for all, we fix a prime number 𝑝 and we regard the cyclic groups 𝐶𝑝𝑗 as subgroups of
the complex circle, so that we have chosen generators 𝜎𝑗 = 𝑒2𝑖𝜋∕𝑝

𝑗 of 𝐶𝑝𝑗 with the property that

𝜎
𝑝𝑘

𝑗+𝑘
= 𝜎𝑗

for every 𝑗, 𝑘 ⩾ 0. For every abelian group 𝐴, we equip 𝐴⊗𝑝𝑗 with the 𝐶𝑝𝑗 -action on which the
generator 𝜎𝑗 acts by

𝜎𝑗(𝑎1 ⊗⋯⊗ 𝑎𝑝𝑗 ) = 𝑎𝑝𝑗 ⊗ 𝑎1 ⊗⋯⊗ 𝑎𝑝𝑗−1.

We let (−)⊗𝑝𝑗 ∶ 𝐴 → (𝐴⊗𝑝
𝑗
)
𝐶
𝑝𝑗 be the (non-additive) map that sends 𝑎 to the 𝑝𝑗-fold tensor

product 𝑎 ⊗⋯⊗ 𝑎.
The following is analogous to the fact that if two elements 𝑎, 𝑏 ∈ 𝐴 of a commutative ring 𝐴

are congruent modulo 𝑝, then 𝑎𝑝𝑘 and 𝑏𝑝𝑘 are congruent modulo 𝑝𝑘+1. It plays a fundamental
role in the proof of the Dwork Lemma A.8.

Proposition A.1. Let 𝐴 be an abelian group, and let 𝑎 and 𝑏 be elements of (𝐴⊗𝑝)𝐶𝑝 which are
congruent modulo tr

𝐶𝑝
𝑒 . Then, for every 𝑘 ⩾ 0

𝜔𝑘+1(𝑎
⊗𝑝𝑘 ) ≡ 𝜔𝑘+1(𝑏

⊗𝑝𝑘 )mod tr
𝐶
𝑝𝑘+1

𝑒 ,

where𝜔𝑘+1 is the automorphismof {1, … , 𝑝}×𝑘+1 that reverses the order of the product factors, defined
by 𝜔𝑘+1(𝑖1, 𝑖2, … , 𝑖𝑘+1) = (𝑖𝑘+1, 𝑖𝑘, … , 𝑖1) for all 1 ⩽ 𝑖1, 𝑖2, … , 𝑖𝑘+1 ⩽ 𝑝.

Let 𝜏𝑛 be the element of the symmetric group Σ𝑝𝑛 of automorphisms of the set {1, … , 𝑝}×𝑛 that
cyclically permutes the 𝑛-coordinates

𝜏𝑛(𝑖1, … , 𝑖𝑛) = (𝑖𝑛, 𝑖1, 𝑖2, … , 𝑖𝑛−1)

for all 1 ⩽ 𝑖1, … , 𝑖𝑛 ⩽ 𝑝. The key combinatorial ingredient for Proposition A.1 is the interaction
between 𝜏𝑛 and the cyclic permutations, which is summarised in the following lemma. We write
{1, … , 𝑝}×𝑛 in lexicographical order, and think of it as the disjoint union of 𝑝𝑛−1 blocks of size 𝑝,
or of 𝑝-blocks of size 𝑝𝑛−1.

Lemma A.2. The permutation 𝜏𝑛 ∈ Σ𝑝𝑛 satisfies

𝜏−1𝑛 𝜎𝑛𝜏𝑛 = (𝜎1 ⨿ id𝑝𝑛−𝑝) ◦ (𝜎𝑛−1 × id𝑝)

𝜏𝑛𝜎𝑛𝜏
−1
𝑛 = (𝜎𝑛−1 ⨿ id𝑝𝑛−𝑝𝑛−1)(𝜎1 × id𝑝𝑛−1)

for every 𝑛 ⩾ 1, where (𝜎𝑛−1 × id𝑝) permutes the 𝑝𝑛−1 blocks of size 𝑝 by the generator of 𝐶𝑝𝑛−1 , and
(𝜎1 ⨿ id𝑝𝑛−𝑝) applies the generator 𝜎1 of 𝐶𝑝 to the first block, and similarly for the second equation.

Proof. The equations can be directly verified using the description of the cyclic permutations
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WITT VECTORS WITH COEFFICIENTS AND TR 51 of 62

𝜎𝑛(𝑖1, … , 𝑖𝑛) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑖1, … , 𝑖𝑛 + 1) , 𝑖𝑛 < 𝑝

(𝑖1, … , 𝑖𝑛−1 + 1, 1) , 𝑖𝑛 = 𝑝, 𝑖𝑛−1 < 𝑝

⋮

(𝑖1 + 1, 1, … , , 1) , 𝑖𝑛 = … , 𝑖2 = 𝑝, 𝑖1 < 𝑝

(1, … , 1) , 𝑖𝑛 = … , 𝑖1 = 𝑝

(𝜎𝑛−1 × id𝑝)(𝑖1, … , 𝑖𝑛) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑖1, … , 𝑖𝑛−1 + 1, 𝑖𝑛) , 𝑖𝑛−1 < 𝑝

(𝑖1, … , 𝑖𝑛−2 + 1, 1, 𝑖𝑛) , 𝑖𝑛−1 = 𝑝, 𝑖𝑛−2 < 𝑝

⋮

(𝑖1 + 1, 1, … , 1, 𝑖𝑛) , 𝑖𝑛−1 = … , 𝑖2 = 𝑝, 𝑖1 < 𝑝

(1, … , 1, 𝑖𝑛) , 𝑖𝑛−1 = … , 𝑖1 = 𝑝

(𝜎1 ⨿ id𝑝𝑛−𝑝)(𝑖1, … , 𝑖𝑛) =

⎧⎪⎨⎪⎩
(𝑖1, … , 𝑖𝑛) , (𝑖1, … , 𝑖𝑛−1) ≠ (1, … , 1)

(1, … , 1, 𝑖𝑛 + 1) , 𝑖𝑛 < 𝑝, (𝑖1, … , 𝑖𝑛−1) = (1, … , 1)

(1, … , 1, 1) , 𝑖𝑛 = 𝑝, (𝑖1, … , 𝑖𝑛−1) = (1, … , 1),

and the analogous formulas for (𝜎𝑛−1 ⨿ id𝑝𝑛−𝑝𝑛−1) and (𝜎1 × id𝑝𝑛−1). □

Proof of A.1. We start by observing that 𝜔𝑘+1𝜎𝑘+1𝜔𝑘+1 is the composition of a block sum of cyclic
permutations of 𝐶𝑝, and of a permutation of blocks of size 𝑝. Thus, since 𝑎 is in (𝐴⊗𝑝)

𝐶𝑝

𝜎𝑘+1𝜔𝑘+1(𝑎
⊗𝑝𝑘 ) = 𝜔𝑘+1(𝑎

⊗𝑝𝑘 ),

and similarly for 𝜔𝑘+1(𝑏⊗𝑝
𝑘
). Thus, both 𝜔𝑘+1(𝑎⊗𝑝

𝑘
) and 𝜔𝑘+1(𝑏⊗𝑝

𝑘
) belong to (𝐴⊗𝑝𝑘+1)𝐶𝑝𝑘+1 , as

well as the elements of the image of tr
𝐶
𝑝𝑘+1

𝑒 .
We prove the congruence by induction on 𝑘. For 𝑘 = 0, the claim holds by assumption. For the

induction step, we recall the relative binomial formula

(𝑟 + 𝑠)⊗𝑝 = 𝑟⊗𝑝 + 𝑠⊗𝑝 +
∑

{∅≠𝑉⊊𝑝}∕𝐶𝑝

tr
𝐶𝑝
𝑒 (𝑡𝑉1 ⊗⋯⊗ 𝑡𝑉𝑝 ),

where the sum runs through the orbits of the action of 𝐶𝑝 on the subsets of the 𝑝-elements set,
and 𝑡𝑉

𝑗
= 𝑟 if 𝑗 ∈ 𝑉, and 𝑡𝑉

𝑗
= 𝑠 otherwise. By supposing that the lemma holds for 𝑘 − 1, we see

that

𝜔𝑘+1(𝑎
⊗𝑝𝑘 ) = 𝜔𝑘+1

(
(𝑎⊗𝑝

𝑘−1
)⊗𝑝

) = 𝜔𝑘+1

((
𝑏⊗𝑝

𝑘−1
+ 𝜔𝑘 tr

𝐶
𝑝𝑘

𝑒 (𝑐)

)⊗𝑝
)

= 𝜔𝑘+1(id𝑝 ×𝜔𝑘)

((
𝜔𝑘

(
𝑏⊗𝑝

𝑘−1
)
+ tr

𝐶
𝑝𝑘

𝑒 (𝑐)

)⊗𝑝
)

= 𝜏−1
𝑘+1

((
𝜔𝑘

(
𝑏⊗𝑝

𝑘−1
)
+ tr

𝐶
𝑝𝑘

𝑒 (𝑐)

)⊗𝑝
)

= 𝜔𝑘+1(𝑏
⊗𝑝𝑘 ) + 𝜏−1

𝑘+1

((
tr
𝐶
𝑝𝑘

𝑒 (𝑐)

)⊗𝑝
)
+

∑
{∅≠𝑈⊊𝑝}∕𝐶𝑝

𝜏−1
𝑘+1

tr
𝐶𝑝
𝑒 𝑠𝑈1 ⊗⋯⊗ 𝑠𝑈𝑝 ,
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52 of 62 DOTTO et al.

where 𝑠𝑈
𝑗
= 𝜔𝑘𝑏

⊗𝑝𝑘−1 if 𝑗 ∈ 𝑈, and otherwise it lies in the image of tr
𝐶
𝑝𝑘

𝑒 . Let us analyse the terms
of the last sum. Let us suppose without loss of generality that a transferred term lies in the first
tensor factor. Then, the term of the sum corresponding to a subset 𝑈 is

𝜏−1
𝑘+1

tr
𝐶𝑝
𝑒 (tr

𝐶
𝑝𝑘

𝑒 (𝑥) ⊗ 𝑠𝑈2 ⊗⋯⊗ 𝑠𝑈𝑝 ) =

𝑝∑
𝑗=1

𝑝𝑘∑
𝑙=1

𝜏−1
𝑘+1

(𝜎
𝑗
1
× id𝑝𝑘 )(𝜎

𝑙
𝑘
⨿ id𝑝𝑘+1−𝑝𝑘 )(𝑥 ⊗ 𝑠𝑈2 ⊗⋯⊗ 𝑠𝑈𝑝 ).

Let us write any 𝑛 ∈ {1, … , 𝑝𝑘+1} as 𝑝𝑙 + 𝑗 for unique 𝑙 ∈ {0, 1, … , 𝑝𝑘 − 1} and 𝑗 ∈ {1, … , 𝑝}. It is
not hard to verify that

𝜏𝑘+1𝜎
𝑝𝑙+𝑗

𝑘+1
𝜏−1
𝑘+1

= (𝜎𝑙+1
𝑘

⨿⋯ ⨿ 𝜎𝑙+1
𝑘

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑗

⨿𝜎𝑙
𝑘
⨿⋯ ⨿ 𝜎𝑙

𝑘
⏟⎴⎴⏟⎴⎴⏟

𝑝−𝑗

)(𝜎
𝑗
1
× id𝑝𝑘 )

= (𝜎
𝑗
1
× id𝑝𝑘 )(𝜎

𝑙
𝑘
⨿⋯ ⨿ 𝜎𝑙

𝑘
⏟⎴⎴⏟⎴⎴⏟

𝑝−𝑗

⨿𝜎𝑙+1
𝑘

⨿⋯ ⨿ 𝜎𝑙+1
𝑘

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑗

),

by induction on 𝑛 from the identity of Lemma A.2. Since all the terms 𝑠𝑈
𝑗
for 𝑗 = 2,… , 𝑝 are

invariant under the 𝐶𝑝𝑘 action, we can rewrite the expression above as

𝜏−1
𝑘+1

tr
𝐶𝑝
𝑒 (tr

𝐶
𝑝𝑘

𝑒 (𝑥) ⊗ 𝑠𝑈2 ⊗⋯⊗ 𝑠𝑈𝑝 )

=

𝑝∑
𝑗=1

𝑝𝑘−1∑
𝑙=0

𝜏−1
𝑘+1

(𝜎
𝑗
1
× id𝑝𝑘 )(𝜎

𝑙
𝑘
⨿⋯ ⨿ 𝜎𝑙

𝑘
⏟⎴⎴⏟⎴⎴⏟

𝑝−𝑗

⨿𝜎𝑙+1
𝑘

⨿⋯ ⨿ 𝜎𝑙+1
𝑘

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑗

)(𝑥 ⊗ 𝑠𝑈2 ⊗⋯⊗ 𝑠𝑈𝑝 )

=

𝑝∑
𝑗=1

𝑝𝑘−1∑
𝑙=0

𝜎
𝑝𝑙+𝑗

𝑘+1
𝜏−1
𝑘+1

(𝑥 ⊗ 𝑠𝑈2 ⊗⋯⊗ 𝑠𝑈𝑝 )

=

𝑝𝑘+1∑
𝑛=1

𝜎𝑛
𝑘+1

𝜏−1
𝑘+1

(𝑥 ⊗ 𝑠𝑈2 ⊗⋯⊗ 𝑠𝑈𝑝 )

= tr
𝐶
𝑝𝑘+1

𝑒 𝜏−1
𝑘+1

(𝑥 ⊗ 𝑠𝑈2 ⊗⋯⊗ 𝑠𝑈𝑝 ).

This shows that the last term of the expression above lies in the image of tr
𝐶
𝑝𝑘+1

𝑒 , and we are left

with verifying that the same holds for 𝜏−1
𝑘+1

((tr
𝐶
𝑝𝑘

𝑒 (𝑐))⊗𝑝) for every 𝑘 ⩾ 1.We recall that the relative
multinomial formula for a sequence of 𝑛-elements 𝑏1, … , 𝑏𝑛 of an abelian group 𝐵 is

(𝑏1 +⋯ + 𝑏𝑛)
⊗𝑝 =

∑
𝑓∶ 𝑝→𝑛

𝑏𝑓(1) ⊗⋯⊗ 𝑏𝑓(𝑝),

where the sum runs through the set ofmaps𝑓∶ 𝑝 → 𝑛. Now let us consider the casewhere𝑛 = 𝑝𝑘

for some 𝑘 ⩾ 1. The group 𝐶𝑝𝑘+1 acts freely on the set of maps {𝑓∶ 𝑝 → 𝑝𝑘} by

(𝜎𝑘+1𝑓)(𝑖) =

{
𝑓(𝜎−1

1
𝑖) if 𝑖 ≠ 1

𝜎𝑘𝑓(𝜎
−1
1
𝑖) if 𝑖 = 1.
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The powers of the generator act as

(𝜎
𝑝𝑙+𝑗

𝑘+1
𝑓)(𝑖) =

{
𝜎𝑙
𝑘
𝑓(𝜎

−𝑗
1
𝑖) if 𝑗 + 1 ⩽ 𝑖 ⩽ 𝑝

𝜎𝑙+1
𝑘
𝑓(𝜎

−𝑗
1
𝑖) if 1 ⩽ 𝑖 ⩽ 𝑗,

where 𝑙 ∈ {0, 1, … , 𝑝𝑘 − 1} and 𝑗 ∈ {1, … , 𝑝}. Indeed, the generator acts freely since if 𝜎𝑘+1𝑓 = 𝑓,
then mod 𝑝𝑘 we must have

𝑓(𝑝) + 1 = 𝑓(1) = 𝑓(2) =⋯ = 𝑓(𝑝),

which is a contradiction. Similarly, if 𝑓 has non-trivial proper stabilisers, we must have that 𝑓 =
𝜎
𝑝𝑛

𝑘+1
𝑓 for some 𝑛 ∈ {1, … , 𝑘}. By writing 𝑝𝑛 = 𝑝(𝑝𝑛−1 − 1) + 𝑝, we see that we must have

𝑓(𝑖) = (𝜎
𝑝𝑛

𝑘+1
𝑓)(𝑖) = 𝜎

𝑝𝑛−1

𝑘
𝑓(𝜎

−𝑝
1
𝑖) ≡ 𝑓(𝑖) + 𝑝𝑛−1 mod 𝑝𝑘,

which is a contradiction. We can therefore decompose the multinomial formula as

(𝑏1 +⋯ + 𝑏𝑝𝑘 )
⊗𝑝 =

∑
{𝑓∶ 𝑝→𝑝𝑘}∕𝐶

𝑝𝑘+1

𝑝𝑘+1∑
𝑛=1

𝑏(𝜎𝑛
𝑘+1

𝑓)(1) ⊗⋯⊗ 𝑏(𝜎𝑛
𝑘+1

𝑓)(𝑝)

=
∑

{𝑓∶ 𝑝→𝑝𝑘}∕𝐶
𝑝𝑘+1

𝑝∑
𝑗=1

𝑝𝑘−1∑
𝑙=0

×

(
𝑏
𝜎𝑙+1
𝑘

𝑓(𝜎
−𝑗
1
1)
⊗⋯⊗ 𝑏

𝜎𝑙+1
𝑘

𝑓(𝜎
−𝑗
1
𝑗)
⊗ 𝑏

𝜎𝑙
𝑘
𝑓(𝜎

−𝑗
1
(𝑗+1))

⊗⋯⊗ 𝑏
𝜎𝑙
𝑘
𝑓(𝜎

−𝑗
1
𝑝)

)
.

We apply this formula to the sequence 𝜎𝑘𝑐, 𝜎2𝑘𝑐, … , 𝜎
𝑝𝑘

𝑘
𝑐 of the abelian group 𝐵 = 𝐴⊗𝑝

𝑘 , and find
the expression

𝜏−1
𝑘+1

((
tr
𝐶
𝑝𝑘

𝑒 (𝑐)

)⊗𝑝
)

=
∑

{𝑓∶ 𝑝→𝑝𝑘}∕𝐶
𝑝𝑘+1

𝑝∑
𝑗=1

𝑝𝑘−1∑
𝑙=0

𝜏−1
𝑘+1

((
𝜎
𝜎𝑙+1
𝑘

𝑓(𝜎
−𝑗
1
1)

𝑘
𝑐

)
⊗⋯⊗

(
𝜎
𝜎𝑙+1
𝑘

𝑓(𝜎
−𝑗
1
𝑗)

𝑘
𝑐

)

⊗

(
𝜎
𝜎𝑙
𝑘
𝑓(𝜎

−𝑗
1
(𝑗+1))

𝑘
𝑐

)
⊗⋯⊗

(
𝜎
𝜎𝑙
𝑘
𝑓(𝜎

−𝑗
1
𝑝)

𝑘
𝑐

))

=
∑

{𝑓∶ 𝑝→𝑝𝑘}∕𝐶
𝑝𝑘+1

𝑝∑
𝑗=1

𝑝𝑘−1∑
𝑙=0

𝜏−1
𝑘+1

(𝜎𝑙+1
𝑘

⨿⋯ ⨿ 𝜎𝑙+1
𝑘

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑗

⨿𝜎𝑙
𝑘
⨿⋯ ⨿ 𝜎𝑙

𝑘
⏟⎴⎴⏟⎴⎴⏟

𝑝−𝑗

)
(
𝜎
𝑗
1
× id𝑝𝑘

)

×
(
𝜎
𝑓(1)

𝑘
𝑐 ⊗⋯⊗ 𝜎

𝑓(𝑝)

𝑘
𝑐
)
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=
∑

{𝑓∶ 𝑝→𝑝𝑘}∕𝐶
𝑝𝑘+1

𝑝∑
𝑗=1

𝑝𝑘−1∑
𝑙=0

𝜎
𝑝𝑙+𝑗

𝑘+1
𝜏−1
𝑘+1

(
𝜎
𝑓(1)

𝑘
𝑐 ⊗⋯⊗ 𝜎

𝑓(𝑝)

𝑘
𝑐
)

=
∑

{𝑓∶ 𝑝→𝑝𝑘}∕𝐶
𝑝𝑘+1

tr
𝐶
𝑝𝑘+1

𝑒 𝜏−1
𝑘+1

(
𝜎
𝑓(1)

𝑘
𝑐 ⊗⋯⊗ 𝜎

𝑓(𝑝)

𝑘
𝑐
)
,

which concludes the proof. □

A.2 External Frobenius and the Dwork Lemma
We give a characterisation of the image of the ghost map when the bimodule (𝑅;𝑀) is equipped
with an ‘external Frobenius lift’. In the following, we will always denote by⊗ the tensor product
over the integers.
Definition A.3. An external Frobenius on a ring 𝑅 is a ring homomorphism

𝜑∶ 𝑅⟶ (𝑅⊗𝑝)𝐶𝑝 ,

which is congruent to the 𝑝th power map (−)⊗𝑝 modulo the image of the additive transfer map
tr
𝐶𝑝
𝑒 ∶ (𝑅⊗𝑝)𝐶𝑝 → (𝑅⊗𝑝)𝐶𝑝 , which sends 𝑥 to

∑
𝜎∈𝐶𝑝

𝜎(𝑥).

Now let 𝑀 be an 𝑅-bimodule. The abelian group (𝑀⊗𝑝)𝐶𝑝 is a (𝑅⊗𝑝)𝐶𝑝 -bimodule, where the
bimodule actions are factorwise. If 𝑅 has an external Frobenius 𝜑, wemay then consider (𝑀⊗𝑝)𝐶𝑝

as an 𝑅-bimodule by restricting scalars along 𝜑∶ 𝑅 → (𝑅⊗𝑝)𝐶𝑝 .

Definition A.4. Let (𝑅, 𝜑) be a ring with an external Frobenius. A Frobenius on an 𝑅-bimodule
𝑀 is a morphism of 𝑅-bimodules

𝜙∶ 𝑀 ⟶ (𝑀⊗𝑝)𝐶𝑝 ,

which is congruent to (−)⊗𝑝 ∶ 𝑀 → 𝑀⊗𝑝 modulo the image of tr
𝐶𝑝
𝑒 ∶ (𝑀⊗𝑝)𝐶𝑝 → (𝑀⊗𝑝)𝐶𝑝 . By

saying that an 𝑅-bimodule𝑀 has an external Frobenius, we will implicitly imply that 𝑅 also has
an external Frobenius.

Example A.5.

1. If a ring 𝑅 has an external Frobenius 𝜑, the composite

𝑅
𝜑
⟶ (𝑅⊗𝑝)𝐶𝑝

𝜇𝑝
⟶ 𝑅

with the 𝑝-fold multiplication map is a Frobenius lift on 𝑅 in the usual sense, since
𝜇𝑝((−)

⊗𝑝) = (−)𝑝 and 𝜇𝑝 tr
𝐶𝑝
𝑒 ≡ 𝑝𝜇𝑝 modulo [𝑅, 𝑅] . When 𝑅 is commutative, this is a

ring endomorphism of 𝑅 which is congruent to the 𝑝th power map modulo 𝑝. For a non-
commutative ring, this is in the sense of [9, §1.3], an additive endomorphism of 𝑅 which
preserves the commutators subgroup [𝑅, 𝑅], and which is congruent to the 𝑝th power map
modulo 𝑝𝑅 + [𝑅, 𝑅].

2. The ring of integers has an external Frobenius, defined by the canonical isomorphism ℤ ≅

(ℤ⊗𝑝)𝐶𝑝 which sends 𝑛 to 𝑛(1 ⊗ 1 ⊗⋯⊗ 1).
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3. Let us denote byℤ(𝑋) ∶= ⊕𝑋ℤ the free abelian group on a set of generators𝑋, whichwe regard
as a ℤ-bimodule. Then, ℤ(𝑋) has an external Frobenius

𝜙∶ ℤ(𝑋)⟶ ℤ(𝑋)⊗𝑝 ≅ ℤ(𝑋×𝑝),

which is defined by sending a basis element 𝑥 to the diagonal basis element 𝑥⊗𝑝 = (𝑥,… , 𝑥).
We show that that this is congruent to the map (−)⊗𝑝 modulo additive transfer. Let 𝑓 be a
linear combination in ℤ(𝑋). By induction, we can assume that 𝑓 is the linear combination of
two basis elements 𝑓 = 𝑛𝑥 +𝑚𝑦. By the relative binomial formula,

𝑓⊗𝑝 = (𝑛𝑥 + 𝑚𝑦)⊗𝑝 = (𝑛𝑥)⊗𝑝 + (𝑚𝑦)⊗𝑝 +
∑

{∅≠𝑈⊊𝑝}∕𝐶𝑝

tr
𝐶𝑝
𝑒 (𝑡𝑈1 ⊗⋯⊗ 𝑡𝑈𝑝 ),

where 𝐶𝑝 acts on the subsets of the 𝑝-elements set by the image map, and 𝑡𝑈𝑘 = 𝑛𝑥 if 𝑘 ∈ 𝑈

and 𝑡𝑈
𝑘
= 𝑚𝑦 otherwise. Thus,

𝑓⊗𝑝 ≡ (𝑛𝑥)⊗𝑝 + (𝑚𝑦)⊗𝑝 ≡ 𝑛𝑝𝜙(𝑥) + 𝑚𝑝𝜙(𝑦)⊗𝑝 mod tr
𝐶𝑝
𝑒 .

Finally, 𝑛𝑝 is congruent to 𝑛modulo 𝑝, and similarly for𝑚𝑝, and therefore, there are integers
𝑘 and 𝑙 such that

𝑓⊗𝑝 ≡ 𝑛𝜙(𝑥) + 𝑚𝜙(𝑦) + 𝑝𝜙(𝑙𝑥 + 𝑘𝑦) ≡ 𝜙(𝑛𝑥 + 𝑚𝑦) + tr
𝐶𝑝
𝑒 (𝜙(𝑙𝑥 + 𝑘𝑦)) ≡ 𝜙(𝑓)mod tr

𝐶𝑝
𝑒 ,

where the second congruence holds since the transfer acts by multiplication by 𝑝 on the fixed
points of ℤ(𝑋)⊗𝑝.

4. A completely analogous argument shows that polynomial rings ℤ[𝑋] and non-commutative
polynomial rings ℤ{𝑋} have external Frobenius maps which sends 𝑥 to 𝑥⊗𝑝. These refine the
standard Frobenius lift in the sense that 𝜇𝑝𝜙 recover the usual Frobenius lift endomorphisms,
and they are moreover multiplicative.

5. Let us denote by 𝑅𝑒(𝑋) ∶= ⊕𝑋(𝑅 ⊗ 𝑅) the free 𝑅-bimodule on a set of generators 𝑋, and
suppose that 𝑅 has an external Frobenius 𝜑. Then, 𝑅𝑒(𝑋) has an external Frobenius

𝜙∶ 𝑅𝑒(𝑋)⟶ (𝑅𝑒(𝑋)⊗𝑝)𝐶𝑝 ≅

(⨁
𝑋×𝑝

(𝑅 ⊗ 𝑅)⊗𝑝

)𝐶𝑝

≅
⨁

(𝑋×𝑝)𝐶𝑝

((𝑅 ⊗ 𝑅)⊗𝑝)𝐶𝑝 ⊕
⨁

(𝑋×𝑝∖Δ)∕𝐶𝑝

(𝑅 ⊗ 𝑅)⊗𝑝,

which is the unique morphism of 𝑅-bimodules that sends a basis element 𝑥 to (𝑥, … , 𝑥) in the
first summand. It sends an element 𝑟 ⊗ 𝑠 in the 𝑥-summand to the element 𝜒(𝜑(𝑟) ⊗ 𝜑(𝑠)) in
the (𝑥, … , 𝑥)-summand, where 𝜒 is the shuffle permutation which acts as

𝜒(𝑟1 ⊗ 𝑟2 ⊗⋯⊗ 𝑟𝑝 ⊗ 𝑠1 ⊗ 𝑠2 ⊗⋯⊗ 𝑠𝑝) = (𝑟1 ⊗ 𝑠1 ⊗ 𝑟2 ⊗ 𝑠2 ⊗⋯⊗ 𝑟𝑝 ⊗ 𝑠𝑝).

We show that 𝜙 is congruent to the power map (−)⊗𝑝 modulo transfer. As in the example
above, it is sufficient to show this on the sum of two elements (𝑟 ⊗ 𝑠)𝑥 + (𝑡 ⊗ 𝑢)𝑦, and by the
binomial formula

((𝑟 ⊗ 𝑠)𝑥 + (𝑡 ⊗ 𝑢)𝑦)⊗𝑝 ≡ ((𝑟 ⊗ 𝑠)𝑥)⊗𝑝 + ((𝑡 ⊗ 𝑢)𝑦)⊗𝑝 mod tr
𝐶𝑝
𝑒 .
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Therefore, it is sufficient to show that 𝜙((𝑟 ⊗ 𝑠)𝑥) = 𝜒(𝜑(𝑟) ⊗ 𝜑(𝑠))(𝑥, … , 𝑥) is congruent
to (𝑟 ⊗ 𝑠)⊗𝑝(𝑥, … , 𝑥) modulo transfers for every 𝑟, 𝑠 ∈ 𝑅 and 𝑥 ∈ 𝑋. Since 𝜑 is an external
Frobenius on 𝑅, there are 𝑣, 𝑤 ∈ 𝑅 such that

𝜙((𝑟 ⊗ 𝑠)𝑥) = 𝜒((𝑟⊗𝑝 + tr
𝐶𝑝
𝑒 (𝑣)) ⊗ (𝑠⊗𝑝 + tr

𝐶𝑝
𝑒 (𝑤)))(𝑥, … , 𝑥)

=
(
𝜒(𝑟⊗𝑝 ⊗ 𝑠⊗𝑝) + 𝜒(𝑇)

)
(𝑥, … , 𝑥)

= (𝑟 ⊗ 𝑠)⊗𝑝(𝑥, … , 𝑥) + 𝜒(𝑇)(𝑥, … , 𝑥),

where 𝑇 ∈ 𝑅⊗𝑝 ⊗ 𝑅⊗𝑝 is a sum of transfers of 𝑅⊗𝑝 tensored with a fixed-point of (𝑅⊗𝑝)𝐶𝑝 (in
either order). Thus, we need to show that 𝜒(𝑇) ∈ (𝑅 ⊗ 𝑅)⊗𝑝 is a transfer. We show this when
𝑇 = 𝑎 ⊗ tr

𝐶𝑝
𝑒 (𝑤) for a fixed element 𝑎 ∈ 𝑅⊗𝑝, and

𝜒(𝑎 ⊗ tr
𝐶𝑝
𝑒 (𝑤)) =

∑
𝜎∈𝐶𝑝

𝜒(𝑎 ⊗ 𝜎(𝑤)) =
∑
𝜎∈𝐶𝑝

𝜒(𝜎(𝑎) ⊗ 𝜎(𝑤)) =
∑
𝜎∈𝐶𝑝

𝜎𝜒(𝑎 ⊗ 𝑤)

= tr
𝐶𝑝
𝑒 𝜒(𝑎 ⊗ 𝑤),

where the second equality holds because 𝑎 is a cyclic invariant.
6. A construction analogous to the previous example shows that if 𝑅 is commutative,𝑀 is a free

or free commutative 𝑅-algebra, and if 𝑅 has an external Frobenius, then 𝑀 has an external
Frobenius which is multiplicative.

If𝑀 is an 𝑅-bimodule with an external Frobenius and 𝑛 ⩾ 1 is an integer, we let

𝜙⊗𝑝
𝑛−1

∶ 𝑀⊗𝑝𝑛−1 ⟶𝑀⊗𝑝𝑛

be the composite of the map that sends 𝑚1 ⊗⋯⊗𝑚𝑝𝑛−1 to 𝜙(𝑚1) ⊗⋯⊗ 𝜙(𝑚𝑝𝑛−1) ∈

(𝑀⊗𝑝)⊗𝑝
𝑛−1 , and the canonical isomorphism (𝑀⊗𝑝)⊗𝑝

𝑛−1
≅ 𝑀⊗𝑝𝑛 that sends a generator 𝑚1 ⊗

⋯⊗𝑚𝑝𝑛 to

(𝑚1 ⊗⋯⊗𝑚𝑝) ⊗ (𝑚𝑝+1 ⊗⋯⊗𝑚2𝑝) ⊗⋯⊗ (𝑚(𝑝𝑛−1−1)𝑝+1 ⊗⋯⊗𝑚𝑝𝑛).

This map is not well behaved with respect to the cyclic action. In particular, we want to modify
this map in such a way that it restricts to a group homomorphism on cyclic invariants. We recall
that 𝜏𝑛 ∈ Σ𝑝𝑛 is defined by

𝜏𝑛(𝑖1, … , 𝑖𝑛) = (𝑖𝑛, 𝑖1, 𝑖2, … , 𝑖𝑛−1)

for all 1 ⩽ 𝑖1, … , 𝑖𝑛 ⩽ 𝑝.

Lemma A.6. Let 𝑀 be an 𝑅-bimodule with an external Frobenius 𝜙, and let 𝑛 ⩾ 1 be an integer.
The map

satisfies the following properties:

1. It is congruent to (−)⊗𝑝 modulo the image of the transfer tr
𝐶𝑝
𝑒 ∶ 𝑀⊗𝑝𝑛 → (𝑀⊗𝑝𝑛)𝐶𝑝 .
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2. It descends to a group homomorphism which satisfies 𝜙𝑛−1𝜎𝑛−1 =
𝜎𝑛𝜙𝑛−1, where 𝜎𝑘 is the chosen generator of 𝐶𝑝𝑘 . In particular, it restricts to a group
homomorphism

3. For every 𝑖, 𝑘 ⩾ 0 and element𝑚𝑖 ∈ 𝑀⊗𝑝𝑖 , we have 𝜙𝑘+𝑖(𝑚
⊗𝑝𝑘

𝑖
) ≡ 𝑚

⊗𝑝𝑘+1

𝑖
mod tr

𝐶
𝑝𝑘+1

𝑒 .

Example A.7. Let us consider a free abelian group ℤ(𝑋) with the external Frobenius that sends
𝑥 to (𝑥, … , 𝑥) in ℤ(𝑋×𝑝) ≅ ℤ(𝑋)⊗𝑝. Under the isomorphism ℤ(𝑋×𝑝

𝑛
) ≅ ℤ(𝑋)⊗𝑝

𝑛 , the higher
Frobenius 𝜙𝑛−1 sends a generator (𝑥1, … , 𝑥𝑝𝑛−1) to

𝜙𝑛−1(𝑥1, … , 𝑥𝑝𝑛−1) = (𝑥1, … , 𝑥𝑝𝑛−1 , 𝑥1, … , 𝑥𝑝𝑛−1 , … , 𝑥1, … , 𝑥𝑝𝑛−1),

whereas 𝜙⊗𝑝𝑛−1 sends it to (𝑥1, … , 𝑥1, 𝑥2, … , 𝑥2, … , 𝑥𝑝𝑛−1 , … , 𝑥𝑝𝑛−1).

Proof of LemmaA.6. We start by showing that 𝜙𝑛−1 descends to amap on the cyclic tensor powers
over 𝑅. Let us consider the commutative diagram

The bottom-left horizontal map is well defined because 𝜙 is a map of 𝑅-bimodules, where the
bimodule structure on the target is via the external Frobenius 𝜑∶ 𝑅 → (𝑅⊗𝑝)𝐶𝑝 of 𝑅. The middle
bottom horizontal map is the projection map that regards 𝑀⊗𝑝 as an (𝑅⊗𝑝)𝐶𝑝 -bimodule. Thus,
we need to show that the permutation 𝜏𝑛 gives a well-defined map on the bottom-right. We show
that it is well defined with respect to tensoring over (𝑅⊗𝑝)𝐶𝑝 for the first tensor factor, the others
are similar. For every𝑚 ∈ 𝑀⊗𝑝𝑛 and 𝑟 ∈ 𝑅⊗𝑝 , we need to show that

𝜏𝑛(𝑚 ⋅ (𝑟 ⊗ 1⊗(𝑝
𝑛−𝑝))) = 𝜏𝑛((1

⊗𝑝 ⊗ 𝑟 ⊗ 1⊗(𝑝
𝑛−2𝑝)) ⋅𝑚).

Since in the target we are tensoring over 𝑅, we can turn the right action of an element of 𝑅⊗𝑝𝑛

into the left action by a cyclic permutation of this element, and by Lemma A.2,

𝜏𝑛(𝑚 ⋅ (𝑟 ⊗ 1⊗(𝑝
𝑛−𝑝))) = 𝜏𝑛(𝑚) ⋅ 𝜏𝑛(𝑟 ⊗ 1⊗(𝑝

𝑛−𝑝)) = (𝜎𝑛𝜏𝑛(𝑟 ⊗ 1⊗(𝑝
𝑛−𝑝))) ⋅ 𝜏𝑛(𝑚)

= (𝜏𝑛(𝜎1 ⨿ id𝑝𝑛−𝑝) ◦ (𝜎𝑛−1 × id𝑝)(𝑟 ⊗ 1⊗(𝑝
𝑛−𝑝))) ⋅ 𝜏𝑛(𝑚)

= (𝜏𝑛(1
⊗𝑝 ⊗ 𝑟 ⊗ 1⊗(𝑝

𝑛−2𝑝))) ⋅ 𝜏𝑛(𝑚)

= 𝜏𝑛((1
⊗𝑝 ⊗ 𝑟 ⊗ 1⊗(𝑝

𝑛−2𝑝)) ⋅𝑚).

Let us now show that 𝜙𝑛−1 and are congruent modulo the transfer map. Let 𝑥 =
∑
𝑎1 ⊗

⋯⊗ 𝑎𝑝𝑛−1 be an element of 𝑀⊗𝑝𝑛−1 , and such that . Then, in
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, we have that

𝜙𝑛−1(𝑥) =
∑

𝜏𝑛(𝜙(𝑎1) ⊗⋯⊗ 𝜙(𝑎𝑝𝑛−1)) =
∑

𝜏𝑛((𝑎
⊗𝑝
1

+ tr
𝐶𝑝
𝑒 𝑏1) ⊗⋯⊗ (𝑎

⊗𝑝

𝑝𝑛−1
+ tr

𝐶𝑝
𝑒 𝑏𝑝𝑛−1))

=
∑

𝜏𝑛(𝑎
⊗𝑝
1

⊗⋯⊗ 𝑎
⊗𝑝

𝑝𝑛−1
+

∑
∅≠𝑉⊂𝑝𝑛−1

𝑡𝑉1 ⊗⋯⊗ 𝑡𝑉
𝑝𝑛−1

)

=
∑

((𝑎1 ⊗⋯⊗ 𝑎𝑝𝑛−1)
⊗𝑝 +

∑
∅≠𝑉⊂𝑝𝑛−1

𝜏𝑛(𝑡
𝑉
1 ⊗⋯⊗ 𝑡𝑉

𝑝𝑛−1
)).

The inner sum runs through the non-empty subsets of the set with 𝑝𝑛−1 elements, where 𝑡𝑉
𝑗
=

tr
𝐶𝑝
𝑒 𝑏𝑗 if 𝑗 ∈ 𝑉, and 𝑡𝑉

𝑗
= 𝑎

⊗𝑝

𝑗
otherwise. Each of the terms of this sum contains at least one

transferred tensor factor, let us say for simplicity the first one. Then,

𝜏𝑛(𝑡
𝑉
1 ⊗⋯⊗ 𝑡𝑉

𝑝𝑛−1
) = 𝜏𝑛(tr

𝐶𝑝
𝑒 𝑏1 ⊗ 𝑡𝑉2 ⊗⋯⊗ 𝑡𝑉

𝑝𝑛−1
) = 𝜏𝑛((

∑
𝜎∈𝐶𝑝

𝜎(𝑏1)) ⊗ 𝑡𝑉2 ⊗⋯⊗ 𝑡𝑉
𝑝𝑛−1

)

=
∑
𝜎∈𝐶𝑝

𝜏𝑛(𝜎(𝑏1) ⊗ 𝑡𝑉2 ⊗⋯⊗ 𝑡𝑉
𝑝𝑛−1

)

=
∑
𝜎∈𝐶𝑝

𝜏𝑛(𝜎(𝑏1) ⊗ 𝜎(𝑡𝑉2 ) ⊗⋯⊗ 𝜎(𝑡𝑉
𝑝𝑛−1

))

=
∑
𝜎∈𝐶𝑝

(𝜎 × id𝑝𝑛−1)𝜏𝑛(𝑏1 ⊗ 𝑡𝑉2 ⊗⋯⊗ 𝑡𝑉
𝑝𝑛−1

)

= tr
𝐶𝑝
𝑒 𝜏𝑛(𝑏1 ⊗ 𝑡𝑉2 ⊗⋯⊗ 𝑡𝑉

𝑝𝑛−1
),

where the fourth equality holds because 𝑡𝑉
𝑗
is 𝐶𝑝-invariant for every 𝑗. It follows that

𝜙𝑛−1(𝑥) ≡
∑

(𝑎1 ⊗⋯⊗ 𝑎𝑝𝑛−1)
⊗𝑝 mod tr

𝐶𝑝
𝑒 .

Let us show that this is congruent to the 𝑝th tensor power of 𝑥 =
∑
𝑎1 ⊗⋯⊗ 𝑎𝑝𝑛−1 . By induc-

tion, we can assume that 𝑥 is the sum of two elementary tensors 𝑥 = 𝑎1 ⊗⋯⊗ 𝑎𝑝𝑛−1 + 𝑎
′
1
⊗⋯⊗

𝑎′
𝑝𝑛−1

, and

𝑥⊗𝑝 = (𝑎1 ⊗⋯⊗ 𝑎𝑝𝑛−1)
⊗𝑝 + (𝑎′1 ⊗⋯⊗ 𝑎′

𝑝𝑛−1
)⊗𝑝 +

∑
∅≠𝑈⊊𝑝

𝑠𝑈1 ⊗⋯⊗ 𝑠𝑈𝑝

= (𝑎1 ⊗⋯⊗ 𝑎𝑝𝑛−1)
⊗𝑝 + (𝑎′1 ⊗⋯⊗ 𝑎′

𝑝𝑛−1
)⊗𝑝 +

∑
{∅≠𝑈⊊𝑝}∕𝐶𝑝

tr
𝐶𝑝
𝑒 (𝑠𝑈1 ⊗⋯⊗ 𝑠𝑈𝑝 ),

where 𝑠𝑈
𝑗
= 𝑎1 ⊗⋯⊗ 𝑎𝑝𝑛−1 if 𝑗 ∈ 𝑈, and 𝑠𝑈

𝑗
= 𝑎′

1
⊗⋯⊗ 𝑎′

𝑝𝑛−1
otherwise. The last equality holds

because 𝑠𝑈
𝑗
is constant for different values of 𝑗 ∈ 𝑈, and 𝐶𝑝 acts on the proper non-empty subsets

of 𝑝 by cyclically permuting their elements. This concludes the proof that 𝜙𝑛−1 and (−)⊗𝑝 are
congruent modulo tr

𝐶𝑝
𝑒 .

Now let us show that 𝜙𝑛−1 is equivariant. By the relations of Lemma A.2,

𝜎𝑛𝜙𝑛−1 = 𝜎𝑛𝜏𝑛𝜙
⊗𝑝𝑛−1 = 𝜏𝑛(𝜎1 ⨿ id𝑝𝑛−𝑝) ◦ (𝜎𝑛−1 × id𝑝)𝜙

⊗𝑝𝑛−1
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WITT VECTORS WITH COEFFICIENTS AND TR 59 of 62

= 𝜏𝑛(𝜎1 ⨿ id𝑝𝑛−𝑝)𝜙
⊗𝑝𝑛−1𝜎𝑛−1

= 𝜏𝑛𝜙
⊗𝑝𝑛−1𝜎𝑛−1 = 𝜙𝑛−1𝜎𝑛−1.

The fourth equality holds since 𝜙 takes values in the invariants (𝑀⊗𝑝)𝐶𝑝 .
For the last statement, we calculate that on representatives

𝜙𝑘+𝑖(𝑚
⊗𝑝𝑘

𝑖
) = 𝜏𝑘+𝑖+1𝜙

⊗𝑝𝑘+𝑖 (𝑚
⊗𝑝𝑘

𝑖
) = 𝜏𝑘+𝑖+1((𝜙

⊗𝑝𝑖𝑚𝑖)
⊗𝑝𝑘 )

= (𝜏𝑘+1 × id𝑝𝑖 )((𝜏𝑖+1𝜙
⊗𝑝𝑖𝑚𝑖)

⊗𝑝𝑘 ) = (𝜏𝑘+1 × id𝑝𝑖 )((𝜙𝑖𝑚𝑖)
⊗𝑝𝑘 )

= (𝜔𝑘+1 × id𝑝𝑖 )((𝜙𝑖𝑚𝑖)
⊗𝑝𝑘 ) = (𝜔𝑘+1 × id𝑝𝑖 )(𝑚

⊗𝑝𝑘+1

𝑖
) + tr

𝐶
𝑝𝑘+1

𝑒

= 𝑚
⊗𝑝𝑘+1

𝑖
+ tr

𝐶
𝑝𝑘+1

𝑒 ,

where the fifth equality follows since 𝜏𝑘+1 = 𝜔𝑘+1(𝜔𝑘 × id𝑝), and (𝜙𝑖𝑎𝑖)⊗𝑝
𝑘 is invariant under the

action of Σ𝑝𝑘 . The sixth equality holds in𝑀⊗𝑝𝑘+𝑖+1 by the congruence of Proposition A.1, since 𝜙𝑖
is congruent to (−)⊗𝑝 modulo tr

𝐶𝑝
𝑒 as elements of𝑀⊗𝑝𝑖+1 . □

Theorem A.8 (Dwork Lemma). Let 𝑀 be an 𝑅-bimodule with an external Frobenius 𝜙∶ 𝑀 →

(𝑀⊗𝑝)𝐶𝑝 . A sequence (𝑏0, 𝑏1, … , 𝑏𝑛−1) of lies in the image of the ghost map

if and only if

𝜙𝑗(𝑏𝑗) ≡ 𝑏𝑗+1 mod tr
𝐶
𝑝𝑗+1

𝑒

for every 0 ⩽ 𝑗 < 𝑛 − 1, where the congruence is modulo the image of the additive transfer map
.

Proof. Let us start by showing that a sequence in the image of the relative ghost map satisfies
these congruences, that is, that

𝜙𝑗

(
𝑗∑
𝑖=0

tr
𝐶
𝑝𝑗

𝐶
𝑝𝑗−𝑖

(
𝑚
⊗𝑝𝑗−𝑖

𝑖

))
≡

𝑗+1∑
𝑖=0

tr
𝐶
𝑝𝑗+1

𝐶
𝑝𝑗+1−𝑖

(
𝑚
⊗𝑝𝑗+1−𝑖

𝑖

)
mod tr

𝐶
𝑝𝑗+1

𝑒 .

We observe that the (𝑗 + 1)st term of the sum on the right is in the image of tr
𝐶
𝑝𝑗+1

𝑒 , and thus, it is
sufficient to show that for every 0 ⩽ 𝑖 ⩽ 𝑗

𝜙𝑗

(
tr
𝐶
𝑝𝑗

𝐶
𝑝𝑗−𝑖

(
𝑚
⊗𝑝𝑗−𝑖

𝑖

))
≡ tr

𝐶
𝑝𝑗+1

𝐶
𝑝𝑗+1−𝑖

(
𝑚
⊗𝑝𝑗+1−𝑖

𝑖

)
mod tr

𝐶
𝑝𝑗+1

𝑒 .

We calculate the left-hand side

𝜙𝑗(tr
𝐶
𝑝𝑗

𝐶
𝑝𝑗−𝑖

(𝑚
⊗𝑝𝑗−𝑖

𝑖
)) = 𝜙𝑗

⎛⎜⎜⎝
∑

𝜎∈𝐶
𝑝𝑗
∕𝐶

𝑝𝑗−𝑖

𝜎
(
𝑚
⊗𝑝𝑗−𝑖

𝑖

)⎞⎟⎟⎠ =
𝑝𝑖∑
𝑙=1

𝜙𝑗

(
𝜎𝑙
𝑗

(
𝑚
⊗𝑝𝑗−𝑖

𝑖

))
=

𝑝𝑖∑
𝑙=1

𝜎𝑙
𝑗+1

𝜙𝑗

(
𝑚
⊗𝑝𝑗−𝑖

𝑖

)
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= tr
𝐶
𝑝𝑗+1

𝐶
𝑝𝑗+1−𝑖

𝜙𝑗

(
𝑚
⊗𝑝𝑗−𝑖

𝑖

)
= tr

𝐶
𝑝𝑗+1

𝐶
𝑝𝑗+1−𝑖

(
𝑚
⊗𝑝𝑗+1−𝑖

𝑖
+ tr

𝐶
𝑝𝑗−𝑖+1

𝑒 (𝑧𝑖,𝑗)

)
= tr

𝐶
𝑝𝑗+1

𝐶
𝑝𝑗+1−𝑖

(
𝑚
⊗𝑝𝑗+1−𝑖

𝑖

)
+ tr

𝐶
𝑝𝑗+1

𝑒 (𝑧𝑖,𝑗),

where the fifth equality is from Lemma A.6. Conversely, let (𝑏0, 𝑏1, … ) be a sequence which
satisfies the congruences of the statement, and suppose that we found 𝑎0, … , 𝑎𝑗 such that 𝑏𝑗 =
𝜔𝑗(𝑎0, … , 𝑎𝑗). Then

𝑏𝑗+1 = 𝜙𝑗(𝑏𝑗) + tr
𝐶
𝑝𝑗+1

𝑒 (𝑥) = 𝜙𝑗(𝜔𝑗(𝑎0, … , 𝑎𝑗)) + tr
𝐶
𝑝𝑗+1

𝑒 (𝑥)

= 𝜔𝑗+1(𝑎0, … , 𝑎𝑗, 0) + tr
𝐶
𝑝𝑗+1

𝑒 (𝑦) + tr
𝐶
𝑝𝑗+1

𝑒 (𝑥)

= 𝜔𝑗+1(𝑎0, … , 𝑎𝑗, 𝑦 + 𝑥).

□Corollary A.9. Let𝑀 be an 𝑅-bimodule with an external Frobenius 𝜙∶ 𝑀 → (𝑀⊗𝑝)𝐶𝑝 , such that
the transfer maps are injective (e.g. if (𝑅;𝑀) is a free bimodule). Then
there is a canonical isomorphism of abelian groups

with ghosts𝑤𝑗𝑓𝜙(𝑎0, … , 𝑎𝑛−1)=
𝑗∑
𝑖=0
tr
𝐶
𝑝𝑗

𝐶
𝑝𝑗−𝑖

𝜙𝑗−𝑖(𝑎𝑖), where .

Proof. The formula for𝑤𝑗𝑓𝜙 gives an additivemap . Since

tr
𝐶
𝑝𝑗

𝐶
𝑝𝑗−𝑖

𝜙𝑖(𝑎𝑖) = 𝜙𝑗−𝑖 tr
𝐶
𝑝𝑗−𝑖

𝑒 (𝑎𝑖), we see that

𝜙𝑗𝑓
𝑤
𝑗
= 𝜙𝑗(

𝑗∑
𝑖=0

tr
𝐶
𝑝𝑗

𝐶
𝑝𝑗−𝑖

𝜙𝑗−𝑖(𝑎𝑖)) = 𝑓𝑤
𝑗+1

− tr
𝐶
𝑝𝑗+1

𝑒 𝑎𝑗.

Thus, by the Dwork lemma, 𝑓𝑤 hits precisely the image of 𝑤. Since the transfers are injective the
ghost 𝑤 is injective and 𝑓𝑤 lifts to a surjection 𝑓𝜙 onto𝑊𝑛,𝑝(𝑅;𝑀). Again, since the transfers are
injective, it is easy to see inductively that 𝑓𝑤 is injective, and therefore so is 𝑓𝜙. □

Remark A.10. We observe that the maps 𝑓𝜙 are not natural with respect to morphisms of free
bimodules, as these are not necessarily compatible with the external Frobenius. They are, how-
ever, natural with respect to those morphisms of bimodules which are induced by a map of bases.
This is analogous to the tom-Dieck splitting, which is natural with respect to maps of spaces but
not with respect to all the maps of suspension spectra.

Lemma A.11. Let 𝜑∶ 𝑅 → (𝑅⊗𝑝)𝐶𝑝 be an external Frobenius on a ring 𝑅. Then, for every 𝑘 ⩾ 0

Φ ∶= 𝜑𝑘 = 𝜏𝑘+1𝜑
⊗𝑝𝑘 ∶ 𝑅⊗𝑝

𝑘
⟶ (𝑅⊗𝑝

𝑘+1
)𝐶𝑝

is an external Frobenius on the ring 𝑅⊗𝑝𝑘 , with higher Frobenius Φ𝑛 = 𝜑𝑘+𝑛.
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If𝑀 is an 𝑅-bimodule with an external Frobenius 𝜙∶ 𝑀 → (𝑀⊗𝑝)𝐶𝑝 and 𝑘 ⩾ 0, then

Φ ∶= 𝜙𝑘 = 𝜏𝑘+1𝜙
⊗𝑝𝑘 ∶ 𝑀⊗𝑝𝑘 ⟶ (𝑀⊗𝑝𝑘+1)𝐶𝑝

is an external Frobenius on the 𝑅⊗𝑝𝑘 -bimodule𝑀⊗𝑝𝑘 , with higher Frobenius Φ𝑛 = 𝜙𝑘+𝑛. Moreover,
this descends to an external Frobenius

on the 𝑅-bimodule .

Proof. We start by proving the claim for the Frobenius of 𝑅⊗𝑝𝑘 . Since 𝜑𝑘𝜎𝑘 = 𝜎𝑘+1𝜑𝑘, we have
that Φ = 𝜑𝑘 lands in the 𝐶𝑝-fixed points, since the generator of 𝐶𝑝 ⊂ 𝐶𝑝𝑘+1 acts by

𝜎
𝑝𝑘

𝑘+1
Φ = Φ𝜎

𝑝𝑘

𝑘
= Φ.

Moreover, by Lemma A.6, Φ is congruent to the 𝑝th power map modulo tr
𝐶𝑝
𝑒 . Next, we determine

the higher Frobenius:

Φ𝑛 = (𝜏𝑛+1 × id𝑝)Φ
⊗𝑝𝑛 = (𝜏𝑛+1 × id𝑝)(𝜏𝑘+1𝜑

⊗𝑝𝑘 )⊗𝑝
𝑛
= (𝜏𝑛+1 × id𝑝𝑘 )(id𝑝𝑛 ×𝜏𝑘+1)𝜑

⊗𝑝𝑛+𝑘

= 𝜏𝑛+𝑘+1𝜑
⊗𝑝𝑛+𝑘 = 𝜑𝑛+𝑘.

The claim for 𝑀⊗𝑝𝑘 is completely analogous, by remarking that 𝜙𝑘 is indeed a map of 𝑅⊗𝑝
𝑘 -

bimodules. As for , the proof that 𝜏𝑘+1𝜙⊗𝑝
𝑘 is welldefined is analogous to the first argument

of the proof of Lemma A.6. It remains to verify that it is a map of 𝑅-bimodules. By definition,

𝜏𝑘+1𝜙
⊗𝑝𝑘 (𝑟 ⋅𝑚1 ⊗⋯⊗𝑚𝑝𝑘) = 𝜏𝑘+1(𝜙(𝑟 ⋅𝑚1) ⊗⋯⊗ 𝜙(𝑚𝑝𝑘))

= 𝜏𝑘+1((𝜑(𝑟) ⋅ 𝜙(𝑚1)) ⊗⋯⊗ 𝜙(𝑚𝑝𝑘))

= 𝜏𝑘+1((𝜑(𝑟) ⊗ 1 ⊗⋯⊗ 1) ⋅ 𝜙⊗𝑝
𝑘
(𝑚1 ⊗⋯⊗𝑚𝑝𝑘))

= 𝜏𝑘+1((𝜑(𝑟) ⊗ 1 ⊗⋯⊗ 1)) ⋅ 𝜏𝑘+1𝜙
⊗𝑝𝑘 (𝑚1 ⊗⋯⊗𝑚𝑝𝑘),

and the action of 𝑟 of the left 𝑅-module structure on induced by 𝜑∶ 𝑅 → (𝑅⊗𝑝)𝐶𝑝

is precisely multiplication by 𝜏𝑘+1((𝜑(𝑟) ⊗ 1 ⊗⋯⊗ 1)). □

ACKNOWLEDGEMENTS
The authors would like to thank Jonas McCandless and Christian Wimmer for helpful
conversations.
The first and fourth authors were supported by theGermanResearch Foundation Schwerpunk-

tprogramm 1786. The first author was also supported by the EPSRC grant EP/W019620/1. The
second and third authors were funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project-ID 427320536–SFB 1442, as well as under Germany’s Excellence
Strategy EXC 2044 390685587, Mathematics Münster: Dynamics-Geometry-Structure.
For the purpose of open access, the authors have applied a Creative Commons Attribution (CC-

BY) licence to any Author Accepted Manuscript version arising from this submission.

 1460244x, 2025, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70047 by T

est, W
iley O

nline L
ibrary on [07/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



62 of 62 DOTTO et al.

JOURNAL INFORMATION
The Proceedings of the LondonMathematical Society is wholly owned andmanaged by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

ORCID
Irakli Patchkoria https://orcid.org/0000-0001-9990-2474

REFERENCES
1. V. Angeltveit, The normmap ofWitt vectors, C. R. Math. Acad. Sci. Paris 353 (2015), no. 5, 381–386. MR 3334988
2. A. J. Blumberg, T. Gerhardt, M. A. Hill, and T. Lawson, The Witt vectors for Green functors, J. Algebra 537

(2019), 197–244. MR 3990042
3. A. J. Blumberg and M. A. Mandell, The homotopy theory of cyclotomic spectra, Geom. Topol. 19 (2015), no. 6,

3105–3147. MR 3447100
4. M. Bökstedt, W. C. Hsiang, and I. Madsen, The cyclotomic trace and algebraic𝐾-theory of spaces, Invent. Math.

111 (1993), no. 3, 465–539. MR 1202133 (94g:55011)
5. M. Brun,Witt vectors and Tambara functors, Adv. Math. 193 (2005), no. 2, 233–256. MR 2136887
6. P. Cartier, Groupes formels associés aux anneaux de Witt généralisés, C. R. Acad. Sci. Paris Sér. A-B 265 (1967),

A49–A52. MR 218361
7. E. Dotto, A. Krause, T. Nikolaus, and I. Patchkoria,Witt vectors with coefficients and characteristic polynomials

over non-commutative rings, Compos. Math. 158 (2022), no. 2, 366–408. MR 4413749
8. E. Dotto, K. Moi, I. Patchkoria, and S. P. Reeh, Real topological Hochschild homology, J. Eur. Math. Soc. (JEMS)

23 (2021), no. 1, 63–152. MR 4186464
9. L. Hesselholt,Witt vectors of non-commutative rings and topological cyclic homology, ActaMath. 178 (1997), no.

1, 109–141. MR 1448712
10. L. Hesselholt, Correction to: “Witt vectors of non-commutative rings and topological cyclic homology” [Acta

Math. 178 (1997), no. 1, 109–141; mr1448712], Acta Math. 195 (2005), 55–60. MR 2233685
11. L. Hesselholt, The big de Rham-Witt complex, Acta Math. 214 (2015), no. 1, 135–207. MR 3316757
12. L. Hesselholt and I. Madsen, On the 𝐾-theory of finite algebras over Witt vectors of perfect fields, Topology 36

(1997), no. 1, 29–101. MR 1410465 (97i:19002)
13. M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann.

of Math. (2) 184 (2016), no. 1, 1–262. MR 3505179
14. M. A. Hill and K. Mazur, An equivariant tensor product on Mackey functors, J. Pure Appl. Algebra 223 (2019),

no. 12, 5310–5345. MR 3975068
15. D. Kaledin,Witt vectors as a polynomial functor, Selecta Math. (N.S.) 24 (2018), no. 1, 359–402. MR 3769733
16. D. Kaledin, Witt vectors, commutative and non-commutative, Uspekhi Mat. Nauk 73 (2018), no. 1(439), 3–34.

MR 3749617
17. A. Krause, J. McCandless, and T. Nikolaus, Polygonic spectra and TR with coefficients, arxiv: 2302.07686, 2023.
18. A. Lindenstrauss and R. McCarthy, On the Taylor tower of relative 𝐾-theory, Geom. Topol. 16 (2012), no. 2,

685–750. MR 2928981
19. T. Nikolaus and P. Scholze, On topological cyclic homology, Acta Math. 221 (2018), no. 2, 203–409. MR 3904731
20. T. Read, G-typical witt vectors with coefficients and the norm, arXiv:2305.20064, 2023.
21. M. Stolz,Equivariant structure on smash powers of commutative ring spectra, Ph.D. thesis, University of Bergen,

2011.
22. D. Tambara, On multiplicative transfer, Comm. Algebra 21 (1993), no. 4, 1393–1420. MR 1209937
23. J. Ullman, Tambara functors and commutative ring spectra, arXiv:1304.4912, 2013.
24. E. Witt, Zyklische Körper und Algebren der Charakteristik 𝑝 vom Grad 𝑝𝑛 . Struktur diskret bewerteter perfekter

Körper mit vollkommenem Restklassenkörper der Charakteristik 𝑝, J. Reine Angew. Math. 176 (1937), 126–140.
MR 1581526

 1460244x, 2025, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70047 by T

est, W
iley O

nline L
ibrary on [07/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-9990-2474
https://orcid.org/0000-0001-9990-2474

	Witt vectors with coefficients and TR
	Abstract
	INTRODUCTION
	1 | THE -TYPICAL WITT VECTORS WITH COEFFICIENTS
	1.1 | The -typical Witt vectors with coefficients in Witt coordinates
	1.2 | -typical operators
	1.3 | The comparison with Kaledin’s polynomial Witt vectors

	2 | WITT VECTORS WITH COEFFICIENTS IN HOMOTOPY THEORY
	2.1 | Witt vectors with coefficients and TR with coefficients
	2.2 | The Mackey structure on the components of TR
	2.3 | Free Tambara functors and Witt vectors

	APPENDIX: THE DWORK LEMMA
	A.1 | Congruences of tensor -powers
	A.2 | External Frobenius and the Dwork Lemma

	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	ORCID
	REFERENCES


