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Hohlweg and Lange (2007) and Santos (2004, unpublished) have found two different ways
of constructing exponential families of realizations of the n-dimensional associahedron with
normal vectors in {0,±1}n, generalizing the constructions of Loday (2004) and Chapoton–
Fomin–Zelevinsky (2002). We classify the associahedra obtained by these constructions
modulo linear equivalence of their normal fans and show, in particular, that the only
realization that can be obtained with both methods is the Chapoton–Fomin–Zelevinsky
(2002) associahedron.

For the Hohlweg–Lange associahedra our classification is a priori coarser than the
classification up to isometry of normal fans, by Bergeron–Hohlweg–Lange–Thomas (2009).
However, both yield the same classes. As a consequence, we get that two Hohlweg–Lange
associahedra have linearly equivalent normal fans if and only if they are isometric.

The Santos construction, which produces an even larger family of associahedra, appears
here in print for the first time. Apart of describing it in detail we relate it with the c-cluster
complexes and the denominator fans in cluster algebras of type A.

A third classical construction of the associahedron, as the secondary polytope of a
convex n-gon (Gelfand–Kapranov–Zelevinsky, 1990), is shown to never produce a normal
fan linearly equivalent to any of the other two constructions.
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1. Introduction

The n-dimensional associahedron is a simple polytope with Cn+1 (the Cata-
lan number) vertices, corresponding to the triangulations of a convex (n+3)-
gon, and n(n+3)/2 facets, in bijection with the diagonals of the (n+3)-gon.
It appears for the first time in Dov Tamari’s 1951 thesis [43], where Tamari
draws it as a convex polytope for n = 1,2,3 (the original drawing is re-
produced in [24,41]) and he remarks that généralement, on aura des hyper-
polyèdres.1 As a cell complex, it was described and shown to be a topological
ball by Jim Stasheff in 1963, in his work on the associativity of H-spaces [39].
A realization as a polytope by John Milnor from the 1960s is lost; Huguet &
Tamari claimed in 1978 that the associahedron can be realized as a convex
polytope [19]. The first such construction, via an explicit inequality system,
was provided in a manuscript by Mark Haiman from 1984 that remained
unpublished, but is available as [16]. The first constructions in print are due
to Carl Lee, from 1989 [22].

Figure 1. An associahedron, as the secondary polytope of a regular hexagon.

Subsequently three systematic approaches were developed that produce re-
alizations of the associahedra in more general frameworks:

1 The (abridged) version of the thesis published in Bulletin de la S. M. F. 82 (1954),
pp. 53–96, does not contain the picture or the remark.
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◦ the associahedron as the secondary polytope of a convex polygon, due
to Gelfand, Kapranov and Zelevinsky [14,15] (see also [13, Chap. 7]),
depicted in Figure 1.
◦ the associahedron as one of the generalized permutahedra introduced by

Postnikov in [29]. The history of this construction begins with Shnider
and Sternberg [37] (compare Stasheff and Shnider [40, Appendix B]), who
show that the associahedron can be obtained by cutting certain faces in
a simplex (this is polar to the construction by Carl Lee in [22, Sec. 3],
which produces the normal fan of the associahedron as a stellar subdivi-
sion of the central fan of the simplex). Loday [23], shows how to obtain
explicit and nice vertex coordinates for this associahedron using combi-
natorics of binary trees. Postnikov [29] then puts Loday’s construction
in context, regarding this associahedron as a special case of a generalized
permutahedron; a polytope lying in (the closure of) the deformation cone
of the standard permutahedron. Rote, Santos and Streinu [35] and, more
recently, Buchstaber [4] found constructions of essentially the same aso-
ciahedron but described quite differently. Following [17,29] we reference
this associahedron as the “Loday realization”.
◦ the associahedron as the polar of the cluster complex of type An, conjec-

tured by Fomin and Zelevinsky [12] and constructed by Chapoton, Fomin
and Zelevinsky [7].

We review these three constructions in Section 3, after some preliminaries
in Section 2. The last two of them have the following properties in common:

1. They both have exactly n pairs of parallel facets.
2. In the basis given by the normals to those n pairs, all facet normals have

coordinates in {0,±1}.
This was generalized by Hohlweg and Lange [17] and by Santos [36], who

showed that the Loday and Chapoton–Fomin–Zelevinsky constructions are
particular cases of exponentially many constructions of the associahedron,
all of them with properties (1) and (2). That is, all these associahedra are
(normally isomorphic to) polytopes obtained from the regular n-cube by
cutting certain

(
n
2

)
faces, as seen in Figure 2. Note, however, that the last

example of Figure 2 cannot be obtained by cutting faces one after the other;
that is to say, its normal fan is not a stellar subdivision of the normal fan
of the cube.

The goal of this paper is to compare the Hohlweg-Lange and Santos
constructions, which we discuss in Sections 4 and 5. The construction by
Santos appears here in print for the first time, so we prove things in detail.
For the Hohlweg–Lange realizations we rely on the original papers for most of
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Figure 2. Four normally non-isomorphic 3–dimensional associahedra. From left to right:
The Loday associahedron (which is a special case of the Hohlweg–Lange associahedra),
the Chapoton–Fomin–Zelevinsky associahedron (a special case of both Hohlweg–Lange
and Santos) and the other two Santos associahedra. Since they all have three pairs of
parallel facets, we used a linear transformation to draw them fitting in the same cube.

the details. Our main conclusion is that the exponentially many realizations
obtained by the two procedures are essentially different.

Let us explain what we exactly mean by different (see more details in
Section 2). Since the associahedron is simple, its realizations form an open

subset in the space of (n+3)n
2 -tuples of half-spaces in Rn. Hence, classifying

them by affine or projective equivalence does not seem the right thing to
do. But for the Hohlweg–Lange and Santos constructions, with normals in
{−1,0,1}n, the set of possible normal fans obtained is finite. This suggests
a natural classification to be by linear isomorphism of normal fans or, as
we call it, normal isomorphism. In this language:

◦ the (normal isomorphism classes of) Hohlweg–Lange associahedra are in
bijection with the sequences in {+,−}n−1, modulo reflection and reversal
(Theorem 4.9, see also [2, Cor. 2.6]).
◦ the (normal isomorphism classes of) Santos associahedra are in bijection

with the triangulations of the (n+ 3)-gon, modulo dihedral symmetries
of the polygon (Corollary 5.7).

The numbers of distinct associahedra obtained by the two constructions
are, thus, roughly 2n−3 and 1

2(n+3)Cn+1≈ 22n+1/
√
πn5; exact counts are in

Sections 4 and 5, see also Table 1.
Although a classification of the Hohlweg–Lange associahedra appears al-

ready in [2], we think our new derivation has some novelty. On the one
hand, the classification in [2] is only up to isometry of linear fans; it left the
door open for two associahedra classified as different still being equivalent
if a linear transformation of the normal fan is allowed (see Remark 4.10).
On the other hand, we show that two Hohlweg–Lange associahedra coming
from non-equivalent sign sequences can be distinguished by their pairs of
parallel facets (see the proof of Theorem 4.9). The fact that Hohlweg–Lange
asociahedra have parallel facets is obvious from the definitions, but was not
used in [2].
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The same works for Santos asociahedra: if two of them are produced
by non-equivalent triangulations, then they are not normally isomorphic
(Lemma 5.6). Even more so, the only Hohlweg–Lange associahedron with
the same pairs of parallel facets as a Santos associahedron is the Chapoton–
Fomin–Zelevinsky associahedron. That is to say (Theorem 6.1):

Theorem 1.1. The Hohlweg–Lange and Santos families of associahedra
are almost disjoint, the only common element being the Chapoton–Fomin–
Zelevinsky associahedron.

The secondary polytope construction of the associahedron has a com-
pletely different flavor, since a continuous deformation of the polygon pro-
duces a continuous deformation of the associahedron obtained and of its
normal fan. Moreover, the secondary polytope of a convex polygon never
has parallel facets (Proposition 3.5, already noticed in [35, Sec. 5.3]). This
difference is apparent comparing Figures 1 and 2.

In Section 5.4 we relate the Santos construction with the c-cluster com-
plexes and the denominator fans in cluster algebras of type A. The c-cluster
complexes are simplicial complexes defined by Reading in [32] following ideas
from [25]. We obtain a simple combinatorial description of these complexes
for Coxeter groups of type A, and show that they are the normal fans of
some of the Santos associahedra (Proposition 5.10). In the general case, the
normal fans of the Santos associahedra can be interpreted as the denomi-
nator fans in cluster algebras of type A (Proposition 5.12). This connection
suggests a natural generalization of the Santos construction to a construc-
tion of generalized cluster-associahedra in arbitrary finite Coxeter groups
(Question 5.13).

Let us remark that, even if both the Hohlweg–Lange and the Santos
constructions have very natural interpretations (and generalizations, modulo
the question above) in the context of finite Coxeter groups, they have a
significant difference; their normal fans lie in the root space and the weight
space respectively. This is a bit hidden in Figure 2, where we have performed
a linear transformation to draw the polytopes inscribed in the same cube.

One of the questions that remains is whether there is a common gen-
eralization of the Hohlweg–Lange and the Santos construction, which may
perhaps produce even more examples of “combinatorial” associahedra. An
exhaustive search produces, besides the four 3-associahedra of Figure 2, an-
other four 3-associahedra that arise by cutting three faces of a 3-cube (see
Figure 3). Do these admit a natural combinatorial interpretation as well?

As a final remark, part of the motivation of this paper was to try to find
out what is the most “natural” or “canonical” realization of the associahe-
dron. The answer is not clear. If one wants to realize all the combinatorial
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Figure 3. More 3-associahedra inscribed in a 3-cube. The 3-associahedron is the only
simple 3-polytope with nine facets all of which are quadrilaterals or pentagons.

symmetries of the polytope (which, as we show in Lemma 2.2, are precisely
the dihedral symmetries of the (n+ 3)-gon) then the best candidate is the
secondary polytope of a regular polygon (Figure 1). But if small integer
coordinates for vertices and facet normals are seeked then you certainly
want one of the Hohlweg–Lange or Santos associahedra (Figure 2). Among
them, the Loday associahedron sticks out as the most ubiquitous in the
literature [4,17,22,23,27,29,35,37], but the Chapoton–Fomin–Zelevinsky as-
sociahedron is the only one produced both by the Hohlweg–Lange and the
Santos constructions.

2. Two preliminaries

Let Pn+3 be a convex (n+3)-gon. An associahedron Assn is an n-dimensional
simple polytope whose poset of non-empty faces is isomorphic to the poset
of non-crossing sets of diagonals of Pn+3, ordered by reverse inclusion. In
particular, the vertices of the associahedron correspond to the triangula-
tions of Pn+3 and its facets to the internal diagonals.

2.0.1. Normal isomorphism. The goal of this paper is to compare differ-
ent types of constructions of the associahedron, saying which ones produce
equivalent polytopes, in a suitable sense. The following notion reflects the
fact that the main constructions that we are going to discuss produce as-
sociahedra whose normal vectors have small integer coordinates, usually 0
or ±1. In these constructions the normal fan of the associahedron can be
considered canonical, while there is still freedom in the right-hand sides of
the inequalities. Recall that the normal fan of a polytope P ⊂ Rn is the
partition of (R∗)n into the normal cones of the different faces of P . Each
1-dimensional cone (ray) in the normal fan is generated by the (exterior)
normal vector to a facet of P and the n-dimensional cones are normal to the
vertices of P . Since all the polytopes in this paper are simple, their normal
fans are simplicial : every cone is generated by an independent set of vectors.
(See [44, Sec. 7.1] for further discussion of fans and of normal fans.)
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This leads us to use the following notion of equivalence.

Definition 2.1. Two complete fans in real vector spaces V and V ′ of the
same dimension are linearly isomorphic if there is a linear isomorphism
V → V ′ sending each cone of one to a cone of the other. Two polytopes
P and P ′ are normally isomorphic if they have linearly isomorphic normal
fans.

Normal isomorphism is weaker than the usual notion of normal equiva-
lence, in which the two polytopes P and P ′ are assumed embedded in the
same space and their normal fans are required to be exactly the same, not
only linearly isomorphic. One easy way to check that two polytopes are not
normally isomorphic is to show that no combinatorial isomorphism sends
parallel facets of one to parallel facets of the other.

2.0.2. Automorphisms of the associahedron. The following lemma is
very useful in order to disprove that two associahedra are normally isomor-
phic. It implies that all normal (or combinatorial, for that matter) isomor-
phisms between associahedra come from isomorphisms between the (n+3)-
gons defining them.

Lemma 2.2. All automorphisms of the face lattice of the associahedron
Assn are induced by symmetries of the (n+3)-gon. In particular, for n≥2,
the automorphism group of the face lattice of the associahedron Assn is
isomorphic to the dihedral group of order 2n+6.

Proof. The second sentence follows from the first one since the only sym-
metry of the k-gon sending every diagonal to itself is the identity, for k≥5.
For the first sentence, suppose ϕ is an automorphism of the face lattice of
the associahedron Assn, and let D be the set of all diagonals of a convex
(n+3)-gon. ϕ induces a natural bijection

ϕ̃ : D −→ D

such that for any two diagonals δ,δ′∈D we have:

δ crosses δ′ ⇐⇒ ϕ̃(δ) crosses ϕ̃(δ′).

Call length of a diagonal δ ∈ D the minimum between the lengths of
the two paths that connect the two end points of δ on the boundary of the
(n+3)-gon. Since the length of δ is determined by the number of diagonals
that cross δ,

length(δ) = length(ϕ̃(δ)).
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Now, two diagonals of the (n+3)-gon have a common vertex if and only if
there is a diagonal of length 2 crossing both of them. In particular, ϕ̃ sends
diagonals with a common vertex to diagonals with common vertex and can
thus be understood as a graph automorphism of D, when D is regarded as
the graph Kn+3 \Cn+3 (the complete graph minus the Hamiltonian cycle
along the boundary of the (n+ 3)-gon). The only such automorphisms are
clearly the dihedral automorphisms of the cycle Cn+3.

3. Three constructions of the associahedron

In this section we review three very nice constructions in geometric combi-
natorics that have the associahedron as particular cases.

3.1. The associahedron as a secondary polytope

The secondary polytope is an ingenious construction motivated by the the-
ory of hypergeometric functions as developed by Gelfand, Kapranov and
Zelevinsky [13], later generalized and explained in terms of fiber polytopes
by Billera and Sturmfels [3]. In this section we recall the basic definitions
and main results related to this topic, which yield in particular that the
secondary polytope of any convex (n+ 3)-gon is an n-dimensional associa-
hedron. For more detailed presentations we refer to [8, Ch. 5] and [44, Lect.
9]. All the subdivisions and triangulations of polytopes that appear in the
following are understood to be without new vertices.

3.1.1. The secondary polytope construction.

Definition 3.1 (GKZ vector/secondary polytope). Let Q be a d-
dimensional convex polytope with n + d + 1 vertices. The GKZ vector
v(t)∈Rn+d+1 of a triangulation t of Q is

v(t) :=
n+d+1∑
i=1

vol(start(i))ei =
n+d+1∑
i=1

∑
σ∈t : i∈σ

vol(σ)ei.

The secondary polytope of Q is defined as

Σ(Q) := conv{v(t) : t is a triangulation of Q}.

Theorem 3.2 (Gelfand–Kapranov–Zelevinsky [14]). Let Q be a d-
dimensional convex polytope with m = n+ d+ 1 vertices. The secondary
polytope Σ(Q) has the following properties:
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(i) Σ(Q) is an n-dimensional polytope.
(ii) The vertices of Σ(Q) are in bijection with the regular triangulations

of Q.
(iii) The faces of Σ(Q) are in bijection with the regular subdivisions of Q.
(iv) The face lattice of Σ(Q) is isomorphic to the lattice of regular subdi-

visions of Q, ordered by refinement.

3.1.2. The associahedron as the secondary polytope of a convex
(n+3)-gon.

Definition 3.3. The Gelfand–Kapranov–Zelevinsky associahedron
GKZn(Q)⊂Rn+3 is defined as the (n-dimensional) secondary polytope of a
convex (n+3)-gon Q⊂R2:

GKZn(Q) := Σ(Q).

Since every triangulation or subdivision of convex polygon is regular, one
obtains:

Corollary 3.4 (Gelfand–Kapranov–Zelevinsky [14]). GKZn(Q) is an
n-dimensional associahedron.

There is one feature that distinguishes the associahedron as a secondary
polytope from all the other constructions that we mention in this paper: the
absence of parallel facets.

Proposition 3.5 (Rote–Santos–Streinu [35, Sec. 5.3]). Let Q be a
convex (n+3)-gon. Then GKZn(Q) has no parallel facets for n≥2.

This was stated without proof by Rote, Santos and Streinu [35, Sec. 5.3].
Here we offer a proof, based on the understanding of the facet normals in
secondary polytopes. Let Q be an arbitrary d-polytope with n+d+1 vertices
{q1, . . . , qn+d+1}, so that GKZn(Q) lives in Rn+d+1, although it has dimension
n. In the theory of secondary polytopes one thinks of each linear functional
Rn+d+1 → R as a function ω : vertices(Q)→ R assigning a value ω(qi) to
each vertex qi. In turn, to each triangulation t of Q (with no additional
vertices) and any such ω one associates the function gω,t : Q → R, which
takes the value ω(qi) at each qi and is affine linear on each simplex of t.
That is, we use t to piecewise linearly interpolate a function whose values
(ω(q1), . . . ,ω(qn)) we know on the vertices of Q. The main result we need
is the following equality for every ω and every triangulation t (see, e.g., [8,
Thm. 5.2.16]):

〈ω, v(t)〉 = (d+ 1)

∫
Q
gω,t(x)dx.

In particular:
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◦ If ω is affine-linear (that is, if the points {(q1,ω1), . . . ,(qn+d+1,ωn+d+1)}⊂
Rn+d+1 × R lie in a hyperplane), then 〈ω,v(t)〉 is the same for all t.
Moreover, the converse is also true: The affine-linear ω’s form the lineality
space of the normal fan of GKZn(Q).

◦ An ω lies in the linear cone of the (inner) normal fan of GKZn(Q) cor-
responding to a certain triangulation t (that is, 〈ω,v(t)〉 ≤ 〈ω,v(t′)〉 for
every other triangulation t′) if and only if the function gω,t is convex;
that is to say, if its graph is a convex hypersurface.

Proof of Proposition 3.5. With the previous description in mind we can
identify the facet normals of the secondary polytope of a polygon Q. For
this we use the correspondence:

vertices←→ triangulations of Q,
facets←→ diagonals of Q.

For a given diagonal δ of Q, denote by Fδ the facet of GKZn(Q) correspond-
ing to δ. The vector normal to Fδ is not unique, since adding to any vector
normal to Fδ an affine-linear ω0 we get another one. One natural choice is

ωδ(qi) := dist(qi, lδ),

where lδ is the line containing δ and dist(·, ·) is the Euclidean distance.
Indeed, ωδ lifts the vertices of Q on the same side of δ to lie in a half-plane
in R3, with both half-planes having δ as their common intersection. That is,
gωδ,t is convex for every t that uses δ. But another choice of normal vector is
better for our purposes: choose one side of lδ to be called positive and take

ω+
δ (qi) :=

{
dist(qi, lδ) if qi ∈ l+δ
0 if qi ∈ l−δ

.

For the end-points of δ, which lie in both l+δ and l−δ , there is no ambiguity
since both definitions give the value 0. Again, ω+

δ is a normal vector to Fδ
since it lifts points on either side of lδ to lie in a plane.

We are now ready to prove the proposition. If two diagonals δ and δ′ of Q
do not cross, then they can simultaneously be used in a triangulation. Hence,
the corresponding facets Fδ and Fδ′ meet, and they cannot be parallel. So,
assume in what follows that δ and δ′ are two crossing diagonals. Let δ=pr
and δ′ = qs, with pqrs being cyclically ordered along Q. Since n≥ 2 there
is at least another vertex a in Q. Without loss of generality suppose a lies
between s and p. Now, we call negative the side of lδ and the side of lδ′
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containing a, and consider the normal vectors ω+
δ and ω+

δ′ as defined above.
They take the following values on the five points of interest:

ω+
δ (a) = 0, ω+

δ (p) = 0, ω+
δ (q) > 0, ω+

δ (r) = 0, ω+
δ (s) = 0,

ω+
δ′(a) = 0, ω+

δ′(p) = 0, ω+
δ′(q) = 0, ω+

δ′(r) > 0, ω+
δ′(s) = 0.

Suppose that Fδ and Fδ′ were parallel. This would imply that δ and δ′

are linearly dependent or, more precisely, that there is a linear combination
of them that gives an affine-linear ω (in the lineality space of the normal
fan). But any (non-trivial) linear combination ω of ω+

δ and ω+
δ′ necessarily

takes the following values on our five points, which implies that ω is not
affine-linear:

ω(a) = 0, ω(p) = 0, ω(q) 6= 0, ω(r) 6= 0, ω(s) = 0.

Remark 3.6. The secondary polytope of points {q1, . . . , qn+3} in the plane
that are not the vertices of a convex polygon is, in general, not an associ-
ahedron. But there is a case in which it is: if the points are placed on the
boundary of an m-gon (with m≤n+3) in such a way that no four of them lie
on the same edge. By the arguments in the proof above, a necessary condi-
tion for the associahedron obtained to have parallel facets is that m≤4. For
m=4 we can obtain associahedra up to dimension 4 with exactly one pair of
parallel facets (those corresponding to the main diagonals of the quadrilat-
eral). For m=3, we can obtain 2-dimensional associahedra with two pairs of
parallel facets, and 3-dimensional associahedra with three pairs of parallel
facets. The latter is obtained for six points {p,q,r,a,b,c} with p, q and r be-
ing the vertices of a triangle and a∈pq, b∈qr and c∈ps intermediate points
in the three sides. The associahedron obtained has the following three pairs
of parallel facets:

Fpq ‖ Far, Fqr ‖ Fbs, Fps ‖ Fcq.
It is normally isomorphic to the right-most associahedron of Figure 2.

Remark 3.7. Rote, Santos and Streinu [35] introduce a polytope of pseudo-
triangulations associated to each finite set A ofm points (in general position)
in the plane. This polytope lives in R2m and has dimension m+3+i, where
i is the number of points interior to conv(A). They show that for points
in convex position their polytope is affinely isomorphic to the secondary
polytope for the same point set. Their constructions uses rigidity theoretic
ideas: the edge-direction joining two neighboring triangulations t and t′ is
the vector of velocities of the (unique, modulo translation and rotation)
infinitesimal flex of the embedded graph of t∩ t′.



524 CESAR CEBALLOS, FRANCISCO SANTOS, GÜNTER M. ZIEGLER

3.2. The associahedron as a generalized permutahedron

We here review two constructions of the associahedron: one by Postnikov [29]
and one by Rote–Santos–Streinu [35] (different from the one in Remark 3.7).
The main goal of this section is to prove that these two constructions produce
affinely equivalent results. In both constructions only the normal fan is fixed.
Equivalently, there is freedom in the construction for the right-hand sides of
facet-defining inequalities, and the space of valid right-hand sides is explicitly
described. Specific right-hand sides produce, respectively, the realizations by
Loday [23] and Buchstaber [4], which turn out to be affinely equivalent as
well.

3.2.1. The Postnikov associahedron. The Postnikov associahedron is a
special case of the family of generalized permutahedra studied in [29]. Recall
that the standard n-dimensional permutahedron is the polytope{

(x1, . . . xn+1) ∈ Rn+1 :
∑
i∈S

xi ≥
(|S|+ 1

2

)

for all S ( [n+ 1],
∑

i∈[n+1]

xi =

(
n+ 2

2

)}
.

(1)

Equivalently, it equals the convex hull of the n! points in Rn+1 obtained by
permuting coordinates in (1, . . . ,n+ 1) and also the Minkowski sum of the
edges of the standard simplex {(x1, . . . ,xn+1) ∈Rn+1 :

∑
xi = 1, xi ≥ 0}. A

generalized permutahedron is a polytope with facet normals contained in
those of the standard permutahedron and such that the collection of right
hand side parameters of the defining inequalities belongs to (the closure of)
the deformation cone of the standard permutahedron. Besides associahe-
dra, generalized permutahedra include many interesting polytopes such as
cyclohedra, graph associahedra and nestohedra.

It follows from the Minkowski sum description of the permutahedron that
every positively weighted Minkowski sum of arbitrary faces of the standard
simplex is a generalized permutahedron (the converse is only partially true;
see Remark 4.5). Following Postnikov [29] we use this to define the Loday
and Postnikov associahedra:

Definition 3.8. The Postnikov associahedron is the polytope

Postn(a) :=
∑

1≤i≤j≤n+1

aij∆[i,...,j],
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where a={aij>0: 1≤ i≤j≤n+1} is a positive vector and ∆[i,...,j] denotes

the simplex conv{ei,ei+1, . . . ,ej} in Rn+1. The special case where aij =1 for
all i, j is the Loday associahedron.

Proposition 3.9 (Postnikov [29, Sec. 8.2]). Postn(a) is an n-dimen-
sional associahedron.

600 060

006

321 141

123213

312

Figure 4. The Loday associahedron Postn(1) with the coordinates of its vertices.

Using a special case of [29, Prop. 6.3], the Postnikov associahedron can
be described in terms of inequalities as follows.

Lemma 3.10 (Postnikov [29]).

Postn(a) =

{
(x1, . . . , xn+1) ∈ Rn+1 :

∑
p<i<q

xi ≥ fp,q

for 0 ≤ p < q ≤ n+ 2, x1 + · · ·+ xn+1 = f0,n+2

}
,

where fp,q=
∑

p<i≤j<q ai,j .

Conversely, the Minkowski weights ai,j of a Postnikov associahedron de-
fined by right-hand sides fp,q can be obtained by Möbius inversion. This is
thoroughly analyzed in [20].

The facet of Postn(a) labeled by a pair (p,q) corresponds to the diagonal
pq of an (n+3)-gon with vertices labeled in counterclockwise direction from
0 to n+2. It is obvious from the description in Lemma 3.10 that Postn(a) has
exactly n pairs of parallel facets. These correspond to the pairs of diagonals
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({0, i+1},{i,n+2}) for 1≤ i≤n, as illustrated in Figure 5. This is a particular
case of Proposition 4.7.

Figure 5. Diagonals of the (n+3)-gon that correspond to the pairs of parallel facets of
both Postn(a) and RSSn(g).

3.2.2. The Rote–Santos–Streinu associahedron. By “generalizing”
the construction of Remark 3.7 to sets of points along a line, Rote, San-
tos and Streinu [35] obtain a second realization of the associahedron.

Definition 3.11. The Rote–Santos–Streinu associahedron is the polytope

RSSn(g) = {(y0, y1, . . . , yn+1) ∈ Rn+2 : yj − yi ≥ gi,j
for j > i, y0 = 0, yn+1 = g0,n+1},

where g=(gi,j)0≤i<j≤n+1 is any vector with real coordinates satisfying

gi,l + gj,k > gi,k + gj,l for all i < j ≤ k < l,(2)

gi,l > gi,k + gk,l for all i < k < l.(3)

Proposition 3.12 (Rote–Santos–Streinu [35, Sec. 5.3]). If the vec-
tor g satisfies inequalities (2) and (3) then RSSn(g) is an n-dimensional
associahedron.

A particular example of valid parameters g is given by g0: gi,j = i(i−j).
In this case we get the realization of the associahedron introduced by Buch-
staber in [4, Lect. II Sec. 5].

The facet of RSSn(g) defined by yj−yi≥gi,j corresponds to the diagonal
{i, j+1} of an (n+3)-gon with vertices labeled in counterclockwise direction
from 0 to n+2. Rote, Santos and Streinu [35, Sec. 5.3] notice that RSSn(g)
has exactly n pairs of parallel facets, corresponding to the pairs of diagonals
({0, i+1},{i,n+2}) for 1≤ i≤n, as illustrated in Figure 5.
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y2

y1(0, 0) (1, 0)

(0, 2) (2, 2)

(2, 1)

Figure 6. The Rote–Santos–Streinu associahedron RSS2(g0) with the coordinates of the
vertices. This coincides with the realization of Buchstaber.

3.2.3. Affine equivalence. Rote, Santos and Streinu stated in [35,
Sec. 5.3] that RSSn(g) is not affinely equivalent to neither the associahe-
dron as a secondary polytope nor the Chapoton–Fomin–Zelevinsky associa-
hedron of Section 3.3. Next we prove that RSSn(g) is normally isomorphic to
Postn(a) and that this isomorphism induces an affine isomorphism between
the Loday and Buchstaber specific realizations.

Theorem 3.13. Let ϕ be the affine transformation

ϕ : Rn+1 → Rn
(x1, . . . , xn+1)→ (y1, . . . , yn)

defined by yk=
∑k

i=1(xi−i). Then ϕ maps Postn(a) bijectively to RSSn(g),

for g given by gi,j− (i+j+1)(j−i)
2 =fi,j+1(a). In particular, ϕ maps the Loday

associahedron Postn(1) to the Buchstaber associahedron RSSn(g0).

Proof. The result follows from the following computation

yj − yi ≥ gi,j
(xi+1 + · · ·+ xj) + ((i+ 1) + · · ·+ j) ≥ gi,j

xi+1 + · · ·+ xj ≥ gi,j −
(i+ j + 1)(j − i)

2
.

3.3. The associahedron as a cluster polytope of type A

Cluster complexes are simplicial complexes associated to root systems and
arose in the theory of cluster algebras initiated by Fomin and Zelevin-
sky [10,11]. In the initial papers by these two authors cluster complexes
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were realized only as complete fans, but these fans were shown to be poly-
topal in their subsequent work with Chapoton [7]. The polytopes obtained
are called generalized associahedra because the case of type An yields to an
associahedron. We refer to [7], [12] and [9] for more detailed presentations.

3.3.1. The cluster complex of type An. The root system of type An is
the set Φ :=Φ(An) = {ei−ej ,1≤ i 6= j ≤n+1}⊂Rn+1. The simple roots of
type An are the elements of the set Π = {αi = ei− ei+1, i ∈ [n]}, the set of
positive roots is Φ>0={ei−ej : i<j}, and the set of almost positive roots is
Φ≥−1 :=Φ>0∪−Π.

In the theory of cluster algebras, a compatibility relation is introduced in
the set of almost positive roots of a finite crystallographic root system and
the cluster complex is defined as the simplicial complex of pairwise compat-
ible roots [11,12]. For the root system of type An, there is a natural corre-
spondence between the set Φ≥−1 and the diagonals of the (n+3)-gon Pn+3

that sends compatible roots to non-crossing diagonals, and vice-versa [12,
Prop. 3.14]. We take this property, which makes the cluster complex anti-
isomorphic to the face complex of the associahedron, as a definition.

Definition 3.14 (Cluster complex of type An). Identify the negative
simple roots −αi with the diagonals on the snake of Pn+3 illustrated in
Figure 7. Each positive root is a consecutive sum

αij = αi + αi+1 + · · ·+ αj , 1 ≤ i ≤ j ≤ n,
and thus can be identified with the unique diagonal of Pn+3 crossing the
(consecutive) diagonals that correspond to −αi,−αi+1, . . . ,−αj , and no oth-
ers. Two roots α and β in Φ≥−1 are called compatible if their corresponding
diagonals do not cross. The cluster complex ∆(Φ) of type An is the clique
complex of the compatibility relation on Φ≥−1, i.e., the complex whose sim-
plices correspond to the sets of almost positive roots that are pairwise com-
patible. Maximal simplices of ∆(Φ) are called clusters.

Theorem 3.15 (Fomin–Zelevinsky [12, Thms. 1.8, 1.10]). The sim-
plicial cones R≥0C generated by all clusters C of type An form a complete
simplicial fan in the ambient space

{(x1, . . . , xn+1) ∈ Rn+1 : x1 + · · ·+ xn+1 = 0}.

Theorem 3.16 (Chapoton–Fomin–Zelevinsky [7, Thm. 1.4]). The
simplicial fan in Theorem 3.15 is the normal fan of a simple n-dimensional
polytope.
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−α1 −α3 −αn−2 −αn

−α2 −αn−1

Figure 7. Snake and negative roots of type An.

Definition 3.17. We call Chapoton–Fomin–Zelevinsky associahedron
CFZ(An) any polytope whose normal fan is the fan with maximal cones
R≥0C generated by all clusters C of type An.

A realization CFZ(A2) is illustrated in Figure 8; note how the facet nor-
mals correspond to the almost positive roots of A2. It is obvious from the
definition of cluster complexes that CFZ(An) has exactly n pairs of parallel
facets. These correspond to the pairs of roots {αi,−αi}, for i= 1, . . . ,n, or,
equivalently, to the pairs of diagonals {αi,−αi} as indicated in Figure 9.
This is a particular case of Proposition 5.5.

α1-α1

α1 + α2α2

−α2

Figure 8. The complete simplicial fan of the cluster complex of type A2 and an
associahedron CFZ(A2).

Theorem 3.15 is the case of type An of [12, Thm. 1.10]. Theorem 3.16
was conjectured by Fomin and Zelevinsky [12, Conj. 1.12] and subsequently
proved by Chapoton, Fomin, and Zelevinsky [7]. For an explicit description
by inequalities see [7, Cor. 1.9]. These two theorems (for type A) are special
cases of our Theorems 5.1 and 5.2, proved in Section 5.
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−α1 −α3 −αn−2 −αn

−α2 −αn−1

α2

α3

αn−1

αn

α1

αn−2

Figure 9. The diagonals of the (n+3)-gon that correspond to the pairs of parallel facets
of CFZ(An).

4. Exponentially many realizations, by Hohlweg–Lange

4.1. The Hohlweg–Lange construction

In this section we give a short description of the first, which we call “type I”,
exponential family of realizations of the associahedron, obtained by Hohlweg
and Lange in [17]. These associahedra are also generalized permutahedra and
their construction uses ideas from Shnider–Sternberg and Loday’s construc-
tions [37,23]. It was shown in [2] that the number of normally non-isometric
realizations obtained this way is equal to the number of sequences {+,−}n−1
modulo reflection and reversal, which equals 2n−3+2b

n−3
2
c for n≥3 (see [38,

Sequence A005418]). We show that classification by normal isomorphism
yields the same number. See the recent paper [21] for another perspective
on the Hohlweg–Lange construction.

Let σ ∈ {+,−}n−1 be a sequence of signs on the edges of a horizontal
path on n nodes. We identify n+ 3 vertices {0,1, . . . ,n+ 1,n+ 2} with the
signs of the sequence σ̃={+,−,σ,−,+}, and place them in convex position
from left to right so that all positive vertices are above the horizontal path,
and all negative vertices are below it. These vertices form a convex (n+3)-
gon that we call Pn+3(σ). Figure 10 illustrates the example P7({+,−,+}),
where n=4.

The Hohlweg–Lange associahedra are obtained by removing certain facets
of the standard n-dimensional permutahedron (1). The facets that are re-
moved depend on the choice of σ, as follows.

Definition 4.1. For a diagonal ij (i< j) of Pn+3(σ), we denote by Rij(σ)
the set of vertices strictly below it. We define the set Sij(σ) as the result of
replacing 0 by i in Rij(σ) if 0∈Rij(σ), and replacing n+2 by j if n+2∈Rij(σ).
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3

5

6

4

1

0

2

+ +−

Figure 10. P7({+,−,+}).

The Hohlweg–Lange associahedron AssIn(σ) is the polytope

AssIn(σ) =

{
(x1, . . . xn+1) ∈ Rn+1 :

∑
i∈Sδ(σ)

xi ≥ 1
2 |Sδ(σ)|(|Sδ(σ)|+ 1)

for all diagonals δ, x1 + · · ·+ xn+1 = (n+1)(n+2)
2

}
.

Remark 4.2. If we interchange the first two signs and/or the last two signs
in σ̃ = {+,−,σ,−,+} the sets Sδ(σ) do not change and the construction
produces the same associahedron AssIn(σ).

Proposition 4.3 (Hohlweg–Lange [17, Prop. 1.3]). AssIn(σ) is an n-
dimensional associahedron.

Hohlweg and Lange ([17, Thm. 1.1]) describe also the vertices of AssIn(σ),
extending Loday’s rule ([23, Thm. 1.1], [29, Cor. 8.2]): To compute the i-th
component of the vertex (x1, . . . ,xn+1) corresponding to a triangulation T ,
look at the unique triangle τi of T incident to vertex i and whose interior
intersects the vertical line through vertex i. The n vertices in T \τ fall into
three components: those to the left of τ , those to the right, and those above
τ (if i is a negative vertex) or below τ (if i is a positive vertex). Let li and
ri be the numbers of vertices to the left and right of τ . Set:

xi =

{
(li + 1)(ri + 1) if σ̃(i) = +

n+ 2− (li + 1)(ri + 1) if σ̃(i) = −.
The reader can verify this rule for the Loday associahedron of Figure 4.

Proposition 4.4 (Hohlweg–Lange [17, Remarks 1.2, 4.3]).
AssIn({−,−, . . . ,−}) produces the Loday associahedron Postn(1), and
AssIn({+,−,+,−, . . .}) is normally isomorphic to the Chapoton–Fomin–
Zelevinsky associahedron CFZ(An).
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Remark 4.5. We defined the Loday associahedron as a Minkowski sum of
certain faces of the standard simplex ∆[n+1]. The question arises whether

such Minkowski sum descriptions exist for AssIn(σ) in general. A partial
answer is as follows: The associahedra AssIn(σ) are examples of general-
ized permutahedra (recall that a generalized permutahedron is a polytope
with facet normals contained in those of the standard permutahedron such
that the collection of right hand side parameters of the defining inequalities
belongs to the deformation cone of the standard permutahedron; compare
with the appendix by Postnikov, Reiner and Williams in [30]). Generalized
permutahedra include all the Minkowski sums

∑
S⊆[n+1]aS∆S for which

the coefficients aS are non-negative. Ardila, Benedetti and Doker [1] have
shown that every generalized permutahedron admits a (unique) expression
as a Minkowski sum and difference of faces of the standard simplex. These
decompositions, for the case of AssIn(σ), are studied by Lange in [20]. A dif-
ferent decomposition arises from the work of Pilaud and Santos [27], who
show that the associahedra AssIn(σ) are the “brick polytopes” of certain sort-
ing networks. As such, they admit a decomposition as the Minkowski sum
of the

(
n
2

)
polytopes of the individual “bricks”. However, these summands

need not be simplices.

Remark 4.6. Hohlweg–Lange–Thomas [18] provide a generalization of the
Hohlweg–Lange construction to all finite Coxeter groups; for each Coxeter
element c (equivalently, for each orientation of the Coxeter graph) in a finite
Coxeter system, they construct a realization of the corresponding generalized
associahedron having as normal fan the c-Cambrian fan introduced earlier
by Reading [31] and discussed by Reading and Speyer [33]. They call this
polytope the c-generalized associahedron. For types A and B, this specializes
to the Hohlweg–Lange associahedra and cyclohedra.

A common generalization of c-generalized associahedra and brick poly-
topes (see previous remark) is introduced by Pilaud–Stump [28]. Another
interesting construction of the Hohlweg–Lange–Thomas c-generalized asso-
ciahedra is obtained by Stella in [42].

4.2. Normal facet vectors, and normal isomorphism

The Hohlweg–Lange associahedra satisfy properties (1) and (2) mentioned
in the introduction: they have n pairs of parallel facets and in the basis given
by the normals to those facets all normal facet vectors are in {−1,0,1}n. To
see this, we denote eS the characteristic vector of each subset S ⊂ [n+ 1].
By definition, the normal vectors of AssIn(σ) are the characteristic vectors
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of the sets Sij(σ) associated to the different diagonals of Pn+3(σ), but these
vectors are to be considered modulo e[n+1]=(1, . . . ,1). In particular, we have

eS +eS =0 for S=[n+1]\S.
Although the following result is implicit in [17], we include a proof be-

cause our description of the diagonals corresponding to parallel facets is a
bit more explicit and will be used in the proofs of Theorems 4.9 and 6.1.

Proposition 4.7 (Hohlweg–Lange [17, Lem. 2.2 and Cor. 2.3]).
AssIn(σ) has exactly n pairs of parallel facets, whose normal vectors are
e[j] and e

[j]
for j=1, . . . ,n. They correspond to the diagonals of the quadri-

laterals with vertices {i, j, j+1,k} for j=1, . . . ,n, where

i = max{0 ≤ r < j : σ̃(r) · σ̃(j) = −}

k = min{j + 1 < r ≤ n+ 2: σ̃(r) · σ̃(j + 1) = −}

Hohlweg and Lange [17, Cor. 2.3] also remark that the facets with normals
e[j], j ∈ [n+ 1] intersect at a vertex of AssIn(σ) and the ones with normals
e
[j]

, j ∈ [n+ 1] intersect at another (opposite) one. That is to say, the 2n

corresponding diagonals of Pn+3(σ) form two triangulations, as was the case
in Figure 5.

Proof. Two diagonals δ and δ′ correspond to two parallel facets of AssIn(σ)
if and only if the sets Sδ and Sδ′ are complementary. By the definition of Sδ,
the only way this can happen is when δ and δ′ are two crossing diagonals
of opposite slope signs and such that the quadrilateral containing them uses
an edge from the lower chain of Pn+3(σ) and an edge of the upper chain.
This is the case described in the statement, and it is easy to check that the
corresponding Sδ and Sδ′ are, respectively, {1, . . . , j} and {j+1, . . . ,n+1}.

That all other normals have coordinates in {−1,0,+1}n when expressed
in the basis {e[j], j∈ [n]} follows trivially from the following equation, valid
for every S⊂ [n+1]:

eS =
∑
j∈S
j+16∈S

e[j] −
∑
j+1∈S
j 6∈S

e[j].

Corollary 4.8. With respect to the basis {e[1], . . . ,e[n]}, (and considered

modulo e[n+1]), the normal vectors of AssIn(σ) are all in {0,+1,−1}n and
include {±e[1], . . . ,±e[n]}.
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As was pointed out to us by one of the referees, this result can be stated
in the language of Coxeter combinatorics as follows: the normal vectors of
the Hohlweg–Lange associahedra are weights of the root system of type A;
the parallel facets correspond to fundamental weights and every weight of
type A can be written as a linear combination, with coefficients in {0,−1,1},
of the fundamental weights.

We now use parallel facets to classify Hohlweg–Lange associahedra. For
a sequence σ∈{−,+}n−1 we define the reflection of σ as the sequence −σ,
and the reversal σt as the result of reversing the order of coordinates in σ.

Theorem 4.9. Let σ1,σ2 ∈ {+,−}n−1. Then AssIn(σ1) and AssIn(σ2) are
normally isomorphic if and only if σ2 can be obtained from σ1 by reflections
and reversals.

Proof. Suppose there is a linear isomorphism between the normal fans of
AssIn(σ1) and AssIn(σ2). It induces an automorphism of the face lattice of
the associahedron that, by Lemma 2.2, corresponds to a certain reflection-
rotation of the polygon. We denote this reflection-rotation by ϕ : Pn+3(σ1)→
Pn+3(σ2). Any linear isomorphism of the normal fans preserves the property
of a pair of facets being parallel, so ϕ maps the “parallel” pairs of diagonals
of Pn+3(σ1), to the “parallel” pairs of diagonals of Pn+3(σ2). Furthermore,
for both realizations there are exactly four diagonals that cross at least one
diagonal of every parallel pair; they are {0,n+ 1},{0,n+ 2},{1,n+ 1} and
{1,n+2}. The set of these four diagonals is also preserved under ϕ. This is
possible only if ϕ is a reflection-rotation of Pn+3(σ1), which corresponds to
a reflection-reversal of the sequence σ̃1={+,−,σ1,−,+}.

It remains to be proved that AssIn(σ) is normally-isomorphic to both
AssIn(−σ) and AssIn(σt). The isomorphism between the normal fans of
AssIn(σ) and AssIn(−σ) is given by multiplication by −1, since Sδ(−σ) =
[n] − Sδ(σ). The isomorphism between the normal fans of AssIn(σ) and
AssIn(σt) is given by the permutation of coordinates τ(i) = n+ 1− i, as
Sδ(σ

t)=τ(Sδ(σ)).

In particular, putting together Proposition 4.4 and Theorem 4.9, one
obtains that the Loday associahedron is not normally isomorphic to the
Chapoton–Fomin–Zelevinsky associahedron, for n≥3.

Remark 4.10. Bergeron, Hohlweg, Lange and Thomas [2, Thm. 2.3] clas-
sify the Hohlweg–Lange–Thomas c-generalized associahedra up to isometry,
and also up to isometry of normal fans [2, Cor. 2.6]. Even if those classifi-
cations yield the same result as ours, they do not automatically imply it.
As an example of why these classifications are potentially different, consider
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the rhombus obtained by removing two opposite facets of a regular hexagon.
This generalized permutahedron admits a normal automorphism that is not
an isometry of normal fans: the affine map that interchanges acute and ob-
tuse angles. That is to say, the fact that Theorem 4.9 yields the same classes
as the classification in [2] implies the following result for Hohlweg–Lange
associahedra, which fails for other generalized permutahedra:

Proposition 4.11. AssIn(σ) and AssIn(σ′) are normally isomorphic if and
only if they are isometric.

We do not know whether the same is true for c-generalized associahedra
in other types.

5. Catalan many realizations, by Santos

In this section we describe a generalization of the Chapoton–Fomin–
Zelevinsky construction of the associahedron (Section 3.3). It was originally
presented at a conference in 2004 [36], but unpublished until now. We prove
that the number of normally non-isomorphic realizations obtained this way,
our “type II exponential family”, is equal to the number of triangulations
of an (n+3)-gon modulo reflections and rotations. This number equals

1
2(n+3)Cn+1 + 1

4C(n+1)/2 + 1
2Cb(n+1)/2c + 1

3Cn/3,

where Cn= 1
n+1

(
2n
n

)
for n∈Z and Cn=0 otherwise. Interest in this sequence

goes back to Motzkin (1948) [26], [38, Sequence A000207].
Let α1, . . . ,αn denote a linear basis of an n-dimensional real vector space

V ∼=Rn, and let T0 be a certain triangulation of the (n+3)-gon, fixed once and
for all throughout the construction. We call T0 the seed triangulation. The
CFZ associahedron will arise as the special case where V ={(x1, . . . ,xn+1)∈
Rn+1 :

∑
xi=0}, αi=ei−ei+1, and T0 is the snake triangulation of Figure 7.

Let {δ1, . . . , δn} denote the n diagonals present in the seed triangulation

T0. To each diagonal pq out of the n(n+3)
2 possible diagonals of the (n+3)-gon

we associate a vector vpq as follows:

◦ If pq=δi for some i (that is, if pq is used in T0) then let vpq=−αi.
◦ If pq 6∈T0 then let

vpq :=
∑

pq crosses δi

αi.
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Figure 11. A seed triangulation for Santos’ construction.

As a running example, consider the triangulation {123,345,156,135} of a
hexagon with its vertices labelled cyclically. Let δ1=13, δ2=35 and δ3=15.
Written with respect to the basis {α1,α2,α3} the nine vectors vpq that we
get are as follows (see Figure 11):

v13 = −α1 = (−1, 0, 0), v35 = −α2 = (0,−1, 0),

v15 = −α3 = (0, 0,−1), v25 = α1 = (1, 0, 0),

v14 = α2 = (0, 1, 0), v36 = α3 = (0, 0, 1),

v46 = α2 + α3 = (0, 1, 1), v26 = α1 + α3 = (1, 0, 1),

v24 = α1 + α2 = (1, 1, 0).

With a slight abuse of notation we denote with the same symbol a subset
of diagonals of the polygon and the set of vectors associated with them. For
example, R≥0T0 = R≥0{−α1, . . . ,−αn} is the negative orthant in V (with
respect to the basis [αi]i). More generally, for each triangulation T of the
(n+3)-gon consider the cone R≥0T . We claim the following generalizations
of Theorems 3.15 and 3.16:

Theorem 5.1. The simplicial cones R≥0T generated by all triangulations T
of the (n+3)-gon form a complete simplicial fan FT0 in the ambient space V .

Theorem 5.2. This fan FT0 is the normal fan of an n-dimensional associ-
ahedron.

Our proofs are based on the understanding of a complete simplicial fan
as a triangulation of a totally cyclic vector configuration, which makes reg-
ular triangulations correspond to normal fans of simple polytopes (see [8,
Sects. 2.5, 9.5], and compare our two statements to steps (1) and (2) in [8,
p. 503]). Incidentally, this method is illustrated there by constructing the
normal fan of the Loday associahedron and showing its polytopality.
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5.1. Proof of Theorem 5.1

The statement follows from the following two claims:

(1) R≥0T0 is a simplicial cone and is the only cone in FT0 that intersects
(the interior of) the negative orthant.

(2) If T1 and T2 are two triangulations that differ by a flip, let v1 ∈ T1
and v2∈T2 be the diagonals removed and inserted by the flip. That is,
T1 \T2 = {v1} and T2 \T1 = {v2}. Then there is a linear dependence in
T1∪T2, which has coefficients of the same sign (and different from zero)
in the elements v1 and v2.

The first assertion is obvious, and the second one is Lemma 5.3 below.
Before proving it let us argue why these two assertions imply Theorem 5.1.
Suppose that we have two triangulations T1 and T2 related by a flip as in
the second assertion, and suppose that we already know that one of them,
say T1, spans a full-dimensional cone (that is, we know that T1 considered
as a set of vectors is independent). Then assertion (2) implies that T2 spans
a full-dimensonal cone as well and that R≥0T1 and R≥0T2 lie in opposite
sides of their common facet R≥0(T1∩T2). This, together with the fact that
there is some part of V covered by exactly one cone (which is why we need
assertion (1)) implies that we have a complete fan. (See, for example, [8,
Cor. 4.5.20], where assertion (2) is a special case of “property (ICoP)” and
assertion (1) a special case of “property (IPP)”.)

Lemma 5.3. Let T1 and T2 be two triangulations that differ by a flip, and
let v1 and v2 be the diagonals removed and inserted by the flip from T1 to
T2, respectively (that is, T1 \T2 = {v1} and T2 \T1 = {v2}). Then there is a
linear dependence in T1∪T2, which has coefficients of the same sign in the
elements v1 and v2.

Proof. Let p, q, r and s be the four points involved by the two diagonals v1
and v2, in cyclic order. That is, the diagonals removed and inserted are pr
and qs. We claim that one (and exactly one) of the following things occurs
(see Figure 12):

(a) There is a diagonal in the seed triangulation T0 that crosses two opposite
edges of the quadrilateral pqrs.

(b) One of pr and qs is used in the seed triangulation T0.
(c) There is a triangle abc in T0 with a vertex in pqrs and the opposite edge

crossing two sides of pqrs (that is, without loss of generality p=a and
bc crosses both qr and rs).
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(d) There is a triangle abc in T0 with an edge in common with pqrs and
with the other two edges of the triangle crossing the opposite edge of
the quadrilateral (that is, without loss of generality, p=a, q= b and rs
crosses both ac and bc).

p s p s p s p s

q r q r q r q r

(a) (b) (c) (d)

Figure 12. The four cases in the proof of Lemma 5.3.

To prove that one of the four things occurs we argue as follows. It is well-
known that in any triangulation of a k-gon one can “contract a boundary
edge” to get a triangulation of a (k−1)-gon. Doing that in all the boundary
edges of the seed triangulation T0 except those incident to either p, q, r or

s we get a triangulation T̃0 of a polygon P̃ with at most eight vertices: the
four vertices p, q, r and s and at most one extra vertex between each two of
them. We embed P̃ having as vertices a subset of the vertices of a regular
octagon, with pqrs forming a square. We now look at the position of the

center of the octagon P̃ with respect to the triangulation T̃0: If it lies in the
interior of an edge, then this edge is a diameter of the octagon and we are

in cases (a) or (b). If it lies in the interior of a triangle of T̃0, then we are in
cases (c) or (d). See Figure 12 again.

Now we show explicitly the linear dependences involved in T1∪T2 in each
case.

(a) Suppose T0 has a diagonal crossing pq and rs. Then

(4) vpr + vqs = vpq + vrs,

because every diagonal of T0 intersecting the two (respectively, one;
respectively none) of pr and qs intersects also the two (respectively,
one; respectively none) of pq and rs.

(b) If T0 contains the diagonal pr, let a and b be vertices joined to pr in T0,
with a on the side of q and b on the side of s. We define the following
vectors wa and wb:
◦ wa equals 0, vpq or vqr depending on whether a equals q, lies between
p and q, or lies between q and r.
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◦ wb equals 0, vps or vrs depending on whether a equals s, lies between
p and s, or lies between s and r.

We claim that in the nine cases we have the equality

(5) vpr + vqs = wa + wb.

This is so because vpr+vqs now equals the sum of the αi’s corresponding
to the diagonals of T0 \{pr} crossing qs, and we have that:
◦ The diagonals of T0 crossing qs in the q-side of pr are none, the same

as those crossing pq, or the same as those crossing qr in the three
cases of the definition of wa, and

◦ The diagonals of T0 crossing qs in the s-side of pr are none, the same
as those crossing ps, or the same as those crossing rs in the three
cases of the definition of wb

(c) If T0 contains a triangle pbc with bc crossing both qr and rs then we
have the equality

(6) 2vpr + vqs = vqr + vrs,

because in this case the diagonals of T0 crossing pr are those crossing
both qr and rs, while the ones crossing qs are those crossing one, but
not both, of qr and rs.

(d) If T0 contains a triangle pqc with rs crossing both pc and qc then we
have the equality

(7) vpr + vqs = vrs

because the diagonals of T0 crossing rs are the disjoint union of those
crossing pr and those crossing qs.

Observe that when T0 is a snake triangulation (the CFZ case) or, more
generally, when the dual tree of T0 is a path, cases (c) and (d) do not occur.

5.2. Proof of Theorem 5.2

Once we know FT0 is a complete simplicial fan, its being the normal fan
of a simple polytope can be expressed as the feasibility of a system of lin-
ear inequalities. This can be done in several ways (compare, e.g., Theo-
rem 3.1 in [18]). We choose the following one, related to the understanding
of complete simplicial fans as triangulations of vector configurations (see [8,
Sec. 9.5]).
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Lemma 5.4. Let F be a complete simplicial fan in a real vector space V
and let A be the set of generators of F (more precisely, A has one generator
of each ray of F). Then the following conditions are equivalent:

(1) F is the normal fan of a polytope.
(2) There is a map ω : A→R>0 such that for every pair (C1,C2) of maximal

adjacent cones of F the following happens: Let λ : A→R be the (unique,
up to a scalar multiple) linear dependence with support in C1∪C2, with
its sign chosen so that λ is positive in the generators of C1 \C2 and
C2\C1. Then the scalar product λ ·ω=

∑
v λ(v)ω(v) is strictly positive.

Proof. One short proof of the lemma is that both conditions are equiva-
lent to “F is a regular triangulation of the vector configuration A” (See,
e. g., Corollary 9.5.3 [8]). But let us show a more explicit proof of the im-
plication from (2) to (1), which is the one we need. What we are going to
show is that if such an ω exists and if we consider the set of points

Ã :=
{

v
ω(v) : v ∈ A

}
,

then the convex hull of Ã is a simplicial polytope having F as its central
fan. (We think of Ã as points in an affine space, rather than as vectors in a

vector space.) Hence F is the normal fan of the polar of conv(Ã) (see, e. g.,
[44, Sec. 7.1]).

To show the claim on conv(Ã) we argue as follows. Consider the simplicial

complex ∆ with vertex set Ã obtained by embedding the face lattice of F in
it. That is, for each cone C of F we consider the simplex with vertex set in
Ã corresponding to the generators of C. Since F is a complete fan and since
the elements of Ã are generators for its rays (they are positive scalings of
the elements of A), ∆ is the boundary of a star-shaped polyhedron with the
origin in its kernel. The only thing left to be shown is that this polyhedron
is strictly convex, that is, that for any two adjacent maximal simplices σ1
and σ2 the origin lies in the same side of σ1 as σ2 \σ1. Equivalently, if we

understand (the vertices of) σ1 and σ2 as subsets of Ã, we have to show that
the unique affine dependence between the points {O}∪σ1∪σ2 has opposite
sign in O than in σ1\σ2 and σ2\σ1. The proof of this is easy. The coefficients
in the linear dependence among the vectors in σ1∪σ2 are the vector

(λ(v)ω(v))v∈A.

To turn this into an affine dependence of points involving the origin we
simply need to give the origin the coefficient −∑v λ(v)ω(v) which is, by
hypothesis, negative.
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So, in the light of Lemma 5.4, to prove Theorem 5.2 we simply need
to choose weights ωij for the diagonals of the polygon with the property
that, for each of the linear dependences exhibited in equations (4), (5), (6),
and (7), the equation

∑
ij ωijλij>0 holds.

As a first approximation, let ωij = 2 if ij is in T0 and ωij = 1 otherwise.
This is good enough for equations (6) and (7) in which all the ω’s in the
dependence are 1 and the sum of the coefficients in the left-hand side is
greater than in the right-hand side. It also works for equations (5), in which
we have

ωpr = 2, ωqs = 1, λpr = 1, λqs = 1,

so that the sum
∑

ij ωijλij for the left-hand side is three, while that of the
right-hand side can be 0, −1 or −2 depending on the cases for the points a
and b.

The only (weak) failure is that in equation (4) we have

λpr = 1, λqs = 1, λpq = −1, λrs = −1

and all the ω’s are 1, so we get
∑

ij ωijλij = 0. We solve this by slightly
perturbing the ω’s. A slight perturbation will not change the correct signs
we got for equations (5), (6), and (7). For example, for each ij not in T0
change ωij to

ωij = 1 + εgij

for a sufficiently small ε>0 and for a vector (gij)ij satisfying

gik + gjl > max{gij + gkl, gil + gjk}
for all i, j, k, l, 1 ≤ i < j < k < l ≤ n+ 3.

This holds (for example) for gij :=(j− i)(n+3+ i−j).

5.3. Distinct seed triangulations produce distinct realizations

Let AssIIn (T ) denote the n-dimensional associahedron obtained with the con-
struction of the previous section starting with a certain triangulation T .
(This is a slight abuse of notation, since the associahedron depends also in
the weight vector ω that gives the right-hand sides for its inequality defini-
tion. Put differently, by AssIIn (T ) we here denote the normal fan rather than
the associahedron itself.) We want to classify the associahedra AssIIn (T ) by
normal isomorphism.

In principle, it looks like we have as many associahedra as there are trian-
gulations (that is, Catalan-many) but that is not the case because, clearly,
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changing T by a rotation or a reflection does not change the associahedron
obtained. The question is whether this is the only operation that preserves
AssIIn (T ), modulo normal isomorphism. To answer this, we look at parallel
facets.

Proposition 5.5. AssIIn (T0) has exactly n pairs of parallel facets, each pair
consisting of (the facet of) one diagonal in T0 and the diagonal obtained
from it by a flip in T0.

Proof. AssIIn (T ) is full-dimensional, so two facets are parallel only if their
defining normals are opposite. Since all normals except the ones from the
seed triangulation T0 lie in the positive orthant, in every pair of opposite
normals one of them comes from the seed triangulation. This is the case of
the statement.

Lemma 5.6. Let Q be an (n+ 3)-gon, with n≥ 2. For each triangulation
T of Q let BT denote the set consisting of the n diagonals in T plus the
n diagonals that can be introduced by a single flip from T . Then for every
T1 6=T2 we have BT1 6=BT2 .

Proof. Suppose that T1 and T2 had BT1 =BT2 . We claim that T2 is obtained
from T1 by a set of “parallel flips”. That is, by choosing a certain subset of
diagonals of T1 such that no two of them are incident to the same triangle
and flipping them simultaneously. This is so because every diagonal pr in T2
but not in T1 intersects a single diagonal qs of T1. If pqr and prs were not
triangles in T2, then let a be a vertex joined to pr in T2, different from q or
s. One of pa and ra intersects the diagonal qs of T1 and one of the edges pq,
qr, rs and pr of T1.

Once we have proved this for T2, the statement is obvious. For every T2
different from T1 but with all its diagonals in BT1 there is a diagonal that we
can flip to get one that is not in BT1 (same argument, let pr be a diagonal
in T2 but not in T1; let pq, qr, rs and pr be the other sides of the two
triangles of T2 containing pq. Flipping any of them, say pq, gives a diagonal
that crosses pq and qs, which are both in T1).

Corollary 5.7. Let T1 and T2 be two triangulations of a convex (n+3)-gon.
Then AssIIn (T1) and AssIIn (T2) are normally isomorphic if and only if T1 and
T2 are equivalent under rotation-reflection.

Proof. If T1 and T2 are equivalent under rotation-reflection then the re-
sulting associahedra are clearly the same. Now suppose that AssIIn (T1) and
AssIIn (T2) are normally isomorphic. By Lemma 2.2 the automorphism of
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the associahedron face lattice induced by the isomorphism corresponds to
a rotation-reflection of the polygon. Now, normal isomorphism preserves
the property of a pair of facets being parallel, so this rotation-reflection
sends BT1 to BT2 , and thus T1 to T2.

However, the same is not true if we only look at the set of normal vectors
of AssIIn (T ):

Proposition 5.8. Let T1 and T2 be two triangulations of a convex (n+3)-
gon. Let A(T1) and A(T2) be the sets of normal vectors of AssIIn (T1) and
AssIIn (T2). Then A(T1) and A(T2) are linearly equivalent if and only if T1
and T2 have isomorphic dual trees.

Proof. Let T be the dual tree of a triangulation T . Observe that the edges of
T correspond bijectively to the inner diagonals in T . Moreover, the diagonals
of the polygon not used in T correspond bijectively to the possible paths in
T . More precisely: for every pair of nodes of T (that is, triangles t1 and t2
of T ) let p1 (resp. p2) be the vertex of t1 (resp. of t2) not visible from t2
(resp. from t1). Then the diagonals of T crossed by p1p2 correspond to the
path in T joining t1 to t2.

This means that, if we label the edges of T with the numbers 1 through
n in the same manner as we labelled the diagonals of T we have that

A(T ) = {−αi : i ∈ [n]} ∪

∑
i∈p

αi : p is a path in T

 .

So, A(T ) can be recovered knowing only T as an abstract graph. For the
converse, observe that if two trees are not isomorphic then there is no bijec-
tion between their edges that sends paths to paths. For example, knowing
only the sets of edges that form paths we can identify the (stars of) vertices
of the tree as the sets of edges such that every two of them form a path.

5.4. Path triangulations, c-cluster complexes, and denominator
fans in type An

5.4.1. Associahedra from path triangulations. Let us call a triangu-
lation of Pn+3 whose dual tree is a path a path triangulation. By Proposi-
tion 5.8, for a path triangulation T the set of normal vectors to the facets
of AssIIn (T ) equals the almost positive roots in the root system An, exactly
as in the Chapoton–Fomin–Zelevinsky associahedron. However, these asso-
ciahedra are not normally equivalent to one another. To analyze this, we
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encode each path triangulation of the (n+ 3)-gon as a sequence of signs
c∈{+,−}n−1, as follows: the coordinates of c correspond to the n−1 trian-
gles that are not ears (that is, are not leaves in the dual path) and we make
it a + or a − depending on whether the dual path turns right or left at that
vertex (see Figure 13). We denote Tc the triangulation obtained in this way,
for each sequence c.

Figure 13. The triangulation Tc corresponding to the sequence of signs c={−,+,+,−}.

It is clear that every path triangulation can be encoded in this way and
that Tc1 and Tc2 are the same (modulo symmetries of the (n+3)-gon) if and
only if c1 and c2 are the same modulo reflection and reversal. In particular,
this gives us exponentially many realizations of the n-associahedron with the
same set of facet normals as the Chapoton–Fomin–Zelevinsky associahedron:

Corollary 5.9. Let T0 be a triangulation whose dual tree is a path. Let its
diagonals be numbered from 1 to n in the order they appear in the path.
Then,

(i) taking αi = ei+1− ei, we have that the set of normal vectors to the
facets of AssIIn (T0) is the set of almost positive roots in the root system
An.

(ii) The number of normally non-isomorphic classes of associahedra ob-
tained in this way is equal to the number of sequences {+,−}n−1 mod-
ulo reflection and reversal.

The number of realizations that we get in this way is exactly the same
as the number of Hohlweg–Lange associahedra (see Theorem 4.9). The ex-
planation for this coincidence is in Remark 5.11. Nevertheless, the two sets
of realizations are almost disjoint; the only common one is the Chapoton–
Fomin–Zelevinsky associahedron, obtained in both cases for the sequence
that alternates pluses and minuses (Theorem 6.1).
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5.4.2. c-cluster complexes in type An. It turns out that the associ-
ahedra AssIIn (T0) of path triangulations provide a simple combinatorial de-
scription of c-cluster complexes in type An as described by Reading in [32].
These complexes are more general than the cluster complexes of Fomin and
Zelevinsky [12], and have an extra parameter c corresponding to a Coxeter
element.

In type An, Coxeter elements can be represented by a sequence of signs
c ∈ {+,−}n−1; the corresponding Coxeter element is given by a product
of generators s1, . . . ,sn in some order such that si+1 comes after si if the
i-th sign in the sequence is positive, and si+1 comes before si if the i-th
sign is negative. Each sequence c induces a single Coxeter element because
generators si and sj commute when |i−j|≥2.

As in the description of the cluster complex of type An in Section 3.3.1,
consider the root system of type An and the set of almost positive roots
Φ≥−1. In addition, consider a sequence of signs c ∈ {+,−}n−1 and let
Tc be the corresponding path triangulation. Label the diagonals of Tc by
{δ1, . . . , δn} in the order they appear in the dual path. As in the CFZ con-
struction, this gives a natural correspondence between the set Φ≥−1 and
the diagonals of Pn+3: We identify the negative simple roots {−α1, . . . ,−αn}
with the diagonals {δ1, . . . , δn}, and each positive root

αij = αi + αi+1 + · · ·+ αj , 1 ≤ i ≤ j ≤ n,

with the unique diagonal of Pn+3 crossing the (consecutive) diagonals
−δi,−δi+1, . . . ,−δj .

We say that two roots α and β in Φ≥−1 are c-compatible if their corre-
sponding diagonals do not cross. The c-cluster complex can then be defined
as the simplicial complex whose faces correspond to sets of almost positive
roots that are pairwise c-compatible. The maximal simplices in it are called
c-clusters and correspond naturally to triangulations of the polygon. For
instance, the set

{α1 + α2 + α3, α2 + α3, α2 + α3 + α4, α3,−α5}

is a c-cluster of type A5 for c= (−,+,+,−) corresponding to the Coxeter
element s2s1s3s5s4. The reason is that its corresponding diagonals in Fig-
ure 13 form a triangulation of the polygon. This algorithm gives a simple
combinatorial way of computing c-cluster complexes in type A. The proof
that this description of c-cluster complexes actually coincides with the origi-
nal description by Reading follows the two steps (i) and (ii) in the definition
of the c-compatibility relation in [34, Sec. 5]. As a consequence we obtain:
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Proposition 5.10. The normal fan of the associahedron AssIIn (Tc) coincides
with the c-cluster fan of type An.

Remark 5.11. As mentioned in Remark 4.6, the Hohlweg–Lange construc-
tion was generalized by Hohlweg–Lange–Thomas to a construction of c-
generalized associedra (later described in different contexts by Stella [42]
and Pilaud–Stump [28]). There is one c-generalized associahedron for each
Coxeter element c, and it has the c-Cambrian fan [31,33] as its normal fan.

Proposition 5.10 is an analogous result for the c-cluster fans, which again
exist for each Coxeter element in a finite Coxeter group. In particular, the
proposition shows that in type A the c-cluster fans are the normal fans of
polytopes. As far as we know, the same is not known in other types, ex-
cept when c is the bipartite Coxeter element. (The c-cluster fan is, in this
case, the normal fan of the Chapoton–Fomin–Zelevinsky generalized associ-
ahedron [7].) In fact, in the bipartite case Reading and Speyer have shown
that the c-Cambrian fan and the c-cluster fan are linearly isomorphic [33,
Thm. 9.1]. In the general case they only show combinatorial isomorphism
between them [33, Thm. 1.1 and Sec. 5].

5.4.3. Denominator fans in type An. For an arbitrary seed triangula-
tion T , the normal fan of AssIIn (T ) can also be interpreted in the language
of cluster algebras, as denominator fans. For each choice of seed cluster in
a cluster algebra, the denominator fan has as rays the denominator vectors
of the cluster variables with respect to the seed cluster, and it has maximal
cones spanned by the denominator vectors of variables that form clusters.
The c-cluster fan arises as the particular case where the cluster seed corre-
sponds to an acyclic quiver associated to a Coxeter element c.

Notice that the name “denominator fan” is a slight abuse of notation
since we do not know, a priori, if they are fans. But in type A, clusters cor-
respond to triangulations and the denominator fan with seed triangulation
T is nothing but the normal fan of the associahedron AssIIn (T ) (see, e.g., [6,
Sec. 7]). Hence, as a consequence of Theorem 5.1 and Theorem 5.2 we obtain:

Proposition 5.12. For cluster algebras of type An,

(i) The denominator fan associated to any triangulation T of a convex
(n+3)-gon is a complete simplicial fan, and

(ii) it is the normal fan of a polytope (the associahedron AssIIn (T )).

This result suggests a natural generalization of the Santos construction
of associahedra to arbitrary finite Coxeter groups:
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Question 5.13. Given an arbitrary cluster seed in a cluster algebra of finite
type

◦ is the associated denominator fan a complete simplicial fan?
◦ if so, is it the normal fan of a polytope (a generalized associahedron)?

Although this question is phrased in terms of cluster algebras, which
deal only with crystallographic root systems, both denominator fans and
generalized associahedra make sense in the slightly more general context of
finite Coxeter groups. (See [6] for an alternative description of denominator
vectors in this general set up).

Question 5.14. If the answer to Question 5.13 is positive, is the classifica-
tion up to normal isomorphism of Corollary 5.7 still valid for the generalized
associahedra obtained this way? Note that the rotation map on convex poly-
gons can be naturally generalized in the context of finite Coxeter groups (see,
e.g., [6, Sec. 2.2] or [5, Sec. 8.3]).

6. How many associahedra?

We have presented several constructions of the associahedron. We call associ-
ahedra of types I and II the associahedra AssIn(σ) and AssIIn (T ) studied in the
previous two sections. Associahedra of type I include the Loday (or Shnider–
Sternberg, or Rote–Santos–Streinu, or Postnikov, or Buchstaber) associahe-
dron, and both types I and II include the Chapoton–Fomin–Zelevinsky asso-
ciahedron. They all have pairs of parallel facets while the secondary polytope
on an n-gon does not (Proposition 3.5). This implies that the associahedron
as a secondary polytope is never normally isomorphic to any associahedron
of type I or type II. In particular, it is not normally isomorphic to the Post-
nikov associahedron or the Chapoton–Fomin–Zelevinsky associahedron.

Both types I and II produce exponentially many normally non-isomorphic
realizations. The number of normally non-equivalent associahedra of type
I is asymptotically 2n−3, while for type II is asymptotically 22n+1/

√
πn5.

Explicit computations up to dimension 15 are given in Table 1.
Surprisingly, the realizations of types I and II are almost disjoint:

Theorem 6.1. The only associahedron that is normally isomorphic to both
one of type I and one of type II is the Chapoton–Fomin–Zelevinsky associ-
ahedron.

Proof. Suppose that a sequence σ∈{+,−}n−1 and a triangulation T pro-
duce normally isomorphic associahedra AssIn(σ) and AssIIn (T ). By Lemma
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n= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AssIn 1 1 1 2 3 6 10 20 36 72 136 272 528 1056 2080 4160

AssIIn 1 1 1 3 4 12 27 82 228 733 2282 7528 24834 83898 285357 983244

Table 1. The number of normally non-isomorphic associahedra of types I and II up to
dimension 15.

2.2 there is no loss of generality in assuming that the bijection between
facets induced by this isomorphism corresponds to the identity map on the
diagonals of the (n+3)-gon. Also, since normal isomorphism preserves par-
allelism of facets, the 2n diagonals corresponding to the n pairs of parallel
facets are the same in AssIn(σ) and AssIIn (T ). Denote the set of them B.

From the perspective of AssIIn (T ), B consists of the diagonals of T to-
gether with its flips. To analyze B from the perspective of AssIn(σ), we
consider the (n+3)-gon drawn in the Hohlweg–Lange fashion (with vertices
placed along two x-monotone chains, the positive and the negative one,
placed in the x-order indicated by σ). By Proposition 4.7, B contains only
diagonals between vertices of opposite signs. Knowing this we conclude:

◦ Every triangle in T contains a boundary edge in one of the chains. (That
is, the dual tree of T is a path). Indeed, every triangle contains at least
two vertices of the same sign in σ. The edge joining those two vertices
cannot be in B, so it is a boundary edge.

◦ The third vertex of each triangle is in the opposite chain. (That is, the
dual path of T separates the two chains). Otherwise the three vertices of
a certain triangle lie in the same chain. This is impossible, because (at
least) one of the three edges of each triangle is a diagonal, hence it is
in B.

◦ No two consecutive boundary edges in one chain are joined to the same
vertex in the opposite chain. (That is, the dual tree of T alternates left
and right turns). Otherwise, let abp and bcp be two triangles in T with
ab and bc consecutive boundary edges in one of the chains. Then the flip
in bp inserts the edge ac, so that ac∈B. This is impossible, since a and
c are in the same chain.

These three properties imply that T is the snake triangulation, so AssIIn (T )
is the Chapoton–Fomin–Zelevinsky associahedron.
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