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Abstract

We give a new construction of p-typical Witt vectors with
coefficients in terms of ghost maps and show that this
construction is isomorphic to the one defined in terms
of formal power series from the authors’ previous paper.
We show that our construction recovers Kaledin’s poly-
nomial Witt vectors in the case of vector spaces over
a perfect field of characteristic p. We then identify the
components of the p-typical TR with coefficients, origi-
nally defined by Lindenstrauss and McCarthy and later
reworked by the second and third authors in joint work
with McCandless, with the p-typical Witt vectors with
coefficients. This extends a celebrated result of Hessel-
holt and Hesselholt-Madsen relating the components
of TR with the Witt vectors. As an application, we give
an algebraic description of the components of the Hill-
Hopkins-Ravenel norm for cyclic p-groups in terms of
p-typical Witt vectors with coefficients.
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INTRODUCTION

In the paper [7], we define the Witt vectors W(R; M) of a ring R with coefficients in an R-bimodule
M. This construction extends the usual big Witt vectors of a commutative ring, recovering it in the
casewhere M = R. Our approach is analogous to the construction of Witt vectors of a commutative
ring in terms of power series (see, e.g. [6]), by replacing it with the completed tensor algebra. In
the present paper, we give an alternative description of the p-typical Witt vectors with coefficients
which aligns with the original construction of Witt [24] based on Witt polynomials. In particular,
we show that for M = R, our construction recovers Hesselholt’s definition of p-typical Witt vectors
for non-commutative rings of [9]. We also compare our construction to Kaledin’s definition of
polynomial Witt vectors from [15], as well as describing the components of topological restriction
homology TR with coefficients as defined in [18] and [17], and, in particular, of the Hill-Hopkins—
Ravenel norm for cyclic p-groups, in terms of p-typical Witt vectors.

Let us fix a prime p. The Witt polynomials are the n-variable polynomials w; € Z[ay, ..., a,_;],
defined for0 < j < n as

w; = aé)] +pafH +p2af]7 + o +pj—1a3’.’_1 +pla;.
The ring of n-truncated p-typical Witt vectors W, (A) of acommutative ring A can be characterised
as the unique ring structure on the set A*" which is functorial in A and with the property that the
‘ghost maps’ w; : A" — A defined by the Witt polynomials are ring homomorphisms for every
0 < j < n. Given any ring R and R-bimodule M, let us define a variant of these ghost maps, by
formally replacing the pth powers in the ghost map with tensor powers of M. For a bimodule M
over a ring R, we define an R-bimodule )f®P' and an abelian group M®P’, respectively, by

M® =M@y M®g-- @M and MO =M% /[R,M®"],

p!
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where [R, M ?Pj] is the abelian subgroup generated by the elements rm — mr for r € R and
m € M%P'. We think of M®P' as p/ copies of M tensored together around a circle, and these define
an abelian group with a natural action of the cyclic group C,,;. We then define an analogue of the
jth ghost map

n—1
wy: [[M® — M),
i=0

by sending a sequence a, a,, ..., a,_; to the invariant represented by

._ ®pl ®p/! ®pi—2
wi(ag, ay, .., a,_1) 1=0a; + Z cr(ot1 + Z ola, +
CTECP_)' /Cp_)',1 O'ECP_)' /CP_)',Z

+ ) a(ay),

UEij

where g : M®' — MOP' is the automorphism given by the cyclic action. Here, we write a;.g’p "

also for the corresponding equivalence class in the cyclic tensor product. We then define an equiv-
-1 i

alence relation on Hinzo MEP by forcing the ghost map to be injective on free bimodules (see

Definition 1.3), and define the p-typical Witt vectors, as a set, as the quotient
n—1 )
W p(R; M) = <H M%P’> /~
i=0

by this relation. This situation is analogous to the Witt vectors for non-commutative rings W, (R)
of [9], which as a set is a certain quotient of the product H?:_Ol R. The following is the main result
of §1.1.

Theorem A. Let p be a prime, n > 1 an integer, R a ring and M an R-bimodule. There is a
unique abelian group structure and lax symmetric monoidal structure on W, ,(R; M) such that w;
is additive and monoidal for all 0 < j < n, and a natural monoidal isomorphism of abelian groups
Wn,p(R;M) = W<pn—1>(R;M),
where W n-1y(R; M) is the group of p-typical (n — 1)-truncated Witt vectors of [7].
When M = R with the canonical R-bimodule structure, there is a natural isomorphism of

abelian groups between W, ,(R; R) and Hesselholt’s group of p-typical n-truncated Witt vectors
of non-commutative rings of [9] (see Corollary 1.7). This follows from the fact that

(R®”Y ~ R/[R,R],

and under this isomorphism, the ghost maps are given by the usual Witt polynomials. As an
immediate consequence of the symmetric monoidal structure, W, , extends to a functor from the

35UBD 1T SUOWILLIOD aAIEaID a(qedl|dde ay) Aq pausonoh are sajoite YO ‘8sn Jo sajni 10} ARid 1T aUlUQ /81N UO (SUO 1 PUOD-PUR-SWLB)/W0D" A3 | IM"Aleld 1 )pU I JUO//SANY) SUOPUOD PUe SWS | L) 89S *[G202/80/.0] Uo ARldiTauluQ AB|IM ‘891 Aq 200, SW|d/ZTTT OT/I0P/W0D AS 1M Afeiq 1 U1 JUO"D0SURLIPUO|//:SANY WO papeoumod 'S ‘G202 ‘X209t T
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category of algebras over commutative rings to rings, which sends commutative algebras to com-
mutative rings. In particular, when R is commutative the isomorphism above identifies W), ,(R; R)
with the usual ring of Witt vectors.

The groups W, ,(R; M) also extend Kaledin’s construction of polynomial Witt vectors from [15]
and [16], as follows. We let Q,,(R; M) be the abelian group defined as the cofibre of the transfer
map

Q,(R;M) := coker(treC”" = Z o: (M?pn)cpn — (MRP")Cr).

0€Cn

Kaledin defines in [15] and [16] a functor Wn of ‘polynomial Witt vectors’ on the category of vector
spaces over a perfect field k of characteristic p, in terms of the functor Q,,. The following theorem,
proved in §1.3, provides a similar description for W, ,, showing that W, , restricts to Kaledin’s
construction on the subcategory of k-vectors spaces.

n,p’

Theorem B. For every prime p and integer n > 1, there is a surjective lax symmetric monoidal
natural transformation

Wy - Wn,p(R/p;M/p) — Q(R; M).

It is an isomorphism when R is a commutative ring with no p-power torsion, R/ p is perfect and M
is a free R-module. It follows that W, ,(k; V') is isomorphic to the polynomial Witt vectors W, (V) of
[15] for every k-vector space V and perfect field k of characteristic p.

When M = R, the isomorphism of the theorem recovers the fact that if R has no p-power torsion
and is commutative, with perfect R/p, then W,(R/p) = R/p".

In homotopy theory, the ring of Witt vectors arises when one considers the cyclotomic struc-
ture on topological Hochschild homology. Hesselholt and Madsen show in [12] and [9] that the
p-typical Witt vectors of a ring R are isomorphic to 7, of the p-typical topological restriction
homology spectrum TR(R). In [18], Lindenstrauss and McCarthy define a version of TR with
coefficients in an R-bimodule, as the derived cyclic invariants

TR () (R M) = (MP")°r

of a genuine C.-spectrum M®P", which is the derived analogue of the algebraic cyclic tensor
product used in the definition of the Witt vectors. The foundations of this theory have been
reworked in [17] by McCandless and the second and third authors, in a way analogous to the
approach to topological cyclic homology of [19]. In particular, for every prime p and integer n > 0,
the authors give a description of TR as an equaliser

TR (pr) (R: M) = g ( T THH(R: MM — T[[Z, (THHR; M0y r) ) ,

where THH(R; M) is the usual topological Hochschild homology spectrum with coefficients, and
THH(R; M®P") carries a certain action of the cyclic group Cpi. The maps of the equaliser are
defined from the canonical map from homotopy fixed points to the Tate construction, and from
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certain Frobenius maps THH(R; M) — THH(R; M #P)» (see §2). From this equaliser formula,
one can easily deduce, for every spectrum A, an equivalence

C.n
TR,y (S; A) = (N, ”" A)°r"

with the genuine fixed points of the norm construction of cyclic p-groups of Stolz [21] and Hill-
Hopkins—Ravenel [13]. The components of this norm have been computed by Mazur when A =
HF, (see [2, Proposition 5.23]), and for p = 2 and n = 1in [8, Proposition 5.5]. In Theorem 2.5, we
extend this calculation to all connective bimodules, showing the following:

Theorem C. Let R be a connective ring spectrum and M a connective R-bimodule. There is a
canonical isomorphism

W pny (o R; M) = 75 TR (pny (R; M),

which is, moreover, natural in (R; M) and monoidal. In particular, for every connective spec-
c

trum A, this gives an isomorphism W ,n\(Z; yA) = 7y(N, " A)Cr" with the components of the

Hill-Hopkins—Ravenel norm construction, which is a ring isomorphism when A is a ring spectrum.

The proof of this theorem is somewhat similar to Hesselholt and Madsen’s proof of the isomor-
phism between the usual p-typical Witt vectors W, ,(A) and the components of the C,.-fixed
points of THH(A), for a commutative ring A. The argument is by induction, by comparing cer-
tain fibre sequences for TR established in [17] with the exact sequences for the Witt vectors from
[7, §1.5]. A similar description of the components of the norm for any finite group G has been
obtained by Read in [20], with a variation of our Witt vectors construction.

By a result of [17], the spectrum TR,k (R; M AxP"Y is the Cx-fixed-points of a genuine C -
spectrum B<p,,>(R;M ), for every 0 < k < n. For example, when R is the sphere spectrum, this is
the cyclic norm construction

. _ nCpn
B<pn>(§,A)—Ne A

for every spectrum A. In Proposition 2.13, we identify the Mackey structure on HOB< pn>(R;M )
in terms of the Witt vectors operators introduced in [7] and in §1.2. The characterisation of this
Mackey structure suggests a relationship between the Witt vectors with coefficients and the free
Tambara functor on a commutative ring. In [5, Theorem B], Brun describes the free C D -Tambara
functor on a commutative ring with trivial C .-action in terms of the usual ring of Witt vectors
W,,1(A). In §2.3, we show that the Witt vectors with coefficients, in fact, compute the free Cpn-
Tambara functor on every commutative ring.

Corollary D. Let A be a commutative ring, p a prime and n > 0 an integer. The association C i

Wi n1(Z; A®p"_i) equipped with the operators F, V and N of §1.2 form a C ,»-Tambara functor, which
is the free C ,n-Tambara functor on the commutative ring A.

1 | THE p-TYPICAL WITT VECTORS WITH COEFFICIENTS

In [7], we defined the Witt vectors with coefficients in a way analogous to the definition of the
(big) Witt vectors of a commutative ring in terms of power series [6]. In this section, we give an
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alternative description of the p-typical Witt vectors with coefficients, more in line with the usual
construction of p-typical Witt vectors for commutative rings of [24].

We start by recalling the definition of Witt vectors with coefficients of [7]. Let R be a ring and
M an R-bimodule. We let T(R; M) = ano M®r" be the completed tensor algebra, and S(R;M) =
Ix [l M ®r" c T(R; M) the multiplicative subgroup of special units. We denote the elements
of this group by power series

1+ myt + myt? + -

withm; € M®ri andwelett: M — §(R; M) be the map that sends m to the power series 1 — mt.
The (big) Witt vectors of R with coefficients in M are defined in [7] as the group

S(R; M)2b

WD = oy~ <y

where the relation runs over all m € M and r € R, and the abelianisation and the quotient are
taken in Hausdorff topological groups, that is, we quotient by the closure of the normal subgroup
generated by the relations.

Given a truncation set S C N, one can define the S-truncated Witt-vectors as a quotient of
W(R; M). In the present papers, we will be interested in the truncation sets consisting of the
powers of a prime, and in this case, the truncated Witt vectors are defined as follows.

Definition 1.1 [7]. Let p be a prime and n > 0 an integer. The p-typical (n + 1)-truncated Witt
vectors of R with coefficients in M is the abelian group W ,»(R; M) defined as the quotient of
W (R; M) by the closed subgroup generated by the elements of the form

1-m ® - ® mtk,
where k & {1, p, p*, ..., p"}and my, ...,m; € M.

The truncated Witt vectors have operators analogous to those of the usual Witt vectors, which
will play a crucial role in the rest of the paper. The functor W ,»y from the category biMod of pairs
(R; M) has a lax symmetric monoidal structure [7, Proposition 1.27]. The operators are defined in
[7, §1.3,1.5], and in the truncated case above, they take the form of natural transformations

F=F,: WinRM) — W1, (R; MEP) V=V, Wy (R MEP) — W, (R M)
R: W<pn>(R,M) —> W<pn—1>(R,M) T=7T;: M — W(pn>(R,M)

o. W<pn)(R;M®Rk) — W<pn>(R;M®Rk).

The maps F and R are, respectively, called the Frobenius and restriction map, and they are
monoidal. The map V is called the Verschiebung, and it is additive, whereas 7 is called the Teich-
miiller map and it is monoidal (with respect to the tensor product over Z on the source). The map
o is an automorphism of order k, which we call the Weyl action of C,.. These maps satisfy certain
relations which are detailed in [7, Proposition 1.31].
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1.1 | The p-typical Witt vectors with coefficients in Witt coordinates

In this section, we will give a description for W, (R; M) in terms of sequences of p-powers of
M, which is more in line with the classical definition of the p-typical Witt vectors (see, e.g. [24]),
as well as Hesselholt’s construction of p-typical Witt vectors for non-commutative rings. Let us
define a map
n .
v | [M® — Wi R;M)
i=0

by sending a sequence (m, my, ..., m,) to the equivalence class of [ (1 — ml-tpi), where the
product is taken in the completed tensor algebra (see, e.g. [11, Prop 1.14] for the case M =R
commutative but notice the different sign convention).

In order to analyse this map, we make use of a version with coefficients of the ghost map. The
cyclic tensor power of M is defined for every j > 0 as the abelian group

M = ME' /[R, M%),

where [R,M‘%?Pj] is the abelian subgroup generated by the elements rm — mr for r € R and
m e M®P'. The cyclic group C,; of order p’ acts on this abelian group by cyclically permuting

the tensor factors, and for all | < j, we write (M op )¢ for the subgroup of invariants of a cyclic
subgroup C,; < Cp;. The transfer maps for this cyclic action are denoted by

tre o (MRP)S — (MRP)°P.
P

We also let (+)®P" be the composite

i+k

(" 1 M — (PP = (MRPT)

where the first map sends x to the class of x®P" in the cyclic tensor product, and the isomorphism
is induced by the canonical associativity isomorphism of the monoidal structure on R-bimodules.

Definition 1.2. The jth p-typical ghost map is the map w; : Hl.nzo M®P - (MOP')V defined by
L Cpi ®p/T
wj(mo, ., my) i= Z tGCj,,- (ml. ),
i=0

for every 0 < j < n + 1. The product of thesemaps w : []i_, M e H:.lzo(M ©r'\C)i is called the
p-typical ghost map.

‘We observe that for M = R, there are canonical isomorphisms of abelian groups R§Pj ~ R and
(R®P)» =~ R/[R;R], and w ; corresponds to the usual Witt polynomial
S j—i
W;(Fgs s Ty) = Zplrl.p )
i=0
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‘We recall that Hesselholt’s definition of the p-typical Witt vectors of a non-commutative ring R
of [9] is a complicated quotient of the product of copies of R. Thus, if we want our construction to
specialise to hiswhen M = R, we need to define an equivalence relation on H?:o M®P, Informally,
we define the smallest equivalence relation which makes the ghost map injective when (R; M) is
free, and such that the resulting functor commutes with reflexive co-equalisers of bimodules.

We let biMod be the category of bimodules, whose objects are pairs (R; M) of a ring R and
an R-bimodule M, and a morphism (R; M) — (R’; M') is a pair (a; f) of a ring homomorphism
a: R - R’ and a map of R-bimodules f : M — a*M’. Clearly, the tensor power and cyclic tensor
powers introduced above are functors on the category biMod by applying the map f factorwise on
elementary tensors, and we will often drop a from the notation and denote a morphism only by
f: M — M’. We say that a bimodule (R; M) is free if R is a free ring (that is a free associative Z-
algebra) and M is a free R-bimodule. A free resolution of (R; M) is a reflexive co-equaliser diagram

—__  f
@@%@@émm

in the category biMod, where (S; Q) and (S; Q) are free. For more details on free resolutions in
biMod, we refer to [7, §1.1], and we recall in particular that reflexive co-equalisers in biMod are
computed on the underlying pairs of sets.

——  f
Definition 1.3. Let M be an R-bimodule and (S; Q) = (S; Q) —» (R; M) a free resolution. We let
g

R be the equivalence relation on H:l:_ol M generated by

there exist ¢ and w in ], Q%" and z in [] |, Q®"' such that:
a~be e*q=aande*u=binH::01M§p',
. -1 j ;
w(g) = w(f,(2)) and w(w) = w(g.(2)) in [T)_) Q") .

We denote the orbits of this relation by y, SR M) 1= (1‘[:’__01 M§P5) /R

Proposition 1.4. The equivalence relation R is independent of the choice of free resolution. Every
bimodule homomorphism f : M — M’ induces a map

foi Wy py(RsM) — W, ,(R'; M)
defined as the quotient of the product map H;:ol f ®rp', makingW, ,: biMod — Set into a functor.

This functor commutes with reflexive co-equalisers, and, in particular, a free resolution of (R; M)
induces a reflexive co-equaliser of sets

Wn,p(g; 6) E Wn,p(S; Q) — Wn,p(R;M) .

The ghost map w descends to a natural transformationw : W, ,(R; M) — H']:; M or’ Yol which is
injective when (R; M) is free.
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WITT VECTORS WITH COEFFICIENTS AND TR | 9 of 62

Proof. Let (S;Q) & (S;Q) —» (R; M) and (S"; Q') = (8'; Q") — (R; M) be two free resolutions of
(R; M). We claim that there are vertical arrows

R v
(8:Q) —=(8:Q) ——» (R M)
8

| b

A
(S;Q) ?i (8;Q) ——» (R; M)

such that hf’ = fk, hg' = gk and eh = ¢’. By applying the functor Hir:ol (=)®” to this diagram,
this immediately implies that the equivalence relation induced by the first resolution is coarser
than the second. By reversing the roles of the resolutions, the two relations are equal. Let us write
(S";Q") = F(X,Y) as the free bimodule generated by a pair of sets (X,Y). That is, S’ = z{X} is
the free ring on X and Q' = (Z{X} ® Z{X}°P)(Y) is the free S’-bimodule on Y. We define A as the
adjoint of the map of pairs of sets

h: (X.Y) = (UR.UM) —= (US.UQ).

where ¢ is a section for the map Ue in the category Set X Set. In order to define k, let us write
(?; a) = F(Z,W) for some sets (Z, W), and define the adjoint map k: (Z,W) — U(S; Q) on
a pair of elements (z, w) as follows. Since f, g and their common section are additive (both on
bimodules and underlying rings), the relation on Q

q ~ ¢ ifthereis g € Q such that f(g) = gand ¢(q) = ¢’

whose quotient is M is already an equivalence relation, and similarly for the ring components.
Since ehf’(z,w) = ehg’'(z,w) and (R; M) is the co-equaliser of the second resolution, there
is an element (5,9) € (S;Q) such that f(5,q) = hf’(z,w) and ¢(5,q) = hg'(z, w), and we set
k(z,w) := (s,q). By construction, the diagram above commutes, and this concludes the proof
of the independence on the free resolution.

Every bimodule (R; M) has a canonical free resolution provided by the free-forgetful adjunction
to Set X Set, given by

FUFU(R; M) = FU(R; M) —» (R; M)

(see [7, §1.1]), which is functorial in (R; M). Using this resolution to compute the quotient, it is
immediate to verify that the tensor power of a morphism is well defined on the quotient, and
therefore, that W, , is a functor. If (R; M) is free, by computing the quotient using the constant
resolution, we see that W), ,(R; M) is exactly the quotient of the product which makes the ghost
map injective. It follows that the w; are well-defined maps out of W, , (R; M) for free (R; M), and
that they define a natural transformations on free modules.

Let us show that W, p of a free resolution is a reflexive co-equaliser. This will, in particular,
imply that w; descends to a well-defined natural transformation on W, p(R;M ) for all (R; M).

Given a general free resolution as above, we choose a common section s : S — S, and we regard
Q as an S-bimodule via this map. Since reflexive co-equalisers commute with tensor powers and
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with products of S-bimodules, we obtain a reflexive co-equaliser of abelian groups
n—1-—<gpn n—1 i n—1 i n—1 i
[T, Q¥ == TI,, Q¥* # [limg M®P =TI, ME"

where M is regarded as an S-bimodule via the surjection S — R. Since G?Pi — Q®F is surjective,
the diagram

n—-1-—=<ni n—1 i n—-1 i
Hi=() Q®p S Hi=o Q@p — Hi:() M§p

is also a co-equaliser of abelian groups, and therefore of sets. By modding out the relation which
makes the ghost map injective from the first two sets, we obtain a commutative diagram

—1 —on i -1 i -1 i
H?:o Q%r = Hin=o Q¥ —» H?:o MR

" | |

Wn,p(g; 6) = Wn,p(S; Q) —»C

where C is the co-equaliser of the bottom row. By definition, W, ,(R;M) is the quotient

of H::()l MeY by the equivalence relation which makes the right vertical map injective, and
thus bijective.

Now let (T; P) & (S; N) —» (R; M) be a reflexive co-equaliser. By applying the functorial free
resolution given by the free forgetful adjunction, we obtain a commutative diagram

FUFU(T;P) == FUFU(S;N) —» FUFU(R; M)

Il Il 1l

FU(T;P) == FU(S;N) ———» FU(R; M)

l | |

(T;P) (S;N) (R; M)

Since reflexive co-equalisers of bimodules are computed on underlying sets, FU commutes with
reflexive co-equalisers, hence the rows of this diagrams are reflexive co-equalisers. By applying
W, p» We obtain a diagram where all the columns and the upper two rows are co-equalisers, by
the previous argument. Since colimits commute with each other, the bottom row must also be a

co-equaliser, concluding the proof. O

Example 1.5.

L. If (R; M) is free, W, p(R; M) is the quotient of H:Ol ME” by the smallest equivalence relation
that makes w into an injective map.

2. If R is a commutative ring and M = R, we have that as sets W, p(R;R) = R*X"_If R has no
p-torsion, this is because the ghost map

n—1 ) n—1 )
w: R = [[R® — [[®®*H = R,
i=0 i=0
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which is given by the usual Witt polynomials, is already injective. In general, one can resolve
(R; R) by the bimodules (Z[R]; Z[R]) and (Z[Z[R]]; Z[Z[R]]) given by the free commutative
rings. Thus, the isomorphism with the product in the free case induces an isomorphism on the
co-equaliser W, ,(R;R) = R*".

3. The Oth ghost map induces a natural bijection W, ,(R;M) = M/[R, M]. This is clear when
(R; M) is free, and, in general, it is the case since both W, ,(R; M) and M /[R, M] commute
with reflexive co-equalisers.

4. When R is a commutative ring and M is an R-module, we will see in Proposition 1.9 below that
there is a natural bijection

Wi (R M) 2 M X (M$P)c, .

5. If R is commutative and torsion-free, and M is a free R-module, there is a canonical bijection

n—1

W p (R M) = [JMEP)c,,
i=0

but, in general, the higher truncations W, ,(R;M) are difficult to describe as sets (cf.
Proposition 1.16).

Before stating the main theorem of this section, we recall that the category biMod has a sym-
metric monoidal structure, defined by the componentwise tensor product over Z. We endow
the functors pf®P’ from biMod to Cpj-equivariant abelian groups with the canonical monoidal
structure

MO @ N®' ~ (M @ NS

defined from the shuffle permutations, and their fixed points with the canonical induced lax-
monoidal structure.

Theorem 1.6. The map y that sends (my, my, ..., my,) to the equivalence class of [_,(1 — mitpi)

descends to a bijectiony : W, 4 ,(R; M) =, W pny(R; M) for every integer n > 0 and any prime p.
The diagram

W15 (R M) Wy (R; M)

\ t10g<p,,>

H7=0(M (l?pj )C”j

|~

commutes, where tlog ., is the logarithmic derivative of [7, Propositions 1.18 and 1.41]. The abelian
group structure and the lax symmetric monoidal structure on W, ., , which correspond to those of
W pny are the unique ones such that the ghost maps w; : Wy ,(R; M) = (M ?pj)cﬂf are additive
symmetric monoidal transformations forall0 < j <n + 1.
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Proof. Firstly, we show that y : H?:o Me W pm(R; M) is surjective. Any power series 1 +
Y1 a, t* representing an element of W(R; M) can be written uniquely as

1+ ) qtt = H(l—bt)

k>1

in the completed tensor algebra, with b, € M®&!, Thus, any element x of the quotient W pny(R; M)

can be represented by an element of the form [] (1 - cl-tP ) with ¢; e M ®rP'| that is,
y(cy, ---»€,) = X, which proves that y is surjective.

Now let us show that y descends to a well-defined isomorphism. Let us first assume that (R; M)
is free. In this case, W, ;| p(R; M) is the quotient of H?:o MOP by the relation that makes the ghost
map injective. The ghost map factors as

w: HM®P L W (R; M) 2o, H(M@P) o,
i=0

since tlog,ny (1 — mtP') = trfpl mtP' + trgim mftpi+1 + -, so that the coefficient of P’ in
tlog<pn> y(m,, ..., m,) is given by wj(mo,...,mn). Thus, y descends to a well-defined injection
w, +1’p(R;M ) > W<pn>(R; M). 1t is therefore an isomorphism, and the diagram of 1.6 commutes.
In general, we choose a free resolution of (R; M). Since y is an isomorphism for the free
resolution, it induces an isomorphism on the co-equalisersy : W, ;. p(R; M) - W, pn>(R; M).
The ghost maps w; are additive and symmetric monoidal because tlog ) is, by [7]. To see that
the additive structure and the symmetric monoidal structure are unique with this property, it is
sufficient to see this on the subcategory of free bimodules since W, , commutes with reflexive
co-equalisers. In this case, the uniqueness follows by the injectivity of the ghost map. O

Corollary 1.7. For every ring R, the abelian group W, (R; R) is isomorphic to the p-typical (n + 1)-
truncated Witt vectors W, 1 (R) of [9], naturally in R If R is moreover commutative, W >(R R)is
isomorphic to the usual p-typical (n + 1)-truncated Witt vectors of R as a commutative ring.

Proof. The claim for commutative rings follows from the characterisation of the ring structure in
ghost components of 1.6 and the fact that in this case, as a set, W, +1, p(R; R) is RXn+1 by 1.5. In the

non-commutative case, we need to make sure that the quotient of [];_, R®xP' = Rxntl defining
W pi1,p(R; R) agrees with the quotient defining W, (R) from [10]. When R is free, the projection
R¥"+1 — W, 1 (R) descends to an injection

Wn+1,p(R;R) - Wn+1(R)

since the ghost map of W, (R) is injective [10, 1.3.7]. This is therefore an isomorphism for free
rings, and it descends to an isomorphism in general since both sides commutes with reflexive
co-equalisers (W, (R) does as a consequence of the identification with TRg“(R) of [10]). O

Remark 1.8. In [20], Read provides a more general construction of G-typical Witt vectors with
coefficients for any profinite group G. For G = C», Read’s construction specialises to the (n +
1)-truncated p-typical Witt vectors with coefficients defined above.
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Proposition 1.9. Let R be a commutative ring and M an R-module. Then the canonical projection
M x M®P — W, p(R; M) descends to a bijection

Wi (R M) 2 M X (M$P)c, .

Proof. Suppose first that R is torsion-free and that M is a free R-module. Let us first prove that the
transfer map

C
tr,” : (M®P)e, — (MEP)“r

is injective. The composition of the transfer with the projection (M®P)Cr — (M®P )cp is mul-
tiplication by p. By writing M as the free R-module R(X) on a set X, we see that the
orbits

R(X*P)c, = R(X*P/C,)

also form a free R-module, and since R has no torsion multiplication by p is injective. By [7, Propo-
sition 1.41], tlog, py 1s injective, and by 1.6 so is the ghost map of W, ,(R; M ). Now consider the
commutative square of sets

MxM® — M x (M‘?P)Cp

>
~
-
-

W (R M) —— M x (MEP)r

where the unlabelled maps are the projections, the lower map w is injective by the argument
above, and the vertical w is injective since the transfer is. The dashed arrow exists by the injectivity
of the right vertical map and surjectivity of the left vertical map. It is surjective by the surjectivity
of the top horizontal map, and injective by the injectivity of the lower horizontal map.

Without freeness assumptions on R and M, the dashed map induces a bijection since both
Wz,p(R; M) and M x (M®P )cp commute with reflexive co-equalisers. O

Remark 1.10. In general, there is no product decomposition analogous to Proposition 1.9 for
Wn,p(R;M ) for n > 3, since in this case, the right vertical map w of the diagram of the proof is
generally not injective (see, however, Proposition 1.16 for the free case).

In the rest of the section, we try to get a feeling of this construction by describing explicitly
the lower components of the addition and the symmetric monoidal structure of W, ., , of Theo-
rem 1.6. As for the classical Witt vectors, there is no closed formulas for the components of the sum
of two sequences a = (ay, a4, ..., a,) and b = (b, by, ..., b,). The characterisation in terms of ghost
components of Theorem 1.6 gives, however, an inductive procedure for calculating them. The
examples below in particular identify W, ,(Z; A) of a commutative ring A with the “2-truncated
non-commutative ring of Witt vectors’ W? (A) of [8].
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Example 1.11. Suppose that R is commutative and M is an R-module. Under the canonical
bijection W, ,(R; M) = M x (M%P )c, of Proposition 1.9, we find that

a+b: a0+b0,a1+bl - Z t?(a(),bo)®"'®tg(a0,bo) 3
B#UCp}/Cp

where the sum runs through the orbits of the standard C ,-action on the set of proper non-empty
subsets of the p-elements set, and t(ay, by) = a, if i € U, and t7(ay, by) = b, otherwise. For
example for the primes p = 2, 3, these are, respectively,

This expression is not well defined in M x M®P, as it requires a choice of orbit representatives of

(%P )cp. We observe the resemblance with the universal polynomials for the sum of the usual
Witt vectors. In fact, these are the usual universal polynomials when M = R.

Example 1.12. Let R be a commutative ring and M an R-algebra. The first two components of
the product of a = (ay, a;) and b = (by, b;) in W, ,(R; M) = M X (M‘%P)Cp are

— ®p ®p
a-b=\ay-by,a," by +a;-b; +2a1-o(b1).
oeC,

The term agg) P'.b, € (M®zP). is clearly independent on the choice of orbit representative for by,
p

and similarly for a; - b? P The sum over C » is clearly independent on the choice of representative
for by, and if we choose a different representative 7(a;) for some r € C Py We have

Z t(ay)-o(b) =71 Z a; ‘T_lc(bl) =T Z a,-o(by)|= Z a, -o(by)

G’ECP aeCp aeCp creCp
in the set of coinvariants (M ®RP)CP. Thus, this expression is well defined in the coinvariants. It
is moreover not difficult to see that the last sum is symmetric in a and b. In particular, we see
directly that W, D (R; M) is a commutative ring when M is commutative.

1.2 | p-typical operators

In this section, we describe the operators on the truncated Witt vectors under the isomorphism
of Theorem 1.6, and investigate some of their properties. Under the isomorphism of Theorem 1.6,
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the Witt vectors operators of [7, §1.5] take the form
F=Fp: Wy py(R;M) — W, ,(RMEPP) V=V, Wy p(RMEP) — W ,(R; M)
R: Wy p(RM) — W, ,(R; M) T: M— W, ,(R;M)
o1 Wy p(RyM®K) — W, (R; M®K),

It is not difficult to see that the maps V, R and 7 can be described on representatives by

V(xO, voe y Xn_l) = (0, xO, voe y xn_l)
R(m,, ...,m,) = (my, ...,m,_1)
t(m) = (m,0,...,0).

The Frobenius and the cyclic action do not, however, admit closed formulas on representatives.
Their lowest components are computed in the following examples over a commutative base ring.

Example 1.13. Suppose that R is commutative and that M is an R-module. Under the bijection
W, (R M) 2 M X (M ®p )Cp, F and o are described as follows.

L. Let(ay, a;, a,) represent an element a € W ,(R; M). The element F(a) € MO®rP x (M®sz )cp
is represented by a pair of the form (w, (ay, a,), x;). For p = 2, the element x, € M®&* is given
by

c
X =0y + 0,0, —a; @ (01a)) - a(‘?z ® (tr,” a;) — z(ay),
where o; generates C,;, and z(a,) is a certain element of M®r* such that
2 C
(0,a)®* - O'z(a? ) = tr,*(z(ay)).

When M is free, this difference can be uniquely expressed as a transfer, and z(a;) is well-
defined modulo C,-coinvariants. In general, one needs to calculate z(q;) where q, is a lift of
a, to a free resolution € : Q » M, and z(a,) = €z(q;).

2. For every x, € M®xK, the difference (o}x,)®P — ka(x? P) is in the image of the transfer

c s .
tr,” : M®rkP — (M®rKP)Cr, where o, generates M®&", This difference is zero on elemen-
tary tensors, and on their sums, it is a transfer by the binomial formula. When M is free this
transferred term is unique, and

(g, %1) 1= (0pXg, OppXy — (trfp)_l((akxo)@’p - Ukp(x?p)))

When M is not free, one chooses a preimage of the transferred term in a free resolution of M,
and then uses its image in M in the same formula.

The Verschiebung and Frobenius maps are equivariant with respect to the cyclic action of
C,, and, in fact, their iterations are invariant by the action of the higher order cyclic groups. In
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particular, they define maps

k k
Ve W, (R, MEP )ey = Warip(RBM) F*: W p(Rs M) = W, (R MEP ).

The cokernel of the Verschiebung is, in fact, an iteration of R, since by [7, Proposition 1.43].
there are exact sequences

Kk vk R"
W p(R; ME? )eye = Witk p(RiM) — Wi (R M) = 0

forevery n, k > 1. Moreover, V¥ is injective when (M P l)cp, hasno p-torsion forallk <l < k+n—
1, by [7, Proposition 1.44] (e.g. if (R; M) is free), but not in general (see [10] for a counterexample
where M = R with R non-commutative). We now explore some consequences of the existence of
these exact sequences.

Let us denote by

o MO W, (R M®rP)

the Teichmiiller map for the R-bimodule M ®P* When R = Z and M = Z(X) is the free abelian
group on a set X, the ghost map of the Witt vectors W ,»\(Z; Z(X)) is injective with target a free
abelian group, and thus, W, pn>(Z; Z(X)) is also free abelian. In the following, we describe a basis,
analogous to the basis for the usual Witt vectors of Z from [11, Proposition 1.6].

Proposition 1.14. Let Z(X) be the free abelian group on a set X. Then there is an isomorphism of
abelian groups

WonZzxN =@ @ z-Vix e ®xy).

=0 yexxp! /€

Under this isomorphism, the monoidal structure map * : W ,n\(Z; Z(X)) @ W ,n\(Z; Z(Y)) —
W pny(Z; Z2(X) ® Z(Y)) multiplies two generators by the formula

Vit @ - @ x,) % VT ® - @yp) = Y, VI I (0@, x)® " @ (®F,y,))

creCp,-
ifi < j,and

Vi‘f"_i(xl Q- ® xp,-) * er”‘f(yl QR ® fo) — Z Vi(Tn—i((®lp=‘1xl) Q (U(®£}=1Yh))®pi_j)))
oeC ;
pi
ifj<i

Proof. There is a clear map from the free abelian group on the right to the Witt-vectors which
takes the sum. For n = 0, the map is an isomorphism since it is the canonical isomorphism
W 1y(Z; 2(X)) = Z(X). Suppose by induction that the map is an isomorphism for n — 1, and
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consider the map of exact sequences

n n—-1
0z /C) @ @ zviei@lx) @ @ zvi®Lx) -0

=0 xex=r'/C,i =0 xex<r'/C,i

| |

0= (ZOOBP ), ——— Wiy (Z: Z(X)) s W (pny(Z; Z(X)) ———— 0

14
113

where the bottom row is exact since (Z; Z(X)) is free. The maps of the top row are respectively
the projection and the inclusion of the summand i = n, and the left square commutes by defini-
tion since the left vertical map sends the orbit of (xy, ..., X,n) to X; ® -+- ® X ,». The right square
commutes since R is additive, Rt* = k-1 (with the convention ° = id), RV = VIR fori > 0, and
RV = 0. Thus, the middle map is also an isomorphism.

Let us now determine the multiplication of the generators. We show that case i < j, the other
is similar. We have that

Vi@ x)  VITI@F yy) = VIFEVIE(@F x)) x (" I(@F y)

=@ ¥ o) @y

O’GCpn/Cpn_i

3 VI@E T @, ) * @ y))

O'chi

3 VI (@@, x)®P ) x @@ y))

oeC ;
Pl

Y ViEi(o(@ ) @ @F v,

O'ECpi

where the first equality holds by Frobenius reciprocity and the last by the monoidality of 7, from
[7, Proposition 1.27]. The second equality is the double-coset formula from [7, Proposition 1.32,
5)], and the third follows from the equivariance of 7 of [7, Proposition 1.25]. Finally, the fourth
equality is the fact that for every k < [, bimodule (R; M), and m € M

Frrlm) = Tl—k(m®pk)

in W<pl—k>(R;M®Rpk), which by the standard resolution argument can be verified in ghost
components, where

j+k k j _ k
wF*l(m) = w;,,(m,0,...,0) = m®P"™" = (m®P)®P' = w, (K (m®P)). O
Proposition 1.15. A single VerschiebungV : W, ,(R;M ®p )Cp = W, 41,,(R; M) is injective when R

is a commutative ring and M is an R-module (considered as a bimodule with the same left and right
action).
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Proof. By resolving in the subcategory of pairs of commutative rings and modules, we can con-
struct a reflexive co-equaliser (S; Q) = (S;Q) —» (R; M) were S and S are free commutative rings,
Q is a free S-module and Q is a free S-module. Since W, » commutes with reflexive co-equalisers,
we obtain a commutative diagram

- — fs
Wn,p(S; QQ?‘D)CP gE Wn,p(S; Q‘?p)cp O Wn,p(R;MQI?p)CP

IV Iv lv
I S
Wii1,p(S; Q) gS Wii1,p(S;Q) ———» Wy p(R; M)

where the rows are reflexive co-equalisers. The middle vertical map is injective by [7, Proposition
1.44], since for Q = S(X) = @xS the free module on a set X, we have that

(SN e, = @y S)c,, = S [C )

is a free S-module, which is torsion-free since S is torsion-free. The same argument applies to the
left vertical map. Let x = (X, ..., X,_;) represent an element of W, ,,(S; Q%®r )cp such that V(x) is

zero in the co-equaliser W, ,; ,(R; M). Then, there is an element g = (g, ..., g,) in Hinzo Q%P such

thatwf,q = wV(x) and wg,q = 0in H;;O(Q?p ) In particular, since Q is an S-module

9(qo) = wpg.9 =0 = wyf..q = f(qp)

as elements of Q/[S, Q] = Q, and therefore, g(q0)®Pi =f (q0)®Pi = 0foralli > 0. It follows that

wf,.00,q,..,9,) =wV(x) and wg,(0,q;,...,9,) =0,

or in other words that

wVf.(q-,q,) =wV(x) and wVy,.(qy,-59,) =0.

Since V and w on the Witt vectors of Q are injective, we have that f,(qy,...,q,) = x and
9:(q1,,q,) =0 in W,,,p(S;Q‘?P)CP, that is, that x and zero define the same class in the

co-equaliser W, ,(R; M¥P)c, . -

Proposition 1.16. A choice of sections of the quotients M®P' — (M (,?pi)cpi /ker Vi determines a
bijection

n

Wn+1,p(R;M) = H (((M?pi)cpi)/ ker Vi),

i=0

where V' is the iterated Verschiebung V' : (M ?Pi)cpi — Wiy1,p(R; M). In particular, when M = R, a
choice of section for R — R/[R, R] determines a bijection W, ,(R) = H?:o R/[R,R]whenR/|R,R]
has no p-power torsion, as in [10]. If R is commutative with no p-power torsion, and M is a free
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R-module, there is a canonical bijection

n
Waerp (R M) 2 [JMEP ),
i=0

Proof. A choice of section of M — MC;?P“ = Wl,p(R;M)’ followed by the map 7, determines a
splitting (as a map of sets) of the right-hand map of the exact sequence

W p(RMEP)c, e W p(RsM) = MO = 0

from [7, Proposition 1.43], and thus a bijection

Woa1,p(Rs M) = MR X (W, ,(R; M®P)c )/ ker V.
A straightforward diagram chase on the diagram with exact rows

i+1 1% i R i
Wn—i,P (R’ M?P )Cpi+1 Wn+1—i,p(R; M%P )Cpi (M('?p )CP[ 0

bk

i+1 Vl+1
R;MEP ), —— Wi p(R; M) — R Wi p(RM) —— 0

nzp

shows that the top sequence stays exact after quotienting by the kernel of Vi, foreveryi = 0,.

A section of M®P' — (M®P' )c / ker Vi, followed by the map 7, determines a splitting (as a map
of sets) of the right-hand map of the top sequence quotiented by the kernel of V. Moreover, the
kernel of

i+1

V: Wntp(RM b )C

l+l

- Wn+1—i,p(R;M§pi)Cpi /ker V'

is equal to the kernel of V*!. Thus, by downward induction on i, we obtain a sequence of
bijections

Wos1,p(Rs M) = M x (W, ,(R; MEP o)/ kerV)

IR

MR X (MSP)c, / Ker V) X (W (R MEP ), / Ker V)

IR

MRF X (M®P)c, /Ker V) X (MR ), /Ker V2) x - X (M®)c,, / ker V™).

IR

If R is commutative without p-power torsion and M = R(X) is a free R-module, V is injective
by [7, Proposition 1.44] and the projection maps

K k k k
MO ~ R(X*P") —» R((X*P )Cpk) = (M?D )Cpk
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. . . k
have canonical sections, induced by the maps (X*P )Cpk ~ hom(p* /Cpr, X) — hom(pk, X) =

X*P which pre-compose with the quotient map p¥ — pk/ Cpk (here we denoted p¥ the set with
pk-elements). O

Using the maps R, we can also define

R R
Woo,p(R;M) = lim(WLp(R;M) — Wz,p(R;M) — ...

It follows from Theorem 1.6 and [7, Lemma 1.37] that Weop (R;M) =~ W<poo>(R; M), where (p*) is
the truncation set of all powers of p.

Proposition 1.17. Let R be a commutative F ,-algebra and M an R-algebra. Then, V(1) = p" in
Wn+m+1’p(R;M)for alln,m > 0, and

. R R
W p(Rs =) = lim(W ,(R; =) «— W, j(R; =) «— ...)
takes commutative R-algebras to commutative rings of characteristic zero.

Proof. Since R is an [ ,-algebra, there is a map of bimodules ¢ : (F,;F,) — (R; M). By naturality
of V, we have that

Vi) = V"((1) = V" (D),

where the last Verschiebung V" is for the ring I, and it sends 1 to p".

The ring homomorphism 7 : R - M defines a map of bimodules (R; M) — (M; M), and the
induced map sends p” in Woo,p(R;M) to p" in Wm,p(M ). When M is commutative, the Ver-
schiebung of W, p(M ) is injective and therefore V(1) = p" #0 € W, p(M ). Thus, it must be
non-zero already in W, p(R; M). O

Remark 118. Classically, W, ,(A) is p-complete when A is a commutative semi-perfect
[ ,-algebra. With coefficients, we do always have a natural isomorphism

W p(R; M) = lrgl} W, p(R; M) = lrgrll W p(RM)/V™.

In other words, the Z-module W, ,(R;M) is complete with respect to the sequence of
submodules

ImV > Im(V?) D - >Im(V") D ...

When A is a semi-perfect commutative [ ,-algebra, the image of V" on the classical Witt vectors
is p"W, ,(A), and the V-completeness statement above shows that W, ,(A) is p-complete. This
characterisation of V follows from Frobenius reciprocity, the identity V(1) = p, and the fact that
F is surjective since for [ ,-algebras, it is of the form

F(ay,aq,...) = (aé’, af, ).
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In pursuing a similar argument for the Frobenius of W, ,(Z; A) for aring A, one would need the
pth power map (—)®P : A — A®P to be additive. This is the case modulo the image of the trans-
fer map trfp : A®P - A®P and therefore one would require that trecp = 0. This is, however, the
case only when A = F,, and this just recovers the standard completeness of W(F ). Indeed, since

c c
Mp tT, P'1 = p € A, the condition that tr,” = 0 forces A to be an F p-algebra. By choosing a basis of
Aasan F,-vector space, we further see that A is of rank 1. Thus, W p(Z ;A =W, p([F S A) does
not seem to be p-complete for any ring except for A = I ,.

When M is a commutative R-algebra, we show below that the Teichmiiller map 7: M —
W 41,p(R; M) factors through multiplicative norm maps

N: W, ,(R;MEP) — W, ,(R; M).

This map extends the norm map of the Witt vectors introduced by Angeltveit in [1] in the case

. T . -1 J+1 . J .
where R = M. Let us consider the multiplicative map N, : H?:o (M"Y H;;o(M ®p'\Cpi
defined by

NyGo: Vs ¥not) = |y [T ovor [ v [ o¥na)

UECP cresz /Cp O’ECpn /prhl

where Mp: M ®p _, M is the multiplication map. Here, we are using that, since R is commutative
and M is an R-module, ps®p’ — pf@P’ so that the product of cyclic tensors is well defined, as well
as the commutativity of M so that this product is independent of the cyclic ordering.

Proposition 1.19. Let M be a commutative R-algebra. There is a unique natural map of
sets N : Wnp(R;M§p) = W1 p(R; M), which we call the norm, such that wN = N, w. It is
multiplicative, unital, and it satisfies the identities

RN = NR
FN(x) = Hoecp ox

foreveryx € W, ,(R;M @), where o is the Weyl action.

Proof. 1t is sufficient to show that such a unique natural transformation exists on pairs (R; M)
where R is a free commutative ring and M is a free commutative R-algebra. The map N for a
general pair will then be defined as the reflexive co-equaliser of the map induced on the Witt
vectors of a free resolution (the fact that N is not a ring homomorphism is not an issue since
reflexive co-equalisers of commutative rings are computed in sets). The map will be independent
on the choice of resolution since different free resolutions can be compared by a map as in the
proof of 1.4.

Let us then suppose that (R; M) is such a free pair and denote by w the ghost map of
W p(R;M ®P). We remark that since the ghost map w of W, »(R; M) is injective, the existence
and uniqueness of N follow if we can prove that the image of N,u is included in the image of w.
In order to verify this, we use a version of the Dwork lemma with coefficients which characterises
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the image of w. The proof of the lemma is technical and is deferred to Theorem A.8. It states that
when (R; M) is free (or more generally if it has an ‘external Frobenius’), there are additive maps

¢j 1 (MRPNP — (M)

such that a sequence (b, by, ..., b,,) of H;lzo(M (f?pj)cﬂ’ lies in the image of the ghost map w if and
only if

pj+1

c
¢;i(bj) =bj,; mod tr,

for every 0 < j < n, where the congruence is modulo the image of the additive transfer map

treC”’ . Mo (MC;?P )Cpf”. Thus, we need to verify that the sequence

J+1 J+1

,upLOO,HO'LOO, H oy, ..., H ow,_q

G'ECP cresz/Cp UECpn/Cpn_l

satisfies these congruences. We start by separately analysing the first congruence

5 c
PupWoXg = PHyXg = PWop,Xo = wy(UpXg) = (pr0)®p = H oxo mod tr,”,
oeCp

where the third equality is from the Dwork Lemma, and the last one can be easily verified on
elementary tensors. Now let us take j > 1. When M is a free commutative R-algebra, the maps
¢; are moreover multiplicative (see Example A.5). They are defined before taking invariants, and
they satisty ¢;_,0;_, = 0;¢;_, where o} denotes the action of a generator of Cx (Lemma A.6).
Moreover, the maps

O 1=yt (MEP)RP = MOPT — MO = (ME#)RP

satisfy the Dwork Lemma for the free R-module M®rP (Lemma A.11). We can now verify that

p P
D = . l D . = l . D . = . D .
¢; H owj1 = H¢Jajw1—1 =119jn¢Wj = H o¢;j
O’Eij/ij,l =1 =1 G’Eij+1/ij
R A Cpi

= H o®;_ W, = H o\ w; +tr,

UECPI'_H/CPJ’ UEij_H/CPj

C .

_ . pitl
= ow; +tr, R

G’EijJrl/ij

and therefore, that N, w lands in the image of w. The last equality follows from the Tambara
reciprocity relations of the Cj+1-Tambara functor M®P'" (see, e.g. [14, Corollaries 2.6 and 2.9]). It
can also be verified directly as follows. For every subset V' C {1,..., p} and 1 < [ < p, let us define
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C,
Ve 5l n s vV o._ 4l p/
t .—aj+1wjlfl¢V,andtl .—oj+1tre

) ifl € V. Then,

II a(wj+trecpj)= Y = [ owi|+ Y .y

C"Eij.H /ij Vcil,...,p} UGCPJ'_H /ij ##V c{1,...,p}
p C
— A 14 v 1 p 14 |4
| ety 3o ...tl_l(am t, >tl+l ot
O'ECPJ'_H /ij =1 lEVC{l,...,p}
~ o 1 ij
IR IS e
UEij.H /ij [=11leVcy,..,p}
C .
~ J+1
= H o(w;)+tr,”

GEij+1 /ij

where the third equality holds by Frobenius reciprocity.
The relations between N, R, F are easily verified in ghost components and are natural, and
therefore they hold in Witt coordinates by the usual resolution argument. 1

Remark 1.20. There are relations between N and V and N and the sum which are difficult to
express without the help of exponential diagrams. These are the Tambara reciprocity conditions
for norms and transfers and norms and sums of [22, (2.1)(v)] (see also [14, Corollaries 2.6 and 2.9]).
They can be directly verified in ghost coordinates using Tambara reciprocity for the C,;-Tambara

functors (M®? ).

Proposition 1.21. When M is a commutative R-algebra, the map t: M — W, ,(R; M) agrees
with the composite

u n n. N n— N N
M — M§p = W],p(R;M§p )_) WZ,p(R;M§p 1) —_—> > Wn+1,p(R;M)’

whereuim) =m®1Q --- ® 1.

Proof. In ghost components, the iterated norm N sends x € M®?" to

wN"(x) = | i), [ ows™ 0o, [ omp?@s ] o)

creCP aeCp2 O'ECpn
where ,ug_i is the composite of the multiplication maps

2 o MK
oo e 2

K _ K ;
M®rP" L p®rp"! oo =2 M®RD'
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After pre-composing with u : M — M®P", this sends a € M to
WN"a®1® - ®1) = (a,a®P,a®p2,...,a®p”) =w(qa,0,...,0),

showing that the maps agree in ghost components. By the usual resolution argument, they agree
in Witt coordinates. O

1.3 | The comparison with Kaledin’s polynomial Witt vectors

Kaledin defines in [15] and [16] a functor Wn (denoted by Wn in [15]) of “polynomial Witt vectors’
from the category of vector spaces over a perfect field k of characteristic p to the category of abelian
groups. We show that on k-vector spaces our functor W, , can be described as the cokernel of a
transfer map, and use this to identify W, , with W,

For any R-bimodule M, we let Q » (R; M) denote the cokernel of the transfer map

C[,n

n tl‘c n
(M), — (MRP) > Qpu(R; M).

The canonical lax symmetric monoidal structure of (M®P" )< (as defined in [7]) descends to a lax
symmetric monoidal structure on the functor Q ... We let R[m] denote the m-torsion subgroup of
R for every integer m.

Theorem 1.22. Let M be an R-bimodule. For every integer n > 1, there is a surjective natural lax
symmetric monoidal transformation

w, : W, ,(R;M/p) =W, ,(R/p;M/p) » Q,n(R;M).

It is an isomorphism when R is commutative, R/p is perfect, M is a free R-module and the
multiplication by p'-map p' : R[p"*'] — R[p] is surjective forevery1 <1 <n—1.

Remark 1.23. When M = R, this, in particular, states that for commutative rings without p-power
torsion and with perfect R/p, there is a ring isomorphism W, ,(R/p) = R/p". For example,

Wn,p([Fp) =Zz/p".

Proof of 1.22. We start by observing that the top ghost component w,, of W,,,; ,(R; M) modulo
transfer descends along the restriction map

wy n
W i1,p(R; M) —————— (M) "
| l
Wop®iM) — = = 5~ =+ Qu(R; M)

This is because the summand of w, (ay, ... , a,) which depends on a,, is trec"" (a,) and it therefore
vanishes in Q pn (R; M). We claim that this map further descends along the map W, p(R;M ) —
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Wn’p(R;M /p) induced by the modulo p reduction M — M /p. We start by computing that for
every 0 < i < n — 1, the ith summand of w,(a, + px, ..., a, + px,) is

Cpon n—i Con
trcpn_i (Cli + pxl-)®p = tGCn_i Z Sr1) ®® Sf(pn—i)
P P . _i
fiprie
Con n—i n—i pn_i_l Con—i
=t @+ () + IZ 2 el (5 @ = ® sypnh)),
=0 f: pn—l

-2
{stab(f)=Cpl }/Cpn—i

where s; = g; and s, = px;, and the sum is the decomposed according to the orbits of the C jn-i-
action on the set of maps p"~' — 2 by pre-composition. Every non-constant f : p"~! — 2 with
stabiliser C,,i needs to have value 2 on at least p! points. Thus each tensor product above is divisible
by p!, and

n—i

. p
Cpyn n—i Cpyn n—i Cpyn
P ) A®P"TE P ®p J
tGCn_i (a; + px;) = tGCn_i (a] )+ E tGCz D'y,
1=0

n C . . .
for some C ,-invariant y; € (M®?")“r'. But then p'y, = tr,” ' ,, and the right-hand side is congru-
Cpon n—i . Con .. .
ent to trcp v(a{@p ) modulo the image of tr,” . Note that this is not quite enough to conclude
Pn—l

that the map w,, factors over Wn’p(R;M /p) as one needs to handle the kernel of Wn,p(R;M ) —
Wn,p(R;M/p). Let M’ denote the sub-R-bimodule of M X M of those pairs (x,y) € M with
X —Yy € pM. Then, we get a reflexive co-equaliser

M ==M s M/p,
b

where the section is the diagonal and a and b are the projections. Consider the diagram

n-1 i s n-1 i
[icy M'® == TTicy M®*

bk

* w,
Wn,p(R;M,) b:; Wn,p(R;M) — Qp" (R;M)-

From the above congruences, we know that w,ma, = w,7b, and hence, since the left-hand dia-
gram commutes, we get that w,a,7 = w,b, 7. But 7 is surjective and therefore w,a, = w,b,.
Since

a,
W, p(R; M) b:; W p(R; M) — W, ,(R; M/ p)

is a co-equaliser, this gives a well-defined additive natural transformation

Wy, : Wn,p(R;M/p) - Qp"(R;M)
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for every R-bimodule M, factoringw,, : W, ,(R;M) — Qpn(R; M). It is lax symmetric monoidal
because w,, is. It is surjective because the fixed points (M$P")C» are generated additively by
elements of the form

Con n—i
" a®P
pn—i L

=w,(0,..,q;,..,0)

for0 <i< n,whereq; e M ?Pi (this can be verified first for free bimodules, and then by resolving
(R; M) by a free bimodule).

Let us now suppose that R is commutative with perfect R/p, and that M = R(X) := @xRisa
free R-module. Under the isomorphism R(X)®P" =~ R(X*F"), we write the transfer as the map

trfp" : ROCP™Y — R(XP"Cp,
which sends a basis element (xl,...,xpn) to decpn O'(xl,...,xpn). For n =1, the invariants
R(X*P)Cr decompose as
R(XP)r = R(X™P/C,)) = R(X) @ R((X*P\A)/C,),

where the first summand is generated by the diagonal elements (x, ..., x), and the second sum-
mand by the transferred elements. Thus, the second summand is quotiented off in Q p(R; R(X)),
and the first summand is hit by the multiplication by p map. This provides the identification

wy : Wy ,(R;R(X)/p) = R/p(X) — Q,(R; R(X))

that sends rx to rP(x, ..., x) foreveryr € R and x € X.

Now suppose inductively that w,, is an isomorphism and that p" : R[p"*!] — R[p] is surjective,
and let us show that w,,, is also an isomorphism. The abelian group of invariants R(X*P" )Cer
decomposes as

ROXP"YCr = ROOP" /C ) 2 RXX) ® R(CCP\X)/Cp) @ -+ @ RV \XP" ) /C ),

where X*P'"" c XP' via the p'~l-power of the diagonal map A : X — X*P, and the isomorphism
sends a basis element (x;, ..., X 1) in X xp'\ x*P" to

Cpyn
p
tI'C

o (xqs e s Xpis X1 wees Xpiy eeey X5 wees xpi).
p

The transfer map hits the X' \X *P™ summand with the multiplication by p"~' map, thus
inducing an isomorphism

Qun(R:R(X)) = R/p"(X) & R/p" " H(X*P\X)/C,) @ -+ @ R/p((P" \XP"7)/C ).

We can therefore define a map R: Q pn+1(R;R(X ) —>Q (R R(X )) which under this decompo-

sition collapses the last summand, and which on the summand X xp! \X '™ s the sum of the
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modulo p"*~! reductions R/p"*1~* — R/p"~. We claim that there is a short exact sequence

0 = Qu(R:RX)PP)e, — Queot (R RD) — Q(R: R(X)) = 0,

where R(X)®? = R(X*P) is also a free R-module, and the C,,-action on Q+(R; RCX)¥F) is induced
by the Weyl action on ((R(X)®P)®P")Cr = (R(X)®P"")Cr. Indeed, under the decomposition
above, the kernel K,, of R" is

K, = R/p"(X) ® R/p"(X*P\X)/C,) @ R/p" (T \X*P)/Cp2) & ...
@ R/p((X*P"\X*P")/C,n)
= R/p"(X*P/C,) ® R/p" " (X*P\X*P)/C,2) @ - @ R/p((XP"\X*P"")/C,n)
= (R/p"(X"P) @ R/p"(X"P\XP)/C,) @ -+ ® R/p(X" P \X")/Cpr))e,

= Qn(RIRXP))c,

where the first isomorphism is due to the fact that since p” : R[p"*!] — R[p] is surjective, the
kernel of the p-reduction map R/p"*! — R/pis R/p". The second isomorphism collects the first
two summands. The third isomorphism commutes the quotient S(Y)Cp = S(y/C p) for the free S-
module on a C),-set Y. The last one is again by the decomposition of Q ,» above using that R(X xP)
is free. Thus, the bottom row of the commutative diagram

0 —— W, p(Rs RX*P)/P)e, —— Wiy y(RiR(X)/ ) —— W1 ,(R:R(X)/p) —— 0

;lw me l(-)ﬁ"

\%4 R"
0 —— Qpu(R;R(X*P))e ——— Qpun (R R(X)) ——— Q,(R; R(X)) ——— 0
. .. Cpn+1 w1\ Cpn wp*+INC i1
is exact, where the bottom map V is induced by tr, P R(X*PT) c R(X*P""")"p"* The top
p" p

row is exact by Proposition 1.15 since R is commutative. Moreover, w,, is an isomorphism by the
inductive assumption. The right vertical map is the map R/p(X) — R/p(X) which sends r - x to
rP" . x, which is an isomorphism since R/p is assumed to be perfect. It follows that w, 41 isan
isomorphism. 1

In [16, Cor. 2.5], Kaledin shows that there is a unique functor Wn from F,-vector spaces

to abelian groups such that Wn(A/ p) = Q,n(Z;A) for every free abelian group A. Thus,
Theorem 1.22 immediately gives the following.

Corollary 1.24. There is a natural isomorphism of abelian groups Wn =W, p(Fp;—)

This construction is lifted in [15, Prop 2.3] to a functor Wn from k-modules to W, ,(k)-modules
for every perfect field k of characteristic p (and, in fact, further to a category of Mackey functors).
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It is determined by a similar formula
Wa(E/P) = Qur (W, (k) E)
for every free W, ,(k)-module E and every m > n.

Corollary 1.25. Let k be a perfect field of characteristic p, m > n > 1integersandV a k-vector space.
There is a natural isomorphism of W, ,(k)-modules

W, (V) =W, (V)
with the polynomial Witt vectors W ,(V') of [15] and [16].

Proof. By Kaledin’s characterisation of the functor W ,, it is sufficient to show that W, p(k;E/p) =
Qpr W, p(k); E) for every free W, p(k)-module E. Since k is perfect of characteristic pand m > n,
the commutative ring W, p(k) satisfies the conditions of Theorem 1.22 and

W, p (6 E/ D) = Wy y(W o o (K)/P3E/P) —> Quu(W, ,(K); E)

is an isomorphism. Since w,, is symmetric monoidal, this is an isomorphism of W, ,(k;k) =
Wn,p(k)-modules. O

Remark 1.26. The first corollary can be deduced by the second one as follows. Let A be a
free abelian group. Since A/p 2 (A ® Zg) / b the corollary for the perfect field k = F, gives an
isomorphism

W p(Eps A/p) =W, ,(Fpi(A® Z7)/P) = Quu(Z; A® Z) = Quu(Z; A) @ Z)) = Qn(Z; A),

Cyn
where the last isomorphism holds because p" = tr,” (1) acts as zero on Qpn (z; 7).

2 | WITT VECTORS WITH COEFFICIENTS IN HOMOTOPY THEORY

The topological restriction homology (TR) of a ring spectrum R with coefficients in an R-bimodule
M was introduced by Lindenstrauss and McCarthy in [18], as a version with coefficients of the
cyclic bar construction. It is defined for every integer n > 0 as the fixed points of a genuine C,,-
spectrum M @x", a homotopical analogue of the algebraic cyclic tensor powers appearing earlier in
the present paper, constructed as the geometric realisation of a simplicial object with k-simplicies

(MO, = (M ARY™,

and with a simplicial structure analogous to that of the n-fold subdivision of the cyclic bar con-
struction of R. The underlying spectrum is, in fact, equivalent to THH(R; M”*™). In order to derive
this construction appropriately and obtain a genuine equivariant spectrum, the authors employed
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Bokstedt’s model for the smash product, and, in turn, defined TR<n> as the fixed points
TR () (R; M) = (M®x) .

The foundations of this theory have been reworked in [17] by McCandless and the second and
third authors, and we now review the bases of this construction.

Definition 2.1 [17]. A polygonic spectrum X consists of a spectrum X; with an action of the cyclic
group C, for every integer d > 1, together with C;-equivariant Frobenius maps

¢p,d : Xd - (Xdp)tcp

for every prime p and d > 1, where (—)"» denotes the Tate construction of the C,-action.

Given a truncation set T (a subset of N, ; such thatif xy € T,thenx € T andy € T), a T-typical
polygonic spectrum is a polygonic spectrum with X; = 0, whenever d ¢ T. We will mainly focus
on the case where T = (n) is the truncation set of divisors of an integer n > 1, especially when n
is a power of a prime p.

In [17], the authors introduce a stable and presentable co-category PgcSp of polygonic spec-
tra, and the full co-subcategory PgcSp; of T-typical polygonic spectra. Given an inclusion
of truncation sets T’ C T, the corresponding inclusion PgcSp;» & PgcSpy has a left adjoint
Resi, : PgcSpy — PgeSpy which is a localisation, by [17, Section 2 and Construction 2.11]. On
objects Res?, sends a T-typical polygonic spectrum X = {X;},., to the T’-typical polygonic spec-
trum Res;, (X) = {Y}451 With Y; = X,; whenever d € T" and Y; = 0 otherwise. In particular, we
have the localisation

Res!™

(n)

PgeSp — PgcSp ()

whenever n divides m.

The oo-category PgcSp is symmetric monoidal by [17, Construction 2.14]. The symmetric
monoidal structure comes from levelwise tensoring the entries and using the lax symmetric
monoidality of the Tate construction.

Example 2.2.

1. Any cyclotomic spectrum X as in [19] defines a polygonic spectrum, with X; = X foralld > 1,
and¢,;: X - X Cp the cyclotomic Frobenius of X for every d and any prime p. In particular,
any spectrum X with trivial action defines a polygonic spectrum XV, for example, the sphere
spectrum SV, By applying the truncation, we obtain a T-typical polygonic spectrum X ‘Tri" =
Resr X v for any truncation set 7.

Further, any p-typical cyclotomic spectrum X as in [19] defines a (p*)-typical polygonic
spectrum, where (p) is the truncation set consisting of all the powers of p. It consists of the
spectra X x = X for all k > 0 with maps ¢, x : X — X ‘Cp the cyclotomic Frobenius of X for
every k > 0, and X; = 0 if d is not a power of p. After applying Resg Zo;, we get a (p")-typical
polygonic spectrum with X x = X forall0 < k < n.
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2. Every space M defines a polygonic spectrum Z$°*M*, with (ZM*), = ZM*" and with the
Frobenius maps defined by the composite of the canonical maps

Zfon—)Zio(MXpn)hCPﬂ(ZfMXpn)hCPﬁ(ZfMXpn)[CP,

where the first map is the diagonal, the second is the unique map into the limit and the last
map is the canonical map from the homotopy fixed points to the Tate construction. By applying
the appropriate truncation functors, we also obtain its T-typical versions. In particular, we get
a (p")-typical polygonic spectrum Res,»y ZP°M* with (Res,n) 2P M>) ok =Z¢M xp* for 0 <
k <n.

3. For every ring spectrum R and R-bimodule M, there is a polygonic spectrum THH(R; M) with
THH(R; M),, = THH(R; M"®") and Frobenius maps

¢, n THH(R; M"®") — THH(R; M"*P")p
defined on the cyclic bar construction from the Tate diagonals, see [17, Construction 6.31].

Definition 2.3 [17]. For any T-typical polygonic spectrum X, one defines TR;(X) to be the
mapping spectrum out of the sphere spectrum

TR7(X) = Mappy, (ST, X).
For a ring spectrum R and R-bimodule M, we let TR(R; M) := TRy(Res; THH(R; M)).

Since StTriV is the unit of the monoidal structure on T-typical polygonic spectra, we have that
TR is a lax monoidal functor. Let biModg denote the co-category of spectral bimodules. Then,
the functor

THH : biModg — PgcSp

sending (R; M) to THH(R; M) is a lax symmetric monoidal functor, by [17, Section 6]. Hence,
all in all we conclude that TR (R; M) is a lax symmetric monoidal functor from biModg to
spectra.

In [17, Proposition 2.10], the authors provide an equaliser formula for TR;(X) analogous to
the description of topological cyclic homology of [19] and [3]. In the case of T = (p"), this is the
equaliser

TR () (R; M) = eq ( T THH(R: MM — T[[Z, (THH(R; M) ) '

One of the maps of the equaliser is the composite

n n—1 n—1
HTHH(R;MARP’ Yo HTHH(R;MARP’ Yo —s H(THH(R;MARPZH)’CP)hCP"
i=0 i=0 i=0
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of the projection and the product of the homotopy fixed points of the Frobenius maps. The other
map in the equaliser is the composite

n n n
[ ranR: pe? Yo [ ranR: me? Yl s [ranER; M= )Cp)HCpi-t

i=0 i=1 i=1

of the other projection followed by the product of the homotopy C

pi—l'ﬁXed points of canonical
maps THH(R;MARPl)th N THH(R;M/\RP‘)tCP'

Example 2.4. Let (R; M) be a bimodule spectrum, where R and M are connective.

L. By definition, TR ;,(R; M) = THH(R; M) is the topological Hochschild homology of R with
coefficients in M. Thus, 77, TR 1y (R; M) = moM /[7,R, oM | = W 1y (moR; 7o M).

2. When R = M, we have that TR ,.\(R;R) = TR™1(R) is the classical p-typical TR of [4]. Thus,
by the calculations of [12] and [9], there is a natural isomorphism

W pny(moR; ToR) = 75 TR (pny(R; R),
which is multiplicative when R is commutative.

3. When R = S is the sphere spectrum and M = A is a connective spectrum, there is a natural
equivalence

Con
TR,y (S; A) = (N, 7" A)P",

where the right-hand side is the genuine fixed points of the Hill-Hopkins-Ravenel norm of A
of [13]. Indeed, THH(S; A) = A, and the Frobenius maps above

¢: AApi = (A/\PH—I)[Cp

are by construction the Tate diagonals of the spectra AN By identifying the geometric fixed-

points spectrum (N ec " )P with AMP"™ | we find that the equaliser formula for TR ,n\(S; A)
above is equivalent to the iterated pullback of [19, Corollary I1.4.7] which describes the genuine

Cpyn
fixed-points spectrum (N, ” AP . When A = H F,, the components of this norm is the ring
of (n + 1)-truncated p-typical Witt vectors

Cpn
mo(N, " HE )" = W (F ),

by work of Mazur (see [2, Proposition 5.23]). For the prime p = 2, on the other hand, there is a
natural ring isomorphism

(N *HA)Y? = W 5)(Z; A),

for every ring A by [8, Proposition 5.5] (compare with 1.11).
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2.1 | Witt vectors with coefficients and TR with coefficients

We now state the main result of this section, which extends the calculations of Example 2.4 to all
bimodules.

Theorem 2.5. Let R be a connective ring spectrum and M a connective R-bimodule. There is an
isomorphism

W<pn>(7Z'OR; 7Z'OM) =7, TR<pn)(R, M),

which is, moreover, natural in (R; M) and monoidal. In particular, for every connective spectrum A,
c

this gives an isomorphism W<pn>(Z; ToA) = (N, " A)Cr with the Hill-Hopkins—Ravenel norm

construction, which is a ring isomorphism when A is a ring spectrum.

. . Cpn
Remark 2.6. When A = £2°X is the suspension spectrum of a space X, the norm N, P EPX) =
IeX XP" is again a suspension spectrum, and the tom Dieck splitting provides a canonical
isomorphism of abelian groups

n n

Con  Cyn n\C n_i o i

7, NP (E2X) = @) mo (PP Ve, & P @z,x)®r) cyo
i=0 i=0

where Z(7,X) is the free abelian group generated by 77X . Thus, by Theorem 2.5, the group of Witt
vectors W pn>(Z; Z(7,X))isisomorphic to the direct sum of the (Z(7, X yer' )Cp,- = Z((myX xp! )Cpi ),
and it is in particular free abelian. This product decomposition matches with the algebraic one of
Proposition 1.14.

The proof of Theorem 2.5 will occupy the rest of the section. To set up our proof, and in particu-
lar to construct the map giving the isomorphism of the statement, we need to discuss the spectrum
level analogue of the Witt vectors operators of the previous section. For describing these operators,
we will use the stable co-category Squfgerl of quasi-finitely genuine Z-spectra which was constructed
in [17] following ideas of Kaledin. We briefly recall the setup, and refer to [17, Sections 4-6] for
further details.

The oo-category Spgfgen is defined as the oco-category of spectral Mackey-functors on spans
of quasi-finite Z-sets (i.e. those sets with a Z-action which have finite fixed points for every
non-trivial subgroup of Z, and all the stabilisers are non-trivial). In particular, any quasi-finitely
genuine Z-spectrum Y has genuine and geometric fixed-points spectra Y¢Z and Y®4Z for any
integer d > 1. By [17, Proposition 5.2, Theorem 5.4], there is an adjunction

7z L
SPytgen ? PgcSp ,

which restricts to an equivalence of co-categories on uniformly bounded below objects. The left
adjoint L is defined by sending a quasi-finitely genuine Z-spectrum Y to the polygonic spec-
trum LY = {X,},5, consisting of the geometric fixed-points spectra X; = Y47 with their residual
C4 = Z/dZ-action. The Frobenius maps come from the canonical map from the C,-geometric
fixed points to the C,,-Tate construction. The right adjoint TR sends a polygonic spectrum X to
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a quasi-finitely genuine Z-spectrum with genuine fixed points TR(X)"# = TR(sh,, X), where by
definition (sh, X); = X,,4 for n > 1, with the obvious actions and Frobenius maps [17, Propo-
sition 5.2.(1)]. This equivalence is symmetric monoidal since the geometric fixed points are
symmetric monoidal. In particular, for uniformly bounded below, polygonic spectra TR is sym-
metric monoidal. However, since genuine fixed points are only lax symmetric monoidal, this
shows that the functor TR(X) is only lax symmetric monoidal which agrees with our observation
above.

For a connective pair (R; M), the topological Hochschild homology spectrum THH(R; M) has
a canonical structure of polygonic spectrum given by the sequence of spectra with Cy-action
THH(R; M), = THH(R; M"r9) for d > 1 (see [17, §6]). We write TR(R; M) for the corresponding
quasi-finitely genuine Z-spectrum. We then have formulas for the genuine and geometric fixed
points of TR(R; M), given, respectively, by

TR(R; M)"? ~ TR(R; M"®") and TR(R; M)®"*? ~ THH(R; M"\*"),

where the identification of the geometric fixed points follows from the fact that L and TR are
mutual inverses on uniformly bounded below objects. By construction, any quasi-finitely genuine
Z-spectrum comes equipped with transfer and restriction maps, and Weyl actions. Thus, TR(R; M)
admits a Weyl C,-action, whose generator we denote by

O(my© TR(R; M) — TR(R; MAR™),
a restriction map
F: TR(R; M) — TR(R; M"r")hCn
which we call Frobenius, and a transfer
V. TR(R;MAR”)hCn — TR(R; M)

which we call Verschiebung, for every integer n > 1. Let us now produce truncated versions of
these structure maps.

As mentioned above, the co-category of (p")-typical polygonic spectra PgeSp, .y is a localisa-
tion of PgcSp, where the localisation functor annihilates the values on integers which are not of
the form pk , for 0 < k < n. Under the equivalence above for uniformly bounded below spectra,

this corresponds to the full subcategory of Spffgen of those Z-spectra X with X®4Z = 0 unless

d =1, p,...p". The geometric fixed-points functor (—)®?"Z : Spqzfgen — Sp°e" to genuine Cn-

z
qfgen
4.20] is fully faithful with the essential image given by the latter full subcategory of Sp

shows (see also [17, Example 2.9]) that the functor

[17, Construction
This

spectra is a localisation whose right adjoint inflation infl ., : Sp“r" — Sp

VA
qfgen”

TR(=)*P"% & PgeSp(n) — Sp°"

is an equivalence on the full subcategories of bounded below objects.
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Proposition 2.7. For every n > 0, there is a symmetric monoidal functor E(p") : biModg0 -

SpCr" from connective spectral bimodules to genuine C prn-spectra, and a natural equivalence
C n—k
B@n)(R;M) P TR(pk>(R;MARp )

forevery0 <k < n.

Proof. Consider the (p")-typical polygonic spectrum Res . (THH(R; M)) with corresponding
quasi-finitely genuine Z-spectrum Y = B(Res@n)(@(R,M ))) (with vanishing dZ-genuine
and geometric fixed points unless d = 1, p, ... p"). By the equaliser formula of [17, Proposition
2.10], the genuine fixed-points spectrum YP" 7 s equivalent to TRk, (R; M ’\RP"_k) for all 0 <
k < n. Define

IR pny(R; M) = Y®P'Z e spen .

Since Y is in the essential image of the inflation infl,.,, we have a good control on its genuine
fixed points. Indeed, by definition of the inflation,

"_kZ/p"Z

(TR oy RS = (VP72 = (202

(p™)

= YP"7 o TR (o, (R M7RP"),

The symmetric monoidality follows from the definition since the functors (—=)*?"Z and TR and
THH are all symmetric monoidal. [

As a consequence of the latter theorem, we obtain a C pk-action on TR< pn—k>(R;M ’\Rpk), with
generator

Ok - TR<pn—k>(R;MARpk) - TR(I)n—k)(R;MARpk),

given by the action of the Weyl group C . /C -k = Cpk, and maps

p
F: TR<pn>(R,M) —> TR(Fn—1>(R;M/\Rp)hCP V: TR<pn—1>(R;MARP)th —> TR<pn>(R,M)

corresponding, respectively, to the restriction and transfer of a spectral Mackey functor, thus
satisfying the homotopy coherent analogue of the double-coset formula of usual Mackey func-
tors. Analogous maps were also defined in [18, Lemma 4.10 and Corollary 5.7]. We also observe
that TR ,»y(R; M) is naturally lax symmetric monoidal since TR is symmetric monoidal and the
genuine fixed-points functor is lax symmetric monoidal.

There are also maps R: TR, p,,>(R;M ) > TR, pn—1>(R;M ), which under the equaliser for-
mula for TR ,», above correspond to projections of product factors, and therefore fit into fibre
sequences

n 14 R
THH(R,MARP )hcpn — TR<pn>(R,M) — TR<pn—1>(R,M)

for every n > 1 (see also [18, Corollary 5.7]).
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The final structure that we need on TR ) is a topological analogue of the Teichmiiller char-
acter map. We recall its construction, from [17, Construction 6.33]. Given a connective bimodule
(R, M), there is a C,,-equivariant map

MM — THH(R; M ®")

forany n > 1. If we identify M/ with THH(S; M”\s"), this is the map induced by the map of bimod-
ules (S, M) — (R, M). In particular, these maps for all n > 1 assemble into a natural morphism of
polygonic spectra. We then consider the composite

IXQPMY" = Z2(Q®(MM)) - MM — THH(R; M"&"),

where the first map is induced by the canonical map from the product to the smash product of
spaces and the lax monoidal structure of Q%, and the second map is the counit of the (2, Q*)-
adjunction. The source of this map admits a polygonic structure by Example 2.2, where the
Frobenius maps are induced by the diagonal. Similarly, the second term in this sequence can also
be assembled into a polygonic spectrum via the polygonic structure on M=) and the diagonals,
and these maps form a sequence of morphisms of polygonic spectra when n runs through natural
numbers. The spectrum Z°(Q*°M)*" is the geometric fixed points (ZM )®"Z of the suspension
spectrum X M, where M is the quasi-finitely genuine Z-space assigning to any finite orbit S the
space (Q®M)*S, in particular M"Z = (Q*°M)*". Hence, we can interpret the latter composite as
a morphism of polygonic spectra

LEEM) — THH(R; M),
which by adjunction gives the map of quasi-finitely genuine Z-spectra
T ZPM — TR(R; M).
This is the topological analogue of the Teichmiiller map. Let us now produce a truncated version
of this map. By composing with the unit of the localisation, we get a map of quasi-finitely genuine

Z-spectra

ZTM — TR(R; M) — infln, (TR, . (R; M),

(p"
and by adjoining a map of genuine C.-spectra

. $00 ()0 Xp" o (0 dp"7 .
T ERQOM)P & EM)PPT - TR, (R M)

also denoted by 7. By adjoining and taking C-fixed-points spaces this gives, using the
equivalence of Proposition 2.7, a map of spaces

T QM) - Q® TR ey (R MRP"™)

forany0 < k < n.
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Next, we give a conceptual description of the maps R: TR pny(R; M) = TR pn-1y(R; M) which
will explain why they are compatible with Frobenius, Verschiebung and Weyl actions.

Proposition 2.8. Forany n > 0, there is a natural morphism of genuine C ,n+1-spectra

R TR, (R M) — infle,, (TR 0 (R: M)

where inflcpn : Spr — SpCP"+1 is the right adjoint of the geometric fixed points (—)*C». For 0 <
k < n+ 1, the genuine C x-fixed points of this map is equivalent to

n+l-k

) bd TR<pk—1>(R;MARp ),

n+1-k

R: TR<pk>(R;MARP
where the target is interpreted as zero when k = 0.
Proof. By adjunction, we have the truncation map of polygonic spectra

R: Res pn(THH(R; M)) — Res,ny(THH(R; M)).
After passing to TR, we get the a map of quasi-finitely genuine Z-spectra

R TR(Res pne1)(THH(R; M))) — TR(Res, o (THH(R; M))).

We claim that by taking p"**!Z-geometric fixed points, we obtain the map of the statement. By
definition, the p"*!Z-geometric fixed points of the source are B<pn+1>(R; M). For the target, we
use that TR is an equivalence of categories on bounded below objects, and that under this equiva-

lence, the localisation onto the subcategory of (p")-typical polygonic spectra corresponds to that
onto the genuine C.-spectra. Thus,

n+1
P i ZB(RGS“);« ) (THH(R, M))) ~ B@Hl)(ReS(an) RES<pn>(THH(R, M)))
= B(l)rﬁl ) (Res(p”l ) (THH(Ra M)))
= lnflcpn (B(l,n)((R;M)))- O
Lemma?2.9. Let f : (R;M) — (S;N) be a morphism of connective spectral bimodules. Suppose that
f is1-connected, that is, it induces isomorphisms on 7, and surjections on , between the underlying
rings and the underlying bimodules. Then, the induced map
is I-connected for any n > 0 and any prime p.

Proof. For any n > 0, the induced map

THH(R; M *P") —s THH(S; N"sP")
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is 1-connected. This follows by looking at the homotopy fibres and noticing that the property of
being 1-connected is preserved under smash products and geometric realisations. In particular,
the claim holds for n = 0. The general case is proved inductively, by considering the commutative
diagram

THH(R; M)y, —— TR (R M) —— TR -1y (R; M)

|+ jf* lf*

THH(S; N )ye. . —— TR (pn (83 N) —— TR 11y (S; N),

where the left-hand map is 1-connected by the previous paragraph, and the right-hand map by
the inductive assumption. Hence, so is the middle map by the five lemma. O

Corollary 2.10. Let (R; M) be a connective bimodule spectrum. For any n > 0 and prime p, the
canonical map induces a natural isomorphism

7o TR (pny(Rs M) = 75 TR (pny (H7roR; HtgM).

With this lemma at hand and by using Theorem 1.6, in order to prove Theorem 2.5, we can
equivalently show that for every (discrete) bimodule (R; M), there is an isomorphism

W oi1,p(R; M) = 71y TR () (HR; HM),

natural in (R; M) and lax symmetric monoidal. In what follows unless necessary, we will often

suppress H and just write (R; M) instead of (HR; HM), keeping in mind that (R; M) is discrete.
We want to single out the formal properties and structure of TR which makes it possible to

construct the desired isomorphism. Let us define a functor 7, , : biMod — Ab for every n > 0,

by
Frpa(RsM) 1= 7y TR (pny (R M),

where we make the prime implicit to lighten up the notation. This functor inherits a lax symmetric
monoidal structure from the one of TR< pn)» a8 well as operators

F: Fo(R;M) — F,(R; M%®P) Vi F,(RM®) — F,.1(R; M)
R: Fpu(RM) — F,(R;M) T: M — F,(R;M)
01 Fo(RMEP) — F(R; MEP")

defined by taking 7, of the corresponding maps of TR . These operators enjoy the following
properties, and these are all we need for proving Theorem 2.5.

Proposition 2.11.

(i) R FandV and o; are natural group homomorphisms, with R and F monoidal transformations,
and 7 is a natural set valued map.
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(ii) Foralln > 1, the diagrams

F (R M) —2— 7, (R; M®P) FoR;M®) — 5 F\ (R M)
JR lR J{R JR
Fu(R; M) — F,_1(R; MEP) Fra(R;M®) L P (R M)

commute. Here, we use the convention that Fy = 0.

(iii) Foranyi,k > 0, we havecr =id, Ro; = o;R, and o) = ap as maps

+k

i+k i+k

Fu(R; (M®PYEP') = F (R MEP™) - F o (R; (M®P)&P") = F (R, MEP™),

Moreover, the maps

i+1

Vi Fu(R MO = F (R (M®P)8P) > P, (R; M®P)

and
F: Frn(®&MEP) - F (R, (M®)PP) = F (R MFP™)
are equivariant with respect to the projection C,is1 — Cpin1 /C,, = C i which sends 0, to 0;.

_ vPl k. A® MO
(iv) The following identity holds: FV =201 FalBMEP) - FW(R’MRP).
(v) Foranyn > 1, the diagrams

M —— F(R; M) M ———F,(R;M)
\ lR (—>®{ JF
Fn(R; M) M® = F,(R; M®P)

commute. The map 7: M — F;(R,M) is additive, it sends [R,M] to zero and induces an
isomorphism

M/[R,M] = F,(R; M).

In particular, we have M Op" ~ Fi(R,M ®p" ), and under this isomorphism, the action of o, is
given by permuting the cyclic tensor factors.
(vi) Foranyn > 1, the sequence

FiRME") L5 P (RAM) —2— P (R;M) —— 0

is exact.
(vii) Forany n > 1, the functor F, commutes with reflexive co-equalisers.

Proof. Part (i) follows from the naturality of the operators on TR and the fact that F, V, and the
action of the cyclic generator are maps of spectra and the monoidality of R and F follows from the
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lax monoidality of TR and TR ). Part (ii) follows from Proposition 2.8. Parts (iii) and (iv) follow
from Propositions 2.7 and 2.8 and the fact that F and V' are, respectively, restriction and transfer
of the C i -Mackey functor 7, of B<p,,>(R; M), and o; its Weyl action.

The first diagram in Part (v) commutes by definition of 7 for IR ny via the truncation of
71 ZPM — TR(R; M) and by Proposition 2.8. Let us show that the second diagram commutes.
Since 7 is defined from a map of Cn+1-spaces, it is compatible with the Frobenius. Thus, the
diagram

M —— F,1(R; M)

Tp
M*P —— F,(R; M%P)

commutes, where 7, is the value at Cpn+1/Cp,» of the map on 7,-coefficient systems induced by
the morphism of C.+1-spaces 7. It is then sufficient to show that 7, factors as the composite
M*P — M%P - F,(R; M®P) of the canonical map and the map 7 for the bimodule ps®p (recall
that we are assuming that R and M are discrete). By adjoining the infinite loop space and TR, this

is the case if the diagram of polygonic spectra

sh, L(EXM) —— sh, THH(R; M)

|

L(EXM®P) —— THH(R; MSP)

commutes, where the horizontal maps are the maps defining 7 under the adjunction, and the
vertical map is induced by the canonical map M*P — M®P. This holds by definition of the
horizontal maps.

The properties of F;(R; M) follow from the fact that TR<1>(R;M ) = THH(R; M) (Example 2.4)
and the definition of the cyclic action on THH(R; M/ rP). Part (vi) follows from the fibre sequence
involving the map R for TR, pn>(R; M). Let us show Part (vii). Given a reflexive co-equaliser

(Ry; My) &= (Ry; M) — (R; M)
in the category biMod of (discrete) bimodules, we need to show that

Fn(Rl;Ml) :; Pn(RO;MO) — Fn(R;M)

is a co-equaliser of abelian groups. Using the right Kan extension, the diagram
(Ry; My) == (Ry; M)

can be extended to a simplicial object (R,; M,) in biMod (explicitly, this can be done by tak-
ing iterated pullbacks which are computed underlying, as limits in biMod are). Upon taking
Eilenberg-MacLane spectra, we obtain a simplicial object (HR,; HM,) in the category of bimod-
ule spectra. Since smash powers and smash products of spectra commute with sifted colimits,
THH(R; M ’\RPk) commutes with sifted colimits of bimodule spectra for every k > 0. Thus, by
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induction on the fibre sequences
THH(R; M #P" ’ TR R;M . TR R;M
( ) )hcpk i (pk)( ) ) — (pk*1>( ) )
so does TR (k) for all k > 0. It follows that
| TR(pn—1>(HR.,HM.)| ~ TR(Fn—1>(|HR. |, |HM_ |)

After applying 7, on both sides and using Corollary 2.10, we get an isomorphism

7T0| TR<pn—1>(HR_;HM_)| =7 TR<pn—1>(H7l'O|HR,|;H7T0|HM_|) =7 TR<pn—1>(R,M) = Fn(R,M)

On the other hand, 7| TR<pn71>(HR,;HM .)| fits into the co-equaliser diagram
770 TR (pn1y (HRy; HMy ) == 71 TR (pn1y (HRy; HMy) — 70| TR (o1, (HR.; HM.)|,
which proves the desired result. O

Remark 2.12. The proof of Theorem 2.5 that we give just below works for any collection of functors
F,, with operators which satisfy the conditions of Proposition 2.11.

Proof of Theorem 2.5. Let (R; M) be a bimodule. We start by defining a map
In+1 : Wn+1,p(R;M) I Fn+1(R;M)

by taking a representative (m,, my,...,m,) of aclassin W, ., ,(R; M) to

n

Iia(mg,my,...,m,) i= 2 Vit (my),
i=0

where 7" : M®&P' — F, | (R;M®=P') is the map  for the bimodule M®xP', and we wrote
Vi Fpoi(R;M®P') — F, 1 (R; M) for the iteration of the map V. In order to show that I,,_;

is well defined, and ultimately an isomorphism, we need to define an analogue of the ghost maps
for F,.;(R;M). Definefor0< j <n+1,

W) = FIR™T: Fun(RM) — Fi (R MEP) Y 2= (MEP'/[R, MEP D = (MPP),

where for the latter identification, we used (v). We want to verify that under the map I, ;, this
map corresponds to the usual ghost map, that is, that the diagram

i I
[T, M& —5 P, (R; M)

(M)
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commutes. To see this, we first observe that using (iii)—(iv), the following identities hold:

p-1 p—1
jvj — pi—1 Jj=1 _ j-1 k Jj—=1 _ k Jj—=1y/j—1
FlVi =FITFyvi-t=F <201>V —<Zaj>F 14

k=0 k=0

p-1 p-1
= <Z 0?)(2 a;{p>Fj_2Vj_2 =..
k=0 k=0
p-1 ) p-1 . p-1 ot pi-1 )
(5)(54)(5)- 5 3 -
k k=0 k=0

0 k=0 o€C
as endomorphisms of 7, ;(R; M ®p'), It then follows that

n
w;l, (Mg, ..., m,) = F/R"™ Z Vit (my)
i=0

J
=F/ Z VIRt (m,),
i=0

where we used (ii) and in particular that R"JVi = 0 on F,,_,,,(R; M®?) if i > j. Further using
(v), (iii) and the previous paragraph, we get

J

J
PYvRem=3 5 orem

i=0 i=0 UEij /ij—i
j -
p
= 2 Z om; = wj(mo,...,mn),

which shows that the triangle above commutes.
Before showing that the map I,,,; descends to Witt vectors, we check that the morphism

n
W = (@p, ., Wy) 1 Fropn(R,M) — [P
Jj=0

is injective when (R; M) is free (or more generally when tr : (M (,‘?Pj)cpj — (M@ g injective,
see [7, Lemma 1.4 and Proposition 1.18]). For n = 0, the map w is just the isomorphism

FL(R; M) = M/[R, M].

Now inductively assume that

n—1
W= @p, ... Wyey) : Fru(®Rs M) — [JM2P)Y
j=0
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is injective. Consider the diagram with exact rows

n yn R
M), — Fpn(RM) ———— F(RRM) ———— 0

T

N n i\C_; DProj n—1 iC ;
0 —— (M7 —— [T (M) % [ M2 )r ——0

where the left-hand diagram commutes because of (ii), (iv) and (v). The commutativity of the
right-hand diagram is clear. The left-hand vertical map is injective since (R; M) is free. Assuming
inductively that the right-hand map is also injective, the standard diagram chase shows that the
middle map is injective as well.

For free (R; M), since w is injective, the definition of the relation defining W, ,(R; M) shows
that I, , descends to a well-defined group homomorphism

I, : Wn+1,p(R§M)_’ Froi1(R; M),

n+1

which is moreover injective. To see that it is also surjective, we consider the diagram

n vr R
(MS)c,, ——= W1 p(R M) —— W, ,(R;M) —— 0

lln«%—l J/IVL

n vn R
MO, —Vs P (R M) — s 7, (R M) —— 0,

The right-hand square commutes by the construction of I,, and from the fact that R commutes with
V and . The left-hand square commutes by the description of V" : (M ?P")Cpn = W1, (R; M)
of Section 1.2. The exactness of the top row follows from the results of [7] (see Section 1.2). Now
I, is surjective by (v), and by induction, so is the middle map by the standard diagram chase.

‘We have thus constructed a natural isomorphism

Inprt Wi p(REM) = Fp 1 (R; M)

for any free bimodule (R; M). Using the fact that both the source and target commute with reflexive
co-equalisers, this uniquely extends to a natural isomorphism on the whole category biMod. Also
using the naturality, one can see that the formula for the general I, is given as claimed above.

Finally, let us show that [, ,, is monoidal. Again, since ., and W, , commute with reflexive
co-equalisers, we may show this on the full subcategory of free bimodules. It is then sufficient to
see that

wj(InH(a) wI,,1(b)) = ijnH(a % b)
holds for all 0 < j < n. By definition w; = FJR"~17J and therefore it is monoidal by i), and

Wil 41(a) * 1,11 (b)) = Wi, 41 (a) * w;(I11(a)) = wj(a) * w;(b)

=wj;(a=xb)= wjln_l(a % b). m
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2.2 | The Mackey structure on the components of TR

We now identify the operators of TR and the Witt vectors under the isomorphism of Theorem 2.5.
By Proposition 2.7, there is a genuine C,.-spectrum E< pn>(R; M) whose genuine C px-fixed points

are the spectra TR<pk>(R;MARP"_k), and, in particular, the next result identifies the Mackey
structure of its components.

Proposition 2.13. Let R be a connective ring spectrum and M a connective R-bimodule. For any
n > 1, the following diagrams commute:

I, I,
W<pn—1>(7TOR; ﬂOM%p) ? Ty TR<pn—1>(R;MARp) W<pn>(7T0R; 7T0M) TJrl) Ty TR<pn>(R;M)
lv lv |x [#
Iy I,
W pmy (7o R; ToM) Tl> 7o TR (pny (R M), Wy (o R; ToM) ——— 7o TR (pr1y (R; M)
W<pn>(7T0R; 7T0M) IH—;1> Ty TR<pn)(R,M) W<pn-1>(7TOR; 7T0M,(§<Pl) %} Ty TR(l]n_l)(R;MARP‘)

Jr I Js Jo

I

. ® . i I, i
W () (7TgR; oM ) —— 70 TR () (R MP2P), W oy (R TpMEP ) —— 75 TR (1) (R MP*P")

I L

In+
W iy (oR; M) —=2= 705 TR (y (R; M),

In particular, the maps Iy, for 1 < k < n+ 1, determine a monoidal isomorphism of C,.-Mackey

functors between IR, pn>(R;M ) and the Mackey functor Cyc = W ey (moR; meM gpnfk) equipped
with the restriction maps F and the transfers V of §1.2.

Proof. By Corollary 2.10, we can assume that (R; M) is discrete, and we prove this theorem
for W, ,(R; M). Our argument will moreover work for any collection of functors 7, satisfying
Proposition 2.11.

The commutativity of the first diagram follows from the construction of the map I,,. Indeed, it
suffices to show that the diagram commutes after pre-composing with the projection

n—1

[T a®)8 = w,, (R MP).
i=0

We then compute

n—1 n—1

VI, (my,..m,_ )=V Z Vit (m,) = Z viFrln==ion,)
i=0 i=0

n n
= Z Vifn_l_(i_l)(mi_l) = Z VlTn_l(ml_l) = In+1(0, mo, eey mn_l) = In+1V(m0, eey mn_l).
i=1 i=1
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Here, we use the description of V' on representatives as in Section 1.2 (see also [7, Proposition
1.23]), the identification

i+1

(M8 = MSP

and that under these identifications,

eIt = ) (MR = MPP o Pl g R (MEP)PP) = P (R MEPT),
which follows from the naturality of 7.
Next, we check RI, ., =1I,R. Again, it suffices to check that the identity holds after
pre-composing with the projection
n N
[ M% = Wi, (R M),
i=0

and we get that

n n
Rl 1(mg, ..., m (Z Vit i(m, )) = ) RV (m;)
=0 i=0

n—1

= Z Vit 1" (m,) = I,R(m, ... m,).

i=0
Here, we have used the description of R: W, +1, p(R;M ) — W, p(R;M ) as in Section 1.2, as well
as (ii) and (v). In particular, we have used RV"(m,,) = 0.

For checking the commutativity of the next two diagrams, we employ the ghost components.

We first check that

WFI,,, = WI,F

in H;:; M@ This implies the result when (R; M) is free since in this case w is injective as
observed above. For general (R; M), the result then follows by naturality. We verify the latter
identity for every component0 < j < n—1:

wI,F=wF=w, =W, I, =F"R", , =FR"FI,,, =w,FI,,,,

where we have used (ii) and [7, Proposition 1.25].
For the fourth diagram, we check that the identity o,I,, = I,,0; holds. We can again assume that
(R; M) is free and compute componentwise that for 0 ] n—1:

w i1,0; = w;0; = 0y W, —alﬂwJI w;o;ly,,

where we used (iii).

The compatibility with 7 is immediate from the definition of I,,.

In order to identify, the full Mackey structure simply notices that for every 0 < k < n, there is
an equivalence of C x-equivariant spectra

Cpn . o A pn—k
ReSCpk (B<pn>(R’ M)) - B(pk>(R’ MR )
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It follows that the transfer of TR <p,l>(R;M ) from C i1 to Cpr agrees with the same transfer for

IR oy (R: M ArP"™ ) which by the first part of Proposition 2.13 applied to the bimodule M"zP" ™
agrees with the Witt vectors Verschiebung. A similar argument identifies the lower restrictions
and the Weyl actions. Cl

Remark 2.14. As in Remark 2.12, the proof of Proposition 2.13 works for any collection of functors
F, with operators which satisfy the conditions of Proposition 2.11. In fact, the isomorphisms I,
are the unique isomorphisms which satisfy Proposition 2.13.

Remark 2.15. Suppose that R is a connective E  -ring spectrum and M a connective E  -R-algebra.
In this case, we expect that analogously to the map 7 (Section 2.1), one can construct multiplicative
maps

N: Ty TR<pn—1>(R;MARp) —> 7T TR<pn>(R,M)

for every n > 1 which endow 7, TR <p,,>(R M) with the structure of a Cpn-Tambara functor. These
maps should be characterised algebraically by the commutative dlagram

IVI
W 1y (7o R; oM EP) ———————— 710 TR (1 (R; M"*P)
Nl JN

W<pn>(7T0R;7T0M) Ty TR<pn>(R,M)

In+1

where the map N on the left is the norm operator of Proposition 1.19. In particular, the maps
I, for 1 <k <n+1, should determine an isomorphism of C, .-Tambara functors between

NOB< pn>(R; M) and the Tambara functor Cp = W, (moR; oM 8p H) equipped with the
restriction maps F and the transfers V' and the norm N of §1.2.

‘We leave these observations about the norms on TR as open questions and encourage interested
readers to work out the details.

2.3 | Free Tambara functors and Witt vectors

In this section, we describe the free C ,».-Tambara functor in terms of Witt vectors with coefficients.
This is a result analogous to Brun’s [5, Theorem B] which establishes a relationship between these
Tambara functors and the usual Witt vectors of a commutative ring.

We recall that a C»-Tambara functor T consists of a commutative ring T(Cpk) with a Cpnte-
action for every 0 < k < n, together with equivariant maps

N
T(Cpk+1 ) F‘) T(Cpk)

forall0 < k < n — 1, where F isaring homomorphism, V is additive and R is multiplicative. These
satisfy certain relations, which can be encoded by declaring T to be a finite products preserving
functor on a certain category of double spans (see [22]). We already saw in Remark 1.20 that for
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every commutative ring A, the functor W <pn>(Z; A) that sends C pk tO the commutative ring

n—k
W oy (Z;ANC i) 1= Wi (2, A®PT )

and equipped with the operators of §1.2 is a C,»-Tambara functor. Let U be the forgetful functor
that takes a C ,»-Tambara functor T to the underlying commutative ring T'(1).

Proposition 2.16. The functor that takes a commutative ring A to E< pn>(Z; A) is left adjoint to U.

Proof. Let us start by defining a natural transformation

homen -Tamb(m (z;A),T) — homRing(Ar T(1))

(")
from the morphism set in the category of Tambara functors to that of the category of commutative
rings. We send a morphism of Tambara functors « : y@n)(z; A) — T to the ring homomorphism

dRIR---®1 n
frA—2200 per" 20y,

where « is the value at the trivial group of the natural transformation «. We notice that by

assumption,  is C,»-equivariant, and therefore, f does not depend on the choice of ordering
made in the first map. Moreover, & can be recovered from f, since by equivariance

n

p
a(a; @+ ®@ay) =a)(a;®1Q @1+ q(1® - ®L®a,) = Hoénf(al),
=1

where 0,» € Cp» s a generator (in other words, A®P" is the free commutative C pn-ring on the
commutative ring A).

In order to see that the map above defined on hom sets is a bijection, we first assume that
A = Z[X] is the polynomial ring on a set X. We can then define an inverse as follows. Given a ring
homomorphism f : Z[X] — T(1), wedefine o, : Z[X 1®P" = T(1) by the formula above. In order
to define “Cpk for 0 < k < n, we recall from Proposition 1.14 that the group W, pk>(Z 1 Z[X ]@pnfk) i
free abelian, generated by the elements Vi‘L'k_i(m1 R--QR mpi),where 0<i<k,and(my,..., mpi)
ranges through the orbits of the C,i-action on the p'-fold product of additive generators of the free
abelian group Z[X 8" that is on the monomials my in the set X Up" Since  relates to N by
Proposition 1.21 and a needs to be compatible with the Tambara structure, we must define occpk

by
acpk (Vil'k_i(m1 R ® mpl.)) = ViNk_ioco((ml R ® mpl.) ® 1®(pk—z_1))’

where V and N on the right-hand side are the transfer and norm maps of T, and 1 is the unit of
7[X ]®pn_k+l. Since these are free generators, this gives a well-defined additive map

n—k
ac .t Wiph(ZZIXIPP) — T(Cpo),

for every 0 < k < n. This map is moreover multiplicative, since by the formula of Proposition 1.14,
ac sends the product of two generators, with i < j, to (abusing notation below, we will denote
p
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the unit of some tensor powers of A just by 1)

ac (Ve @ w) - Vit @) uy) = ac, zc‘, VI I (0@ u)®™ - (@ 0,)
ge p[

> VINS T (@@ )PP - (@ u) @190

ogeC ;
Pl

Z VIN¥iq,

0€C K /C ki

x| I wo®-eu)®18? ). (8 @u,)®18¢ D)

WEC i /C -
. . k—l_ . i k_'_
= VINK (U ® -+ @ up) @ 18P =Dy Nk Toatg(0; ® -+ @ V) ® 18(P7-1))

_ i S j
= ac , (V' @Y u) - ae (VI I(@f,0y))

The fourth equality holds by an argument analogous to the calculation of the multiplicative
structure of Proposition 1.14, by using the Mackey and Tambara identities of T'.

Let us now show that the collection of maps « is compatible with the Tambara structures. The
map o commutes with the transfer maps, since these are additive and on generators

i k—i i nrk—i k—i_
Vac Vit my @ - @ my) = VVINFap(m) @ -+ @ m,) @ 1877 D)
— Vi+1Nk+1_(i+1)aO((m1 R ® mp[ ® 1®(pk+1—(i+1)_1))
— ank+1 (Vi+1‘[k+l_(i+l)(m1 Q& my; ))

= acpk+1 (VViTk_i(ml R ® mpi ))

A similar argument shows that « commutes with the restriction maps F on generators, and there-
fore on all elements since F is additive. Finally, let us show that « is compatible with the norms.
The norm of a sum of elements is the sum of the norms of those elements plus a sum of transfer
terms, see, for example, [1, Lemma 5.2] for a precise formula. Since we already showed that « is
compatible with transfers and multiplication, it is sufficient to show that it commutes with the
norms on additive generators. By [14, Corollary 2.9], for abelian p-groups, norm of a transfer can
be described as a transfer applied to a specific polynomial only depending on the group under
the consideration. Since we know that « is multiplicative and commutes with transfers and Weyl
actions, this shows that a also commutes with norms.

This shows that « is a well-defined map of Tambara functors. Using again that the Witt vectors
above are free as abelian groups, one can easily see that the map that sends f to « is an inverse
for the map above, showing that the Witt vectors are a left adjoint on the subcategory of free
commutative rings.
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Now assume that A is any commutative ring, and consider the functorial reflexive co-equaliser
diagram of bimodules

(Z; 2| 7| Al)) —=3 (Z; Z[A]) — (Z; A) .

Since the category of Tambara functors is a category of product-preserving functors, and reflexive
co-equalisers of product-preserving functors are computed pointwise, the diagram

W ZZIZIA) == W, (ZZA) —» W, (Z:A)

is a co-equaliser in the category of C »-Tambara functors. Thus, for every C »-Tambara functor T,
there is a bijection
(Z;Z[AD) ,T)

homCPn -Tamb(y (Z; A)! T) = homcpn-Tamb (COhm( w (Z; Z[Z[A]]) :; w

(p") —(p") (p")

= lim ( homg,,<tamb(W ., (Z: Z[Z[A]]). T) =3 homc,,-tamp(W. ., (Z: Z[A], T) )

(p" (p"

= lim ( hompy(Z[Z[A]], T(0)) = homgu(Z[A], T(0)) )
= homgiy, (colim( Z|Z|A]ll = Z[A]), T(O)) = homg;ye(4, T(0)),

where the third isomorphism follows from the free case above. It is moreover not difficult to see
that this bijection coincides with the natural transformation defined above. 1

Remark 2.17. 1t is also possible to prove Proposition 2.16 from the results of [23], by identify-
ing E<pn>(Z;A) with the components of the norm via Remark 2.15, and use that Necp " is the
left adjoint of the forgetful functor from genuine C,.-commutative equivariant ring spectra to
E,-ring spectra.

Example 2.18. Let us describe explicitly the free C,-Tambara functor on a commutative ring A.
This is the diagram

L(A) = ( Cp (_)A@P <—1‘;
N

Wop(Z; A) = AX (A®P)c, ),

where the C p-action on A®P is the standard one, and

F(a,[x]) = a®P + Z ox

oeCp
V(x) = (0, [x])

N(x) = (1, (x), 0),

where 1, : A®P — A is the multiplication map. The ring structure on the right-hand term is that
described explicitly in Examples 1.11 and 1.12.
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We now explain the relationship between this result and [5, Theorem B]. Let U’ be the forgetful
functor from C pn -Tambara functors to commutative rings with C prn-action, which sends T to T(0)
with its C.-action. Let L' denote its left adjoint.

Theorem 2.19 [5]. Let A be a commutative ring, and let us regard A as a commutative ring with the
trivial C jn-action. There is a natural ring isomorphism

L'(A)C,n/C

) =W pny(A).

We remark that since the restriction of the C.-Tambara functor TR, pn>(A) to the subgroup
Cpn1 is the Cpn-1-Tambara functor IR, pn>(A), Brun’s theorem, in fact, provides a natural
isomorphism of Tambara functors

L,(A)(Cpn /Cpi) = W<pz>(A),

where the Tambara structure on W, p(_)>(A) is defined by the Frobenius maps F, the Verschiebung
V, and the norm maps N of [1]. The unit and the multiplication map of A define a morphism
of commutative monoids (Z; A®P"™") > (A; A) in the category of bimodules, and thus a ring
homomorphism

m: W0 (Z;A%PT) — W0 (A;A) = W, (A),
which by naturality of the operators is a natural morphism of Tambara functors.

Proposition 2.20. For every commutative ring A, there is a commutative diagram of C »-Tambara
functors

W iy (Z; A®P") ——=—— L(A)(Cpn /Cp) = L'(A®P")(C 0 /C )

ml JL’(ﬂpn)

W (i (A) = L'(A)X(Cpn /Cp)

where the upper isomorphism is from Proposition 2.16 and the lower isomorphism is from
Brun’s Theorem.

Proof. For convenience, we denote by m also the map L(A) — L'(A) obtained by transporting m

through the horizontal isomorphisms. Since L’ is a left adjoint, the maps m and L’ (upn) agree if
and only if

(U'L'(upn)) o = U'(m) o 1),
where 7 : id — U’L’ is the unit of the adjunction. These agree since
U,L,(:up") = :up” = U,(m)

are both the p"-fold multiplication map. O
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APPENDIX: THE DWORK LEMMA

A.1 | Congruences of tensor p-powers
Once and for all, we fix a prime number p and we regard the cyclic groups C,; as subgroups of

the complex circle, so that we have chosen generators o; = 27/ of C i With the property that

pk

Cyj+k =0;

J

for every j,k > 0. For every abelian group A, we equip A®P’ with the C pi-action on which the
generator o; acts by

aj(al R apj) = apj ® a; R Q® ap-i—l‘

We let (=)® : A - (A®P)°p be the (non-additive) map that sends a to the p/-fold tensor
producta ® -+ ® a.

The following is analogous to the fact that if two elements a,b € A of a commutative ring A
are congruent modulo p, then aP* and bP" are congruent modulo p¥*!. It plays a fundamental
role in the proof of the Dwork Lemma A.8.

Proposition A.1. Let A be an abelian group, and let a and b be elements of (A®P) e which are
c
congruent modulo tr,”. Then, for every k > 0

k k Cok+1
w1(@®P) = wpy (B®P )y mod tr,”

where wy, , is the automorphism of {1, ..., pP***1 that reverses the order of the product factors, defined
by C()k+1(i1, i2, ceey ik+1) = (ik+1, ik’ ceey il)for all 1 < il’ i2, ceey ik+1 < p.

Let 7, be the element of the symmetric group X ,» of automorphisms of the set {1, ..., p}*"* that
cyclically permutes the n-coordinates

T}’l(il’ cee sy in) = (in, il’ i2, eeey in—l)

for all 1 <iy,...,i, < p. The key combinatorial ingredient for Proposition A.1 is the interaction
between 7, and the cyclic permutations, which is summarised in the following lemma. We write
{1,..., p¥* in lexicographical order, and think of it as the disjoint union of p”~! blocks of size p,
or of p-blocks of size p"~!.

Lemma A.2. The permutation t, € Z . satisfies

-1 . .
T, 0,7, =(o; Uid,n_p) 0 (0,4 Xid})
1,0, T, = (0,_y Hidpn_pn-1)(0y X id pn-1)

or every n > 1, where (0,,_; X id,) permutes the p"~" blocks of size p by the generator of C jn-1, an
ft here (0,_; X id) he p"~! blocks of si by th fC, d
(oy Wid,n_,) applies the generator o, of C, to the first block, and similarly for the second equation.

Proof. The equations can be directly verified using the description of the cyclic permutations
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-

(iyoosiy +1) iy <D
(il’ ’in—l + 1, 1) ,in =D, in—l < p
Un(il""’in) =1 :

(i1+1,1,...,,1) ,in=...,i2=p,i1<p

(1,...,1) ’il’l:""ilzp
(15w iy g +1,1,) yip1 <P
(il’ cee g in_z + 1, 1, l}’l) N il’l—l = p, in_z < p
(01 Xid)(iy, wee s B) =4 :
(4, +1,1,..,1,i,) i1 = iy =PI <P
(1,...,1, ll’l) ,in_l = "”il = p
(iqs oee s i) J(s i) # (@, .0, 1)
(0'1 H idpn_p)(il, cee sy in) =3 (1, veey 1, in + 1) N il’l < p, (il’ ceny in—l) = (1, vee y 1)
(1., 1,1) iy =p, (i) =1, .0, 1),
and the analogous formulas for (¢,,_; idpn_,n-1) and (o7 X idpn-1). O

Proof of A.1. We start by observing that w; ;0@ is the composition of a block sum of cyclic
permutations of C), and of a permutation of blocks of size p. Thus, since a is in (A®P)Cp

k k
o'k+1c‘)k+1(a®p )= CUk+1(a®p ),
and similarly for w, +1(b®Pk). Thus, both w), +1(a‘X’Pk) and w, +1(b‘X’Pk) belong to (A®PTYCpkH g

c
well as the elements of the image of tr,” !

We prove the congruence by induction on k. For k = 0, the claim holds by assumption. For the
induction step, we recall the relative binomial formula

C
r+9)®=r® 4+ ¥ w1 @ ®t)),
WAV ERY/C,

where the sum runs through the orbits of the action of C,, on the subsets of the p-elements set,
and t}.’ =rifjeV,and t}/ = s otherwise. By supposing that the lemma holds for k — 1, we see
that

®p
C‘)k+1(a®pk) = Wpy <(a®p"*1 >®p) = wk+1( <b®pk1 + @ trgpk (C)> )
®p
= wye44(id, xwk)< (a)k (b‘g’pkf1 ) + trgpk (c)) >
®p
= f;i1<(wk(b®1’“) b (c)) )

®p
k _ C k _ C
=wk+1<b®f’>+rkil<<”f ©) ) Y qhus e e,
{P£UCP}/C)
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- c
where sV = cokb@Pk "if j € U, and otherwise it lies in the image of tr,” ‘. Letus analyse the terms
of the last sum. Let us suppose without loss of generality that a transferred term lies in the first
tensor factor. Then, the term of the sum corresponding to a subset U is

k

p .
Ty T P(tr ) ® Y Q- ® sU) = Z T, (0] X idpk)(O']l{ Hid jer_p)(x @ 55 ® - ® sg).

=1

o]

Let us write any n € {1, ..., p*¥*1} as pl + j for unique [ €{0,1, ..., p* —1}and j € {1, ..., p}. It is
not hard to verify that

PlAj ~1 _ (gl+1qy ... 17140 17 .00 INCAT s i
Tir10441 Tt = (o U Lo Uoy - Loy )(oy xid k)

J p=j

= (o) Xid )0} U+ o} Ho 1 - o),

p—J J

by induction on »n from the identity of Lemma A.2. Since all the terms s;" for j =2,..,p are
invariant under the Cx action, we can rewrite the expression above as

T () @Y @ - -®s)

k

p pr-l
_ O l 1 I+1 I+1 U U
= Z T (0 Xidp)(op U+ o o - Ho " ) x®s, @ - ®Sp)
j=1 1=0 _
p-J j
p pk-1
- pl+j -1 U .. U
= Z T T (X ®s; @ ® sp)
j=1 1=0

= T ®s) @ ®s))
n=1

C
pk+1

=tr,” T (x®s) ® - ®s)).

c
This shows that the last term of the expression above lies in the image of tr, P , and we are left

c
with verifying that the same holds for ‘cl:il((tre Pt (c))®P) for every k > 1. We recall that the relative
multinomial formula for a sequence of n-elements b, ..., b,, of an abelian group B is

(by + - +b,)®P = 2 bray ® = ® by,
f:p-n

where the sum runs through the set of maps f : p — n. Now let us consider the case where n = p*

for some k > 1. The group C .+ acts freely on the set of maps {f: p— pkiby

fle') ifi#1

(O N = {o.kf(o-l—li) ifi=1
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The powers of the generator act as

plﬂf)() {Jf{f(al_ji) if j+1<i<gp

Thet1 —j L
+ O'L_Hf(O'lJl) if 1<i<y,

where I € {0,1, ... ,pk —1}and j € {1, ..., p}. Indeed, the generator acts freely since if o, f = f,
then mod p* we must have

fp)+1=fO)=fQ2) == f(p),

Wthh is a contradiction. Similarly, if f has non-trivial proper stabilisers, we must have that f =

for some n € {1, ..., k}. By writing p" = p(p"~! — 1) + p, we see that we must have
k+1 g

£ = @7 1) =0 foP) = f(i) + p" mod pF,

which is a contradiction. We can therefore decompose the multinomial formula as

1
pk+

®p —
(by + -+ +by)®P = Z 2 b(a,’{'+1f)(1) Q- ® b(cr,’gﬂf)(p)
{f+ p=p*Y/Cppen =1

pr-1

S ED»)

{f: p=>P*Y/C e J=1 10
<b #1767 ® 77 ® Bt o jy ® Dot g 41y @+ B bt p))

k
We apply this formula to the sequence o,c, o?c, ..., af c of the abelian group B = A®Pk, and find

k
the expression

-1 Cpk op
Tt (tre (C)>

k

p—1 I+1 ¢ =] l+1
= 2 2 T“L((U;ik fey >® ®< s6'D )

{f+ p=P*Y/Cpper J=1 1=0

ol fe( c
® <akkf( ) >® ®< ol f(a7'p) >>

= T (ol“H HO’I+1H0H HU)Uindk
k+1 1 p

{f+ p=p*}/Cppqr J=1 1=0

% (oi(l)c Q- ® o_i(p)c>

J p=j
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|
—

27 l+j F fp)
_ pl+j_—1 p
= Z 2 Te+1 T k+1(ok c® Q0 C)
{f+ p=p*Y/Cppr J=1 1

C -
= Z tr, ptt T];_'l_l <0£(1)c R ® ai(p)c),
' p=PHCppra

]
=]

which concludes the proof. O

A2 | External Frobenius and the Dwork Lemma

We give a characterisation of the image of the ghost map when the bimodule (R; M) is equipped
with an ‘external Frobenius lift’. In the following, we will always denote by ® the tensor product
over the integers.

Definition A.3. An external Frobenius on a ring R is a ring homomorphism

¢: R — (R®P)‘p,

which is congruent to the pth power map (—)®P modulo the image of the additive transfer map
c
tr,” : (R®P)Cp — (R®P)‘r, which sends x to Eaecp o(x).

Now let M be an R-bimodule. The abelian group (M®P)r is a (R®P) r-bimodule, where the
bimodule actions are factorwise. If R has an external Frobenius ¢, we may then consider (M®P)C»
as an R-bimodule by restricting scalars along ¢ : R — (R®P)‘».

Definition A.4. Let (R, p) be a ring with an external Frobenius. A Frobenius on an R-bimodule
M is a morphism of R-bimodules

¢: M — (MEP)r,

which is congruent to (=)®P : M — M®P modulo the image of trecp : (M®P)Cp — (M®P)‘r. By
saying that an R-bimodule M has an external Frobenius, we will implicitly imply that R also has
an external Frobenius.

Example A.5.

1. If aring R has an external Frobenius ¢, the composite
@ ® C MP
R — (R®P)*r — R

with the p-fold multiplication map is a Frobenius lift on R in the usual sense, since
,up((—)®P) =(—)P and p, trfp = pu, modulo [R,R] . When R is commutative, this is a
ring endomorphism of R which is congruent to the pth power map modulo p. For a non-
commutative ring, this is in the sense of [9, §1.3], an additive endomorphism of R which
preserves the commutators subgroup [R, R], and which is congruent to the pth power map
modulo pR + [R,R].

2. The ring of integers has an external Frobenius, defined by the canonical isomorphism Z =
(z®P)» whichsendsnton(1®1® - ® 1).
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3. Letusdenote by Z(X) := @xZ the free abelian group on a set of generators X, which we regard
as a Z-bimodule. Then, Z(X) has an external Frobenius

¢: Z(X) — z(X)®P = Z(X*P),

which is defined by sending a basis element x to the diagonal basis element x®P = (x, ..., x).
We show that that this is congruent to the map (—)®P modulo additive transfer. Let f be a
linear combination in Z(X). By induction, we can assume that f is the linear combination of
two basis elements f = nx + my. By the relative binomial formula,

C
f8P = (nx +my)®P = (0)®P + (my)®P + Y w1V @ @),
B#UCp}/C)

where C, acts on the subsets of the p-elements set by the image map, and tg =nxifkeU
and tlg = my otherwise. Thus,

£8P = (nx)®P + (my)®P = nPd(x) + mP$(y)®F mod tr-” |

Finally, n? is congruent to n modulo p, and similarly for m?, and therefore, there are integers
k and [ such that

FOP = ng(x) + mp(y) + pd(lx + ky) = p(nx + my) + tr. > (¢(Ix + ky)) = $(f) mod tr.”,

where the second congruence holds since the transfer acts by multiplication by p on the fixed
points of Z(X)®P.

4. A completely analogous argument shows that polynomial rings Z[X] and non-commutative
polynomial rings Z{X} have external Frobenius maps which sends x to x®P. These refine the
standard Frobenius lift in the sense that 1,,¢ recover the usual Frobenius lift endomorphisms,
and they are moreover multiplicative.

5. Let us denote by R*(X) := @x(R ® R) the free R-bimodule on a set of generators X, and
suppose that R has an external Frobenius ¢. Then, R®(X) has an external Frobenius

CP
<@(R ® R)®P>

Xxp

¢ R°(X) — (R(X)®P)“»

IR

IR

P ®ReR*Hre P RIR,

(x*P)Cp (X*P\A)/C)

which is the unique morphism of R-bimodules that sends a basis element x to (x, ..., X) in the
first summand. It sends an element r ® s in the x-summand to the element y(p(r) ® ¢(s)) in
the (x, ..., x)-summand, where y is the shuffle permutation which acts as

X("l®rz®"'®Vp®s1®52®"'®sp)=("1 ® s, ®”2®Sz®"'®l’p®sp)-

We show that ¢ is congruent to the power map (—)®P modulo transfer. As in the example
above, it is sufficient to show this on the sum of two elements (r ® s)x + (t ® u)y, and by the
binomial formula

(r®@s)x+ (@ uy)®? = (r ® $)x)®? + ((t @ u)y)®? mod trgp )
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Therefore, it is sufficient to show that ¢((r ® s)x) = y(e(r) ® ¢(s))(x,...,x) is congruent
to (r ® s)®P(x, ..., x) modulo transfers for every r,s € R and x € X. Since ¢ is an external
Frobenius on R, there are v, w € R such that

$((r ® $)x) = 2((r®P + tr. P (1)) ® (58P + tr- " (WY)(X, ..., X)
= (x(r®? @ s%P) + x(1))(x, ..., x)
=r® s)®1’(x, vy X) + x(M)(x, ..., X),

where T € R® ® R®P is a sum of transfers of R®P tensored with a fixed-point of (R®P) » (in
either order). Thus, we need to show that y(T) € (R ® R)®P is a transfer. We show this when

c
T = a ® tr,” (w) for a fixed element a € R®P, and

@@ W)= Y x@®cw)= Y ro@eow)= Y oxla®w)

oeC, oeCp oeC)p

= trecp x(@aQw),

where the second equality holds because a is a cyclic invariant.

6. A construction analogous to the previous example shows that if R is commutative, M is a free
or free commutative R-algebra, and if R has an external Frobenius, then M has an external
Frobenius which is multiplicative.

If M is an R-bimodule with an external Frobenius and n > 1 is an integer, we let

n—1 n—1

¢®P - MO, p®P"

be the composite of the map that sends m; ® - @ M1 to ¢(m) @ -+ @ p(Mmn-1) €
(M®P)®P"™" and the canonical isomorphism (M®P)®P"" =~ M®P" that sends a generator m; @
Q@ Mpn to

(ml ® ot ® mp) ® (mp+1 ® ot ® m2p) ® o ® (m(p"—l—l)p+1 ® o ® mp")'

This map is not well behaved with respect to the cyclic action. In particular, we want to modify
this map in such a way that it restricts to a group homomorphism on cyclic invariants. We recall
thatz, € X, is defined by

Tn(il’ ey il’l) = (il’l’ il’ i2, ey il’l—l)

forall1 <iy,...,i, < p.

Lemma A.6. Let M be an R-bimodule with an external Frobenius ¢, and let n > 1 be an integer.
The map

. ®pn—1 ¢®p’l*1 ®pn Tn ®pn
bp1: M — M®P - M

satisfies the following properties:

c n n
1. It is congruent to (—)®P modulo the image of the transfer tr,” : M®P" — (M®P" ),
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n—1 n
2. It descends to a group homomorphism ¢, MRP" — MR?" which satisfies $,_,0,_, =
0,$n_1, Where oy is the chosen generator of C,. In particular, it restricts to a group
homomorphism

Bur T (MRP)Err — (MRP)Cr,

. k k+
3. Foreveryi,k > 0 and element m; € M®P', we have ¢k+i(mlf®p )= mlf@p

1 C k+1
mod tr,”

Example A.7. Let us consider a free abelian group Z(X) with the external Frobenius that sends
x to (x,...,x) in Z(X*P) = z(X)®P. Under the isomorphism Z(X*P") = z(X)®P", the higher
Frobenius ¢,,_; sends a generator (xy, ..., Xpn-1) to

1 (Xq5 ey X pn1) = (X, ey Xpno1, X5 s Xty eeey Xy ey X)),
n—1 .
whereas ¢®p sends it to (Xq, ..y X715 Xgy e s Xy oev Xpn-i, ey xpn—l).
Proof of Lemma A.6. We start by showing that ¢,,_; descends to a map on the cyclic tensor powers

over R. Let us consider the commutative diagram

h—1
-1 $r

M®P s M®P" s M®P"

| l |

n—1 n—1 v n—1
MO (MEP)P — (M®P) O 5 MO
s

Tn

The bottom-left horizontal map is well defined because ¢ is a map of R-bimodules, where the
bimodule structure on the target is via the external Frobenius ¢ : R — (R®P)“» of R. The middle
bottom horizontal map is the projection map that regards M®P as an (R®P)“r-bimodule. Thus,
we need to show that the permutation 7, gives a well-defined map on the bottom-right. We show
that it is well defined with respect to tensoring over (R®P)“» for the first tensor factor, the others
are similar. For every m € M®P" and r € R®P, we need to show that

T,(m-(r @ 190" PY) = 7, (1% @ r @ 19" 2P)) . ).

Since in the target we are tensoring over R, we can turn the right action of an element of R®P"
into the left action by a cyclic permutation of this element, and by Lemma A.2,

,(m - (r @ 180" ")) = 7,(m) - 7,(r @ 18P"~P)) = (0,,7,,(r @ 18¢"~P))) - 7,(m)
= (ty(0 Uidyn_) © (0,_y X 1d,)(r @ 18@"~P))) - 7, (m)
= (1,(1%P @ r @ 18%"2P)) . ¢, (m)
=1,((1%° @ r @ 18" 2P)) . ),

Let us now show that ¢, _; and (—)®” are congruent modulo the transfer map. Let x = Y a; ®
-+ ® a,n-1 be an element of M®P"' and b; € M®? such that $(a;) = a;RF + trecp b;. Then, in
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M®P", we have that

a1 = Y 1y (@) ® - ® ap 1) = Y 1,((@F +1r,” b)) ® - @ (@, + try” b))

pl’l
= an(a?p®...®a§£1 + Z t¥®®t1{)/n—l)
@#chn—l
=2(@®~®au )+ Y T, ®- &1,
@£V cpn-1

The inner sum runs through the non-empty subsets of the set with p"~! elements, where t;/ =
C P . . .
tr,” b; if j € V, and t” = a®P otherwise. Each of the terms of this sum contains at least one

transferred tensor factor, let us say for simplicity the first one. Then,

Cc
Tn(tY - ® th—l) = Tn(trep bl ® t;/ ®-&® t;n—l) = Tn(( Z U(bl)) ® t;/ ® - ® th—1)

oeCp

= D o) @ @ ®1),)

creCp

2 @) @) ® - ®alt], )

creCp

Y (o xidy)r, (b, @8 ® @1V, )

aeCP

C
=tr," 7,(0; 1Y @ - ® tgn_l),

where the fourth equality holds because t}/ is C-invariant for every j. It follows that

B0 ()= Y (ay ® ~ ® ap )PP mod tr,”.

Let us show that this is congruent to the pth tensor power of x = Y a; ® -+ ® a,n-1. By induc-
tion, we can assume that x is the sum of two elementary tensors x = a; ® - ® apn-1 + aq®-®
a’ _,and
pn—l 4
X = (@, @+ ® ) + (0| @+ ®a, )+ Y U@ @s!
G#UCp

C
=(@® - ®au ) +@®-®d, )+ Y ] ® s,
{#+£UCP}/C)p

where sj[.J =a;® - ®ay-1ifj € U,and sﬁj =ad/®® a; ., otherwise. The last equality holds
because sjl.] is constant for different values of j € U, and C,, acts on the proper non-empty subsets
of p by cyclically permuting their elements. This concludes the proof that ¢,,_; and (—)®P are

CP
congruent modulo tr, .
Now let us show that ¢,,_; is equivariant. By the relations of Lemma A.2,

n—1 . . n—1
CyPp1 = 0,7,¢%P  =1,(0, 1 idpn_p) 0 (0,1 X 1dp)¢®p
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— : ®p"t

=7,(0y Uidyn_p)¢®F 0,4
n—1

= Tn¢®p Op_1=Pp_10n_1-

The fourth equality holds since ¢ takes values in the invariants (M®? )Ce.
For the last statement, we calculate that on representatives

k+i

®pF\ _ ®pF\ _ i k
Preri(m; ) = Tpeyi1 9P (m; ) = Ty i (B m)®P)

= (Teyy X id (7141 B m)®P) = (14, X id,)(@im)®P")

. k . k+1 C i
= (@1 X id)(($m)®P) = (@ yy X id,)(m® ) +tr,”

k+1 C i
= m?p +tr,” +1,
where the fifth equality follows since 7)., = w1 () X id)), and (¢l-ai)®Pk is invariant under the
action of X . The sixth equality holds in M®P*""! by the congruence of Proposition A.1, since ¢;

is congruent to (—)®P modulo tr as elements of M®P™"" O

Theorem A.8 (Dwork Lemma). Let M be an R-bimodule with an external Frobenius ¢ : M —

(M®P)°p. A sequence (by,by,...,b, ;) of H, O(M@pj) *' lies in the image of the ghost map
w: W, ,(R;M) - H::;(M?pj) " if and only if

Cpi+l

¢;(b;) =bj,, mod tr,

for every 0 < j < n—1, where the congruence is modulo the image of the additive transfer map

c
tre pitl . M(‘?p N (M(;)le) ey

J+1

Proof. Let us start by showing that a sequence in the image of the relative ghost map satisfies
these congruences, that is, that

Jj+1

®p/t p}+1 ®p1+1 i ij+1
<Ztr (m >> Z € ( mod tr,” .

C .
We observe that the (j + 1)st term of the sum on the right is in the image of tr, oIt , and thus, it is
sufficient to show that for every 0 < i < j

C; i C j+1-i C
J Rp/t Jj+1 Qp’ J+1
¢ tr? m>P =tr} meP mod tr,” .
J ij—i 1 ij+1—i 1 €

We calculate the left-hand side

¢j(tr2§_i (miébpj‘i)) =¢, Z a(m;@pj_i> _ pzqu (g§_<ml§®p1“')> _ o';+1¢] (mIQpJ l>

GGij/ij_i =1

Il
—-
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C i—i C j+1—i
J+1 ®p.l i pj+1 ®p/ pj —i+1

=tr’ -<m. ) =tr m;
Cpj+i-i ¢J i Cpj+1-i i (z lf)
C i1 j+1—i C i

— ¢ DI ®p pl

= tGCjH_,- <ml. > + tr, (zl-,j),

where the fifth equality is from Lemma A.6. Conversely, let (b, by, ...) be a sequence which
satisfies the congruences of the statement, and suppose that we found a,, ..., a; such that b; =
cuj(ao, s aj). Then

Cpitt Cpi+l
bj+1 = ¢J(b])+tre (x) = ¢j(a)j(a0,...,aj))+tre (x)
= w;y(ag, -, a;},0) + tr, Cpit1 (») + tr, Cpi! (%)
= coj+1(a0, @Y+ X).

Corollary A.9. Let M be an R-bimodule with an external Frobenius ¢ : M — (M ®r)Cp, such thiat
C,i v iC

the transfer mapstr,” : (MSF’ )Cn , > M O gre injective (e.g. if (R; M) is a free bimodule). Then

there is a canonical isomorphism of abelian groups

n—-1

51 M), = W, (R: M)

i=0
. J ij . i op’ ij,i
withghosts w; f4(ag, ..., @p_1) = XAr, L ¢/ (a;), wherep’ 7 (a;) = ¢iyj ... Pradi(@;) € (MR )Cpl_ .
i=0 p7

Proof. The formula for w j f¢ gives an additive map f* : @ (M@pJ)ij R H;-lzo (M§pj)c”".Since
Coi i o Cy
trcij—i ¢'(a) = ¢ tr, o (a;), we see that

J
Cj i C J+1
By =4 Y ul ¥ @) =11, — e
i=0

Thus, by the Dwork lemma, f% hits precisely the image of w. Since the transfers are injective the
ghost w is injective and f* lifts to a surjection f, onto W, ,(R; M). Again, since the transfers are
injective, it is easy to see inductively that f is injective, and therefore so is f. O

Remark A.10. We observe that the maps fy are not natural with respect to morphisms of free
bimodules, as these are not necessarily compatible with the external Frobenius. They are, how-
ever, natural with respect to those morphisms of bimodules which are induced by a map of bases.
This is analogous to the tom-Dieck splitting, which is natural with respect to maps of spaces but
not with respect to all the maps of suspension spectra.

Lemma A.11. Let ¢ : R — (R®P)°r be an external Frobenius on a ring R. Then, for every k > 0

k+1

e Ie
D =g, = Tk+1¢®p : R®P" — (R®P )%

. . . k . . .
is an external Frobenius on the ring R®P", with higher Frobenius ®, = ¢; .
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If M is an R-bimodule with an external Frobenius ¢ : M — (M®P)°» and k > 0, then

. ko k k+1
O 1= ¢ =1 %P 1 MOP — (MO
. . koo . k . . .
is an external Frobenius on the R®P" -bimodule M®P", with higher Frobenius ®, = ¢, ,. Moreover,
this descends to an external Frobenius

@ MO — (ME")8P)C
on the R-bimodule pf®P".

Proof. We start by proving the claim for the Frobenius of R®P"_Since POy = Op41Pk> We have
that ® = ¢ lands in the C-fixed points, since the generator of C;, C Cx+1 acts by
k k
p — dpsL" =
0 @ =00, =0
. c .

Moreover, by Lemma A.6, ® is congruent to the pth power map modulo tr,”. Next, we determine
the higher Frobenius:

. n . k n . . n+k
@, = (T, X 1d,)O®P" = (1, X i) (T 419%P )EP" = (7,41 X id )iy X714 )P

_ ® n+k _
= Tn+k+1® P = Pntk-

The claim for M®P" is completely analogous, by remarking that ¢, is indeed a map of R®P*.
bimodules. As for pf®P", the proof that 7;, +1¢®Pk is welldefined is analogous to the first argument
of the proof of Lemma A.6. It remains to verify that it is a map of R-bimodules. By definition,

T Oy @ o @ M) = T (B ) @ - @ P(my)
= T (@) - $m) @ ++ ® P(m,)
=T (P ®1® -+ ®1) - $%7 (m, @ - @ m,)
= T (@) ®1® + ® 1)) 71 9%7 (m; @ -+ @ myye),

and the action of r of the left R-module structure on ((M§P")®P)Cp induced by ¢ : R — (R®P)r
is precisely multiplication by 7, ., ((¢(r) ® 1 ® --- ®@ 1)). O
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