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Abstract

We use hypercovers to study the homotopy theory of simplicial presheaves. The
main result says that model structures for simplicial presheaves involving local weak
equivalences can be constructed by localizing at the hypercovers. One consequence is
that the fibrant objects can be explicitly described in terms of a hypercover descent
condition, and the fibrations can be described by a relative descent condition. We
give a few applications for this new description of the homotopy theory of simplicial
presheaves.

1. Introduction

This paper is concerned with the subject of homotopical sheaf theory, as it has
developed over time in the papers [I, B, BG, Th, Jo, J1, J2, J3, J4]. Given a fixed
Grothendieck site C, one wants to consider contravariant functors F defined on C

whose values have a homotopy type associated to them. The most basic question
is: what should it mean for F to be a sheaf? The desire is for some kind of local-to-
global property – also called a descent property – where the value of F on an object
X can be recovered by homotopical methods from the values on a cover. Perhaps the
earliest instance where such a concept had to be tackled was in algebraic geometry,
in the context of presheaves of chain complexes defined on a space X. Because of its
abelian nature this could be handled by classical homological algebra and led to the
Grothendieck definition of hypercohomology. Much later, the non-abelian example
of algebraic K-theory was encountered. Here the site C is a category of schemes
and the functor F assigns to each scheme X its algebraic K-theory spectrum K(X).
Thomason [Th] (building on earlier work from [B, BG]) combined homotopy theory
and sheaf theory to study the descent properties of this functor.
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10 Daniel Dugger, Sharon Hollander and Daniel C. Isaksen

The work of [BG, Jo, J2] brought the use of model categories into this picture.
In the most recent of these [J2], Jardine defined a model category structure on
presheaves of simplicial sets with the property that the weak equivalences are local
in nature. Classical invariants such as sheaf cohomology arise in this setting as
homotopy classes of maps into certain Eilenberg–MacLane objects, and the whole
theory can in some sense be regarded as the study of non-additive sheaf cohomology.
Jardine’s model structure has recently served as the foundation from which Morel
and Voevodsky built their A

1-homotopy theory for schemes [MV].
One important ingredient missing from Jardine’s work is a description of the

fibrant objects and the fibrations. They can be characterized in terms of a certain
lifting property, but this is not so enlightening and not very useful in practice. Our
main aim in this paper is to give explicit, simple characterizations of the fibrations
and fibrant objects in terms of descent conditions. This is equivalent to describing
Jardine’s model category as a very explicit Bousfield localization.
To explain the basic ideas, let us assume our site is the category of topological

spaces equipped with the usual open covers. A presheaf of sets F is a sheaf if F (X)
is the equalizer of

∏
a F (Ua) ⇒

∏
a,b F (Ua � Ub) whenever {Ua} is an open cover of

X. This equalizer is in fact the same as the inverse limit of the entire cosimplicial
diagram

∏
a F (Ua)

����
∏

a,b F (Uab) ������ · · ·

where we have abbreviatedUa0...an
forUa0 �· · ·� Uan

and have refrained from drawing
the codegeneracies for typographical reasons. For a presheaf of simplicial sets (or
taking values in some other homotopical objects like spectra), it is natural to replace
the limit by a homotopy limit. So one requires that F (X) be weakly equivalent to
the homotopy limit of the above cosimplicial diagram. This property, when it holds
for all open covers, is called Čech descent. It can also be expressed in a slightly more
compact way, if one recalls that the Čech complex ČU associated to a cover {Ua} of
X is the simplicial object [n] �→

∐
a0···an

Ua0···an
. Then F satisfies Čech descent if the

natural map

F (X)−→ holim
n

F (ČUn)

is a weak equivalence.
A motivating example is given by the functor Topop → Spectra taking X to EX ,

where E is a fixed spectrum and EX denotes the function spectrum. This functor has
Čech descent, because X is weakly equivalent to the homotopy colimit of the Čech
complex associated to any open cover; see [DI1, theorem 1·1].
Now, it is not true that the fibrant objects in Jardine’s model category are just the

simplicial presheaves which satisfy Čech descent (although this erroneous claim has
appeared in a couple of preprints, for instance [HS]). See the appendix, Example A9,
for an example. We show that one has instead to consider descent for all hypercovers.
A hypercover is a simplicial object U , augmented by X, which is similar to a Čech
complex except in level n we only need to have a cover of the n-fold intersections
Ua0···an

. A precise definition requires a mass of machinery (see Section 4). A simplicial
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Hypercovers and simplicial presheaves 11
presheaf F satisfies descent for the hypercover U → X if the natural map

F (X) −→ holim
n

F (Un)

is a weak equivalence (see Definition 4·3).
What we will show is that the fibrant objects in Jardine’s model category are

essentially the simplicial presheaves which satisfy descent for all hypercovers (there
is an analagous criterion for fibrations in terms of a relative descent property, given
in Section 7):

Theorem 1·1. The fibrant objects in Jardine’s model category sPre(C)L are those
simplicial presheaves that:
(1) are fibrant in the injective model structure sPre(C), and
(2) satisfy descent for all hypercovers U → X.

The injective model structure on sPre(C) just refers to Jardine’s model structure
for the discrete topology on C (see Section 2). The fibrancy conditions for this model
structure are awkward to describe, but they also aren’t very interesting – they have
no dependence on the Grothendieck topology, only on the shape of the underlying
category C. The conditions require that each F (X) be a fibrant simplicial set, certain
maps F (X) → F (Y ) be fibrations and more complicated conditions of a similar
‘diagrammatic nature’. In practice such conditions are not very important, and in
fact there’s a way to get around them completely by using the projective version of
Jardine’s model structure; see Theorem 1·3 below and the discussion in Section 2.
Note that the above theorem can be re-interpreted in terms of giving ‘generators’

and ‘relations’ for the homotopy theory of simplicial presheaves, in the manner
introduced by [D]. Using the terminology of [D], we prove:

Theorem 1·2. Jardine’s model category sPre(C)L is Quillen equivalent to the uni-
versal homotopy theory UC/S constructed by:
(1) formally adding homotopy colimits to the category C, to create UC;
(2) imposing relations requiring that for every hypercover U → X, the map

hocolimn Un → X is a weak equivalence.

In other words, everything special about the homotopy theory of simplicial
presheaves can be derived from the basic fact that one can reconstruct X as the
homotopy colimit of any of its hypercovers. Theorem 1.2 is crucial to the construc-
tion of étale realization functors forA

1-homotopy theory [Is], as well as the analogous
question about topological realization functors [DI1].
One advantage of the model structure UC/S over the model structure sPre(C)L is

that the fibrant objects are much easier to describe. The inexplicit fibrancy conditions
of the injective model structure are replaced by a much simpler condition. Compare
the following result with Theorem 1·1.

Theorem 1·3. The fibrant objects in the model category UC/S are those simplicial
presheaves that:
(1) are objectwise-fibrant (i.e., each F (X) is a fibrant simplicial set),
(2) satisfy descent for all hypercovers U → X.
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Again, an analagous criterion for all fibrations is given in Section 7.
The main ideas we use to prove these results are very simple, and worth sum-

marizing. They exactly parallel classical facts about CW-complexes. The two key
ingredients are:

(i) In the category of simplicial presheaves one can construct objects analogous
to CW-complexes, the only difference being that one has different kinds of
0-simplices corresponding to the different representable presheaves rX. (As
a consequence, there are different kinds of n-simplices corresponding to the
objects ∆n ⊗ rX.) Every simplicial presheaf has a cellular approximation built
up out of representables in this way (see [D, section 2·6]).

(ii) Weak equivalences for simplicial presheaves are characterized by a certain
‘local lifting criterion’, where lifting problems can be solved by passing from
a representable object to the pieces of a cover. See Proposition 3·1 and [DI2].

From these two basic principles, it’s inevitable that hypercovers will arise in the solu-
tion of lifting problems. One starts building a lift inductively on a CW-approximation
and the obstructions to extending the lift are made to vanish by passing to a finer
cover at each stage. Thus, one finds oneself inductively constructing a hypercover.
These ideas are explored in detail in Section 5.
This paper came into existence because we needed to use Theorems 6·2, 8·6, and

A5(c,d) in other work. In order to write down complete proofs one has to be able
to manipulate hypercovers with a certain amount of ease and so a large portion of
the paper has been devoted to carefully setting down the machinery of hypercovers.
For this reason the paper sometimes takes on an expository tone. One of our goals
has also been to adopt definitions which can be applied to any Grothendieck site,
not just the classical ones which get used most often. The result is theorems which
are simple enough to state and prove, but sometimes hard to apply in practice.
To complement this, we have included the reductions to Verdier sites (Section 9)
and internal hypercovers (Section 10) that one can implement for sites like those
encountered in algebraic geometry.

1·4. Organization of the paper
In Section 2 we review the basic model categories that will be used throughout the

paper. One of these is Jardine’s model structure and the other is a Quillen equivalent
version which has fewer cofibrations andmore fibrations.We assume throughout that
the reader is familiar with the theory of model categories – the original reference for
this subject is [Q], but we generally follow [H] in notation and terminology. See also
[Ho].
Section 3 reviews material from [DI2] on lifting properties for simplicial

presheaves and how these can be used to characterize local weak equivalences.
Section 4 introduces the machinery needed for defining and working with hyper-
covers. The section serves mostly as a reference section for the rest of the paper.
In Section 5 we show how hypercovers enter into the solution of lifting problems in

the homotopy theory of simplicial presheaves. These are the key observations which
are needed for the main results. The proofs of these main results are then given in
Sections 6 and 7, where they appear as Theorem 6·2, Corollary 7·1, and Theorem 7·4.
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One application of the results on hypercovers is to realization functors from the

homotopy theory of schemes, see [DI1, Is]. In Section 8 we give a few more applica-
tions. One of the most interesting, given in Section 8·1, is a much simpler approach to
the change-of-site functors of [MV]. We also discuss a generalization of the Verdier
hypercovering theorem in Theorem 8·6.
In applications one rarely wants to work with all hypercovers, because this is

just too broad a class of objects. In the case of the ‘geometric’ sites which are most
commonly used, one can adopt more restrictive definitions and have all the above
results still valid. These reductions are explored in Sections 9 and 10. We axiomatize
what is necessary into the notion of a Verdier site, which comes equipped with a
special class of ‘basal hypercovers’. These ideas appear sporadically in Section 8, and
the reader can refer back to the later sections as necessary.
Finally, the paper contains an appendix which explores the difference between

Čech descent and hypercover descent. Again, the principal motivation comes from
the fact that Čech descent is more easily dealt with in practice. We show, among
other things, that having descent for Čech complexes is equivalent to having descent
for all bounded hypercovers (the ones where the refinement process stops at some
finite level). This is an important ingredient in [DI1].

1·5. Notation and terminology
If X is an object of a site C, then the representable simplicial presheaf rX on C is

given by the formula rX(Y ) = HomC(Y, X). Note that each simplicial set rX(Y ) is
discrete. If U is a simplicial object of C, then rU is the simplicial presheaf given by
the formula rU (Y )n = HomC(Y, Un); these, of course, are usually not discrete. We
frequently abuse notation and write simply X (or U ) for the presheaf rX (or rU ).
If S is a scheme, then Sch/S denotes the category of schemes of finite-type over

S. The full subcategory of schemes which are smooth over S is denoted Sm/S.
Finally, in a simplicial model category we write Map(A, B) for the simplicial mapping
space.

2. Model structures on simplicial presheaves

We start by recalling that for any small category C there are two Quillen equivalent
model structures on the category of diagrams sSetC. In each case a map D → E is a
weak equivalence if D(c)→ E(c) is a weak equivalence of simplicial sets for each c in
C. Such a map is usually called an objectwise weak equivalence. In the projective model
structure on sSetC one defines a map D → E to be

(1) A fibration if every D(c)→ E(c) is a fibration of simplicial sets (i.e., D → E is
an objectwise fibration).

(2) A cofibration if it has the left-lifting-property with respect to the acyclic fibra-
tions.

Dually, in the injective model structure the cofibrations are objectwise and the fibra-
tions have the right-lifting-property with respect to acyclic cofibrations. The names
‘projective’ and ‘injective’ come from the analogy between the two usual model struc-
tures on chain complexes of R-modules. For notational convenience, the projective
model structure is denoted UC (as in [D], where it was pointed out that UC has a
certain universal property) and the injective model structure is denoted sPre(C).
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When C comes equipped with a Grothendieck topology, then one can construct
refinements of these model structures which reflect the topology on C. A map of
simplicial presheaves F → G is a local weak equivalence if it induces isomorphisms on
all sheaves of homotopy groups [I, Jo, J2]. In this paper we will use an alternative
characterization in terms of homotopy liftings, described below.
Jardine’s model structure on simplicial presheaves is the left Bousfield localization

of sPre(C) at the class L of local weak equivalences; we denote this localization as
sPre(C)L. Of course since L is a class of maps there is no a priori guarantee that the
Bousfield localization exists, but Jardine was able to construct it directly and it is
only after the fact that one can identify it as a localization.
Similarly, one can define a model structure UCL by localizing UC at the same class

L (cf. [Bl, theorem 1·5]). The identity maps induce a Quillen equivalence UCL →
sPre(C)L, so once again these are projective and injective versions of the same
underlying homotopy theory. The injective version has the advantage that every
object is cofibrant, but in the projective version the fibrant objects are easier to
understand and the representable presheaves are still cofibrant. Also, it is usually
easier to construct functors out of the projective version [D]. We state most of our
results only in terms of sPre(C)L, but analogous statements for UCL are also true
with only minor differences between the proofs.
Both UC and sPre(C) are proper, simplicial model categories: if F is a simplicial

presheaf and K is a simplicial set then K ⊗ F and FK are defined objectwise, by

(K ⊗ F )(X) = K × F (X) and (FK)(X) = F (X)K .

From general considerations [H, theorem 4·1·1], all localizations of UC and sPre(C)
that we consider are also left proper, simplicial model categories.

Remark 2·1. If F is a simplicial presheaf, then one obtains a diagram DF : ∆op →
sPre(C) by sending [n] to Fn. Here Fn is just a presheaf of sets, but we can regard it
as a discrete simplicial presheaf in the obvious way. The realization of this simplicial
diagram is precisely F . The Bousfield–Kan map hocolimDF → |DF | is a weak
equivalence in this case, by some basic model category theory. So any simplicial
presheaf F is weakly equivalent to hocolimDF . This observation will be needed
often.

3. Local weak equivalences and local lifting properties

Local weak equivalences are usually defined in terms of sheaves of homotopy
groups. Here we recall a different description which is more suitable for our purposes.
See [DI2] for the proof that the two definitions agree and for more details on the
results in this section.
First, recall that ifX is in C and F andG are simplicial presheaves, then a diagram

such as

Λn,k ⊗ X ��

��

F

��
∆n ⊗ X �� G

has local liftings if there exists a covering sieve R of X such that for every map
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U → X in the sieve, the diagram one obtains by restricting from X to U has a lifting
∆n ⊗U → F . These liftings are not required to be compatible for the different U ’s. A
map F → G is called a local fibration if it has local liftings with respect to the maps
Λn,k ⊗ X → ∆n ⊗ X, for all X in C. A simplicial presheaf is called locally fibrant if
F → ∗ is a local fibration.

Proposition 3·1 ([DI2, theorem 6·15]). A map F →G between locally fibrant sim-
plicial presheaves is a local weak equivalence if and only if every square

∂∆n ⊗ X ��

��

F

��
∆n ⊗ X �� G

has local relative homotopy-liftings, in the following sense: after restricting to the pieces
U → X of some covering sieve, one has maps ∆n ⊗ U → F making the upper triangle
commute on the nose and the lower triangle commute up to simplicial homotopy relative
to ∂∆n ⊗ U .

See [DI2] for a detailed discussion of this kind of relative-homotopy-lifting prop-
erty.
The following two results from [DI2] will be used later. Recall that a map is a local

acyclic fibration if it is both a local fibration and a local weak equivalence.

Proposition 3·2 ([DI2, proposition 7·2]). A map F → G admits local liftings in
every square

∂∆n ⊗ X ��

��

F

��
∆n ⊗ X

��

�� G

if and only if it is a local acyclic fibration.

One consequence of the above result is that local acyclic fibrations are closed under
pullbacks (in [J2] this was proven only when the domain and codomain are locally
fibrant).

Proposition 3·3 ([J4, lemma 19],[DI2, corollary 7·4]). Let F → G be a local fibra-
tion (resp. local acyclic fibration). IfK ↪→ L is an inclusion of finite simplicial sets, then
the induced map

FL → FK ×GK GL

is a local fibration (resp. local acyclic fibration).

Let f : E → B be a map between presheaves of sets. One says that f is a generalized
cover (or local epimorphism) if it has the following property: given any map rX → B,
there is a covering sieve R ↪→ X such that for every element U → X in R, the
composite rU → rX → B lifts through f . The ‘generalized’ adjective is there to
remind us that we are looking at a map between presheaves, not actual objects of the
site. In the case whereB is representable andE is a coproduct

∐
Ea of representables,

f is a generalized cover precisely when the sieve generated by the maps {Ea → B}
is a covering sieve of B.
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For a simplicial presheaf F , let M̃nF denote the 0th object of F ∂∆n

(the ‘tilde’
is to distinguish this from a slightly different construction used later in the paper).
This is the presheaf of sets whose value M̃nF (X) is the set of all maps ∂∆n → F (X).
There is a natural map Fn → M̃nF induced by F ∆n → F ∂∆n

. Proposition 3·2 can be
rephrased as saying that F → G is a local acyclic fibration if and only if the maps

Fn −→ M̃nF ×M̃n G Gn (3·4)

are generalized covers, for all n � 0. Using this observation, most properties of
generalized covers can automatically be seen to hold for local acyclic fibrations.

4. Background on hypercovers

This section contains the machinery necessary for defining and working with hy-
percovers. Some readers may wish to only skim this section their first time through;
this should be enough to understand the basic ideas. In Section 4·7 we recall the co-
skeleton and degeneration functors, which appear when passing between simplicial
objects and truncated simplicial objects. These notions are used later in the paper,
but only in fairly technical contexts.

4·1. Basic definitions
Definition 4·2. Let X belong to C and suppose that U is a simplicial presheaf with

an augmentation U → X. This map is called a hypercover of X if each Un is a
coproduct of representables, and U → X is a local acyclic fibration.

Using (3·4) one can rewrite the second condition in a more explicit way: it says that
the maps U0 → X, U1 → U0 ×X U0, and Un → M̃nU (for n � 1) are all generalized
covers. This is not particularly enlightening, but it’s easy to provide some intuition
behind it. For convenience we assume our Grothendieck topology is given by a basis of
covering families. Then the easiest examples of hypercovers are the Čech complexes,
which have the form

· · ·
∐

Ua0a1a2
������
∐

Ua0a1
����
∐

Ua0
�� X

for some chosen covering family {Ua → X}. Here Ua0···an
is the fibre-product

Ua0 ×X · · · ×X Uan
. The Čech complexes are the hypercovers for which the maps

U1 → U0 ×X U0 and Un → M̃nU are all isomorphisms. In an arbitrary hypercover
one takes the iterated fibre-products at each level but then is allowed to refine that
object further, by taking a generalized cover of it. See [AM, section 8] for further
discussion of hypercovers.
Next is the formal definition of hypercover descent:

Definition 4·3. An objectwise-fibrant simplicial presheaf F satisfies descent for a
hypercover U → X if the natural map from F (X) to the homotopy limit of the
diagram

∏
a F (Ua

0 )
����
∏

a F (Ua
1 )

������ · · ·

is a weak equivalence. Here the products range over the representable summands of
each Un. If F is not objectwise-fibrant, we say it satisfies descent if some objectwise-
fibrant replacement for F does.
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The definition has been arranged so that if F → G is an objectwise weak equival-

ence, then F satisfies descent for U → X if and only if G does. While the definition
reflects our intuitive notion of descent, the next lemma gives a more concise refor-
mulation in terms of simplicial mapping spaces.

Lemma 4·1.
(i) A simplicial presheaf F satisfies descent for a hypercover U → X if and only if
Map(X, F̂ )→ Map(U, F̂ ) is a weak equivalence of simplicial sets, where F̂ is an
injective-fibrant replacement for F .

(ii) Let U ′ be a cofibrant replacement for U in UC. Then F satisfies descent for U → X
if and only if Map(X, F̂ )→ Map(U ′, F̂ ) is a weak equivalence of simplicial sets,
where F̂ is an objectwise-fibrant replacement for F .

Note that any split hypercover (see Definition 4·8) is cofibrant in UC, in which
case one can apply (ii) with U ′ = U .

Proof. This is by general nonsense. Consider the diagram ∆op → sPre(C) given by
[n] → Un, and let Ũ be its homotopy colimit. This is not the same as U , but there
is a map Ũ → U which is an objectwise weak equivalence (see Remark 2·1). Let F̂
be an injective-fibrant replacement for F , which a fortiori is an objectwise-fibrant
replacement as well. Then Map(Ũ , F̂ ) is weakly equivalent to Map(U, F̂ ) since Ũ → U
is a weak equivalence between injective-cofibrant objects. But Map(Ũ , F̂ ) is

Map(hocolim
n

Un, F̂ ) � holim
n

Map(Un, F̂ ) � holim
n

∏
aF̂ (U

a
n).

Since Map(X, F̂ ) is equal to F̂ (X), the condition that Map(X, F̂ ) → Map(U, F̂ ) be
a weak equivalence is a direct translation of the homotopy limit formulation in
Definition 4·3. This proves (i).
For (ii), note that each Un is cofibrant in UC and so Ũ = hocolimn Un is also

cofibrant. In other words Ũ is a cofibrant replacement for U , and so Ũ � U ′. If F̂
is an objectwise replacement for F then Map(U ′, F̂ ) � Map(Ũ , F̂ ), and as in (i) the
latter is equivalent to holimn

∏
a F̂ (Ua

n). The rest of the proof is the same.

A more elegant way to phrase the above result is to say that F satisfies descent for
U → X if and only if hMap(X, F )→ hMap(U, F ) is a weak equivalence of simplicial
sets, where hMap(−,−) denotes a homotopy function complex [H, chapter 17] in
either UC or sPre(C).

4·4. Machinery
Definition 4·2 is very compact, but it’s not always such an easy thing to work

with. For the rest of this section we will set down more convenient techniques for
constructing and working with hypercovers. This material is used throughout the
paper, but many readers will want to skip ahead and refer back to this section only
when needed.
Let M be a category which is complete and co-complete. In our applications M is

Pre(C), but for the moment let us work in the more general setting. Let ∆+ denote
the augmented cosimplicial indexing category: it is obtained by adjoining an initial
object [−1] to ∆. Let s+M denote the category of functors ∆op

+ → M, i.e. the category
of augmented simplicial objects. We regard a simplicial set K as belonging to s+Set
by letting K−1 consist of a single point.
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If S is a set and X belongs to M, let XS denote a product of copies of X indexed
by the elements of S. Given a simplicial set K and an object W of s+M, we regard
these as functors K : ∆op

+ → Set and W : ∆op
+ → M and then form the resulting end,

denoted hom+(K, W ):

hom+(K, W ) := eq


∏

n

W Kn
n ⇒

∏
[n]→[m]

W Kn
m


 .

The + subscript is to remind us of the augmentations.

Remark 4·1. As with any end, this construction exhibits a useful adjointness prop-
erty. If Z is inM, then the maps Z → hom+(K, W ) inM correspond bijectively with
the maps Z ⊗K → W in s+M. Here Z ⊗K is the augmented simplicial object which
in dimension n is a coproduct, indexed by the set Kn, of copies of Z.

In the unaugmented simplicial category sM, we can compute unaugmented ends
hom(K, W ) in an analogous way. Again, this construction is right adjoint to tensoring
with K.
The following lemma can be proved with the above adjointness property and the

Yoneda lemma.

Lemma 4·2. LetW → X be an augmented simplicial object (that is,X is the augment-
ation).
(i) hom+(K, W ) � homX(K, W ), where homX(K, W ) is computed in the unaug-
mented simplicial overcategory s(M ↓ X).

(ii) hom+(K, W )�hom(K, W ) if K is connected.
(iii) hom+(�, W ) � X, and so for any simplicial set K there is a canonical map

hom+(K, W )→ X.
(iv) hom+(∆n, W )�Wn.
(v) hom+(−, W ) takes colimits of simplicial sets to limits in M ↓ X. In other words,

if K = colimi Ki, then hom+(K, W )� limX
i hom+(Ki, W ).

Definition 4·5. The object hom+(∂∆n, W ) is the nth augmented matching space
MnW . The induced map hom+(∆n, W ) → hom+(∂∆n, W ), which we may now write
as Wn → MnW , is the nth matching map for W . Note that W0 → M0W is just the
augmentation since ∂∆0 = �.

We have chosen to work with these augmented constructions only because they
seem to make for the most compact and intuitive proofs. Note that the augmented
matching objects and maps are the ones that arise when considering Reedy model
structures of simplicial objects in (M ↓ X) [H, 15.2.2]. For n � 2, MnW is iso-
morphic to M̃nU = hom(∂∆n, W ) because ∂∆n is connected. The following lemma is
a reformulation of (3·4).

Lemma 4·3. An augmented simplicial presheaf U → X is a hypercover iff each Un is
a coproduct of repesentables and the maps Un → MnU are all generalized covers.

Definition 4·6. A hypercover U → X is bounded if there exists an n � 0 such that
the maps Uk → MkU are isomorphisms for all k > n. The smallest such n for which
this is true is called the height of the hypercover, and denoted ht U .
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We have already remarked that the hypercovers of height 0 are precisely the Čech
complexes. If one thinks of the nth level of a hypercover as refining the (n + 1)-fold
‘intersections’ of the objects in previous levels, then a bounded hypercover is one
where the refinement process stops at some point. The following lemma is a minor
ingredient in the discussion of coskeleta in Section 4·7 below, but the ideas from the
proof reappear several times throughout the paper.

Lemma 4·4. If U → X is a bounded hypercover of height at most n, then the induced
maps hom+(∆k, U )→ hom+(skn ∆k, U ) are isomorphisms for all k.

Proof. When k � n, the result is easy because ∆k equals skn ∆k. In general, ∆k is
obtained from skn ∆k by gluing on finitely many simplices of dimension at least n+1.
It suffices to show that hom+(L, U )→ hom+(K, U ) is an isomorphism if L is obtained
from K by attaching a simplex of dimension i, where i > n. Using Lemma 4·2 we
obtain a pullback square

hom+(L, U ) ��

��

hom+(K, U )

��
hom+(∆i, U ) �� hom+(∂∆i, U ).

The bottom map is the matching map Ui → MiU , which is an isomorphism since
i > n. Hence the top map is also an isomorphism.

4·7. Skeleta, coskeleta and split objects
We continue to assume thatM is complete and cocomplete. Let sM�n and s+M�n

denote the categories of n-truncated simplicial objects and augmented n-truncated
simplicial objects overM. There is an obvious forgetful functor s+M → s+M�n called
skn, and this has a right adjoint called coskn. These are the skeleta and coskeleta
functors for augmented simplicial objects. If W belongs to s+M, we abbreviate
coskn skn W to just coskn W .
The kth object of coskn U is

[coskn U ]k �hom+(∆k, coskn U )�hom+(skn ∆k, U )

(use Remark 4·1 for the second isomorphism). In particular, the (n + 1)st object of
coskn U is what we have been calling Mn+1U . Observe also, using Lemma 4·4, that a
hypercover U has height at most n if and only if U � coskn U .
Now, the functor skn also has a left adjoint dgnn : s+M�n → s+M, called the n-

degeneration functor. The simplicial object dgnn U is obtained fromU by freely adding
the images of the degeneracies in dimensions higher than n (and so, in particular, note
that the augmentations are irrelevant). The object [dgnn U ]n+1 is called the (n+ 1)st
latching object for U and is denoted Ln+1U . This latching object is the one that
arises when considering Reedy model structures of simplicial diagram categories
[H, 15·2·2]. Note that U , dgnn U , and coskn U all have the same n-skeleton, so
there are canonical maps dgnn U → U → coskn U ; looking in level n + 1 gives
Ln+1U → U → Mn+1U .

Definition 4·8. An objectW of sM is said to be split, or to have free degeneracies, if
there exist subobjects Nk ↪→ Wk such that the canonical maps Nk �LkW → Wk are
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isomorphisms for all k � 0. This is equivalent to requiring that the canonical map
∐
σ

Nσ → Wk

is an isomorphism, where the variable σ ranges over all surjective maps in ∆ of the
form [k]→ [n], Nσ denotes a copy of Nn, and the map Nσ → Wk is the one induced
by σ∗ : Wn → Wk (see [AM, definition 8·1]).

The idea is that the objects Nk represent the non-degenerate part of W in dimen-
sion k, and that the leftover degenerate part is as free as possible. The same definition
as above can be applied to augmented simplicial objects, and the result is that such
an object is split if and only if it is split when one forgets the augmentation.
We are particularly interested in split hypercovers. If U → X is a split hypercover

then LkU is a summand of Uk, each LkU is a coproduct of representables, and each
representable summand of LkU is the image under some degeneracy of a repres-
entable from Uk−1 (but not uniquely). It follows from [D, corollary 9·4] that split
hypercovers are cofibrant in UCL, which is why we care about them.

4·9. Computing matching objects
Suppose that U → X is an augmented simplicial presheaf which in each level is a

coproduct of representables. Note that (1) the decomposition of Un into a coproduct
of representables is unique up to permutations of the summands, and (2) to give a
map �iAi → �jBj between coproducts of representables corresponds to giving, for
each index i, an index j(i) and a map Ai → Bj(i). Because of these remarks, one can
construct a simplicial set K by taking Kn to be the set of representable summands
of Un. We’ll refer to K as the indexing simplicial set for U .
Now suppose a : L → K is a map of simplicial sets. If ∆opL denotes the opposite

category of simplices ofL [H, definition 15·1·16], there is an obvious diagram ∆opL →
sPre(C) ↓ X which sends a k-simplex σ to the representable which is the summand
of Uk corresponding to a(σ). We’ll write U (a) for the limit of this diagram.
The following observation is straightforward (use Remark 4·1):

Proposition 4·10. There is an isomorphism of presheaves

hom+(L, U )�
∐

a : L→K

U (a).

In particular, the matching object MnU is isomorphic to
∐

a : ∂∆n →K U (a).

Note that ∆opL is an infinite category. If L has the property that every nonde-
generate simplex has nondegenerate faces (e.g. L = ∂∆n), then one can use a smaller
version. Let ∆op

ndL be the subcategory whose objects are the non-degenerate simplices,
and where the maps correspond to face maps. Under the above assumption on L, it
is an easy exercise to check that ∆op

ndL ↪→ ∆opL is final (use the fact that in any sim-
plicial set a degenerate simplex is an iterated degeneracy of a unique nondegenerate
simplex). Hence the limit U (a) can be computed over ∆op

ndL in practice.

5. Hypercovers and lifting problems

In Proposition 3·1 we saw how local weak equivalences relate to solutions of
homotopy-lifting problems—one gets lifts after passing from a representable to the
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elements of a covering sieve. Typically, these liftings can’t be made compatible on
the different pieces of the sieve. In this section we find that one can arrange for this
kind of compatibility by using hypercovers.
The following proposition is the key ingredient in the proof of our main result,

Theorem 6·2. Recall that, just as for ordinary covering families, a refinement of a
hypercover U → X is another hypercover V → X that factors through U .

Proposition 5·1. Let F → G be a local acyclic fibration and let K → L be a cofibra-
tion of finite simplicial sets. For any square:

K ⊗ U ��

��

F

��
L ⊗ U �� G

(5·2)

in which U → X is a hypercover, there exists another hypercover V → X refining U and
liftings as in the following diagram:

K ⊗ V ��

��

K ⊗ U �� F

��
L ⊗ V ��

��

L ⊗ U �� G.

(5·3)

To summarize the basic idea of the proof, let’s assume that K → L is � → ∗ and
that the Grothendieck topology comes with a specified basis of covering families.
Starting with a map U → G, we know by the local-lifting property (3·1) that there
is a covering family {Va →U0} with liftings sa : Va → F . In general, sa |Vab

and
sb |Vab

are not equal, but the two liftings become homotopic after projecting down
to G. We can lift this homotopy to F by passing to a suitable covering family of
Vab, again using the fact that F → G is a local weak equivalence. Next we move
on to consider patching on the triple intersections. Once again, we can patch up to
homotopy after refining the triple intersections by a covering family. In this way we
build a hypercover V over which a lifting is defined. The work in this section is just
a precise way of saying all this.
The proof involves an inductively constructed hypercover, and the following lemma

is the core of the induction step:

Lemma 5·1. Let F and G be presheaves of sets and let F → G be a generalized cover.
If J is a presheaf of sets with a map J → G, then there exists a generalized cover Z → J
such that Z is a coproduct of representables and such that the diagram

F

��
Z

��

�� J �� G

has a lifting.

Proof. For each map f : X → J from a representable, choose a covering sieve Rf

ofX so that the composites U → X → J → G lift to F for every U → X in the sieve.
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Let Z denote the coproduct

Z =
∐

X
f−→J




∐
U →X
inRf

U


 .

The obvious map Z → J is a generalized cover, and the composite Z → J → G lifts
to F .

Proposition 5·4. Let F → G be a local acyclic fibration, and let U → G be a map
where U → X is a hypercover. Let n � 0, and suppose that there is an n-truncated
hypercover V → X refining skn U and a map V → F such that the diagram

F

��
V ��

����������������
U �� G

(5·5)

commutes. Then there is an (n + 1)-truncated hypercover W → X refining U and a map
W → F making the corresponding diagram commute, and such that on n-skeleta the
diagram is equal to (5·5).

Proof. The core of the proof is just an Artin–Mazur argument [AM, chapter 8].
First form the pullback F ′ = U ×G F . The map F ′ → U is still a local acyclic
fibration, and we need only produce an (n+1)-truncated hypercoverW and a lifting
into F ′. In other words, we can reduce to the case where U = G (and F = F ′). Note
that in this case G is locally fibrant, the representable X is locally fibrant for trivial
reasons, and U → X is a local fibration. Moreover, since F → G is a local fibration,
F is locally fibrant as well.
Now F ∆n+1 → F ∂∆n+1

is a local fibration by Proposition 3·3, so the map in the 0th
level is a generalized cover by (3·4). When n > 0 this map is precisely Fn+1 → Mn+1F
(the n = 0 case being only slightly different). Our initial diagram gives a map
V ∂∆n+1 → F ∂∆n+1

, and the 0th level has the form Mn+1V → Mn+1F . So Lemma 5·1
says that there is a generalized cover Z → Mn+1V , where Z is a coproduct of
representables, such that the composite Z → Mn+1F lifts through Fn+1. We take W
to be the (n + 1)-truncated hypercover with skn W = skn V and Wn+1 = Z � Ln+1V .

Proof of Proposition 5·1. Given a square as in the statement of the proposition, it
may be interpreted as a map

U → FK ×GK GL.

We are trying to produce a hypercover V → X refining U → X and a lifting

FL

��
V ��

��

U �� FK ×GK GL.

The vertical map is a local acyclic fibration by Proposition 3·3, so the hypercover
can be produced inductively using Proposition 5·4.
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If we have a map F → G which is a local weak equivalence but not necessarily a

fibration, we can say the following:

Proposition 5·6. Let F → G be a local weak equivalence between locally fibrant
simplicial presheaves. Then given any diagram as in (5·2), there exists a hypercover
V → X refining U → X and relative-homotopy-liftings in the diagram (5·3).

Recall that relative-homotopy-liftings were defined in Proposition 3·1 and dis-
cussed extensively in [DI2].

Proof. Given a diagram as in (5·2), we need to produce a hypercover V → X
refining U → X together with liftings in the diagram

K ⊗ V ��

�������������
F

��
L ⊗ V

i0
��

��

L ⊗ V ��

i1

�����������
G

RH ⊗ V.

��

Here RH denotes the pushout of L × ∆1 ← K × ∆1 → πK, and the maps i0 and i1
are the obvious inclusions L ↪→ RH.
Consider the square

FRH

i∗1
��

�� FL ×GL GRH

��
FL �� FK ×GK GL.

By [DI2, corollary 7·5], the fact that F → G is a local weak equivalence between loc-
ally fibrant objects implies that the horizontal maps are also local weak equivalences.
By the same result, the fact that i1 : L → RH is a weak equivalence of simplicial
sets implies that the left vertical map is a local weak equivalence. So we conclude
that the same is true of the right vertical map. Even more, the right vertical map is
a local fibration by Lemma 5·2 below.
Our initial data from (5·2) was a map U → FK ×GK GL, so by Proposition 5·1 (for

n = 0 and K → L equal to � → ∗) there is a hypercover V → X refining U → X
for which the composite lifts through FL ×GL GRH . This provides the necessary
relative-homotopy-lifting.

Lemma 5·2. Let F → G be a map between locally fibrant simplicial presheaves. As-
sume we have a square of finite simplicial sets

K

��

�� M

��
L �� N

such that both K → M and M �K L → N are cofibrations. Then the induced map

FM ×GM GN → FK ×GK GL

is a local fibration.
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Proof. The hypotheses imply that FM → FK and GN → G(M�K L) = GM ×GK GL

are local fibrations, using [J2, corollary 1·5]. Now we observe that there are pullback
squares

FM ×GM GN ��

��

GN

��

FM ×GK GL ��

��

FM

��
FM ×GK GL �� GM ×GK GL FK ×GK GL �� FK ,

and the pullback of a local fibration is again a local fibration. Finally, the map we
want is just the composite FM ×GM GN → FM ×GK GL → FK ×GK GL.

6. Hypercovers and localizations

In this section we prove the main theorem, that Jardine’s model category can be
obtained by localizing the injective structure sPre(C) at the hypercovers. This lets
us identify the fibrant objects in the model structure. Similar results are proven for
the projective version UCL.

Definition 6·1. A collection of hypercovers S is called dense if every hypercover
U → X in sPre(C) can be refined by a hypercover V → X which belongs to S.

For instance, Theorem 9·4 shows that when C is a Verdier site the collection of
basal hypercovers is both split and dense. The following is our main goal.

Theorem 6·2. Let S be a collection of hypercovers which contains a set that is dense
(e.g., the collection of all hypercovers). Then the localization sPre(C)/S exists and coin-
cides with Jardine’s model structure sPre(C)L. Similarly, the localization UC/S exists
and coincides with UCL.

Our notation is that if M is a model category and S is a collection of maps,
thenM/S denotes the left Bousfield localization ofM at S (if it exists); see [D] for a
summary treatment or [H] for complete details. The fibrations andweak equivalences
inM/S are called S-fibrations and S-equivalences, while the cofibrations are the same
as those in M.
The hypothesis of the theorem is a little stronger than just assuming that S is

dense, because S itself may not be a set. For the same reason, the existence of the
localization is not automatic. One of the things we will do is apply this theorem in
the case where S is the collection of all hypercovers, and this is not a set: in our
definition of hypercover one can have arbitrarily large coproducts of representables
appearing. So we’ll need to verify that S contains a dense set, and this can be done
by making use of the fact that our site is small. We choose a suitably large regular
cardinal, and then we only consider hypercovers in which the number of summands
in each level is bounded by our cardinal. See Section 6·3.
To prove Theorem 6·2, we need a general criterion for checking whether two

localizations are identical:

Lemma 6·1. Let M be a model category, and let S ⊆ T be two classes of maps for
which the localizations M/S and M/T exist. For the two localizations to be the same it
suffices to check the following: if an S-fibration X � Y between S-fibrant objects is a
T -equivalence, then it is an S-equivalence.
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Proof. We must show the hypothesis implies that every T -equivalence A → B is

an S-equivalence. Let L denote a fibrant replacement functor in M/S, and consider
the square

A ��

∼ S

��

B

∼ S

��
LA �� LB.

Since S ⊆ T the two vertical maps are T -equivalences, and the top map is a T -
equivalence by assumption, so the bottom map is one as well. Now factor the bottom
map in M/S as an S-acyclic cofibration followed by an S-fibration:

LA ��
∼
S �� X �� �� LB.

Note that X is S-fibrant, because LB is. Also, since both the first map and the
composite are T -equivalences, so is the second map.
Therefore the mapX → LB is a T -equivalence and an S-fibration, and the domain

and codomain are S-fibrant. Our hypothesis then says that X → LB is an S-
equivalence. Applying the two-out-of-three property (twice) shows that A → B is an
S-equivalence.

For the moment let S be a set of hypercovers that is dense. Because S is a set, we
know that the model structure sPre(C)/S exists (by [H, theorem 4·1·1], using that
sPre(C) is left proper and cellular). The fibrant objects in sPre(C)/S (called S-fibrant
objects) are the injective-fibrant objects which satisfy descent for all hypercovers in
S. Since every hypercover is a local weak equivalence by definition, sPre(C)L is a
localization of sPre(C)/S. To show that the two structures coincide, we now check
the criterion from the above lemma:

Lemma 6·2. Let F and G be S-fibrant objects, and let f :F → G be an S-fibration that
is also a local weak equivalence. If X is a representable, then every square

∂∆n ⊗ X ��

��

F

��
∆n ⊗ X �� G

has a lifting. In particular, f is actually an objectwise acyclic fibration and therefore an
S-equivalence.

Proof. The second claim follows from the first by adjointness and because acyclic
fibrations of simplicial sets are detected by the right lifting property with respect to
the maps ∂∆n → ∆n.
Now we prove the first claim. First, f is an objectwise fibration since every S-

fibration is an injective-fibration and also a projective-fibration. This implies that f is
also a local fibration. Because f is both a local fibration and a local weak equivalence,
Proposition 5·1 guarantees us a hypercover U → X such that the diagram

∂∆n ⊗ U ��

��

∂∆n ⊗ X �� F

��
∆n ⊗ U ��

��

∆n ⊗ X �� G
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has a lifting. In applying Proposition 5·1, we have used that X is (trivially) a hyper-
cover of itself. Since S is dense, we may refine U and assume that U → X belongs to
S. We now write down the following diagram of simplicial mapping spaces:

Map(X, F ∆n

)
∼ ��

����

Map(U, F ∆n

)

����
Map(X, G∆n ×G∂ ∆n F ∂∆n

)
∼ �� Map(U, G∆n ×G∂ ∆n F ∂∆n

).

All the model categories we have been considering are simplicial model categories,
and this implies that F ∆n →G∆n ×G∂ ∆n F ∂∆n

is an S-fibration between S-fibrant
objects. Therefore, the vertical maps above are fibrations of simplicial sets because
both X and U are S-cofibrant. Likewise, the horizontal maps are weak equivalences
because U → X is an S-equivalence between S-cofibrant objects and both F ∆n

and
G∆n ×G∂ ∆n F ∂∆n

are S-fibrant.
We are given a 0-simplex x in the lower left corner in the above diagram, and we

want to find a lift in the upper left corner. We have already shown that the image
of x in the lower right corner lifts to the upper right corner. Since the horizontal
maps are weak equivalences, there is another 0-simplex y belonging to the connected
component of x such that y has a lift in the upper left corner. But fibrations of
simplicial sets are surjective onto the components in their images, so x also has a
lift.

Proof of Theorem 6·2. We first consider the claim for sPre(C)L. For the case when
our collection of hypercovers S is itself a set, we have already done all the work.
Since hypercovers are local weak equivalences we know S ⊆ L, and so we are in the
situation of Lemma 6·1. The necessary condition was verified in Lemma 6·2.
In the general case, let S′ be a dense set of hypercovers contained in S. As shown

in the previous paragraph, sPre(C)/S′ is equal to sPre(C)L. So every local weak
equivalence is a weak equivalence in sPre(C)/S′, and in particular every hyper-
cover in S is an S′-equivalence. This shows that sPre(C)/S exists and is equal to
sPre(C)/S′.
The argument for UC/S is basically the same. Assume first that S is a set of

hypercovers which is dense. One reproves the analog of Lemma 6·2 for the projective
model structure; the only difference in the proof is that one replaces U by a cofibrant
object before dealing with simplicial mapping spaces. The rest of the argument is
exactly the same, as is the generalization to the case where S need not be a set.

6·3. Cardinality considerations
Early in this section we mentioned that the collection of all hypercovers is not

a set, but contains a subset that is dense. We will now give the proof. Recall from
Section 4·9 that to any hypercover U → X one can attach an indexing simplicial set
K, where Kn is the set of representable summands of Un. The size of the hypercover
is the cardinality of

∐
n Kn, i.e., the number of representable summands that appear

in U . The main point is that in the arguments from Proposition 5·4 and Lemma 5·1,
one can control the size of the constructed hypercover.

Proposition 6·4. The class of all hypercovers has a subset which is dense.
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Proof. Choose a regular cardinal λ sufficiently large compared to the cardinality

of the set of morphisms in C, and let S denote the set of all hypercovers of size less
than λ. We will show that any hypercover U → X can be refined by one in S.
Since U0 → X is a generalized cover, there is a covering sieve R of X such that

everyW → X in R lifts through U0. Let V0 =
∐

W→X W , where the coproduct ranges
over all mapsW → X in R. The number of summands in V0 is clearly bounded by λ.
Now assume by induction that we have constructed an n-truncated hypercover

V → X which refines U , and such that the number of summands in V is less than λ.
To extend V we use the argument from Proposition 5·4, where we must show that
Z does not have too many representable summands. Inspecting the construction of
Z given in Lemma 5·1, it suffices to show that there aren’t too many maps from a
representable into Mn+1V . This can be deduced from Proposition 4·10.

7. Fibrations and descent conditions

This section identifies the fibrations and fibrant objects in sPre(C)L and UCL. We
start with the fibrant objects, where the result follows from Theorem 6·2:

Corollary 7·1. Let S be a collection of hypercovers which contains a set that is
dense. A simplicial presheaf F is fibrant in sPre(C)L (resp. in UCL) if and only if F
is injective-fibrant (resp. objectwise-fibrant) and satisfies descent for all hypercovers in
S.

Note that an immediate consequence is that a simplicial presheaf F satisfies des-
cent for all hypercovers if and only if it satisfies descent for all elements of S.

Proof. First observe that the fibrant objects in sPre(C)/S are the injective-fibrant
objects F such that Map(X, F )→ Map(U, F ) is a weak equivalence for every U → X
in S [H, theorem. 4·1·1(2)]. (Since everything is cofibrant in sPre(C), one doesn’t
have to take cofibrant replacements for U and X.) Lemma 4·1(i) says the latter
condition is the same as F satisfying descent for U . By Theorem 6·2 the model
structure sPre(C)L is the same as sPre(C)/S, so this proves one case.
The proof of the second case is the same, but any hypercover U must be replaced

by a cofibrant object before it appears in a mapping space, and Lemma 4·1(ii) is used
instead of Lemma 4·1(i).

Using the above corollary, we can actually identify the fibrations in both sPre(C)L
and UCL in terms of a relative descent condition. The idea for this proof is due
to Blander [Bl, proposition 4·1]. However, the interpretation in terms of descent
conditions requires extra care with various homotopy-limit constructions. We start
by recalling the relevant definitions.
Let P be the cosimplicial simplicial set B(∆ ↓−) described in [H, 14·7·7]. Then

hom∆(P, X) is defined in [H, 18·3·6] to be the homotopy limit of a cosimpli-
cial diagram X. However, this construction only has good properties when X is
objectwise-fibrant. Therefore, we will define holim∆ X to be hom∆(P, X̂), where X̂
is an objectwise-fibrant replacement for X. If X is not objectwise-fibrant, there is
no obvious guarantee that hom∆(P, X) and holim∆ X are weakly equivalent; we will
need to be careful about this below.
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In the following definition, F (U ) is the cosimplicial simplicial set which appears in
Definition 4·3. If Z is any simplicial set, then cZ denotes the corresponding constant
cosimplicial simplicial set.

Definition 7·2. An objectwise fibration F → G satisfies descent for the hypercover
U → X if the natural map F (X)→ holim∆[cG(X)×G(U )F (U )] is a weak equivalence.

Note that this reduces to our previous definition when G = ∗.

Remark 7·1. By manipulating homotopy limits, one can see that the above defini-
tion is equivalent to requiring that F (X) be the homotopy limit of the diagram

∏
a F (Ua

0 )
����

��

∏
a F (Ua

1 )
������

��

· · ·

G(X) ��
∏

a G(Ua
0 )

����
∏

a G(Ua
1 )

������ · · ·

or alternatively of the diagram

G(X)→ holim
∆

G(U )← holim
∆

F (U ).

We will not, however, need either of these criteria.

Our goal is to show that the fibrations in sPre(C)L or in UCL can be character-
ized using the above descent condition. The proof is more complex than one might
imagine, and proceeds in a few steps.

Lemma 7·1.
(i) Let Z be a simplicial set, let W ∗ be a cosimplicial simplicial set, and suppose
there is an objectwise fibrationW ∗ → cZ. Then hom∆(P, W ) is weakly equivalent
to the homotopy limit of W ∗.

(ii) An objectwise fibration of simplicial presheaves F → G satisfies descent for
U → X if and only if the natural map F (X) → hom∆(P, cG(X)×G(U ) F (U )) is
a weak equivalence.

Proof. For (i), pick a fibrant replacement Z → Ẑ, and factor the composite W →
cZ → cẐ into an objectwise acyclic cofibration W

∼� Ŵ followed by an objectwise
fibration Ŵ � cẐ. Let E = (cZ)×cẐ Ŵ , and consider the two maps hom∆(P, W )→
hom∆(P, E)→ hom∆(P, Ŵ ). The last object is the homotopy limit ofW by definition,
so we will show that both maps are equivalences.
First consider the diagram

Z ��

∼
��

hom∆(P, cZ)

��

hom∆(P, E)

��

��

Ẑ �� hom∆(P, cẐ) hom∆(P, Ŵ ).����

Note that P0 = B(∆ ↓ [0]) is actually simplicially contractible, since [0] is the
terminal object of ∆. Because hom∆(P, cZ) = Map(P0, Z) it follows that the canonical
map Z = hom∆(∗, cZ) → hom∆(P, cZ) is a simplicial homotopy equivalence (and
similarly for Ẑ). So the left horizontal maps in the diagram are simplicial homotopy
equivalences.
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The right square is a pullback square. It follows that the right-most vertical map

is the pullback of a weak equivalence along a fibration, hence a weak equivalence (by
right properness of sSet).
Next we consider the diagram

W
∼ ��

		 		������� E





��
��

��
�

cZ.

It is a general fact that a right Quillen functor preserves weak equivalences
between fibrations over a given object (this is Ken Brown’s Lemma [H, 7·7·2] in
the overcategory). Since hom∆(P,−) is a right Quillen functor, we therefore have
hom∆(P, W ) ∼−→ hom∆(P, E). This finishes the proof of (i).
Part (ii) is an application of (i), noting that cG(X) ×G(U ) F (U ) → cG(X) is an

objectwise fibration.

Our next task is to reinterpret descent in yet another way, as a lifting condition.
In UC, consider the maps hocolimn Un → X and factor them as hocolimn Un �
B(U )

∼−� X, where the first map is a projective cofibration and the second is an
objectwise acyclic fibration. From now on we’ll denote the object hocolimn Un by
A(U ), for short. Note that since each Un is projective-cofibrant, so is hocolimUn by
[H, 18·4·2], so bothA(U ) andB(U ) are projective-cofibrant. Also,X is both cofibrant
and fibrant in UC, therefore B(U ) is cofibrant-fibrant and B(U )→ X is a simplicial
homotopy equivalence.
Fix a collection of hypercovers S which contains a dense set. Let JC be the collec-

tion of all maps Λn,k ⊗ Z → ∆n ⊗ Z (for all Z ∈ C) and also of all the maps

[A(U )⊗ ∆n]�A(U )⊗∂∆n [B(U )⊗ ∂∆n]→ B(U )⊗ ∆n

where U → X ranges over the hypercovers in S.

Lemma 7·2. A map F → G is an objectwise fibration satisfying descent with respect
to all hypercovers in S if and only if it has the right-lifting-property with respect to the
maps in JC.

Note that, as a consequence, objectwise fibrations satisfying descent are closed
under pullbacks.

Proof. Amap F → G is an objectwise fibration if and only if it has the right-lifting-
property with respect to the maps Λn,k ⊗ Z → ∆n ⊗ Z. If F → G is an objectwise
fibration then the map

Map(B(U ), F )→ Map(A(U ), F )×Map(A(U ),G) Map(B(U ), G)

is a fibration because UC is a simplicial model category, and it’s a weak equivalence
if and only if F → G has the right-lifting-property with respect to the maps

[A(U )⊗ ∆n]�A(U )⊗∂∆n [B(U )⊗ ∂∆n]→ B(U )⊗ ∆n,

for all n. Because B(U ) → X is a simplicial homotopy equivalence, it follows that
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both Map(X, F ) → Map(B(U ), F ) and Map(X, G) → Map(B(U ), G) are simplicial
homotopy equivalences. From this one sees that

Map(B(U ), F )→ Map(A(U ), F )×Map(A(U ),G) Map(B(U ), G)

is a weak equivalence if and only if

Map(X, F )→ Map(A(U ), F )×Map(A(U ),G) Map(X, G)

is one.
We have A(U ) = hocolim∆op U = U ⊗∆ P , which gives the canonical identification

of Map(A(U ), F ) with hom∆(P, F (U )) [H, 18·1·10]. A diagram chase now shows that
an objectwise fibration F → G has the lifting property in question if and only if the
natural maps

hom∆(P, cF (X))→ hom∆(P, F (U ))×hom∆(P,G(U )) hom
∆(P, cG(X))

are weak equivalences. The object on the left is simplicially homotopy equivalent
to F (X), as in the proof of Lemma 7·1. Using that hom∆(P,−) is a right adjoint,
the object on the right can be identified with hom∆(P, cG(X) ×G(U ) F (U )). Now
Lemma 7·1(ii) tells us that the above map is a weak equivalence if and only if F → G
satisfies descent for U → X.

Lemma 7·3. LetM be a model category, and let J be a set of acyclic cofibrations which
permits the small object argument. Suppose every map that is both a J-injective and a
weak equivalence is also a fibration. Then the J-injectives are precisely the fibrations.

Proof. The small object argument shows that any acyclic cofibration A → B may
be factored as A → X → B where the first map is a relative J-cell complex (therefore
an acyclic cofibration) and the second is a J-injective. The two-out-of-three property
says that X → B is a weak equivalence, and then our assumption implies it is a
fibration. The retract argument then shows that A → B is a retract of A → X. In
other words, every acyclic cofibration is a retract of a relative J-cell complex. From
this it follows that J-injectives have the right-lifting-property with respect to all
acyclic cofibrations, hence J-injectives are fibrations.

Proposition 7·3. The set JC is a set of generating acyclic cofibrations in UCL.

Proof. The maps in JC are acyclic cofibrations in UCL because UCL is a simplicial
model category and because the maps A(U ) → B(U ) are acyclic cofibrations in
UCL. It suffices to show that if F → G is a JC-injective which is also a local weak
equivalence, then F → G is an objectwise acyclic fibration. This will imply that it is
also an acyclic fibration in UCL, and in particular a fibration in UCL. Then we apply
Lemma 7·3.
We need to show that for every X ∈ C and every point x ∈ G(X), the fiber of

F (X) → G(X) over x is contractible. Let us replace F and G by their restrictions
to the site C ↓ X. The map of restricted presheaves is still a local weak equivalence,
and still satisfies descent with respect to a dense set of hypercovers (because every
hypercover in C ↓ X is essentially a hypercover in C). By Lemma 7·2 F → G has the
right-lifting-property with respect to the corresponding set J(C↓X) in U (C ↓ X).
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Our point x ∈ G(X) now corresponds to a map ∗ → G in U (C ↓ X). Consider the

pullback square

H ��

��

F

��
∗ �� G.

The map H → ∗ still has the right-lifting-property with respect to J(C↓X), and so it
is an objectwise fibration satisfying descent by Lemma 7·2. Therefore H is fibrant
in U (C ↓ X)L by Corollary 7·1. Moreover, since F → G is a local acyclic fibration,
so is H → ∗. Thus H → ∗ is an acyclic fibration in U (C ↓ X)L, hence an objectwise
acyclic fibration. This implies that H(∗) is contractible. But H(∗) is another name
for the fiber of our original map F (X)→ G(X), so we are done.

Theorem 7·4. Let S be a collection of hypercovers which contains a set that is dense.
A map of simplicial presheaves F → G is a fibration in sPre(C)L (resp. in UCL) if
and only if it is an injective fibration (resp. an objectwise fibration) and satisfies descent
for all hypercovers in S.

Proof. The statement for UCL follows from Proposition 7·3 and Lemma 7·2. For
sPre(C)L one repeats all the above arguments, but in the definition of JC the maps
Λn,k ⊗ Z → ∆n ⊗ Z are replaced with a set of generating acyclic cofibrations for
sPre(C).

7·5. A short example about fibrant replacement
We end this section with a simple (and well-known) example demonstrating the

use of Corollary 7·1. Let A be a presheaf of abelian groups on the site C, and let
I∗ denote an injective resolution of the sheafification Ã in the category of sheaves.
We will explain how to use I∗ to construct a fibrant replacement for the simplicial
presheaf K(A, n).
Let I denote the chain complex of presheaves which has Ik in dimension n − k

when k < n, and has the presheaf of n-boundaries Bn in dimension 0. The Dold-
Kan correspondence lets us identify presheaves of (non-negatively graded) chain
complexes with the abelian group objects in sPre(C), and so I can be regarded as
a simplicial presheaf. Since right now we are only dealing with abelian things, it’s
easier just to think about chain complexes, though.
The map A → I0 induces a map K(A, n)→ I (and recall that as a chain complex,

K(A, n) has A in dimension n and 0 everywhere else). This map is a local weak
equivalence because it induces isomorphisms on homology group sheaves. We claim
that I satisfies descent for all hypercovers, and so is a fibrant object in UCL. This
shows that one can identify weak homotopy classes of mapsHo (∆k/∂∆k⊗X, K(A, n))
withHk(I(X)), which is just the sheaf cohomology groupHn−k

C (X, Ã). The connection
with sheaf cohomology is also explained in [J1, section 2].
If U → X is a hypercover of X, let Z[U ] denote the chain complex of presheaves

obtained by applying the free abelian group functor to the presheaves Un. It is
known that after sheafification Z[U ] becomes a resolution of Z[X] (this is basic-
ally the ‘Illusie Conjecture’; see [J1, theorem. 2·5] for a proof. The mapping space
Map(U, I) may be identified with Map(Z[U ], I) using adjointness, and this is just the
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total complex associated to the bicomplex (p, q) → Iq(Up). By running the spectral
sequence for the homology of this bicomplex, making use of the fact that the Ik’s
are injective sheaves (k � 1) and Z[U ]∼ is a resolution of Z[X]∼, one finds that
the spectral sequence collapses and the homology is just that of Map(X, I). In other
words, Map(X, I)→ Map(U, I) is a weak equivalence.

8. Other applications

Our main application for studying hypercovers is to produce realization functors
onA

1-homotopy theory [DI1, Is]. In this section we consider a few other applications
to the homotopy theory of simplicial presheaves.

8·1. Change of site
Suppose that C and D are Grothendieck sites, and f : C → D is a functor. The

direct image functor f∗ : sPre(D)→ sPre(C) has a left adjoint f∗. One is interested
in conditions on f which imply that these adjoint functors are well-behaved in
relation to the homotopy theory of simplicial presheaves. Here is a general result
which is now easy to prove:

Proposition 8·2. Suppose that there is a dense set S of hypercovers in C such that
f∗ takes elements of S to hypercovers in D. Then the adjoint functors (f∗, f∗) give a
Quillen map UCL → UDL. (Recall that a Quillen map is just a Quillen pair [H,
definition. 8·5·2] regarded as a map of model categories in the direction of the left
adjoint.)

In this result one cannot replace UCL by sPre(C)L. The functor f∗ usually does
not preserve monomorphisms, which are the cofibrations in sPre(C)L.

Proof. Using general facts about the universal model category UC [D, proposi-
tion 2·3], the functors (f∗, f∗) are a Quillen map from UC to UD. If T denotes the
collection of hypercovers in D, then we have assumed that f∗ maps S into T . There-
fore, by general considerations [D, section 5] one gets a Quillen pair between UC/S
and UD/T . But by Theorem 6·2 these localizations are just UCL and UDL.

Suppose that f is continuous, in the sense that {f (Ua) → f (X)} generates a
covering sieve of f (X) if {Ua → X} is a covering sieve. It follows that f∗ preserves
generalized covers: this is easy for maps whose target is a representable, and the
general case can be deduced using that the target is a colimit of representables. If
one also supposes that f∗ preserves finite limits, thenMn(f∗U )� f∗(MnU ) and hence
f∗ preserves hypercovers. Unfortunately there are examples of interest in which f∗

does not preserve finite limits (see [MV, exercise 1·19, p. 103]), and so here is a slightly
different criterion which is useful:

Corollary 8·3. Suppose that C and D are Verdier sites (see Section 9). Assume the
functor f : C → D preserves finite limits for diagrams of basal maps, and takes covering
families {Ua → X} in C to covering families {f (Ua)→ f (X)} in D. Then (f∗, f∗) give
a Quillen map UCL → UDL.

Proof. The assumptions imply that f∗ preserves matching objects of basal hyper-
covers (use Proposition 4·10 and the material in Section 9). So the condition about
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preserving covering families shows that f∗ takes basal hypercovers in C to basal
hypercovers in D. Thus, Proposition 8·2 applies.

As an example, let S → T be a map of schemes and consider the base-change
functor f : Sm/T → Sm/S from the category of smooth schemes over T to the
category of smooth schemes over S. This functor satisfies the properties of the above
proposition for any of the standard topologies (such as Zariski, étale, or Nisnevich)
on Sm/S and Sm/T . So one gets a Quillen pair U (Sm/T )L → U (Sm/S)L, by the
above corollary. Compared to the discussion in [MV], this approach is much simpler.

8·4. Computing homotopy classes of maps
Given a simplicial presheaf F , we will use HF to denote a fibrant replacement in

sPre(C)L (or in UCL, depending on the context). In some sense the ultimate goal
of sheaf theory is to compute the homotopy types of the simplicial sets HF (X).
For instance, if A is a presheaf of abelian groups and F = K(A, n) is the asso-
ciated Eilenberg–Mac Lane simplicial presheaf, then πiHF (X) = Hn−i(X, Ã) (see
Section 7·5). If F is a presheaf of chain complexes then HF (X) computes the hyper-
cohomology of X with coefficients in F , and this is where the notation HF comes
from (in the present context it goes back to [Th]).
There is no known method for computing HF in general, one can use the small

object argument, but this is not very computable. For ‘nice’ sites one can use the
Godement resolution [J2, proposition 3·3], but this is also not so computable. In this
section we give analogs of the Verdier hypercovering theorem, which show how to
compute some invariants of HF (X) using hypercovers. It would be interesting to
construct an explicit model for the simplicial set HF (X) using hypercovers, but we
haven’t been able to do this.
We write Ho (F, G) for the set of weak homotopy classes of maps from F toG in the

homotopy category of sPre(C)L. Likewise, π(F, G) denotes the set sPre(C)(F, G)/∼,
where the equivalence relation is generated by simplicial homotopy.
Given an objectX in C, letHCX denote the full subcategory of sPre(C) consisting

of all hypercovers of X. We let πHCX denote the category with the same objects,
but where πHCX(U, V ) equals simplicial homotopy classes of maps over X.

Proposition 8·5. The category πHCX is filtered.

This proposition is proved in [AGV, exposé V, 7.3.2] and also in [AM, section 8]
with a slightly different notion of hypercover (see Section 10). We prove it again here
because it is straightforward with the techniques that we have already developed.

Proof. If U → X and V → X are both hypercovers, then so is U ×X V → X. Thus,
we only need show that two parallel arrows V ⇒ U in πHCX can be equalized.
The two maps from V → X to U → X can be assembled into the square

∂∆1 ⊗ V ��

��

U

��
∆1 ⊗ V �� X

in which the bottom map factors through V → X. The right vertical arrow is a
local acyclic fibration by definition. Therefore, we apply Proposition 5·1 and obtain
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another hypercover W → X that refines V , together with a diagram

∂∆1 ⊗ W ��

��

∂∆1 ⊗ V �� U

��
∆1 ⊗ W ��

����������������������
∆1 ⊗ V �� X.

The two compositionsW → U are simplicially homotopic and hence equal in πHCX .

The following is a generalization of the Verdier hypercovering theorem [AGV,
exposé V, 7·4·1(4)]. The case K = ∗ of part (b) appeared in [B], and is cited several
times in Jardine’s papers (see [J2, p. 83], for instance). It can be deduced from general
considerations about the category of locally fibrant simplicial presheaves being a
‘category with fibrant objects’. The generalization to arbitrary K, as well as to the
relative setting in (c), doesn’t seem to follow from these considerations, however.
The case of arbitrary K can be deduced from K = ∗ using [DI2, corollary 7·5],
but the material in Section 5 makes it just as easy to give a proof which handles all
cases at once.

Theorem 8·6. Let F be a locally fibrant simplicial presheaf and letX belong to C. Let
F → HF be a fibrant replacement for F in sPre(C)L. Then:

(a) given a 0-simplex p ofHF (X), there is a hypercover V → X and a map v : V → F
such that the following square commutes up to simplicial homotopy:

V
v ��

��

F

��
X

p �� HF.

We say that ‘p is represented by the map v’;
(b) given a finite simplicial set K, there is an isomorphism

colim
U→X

π(K ⊗ U, F )→ Ho (K ⊗ X, F )

where the colimit is taken over (the opposite category of) πHCX ;
(c) given p and v as in (a), there is an isomorphism

πn(HF (X), p)� colim
U→V

πn(Map(U, HF ), p|U )� colim
U→V

π(∆n/∂∆n ⊗ U, F )v|U .

Here v|U denotes the map U → V → F , and p|U denotes the map U → V → X →
HF . The colimits are taken over the overcategory πHCX ↓ V of hypercovers refin-
ing V , and π(∆n/∂∆n ⊗U, F )v|U denotes the set of all maps f : ∆n/∂∆n ⊗U → F
such that f |∗⊗U is the given map v|U : U → V → F , modulo simplicial homotopy
relative to ∗ ⊗ U .

Proof. Part (a) is a direct consequence of Proposition 5·6 because F and HF are
both locally fibrant.
For surjectivity in (b), note that any element α of Ho (K ⊗ X, F ) is represented

by an actual map K ⊗ X → HF . From Proposition 5·6 again, we get a hypercover
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U → X and a diagram

K ⊗ U
f ��

��

F

��
K ⊗ X �� HF

commuting up to simplicial homotopy. The map f has image α in Ho (K ⊗ X, F ).

For injectivity in (b), suppose given two maps K ⊗ U → F that have the same
image in Ho (K ⊗ X, F ). Since K ⊗ U → K ⊗ X is a local weak equivalence, this
means that the two compositions K ⊗ U → HF are simplicially homotopic. Hence
we have a diagram

(∂∆1 × K)⊗ V ��

��

(∂∆1 × K)⊗ U �� F

��
(∆1 × K)⊗ V ��

��

(∆1 × K)⊗ U �� HF

for some refinement V of U , where the lift is a relative-homotopy-lifting. In partic-
ular, the upper left triangle commutes on the nose, so the two maps K ⊗ U → F are
equal in colimU→X π(K ⊗ U, F ).

For (c), note that the natural map Map(X, HF )→ Map(U, HF ) is a weak equival-
ence. So it induces an isomorphism πn(HF (X), p) �−→ πn(Map(U, HF ), p|U ), and after
taking the colimit over all U we get the first isomorphism in the theorem.

For the second isomorphism, observe that composing with F → HF induces maps
π(∆n/∂∆n ⊗ U, F )v|U → πn(Map(U, HF ), p|U ). As in the proof of part (b) above, the
fact that these maps give an isomorphism after passing to the colimit is a direct
consequence of Proposition 5·6.

Note that if S is a dense set of hypercovers then the colimits in the above results
can just as well be taken over the full subcategory of πHCX whose objects belong
to S.

8·7. The coconnected case
Definition 8·8. A locally fibrant simplicial presheaf F is said to be locally n-

coconnected if it has the following property: for any X in C and any 0-simplex x
in F (X), the homotopy group sheaves πk(F, x) on C ↓ X vanish for all k � n.

Using techniques from [DI2], a locally fibrant simplicial presheaf is locally n-
coconnected if and only if it has the local lifting property with respect to the maps
∂∆k ⊗ X → ∆k ⊗ X for k > n.
Not surprisingly, for n-coconnected presheaves one can calculate homotopy classes

of maps by only using bounded hypercovers. We will prove this next.
If n � 0, let HCX(n) denote the category of bounded hypercovers U → X of

height at most n (see Definition 4·6). Let πHCX(n) denote the category with the
same objects but with simplicial homotopy classes of maps. Arguments similar to
Proposition 8·5 show that πHCX(n) is filtered.
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Proposition 8·9. Suppose that F is locally fibrant and locally n-coconnected. Then
given a finite simplicial set K, there is an isomorphism

Ho (K ⊗ X, F )� colim
U→X

π(K ⊗ U, coskn F )

where the colimit is taken over the category πHCX(n).

Proof. First, the map F → coskn F is a local weak equivalence between locally
fibrant objects. So we can say that

Ho (K ⊗ X, F )�Ho (K ⊗ X, coskn F )� colim
U→X

π(K ⊗ U, coskn F )

where the colimit runs over the full category πHCX ; the second isomorphism comes
from Theorem 8·6. We need to show that

colim
U∈πHCX (n)

π(K ⊗ U, coskn F )→ colim
U∈πHCX

π(K ⊗ U, coskn F )

is an isomorphism. Observe that for any simplicial set L, a map L ⊗ U → coskn F
factors through coskn(L ⊗ U ), and the map L ⊗ U → coskn(L ⊗ U ) factors as
L⊗U → L⊗ coskn U → coskn(L⊗U ). Applying this whenL = K shows surjectivity
because coskn U belongs toHCX(n), and from L = K×∆1 one can deduce injectivity.

Proposition 8·10. Let S be a Noetherian scheme, and let C be Sm/S (or Sch/S) with
either the étale or Nisnevich topology. Let X be an object in C with the property that every
finite set of points is contained in an affine open. Then every bounded hypercover of X
can be refined by a Čech complex.

Proof. In the case of the étale topology, this is essentially the content of [Ar,
theorem 4·1]. Since the result is trivial for hypercovers of height 0, we’ll suppose
by induction that it works for hypercovers of height at most n. Let U → X be a
hypercover of height n + 1. By Theorem 9·4, U can be refined by a basal hypercover
U ′ → X (see Section 9 below). Let V = coskn U ′, which is a hypercover of height at
most n. By induction, there is an étale covering family {Wi → X} such that ČW
refines V (where W =

∐
Wi). Consider the induced map ČWn+1 → Vn+1 = Mn+1U

′.
The map U ′

n+1 → Mn+1U
′ is an étale cover, which pulls back to an étale cover

E → ČWn+1. [Ar, theorem 4·1] (applied to the case of no geometric points) says that
there is a refinement Z ofW such that the map ČZn+1 → ČWn+1 factors through E.
In particular, this means that ČZ refines U ′ (and therefore U ) up through dimension
n + 1; since the height of U is n + 1, this means it automatically refines U in all
dimensions. This completes the proof.
For the Nisnevich topology it is essentially the same argument, only using a revised

version of [Ar, theorem 4·1] (see [MV, proposition 1·9, p. 99].

Corollary 8·11. Let C and X be as in Proposition 8·10, and suppose F is a locally
fibrant simplicial presheaf which is locally n-coconnected. If K is a finite simplicial set,
there is an isomorphism

Ho (K ⊗ X, F )� colim
U→X

π(K ⊗ U, coskn F )

where the colimit is taken over the category πHCX(0) consisting of the Čech complexes.
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In particular, if A is a presheaf of abelian groups and we take K = ∗ and F =

K(A, n), then the above corollary gives the isomorphism between Čech cohomology
and sheaf cohomology established in [Ar] and [MV, proposition 3·1·9].

Proof. This is a direct consequence of the previous two propositions. The subcat-
egory πHCX(0) is final in πHCX(n).

Remark 8·1. The above proposition and its corollary are not true for the Zariski
topology, and therefore not for the open covering topology on an arbitrary topological
space. We repeat the example of [MV, example 3·1·10]: let X = SpecR be the semi-
localization of A

2
k at the points (0, 0) and (0, 1). As a topological space X has exactly

two closed points x1 and x2 (of codimension 2), infinitely many points of codimension
1 (corresponding to the irreducible closed curves in A

2 passing through both (0, 0)
and (0, 1)), and a generic point of codimension 0. Any open cover of X can be refined
by a cover with exactly two elements: take any of the pieces containing x1 and x2,
respectively.
Let U1 = X−{x1} and U2 = X−{x2}. Pick two of the codimension 1 points f and g

which specialize to both x1 and x2. LetW1 = (U1�U2)−{f} andW2 = (U1�U2)−{g}.
Let Ω0 = U1 � U2 and Ω1 = (U1 � U2) � W1 � W2 (the first part is degenerate).
Consider the hypercover cosk1 Ω. This hypercover cannot be refined by a Čech
complex.

9. Verdier sites

The definition of hypercover used so far in this paper has the advantage of working
for any Grothendieck site; but it is so broad that it can sometimes be cumbersome.
One is often in the position of having to check that something works for all hypercov-
ers, and so it is important to have, whenever possible, a smaller collection of objects
to deal with. This is the subject of this section.
To see the basic problem, look at the site of topological spaces with the Grothen-

dieck topology given by open covers. Under Definition 4·2, to give a hypercover
of a space X basically corresponds to giving a simplicial space U∗ such that each
matching map Un → MnU is locally split. This allows for an incredible amount of
freedom in what a hypercover can look like, so much that it’s very difficult to say
anything concrete about it. To make things easier, it is reasonable that one should
be able to look just at the ‘open hypercovers’, where the maps Un → MnU all have
the form �aWa → MnU for some open covering {Wa} of the target. These are much
more manageable objects.
The notion of a Verdier site, introduced in the following definition, is just an

axiomatization of the above situation. It is a Grothendieck site with enough extra
data that one can talk about a special kind of ‘basal hypercover’ rather than the
more general notion we have been working with. A Verdier site is almost just a
Grothendieck site with a basis, but with one extra property.

Definition 9·1. A Verdier site is a category C together with a given collection of
covering families {Ua → X} satisfying the properties below. A map U → X in C

is basal if it belongs to one of these covering families. With this terminology, the
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properties can be stated as follows:
(i) any single isomorphism {Z → X} forms a covering family;
(ii) if {Ua → X} is a covering family and Y → X is a map, then the pullbacks

Y ×X Ua all exist, and {Y ×X Ua → Y } is a covering family;
(iii) if {Ua → X} is a covering family and one is given a collection of covering

families {Vab → Ua}, then the collection of compositions {Vab → Ua → X} is
also a covering family;

(iv) if U → X is a basal map then the diagonal U → U ×X U is also basal.

Conditions (i)–(iii) say that the collection of covering families serves as a basis
for a Grothendieck topology on C in the usual way. Most of the familiar geometric
Grothendieck sites satisfy the above axioms: these include topological spaces, where
the covering families are open covers, as well as the Zariski, Nisnevich and étale
topologies on schemes. The reason for not assuming that C has all pullbacks is so
that our results apply to the Grothendieck topologies on smooth schemes which are
used in A

1-homotopy theory [MV].
Observe that pullbacks along any basal map always exist (part (ii)), and that any

composition of basal maps is again basal (part (iii)). It follows that if {Va → X} is
a finite collection of basal maps and {Ua → Va} is another collection of basal maps,
then the induced map

∏
X Ua →

∏
X Va of fibre-products is again basal.

For the following definition, note that to give a map f :
∐

i rXi →
∐

j rYj between
coproducts of representables one must choose, for every index i, a prescribed value
of j and a map Xi → Yj .

Definition 9·2.
(a) A map f : W → Y in sPre(C) is basal if W is a coproduct

∐
i rWi of repres-

entables, Y is also a coproduct
∐

j rYj of representables, and the various maps
Wi → Yj determining f are all basal, in the sense of Definition 9·1.

(i) A basal hypercover U → X is a hypercover such that the matching maps Un →
MnU are all basal.

The second part of this definition only makes sense if one knows that the matching
objectsMnU are all coproducts of representables, we will see in Lemma 9·2 that this
is the case.

Lemma 9·1. Let F → H ← G be maps between coproducts of representables, where
G → H is basal. Then the pullback is also a coproduct of representables, and the map
from the pullback to F is basal.

Proof. Use the fact that theYoneda embedding preserves whatever limits exist, and
that coproducts commute with fibre-products in sPre(C). The necessary pullbacks
in C exist because pullbacks along basal maps always exist.

Lemma 9·2. Let U → X be an n-truncated basal hypercover, and let K be a finite
simplicial set of dimension at most n. Then hom+(K, U ) is a coproduct of representables.
In particular, this is true for Mn+1U = hom+(∂∆n+1, U ).

Proof. We proceed by induction on the dimension of K. When K is empty
hom+(K, U ) is just X, which is a representable by assumption.
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Now assume that the lemma has been proven for simplicial sets of dimension

at most k − 1, and let K be obtained from a (k − 1)-dimensional simplicial set L
by attaching finitely many k-simplices. By repeating the following argument, we
may assume that only one k-simplex is attached. It follows that hom+(K, U ) is the
pullback of the diagram

hom+(∆k, U ) −→ hom+(∂∆k, U )←− hom+(L, U ).

All three objects are coproducts of representables, the first because Uk is a coproduct
of representables and the last two by the induction hypothesis. Since the left map
above is basal (being the matching map in a basal hypercover), Lemma 9·1 tells us
that hom+(K, U ) is also a coproduct of representables.

Let us return momentarily to Definition 9·2(b). If U → X is a hypercover and
U0→X is basal, then the above proposition specialized to ∂∆1 shows that M1U is a
coproduct of representables. So we may ask that U1→M1U be basal, which in turn
forces M2U to be a coproduct of representables. This shows that our definition of
basal hypercover makes sense, in a recursive sort of way.

Proposition 9·3. Let K → L be any map of finite simplicial sets whose dimen-
sions are at most k, and let U → X be a k-truncated basal hypercover. Then the map
hom+(L, U )→ hom+(K, U ) is basal.

Proof. Consider the class C of all maps of finite simplicial sets having the property
stated in the proposition. By definition of basal hypercovers, C contains the gener-
ating cofibrations ∂∆n → ∆n. Cobase changes preserve C by Lemmas 4·2(v), 9·1 and
9·2. Also, finite compositions preserve C because basal maps are closed under finite
composition. This shows that C contains all inclusions of finite simplicial sets.
In particular, � → ∆n belongs to C. This means that Un → X is basal for every

basal hypercover U → X. Using axiom (iv) of Verdier sites one can deduce that
Un →Un ×X Un is also basal (note that in the present context these objects are
coproducts of representables, unlike in the axiom). In other words, C contains the
codiagonal ∆n � ∆n → ∆n for every n.
Every surjection can be built from the above codiagonals with finitely many com-

positions and cobase changes. Thus, every surjection belongs to C. But every map is
a composition of a surjection with an inclusion, so every map belongs to C.

The proposition below is the main thing we need about basal hypercovers. See
[AM, lemma 8·8] for the same result without reference to basal maps. Unfortunately,
dealing with these basal maps definitely increases the technical complications.

Theorem 9·4. In a Verdier site, any hypercover may be refined by a split, basal
hypercover. In particular, the basal hypercovers are dense.

Proof. Let U → X be any hypercover. The fact that U0→X is a generalized cover
means there is a covering sieve R ofX such that every map in R lifts through U0. But
our Grothendieck topology was generated by a basis, so there is a covering family
{Wa → X} for which every element belongs to R. Setting V0 =

∐
a rWa, we have

that V0 → X is basal and refines U0 → X.
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Continuing by induction, we may assume we have built a split, basal, n-truncated
hypercover V which refines U (up through dimension n). Our job is to define Vn+1.
We consider the maps

Un+1

��
Mn+1V �� Mn+1U,

where all the objects are coproducts of representables by Lemma 9·2. Using the
same reasoning as in the first paragraph, there is a map W → Mn+1V that is basal,
that is a generalized cover, and that fits in the upper left corner of this diagram,
i.e., it refines the pullback generalized cover Un+1 ×Mn+1U Mn+1V → Mn+1V . Set
Vn+1 = W � Ln+1V . Now V is a split, (n + 1)-truncated hypercover; the question is
whether Vn+1 → Mn+1V is basal. Because of the way W was constructed, we need
only show that the map Ln+1V → Mn+1V is basal.
Recall from Section 4·7 that there is a natural map dgnn V → coskn V . In di-

mension n this is the identity map on Vn, and in dimension n + 1 it’s the map
Ln+1V → Mn+1V . Picking any degeneracy si from level n to n+ 1, we get a diagram

Ln+1V �� Mn+1V

Vn

si

��

Vn.

si

��

Every representable summand of Ln+1V is of the form si(rU ) for some i and some
representable summand rU of Vn, so it suffices to show that the right-hand map
si:Vn → Mn+1V is basal. But this degeneracy is induced by the corresponding
collapse map ∂∆n+1 → ∆n, i.e., the composition s : ∂∆n+1 ↪→ ∆n+1 si−→ ∆n. In other
words, si coincides with hom+(∆n, V ) → hom+(∂∆n+1, V ). The fact that this is basal
follows from Proposition 9·3.

Remark 9·1. Suppose there is a regular cardinal λ with the property that every
covering family in C has size less than λ. Following similar observations to those in
Proposition 6·4, the split, basal hypercover of the above proposition can be construc-
ted so that in each level it has fewer than λ summands. This is needed in the next
section.

10. Internal hypercovers

In this final section we give a slight modification of Theorem 6·2 which is useful in
applications; for instance, it is needed in [Is]. This involves once again tweaking the
definition of hypercover in a certain way.
What sometimes happens is that the Grothendieck site C is rich enough that one

can talk about hypercovers as elements of sC rather than sPre(C), and this is usually
a convenience. For example this is the approach taken in [AM], and it is also used
in [DI1] in the context of simplicial spaces. Handling this involves only a slight
difference from what we have done, mostly caused by the fact that the coproduct in
C (which we will denote by �) is not the same as the coproduct of presheaves: i.e.,
r(X � Y ) is not the same as rX � rY .
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Throughout this section we work with a Verdier site for which there exists a regular

cardinal λ such that:

(1) every covering family {Ui → X} has cardinality less than λ;
(2) coproducts of size less than λ exist in C;
(3) if {Xi} is a set of objects whose cardinality is less than λ, then the map of

presheaves
∐

i rXi → r(
⋃

i Xi) becomes an isomorphism after sheafification.

For example, if Sm/k denotes the category of smooth schemes of finite type over
a fixed ground field k, we may give it the structure of a Verdier site by saying that
the covering families are finite collections {Ui → X} such that

∐
Ui → X is an étale

(or Zariski or Nisnevich) cover. This generates the usual Grothendieck topology, and
satisfies the above properties with λ = ℵ0.

Definition 10·1. Given an object X of C, an internal hypercover of X is a simplicial
object U in sC which is augmented byX, with the property that each matching map
Un → MnU is isomorphic over MnU to a map of the form

∐
i Vi → MnU , for some

basal maps {Vi → MnU} which generate a covering sieve.

Of course one has to worry about whether the matching object MnU exists, since
the site C need not have arbitrary limits. But we shall see that the condition on
Uk → MkU for k � n − 1 guarantees that MnU does in fact exist. Even though C

is not necessarily complete, the conclusions of Lemma 4·2 are still valid when the
limits hom+(K, W ) do exist in C. For example, if hom+(L, W ), hom+(K, W ), and
hom+(M, W ) all exist, and the pullback of

hom+(L, W )→ hom+(K, W )← hom+(M, W )

also exists, then hom+(L �K M, W ) exists and is isomorphic to the above pullback.

Lemma 10·1. If U →X is an n-truncated internal hypercover then the object
hom+(K, U ) exists whenever K is a simplicial set of dimension at most n. In partic-
ular, the matching object Mn+1U = hom+(∂∆n+1, U ) exists.

Proof. The proof follows the same lines as the proof of Lemma 9·2.

We continue our notational convention of writing U for a simplicial object of C

and also for the simplicial presheaf that it represents.

Theorem 10·2. The model category sPre(C)L of simplicial presheaves may be ob-
tained as the localization of sPre(C) at the following collection of maps I:
(i) maps of the form

∐
Wi → (

⋃
Wi), for collections {Wi} in C of size less than λ;

(ii) the maps rU → rX, for all internal hypercovers U → X.

Proof. Let sPre(C)I denote the localization we are considering. First note that all
the maps in I are local weak equivalences. For maps of type (ii), this is Theorem 6·2.
For maps of type (i) it follows from assumption (3) at the beginning of this section,
because every simplicial presheaf is locally weakly equivalent to its sheafification. So
sPre(C)L is a stronger localization than sPre(C)I. To see that the localizations coin-
cide, it will suffice to show that if V → X is a basal hypercover in which the number
of summands in each level is smaller than λ, then V → X is a weak equivalence in
sPre(C)I. This is by virtue of Theorem 6·2, Theorem 9·4, and Remark 9·1.
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Each presheaf Vn may be decomposed as a coproduct of representables in an
essentially unique way: Vn =

∐
α Vnα. We define an object U of sC by Un =

⋃
α Vnα,

and with face and degeneracy maps lifted from those in V . For the rest of the proof
we will be careful to distinguish U from the simplicial presheaf rU . Observe that
there is a canonical map V → rU , commuting with the augmentations down to X.
We claim that U is an internal hypercover of X. Assuming this for the moment,

relation (i) in our definition of sPre(C)I shows that Vn → rUn is an I-weak equivalence
for each n. Since every simplicial presheaf F is the homotopy colimit hocolimn Fn

(see Remark 2·1), it follows that V → rU is also an I-weak equivalence. Using that
U → X is an internal hypercover, relation (ii) gives that rU � X; so one concludes
that V � X as well.
It remains only to verify that U is an internal hypercover. First note that

hom+(K, V )→ hom+(K, rU ) induces an isomorphism on sheafifications for every fi-
nite simplicial setK. WhenK has dimension 0 this follows from property (3) that we
assumed at the beginning of the section. For higher dimensional K one proceeds by
induction on the number of non-degenerate simplices in K, using the same pullback
square from Lemma 9·2 and the fact that sheafification preserves finite limits.
So taking K = ∂∆n we have that MnV → Mn(rU ) induces an isomorphism on

sheafifications, and in particular is a generalized cover. This, together with the fact
that Vn → MnV is a generalized cover, shows immediately that the same is true of
rUn → Mn(rU ). So rU is a hypercover of X.
Finally, to see that U is an internal hypercover one just uses that the Yoneda

embedding preserves all limits that exist: so Mn(rU ) is isomorphic to r(MnU ).

Appendix A. Čech localizations

This appendix is a bit of an aside from the main body of the paper. Here we
investigate how descent for Čech complexes compares to descent for all hypercovers.
These are not equivalent notions in general (see Example A9) although in some
cases they turn out to agree. Unlike hypercover descent, Čech descent is often a
reasonably straightforward thing to verify; so it is useful to know how strong a
notion it is. In this section we show that Čech descent actually implies descent for
all bounded hypercovers, and we give some related results of interest. Čech descent
has also been explored in papers of Simpson, for instance in [HS].
If ξ : F → G is a map of presheaves of sets, the Čech complex of ξ is the simplicial

presheaf Čξ (often denoted ČF by abuse) given by

[n] �→ F ×G F ×G · · · ×G F (n + 1 factors).

A simplicial presheaf F is said to have Čech descent if it satisfies descent for ČU → X
whenever U → X is a generalized cover in which X is representable and U is a
coproduct of representables.

Proposition A1. Let {Ua →X} be any set of maps in C, and let R ↪→ X be the sieve
generated by these maps. Let U =

∐
a rUa. Then there is a natural map ČU → R, and

this map is an objectwise weak equivalence.

Proof. If ξ:K →L is any map of simplicial sets, then the Čech complex Čξ is
fibrant and homotopy discrete. This shows that the natural map ČU → π0ČU is
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an objectwise weak equivalence. The presheaf R is equal to the presheaf π0ČU , i.e.,
R(Y ) = π0ČU (Y ) for all Y in C.

Let Č denote the set of maps {R ↪→ X}, where X runs over all objects in C and
R runs over all covering sieves (this is a set because C is small). Let sPre(C)Č denote
the Bousfield localization of sPre(C) at the set Č. We’ll refer to this model category
as the Čech localization of sPre(C), for reasons which will shortly become apparent
(see Corollary A3).
Given a covering sieve R ↪→ X, let Č(R) denote the Čech complex corresponding

to the cover
∐

Ua → X where the coproduct ranges over all maps Ua → X in the
sieve. The above proposition implies that ČR → X factors through R, and ČR → R
is an objectwise weak equivalence. So localizing at the set {R ↪→ X} is equivalent
to localizing at {ČR → X}. We will see that this is actually equivalent to localizing
at {ČU →X}, for all generalized covers U →X, and so our Čech localization is
analogous to the hypercover localization of Theorem 6·2. The advantage of starting
with just the sieves rather than the generalized covers is that these form a set, and
so the localization automatically exists.

Proposition A2. Given any simplicial presheaf F , the map F → F̃ from F to its
(levelwise) sheafification is a weak equivalence in sPre(C)Č.

The proof of this result is somewhat involved and is postponed until the end of the
section.

Corollary A3. Let F →G be any generalized cover of presheaves of sets. Then the
map ČF →G is a weak equivalence in sPre(C)Č.

Proof. The map ČF →G factors as ČF →π0ČF →G. As in the proof of Propos-
ition A1, the first map is an objectwise weak equivalence. The second map is a
monomorphism of presheaves, and the fact that F →G is a generalized cover shows
that it is a local epimorphism. Hence, the map becomes an isomorphism upon sheafi-
fication. Proposition A2 then shows that it is a weak equivalence in sPre(C)Č, and
so we can conclude the same for the composite ČF →G.

We now derive the connection with hypercovers. Recall from Definition 4·6 that a
hypercover U → X is bounded if U = coskn U for some n.

Proposition A4. Given a bounded hypercover U of X, the map U →X is a weak
equivalence in sPre(C)Č.

The following proof was the inspiration for the proof of [DI1, lemma 4·2].

Proof. We proceed by induction, starting from the fact that bounded hypercovers
of height 0 are just Čech complexes and therefore are handled by Corollary A3.
Suppose that U →X is a bounded hypercover of height n + 1. Define V to be

coskn U , so V is a bounded hypercover of height at most n. Therefore, we may
assume by induction that V → X is a weak equivalence in sPre(C)Č. The canonical
map U →V gives a generalized cover Un+1→Vn+1, by the very definition of what it
means for U to be a hypercover. Lemma A1 below shows that in fact Uk →Vk is a
generalized cover for all k.
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Consider the following bisimplicial object, augmented horizontally by V :

V U�� U ×V U���� · · ·������

The kth row is the (augmented) Čech complex for the generalized cover Uk →Vk.
Note that for 0 � k � n the kth row is the constant simplicial object with value Uk

because Uk →Vk is the identity. Call this bisimplicial object (without the horizontal
augmentation) W∗∗. There is an obvious map hocolimW∗∗ →X.
One may compute hocolimW∗∗ by first taking the homotopy colimit of the rows,

and then taking the homotopy colimit of the resulting simplicial object. But in
sPre(C)Č the homotopy colimit of the kth row is just Vk by Corollary A3. Also, we
have assumed by induction that V � hocolimk Vk is weakly equivalent to X. So
hocolimW∗∗ →X is a weak equivalence.
Let D denote the diagonal of W∗∗. Standard homotopy theory tells us that D =

hocolimk Dk is weakly equivalent to hocolimW∗∗. We claim that U is a retract over
X of D. Note first that one has, in complete generality, a map U →D; in dimension
k it is the unique horizontal degeneracy W0k →Wkk.
To produce a map D→U it is enough to give skn+1 D→ skn+1 U , because U =

coskn+1 U . But note that skn D = skn U , and choosing any face map [0]→ [n+1] gives
a map Dn+1→Un+1, inducing a corresponding map skn+1 D→ skn+1 U as desired.
It is straightforward to check that U →D→U is the identity (because U =

coskn+1 U one only has to check it on (n + 1)-skeleta), and all the maps commute
with the augmentations down to X. We have already shown that D → X is a weak
equivalence in sPre(C)Č. Since U → X is a retract of D → X, it must also be a weak
equivalence.

Lemma A1. If U is a hypercover of height n + 1, then the map U → coskn U is a
generalized cover in every dimension.

Proof. First note that for k � n, the map Uk → [coskn U ]k is the identity, so it is a
generalized cover. For any k, the map Uk → [coskn U ]k may be rewritten as

hom+(∆k, U )→ hom+(skn ∆k, U ).

But U = coskn+1 U , so the domain may be written as

hom+(∆k, U ) = hom+(∆k, coskn+1 U ) = hom+(skn+1 ∆k, U ).

So we are interested in the map hom+(skn+1 ∆k, U )→ hom+(skn ∆k, U ) induced by
the inclusion skn ∆k → skn+1 ∆k. Recall from Lemma 4·4 the pullback square

hom+(skn+1 ∆k, U )

��

�� ∏
X hom+(∆n+1, U )

��
hom+(skn ∆k, U ) �� ∏

X hom+(∂∆n+1, U ).

The map hom+(∆n+1, U )→ hom+(∂∆n+1, U ) is just the matching map Un+1→MnU ,
and is therefore a generalized cover. So the right vertical map in the above square
is a finite product of generalized covers, which is again a generalized cover. Finally,
we see that the left vertical map is a pullback of a generalized cover, hence also a
generalized cover.
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If R ↪→ X is a covering sieve, let IR denote the full subcategory of C ↓ X consisting

of all maps in R. Consider the diagram IR → sPre(C) sending (U →X) to U . The
colimit of this diagram is R, and we will write the homotopy colimit as hocolimR U .
The natural map from the homotopy colimit to the colimit gives hocolimR U →R,
and this turns out to be an objectwise weak equivalence by [D, lemma 2·7]. This fact
has nothing to do with sieves, and is true in a slightly generalized form for arbitrary
simplicial presheaves.

Theorem A5. The following classes of maps give the same localization of sPre(C):
(a) the set of all covering sieves R ↪→ X;
(b) the set of all maps hocolimR U →X, where R ↪→ X is a covering sieve;
(c) the class of all hypercovers of height 0, i.e., the Čech complexes ČU →X;
(d) the class of all bounded hypercovers U →X;
(e) the class of maps F → F̃ from simplicial presheaves to their sheafifications.

If the topology on C is given by a basis of covering families, then one can also add:
(a’) the set of all covering sieves RU ↪→ X where RU is the sieve generated by the

covering family {Ua →X}.

It may seem surprising that the localization in (e) does not give the usual notion of
local weak equivalence, but only the weaker Čech version. Example A9 shows that
it really is weaker. Also, note that the above theorem could just as well have been
stated for UC rather than sPre(C); the proofs are essentially the same.

Proof. The fact that hocolimR U →R is an objectwise weak equivalence immedi-
ately shows that the localizations in (a) and (b) are the same. We have also seen in
Proposition A1 that the localizations in (a) and (c) are the same.
The localization in (d) is a priori stronger than that in (a); Proposition A4 shows

that the two localizations actually agree. Likewise, the localization in (e) is stronger
than the one in (a), because R ↪→ X becomes an isomorphism upon sheafification.
Proposition A2 shows that they agree.
Finally, if our topology is given by a basis of covering families then the proof that

the localizations in (a’) and (e) coincide follows the proof of Proposition A2 more or
less verbatim.

It would be interesting to know more about sPre(C)Č, for instance to have an
explicit characterization of the weak equivalences. Perhaps this wouldn’t be so useful,
since the chief interest in sPre(C)Č is that it is sometimes a more convenient version
of sPre(C)L (see Example A10).

Corollary A6. Let F be a simplicial presheaf. Then F satisfies descent for all Čech
complexes if and only if it satisfies descent for all bounded hypercovers.

Proof. Let F ′ be a fibrant replacement for F in sPre(C). The statement of the
corollary for F ′ requires that F ′ be local with respect to the Čech complexes ČV →X
if and only if it is local with respect to the bounded hypercovers U →X. This is true
by the above proposition (parts (c) and (d)). But of course F has descent for a certain
class of objects precisely when F ′ has descent for that same class, because F →F ′ is
an objectwise weak equivalence.
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Corollary A7. Suppose the Grothendieck topology on C is given by a basis of covering
families. Then a simplicial presheaf F satisfies Čech descent if and only if it satisfies
descent for all the Čech complexes ČU →X in whichX is a representable and U =

∐
a Ua

for some covering family {Ua →X} in the basis.

Proof. This is similar to the proof of Corollary A6, using Theorem A5 (parts (a’)
and (c)) and Proposition A1.

The following result can be useful for verifying hypercover descent. We deduce it
from our general analysis of hypercovers, but the statement also follows from results
of [HS] (see especially proposition 6·1) and should be credited to that paper.

Corollary A8. Let F be an objectwise-fibrant simplicial presheaf with the property
that F (X) has no homotopy in dimension n or higher, for every X in C. Then F satisfies
descent for all hypercovers if and only if it satisfies descent for all Čech complexes.

Proof. First we need to consider the localization UC/S, where S is the set of maps
{∂∆n+1⊗X →∆n+1⊗X|X ∈ C}. It is easy to check that the fibrant objects in UC/S
are the simplicial presheaves G such that each G(X) is fibrant and has no homotopy
above dimension n − 1. Given an objectwise-fibrant simplicial presheaf G, one can
construct the fibrant replacement LSG via the small object argument applied to
the maps in S. By thinking about this, one sees that the maps of simplicial sets
G(X)→LSG(X) are isomorphisms up through simplicial dimension n. So LSG(X)
has the same homotopy groups asG(X) up through dimension n−1, but no homotopy
groups in higher dimensions. Even if G is not objectwise-fibrant, LSG is objectwise
weakly equivalent to LS(Ex

∞ G), and so it is still true that G(X) and LSG(X) have
the same (n − 1)-type for all X ∈ C.
General localization theory says that a map G→H is an S-equivalence if and only

if LSG→LSH is an objectwise equivalence, and so this is the same as saying that
G(X)→H(X) induces isomorphisms on all homotopy groups up through dimension
n − 1, for every X. In particular, the map G→ coskn G is an S-equivalence.
Now consider the localization UC/T , where T is the union of S and the set of

all covering sieves R ↪→ X. A simplicial presheaf F is fibrant in UC/T precisely
when it is objectwise-fibrant, has Čech descent, and each F (X) has no homotopy in
dimension n or higher.
Suppose that F is as in the statement of the corollary, and that F satisfies des-

cent for all Čech complexes. Then we know that F is fibrant in UC/T . But note
that U → coskn U is necessarily a T -equivalence (because it is an S-equivalence). Yet
coskn U is a bounded hypercover of X, and hence coskn U →X is a T -equivalence
as well (using the UC version of Proposition A4). Hence U →X is also a T -
equivalence. Since F is fibrant in UC/T and X is cofibrant in UC/T , the morphism
Map(X, F )→ Map(U ′, F ) is a weak equivalence, where U ′ is a cofibrant replacement
for U in UC. Thus F satisfies descent for U →X by Lemma 4·1(ii).

Here is an example showing that the Čech localization can be strictly weaker
than the localization at all hypercovers. In other words, we exhibit a simplicial
presheaf which has descent for all Čech complexes but does not have descent for all
hypercovers. The example is a slight modification of one suggested to us by Carlos
Simpson.
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Example A9. Let X = X0 be the open interval (0, 1). Now let U0 = (0, 23 ), V0 =
( 13 , 1), and X1 = U0 � V0. Note that X1 � X, and let U1 = ( 13 ,

5
9 ) , V1 = ( 49 ,

2
3 ), and

X2 = U1 � V1. Again one has X2 � X, and we define U2, V2, and X3 in the expected
way. Continue. Our site C consists of the spaces {Xi, Ui, Vi | i � 0} with the inclusions
between them, and equipped with the usual notion of open cover. The category C is
depicted as

U0

��
��

��
�

U1

��
��

��
�

· · ·



��
��

��
��

X0 X1

���������

��
��

��
�

X2

���������

��
��

��
�

V0

���������

V1

���������
· · · .

����������

Define a presheaf of topological spaces on our site in the following way:

F (X0) = �, F (Un) = Dn
+ , F (Vn) = Dn

−, and F (Xn+1) = Sn (n � 0).

Here Dn
+ and Dn

− denote the upper and lower hemispheres of Sn. The restriction
maps F (Un)→F (Xn+1) and F (Vn)→F (Xn+1) are the inclusions of the hemispheres
in Sn, while the maps F (Xn)→F (Un) and F (Xn)→F (Vn) are the inclusions of
the boundaries of the hemispheres. Define the simplicial presheaf G by G(W ) =
ZSing F (W ), that is, G(W ) is the result of applying the free abelian group functor to
the singular complex of F (W ). Using the Dold–Kan correspondence, one can regard
G as a presheaf of chain complexes; then G(W ) is the usual complex for computing
the singular homology of F (W ).
Now G has Čech descent: this can be checked using Corollary A7, and so the main

point is that for every n the square

G(Un � Vn) ��

��

G(Un)

��
G(Vn) �� G(Un � Vn)

is a homotopy pullback. On the other hand, we will construct a hypercover for
which G does not have descent. The combinatorics of this construction are slightly
complicated, but the idea is this: start with Ω0 = U0 � V0, then consider cosk0 Ω
except replace each non-degenerate occurrence ofX1 with U1�V1. Next take cosk1 Ω,
replace each non-degenerate occurrence of X2 with U2 � V2, and continue. This gives
the hypercover Ω→X.
Now we will be more precise. Let Pn be the category of all nonempty subsets of

{0, 1, . . . , n}, with inclusions. Note that the objects of Pn can be identified with the
sub-simplices of ∆n, and that [n] �→ Pn forms a simplicial category. Let Sn denote
the set of all functors J : P op

n →C with the following properties:
(1) all the values of J belong to {Ui, Vi | i � 0};
(2) given a subset σ = {i0, . . . , ik} in Pn, if

⋂
j J({i0, . . . , îj , . . . , ik}) = Um (resp.

Vm) then J(σ) = Um (resp. Vm);
(3) if

⋂
j J({i0, . . . , îj , . . . , ik}) = Xm then J(σ) is eitherUm or Vm (and this includes

the case k = 0).
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Let Ω denote the simplicial presheaf defined by

Ωn :=
∐

J∈Sn

J({0, 1, . . . , n}),

with simplicial structure induced by that of P . Intuitively, each summand of Ωn

corresponds to an n-simplex together with a certain labelling of its simplices given
by J : the labelling is such that smaller simplices are labelled by larger opens, and such
that the above properties are satisfied. The reader is encouraged to work out what
these properties say for small values of n, and to verify that Ω is a hypercover of X0

(use Proposition 4·10). Check that Ω0 = U0�V0 and Ω1 = U0�(U1�V1)�(U1�V1)�V0.
We claim that holimn G(Ωn) is not connected, whereas G(X) = 0. To calculate

π0(holimn G(Ωn)) we can just work in the category of chain complexes. The cosim-
plicial object [n] �→ G(Ωn) corresponds to a double complex, and we are trying to
compute the 0th homology of the total complex (the one called TotΠ in [W], rather
than Tot⊕). But observe that each G(Ωn) has homology only in dimension 0 because
each G(Ui) and G(Vi) is contractible. Therefore, the E1-term of the spectral sequence
for the homology of the bicomplex is concentrated in a line. Thus, the bicomplex’s 0th
homology is the kernel of d0 − d1 : H0G(Ω0)→ H0G(Ω1), which is Z. This completes
the verification that G does not satisfy descent for the hypercover Ω.

Example A10. Sometimes the localizations UCČ and UCL do coincide. Let S be a
Noetherian scheme of finite dimension and let C be the site Sm/S with either the
Zariski or Nisnevich topology (one can also take Sch/S here). For these sites the loc-
alizations UCČ and UCL agree. For the Zariski topology this is a direct consequence
of the ‘Brown–Gersten Theorem’, which identifies the fibrant objects in UCL with
the objectwise-fibrant simplicial presheaves satisfying Čech descent for all two-fold
Zariski covers {U, V →X}. This is essentially proven in [BG], although one has to
translate their proof into our more modern setting. See also [Bl, lemmas 4·1, 4·3].
For the Nisnevich topology we have to explain a little more. Given an elementary

distinguished square {U ↪→ X, p : V →X} [MV, definition 3·1·3], let P (U, V ) denote
the simplicial presheaf which hasU�V in dimension 0,U�p−1(U )�V in dimension 1,
and is degenerate in higher dimensions. The Brown–Gersten Theorem in this context
is [MV, lemma 3·1·16]; together with [Bl, lemma 4·3], it implies that UCL is the
localization of UC at the maps P (U, V )→X for all elementary distinguished squares.
We already know that UCL is a stronger localization than UCČ, so we just need to
show that the maps P (U, V )→ X are weak equivalences in UCČ.
To see that P (U, V )→X is a weak equivalence in UCČ, first note that for any

Z the simplicial set P (U, V )(Z) has non-degenerate simplices only in dimensions 0
and 1. Each component is a star, centered at a 0-simplex corresponding to a map
Z →U (because every map Z →V can be an endpoint of at most one 1-simplex).
Therefore each component is contractible, so P (U, V )→π0P (U, V ) is an objectwise
weak equivalence. The codomain is just the presheaf U �p−1U V , so we are reduced
to showing that the map U �p−1U V →X is a weak equivalence in UCČ. By the UC

version of Theorem A5(e) it suffices to show that this map induces an isomorphism
on sheafifications, and this is routine (use Nisnevich stalks, or see [MV, lemma 1·6,
p. 98]).

https://doi.org/10.1017/S0305004103007175 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004103007175


Hypercovers and simplicial presheaves 49
A·11. Proof of Proposition A2
If F is a simplicial presheaf we need to show that F → F̃ is a weak equivalence in

sPre(C)Č. In fact it will suffice to do this when F is a discrete simplicial presheaf,
since a simplicial presheaf F can be recovered as a homotopy colimit of the discrete
presheaves Fn (Remark 2·1). Unfortunately, even to prove our claim for discrete
simplicial presheaves seems to require a struggle with the small object argument.
So from now on F is just a presheaf of sets. We introduce two constructions: first,

AF is the presheaf defined by AF (X) = F (X)/ ∼, where two sections s and t are
equivalent if there is a covering sieve R ↪→ X such that s|U = t|U for every U →X in
R; secondly, BF is defined to be the pushout

∐
R ��

��

F

��∐
X �� BF

where the coproduct is indexed over all objects X in C, all covering sieves R ↪→ rX,
and all maps R→F . One may check that ABF is what is usually denoted F +, and
so ABABF is the sheafification F̃ .
We will show that the maps F →BF and F →AF are Čech weak equivalences,

for any presheaf F . The first claim is very easy: Since
∐

R→
∐

X is an acyclic
cofibration in sPre(C)Č, its cobase change F →BF is also an acyclic cofibration.
Unfortunately the second claim is much more difficult. The idea is to build up a Čech
weak equivalence F →L∞F by brute force, in such a way that there is an objectwise
weak equivalence L∞F →AF .
Given a covering sieve R ↪→ X, let JnR be the pushout

∂∆n ⊗ R

��

�� ∂∆n ⊗ X

��
∆n ⊗ R �� JnR.

The natural map JnR→∆n ⊗ X is a Čech acyclic cofibration because sPre(C)Č
is a simplicial model category. Note that a map JnR→G is the same as a map
∂∆n →G(X) together with a compatible family of extensions ∆n →G(U ) for all maps
U →X in R.
Let L0F = F , and let Ln+1F be obtained from LnF as the pushout

∐
Jn+1R ��

��
∼

��

LnF
��
∼

��∐
∆n+1 ⊗ X �� Ln+1F

(A 1)

where the coproducts run over all X in C, all covering sieves R ↪→ X, and all maps
Jn+1R→LnF . Let L∞F be the colimit of the chain L0F →L1F →L2F → · · · . Since
each LnF →Ln+1F is a Čech acyclic cofibration, the composite F →L∞F is also a
Čech acyclic cofibration.
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As a first step let us look at L1F . A map J1R→F corresponds to giving a map
∂∆1→F (X) together with a compatible family of extensions ∆1→F (U ) for allU →X
in the sieve. Since F is discrete, this means that we are giving two elements of
F (X) which agree when restricted to pieces of the sieve. When we form the pushout
∆1 ⊗ X ← J1R→F we are adding a 1-simplex into F (X) which identifies these
elements in π0. So it follows that π0L1F (Y ) = AF (Y ), for all Y .
When we pass from LnF to Ln+1F something similar is happening – we will see that

it amounts to killing the higher homotopy, in the end because the objects F (X) were
all discrete and so had no higher homotopy to begin with. So the goal is to show that
each L∞F (X) is fibrant and homotopy discrete, and that π0L∞F (X) = AF (X). This
will imply that the natural map L∞F →π0L∞F is an objectwise weak equivalence,
and the target is identified with AF . We will then have F

∼→ L∞F
∼→ AF in

sPre(C)Č.
The argument will proceed by establishing the following properties: given any Y

in C:
(i) the map of simplicial sets LnF (Y )→Ln+1F (Y ) is an isomorphism on n-skeleta;
(ii) the simplicial set LnF (Y ) has dimension at most n, i.e., it is degenerate in

degrees greater than n;
(iii) given any n-simplex σ in LnF (Y ), there is a covering sieve R ↪→ Y such that

σ|U is in the image of Ln−1F (U )→LnF (U ) for every U →Y inR. In particular,
σ|U is a degenerate n-simplex;

(iv) given any n-simplex σ in LnF (Y ), there is a covering sieve R ↪→ Y such that
σ|U is in the image of F (U )→LnF (U ) for every U →Y in R;

(v) for n � 2, any map ∂∆n →Ln−1F (Y ) extends to a map ∆n →LnF (Y );
(vi) any map Λ2,k →L1F (Y ) extends to ∂∆2→L2F (Y ).

Granting these for the moment, let us show they imply the desired result. To show
that L∞F (X) is fibrant and homotopy discrete, it is enough to verify that it has
the extension property with respect to the maps ∂∆n →∆n (n � 2) and the maps
Λ2,k →∆2. These are easy consequences of parts (i), (v) and (vi). Also, part (i) tells
us that π0L1F →π0L∞F is an isomorphism, and we have already remarked that
π0L1F �AF . This finishes the proof, granting the statements outlined above.
Claim (i) follows from the fact that Jn+1R(Y )→ (∆n+1⊗X)(Y ) is an isomorphism on

n-skeleta. Part (ii) follows from an induction, using that (∆n ⊗X)(Y ) has dimension
n and that F (Y ) has dimension 0 (since we assumed that F is a presheaf of sets).
Part (iii) is a straightforward analysis of diagram (A1), and (iv) follows from (iii)
by induction. We will show that (v) is a consequence of (iv) and a similar argument
proves (vi).
Suppose we have a map σ : ∂∆n →Ln−1F (Y ). By (iv), for each face diσ there is

a covering sieve Ri ↪→ Y such that diσ|U is in the image of F (U )→Ln−1F (U ), for
every U →Y in Ri. There is of course a covering sieve R which refines all the Ri. So
for each U →Y in R and each i, there is (n − 1)-simplex αU,i in F (U ) which maps to
(diσ)|U .
Now, it is not clear that as i varies the (n − 1)-simplices αU,i fit together to give

a map αU : ∂∆n →F (U ). However, we know they fit together in Ln−1F (U ), and the
map F (U )→Ln−1F (U ) is a cofibration of simplicial sets, hence a monomorphism. So
the αU,i must fit together in F (U ) as well.
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Secondly, it is not immediately clear that the αU patch together over the covering

sieve R: that is, we must check that given maps U →V →X where V →X is in
R, then αU coincides with the restriction of αV to U . Again, this follows from the
fact that everything patches together in Ln−1F and the fact that F →Ln−1F is an
objectwise cofibration.
So we have constructed a map α : ∂∆n⊗R→F such that the composite map ∂∆n⊗

R→F →Ln−1F coincides with σ|R. Now we use the fact that F is a discrete simplicial
presheaf, from which it follows that α can be extended to a map ᾱ : ∆n ⊗ R→F .
Composing this with F →Ln−1F and patching with σ gives a map JnR→Ln−1F ,
and this extends to ∆n ⊗ Y once we pass to LnF . The upshot is that we’ve shown σ
extends to ∆n under the map Ln−1F (Y )→LnF (Y ).
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