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TRACE METHODS FOR EQUIVARIANT ALGEBRAIC K-THEORY

DAVID CHAN, TEENA GERHARDT, AND INBAR KLANG

Abstract. In the past decades, one of the most fruitful approaches to the study of algebraic
K-theory has been trace methods, which construct and study trace maps from algebraic K-

theory to topological Hochschild homology and related invariants. In recent years, theories of
equivariant algebraic K-theory have emerged, but thus far few tools are available for the study

and computation of these theories. In this paper, we lay the foundations for a trace methods

approach to equivariant algebraic K-theory. For G a finite group, we construct a Dennis trace
map from equivariant algebraic K-theory to a G-equivariant version of topological Hochschild

homology; for G the trivial group this recovers the ordinary Dennis trace map. We show that

upon taking fixed points, this recovers the trace map of Adamyk–Gerhardt–Hess–Klang–Kong,
and gives a trace map from the fixed points of coarse equivariant A-theory to the free loop space.

We also establish important properties of equivariant topological Hochschild homology, such as

Morita invariance, and explain why it can be considered as a multiplicative norm.
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1. Introduction

AlgebraicK-theory is a way of extracting interesting invariants from rings. While these invariants
can be difficult to compute in general, they carry a tremendous amount of information. For instance,
when R is a Dedekind domain the zeroth (reduced) algebraicK-group is isomorphic to the ideal class
group of R, and the higher algebraic K-groups encode even more number theoretic information. In
topology, initial interest in algebraic K-theory grew out of its relationship with geometric invariants
of manifolds. If M is a connected manifold the zeroth and first algebraic K-groups of the group
ring Z[π1(M)] are the homes of geometric invariants ofM , namely Wall’s finiteness obstruction and
Whitehead torsion.

In the 1990’s, new techniques from stable homotopy theory allowed for the definition of algebraic
K-theory for ring spectra. Let ΩM denote the based loop space of M ; taking the suspension
spectrum yields a ring spectrum S[ΩM ] = Σ∞

+ (ΩM), and the algebraic K-theory of this ring
spectrum recovers the A-theory ofM , denoted by A(M). The spectrum A(M) was first constructed
by Waldhausen [44], and plays a central role in the stable parametrized h-cobordism theorem [45].
One can think of the spectrum S[ΩM ] as a topological enrichment of the group ring Z[π1(M)], and
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this explains the presence of earlier geometric invariants in the algebraic K-groups of the group
ring.

A very successful approach to the study and computation of algebraic K-theory is through
trace methods, in which algebraic K-theory is approximated by topological versions of classical
invariants from homological algebra. One key such invariant is topological Hochschild homology
(THH), a topological analogue of the classical theory of Hochschild homology for algebras. For a
ring spectrum R there is a Dennis trace map

tr : K(R) 7→ THH(R)

relating algebraic K-theory and topological Hochschild homology. From THH one can define topo-
logical cyclic homology (TC) [14, 41]. The Dennis trace factors through topological cyclic homology,
K(R) → TC(R). This cyclotomic trace is close to an equivalence in many situations (see, for in-
stance, [23, 26, 19]), giving an approach to algebraic K-theory which has been extremely fruitful.

Recent years have seen an explosion of interest in equivariant homotopy theory and equivariant
algebra. Roughly speaking, these fields study the homotopical invariants and structures of spaces
and spectra with an action by a compact Lie group. Given the central role of K-theory in much of
modern stable homotopy theory, a natural question to consider is the extent to which K-theoretic
tools can be applied to analyze equivariant multiplicative structures. Foundational work of Merling,
Barwick, Barwick–Glasman–Shah, and Malkiewich–Merling provides constructions of equivariant
algebraic K-theory G-spectra which serve this purpose [40, 6, 7, 34].

These G-spectra have many interesting applications. If F ⊂ L is a Galois extension with Galois
group G, then we can consider the G-equivariant algebraicK-groups of L. These groups tie together
the algebraic K-groups of the fixed fields of L, and provide a collection of interesting operations
which compare the K-groups of different fixed fields [40]. When L is a number field, work of
Elmanto–Zhang relates the sizes of the equivariant algebraic K-groups to special values of certain
Artin L-functions [24].

In another direction, Malkiewich–Merling produce two versions of A-theory associated to a space
X with action by a finite group G. Both of these constructions produce a genuine G-spectrum whose
underlying spectrum is Waldhausen’s A(X). The first is denoted by AG(X), known as genuine A-
theory, and is expected to fit into the equivariant parametrized h-cobordism theorem [34, 35, 27].
The second version of equivariant A-theory is called coarse A-theory, denoted Acoarse

G (X). The fixed
points of this spectrum can be interpreted using the bivariant A-theory of Williams [46, 34].

One obstacle to further understanding equivariant algebraic K-theory is limited computational
tools. Recent work of Elmanto–Zhang [24] and Chan–Vogeli [18] makes significant computational
advances in this area, however these approaches have only been applied to the case of field exten-
sions. In a more general setting, it would be advantageous to have a trace methods approach to
the study of equivariant algebraic K-theory.

In recent years, several equivariant versions of topological Hochschild homology have emerged,
including Real topological Hochschild homology (THR), twisted topological Hochschild homology
(THHCn), and quaternionic topological Hochschild homology (THQ) [22, 5, 4]. Twisted topological
Hochschild homology, constructed by Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell
[5], takes as input a Cn-ring spectrum. In [2], the authors show that for a Cn-ring spectrum R
there is a non-equivariant map from the fixed points of equivariant algebraic K-theory to twisted
THH:

KCn(R)
Cn → THHCn(R).
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It is conjectured in [2] that this map arises as the fixed points of an equivariant map from the
equivariant algebraic K-theory KCn(R) to another equivariant form of topological Hochschild ho-
mology. In this work we prove a version of this conjecture, constructing the appropriate equivariant
version of THH, as well as an equivariant Dennis trace map.

Our approach to this conjecture is motivated by considering Hochschild constructions as equi-
variant norms. In the course of their work on the Kervaire invariant one problem, Hill, Hopkins,
and Ravenel [30] define multiplicative norm functors NG

H from H-spectra to G-spectra, for H ≤ G
finite groups. These functors now play a central role in equivariant homotopy theory and its ap-
plications. While the work in [30] is restricted to finite groups, norms to compact Lie groups have
been constructed in special cases in, for instance, [5, 3]. A more general framework for norms in
the compact Lie group setting is considered in [9].

In [5], it is shown that the ordinary THH of a ring spectrum A can be viewed as the norm from

the trivial group to S1, THH(A) = NS1

e (A). Further, twisted THH for Cn-ring spectra also arises

as an equivariant norm. Indeed, for a Cn-ring spectrum R, THHCn(R) = NS1

Cn
(R). In the current

work we define a norm from G-ring spectra to G × S1-spectra for a finite group G. We take this
norm as a definition of a new equivariant form of THH:

ETHH(R) := NG×S1

G (R).

For finite groups, the computability of the norm functors is aided by their compatibility with the
geometric fixed points functor ΦK for subgroups K ≤ G [30, 5]. An analogous relationship between
fixed points and norms is expected to hold in the setting of compact Lie groups [9]. We prove a
special case, giving a relationship between ETHH and twisted THH.

Theorem 1.1 (Theorem 3.8). Let R be a cofibrant Cn-ring spectrum, and let ∆Cn ≤ Cn × S1

denote the diagonal subgroup isomorphic to Cn. There is an isomorphism of orthogonal Cn-spectra

Φ∆Cn ETHH(R) ∼= THHCn
(R).

We also prove some foundational properties for ETHH.

Theorem 1.2 (Theorem 6.6 and Corollary 7.3). Equivariant topological Hochschild homology is
Morita invariant and satisfies additivity.

Having established these properties, we then turn to our main objective: developing the founda-
tions of trace methods for equivariant algebraic K-theory. The first step in this program is to define
a trace map from equivariant algebraic K-theory to an equivariant form of topological Hochschild
homology, lifting the non-equivariant trace map in [2]

KCn
(R)Cn → THHCn

(R).

We use Theorem 1.1 to show that this trace map can be lifted to a map of spectra with G-action.
We denote by eTHH a version of ETHH indexed on a trivial universe, rather than a complete one.

Theorem 1.3 (Corollary 8.6). Let R be a cofibrant ring G-spectrum. Then the ordinary Dennis
trace refines to an equivariant Dennis trace in the homotopy category of spectra with G-action

tr : IR
∞

V KG(R)→ eTHH(R).

where V denotes a complete G-universe.

Forthcoming work of Marc Gotliboym addresses cyclotomic structures for equivariant topological
Hochschild homology, and the development of equivariant topological cyclic homology.

When G = Cn, this equivariant Dennis trace yields the desired lift of the trace map from [2].
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Theorem 1.4 (Theorem 8.12). Let R be a cofibrant Cn-ring spectrum. Upon taking fixed points of
the equivariant Dennis trace map of Theorem 1.3, we obtain the trace map

KCn
(R)Cn → THHCn

(R)

of [2].

It is natural to wonder about whether the trace map of Theorem 1.3 refines to a map of genuine
G-spectra KG(R)→ ETHH(R). Changing universes to genuine G-spectra, this is a question about
whether the derived counit

IVR∞(IR
∞

V KG(R))
c ϵ−→ KG(R)

admits a section, where (−)c denotes cofibrant replacement in the category of spectra with G-action.
After taking fixed points, the map ϵ admits a canonical section, and thus on fixed point there exist
trace maps

KG(R)
H → ETHH(R)H

for any subgroup H ≤ G; see Remark 8.15. On the other hand, in Example 8.14 we show that
that the map ϵ need not admit a section as genuine G-spectra; indeed it almost never will. To
summarize, while we can construct trace maps between the fixed points of equivariant algebraic
K-theory and the fixed points of ETHH(R), this approach does not refine all the way to a map of
genuine G-spectra. Since the equivariant algebraic K-theory of a G-ring spectrum depends only on
the category of perfect modules over the underlying ring with G-action, it is not surprising that it
does not naturally compare to ETHH, which is a construction that takes place in genuine G-spectra.

As an application, we show that the equivariant Dennis trace map yields trace maps from the
fixed points of both forms of equivariant A-theory to the free loop space.

Proposition 1.5 (Proposition 8.17). Let H ≤ G. The equivariant Dennis trace map gives trace
maps

(Acoarse
G (X))H → Σ∞(LXH)+ and AG(X)H → Σ∞(LXH)+.

in the homotopy category of spectra.

1.1. Organization. In Section 2 we recall necessary background, reviewing some foundations for
equivariant homotopy theory, equivariant algebraic K-theory, twisted topological Hochschild ho-
mology, and spectral categories. In Section 3 we define equivariant topological Hochschild homology
for G-ring spectra, and show that for a Cn-ring spectrum, twisted THH can be recovered as the
geometric fixed points of ETHH. We define G-spectral categories in Section 4, and define ETHH of
a G-spectral category. In Section 5 we develop a theory of spectral Waldhausen G-categories. In
Section 6 we prove that ETHH is Morita invariant, and establish a Morita adjunction which will
be essential to the definition of our equivariant trace map. Another key ingredient for the equivari-
ant trace is the additivity of equivariant topological Hochschild homology, which is established in
Section 7. Finally, in Section 8, we define the equivariant Dennis trace, and prove that it lifts the
non-equivariant trace map from [2]. We also consider applications of the equivariant Dennis trace
to equivariant A-theory.

1.2. Acknowledgments. The authors would like to thank Mike Hill, Cary Malkiewich, Michael
Mandell, Andres Mejia, Mona Merling, and Maximilien Péroux for helpful conversations. The
first author was supported by NSF grant DMS-2135960. The second author was supported by NSF
grants DMS-2104233 and DMS-2404932. This work was also partially supported by a grant from the
Simons Foundation. The authors would like to thank the Isaac Newton Institute for Mathematical
Sciences, Cambridge, for support and hospitality during the programme “Equivariant homotopy
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grant no EP/R014604/1. This material is also in part based on work supported by the National
Science Foundation under DMS-1928930, while the authors were in residence at the Simons Laufer
Mathematical Sciences Institute (previously known as MSRI) in Berkeley, California, during the
Fall 2022 semester.

2. Background

2.1. Equivariant homotopy theory and norms. In this section we recall the basic homotopy
theory of orthogonal G-spectra. We refer the reader to [37] or [5, Section 2] for more details.
Throughout we fix a compact Lie group G.

Definition 2.1. A G-universe is a countably infinite dimensional real orthogonal G-representation
U such that

(1) the G-fixed points of U are infinite dimensional,
(2) every irreducible real orthogonal representation of G which is contained in U is contained

infinitely many times.

We call a G-universe U trivial if the G-action is trivial. We call a G-universe U complete if it
contains at least one copy of every irreducible real orthogonal G-representation.

We write TG for the category of based G-spaces and based equivariant maps. This is a closed
symmetric monoidal category with the smash product and internal mapping spaces. A map in TG
is a G-weak equivalence if the induced map on fixed points is a weak equivalence for all closed
subgroups H ≤ G.

We write J U
G for the TG-enriched category whose objects are finite dimensional representations

V ⊂ U and morphisms J U
G (V,W ) given by the G-space of (possibly non-equivariant) linear isomor-

phisms V
∼=−→ W , where the G-action is by conjugation. To make these based G-spaces we freely

add a disjoint base point to all morphism sets.

Definition 2.2. An orthogonal G-spectrum, indexed on a G-universe U , is a functor of TG-enriched
categories F : J U

G → TG together which choices of maps

σV,W : F (V ) ∧ SW → F (V ⊕W )

which are natural, associative, and unital. A morphism of orthogonalG-spectra is a natural transfor-
mation of functors which commutes the maps σV,W . An orthogonal G-spectrum is an Ω-G-spectrum
if the maps

F (V )→ ΩWF (V ⊕W )

adjoint to the maps σV,W are all G-weak equivalences.

We write SpGU for the category of orthogonal G-spectra indexed on the universe U . When the

universe U is complete we will often omit it from the notation and write simply SpG. When G = e
is the trivial group we have the category of orthogonal spectra which we denote by Sp. Note when
U = R∞ is the trivial G-universe that SpGR∞ is isomorphic to the category of G-objects in Sp. We
refer to these as spectra with G-action.

For any universe U the category SpGU is closed symmetric monoidal. We write ∧ for the smash
product, F (−,−) for the internal hom, and S for the equivariant sphere spectrum which acts as the

unit. There is a suspension functor Σ∞
U : TG → SpGU which sends a G-space X to the orthogonal

spectrum Σ∞
U (X)(V ) = SV ∧X. This functor is strong monoidal; in particular S = Σ∞

U (S0).
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For two G-universes U and U ′ we translate between U -spectra and U ′-spectra by means of the
change of universe functors

IU
′

U : SpGU → SpGU ′

defined on objects by

IU
′

U (F )(W ) = J U ′

G (Rn,W ) ∧O(n) F (Rn).

where n is the dimension of W . The next lemma records the necessary facts about these functors.

Lemma 2.3 ([37, Theorem 1.5]). Let U , V , and W be G-universes. The change of universe
functors satisfy the following:

(1) there is a natural isomorphism IVU ◦ Σ∞
U
∼= Σ∞

V ,
(2) there is a natural isomorphism IWV ◦ IVU ∼= IWU ,
(3) IUU is isomorphic to the identity functor,
(4) the functor IVU is strong monoidal.

Remark 2.4. Properties (2) and (3) above imply the change of universe functors are equivalences
of categories. Nevertheless, each category of orthogonal G-spectra has a model structure for which
the change of universe functors are not Quillen equivalences.

Suppose that H ≤ G is a closed subgroup. For any G-universe U we can forget the G-action to
an H-action and obtain an H-universe i∗HU . Note that even when U is complete i∗HU may fail to
be complete.

Definition 2.5. The restriction functor

i∗H : SpGU → SpHi∗HU

is given by

i∗H(F )(V ) = J i∗HU
H (Rn, V ) ∧O(n) i

∗
HF (Rn)

where n is the dimension of V .

The restriction functor is strong monoidal and has both left and right adjoints. In particular,
restriction preserves both limits and colimits. Often it will be convenient to assume that i∗H is
landing in the category of H-spectra indexed on a complete universe. Following [37] we can do this
by post composition with a change of universe, although we will omit it from the notation.

2.1.1. Fixed points. We will consider two kinds of fixed points functors in equivariant stable ho-
motopy theory. In both cases we will be particularly interested in fixed points with respect to a
normal subgroup H ⊴ G so that G/H is a group. In this case, for any G-universe U , the fixed
points UH have an action by G/H which makes UH into a G/H-universe. Again, this may fail to
be complete even if U is complete.

To produce our fixed point functors we introduce an intermediate category JH
G whose objects

are sub-representations of a G-universe U and whose mappings spaces are the H-fixed points of
JG(V,W ). The category JH

G is naturally enriched in T G/H . There are two enriched functors

FixH : JH
G → J UH

G/H

ρ : JG/H → JH
G

where FixH(V ) = V H and ρ(W ) = W , treated as a G-space by pulling back along the quotient
G↠ G/H.
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For any F ∈ SpGU , the collection F (V )H gives the objects of a functor JH
G → T G/H . We briefly

denote this functor by F̃ .

Definition 2.6. For a normal subgroup H ⊴ G the categorical fixed points functor

(−)H : SpGU → Sp
G/H

UH

sends F ∈ SpGU to ρ∗(F̃ ). In particular, we have FH(V ) = F (V )H .

The categorical fixed points are a natural construction which are used to define equivariant
homotopy groups. On the other hand, when the universe U is not trivial the categorical fixed points
do not have the property of extending fixed points of G-spaces. That is, (Σ∞X)H ≇ Σ∞(XH) for
a based G-space X. The desire for this property is the motivation for the geometric fixed points.

Definition 2.7. For a normal subgroup H ⊴ G the geometric fixed points functor

ΦH : SpGU → Sp
G/H

UH

is given by composing F 7→ F̃ with left Kan extension along FixH .

Proposition 2.8 ([37, Proposition V.4.7], and [11, Theorem A.1]). For H a normal subgroup of G
both (−)H and ΦH are lax monoidal functors. When either X or Y is a cofibrant G-spectrum (in
the stable model structure, see below) the map ΦH(X) ∧ΦH(Y )→ ΦH(X ∧ Y ) is an isomorphism.

Remark 2.9. When U = R∞ is the trivial G-universe note that JH
G , JG/H , and J UH

G/H are the

same category and the functors ρ and FixH are both the identity. In particular, the geometric
and categorical fixed point functors agree for the trivial G-universe and are both strong monoidal
always.

2.1.2. The norm. In this subsection we restrict to G a finite group. In [30] the authors develop the
norm functor, a powerful tool for understanding equivariant spectra. We write

∧GH : SpHR∞ → SpGR∞

for the functor which sends X to

∧GH(X) =
∧

γ∈G/H

X

where the product on the right is indexed by a choice of coset representatives. The group G acts
first on the cosets G/H and then has a residual H-action on the smash product terms.

Definition 2.10. Let G be a finite group and H a subgroup. Let U be a G-universe and V an
H-universe. The point-set norm functor NG

H : SpHV → SpGU is the composite

SpHV
IR∞
V−−−→ SpHR∞

∧G
H−−→ SpGR∞

IU
R∞−−−→ SpGU .

The norm functor is strong monoidal and, in particular, it restricts to a functor on commutative
and associative algebras. In the commutative case the norm is left adjoint to the forgetful functor.

Proposition 2.11 ([30, Appendix B]). For any finite group G and subgroup H ≤ G there is an
adjunction

CommH CommG.
NG

H

i∗H
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2.1.3. Homotopy theory of orthogonal G-spectra. In this subsection we outline the model structures
at play in this paper. To do so, we need to first define equivariant homotopy groups. Throughout
this section we fix a compact Lie group G and a G-universe U .

Definition 2.12. Let X ∈ SpGU . For any H ≤ G and any integer n we define

πH
n (X) =

{
colimV <U πn((Ω

VX(V ))H) n ≥ 0

colimR−n<V<U π0((Ω
V−R−n

X(V ))H) n ≤ 0

where in either case the colimit is over finite dimensional sub-representations V < U .

As usual, a map of G-spectra induces a map on πH
n for all n and H. We call a map X → Y a

stable equivalence if it induces an isomorphism on πH
n for all n and H.

Proposition 2.13 ([37, Theorem III.4.2]). There is a symmetric monoidal compactly generated

model structure, called the stable model structure, on SpGU with weak equivalences the stable equiv-
alences. The fibrant objects are the Ω-G-spectra.

Remark 2.14. When the universe U = R∞ is a trivial G-universe recall that SpGR∞ is isomorphic
to the category Fun(BG, Sp) of orthogonal spectra with G-action. This category is often given
the projective model structure, where weak equivalences are equivariant maps of spectra which are
underlying equivalences. With the projective model structure this is called the category of Borel
G-spectra. We will not make any use of Borel G-spectra in this paper. In particular, when we say
“a weak equivalence of spectra with G-action” we mean a map X → Y which induces equivalences
of spectra XH → Y H for all H ≤ G.

The stable equivalences are also the weak equivalences in the positive complete stable model
structure for SpGU [30, §B.4]. This model structure is convenient for working with multiplicative
structures and especially the norm.

Proposition 2.15 ([30, Proposition B.63]). There is a symmetric monoidal cofibrantly generated

model structure, called the positive complete stable model structure, on SpGU with weak equivalences
the stable equivalences. All Ω-G-spectra are fibrant. Additionally, the positive complete stable model
structure lifts to model structures on associative and commutative algebras in SpGU with the same
weak equivalences and fibrations.

When X is a fibrant G-spectrum indexed on a complete G-universe we can also compute it’s
homotopy groups by taking fixed points.

Proposition 2.16 ([37, V.3.2]). Let X be a G-spectrum indexed on a complete universe which is
fibrant in either the stable or positive complete stable model structure. Then there is an isomorphism
πH
n (X) ∼= πn(X

H).

Whenever we say that a ring orthogonal G-spectrum is cofibrant we mean that is cofibrant in the
positive complete stable model structure. This implies that the underlying G-spectrum is cofibrant
in the stable model structure.

The following propositions summarize all the necessary facts we need about the interplay between
the change of universe, fixed points, and norm functors and the homotopy theory of equivariant
spectra. The first proposition tells us that the adjunction of Proposition 2.11 is a Quillen adjunction.

Proposition 2.17. [31, Theorem 10.2.4] Let G be a finite group, H ≤ G a subgroup, U a complete

G-universe, and V a complete H-universe. Then the norm NG
H : SpHV → SpGU preserves cofibrations
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and weak equivalences between cofibrant objects. There is Quillen adjunction

CommH CommG.
NG

H

i∗H

Proposition 2.18 ([37]). For any G-universes U ′ ≤ U there is a Quillen adjunction

SpGU ′ SpGU
IU
U′

IU′
U

.

The following proposition captures the interplay between geometric fixed points and equivariant
norms.

Proposition 2.19 ([30, Appendix B]). Let G be a finite group, H ≤ G a subgroup, U a G-universe,
and V an H-universe. With the positive complete stable model structures, we have:

(1) when H is normal, ΦH : SpGU → Sp
G/H

UH preserves weak equivalences and cofibrations between
cofibrant objects,

(2) for a cofibrant H-spectrum X, there is an isomorphism ΦHX ∼= ΦGNG
HX,

(3) if X is a cofibrant commutative orthogonal ring spectrum then there is an isomorphism
X ∼= ΦGNG

e X.
(4) [31, Proposition 9.11.11] if f : X → Y is a map of G-spectra such that ΦH(f) : ΦH(X) →

ΦH(Y ) is a stable equivalence of orthogonal spectra for all H ≤ G then f is a stable
equivalence of orthogonal G-spectra,

We also recall the following result of Lewis.

Proposition 2.20 ([32, Corollary 2.5(b)]). If X is a cofibrant orthogonal G-spectrum indexed on
a trivial universe R∞ and V is a complete G-universe, then there is a stable equivalence of non-
equivariant spectra

(IVR∞(X))G ≃
∨

(H)≤G

(XH)hWG(H)

where (H) runs over the conjugacy classes of subgroups of G and WG(H) = NG(H)/H is the Weyl
group.

Remark 2.21. In Proposition 2.20 above, note that the summand corresponding to H = G is
precisely XG. Hence, in the stable homotopy category, XG is always a retract of (IVR∞(X))G.

Finally we relate change of universe and fixed point constructions.

Proposition 2.22. Let H ≤ G a normal group, and let U be a complete G-universe. If X is any
connected spectrum with G-action there is an isomorphism of G/H-spectra

ΦH(IUR∞(X)) ∼= IU
H

R∞ (XH)

indexed on the universe UH .

Proof. First, note that this result is true when X is a suspension spectrum with G-action, because
geometric fixed points commute with suspension spectra. Note also that in the case of suspension
spectra this isomorphism is natural in maps of G-spaces. The general case follows because every
connected spectrum is a colimit of suspension spectra, and change of universe and fixed points
commute with these colimits. □
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We end with a brief discussion of homotopy groups and the change of universe functor. Let SetG

denote the category of finite G-sets for a finite group G.

Definition 2.23. A G-coefficient system is a product preserving functor F : (SetG)op → Ab. We
write CoeffG for the category of G-coefficient systems and natural transformations.

Since the category SetG is generated under coproducts by the orbits G/H, the category (SetG)op

is generated by the orbits G/H under products. Thus a coefficient system is entirely determined,
up to isomorphism, by its values on the orbits G/H and the maps between them.

Proposition 2.24. If X is an orthogonal G-spectrum indexed on a trivial G-universe then the
assignment G/H 7→ πH

n (X) admits the structure of a coefficient system which we denote by πn(X).

We obtain more structure when the universe is complete. Let AG = Span(SetG) be the category

of spans in SetG. It has the same objects as SetG, but morphisms are given by isomorphism classes
of spans [X ← A → Y ]. Composition is given by pullback of spans. The Burnside category has
bi-products, given on objects by disjoint union of finite G-sets.

Definition 2.25. A Mackey functor is a product preserving functor F : AG → Ab. We write
MackG for the category of G-Mackey functors and natural transformations.

Proposition 2.26. If X is an orthogonal G-spectrum indexed on a complete G-universe then the
assignment G/H 7→ πH

n (X) is a G-Mackey functor which we denote by πn(X).

There is an embedding j : (SetG)op → AG which is the identity on objects and sends a map

f : X → Y in SetG to the span [Y
f←− X

=−→ X]. Since this functor preserves products, we see that
any Mackey functor M determines a coefficient system j∗(M). The functor j∗ : MackG → Coeff
has a left adjoint j! : Coeff → MackG given by left Kan extension.

Example 2.27. Let M be the C2-coefficient system which has M(C2/C2) = M(C2/e) = Z, with
trivial conjugation and identity restriction map. Using the universal mapping property of j!, one
sees that j!(M) can be depicted by the diagram

Z2

Z

(1,2) i2

where j!(M)(C2/C2) = Z2, j!(M)(C2/e) = Z, and i2 : Z → Z2 is the inclusion of the second
component.

Proposition 2.28. If X is cofibrant connective G-spectrum indexed on a trivial G-universe R∞

then
j!(π0(X)) ∼= π0(IVR∞(X)).

If Y is any fibrant connective G-spectrum indexed on a complete G-universe V then

j∗(πn(X)) ∼= πn(IR
∞

V (X))

for all n ≥ 0.

Proof. The homotopy category of G-spectra indexed on a complete G-universe can be presented
as the homotopy category of the ∞-category of functors Fun(AG

eff ,Sp), where AG
eff is the effective

Burnside∞-category of [6]; see also [29, 20]. Similarly, the homotopy category of G-spectra indexed
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on a trivial G-universe can be presented as the homotopy category of the ∞-category of functors
Fun((SetG)op,Sp). Both of these identifications restrict to identifications on connective objects.

The effective Burnside ∞-category has the property that its homotopy category is equivalent
to the ordinary category AG [6, 3.8]. The functor j : (SetG)op → AG can be refined to a map

of ∞-categories J : N•((Set
G)op) → AG

eff , where N• denotes the nerve, such that J induces j on
homotopy categories.

The derived change of universe functor is identified with the map induced on homotopy categories
by left Kan extension along J . Thus its zero truncation can be identified with left Kan extension
on homotopy categories, which is left Kan extension along j, which is precisely the first claim. The
second statement follows from the fact that categorical fixed points and change of universe IR∞

V
commute on fibrant spectra since IR∞

V is a right Quillen adjoint. □

2.2. Equivariant algebraic K-theory. We begin by reviewing Waldhausen’s construction of
algebraic K-theory. Recall that a Waldhausen category consists of a category C with a distinguished
zero object and two chosen classes of morphisms, called weak equivalences and cofibrations. These
collections of morphisms must both be closed under composition and contain all isomorphisms. We

require that the unique map 0 ↪→ A is always a cofibration. Finally, given a span X
r←− A

t−→ Y
where t is a cofibration we must have that the pushout X ∪A Y exists and the map X → X ∪A Y
is a cofibration.

A functor F : C → D between Waldhausen categories is exact if it preserves the zero object,
cofibrations, weak equivalences, and pushouts along cofibrations. We write Wald for the category
of small Waldhausen categories and exact functors.

Given a Waldhausen category C, the S• construction of C is the simplicial set whose k-simplices
are composites

A0,1 ↪→ A0,2 ↪→ . . . A0,k

in C where each map is a cofibration, together with choices of pushout squares

A0,i A0,j

0 Ai,j

For instance, we can visualize an element in S3C as a grid

0 A0,1 A0,2 A0,3

0 A1,2 A1,3

0 A2,3

0

where any rectangle with top face in the first row and bottom left equal to 0 is a pushout. The face
maps di : Sn(C)→ Sn−1(C) for i > 0 are given by deleting the appropriate column and composing
horizontal maps. The zeroth face map deletes the first row. The degeneracy maps are given by
inserting an extra column which is equal to the one which precedes it.
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For any fixed k, Sk(C) is not just a set but a category. The morphisms are given by collections
of map Ai,j → A′

i,j which makes the evident diagram of grids commute. In fact, Sk(C) is itself
a Waldhausen category where the weak equivalences and cofibrations are just collections of maps
Ai,j → A′

i,j where each constituent map is either a weak equivalence or a cofibration. We write
wS•(C) for the simplicial category where ob(wSk(C)) = ob(Sk(C)) but with only weak equivalences
as morphisms.

Definition 2.29. The algebraic K-theory of a Waldhausen category C is K(C) = Ω|wS•(C)|.

The algebraic K-theory of a Waldhausen category is a group-like E∞-space, hence determines a
connective orthogonal spectrum via one of the many equivalent delooping machines [39].

The S• construction is functorial in exact functors, hence an exact functor induces a map of
K-theory spectra K(F ) : K(C)→ K(D).

We will also need a variant of the S• construction which produces a symmetric spectrum instead
of an orthogonal spectrum. Since for any fixed k the category Sk(C) is a Waldhausen category,
we can apply the S•-construction to obtain a simplicial Waldhausen category S•Sk(C). Allowing k
to vary as well, we obtain a bisimplicial category S•,•(C). One can repeat this procedure, and for

all n we obtain an n-simplicial category S
(n)
•,...,•(C) called the iterated S•-construction. For any n,

S
(n)
•,...,•(C) has an action from the symmetric group Σn obtained via permuting the simplicial indices.
If C is any Waldhausen category we can also define a simplicial Waldhausen category w•C whose

k-simplices are the k-chains of weak equivalences in C; morphisms in this category are isomorphisms
of chains.

Definition 2.30. The symmetric spectrum K-theory of a Waldhausen category C is the symmetric

spectrum whose n-space is Ksym(C) = Ω|diag(w•S
(n)
•,...,•(C))|.

The categories of orthogonal and symmetric spectra, with their respective stable model struc-
tures, are related by a Quillen equivalence

SpΣ Sp
P

U

and these can be used to compare the two models of K-theory of a Waldhausen category.

Proposition 2.31 ([33, Theorem 3.11]). Let C be any Waldhausen category. There is a zig-zag of
stable equivalences between K(C) and PKsym(C).

We now recall Malkiewich–Merling’s definition of equivariant algebraic K-theory from [34]. For
a finite group G we let BG denote the one object groupoid of G, and let Wald denote the category
of Waldhausen categories and exact functors.

Definition 2.32. A Waldhausen G-category is a a functor F : BG→Wald.

Explicitly, a Waldhausen G-category consists of a Waldhausen category C together with exact
functors g : C → C for all g ∈ G such that h ◦ g = hg and the map associated to the unit in G is the
identity functor.

Definition 2.33. Let EG denote the category with object set G and a unique morphism

hg : g → hg

for all g, h ∈ G. This category has a natural right action by G given by g · k = gk.
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If C is a Waldhausen G-category then the category of all functors and natural transformations
Fun(EG, C) is a Waldhausen G-category where the G-action is via conjugation of functors: (g ·
F )(x) = gF (g−1x). Since this is still a Waldhausen category, we can apply the wS•-construction
to obtain a G-space.

Definition 2.34. The equivariant algebraic K-theory space of a Waldhausen G-category C is the
G-space

KG(C) := Ω|wS• Fun(EG, C)|.
Malkiewich and Merling show this space is an infinite loop G-space, meaning that is admits

deloopings for all real orthogonal G-representations.

Theorem 2.35 ([34, Theorem 2.21]). For any Waldhausen G-category C, the equivariant algebraic
K-theory KG(C) is an infinite loop G-space.

In particular, the equivariant algebraic K-theory determines a genuine G-spectrum.

Definition 2.36 (Malkiewich–Merling). The equivariant algebraic K-theory of a G-Waldhausen
category C is the genuine orthogonal G-spectrum determined, using the Guillou–May machine [28],
by the infinite loop G-space KG(C). We will denote this spectrum also by KG(C), it will be clear
from context whether we are discussing a space or a genuine orthogonal G-spectrum.

2.3. Twisted topological Hochschild homology. Classically, topological Hochschild homology
plays a key role in the trace method approach to algebraic K-theory. In this section we recall the
definition of topological Hochschild homology (THH) for a ring spectrum, as well as an equivariant
variant: twisted topological Hochschild homology for Cn-equivariant ring spectra, THHCn(R). In
Section 3 we will develop another equivariant version of THH, denoted ETHH, which will also be
crucial to our trace method approach in the equivariant setting.

Classically, topological Hochschild homology is defined via a cyclic bar construction.

Definition 2.37. Let R be an associative orthogonal ring spectrum, and M an (R,R)-bimodule.
The cyclic bar construction with coefficients Ncyc

• (R;M), is a simplicial spectrum which in degree
q is R∧q ∧M.

Let ρ : R ∧M → M denote the left module structure map for M , and ψ : M ∧ R → M denote
the right module structure map. Then the face and degeneracy maps of Ncyc

• (R;M) are given as
follows:

di =


(Id∧(q−1) ∧ ψ) ◦ τ : i = 0

Id∧i ∧ µ ∧ Id∧(q−i−1) : 0 < i < q

Id∧(q−1) ∧ ρ : i = q,

and
si = Id∧(i+1) ∧ η ∧ Id∧(q−i) : 0 ≤ i ≤ q.

Here, τ rotates the first factor of R to the end. This yields a simplicial orthogonal spectrum
Ncyc

• (R;M).

Remark 2.38. The usual convention for the cyclic bar construction is to place the R-bimodule
M on the far left i.e. the q simplices are M ∧ R∧q. Our choice to put the bimodule on the right
instead of the left is to keep our notation consistent with that of [12]. There, Blumberg–Mandell
consider an extension of the cyclic bar construction to spectral categories where the multiplication
maps used in the definition of the face maps are replaced by the categorical composition maps. In
this setting, the choice to put the bimodule on the right is in line with the usual convention that
function composition is read right-to-left instead of left-to-right.
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WhenM = R, considered as an (R,R)-bimodule, the cyclic bar construction is denoted Ncyc
• (R).

Note that in this case the simplicial spectrum Ncyc
• (R) is further a cyclic spectrum, and thus upon

realization has an action of S1.

Definition 2.39. For an associative ring spectrum R and an (R,R)-bimodule M , the topological
Hochschild homology of R with coefficients in M is

THH(R;M) := |Ncyc
• (R;M)|.

When M = R we write

THH(R) := |Ncyc
• (R)|.

There is a also perspective on topological Hochschild homology via equivariant norms. As dis-
cussed in Section 2.1, Hill, Hopkins, and Ravenel developed multiplicative norm functors NG

H from
H-spectra to G-spectra for H ≤ G finite groups [30]. In [5], the authors extend this norm construc-

tion from finite groups to S1, defining a functor NS1

e and showing that the cyclic bar construction is
a model for this equivariant norm. In particular for a ring spectrum R and a complete S1-universe
U ,

NS1

e (R) := IUR∞ |Ncyc
• (R)|.

Thus, topological Hochschild homology is an equivariant norm. This norm model of THH lends itself
to generalizations. Indeed, in [5] the authors define a notion of Cn-twisted topological Hochschild
homology of Cn-ring spectra. For R a Cn-ring spectrum,

THHCn
(R) := NS1

Cn
(R).

There is a model for the norm NS1

Cn
as a twisted cyclic bar construction.

Definition 2.40. Let R be an associative orthogonal Cn-ring spectrum indexed on the trivial
universe R∞ and let σ denote the generator e2πi/n of Cn. The Cn-twisted cyclic bar construction

Ncyc,Cn
• (R), is a simplicial Cn-spectrum which in degree q is R∧(q+1).
Let αq : R∧(q+1) → R∧(q+1) be the map which rotates the first factor to the end, and acts on

the new last factor by σ−1. Then the face and degeneracy maps of Ncyc,Cn
• (R) are given as follows:

di =

{
(Id∧(q−1) ∧ µ) ◦ αq : i = 0

Id∧i ∧ µ ∧ Id∧(q−i−1) : 0 < i ≤ q,

and

si = Id∧(i+1) ∧ η ∧ Id∧(q−i) : 0 ≤ i ≤ q.

This yields a simplicial object Ncyc
• (R). While this is not a cyclic object, it is a Λop

n -object, in the
sense of Bökstedt-Hsiang-Madsen [14]. Thus, upon realization, it has an S1-action.

Definition 2.41. For U a complete S1-universe, and R a Cn-ring spectrum indexed on Ũ = i∗Cn
U ,

THHCn
(R) := NS1

Cn
(R) := IUR∞ |Ncyc,Cn

• (IR
∞

Ũ
R)|.

For more on twisted THH, see, for example, [5], [1], or [8].
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2.4. Spectral categories. In this section we briefly recall the definition of spectral categories, as
well as the cyclic bar construction in this setting. See [12], [16], or [17] for more details.

Definition 2.42. A spectral category C is a category enriched in orthogonal spectra. In more
detail, this consists of the data of

• for any two objects a, b ∈ ob(C), a spectrum C(a, b),
• for any object a ∈ ob(C), a unit map from the sphere spectrum to C(a, a), and
• for any three objects a, b, c ∈ ob(C), a strictly associative and unital composition map
C(b, c) ∧ C(a, b)→ C(a, c).

Example 2.43. Let R be an orthogonal ring spectrum. Then there is a spectral category CR with
one object • such that CR(•, •) = R. The unit and composition maps are given by the unit and
multiplication maps of R, respectively.

Example 2.44. Let R be an orthogonal ring spectrum. There is a spectral category ModR whose
objects are right R-modules M and morphism spectra given by the internal hom FR(M,M ′). The
unit and composition are given by usual spectral enrichment of identity and composition.

Definition 2.45. We say that a spectral category C is pointwise cofibrant if all its mapping spectra
are cofibrant in the stable model structure on orthogonal spectra.

For example, if R is cofibrant as a spectrum, then CR is pointwise cofibrant.

Definition 2.46. Let C,D be spectral categories. A functor of spectral categories associates to
each object a ∈ ob(C) an object F (a) ∈ ob(D), and to every a, b ∈ ob(C) a map of spectra
Fa,b : C(a, b)→ D(F (a), F (b)) which respects composition and units.

We denote by SpecCat the category whose objects are small spectral categories and whose
morphisms are spectral functors.

Definition 2.47. For a spectral category C, let Cop denote the spectral category with the same
objects as C, mapping spectra given by Cop(x, y) = C(y, x), and composition given by:

Cop(y, z) ∧ Cop(x, y) = C(z, y) ∧ C(y, x) σ−→ C(y, x) ∧ C(z, y) ◦−→ C(z, x) = Cop(x, z)
where σ is the swap map and ◦ is the composition map of C.

If C and D are two spectral categories, we can define a new spectral category Dop ∧ C which has
objects ob(D)× ob(C). The morphisms are given by

(Dop ∧ C)((d1, c1), (d2, c2)) = Dop(d1, d2) ∧ C(c1, c2) = D(d2, d1) ∧ C(c1, c2),
Definition 2.48. For C and D two spectral categories, a (C,D)-bimodule M is a spectral functor
M : Dop ∧ C → Sp.

Explicitly, a (C,D)-bimodule consists of a collection of spectra M(d, c) for all objects (d, c) ∈
ob(D)× ob(C), together with structure maps

α : C(c, e) ∧M(d, c) ∧ D(f, d)→M(f, e)

which are associative and unital with respect to the composition and units in C and D.
Definition 2.49. For a small spectral category C and a (C, C)-bimodule M, the cyclic bar con-
struction Ncyc

• (C;M) is the simplicial spectrum with q-simplices

Ncyc
q (C;M) =

∨
(c0,c1,...,cq)

C(cq−1, cq) ∧ C(cq−2, cq−1) ∧ · · · ∧ C(c0, c1) ∧M(cq, c0)
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where the wedge is over all (q+1)-tuples of objects ci ∈ C. The zeroth face map cycles the leftmost
smash summand to the far right and then uses the right-module structure of M. The remaining
face maps are given by the composition in C and the left module structure ofM.

When the bimoduleM is C we will write Ncyc
• (C). Note that in this case the cyclic bar construc-

tion is a cyclic object in the sense of Connes. WhenM = C, the geometric realization of the cyclic
bar construction has an S1-action. Let U be a complete S1-universe.

Definition 2.50. For a small spectral category C,
THH(C) = IUR∞ |Ncyc

• (C; C)|.

3. Equivariant topological Hochschild homology

In this section introduce a version of topological Hochschild homology for genuine G-ring spectra,
for a finite group G. We call this theory equivariant THH, denoted ETHH, and it will play a central
role in our trace methods approach to equivariant algebraicK-theory constructed later in the paper.

Aside from its place in the theory of trace maps, ETHH is also notable because it is a model for
a norm from G-spectra to G×S1-spectra. Since the introduction of norms for finite groups in [30],
norms have played a central role in equivariant homotopy theory. Despite this, the construction of
norms for compact Lie groups is in active development; see, for instance, [9].

Let U be a complete (G× S1)-universe, and let V = ι∗GU .

Definition 3.1. Let G be a finite group. The equivariant THH of a genuine orthogonal ring

G-spectrum R is the G× S1-spectrum ETHH(R) := NG×S1

G (R) := IUV |N
cyc
• (R)|.

Example 3.2. Let X be a based G-space such that XH is connected for all H ≤ G. Then the
genuine equivariant suspension spectrum Σ∞

G (ΩX+) is an associative G-ring spectrum and there is
a weak equivalence

ETHH(Σ∞
G ΩX+) ≃ Σ∞

G×S1L(X)+,

where L denotes the free loop space. This equivalence follows from the fact that suspension spectrum
is strong monoidal, and therefore commutes with the cyclic bar construction. The space L(X) is
considered as a G× S1-space via the action of S1 on itself and the action of G on X. Explicitly, if
f : S1 → X is a free loop then ((g, t) · f)(s) = g · f(t−1s).

Let R ∈ SpGV be a G-ring spectrum so that IR∞

V (R) is a ring object in SpGR∞ . The cyclic bar

construction of IR∞

V (R) is then an S1-object in SpGR∞ ∼= SpBG := Fun(BG, Sp) where BG is the one

object groupoid of G. In particular, this yields an object in (SpBG)BS1 ∼= SpB(G×S1) ∼= SpG×S1

R∞ .

Lemma 3.3. If R is a genuine orthogonal G-ring spectrum then there is an isomorphism of genuine
G× S1-spectra ETHH(R) ∼= IUR∞ |Ncyc

• (IR∞

V (R))|.

Proof. Since change of universe is a strong monoidal equivalence of categories we have

IUR∞ |Ncyc
• (IR

∞

V (R))| ∼= IUR∞IR
∞

V |Ncyc
• (R)| ∼= IUV |Ncyc

• (R)|
where the second isomorphism uses Lemma 2.3. □

Remark 3.4. We will sometimes find it convenient to refer to the cyclic bar construction as a
spectrum with G× S1-action. We will denote this by eTHH. That is,

eTHH(R) = |Ncyc
• (IR

∞

V (R))|.

We next show that NG×S1

G has the expected adjoint property of a norm, as in Proposition 2.17.
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Proposition 3.5. The functor NG×S1

G restricts to a functor

NG×S1

G : CommG
V → CommG×S1

U .

Moreover, this functor is left adjoint to the forgetful functor i∗G : CommG×S1

U → CommG
V , and this is

a Quillen adjunction, where the categories of commutative algebras are given the positive complete
stable model structures.

Proof. Since the change of universe functors are equivalences of categories it suffices to prove that

the functor which sends A ∈ CommG
R∞ to |Ncyc

• (A)| in CommG×S1

R∞ is left adjoint to the forgetful

functor. As in [5, Proposition 4.3], this follows from the observation that, as S1-objects in CommG
R∞ ,

we can identify |Ncyc
• (A)| with S1⊗A, the tensoring of A with the simplicial circle S1 considered as

a G-simplicial set with trivial action. The fact that this is a Quillen adjunction is immediate from
the fact that the forgetful functor preserves positive fibrations and positive acyclic fibrations. □

While ETHH is not a left adjoint on associative ring spectra, we note that it still preserve weak
equivalences between cofibrant objects.

Proposition 3.6. If f : R
∼−→ S is a weak equivalence of ring orthogonal G-spectra which are

positive cofibrant then the induced map ETHH(f) : ETHH(R) → ETHH(S) is a weak equivalence
of G× Cn-spectra for all n.

Proof. We will show that for all K ≤ G× Cn we have a weak equivalence

ΦK(ETHH(R))→ ΦK(ETHH(S))

on all geometric fixed points, hence f is a weak equivalence by Proposition 2.19(4).
Since we are only interested in the G×Cn-structure we may replace ETHH(R) with the spectrum

obtained by geometric realization of the n-th cyclic subdivision ofN cyc(R). After passing the change
of universe inside the geometric realization the q-simplices of this simplicial G-spectrum are

[q] 7→ (NG×Cn

G×1 (R))∧(q+1)

and the map ETHH(R)→ ETHH(S) is induced by the simplicial map given on q-simplices by the
smash product of the maps

NG×Cn

G×1 (f) : NG×Cn

G×1 (R)→ NG×Cn

G×1 (S).

These maps are weak equivalences between cofibrant objects, by Proposition 2.17, and thus the
smash product of these maps is also a weak equivalence between cofibrant objects. Applying any
geometric fixed points, and using Proposition 2.19(2), we see that the map ETHH(R)→ ETHH(S)
is the realization of a levelwise equivalence between levelwise cofibrant simplicial G × Cn-spectra
which proves the claim. □

If G = Cn = ⟨σ|σn⟩, we fix the inclusion of Cn ↪→ S1, which sends σ to e2πi/n. Let ∆Cn
be the

diagonal subgroup of Cn × S1 isomorphic to Cn. The goal for the remainder of this section is to
prove there is an equivalence of Cn-spectra:

THHCn(R) ≃ Φ∆Cn ETHH(R).

The spectrum on the right is a (Cn × S1)/(∆Cn)-spectrum. To make sense of this equivalence we

need to pick an isomorphism (Cn × S1)/∆Cn

∼=−→ S1; we pick the map (e2kπi/n, eθi) 7→ e(2kπ/n−θ)i.
This choice makes the inclusion

Cn
∼= Cn × 1 ∼= ((Cn × 1)∆Cn)/∆Cn → (Cn × S1)/∆Cn

∼= S1
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the usual embedding Cn → S1 and sends (1, σ) to σ−1.
Given a G-ring spectrum R, an (R,R)-bimodule M , and an element g ∈ G we define the right-

twisted bimodule Mg to be the (R,R)-bimodule with the same left R-action as M but with right
R-action given by

M ∧R 1∧g−−→M ∧R→M

where the unlabeled map is the original rightR-action. The following lemma is helpful for computing
the geometric fixed points of ETHH(R). One can define the left-twisted bimodule gM analogously.

Lemma 3.7 (c.f. [5, Theorem 4.4]). Let R be an orthogonal Cn-ring spectrum. There is an iso-
morphism of genuine (Cn × Cn)-spectra

i∗Cn×Cn
NCn×S1

Cn
(R) ∼= |Ncyc

• (NCn×Cn

Cn×1 (R), NCn×Cn

Cn×1 (R)(1,σ))|

where the right term is the cyclic bar construction with coefficients in a twisted bimodule.

Proof. The proof is almost identical that of [5, Theorem 4.4]. The result also follows from a more
general result, Lemma 4.23, proven below. □

Theorem 3.8. Let R be a positive cofibrant Cn-ring spectrum. There is an isomorphism of orthog-
onal Cn-spectra

Φ∆Cn ETHH(R) ∼= THHCn
(R).

Proof. Using Lemma 3.7, we have

i∗Cn
Φ∆Cn ETHH(R) ∼= Φ∆Cn i∗Cn×Cn

ETHH(R)

∼= Φ∆Cn |Ncyc(NCn×Cn

Cn×1 (R), (NCn×Cn

Cn×1 (R))(1,σ))|
∼= |Φ∆CnNcyc(NCn×Cn

Cn×1 (R), (NCn×Cn

Cn×1 (R))(1,σ))|

where the last spectrum is the realization of the simplicial spectrum obtained from the twisted bar
construction by applying geometric fixed points levelwise. The last isomorphism follows from [21,
Lemma 4.7]. The k-simplices of the resulting simplicial Cn-spectrum are

(3.9) Φ∆Cn

(
NCn×Cn

Cn×1 (R)
)∧(k+1) ∼=

(
Φ∆CnNCn×Cn

Cn×1 (R)
)∧(k+1) ∼= R∧(k+1)

where the first isomorphism uses that geometric fixed points are strong monoidal on cofibrant
spectra and the second uses the norm diagonal, [5, Theorem 2.35].

Thus we have, up to isomorphism, a simplicial Cn-spectrum with the same k-simplices as
Ncyc,Cn(R) which defines THHCn

(R). It remains to check that the face and degeneracy maps
are correct. Lax monoidality of geometric fixed points implies that the last k face maps are given
by the multiplication of R, as expected. For the face map d0, it suffices to identify

Φ∆Cn (1, σ) : Φ∆Cn (NCn×Cn

Cn×1 (R))→ Φ∆Cn (NCn×Cn

Cn×1 (R))

with σn−1 : R → R. This follows from the observations that the isomorphism (3.9) is an isomor-
phism of (Cn×Cn)/(∆Cn

)-spectra, and that the isomorphism (Cn×Cn)/(∆Cn
) ∼= Cn×1 identifies

(1, σ) with σn−1. □

Example 3.10. Consider the case of R = Σ∞
G ΩX+ from Example 3.2. There is an equivalence

ETHH(Σ∞
G ΩX+) ≃ Σ∞

G×S1L(X)+
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and so when G = Cn we can compute THHCn by taking geometric fixed points of the suspension
of the free loop space. Since geometric fixed points commute with equivariant suspension spectra
we have

THHCn
(Σ∞

Cn
(ΩX)+) ≃ Σ∞(L(X)

∆Cn
+ ).

The ∆Cn
-fixed points of L(X) can be computed as the twisted free loop space Λσ(X), the space

of paths φ : I → X such that σφ(0) = φ(1). This space is of interest because its homology is the
home for fixed point invariants such as the Reidemeister trace [36].

4. Hochschild homology theories for G-spectral categories

Several modern constructions of the Dennis trace require extending the cyclic bar construction
from ring spectra to spectral categories, which can be thought of as ring spectra “with many
objects.” In this section, in order to facilitate the construction of the equivariant Dennis trace,
we introduce the notion of G-spectral categories. The notion of equivariant bimodules and ETHH
of G-spectral categories is studied. We also study the homotopy theory of G-spectral categories
by constructing a model structure on the category of G-spectral categories. This model structure
allows us to construct cofibrant replacements of G-spectral categories, a necessary technical step in
constructing a well defined Dennis trace.

Let SpecCat denote the category of spectral categories, as in Section 2.4.

Definition 4.1. A G-spectral category is a functor

BG→ SpecCat.

A morphism of G-spectral categories is a natural transformation of functors.

Explicitly, a G-spectral category C consists of

(1) A collection of objects obC together with an assignment

g : obC → obC
for each g ∈ G, such that h ◦ g = hg.

(2) For each pair of objects x, y ∈ obC, an orthogonal spectrum C(x, y) and a map of spectra

g : C(x, y)→ C(gx, gy).
for each g ∈ G, such that h ◦ g = hg.

(3) A unit map ηx : S→ C(x, x) for each x ∈ obC, such that g ◦ ηx = ηgx.
(4) For each triple of objects x, y, z a composition map

◦ : C(y, z) ∧ C(x, y)→ C(x, z),
which is unital and associative, and such that the diagram

C(y, z) ∧ C(x, y) C(gy, gz) ∧ C(gx, gy)

C(x, z) C(gx, gz)

g∧g

◦ ◦

g

commutes for all choices of g, x, y, z.

Example 4.2. Let R be a ring spectrum with G-action. There is a G-spectral category CR with a
single object • and morphism spectrum CR(•, •) = R. The composition is given by the multiplication
R ∧R→ R and the maps g : R→ R are given by the G-action on R.
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Example 4.3. Recall from Example 2.44 that for an orthogonal ring spectrum R the category
ModR of right R-modules is a spectral category. If R has a G-action then ModR is a G-spectral

category with G-action defined as follows. For a right R-module M the R-module gM = Mg−1

is
the spectrum M with R-action map

M ∧R 1∧g−1

−−−−→M ∧R→M

where the second map is the action of R on M . The morphism spectra are given by

ModR(M,N) = FR(M,N)

where the right hand side is the internal mapping spectrum of right R-modules.
For g ∈ G the maps on morphism spectra

g : FR(M,N)→ FR(M
g−1

, Ng−1

)

arise as follows: if f : M → N is a map of spectra which is also a map of right R-modules, then

a straightforward diagram chase shows that the same map of spectra f : Mg−1 → Ng−1

is also a

map of right R-modules (recall that M and Mg−1

have the same underlying spectrum). Thus the

underlying set of right R-modules maps M → N and R-module maps Mg−1 → Ng−1

are the same.
To make this precise, on morphism spectra one translates the above argument into the argument

that the canonical map ϕ : FR(M,N) → F (M,N) = F (Mg−1

, Ng−1

) equalizes the maps which

define FR(M
g−1

, Ng−1

), hence ϕ factors as FR(M,N)
g−→ FR(M

g−1

, Ng−1

) → F (M,N). We note

that if M =Mg−1

and N = Ng−1

, the map g : FR(M,N)→ FR(M
g−1

, Ng−1

) must be the identity,
by the universal property of the equalizer.

Example 4.4. A right module M over a ring spectrum R is called perfect if it is contained in the
smallest thick subcategory of ModR containing R. We will write PerfR for the spectral category of
perfect right R-modules. To see that PerfR is a G-spectral category it suffices to observe that if P

is a perfect right R-module then gP = P g−1

is also perfect.
To see this, note that if P is perfect, then gP is in the smallest thick subcategory of ModR

containing gR = Rg−1

. But there is an isomorphism of right R-modules gR ∼= R given by the
mutually inverse maps g−1 : R→ (gR) and g : (gR)→ R and so gP must also be perfect.

Remark 4.5. The examples above can, of course, be carried out for left modules and left perfect
modules, respectively. Indeed the G-action in this case is actually a bit more natural. The reason
for spelling out the case of right modules instead of left modules is that right modules play a more
central role in our study of Morita equivalences in Section 6.

Later we will need to understand the interaction between mapping objects and the action of G
on ModR. We record these interactions in a few lemmas.

Lemma 4.6. Let R be a ring orthogonal spectrum with G-action. For any right R-modules M and
N we have a natural bijection

ModR(M
g, N)↔ ModR(M,Ng−1

).

Moreover, there is a canonical isomorphism of mapping spectra FR(M
g, N) ∼= FR(M,Ng−1

)
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Proof. The elements in the first mapping set consist of maps of spectra f : M → N such that the
diagram

M ∧R M ∧R M

N ∧R N

1∧g

f∧1

αM

f

αN

commutes, where α denotes a module action map. Given such a map f , the diagram

M ∧R M

M ∧R

N ∧R N ∧R N

f∧1

αM

f

1∧g

f∧1

1∧g−1 αN

must also commute; the right side is the first diagram and the left side commutes because the smash
product is monoidal. But the outside of the second diagram is exactly the data of a morphism in

ModR(M,Ng−1

) so these morphism sets consists of the same maps of spectra. The result about
mapping spectra is essentially the same with the added difficulty of needing to work with the
mapping adjunctions. We leave the details to the reader. □

Lemma 4.7. Let R be an orthogonal ring spectrum with G-action. For any right R-module M we
consider FR(M,R) as a left R-module via the left R-module structure of R. There is an isomorphism
of R-module spectra gFR(M,R) ∼= FR(M, gR).

Proof. Explicitly, the left R-module structure on FR(M,R) is given by the adjunct of the composite

R ∧ FR(M,R) ∧M 1∧ev−−−→ R ∧R µ−→ R

where ev is the evaluation map and µ is the multiplication on R. Note that the diagram

R ∧ FR(M,R) ∧M R ∧R

R ∧ FR(M,R) ∧M R ∧R R

1∧ev

g∧1∧1 g∧1

1∧ev µ

commutes. Since the two ways of going around the diagram represent the adjuncts of the left
R-module structure maps on FR(M,g R) and gFR(M,R) respectively these module structure maps
are the same. □

To study the category of G-spectral categories, we introduce the notion of a G-spectral functor.

Definition 4.8. If C and D are G-spectral categories then a G-spectral functor F : C → D is a
natural transformation of functors BG→ SpecCat.

Explicitly, a G-spectral functor F : C → D consists of the following data:

(1) for every x ∈ obC, an object F (x) ∈ obD,
(2) for every pair of objects x, y ∈ obC, a map of spectra

F : C(x, y)→ D(F (x), F (y))
which respects composition on the nose,
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(3) for every g ∈ G, F (gc) = gF (c) and the diagram

C(x, y) C(gx, gy)

D(F (x), F (y)) D(F (gx), F (gy))

g

F F

g

commutes for all x, y ∈ ob(C).

Definition 4.9. For a G-spectral category C, let Cop denote the G-spectral category with the same
objects as C, mapping spectra given by Cop(x, y) = C(y, x), and composition given by:

Cop(y, z) ∧ Cop(x, y) = C(z, y) ∧ C(y, x) σ−→ C(y, x) ∧ C(z, y) ◦−→ C(z, x) = Cop(x, z)

where σ is the swap map and ◦ is the composition map of C.

If C and D are two G-spectral categories we can define a new G-spectral category Dop ∧C which
has objects ob(D)× ob(C), and g acts diagonally. The morphisms are given by

(Dop ∧ C)((d1, c1), (d2, c2)) = Dop(d1, d2) ∧ C(c1, c2) = D(d2, d1) ∧ C(c1, c2),

and the map

g : (Dop ∧ C)((d1, c1), (d2, c2))→ (Dop ∧ C)(g(d1, c1), g(d2, c2))
is the map

g ∧ g : D(d2, d1) ∧ C(c1, c2)→ D(gd2, gd1) ∧ C(gc1, gc2).
We now define equivariant bimodules over G-spectral categories (C,D). Recall that a non-

equivariant (C,D)-bimodule is spectral functor Dop ∧ C → Sp. This entails the existence of maps
of spectra

α : C(c, e) ∧M(d, c) ∧ D(f, d)→M(f, e)

which are compatible with the units and strictly associative with the compositions of C and D.

Definition 4.10. For C and D two G-spectral categories, an equivariant (C,D)-bimodule M is a
spectral functor M : Dop ∧ C → Sp, with designated maps

g :M(x, y)→M(gx, gy)

such that that h ◦ g = hg for all h, g ∈ G, and the map e is the identity. We further require that
the diagram

C(c, e) ∧M(d, c) ∧ D(f, d) M(f, e)

C(gc, ge) ∧M(gd, gc) ∧ D(gf, gd) M(gf, ge)

α

g∧g∧g g

α

commutes for all choices of a, b, c, d, e, f and g ∈ G. A map of equivariant bimodules is a natural
transformation of spectral functors. We denote the category of equivariant (C,D)-bimodules by
BimodG(C,D).

Example 4.11. Any G-spectral category C is an equivariant bimodule over itself via the canonical
functor Cop ∧ C → Sp which sends a pair (x, y) to C(x, y).
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Example 4.12. Let R be a ring spectrum with G-action, let CR be the single object G-spectral
category associated to R, and let D be any G-spectral category. A (D, CR)-bimodule consists of a
spectrumM(d) =M(•, d) for all d ∈ D, together with maps

M(d)
g−→M(gd)

M(d) ∧R α−→M(d)

D(d, d′) ∧M(d)
β−→M(d′)

for all g ∈ G and d′ ∈ D such that the diagrams

M(d) ∧R M(gd) ∧R D(d, d′) ∧M(d) D(gd, gd′) ∧M(gd)

M(d) M(gd) M(d′) M(gd′)

g∧g

α α

g∧g

β β

g g

commute. The map α turnsM(d) into a right R-module for all d ∈ D. A quick diagram chase shows
that the commutativity of the left diagram is equivalent to the claim that the map g : M(d) →
M(gd)g is a map of right R-modules for all g ∈ G. Thus we see that a (D, CR)-bimodule consists of
a spectral functor D → ModR together which choices of isomorphisms g :M(d)→M(gd)g in ModR
for all g ∈ G such that the right diagram above commutes. Similarly, a (CR,D)-bimodule can be
described as a spectral functor N : Dop → R Mod together with isomorphisms g : N (d) → gN (gd)
in R Mod for all g ∈ G.

Definition 4.13. For an abelian group G with g ∈ G, G-spectral categories C and D, and M a
(C,D)-bimodule, we define a new (C,D)-bimoduleMg by the composite

Mg : Dop ∧ C gop∧1−−−−→ Dop ∧ C M−→ Sp.

The designated map

h :Mg(x, y)→Mg(hx, hy)

is the map

Mg(x, y) =M(gx, y)→M(hgx, hy) =Mg(hx, hy),

where the last equality holds because G is abelian.

We now define the cyclic bar construction for a G-spectral category.

Definition 4.14. For a small G-spectral category C and a (C, C)-bimodule M, the cyclic bar
construction Ncyc

• (C;M) is the simplicial spectrum with G-action with q-simplices

Ncyc
q (C;M) =

∨
(c0,c1,...,cq)

C(cq−1, cq) ∧ C(cq−2, cq−1) ∧ · · · ∧ C(c0, c1) ∧M(cq, c0)

where the wedge is over all (q+1)-tuples of objects ci ∈ C. The action of G is given as follows: the
summand corresponding to (c0, . . . cq) is sent to the summand (gc0, gc1, . . . gcq) via the map

C(cq−1, cq) ∧ · · · ∧ C(c0, c1) ∧M(cq, c0)
g∧···∧g−−−−−→ C(gcq−1, gcq) ∧ · · · ∧ C(gc0, gc1) ∧M(gcq, gc0).

The zeroth face map cycles the leftmost smash summand to the far right and then uses the right-
module structure of M. The remaining face maps are given by the composition in C and the left
module structure ofM. When the bimoduleM is C we will write Ncyc

• (C). Note that in this case
the cyclic bar construction is a cyclic object in the sense of Connes.
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Since the cyclic bar construction Ncyc
• (C) of a G-spectral category C is a cyclic object in spectra

with G-action, its geometric realization is naturally a spectrum with G × S1-action. Let U be a
complete G× S1-universe.

Definition 4.15. The equivariant THH of a G-spectral category C is the genuine G×S1-spectrum

ETHH(C) := IUR∞ |Ncyc
• (C)|.

We will sometimes find it convenient to refer to the cyclic bar construction as a spectrum with
G× S1 action. As in Remark 3.4, we denote it by ETHH(C) := |Ncyc

• (C)|.

Let V = i∗GU be the complete G-universe obtained by restricting U .

Definition 4.16. For C a G-spectral category, andM a (C, C)-bimodule, we define the ETHH of
C with coefficients inM to be the G-spectrum

ETHH(C;M) = IVR∞ |Ncyc
• (C;M)|.

When G = Cn we are also able to define a version of twisted THH for Cn-spectral categories.
Let ∆Cn ⊂ Cn × Cn be the diagonal copy of Cn, and consider ∆Cn as a subgroup of Cn × S1 via
the usual embedding of Cn into S1. As above we use the fixed isomorphism of groups

(Cn × S1)/∆Cn
∼= S1

via the map (e2kπi/n, eθi) 7→ e(2kπ/n−θ)i. Note that this isomorphism sends (1, σ) to σ−1.

Definition 4.17. For a Cn-spectral category C, we define the Cn-twisted topological Hochschild
homology of C to be the S1-spectrum

THHCn
(C) := Φ∆Cn ETHH(C).

Note that we have defined Cn-twisted THH so that the analog of Theorem 3.8 in the setting of
Cn-spectral categories is true by definition. That is, when C is the one object spectral category of
a Cn-ring spectrum this agrees with the definition of twisted THH from [5]. The advantage of this
approach is that THHCn

(C) is automatically an S1-spectrum. The following reassuring proposition
says that twisted THH could have been obtained by a twisted cyclic bar construction.

Proposition 4.18. Suppose that C is a Cn-spectral category. There is an isomorphism of spectra
with Cn-action

i∗Cn
|Ncyc

• (C)|∆Cn ∼= |Ncyc
• (C, Cσ

−1

)|.

Changing universe and applying Proposition 2.22 yields a version of the above for ETHH.

Corollary 4.19. Suppose that C is a Cn-spectral category. There is an isomorphism of Cn-spectra

i∗Cn
THHCn(C) ∼= ETHH(C; Cσ

−1

).

where σ is the chosen generator of Cn.

Before proving Proposition 4.18 we need a version of Lemma 3.7. This requires a brief diversion
to set up some notation. For a Cn-spectral category C and any r > 1 we let C∧r denote the
Cn-spectral category of [16, Definition 7.4] with objects r-tuples (c1, . . . , cr) of objects in C and
morphism spectra

C∧r ((a1, . . . , ar), (b1, . . . , br)) =

r∧
i=1

C(ai, bi).
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Note that in addition to the cyclic action of Cr on the objects of C∧r, we have maps of morphism
spectra

C∧r ((a1, . . . , ar), (b1, . . . , br))→ C∧r ((ar, . . . , ar−1), (br, . . . , br−1))

given by rotating smash summands. The following lemma is immediate from checking the defini-
tions.

Lemma 4.20. The assignment C 7→ C∧r is a functor from Cn-spectral categories to Cn×Cr-spectral
categories.

For the remainder of this section we focus on the case r = n, so that C∧n is a (Cn×Cn)-spectral
category. For any a ∈ C let â = (a, σa, . . . , σn−1a) ∈ C∧n. Then for any a, b ∈ C we have

C∧n(â, b̂) =

n−1∧
i=0

C(σia, σib).

The subgroup ∆Cn
≤ Cn × Cn acts on the spectrum C∧n(â, b̂), where the generator (σ, σ) acts

according to

(4.21) C∧n(â, b̂) =

n−1∧
i=0

C(σia, σib)→
n−1∧
i=0

C(σi−1a, σi−1b)
∧σ−−→

n−1∧
i=0

C(σia, σib)

where the first map is a cyclic rotation and the second uses the structure maps

σ : C(σi−1a, σi−1b)→ C(σia, σib).

Proposition 4.22. For any a, b ∈ C, we have

C∧n(â, b̂)∆Cn ∼= C(a, b).

Proof. The spectra C(σia, σib) and C(a, b) are isomorphic via the map σi. Thus one can rewrite

C∧r(â, b̂) as the smash product of C(a, b) with itself n-times. With this identification the maps
(4.21) become just cyclic permutations. Thus there is an isomorphism of Cn-spectra

C∧n(â, b̂) ∼= ∧Cn
e C(a, b)

and the result is immediate upon taking fixed points. □

The construction C 7→ C∧n is functioning like a norm in this context. The next lemma is a
generalization of Lemma 3.7 for Cn-spectral categories.

Lemma 4.23. There is an isomorphism

i∗Cn×Cn
|Ncyc

• (C)| ∼= |Ncyc
• (C∧n, (C∧n)(1,σ))|.

Proof. Since Ncyc
• (C) is a cyclic object in spectra with Cn-action, its realization is isomorphic, as

a spectrum with Cn × Cn-action, to the realization of its subdivision sdnN
cyc
• (C). Hence it suffices

to show an isomorphism of simplicial spectra with Cn × Cn-action

sdnN
cyc
• (C) ∼= Ncyc

• (C∧n, (C∧n)(1,σ)).

Fix a k and let k+ = k + 1. The k-simplices of sdnN
cyc
• (C) are given by

(4.24)
∨

(c1,...cnk+
)

C(cnk+−1, cnk+
) ∧ · · · ∧ C(c1, c2) ∧ C(cnk+

, c1)
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while the k-simplices of Ncyc
• (C∧n, (C∧n)(1,σ)) are given by

(4.25)
∨

(a⃗0,...,⃗ak)

C(a1k−1, a
1
k)∧C(a2k−1, a

2
k)∧ · · · ∧ C(an0 , an1 )∧C(ank , a10)∧C(a1k, a20)∧ · · · ∧ C(an−1

k , an0 )

where the a⃗i = (a1i , . . . a
n
i ) are objects in C∧n. Note that the last n-terms of this smash product

are unlike the other terms because the superscripts in the source and target are offset by one; this
shift is precisely because we took a bar construction in the twisted bimodule (C∧n)(1,σ).

The isomorphism between (4.25) and (4.24) is given by sending the summand corresponding to
(⃗a0, . . . , a⃗k) in (4.25) to the summand

(a10, a
1
1, a

1
2, . . . , a

1
k, a

2
0, a

2
1, . . . , a

n
k−1, a

n
k )

in (4.24). With this choice the tensor summands are identical up to a reordering isomorphism which
is canonical up to isomorphism because the smash product is symmetric monoidal. Moreover, it is
a straightforward, albeit tedious, exercise to see that the face maps in either simplicial spectrum
are identified under this reordering. □

proof of Proposition 4.18. After applying Lemma 4.23 it suffices to show there is an isomorphism

|Ncyc
• (C∧n, (C∧n)(1,σ))|∆Cn ∼= |Ncyc

• (C, Cσ)|.

To show this, note that we can commute the fixed point functor through geometric realization and
so we may instead produce an isomorphism of simplicial spectra with Cn-action

Ncyc
• (C∧n, (C∧n)(1,σ))∆Cn ∼= Ncyc

• (C, Cσ).

The k-simplices on the left are given by

(4.26)
∨

(a⃗0,...,⃗ak)

C∧n(⃗ak−1, a⃗k) ∧ · · · ∧ C∧n(⃗a0, a⃗1) ∧ (C∧n)(1,σ)(⃗ak, a⃗0).

Since ∆Cn is permuting the tuples (⃗a0, . . . , a⃗k), our first task is to figure out which tuples are fixed.
The action of ∆Cn on (⃗a0, . . . , a⃗k) is determined by

(σ, σ) · (⃗a0, . . . , a⃗k) = (⃗b0, . . . , b⃗k)

with b⃗i = (σani , σa
1
i , σa

2
i , . . . , σa

n−1
i ). If a summand is going to be fixed under the ∆Cn

-action then
it must be a summand corresponding to a tuple (⃗a0, . . . , a⃗k) where for all i

a⃗i = âi := (ai, σai, σ
2ai, . . . , σ

n−1ai)

for some ai ∈ C. It follows that the k-simplices of Ncyc
• (C∧n, (C∧n)(1,σ))∆Cn are isomorphic to∨

(a0,...,ak)

(
C∧n(âk−1, âk) ∧ · · · ∧ C∧n(â0, â1) ∧ (C∧n)(1,σ)(âk, â0)

)∆Cn

where the wedge is now over any (k + 1)-tuples in C. Using the strong monoidality of fixed points,
this is isomorphic to∨

(a0,...,ak)

(C∧n(âk−1, âk))
∆Cn ∧ · · · ∧ (C∧n(â0, â1))

∆Cn ∧
(
C∧n(σ̂n−1ak, â0)

)∆Cn



Trace methods for equivariant algebraic K-theory 27

where in the last term we used the observation that (1, σ) · â = σ̂n−1a for any a ∈ C. Observing

that the action of ∆Cn
on C∧n(â, b̂) is precisely (4.21), we apply Proposition 4.22 and see that the

k-simplices are ∨
(a0,...,ak)

C(ak−1, ak) ∧ · · · ∧ C(a0, a1) ∧ C(σ−1ak, a0)

as desired. Since the face maps are given entirely in terms of the composition structures of C,
monoidality of fixed points implies that the face maps are those of Ncyc

• (C, Cσ−1

). □

4.1. Fixed points of the cyclic nerve. In this subsection we compute the H-fixed points of the
cyclic bar construction Ncyc

• (C;M) for a G-spectral category C and (C, C)-bimodule M . As a first
step, note that if c, d ∈ C are H-fixed then the structure maps

h : C(c, d)→ C(hc, hd) = C(c, d)

make C(c, d) a spectrum with H-action. We define a spectral category CH whose objects are the
H-fixed objects of C and whose morphism spectra are CH(c, d) = C(c, d)H . The composition laws
are obtained using the lax monoidality of categorical fixed points (Proposition 2.8).

For a (C, C)-bimoduleM we also see thatM(c, d) is spectrum with H-action whenever c and d
are H-fixed. We obtain a (CH , CH)-bimoduleMH defined byMH(c, d) =M(c, d)H .

Example 4.27. Let C = ModR be the category of right modules over a ring orthogonal spectrum
R with G-action. This is a G-spectral category as described in Example 4.3. We consider C as a
bimodule over itself, i.e. C(M,N) = FR(M,N) is the internal mapping spectrum. When M and N
are H-fixed for some H ≤ G we have that FR(M,N) = FR(M

h, Nh) for all h ∈ H and the action of
H on this spectrum is trivial. In particular, the spectrum (ModR)

H(M,N) is just FR(M,N) again.
The same remarks carry over verbatim if we replace ModR with PerfR, the G-spectral category of
perfect right R-modules.

Proposition 4.28. Suppose that C is a spectral G-category. For H a subgroup of G there is an
isomorphism of simplicial spectra

Ncyc
• (C;M)H ∼= Ncyc

• (CH ;MH)

where the fixed points on the left are computed levelwise.

Proof. Before taking H-fixed points the q-simplices on the left are given by

Ncyc
q (C;M) =

∨
(c0,c1,...,cq)

C(cq−1, cq) ∧ C(cq−2, cq−1) ∧ · · · ∧ C(c0, c1) ∧M(cq, c0).

Since H acts first by permuting tuples (c0, . . . , cq), we see that the H-fixed points of the q-simplices
must be

(Ncyc
q (C;M))H =

∨
(c0,c1,...,cq)∈(CH)q+1

(C(cq−1, cq) ∧ C(cq−2, cq−1) ∧ · · · ∧ C(c0, c1) ∧M(cq, c0))
H
.

The result now follows from the fact that H-fixed points of spectra with G-action are strong
monoidal. That is, these fixed points are isomorphic to

Ncyc
q (CH ;MH) =

∨
(c0,c1,...,cq)∈(CH)q+1

CH(cq−1, cq) ∧ CH(cq−2, cq−1) ∧ · · · ∧ CH(c0, c1) ∧MH(cq, c0).
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Since the face and degeneracy maps in the cyclic nerve come from the composition laws in C and
CH , and composition in the latter is defined using the monoidality of fixed points, we see that these
maps assemble into an isomorphism of simplicial spectra. □

4.2. A model structure on G-spectral categories. Given a G-spectral functor F : C → D there
is an induced map FH : CH → DH for any subgroup H ≤ G.

Definition 4.29. We say that F is a weak equivalence of G-spectral categories if it is a bijection
on objects and all the functors FH induced equivalences on morphism spectra.

In this section we observe that these weak equivalences are the weak equivalences of a model
structure on the category of G-spectral categories. We use this observation to produce useful exam-
ples of G-spectral categories which are sufficiently cofibrant for our purposes. We begin by recalling
the following useful observation, which follows from a result of Schwede–Shipley [42, Proposition
6.3].

Proposition 4.30. The category SpecCat of spectral categories and spectral functors forms a cofi-
brantly generated model category where the weak equivalences are spectral functors which induce a
bijection on objects and stable equivalences on morphism spectra. If C is cofibrant in this model
structure, it has cofibrant morphism spectra.

Since the category of G-spectral categories is just Fun(BG, SpecCat) we could obtain a model
structure on G-spectral categories using the projective model structure, but the weak equivalences
would be incorrect. Instead, we need a “more genuine” model structure. For a finite group G, let
OG denote the orbit category of G. We consider the category of presheaves Fun(Oop

G ,SpecCat) with
the projective model structure.

Any G-spectral category C determines a functor i∗(C) : Oop
G → SpecCat which is defined by

i∗(C)(G/H) = CH . If K ≤ H then there is a functor CH → CK which is the inclusion on objects.
The functor i∗ : Fun(BG, SpecCat) → Fun(Oop

G ,SpecCat) has a left adjoint which sends a functor
F : Oop

G → SpecCat to F (G/e), which has an action by G since Oop
G (G/e,G/e) ∼= G. To produce

the desired model structure on G-spectral categories, we use a result of Stephan [43]; see also [13].

Theorem 4.31. The category of G-spectral categories Fun(BG, SpecCat) has a cofibrantly gen-
erated model structure right induced by i∗ : Fun(BG, SpecCat) → Fun(Oop

G ,SpecCat). The weak
equivalences are those of Definition 4.29. If C is a cofibrant object in this model structure then CH
is a pointwise cofibrant spectral category for all H.

Proof. We use Proposition 2.6 of [43]. Fixed points of spectra with G-action commute with pushouts
and with directed colimits along cofibrations, and therefore the first two conditions of the proposition
hold. For a spectral category C and aG-setG/K, the tensorG/K⊗C ∈ Fun(BG, SpecCat) is defined
using an indexed wedge product, which implies that the third condition of the proposition is satisfied
as well. Therefore this right-induced model structure exists and is cofibrantly generated as in
Proposition 2.6 of [43]. It remains to show that if C is a cofibrant object in this model structure, then
CH is a pointwise cofibrant spectral category for all H. It suffices to show that if ϕ is a generating
cofibration in Fun(BG, SpecCat), then ϕH is a cofibration of spectral categories for all H ≤ G. As
in the proof of Proposition 2.6 of [43], the generating cofibrations in Fun(BG, SpecCat) are of the
form G/K ⊗ f , where f is a generating cofibration in SpecCat. Thus (G/K ⊗ f)H = (G/K)H ⊗ f ,
which is a wedge of cofibrations and therefore a cofibration. □
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Notation 4.32. If C is a G-spectral category then we write QC for a cofibrant replacement in the
model structure of the theorem.

It is not clear whether or not the realization of the cyclic nerve of a cofibrant G-spectral category
is a cofibrant spectrum with G-action. On the other hand, it has the property of being flat, in the
sense that smashing with it is homotopical. There are additional conditions under which |Ncyc

• (C)|
is a cofibrant spectrum with G-action.

Definition 4.33. We say that a G-spectral category C is G-pointwise cofibrant if for all H ≤ G
and all H-fixed pairs of objects c, d ∈ C the mapping H-spectrum C(c, d) is a cofibrant spectrum
with H-action.

Example 4.34. If R is a cofibrant spectrum with G-action then CR is G-pointwise cofibrant.

Proposition 4.35. If C is G-pointwise cofibrant then |Ncyc
• (C)| is a cofibrant spectrum with G-

action

Proof. It suffices to check that the cyclic nerve is a levelwise cofibrant spectrum with G-action. The
k-simplices are ∨

(c0,...,ck)

C(ck−1, ck) ∧ · · · ∧ C(c0, c1) ∧ C(ck, c0)

The collection of (k+1)-tuples (c0, . . . , ck) is aG-set, and we may pick representatives (ci0, . . . , c
i
k) for

all the G-orbits. Let Hi be the stabilizer of the tuple (c
i
0, . . . , c

i
k), then we have that the k-simplices

decompose as ∨
i

G+ ∧Hi
(C(cik−1, c

i
k) ∧ · · · ∧ C(ci0, ci1) ∧ C(cik, ci0))

where C(cik−1, c
i
k) ∧ · · · ∧ C(ci0, ci1) ∧ C(cik, ci0) is considered as a spectrum with Hi-action as all cij

must be Hi-fixed. Since C is G-pointwise cofibrant, this spectrum with Hi-action is a cofibrant
spectrum with Hi-action. Since induction preserves cofibrancy we observe that the k-simplices are
a wedge of cofibrant spectra with G-action hence are cofibrant. □

Corollary 4.36. Suppose C is a G-spectral category which is either cofibrant or G-pointwise cofi-
brant. Then for any weak equivalence X → Y of spectra with G-action the map |Ncyc

• (C)| ∧ X →
|Ncyc

• (C)| ∧ Y is also a weak equivalence.

Proof. When C is G-pointwise cofibrant this follows from the fact that |Ncyc
• (C)| is cofibrant. WHen

C is cofibrant it suffices to check that |Ncyc
• (C)|H is cofibrant for all H ≤ G. This follows from

Proposition 4.28 and the fact that CH is a pointwise cofibrant spectral category. □

Furthermore, weak equivalences of cofibrant G-spectral categories induce weak equivalences on
cyclic bar constructions.

Proposition 4.37. Let F : C → D be a weak equivalence of G-spectral categories, where C and D
are either cofibrant or G-pointwise cofibrant. Then F induces a weak equivalence

|Ncyc
• (C)| ≃ |Ncyc

• (D)|
of spectra with G-action.

Proof. We prove the case when C is cofibrant, the other case is essentially the same. By Proposition
4.28, |Ncyc

• (C)|H ∼= |Ncyc
• (CH)|. By Theorem 4.31, since C and D are cofibrant, for any H-fixed

objects c, c′ ∈ C we have that C(c, c′)H and D(F (c), F (c′))H are cofibrant spectra. Furthermore,
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FH induces a weak equivalence between these cofibrant spectra. Therefore each level of the cyclic
bar constructions |Ncyc

• (CH)| and |Ncyc
• (DH)| consists of smash products of cofibrant spectra. Thus

FH induces a weak equivalence on the H-fixed points of |Ncyc
• (C)| and |Ncyc

• (D)|, and therefore a
weak equivalence of spectra with G-action. □

When C is cofibrant we can identify maps of bimodules which induce stable equivalences on cyclic
nerves.

Definition 4.38. For C a G-spectral category, a map f :M → N of (C, C)-bimodules is a weak
equivalence if for all H ≤ G it induces a weak equivalence of spectraMH(c, d)→ NH(c, d) for all
H-fixed pairs (c, d) of objects in C.
Remark 4.39. Let C BimodC denote the category of equivariant (C, C)-bimodules. One could
proceed as in [42, Proposition 6.1] to show that C BimodC is a model category with weak equivalences
as defined above. For our purposes, we only need to know what the weak equivalences are and we
write Ho(C BimodC) for the associated homotopy category.

Corollary 4.40. Let C be a G-spectral category and let α :M→N be a weak equivalence of (C, C)-
bimodules. If C is cofibrant or G-pointwise cofibrant then α induces a weak equivalence of spectra
with G-action |Ncyc

• (C;M)| ≃ |Ncyc
• (C;N )|.

Proof. We prove the case when C is cofibrant, the other case is essentially the same. By definition,
it suffices to check that the map induced by α gives a weak equivalence of spectra on H-fixed
points for all H ≤ G. Commuting the fixed points through the geometric realization and applying
Proposition 4.28 we see that the induced map on H-fixed points is the map |Ncyc

• (CH ,MH)| →
|Ncyc

• (CH ,NH)|. Since C is cofibrant the spectral category CH is pointwise cofibrant, and this is a
weak equivalence by [10, Theorem 6.4]. □

5. Spectral Waldhausen G-categories

Our eventual goal is to construct an equivariant version of the Dennis trace connecting algebraic
K-theory and THH. In order to construct this comparison map we must address the fact that the
inputs to these theories, Waldhausen and spectral categories, respectively, are not the same. To
bridge this gap we follow the approach of [17] and develop a theory of spectral Waldhausen G-
categories, which have enough structure to define both equivariant algebraic K-theory and ETHH.

Definition 5.1. Let C0 be a pointed category (i.e. a category with a zero object, which implies
that it is enriched over pointed sets). We define its suspension category Σ∞C0 to be the spectral
category with the same objects as C0, mapping spectra given by the suspension spectra of the
mapping sets of C0, and composition induced by the composition in C0.
Definition 5.2. A base category of a spectral category C is a pair (C0, F : Σ∞C0 → C), where C0
is a pointed category and F : Σ∞C0 → C is a spectral functor which is the identity on objects.

Example 5.3. Let C be a spectral category. Take C0 to have the same objects as C. For objects a, b,
take the mappings set C0(a, b) to be the 0-space of the mapping spectrum C(a, b) given the discrete
topology. Then the maps Xdiscrete → X for any space X and Σ∞Y (0) → Y for any spectrum
Y give C0 the structure of a base category for the spectral category C. We denote this functor
can : Σ∞C0 → C.
Definition 5.4 ([16], Definition 3.9). A spectral Waldhausen category is a spectral category C
together with a base category C0, where C0 has a Waldhausen structure. This data is subject to
the conditions:
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(1) The zero object of C0 is also a zero object for C.
(2) Every weak equivalence c→ c′ in C0 induces stable equivalences of orthogonal spectra

C(c′, d)→ C(c, d), C(d, c)→ C(d, c′).

(3) Let i : a→ b be a cofibration in C0. Then every pushout square

a
i //

��

b

��
c // d

induces homotopy pushouts squares

C(e, a) i∗ //

��

C(e, b)

��

C(a, e) C(b, e)
i∗
oo

C(e, c) // C(e, d) C(c, e)

OO

C(d, e)oo

OO

Definition 5.5. A functor of spectral Waldhausen categories F : (C, C0) → (D,D0) consists of an
exact functor F0 : C0 → D0 and a spectral functor F : C → D such that the diagram

Σ∞C0
Σ∞F0 //

��

Σ∞D0

��
C F // D

commutes.

In [16], the authors construct a Dennis trace map K(C0)→ THH(C).

For the purposes of algebraic K-theory, it is instrumental to define a spectral Waldhausen cate-
gory of perfect R-modules, for R an orthogonal ring spectrum. Due to the technical requirements
placed on spectral Waldhausen categories, it will be helpful to pass through EKMM spectra [25].
Let us write S-Mod for the category of EKMM spectra. Recall there is a symmetric monoidal
Quillen adjunction (N,N♯)

Sp S−Mod
N

N♯

⊣

relating EKMM spectra to orthogonal spectra. Note that both N and N♯ are lax monoidal.
If R is a cofibrant orthogonal ring spectrum and N and M are cofibrant right R-modules then

the mapping spectrum FR(M,N) need not be fibrant. We use the adjunction N ⊣ N♯ to produce
homotopically well behaved mapping spectra N♯FNR(NM,NN). This spectrum is always fibrant
since all EKMM spectra are fibrant and N♯ is a right Quillen adjoint.

The following is the key example in this section.

Example 5.6 ([17] 3.8-3.12, 5.2). If R is an orthogonal ring spectrum whose underlying spectrum
is cofibrant, there is a spectral Waldhausen category stPerfR whose base category is the Waldhausen
category PerfR of perfect cofibrant R-module spectra. Take the objects of stPerfR to be the perfect
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cofibrant modules over R. For objects P, P ′ of stPerfR, define stPerfR(P, P
′) to be the orthogonal

spectrum N♯FNR(NP,NP ′). The spectral functor Σ∞ PerfR → stPerfR is given by the adjoint of

NΣ∞
orth PerfR(P, P

′)
∼=−→ Σ∞

EKMM PerfR(P, P
′)

Σ∞
EKMMN−−−−−−→ Σ∞

EKMM PerfNR(NP,NP ′)
can−−→ FNR(NP,NP ′)

where can is as in Example 5.3. All EKMM spectra are fibrant, and N♯ is a right Quillen adjoint,
so all mapping spectra in this category are fibrant.

Remark 5.7. Later we will need a comparison of stPerfR and the more natural spectral category
PerfR defined in Example 4.4. One can give a spectral functor PerfR → stPerfR, which is the
identity on objects, but for technical reasons we would like a map which goes the other way. It
seems difficult to construct such a functor directly, however it is straightforward to construct a
functor

Ω: stPerfR → ModN♯NR

which sends an object P to N♯NP . On morphisms, we use the map

N♯FNR(NP,NQ)→ FN♯NR(N♯NP,N♯NQ)

which comes from the fact that N♯ is lax monoidal.

Example 5.8 ([16], 3.7 and 3.12). If (C, C0) is a spectral Waldhausen category and I is a small cate-
gory, then there is a spectral Waldhausen structure on the functor categories (Fun(I, C),Fun(I, C0)).

This functor category construction is useful for applying the S•-construction to spectral Wald-
hausen categories. Denote by [k] the category {0→ 1→ ...→ k}. If (C, C0) is a spectral Waldhausen
category, consider SkC0 as a subcategory of the functor category Fun([k]× [k], C0) as in Definition
5.8 (and the discussion that follows it) of [17].

Proposition 5.9 ([17]). Let (C, C0) be a spectral Waldhausen category. Take SkC to be the full
subcategory of Fun([k] × [k], C) spanned by the objects of SkC0. Then (SkC, SkC0) is a spectral
Waldhausen category. Furthermore, as k varies, this defines a simplicial object in SpWaldCat,
(S•C, S•C0).

The functor category construction also gives a spectral Waldhausen category of weak equivalences
in (C, C0).

Proposition 5.10 ([17], Definition 5.6). Let (C, C0) be a spectral Waldhausen category. Denote by
wkC0 the full subcategory of Fun([k], C0) spanned by the functors that take each morphism in [k] to a
weak equivalence in C0. Denote by wkC the full subcategory of Fun([k], C) spanned by the objects of
wkC0. Then (wkC, wkC0) is a spectral Waldhausen category. Furthermore, as k varies, this defines
a simplicial object in SpWaldCat, (w•C, w•C0).

Remark 5.11. We can also iterate the S• construction as is Definition 2.30. Letting S
(n)
k1,...,kn

C =
Sk1

...Skn
C, we therefore obtain a multisimplicial object (w•S

(n)
• C, w•S

(n)
• C0) in SpWaldCat, whose

(k0, ..., kn) level is (wk0
S
(n)
k1,...,kn

C, wk0
S
(n)
k1,...,kn

C0).

We will next define Waldhausen G-categories and spectral Waldhausen G-categories. Recall that
Malkiewich–Merling define a notion of Waldhausen G-categories.

Definition 5.12 ([34], Section 2.3). Let WaldCat denote the category of Waldhausen categories
and exact functors. A Waldhausen G-category is a functor

BG→WaldCat.
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Example 5.13. If R is an orthogonal G-ring spectrum whose underlying spectrum is cofibrant,
then PerfR as defined in Example 5.6 inherits the structure of a Waldhausen G-category. The

G-action sends a right R-module P to the g-twisted right R-module P g−1

.

Example 5.14 ([34], Section 2.3). If C is a Waldhausen G-category, then Fun(EG, C) is a Wald-
hausen G-category with G-action given by conjugation. That is, if F : EG→ C is any functor then
we define (g · F )(h) = gF (g−1h).

We now define spectral Waldhausen G-categories. Let SpWaldCat denote the category of spectral
Waldhausen categories.

Definition 5.15. A spectral Waldhausen G-category is a functor

BG→ SpWaldCat.

Note that if C is a spectral Waldhausen G-category, then the base category C0 is a Waldhausen
G-category and the spectral category C is a G-spectral category.

Example 5.16. Let R be an orthogonal ring spectrum with G-action, and denote g : R → R the
action of an element g ∈ G on R. Then stPerfR obtains a G-action which sends a right R-module

P to the g-twisted right R-module P g−1

. Applying N to the map g : FR(P,Q) → FR(P
g−1

, Qg−1

)
from Example 4.3 yields a map

(5.17) FNR(NP,NQ)→ FNR((NP )g
−1

, (NQ)g
−1

)

where we abuse notation slightly and write g : NR → NR for the map obtained by applying N to
g : R→ R. Applying N♯ to (5.17) gives the action of G on the mapping spectra of stPerfR.

This G-action is via functors of spectral Waldhausen categories, as in Definition 5.5. This implies
that stPerfR is a spectral Waldhausen G-category. Its base category, PerfR, is then a Waldhausen
G-category.

Example 5.18. If (C, C0) is a spectral Waldhausen G-category, there is a spectral Waldhausen
G-category Fun(EG, C) with base category Fun(EG, C0). This is because Sections 4 and 5 of [17]
construct a functor

Fun(−,−) : Catop × SpWaldCat→ SpWaldCat.

If the base category of C is C0, then the base category of Fun(I, C) is Fun(I, C0). The functoriality of
this construction ensures that elements of G act by exact functors, so that Fun(EG, C) is a spectral
Waldhausen G-category.

We therefore obtain a spectral Waldhausen G-category Fun(EG, stPerfR), whose base category
is Fun(EG,PerfR).
Example 5.19. The S• and w• constructions of Proposition 5.9 and Proposition 5.10 respect
G-actions, giving S• and w• constructions for spectral Waldhausen G-categories. Applying these
constructions to Fun(EG, C) will be especially useful in section 8.

6. Morita adjunctions

One of the essential properties of topological Hochschild homology is that it is Morita invariant.
In this section we develop a theory of Morita adjunctions and Morita equivalences for G-spectral
categories and show that ETHH is Morita invariant. The results in this section are used in the
construction of the Dennis trace to produce maps on ETHH.

Let C, D, and E be three G-spectral categories and let N andM be (C, E)- and (D, C)-bimodules
respectively.
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Definition 6.1. The two-sided bar construction of M, C, and N , written B(M; C,N ), is the
(D, E)-bimodule which sends (e, d) ∈ Eop ∧ D to the realization of the simplicial spectrum∨

M(cq, d) ∧ C(cq−1, cq) ∧ · · · ∧ C(c0, c1) ∧N (e, c0)

where the wedge is over (q + 1)-tuples (c0, . . . , cq) of objects in C.

One should think about the two-sided bar construction as a way to tensor (C, E)- and (D, C)-
bimodules together over C. To illustrate this further, suppose R is a ring spectrum with G-action
which is cofibrant, write CR for the one object G-spectral category associated to R, and suppose
M and N are (CR, CR)-bimodules, i.e. (R,R)-bimodules in spectra. Then the simplicial object
underlying the two-sided bar construction is exactly the usual two-sided bar resolution of M ∧RN .
In particular, its geometric realization is exactly the left derived smash product of M and N over
R.

Note that when N = R, and R is cofibrant, we get an equivalence B(M ;R;R) ≃M ∧LR R ≃M .
The next lemma says that the analogous statement is true for arbitrary G-spectral categories.

Lemma 6.2 (Two Sided Bar Lemma, [12, Lemma 1.40]). Let C, D, and E be G-spectral categories
and letM and N be a (D, C) and (C, E)-bimodules respectively. There are weak equivalences

B(M; C; C) ∼−→M

B(C; C;N )
∼−→ N

of (D, C) and (C, E)-bimodules respectively.

Proof. The maps

M(cq, d) ∧ C(cq−1, cq) ∧ · · · ∧ C(e, c0)→M(e, d)

given by composition assemble into a map of simplicial spectra with G-action from B(M; C; C) to the
constant simplicial object onM(e, d). We call this the composition map. Taking realizations gives
a map on bimodules, which we immediately see is compatible with the G-actions. It is classical (see,
for instance, [38, Proposition 9.8]) that the composition map admits a section which is essentially
given by the inclusion of many identity morphisms. Moreover, one checks that the composition
map and the section form a homotopy equivalence after geometric realization.

If d and e are H-fixed for some H ≤ G, then both the composition map and the section are
H-equivariant, thus the homotopy equivalence descends to fixed points and this map is a weak
equivalence of bimodules. □

Corollary 6.3 (Dennis–Waldhausen–Morita argument, [12, Proposition 1.39]). Let C and D be
small G-spectral categories and let N and M be (C,D) and (D, C)-bimodules, respectively. Then
there are natural isomorphisms of spectra with G-action

|Ncyc
• (C;B(N ;D;M))| ∼= |Ncyc

• (D;B(M; C;N ))|

and hence isomorphisms

ETHH(C;B(N ;D;M)) ∼= ETHH(D;B(M; C;N ))

Proof. The proof is identical to that of [12, Proposition 1.39]. □

The above corollary gives a quick proof of Morita invariance for ETHH.
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Definition 6.4. AMorita adjunction between two G-spectral categories C and D is a pair (N ⊣M)
where N is a (C,D)-bimodule,M is a (D, C)-bimodule, and morphisms

η : D → B(M; C;N )

ϵ : B(N ;D;M)→ C.
in the homotopy categories Ho(DBimodD) and Ho(CBimodC) which satisfy the triangle identities.
A Morita adjunction is called a Morita equivalence if in addition the maps η and ϵ are equivalences.

Suppose we have a Morita adjunction (N ⊣ M) between G-spectral categories C and D which
are either cofibrant or G-pointwise cofibrant. While η and ϵ are only defined in the homotopy
category, the cofibrancy assumptions on C and D allow us to apply Corollary 4.40 to obtain a map
|Ncyc

• (D)| → |Ncyc
• (C)| in the homotopy category of spectra with G-action given by the composite

Ncyc
• (D;D) η∗−→ Ncyc

• (D;B(M; C;N )) ∼= Ncyc
• (C;B(N ;D;M))

ϵ∗−→ Ncyc
• (C; C)

where the isomorphism comes from Corollary 6.3.

Notation 6.5. We will call a Morita adjunction (N ⊣ M) as above a Morita adjunction from D
to C to emphasize the direction of the induced map on cyclic nerves.

By Remarks 7.6 and 7.9 of [16], using n-fold subdivision, this is a map in the homotopy category
of spectra with G × Cn-action for every n. When (N ⊣ M) is a Morita equivalence the maps
η∗ and ϵ∗ are isomorphisms, hence this map is an isomorphism. If, in addition, C and D are G-
pointwise cofibrant, applying the change of universe functor computes ETHH and we obtain Morita
invariance.

Theorem 6.6. If C and D are G-pointwise cofibrant G-spectral categories and (N ⊣M) is a Morita
equivalence then there is a natural isomorphism ETHH(C) ∼= ETHH(D) in the homotopy category
of spectra with (G× Cn)-action for any n.

Let R be a cofibrant orthogonal ring spectrum with G-action. Our next goal is to construct
a Morita adjunction from Fun(EG, stPerfR) to CR. Non-equivariantly this adjunction is a Morita
equivalence, but that will not be the case here. Nevertheless, the adjunction is sufficient to produce
the morphism on ETHH that we need to produce the equivariant Dennis trace.

Recall that CR is the one object (call it •) G-spectral category with morphisms CR(•, •) = R and
stPerfR is the G-spectral category of perfect right R-modules from Example 5.6. Recall that the
objects of stPerfR are cofibrant perfect right R-modules and the morphism spectra are given by

stPerfR(P, P
′) = N♯ ModNR(NP,NP ′)

for any objects P and P ′ ∈ stPerfR. Finally, for any G-spectral category C we will need the functor
G-spectral category Fun(EG, C) constructed in Example 5.18.

Proposition 6.7. Let C be a small, cofibrant G-spectral category. Let D = QFun(EG, C) where Q
denotes a cofibrant replacement in the model structure of Theorem 4.31. Then there is a Morita
adjunction (N ⊣M) from QFun(EG, C) to C.
Proof. There is a constant spectral functor C → Fun(EG, C), and because C is cofibrant this lifts
to a functor f : C → D which, on objects, is given by the constant spectral functor. Given any
object Θ ∈ D, we obtain an object Θ(1) ∈ C, though we should note that this assignment is not a
G-spectral functor since it is not G-equivariant on the nose.

Define a (C,D)-bimodule N by
N (Θ, c) = C(Θ(1), c)
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and a (D, C)-bimoduleM by
M(c,Θ) = C(c,Θ(1)).

To see that N is a spectral functor observe that it is the composite

QFun(EG, C)op ∧ C → Fun(EG, C)op ∧ C ev1∧id−−−−→ Cop ∧ C C(−,−)−−−−→ Sp

where the unlabeled map is the map which witnesses Q as a cofibrant replacement in G-spectral
categories and ev1 is the evaluation at 1 map. This map is, by definition, a spectral functor although
not a G-spectral functor.

For the structure maps, for any g ∈ G we need to produce maps

C(Θ(1), c) = N (Θ, c)→ N (g ·Θ, gc) = C(gΘ(g−1), gc)

and
C(c,Θ(1)) =M(c,Θ)→M(gc, g ·Θ) = C(gc, gΘ(g−1)).

To construct these, first observe that part of the structure of Θ is a chosen isomorphism Θ(1) ∼=
Θ(g−1). With this, we have maps

C(Θ(1), c) ∼= C(Θ(g−1), c)
g−→ C(gΘ(g−1), gc)

C(c,Θ(1)) ∼= C(c,Θ(g−1))
g−→ C(gc, gΘ(g−1))

which give the structure maps.
The bar construction B(M; C;N ) is the (D,D)-bimodule whose value on a pair (Θ,Ψ) is the

realization of the simplicial spectrum with q-simplices∨
(c0,...,cq)

C(cq,Ψ(1)) ∧ C(cq−1, cq) ∧ · · · ∧ C(c0, c1) ∧ C(Θ(1), c0).

If we pick c0 = · · · = Θ(1) then we have an evident map

C(Θ(1),Ψ(1)) ∼= C(Θ(1),Ψ(1)) ∧ S ∧ · · · ∧ S→ C(Θ(1),Ψ(1)) ∧ C(Θ(1),Θ(1)) ∧ · · · ∧ C(Θ(1),Θ(1))

where the unlabeled map is the smash product of the identity on C(Θ(1),Ψ(1)) with the unit
maps S → C(Θ(1),Θ(1)). This assembles into a map from the constant simplicial spectrum on
C(Θ(1),Ψ(1)), and taking geometric realization yields a map C(Θ(1),Ψ(1)) → B(M; C;N )(Θ,Ψ).
The map η is, evaluated at the pair (Θ,Ψ), the composite

D(Θ,Ψ)
ev1−−→ C(Θ(1),Ψ(1))→ B(M; C;N )(Θ,Ψ).

The bar construction B(N ;D;M) is given at the pair (x, y) ∈ obC × obC by the realization of
the simplicial spectrum with q-simplices∨

(Θ1,...,Θq)

C(Θq(1), y) ∧ D(Θq−1,Θq) ∧ · · · ∧ C(x, ,Θ0(1)).

Applying the evaluation maps D(Θi−1,Θi)→ C(Θi−1(1),Θi(1)) followed by the composition yields
a map to the constant simplicial spectrum on C(x, y) and geometrically realizing gives the (x, y)-
component of the map ϵ.

Checking the triangle identities is essentially immediate, since the map η is given by including
identity morphisms and ϵ is given by composition. □

Proposition 6.8. Let R be a cofibrant ring G-spectrum, let CN♯NR be the one object G-spectral
category whose morphism spectrum is N♯NR, and let DR = QstPerfR be a cofibrant replacement of
the G-spectral category of perfect right R-modules. There is Morita adjunction from DR to CN♯NR.
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Proof. By Example 4.12, a (CN♯NR,DR)-bimodule is a spectral functor N : Dop
R → N♯NR Mod to-

gether with isomorphisms

N (P )→ gN (gP )

for all g ∈ G. Similarly, a (DR, CN♯NR)-bimodule consists of a spectral functorM : D → ModN♯NR
with isomorphisms

M(P )→M(gP )g

for all g ∈ G. In this case, we take N (P ) = FN♯NR(N♯NP,N♯NR) andM(P ) = N♯NP . To see these
are spectral functors, observe that N is the composite

Q stPerfopR → stPerfopR
Ωop

−−→ N♯NR Modop → N♯NR Mod

where Ω is the functor from Remark 5.7 and the unlabeled functor is given by taking duals.
The functorM is the composite

Q stPerfR → stPerfR
Ω−→ ModN♯NR .

By definition, gP = P g−1

, so (gP )g = P . Since N♯N is a functor, we have g · (N♯NP )g = N♯NP
so the identity provides the structure isomorphism forM. For N , we have

gFN♯NR(gN♯NP,N♯NR) ∼= FN♯NR(gN♯NP, gN♯NR) ∼= FN♯NR(N♯NP g−1

,N♯NRg−1

) ∼= FN♯NR(N♯NP,N♯NR)

by Lemma 4.6 and Lemma 4.7 and we take these as our structure isomorphisms.
The bar construction B(M; CN♯NR;N ) is the (DR,DR)-bimodule whose value on a pair of perfect

right R-modules (P, P ′) is the realization of the simplicial spectrum whose q-simplices are

N♯NP ∧ N♯NR ∧ · · · ∧ N♯NR ∧ FN♯NR(N♯NP ′,N♯NR).

Since N♯ is lax monoidal there is a map to the simplicial spectrum with q-simplices

N♯ (NP ∧ NR ∧ · · · ∧ NR ∧ FNR(NP ′,NR))

This complex is N♯ applied to the two-sided bar resolution of NP ∧NR FNR(NP ′,NR), and be-
cause NP ′ is cofibrant and perfect the realization is isomorphic, in the homotopy category, to
N♯FNR(NP ′,NP ) = stPerfR(P, P

′) ∼= DR(P, P
′). This isomorphism gives the map η.

The bar construction B(N ;DR;M) is the (CN♯NR, CN♯NR)-bimodule which is the realization of
the simplicial spectrum with q-simplices∨

(P0,...,Pq)

FN♯NR(N♯NPq,N♯NR) ∧ N♯FNR(NPq−1,NPq) ∧ . . .N♯FNR(NP0,NP1) ∧ N♯NP0.

We can bring the N♯ functors inside the function spectra, since N♯ is monoidal, and then the
composition and evaluation functors provide a map from this simplicial spectrum to the constant
simplicial spectrum at N♯NR, and realizing this map gives the map ϵ.

Checking the triangle identities amounts to the observation that the derived tensor-hom adjunc-
tion in the homotopy category of R-modules is indeed an adjunction. □

Remark 6.9. In the non-equivariant story of Morita invariance one can construct a Morita equiv-
alence from CR to stPerfR via the functor CR → stPerfR which sends the single object in CR to R.

We note that this is not a G-spectral functor as g · R = Rg−1 ̸= R. Thus this approach does not
work in this setting.
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Let QR
∼−→ N♯NR be a cofibrant replacement in the positive complete stable model structure on

orthogonal G-ring spectra. By restriction of scalars we have a spectral functor

ModN♯NR → ModQR

which is a stable equivalence on all morphism spectra. Using this restriction functor, we can lift the
Morita adjunction of Proposition 6.8 to a Morita adjunction from DR = Q stPerfR to CQR. This
has the advantage that now the source is cofibrant and the target is G-pointwise cofibrant.

Lemma 6.10. If R is a cofibrant orthogonal ring spectrum with G-action then there is a weak
equivalence of G-spectral categories CR → CQR.

Proof. We may assume without loss of generality that the cofibrant replacement map QR
∼−→ N♯NR

is an acyclic fibration. Since R is cofibrant, it follows that the unit map R → N♯NR lifts to a ring
map R → QR. By the two-of-three property this map is a weak equivalence, and induces a weak
equivalence of one-object G-spectral categories. □

Proposition 6.11. For any cofibrant ring spectrum with G-action R, there is a Morita map

|Ncyc
• (QFun(EG,QstPerfR))| → |Ncyc

• (R)|

in the homotopy category of spectrum with G-action, which restricts to an isomorphism in the
non-equivariant homotopy category.

Proof. Using Proposition 6.7, Proposition 6.8, and the discussion which follows we have Morita
maps

|Ncyc
• (QFun(EG,Q stPerfR))| → |Ncyc

• (Q stPerfR)|

and

|Ncyc
• (Q stPerfR)| → |Ncyc

• (QR)|

and composition in the homotopy category gives the claimed map. It is an isomorphism of un-
derlying homotopy types because both Morita adjunctions are Morita equivalences on underlying
spectra.

To get to |Ncyc
• (R)| we apply the lemma and Proposition 4.37 to see there is an isomorphism

|Ncyc
• (QR)| ∼= |Ncyc

• (R)| in the homotopy category. □

7. Additivity for equivariant topological Hochschild homology

One of the fundamental theorems of topological Hochschild homology is the additivity theorem,
which mimics Waldhausen’s additivity theorem for algebraic K-theory. In this section we give a ver-
sion of this result for equivariant topological Hochschild homology which is used in the construction
of the Dennis trace in Section 8.

For any 1 ≤ j ≤ n and 1 ≤ ij ≤ kj , there is a map eij : C → SkjC which sends an object c to the
object (Aa,b) in SkjC with Aa,b = c whenever a < ij and b ≥ ij , all other Aa,b the zero objects, and
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all maps are either identities or zero maps. For example, if kj = 3 and ij = 2, e2(c) is the diagram

0 0 c c

0 c c

0 0

0

Using degeneracy maps liberally, we obtain a functor fij : C → Skj
C → S

(n)
k1,...,kn

C. Note that this
functor is evidently equivariant.

Theorem 7.1 (cf. [17, Theorem 7.6]). The maps fij induce an equivalence of spectra with G-action∨
1≤ij≤kj

1≤j≤n

|Ncyc
• (C)| ≃−→ |Ncyc

• (wk0
S
(n)
k1,...,kn

C)|

for any spectral G-category C.

Proof. We need to show that the map in the theorem statement is an equivalence after taking
H-fixed points for all H ≤ G. First, observe that the wedge on the left is a wedge of spectra with
G-action, and hence we are considering the map∨

1≤ij≤kj

1≤j≤n

fHij :
∨

1≤ij≤kj

1≤j≤n

|Ncyc
• (C)|H −→ |Ncyc

• (wk0S
(n)
k1,...,kn

C)|H .

Since fixed points of finite group actions commute with geometric realizations and smash products,
we apply Proposition 4.28, and see that this map is equivalent to∨

1≤ij≤kj

1≤j≤n

|Ncyc
• (CH)| −→ |Ncyc

• ((wk0
S
(n)
k1,...,kn

C)H)|.

Finally, since the wk0S
(n)
k1,...,kn

is a subcategory of a functor category, we can commute the fixed
points inside the iterated S• construction and the map becomes∨

1≤ij≤kj

1≤j≤n

|Ncyc
• (CH)| ≃−→ |Ncyc

• ((wk0
S
(n)
k1,...,kn

(CH)|.

and this is an equivalence by the additivity theorem for the spectral Waldhausen category CH ; see
[17, Theorem 7.6]. □

Remark 7.2. Since the map in Theorem 7.1 is induced by maps of spectral Waldhausen categories
we obtain for free that it is a map of cyclotomic spectra. In particular, it is a map of S1-equivariant
objects in spectra with G-action. Moreover, if H < S1 is any finite subgroup this map remains an
equivalence upon taking H-fixed points since a map of cyclotomic spectra is an equivalence if and
only if it is an equivalence on underlying spectra [11, Proposition 5.5].

By changing universes, we can now deduce additivity for ETHH.
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Corollary 7.3. If C is G-pointwise cofibrant, then the maps IUR∞fij induce an equivalence of
genuine orthogonal G-spectra ∨

1≤ij≤kj

1≤j≤n

ETHH(C) ≃−→ ETHH(wk0
S
(n)
k1,...,kn

C).

Proof. The change of universe functor IUR∞ preserves weak equivalences between cofibrant objects.
If C is G-pointwise cofibrant, both sides of the equivalence in Theorem 7.1 are cofibrant, and
therefore the equivalence is preserved by the change of universe functor. □

We will also need a slightly more refined version of this theorem when G = Cn = ⟨σ | σn⟩
is a cyclic subgroup. We write F∆Cn

for the family of subgroups of Cn × S1 which contains all
subgroups of the form H × 1, 1 × Cm, and K ≤ ∆Cn

, where ∆Cn
is the diagonal copy of Cn in

Cn×S1. The family F∆Cn
determines the F∆Cn

-stable model structure on orthogonal spectra with

(Cn × S1)-action where weak equivalences are those maps which induces isomorphisms on πΓ
∗ for

all subgroups Γ ∈ F∆Cn
[37, Theorem IV.6.5]. We call such a map an F∆Cn

-stable equivalence.

Theorem 7.4. The maps fij induce an F∆Cn
-stable equivalence of spectra with (Cn × S1)-action∨

1≤ij≤kj

1≤j≤n

|Ncyc
• (C)| ≃−→ |Ncyc

• (wk0
S
(n)
k1,...,kn

C)|

for any Cn-spectral category C. In particular, it induces a stable equivalence on fixed points with
respect to any subgroup of Cn × S1 of the form H × 1, 1× Cm, or K ≤ ∆Cn .

Proof. This map is an equivalence of spectra with (Cn × 1)-action by the previous theorem. It is
an equivalence of spectra with (1 × S1)-action by Remark 7.2. Thus it suffices to check that this
map remains an equivalence upon taking fixed points with respect to subgroups of the diagonal
subgroup. We will check that it remains an equivalence after taking ∆Cn -fixed points. Since every
subgroup of the diagonal is also diagonal the case of proper subgroups of ∆Cn

is essentially the
same.

When we take ∆Cn
fixed points we obtain, via Proposition 4.18, the map∨

1≤ij≤kj

1≤j≤n

|Ncyc
• (C, Cσ

−1

)| ≃−→ |Ncyc
• (wk0S

(n)
k1,...,kn

C, (wk0S
(n)
k1,...,kn

C)σ
−1

)|

which, is an equivalence by the twisted additivity theorem [16, Theorem 5.9].
□

8. An equivariant Dennis trace

In this section, we will define a Dennis trace map from equivariant algebraic K-theory to eTHH,
where eTHH(C) = |Ncyc

• (C)|. We first recall the definition of equivariant algebraic K-theory. If R
is a G-ring orthogonal spectrum, we consider the Waldhausen G-category PerfR of perfect right
R-modules, as in Example 5.13.

Definition 8.1 ([34]). The equivariant algebraic K-theory of a G-ring spectrum R is the genuine
orthogonal G-spectrum KG(R) obtained in [34] as the equivariant delooping of the G-infinite loop
space Ω|wS• Fun(EG,PerfR)|.
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We will prove that the underlying spectrum with G-action of KG(R) has a trace map to
eTHH(R) = |Ncyc

• (R)|. More generally,

Theorem 8.2. For any spectral Waldhausen G-category (C, C0) there is an equivariant Dennis trace
map in the homotopy category of orthogonal spectra with G-action

tr : IR
∞

V KG(C0)→ eTHH(QFun(EG, C))
which recovers the usual Dennis trace when G = e.

The construction of this trace map follows the strategy of Section 7 of [17].

Proof. Suppose that (C, C0) is a spectral Waldhausen G-category. To reduce notational clutter we
let (D,D0) = (QFun(EG, C),Fun(EG, C0)). For any object d ∈ D0 there is a unit map

S 1d−→ D(d, d).
Putting these maps together we obtain a map

Σ∞obD0 =
∨

d∈D0

S ∨1d−−→
∨

d∈D0

D(d, d)→ |Ncyc
• (D)|

where the last map is the inclusion of the 0-skeleton. Replacing D with w•S
(n)
• D we obtain, for any

(n+ 1)-tuple (k0; k1, . . . , kn), a map

(8.3) Σ∞obwk0S
(n)
k1,...,kn

D0 → |Ncyc
• (wk0S

(n)
k1,...,kn

D)|

which assembles into a map of multisimplicial orthogonal spectra with G-action.
Using Theorem 7.1, together with the map (8.3), we have a zigzag of orthogonal spectra with

G-action

Σ∞obwk0S
(n)
k1,...,kn

D0 → |Ncyc
• (wk0S

(n)
k1,...,kn

D)| ≃←−
∨

1≤ij≤kj

1≤j≤n

|Ncyc
• (D)|

which assembles into a zigzag of multisimplicial orthogonal spectra with G-action. Note that the
right hand side is just the smash product of |Ncyc

• (D)| with the n-fold smash product of the simplicial
circle: ∨

1≤ij≤kj

1≤j≤n

|Ncyc
• (D)| ∼= (S1

•)
∧n ∧ |Ncyc

• (D)|.

Now fixing n, we take geometric realizations to obtain a zigzag

(8.4) |Σ∞obw•S
(n)
• Fun(EG, C0)| → |Ncyc

• (w•S
(n)
• QFun(EG, C))| ≃←− Σn|Ncyc

• (QFun(EG, C))|

of spectra with G-action. As n varies this is a symmetric spectrum object in orthogonal spectra
with G-action. Such objects are called bispectra in [17]. The salient feature that we need is that
there are two Quillen equivalences

SpGR∞ BispectraG SpGR∞

Σ∞
Obi PbiO

sh

and PbiO ◦ Σ∞
Obi = id. Denoting by SpGsym the category of symmetric spectra with G-action, there

is also a similar adjunction

SpGsym BispectraG.
Σ∞

Sbi
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If we denote by PSO the prolongation functor from symmetric spectra with G-action to orthog-
onal spectra with G-action, we have PbiO ◦ Σ∞

Sbi = PSO. In the zigzag 8.4, as n varies, the
left hand term is Σ∞

SbiK
sym
G (C0), where Ksym

G (C0) denotes the symmetric spectrum with G-action

whose nth space is |obw•S
(n)
• Fun(EG, C0)|. As n varies, the right hand term of the zigzag 8.4 is

Σ∞
Obi|N

cyc
• (QFun(EG, C))|. Applying PbiO, we thus obtain a trace map

PSOK
sym
G (C0)→ |Ncyc

• (QFun(EG, C))|.
By Proposition 2.23 and Remark 2.24 of [34], PSOK

sym
G (C0) ≃ IR

∞

V KG(C0) as orthogonal spectra
with G-action. Therefore, passing to the homotopy category, we obtain a trace map

tr : IR
∞

V KG(C0)→ |Ncyc
• (QFun(EG, C))|.

When G = e, this restricts to the construction of the Dennis trace of [17], and therefore recovers
the usual Dennis trace.

□

Remark 8.5. Suppose that G = Cn, and consider IR∞

V KCn
(C0) as a Cn×S1-spectrum with trivial

S1-action. Let ∆Cn
denote the diagonal subgroup ∆Cn

≤ Cn×Cn ≤ Cn×S1. Since the additivity
map is a ∆Cn

-equivariant equivalence, it follows that the trace map above is ∆Cn
-equivariant.

Corollary 8.6. If R is a cofibrant G-ring spectrum, there is an equivariant Dennis trace map in
the homotopy category of orthogonal spectra with G-action

trR : IR
∞

V KG(R)→ eTHH(R)

which recovers the usual Dennis trace when G = e.

Proof. Take (C, C0) to be the spectral Waldhausen G-category (Q stPerfR,PerfR). Then Theorem
8.2 gives the Dennis trace map KG(R) → |Ncyc

• (QFun(EG,Q stPerfR)| in the homotopy category
of orthogonal spectra with G-action. To get trR : IR∞

V KG(R) → |Ncyc
• (R)|, postcompose with the

map |Ncyc
• (QFun(EG,Q stPerfR)| → |Ncyc

• (R)| = eTHH(R) given by the Morita map of Proposition
6.11. □

We now show how our equivariant Dennis trace recovers the trace map KCn(R)
Cn → THHCn(R)

from [2] for a Cn-ring spectrum R. To do this, recall the category of G-twisted R-modules.

Definition 8.7. Let (C,⊗, 1) be a symmetric monoidal category and let R be a monoid in C with
left G-action. That is, for all g ∈ G there are monoid maps g : R → R in C which are strictly
associative and unital. A G-twisted right R-module is a left G-object M in C together with a right
R-module structure α : M ⊗R→M such that the diagram

M ⊗R M

M ⊗R M

α

g⊗g−1 g

α

commutes. We denote the category of G-twisted right R-modules by Mod(R)G.

Lemma 8.8. Let (C,⊗, 1) be a symmetric monoidal category and let R be a monoid in C with left
G-action. Let Mod(R) denote the category of right R-modules. Then there is an equivalence of
categories between Fun(EG,Mod(R))G and the category Mod(R)G.
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Proof. An object F ∈ Fun(EG,Mod(R)) consists of a collection of R-modules F (g) for all g ∈ G
together with choices of R-module isomorphisms

ϕh,g : F (h)
∼=−→ F (g)

for all g, h. These ϕh,g satisfy the relations ϕg,g = idF (g) and ϕg,k ◦ ϕh,g = ϕh,k for any g, h, k ∈ G.
Specializing to h = 1 we obtain isomorphisms ϕg = ϕ1,g : F (1)

∼=−→ F (g) such that the diagram

(8.9)

F (1)⊗R F (g)⊗R

F (1) F (g)

α1

ϕg⊗1

αg

ϕg

commutes, where αg : F (g)⊗R→ F (g) is the R-action map.

The G-action is given by: (x · F )(g) = F (x−1g)x
−1

with structure morphisms

ϕx
−1

x−1g,x−1h : F (x
−1h)x

−1

→ F (x−1g)x
−1

.

If F is G-fixed that means that for any x, g ∈ G we have an equality of R-modules

F (x−1g)x
−1

= F (g)

and hence, there is an equality of underlying objects in C, F (x−1g) = F (g). Taking x = g, this

yields an equality of R-modules F (1)g
−1

= F (g), hence the diagram

(8.10)

F (1)⊗R F (g)⊗R F (g)

F (1)⊗R F (1)

=

1⊗g−1

αg

=

α1

commutes.

Define a G-action on F (1), in C, by F (1) ϕg−→ F (g) = F (1). We emphasize that this is an action
in C, but not in the category of R-modules. Indeed, we claim that F (1) is a G-twisted R-module.
To see this, we need to show that the diagram

F (1)⊗R F (g)⊗R F (1)⊗R F (1)⊗R

F (1) F (g) F (1) F (1)

ϕg⊗1

α1

=

αg

1⊗g−1

α1

ϕg
= =

commutes. This follows from the commutativity of the diagrams (8.9) and (8.10). Thus the assign-
ment F 7→ F (1) is a function on objects

Fun(EG,Mod(R))G → Mod(R)G

and this is functorial in maps.
We now show that Ψ(F ) = F (1) is an equivalence of categories by constructing an inverse.

Suppose thatM is a G-twisted R-module. Define a functor FM : EG→ Mod(R) by FM (g) =Mg−1

.

The structure map ϕh,g : M
h−1 → Mg−1

is the map in C given by acting by gh−1. This functor is

G-fixed since, by definition, FM (x−1g)x
−1

= FM (1)g
−1

= FM (g).
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Let Φ(M) = FM . Since Ψ(FM )(1) = M , and since ϕ1,g is multiplication by g−1 we see that
Ψ◦Φ is the identity on Mod(R)G. On the other hand, given an arbitrary G-fixed functor B : EG→
Mod(R) observe that there is a natural isomorphism FB(1)

≃−→ B which is given component-wise by
the identity

B(1)g
−1

= B(g−1g)g
−1

= B(g).

Checking this is a well defined natural transformation is straightforward, hence Φ ◦Ψ is naturally
isomorphic to the identity and these functors are mutually inverse equivalences. □

Remark 8.11. If D ⊂ Mod(R) is any full subcategory then the equivalence above restricts to an
equivalence of categories between Fun(EG,D) and G-twisted R-modules which are in objects in D.
This applies, in particular, when R is a ring spectrum and D is the category of perfect R-modules.
Furthermore, in that case, Φ and Ψ are both exact functors of Waldhausen categories, and therefore
this equivalence of categories gives an equivalence on algebraic K-theory.

Theorem 8.12. Let R be a cofibrant Cn-ring spectrum. Upon taking fixed points of the equivariant
Dennis trace map of Corollary 8.6, we obtain the trace map

KCn
(R)Cn → THHCn

(R)

of [2].

Proof. Since the change of universe to a smaller universe is a right adjoint, it commutes with lim-
its, and thus KCn(R)

Cn = (IR∞

V KCn(R))
Cn . Considering IR∞

V KCn(R) as a Cn × S1-spectrum

with trivial S1-action, we have (IR∞

V KCn(R))
Cn = (IR∞

V KCn(R))
∆Cn , which is equivalent to

(PSOK
sym
Cn

(R))∆Cn . The prolongation functor PbiO commutes with fixed points of finite group
actions (one can check this using the formula above Proposition A.7 in [17]), therefore the trace
map on the fixed points comes from the zigzag

|Σ∞obw•S
(m)
• Fun(ECn,PerfR)|∆Cn |Ncyc

• (w•S
(m)
• QFun(ECn, Q stPerfR))|∆Cn

(Σm|Ncyc
• (QFun(ECn, Q stPerfR))|)∆Cn

.

≃

Identifying the ∆Cn
-fixed points of the cyclic bar construction with the twisted cyclic bar con-

struction as in Proposition 4.18, and commuting the fixed points past the suspension spectrum and
the w•S•-construction, we obtain

|Σ∞obw•S
(m)
• (Fun(ECn,PerfR)

Cn)| |Ncyc
•

,Cn(w•S
(m)
• QFun(ECn, Q stPerfR))|

Σm|Ncyc
•

,Cn(QFun(ECn, Q stPerfR))|.

≃

As in Proposition 6.11, the Morita map |Ncyc
• (QFun(ECn, QstPerfR))| → |Ncyc

• (R)| is an equiv-
alence of spectra, and the same is true for the twisted cyclic bar constructions. Therefore we can
replace QFun(ECn, Q stPerfR) above with R. Identifying Fun(ECn,PerfR)

Cn with the category
Perf(R)Cn

of Cn-twisted perfect R-modules as in Lemma 8.8 or Proposition 4.8 of [40], we obtain

|Σ∞obw•S
(m)
• (Perf(R)Cn)| → |Ncyc

•
,Cn(w•S

(m)
• QFun(ECn, Q stPerfR)|

≃←− Σm|Ncyc
•

,Cn(R))|
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Applying prolongation to this zigzag recovers the twisted Dennis trace

K(Perf(R)Cn
)→ |Ncyc

•
,Cn(R)|

of Definition 6.16 of [16]. This is how the trace map KCn
(R)Cn → THHCn

(R) in [2] was defined,
which concludes the proof.

□

Interestingly enough, if R is a genuine G-spectrum the trace map of Corollary 8.6 does not refine
in general to a trace map of genuine G-spectra KG(R) → ETHH(R). Note that our trace map of
spectra with G-action in the homotopy category gives an honest trace map from the cofibrant re-
placement (IR

∞

V KG(R))
c to the cyclic bar construction, and therefore (after changing to a complete

universe) a trace map

(8.13) IUR∞(IR
∞

V KG(R))
c = IUV IVR∞(IR

∞

V KG(R))
c → ETHH(R)

but the map

IVR∞(IR
∞

V KG(R))
c → IVR∞IR

∞

V KG(R) = KG(R)

does not admit a section, as the following example shows.

Example 8.14. We consider an example where the map of genuine G-spectra

ϵ : IVR∞((IR
∞

V KG(R))
c)→ KG(R)

cannot admit a section. We will do this by showing that the map of C2-Mackey functors induced
by ϵ admits no section. Let G = C2 and R = F4, with its standard Galois action.

First, note that because change of universe preserves equivalences of underlying spectra we have
that ϵ is an underlying equivalence. Thus any section of ϵ would necessarily be an underlying
equivalence. We claim there is no map of C2-spectra which runs anti-parallel to ϵ and is an
underlying equivalence.

To prove this claim, we compute homotopy Mackey functors. By [40, Theorem 1.2 (4)] we have

πC2
0 (KC2

(F4)) ∼= K0(F2) ∼= Z
πe
0(KC2(F4)) ∼= K0(F4) ∼= Z

and this is precisely the coefficient system M considered in Example 2.27. By Proposition 2.28
we can compute the source of ϵ to be the Mackey functor j!(M) from Example 2.27. On π0, any
section of ϵ would be a map of Mackey functors of the form

Z Z2

Z Z

f

1 (1,2)2

±1

i2

where f is some group homomorphism and i2 : Z → Z2 is the inclusion of the second component.
But this would require f(2) = (0,±1), which is impossible since 1 is not 2-divisible in Z.

Remark 8.15. As noted in Remark 2.21, there is a map

KG(R)
G ∼= (IR

∞

V KG(R)
c)G → (IVR∞(IR

∞

V KG(R))
c)G

in the homotopy category of spectra which is the inclusion of a retract. Extending along the map
(8.13), we obtain a trace map

KG(R)
G → ETHH(R)G
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on the level of fixed point spectra for any genuine cofibrant G-ring spectrum.

We end with applications of the equivariant Dennis trace to equivariant A-theory.

8.1. Applications to equivariant A-theory. We now show how our trace map gives a map from
the fixed points of equivariant A-theory to the free loop space. Malkiewich–Merling [34] define
two versions of equivariant A-theory: coarse equivariant A-theory Acoarse

G (X), whose fixed points
are related to bivariant A-theory, and genuine equivariant A-theory AG(X), which is related to
the equivariant parametrized stable h-cobordism theorem. In forthcoming work of the first-named
author, Calle, Chedalavada, and Mejia, it is shown that the coarse A-theory spectrum of a G-space
X is equivalent to the equivariant algebraic K-theory of Σ∞

G (ΩX)+.

Proposition 8.16 ([15]). For any finite group G and any G-connected based G-space X there is
an isomorphism in the equivariant stable homotopy category

Acoarse
G (X) ∼= KG(Σ

∞
G (ΩX)+).

In particular, our equivariant Dennis trace yields a map in the homotopy category of spectra
with G-action

IR
∞

V Acoarse
G (X)→ eTHH(Σ∞(ΩX)+) ≃ Σ∞(LX)+.

Non-equivariantly this map plays an important role in computations of A-theory, as well as the
proof of a piece of the parametrized stable h-cobordism theorem [45, 14]. Taking fixed points, we
obtain for every H ≤ G a map in the homotopy category of spectra

(Acoarse
G (X))H = (IR

∞

V Acoarse
G (X))H → (Σ∞(LX)+)

H = Σ∞(LXH)+.

In particular, since the fixed points of coarse A-theory give bivariant A-theory, we obtain a trace
map from bivariant A-theory to the free loop space.

With an eye toward the equivariant parametrized stable h-cobordism theorem, it is natural to
wonder about such a map for genuine A-theory. In [34], it is shown that there is a comparison map

AG(X)→ Acoarse
G (X).

On fixed points, postcomposition with our Dennis trace yields

AG(X)H → Σ∞(LXH)+.

To summarize,

Proposition 8.17. Let H ≤ G. The equivariant Dennis trace map of Theorem 8.6 gives trace
maps

(Acoarse
G (X))H → Σ∞(LXH)+ and AG(X)H → Σ∞(LXH)+

in the homotopy category of spectra.

Remark 8.18. We conjecture that the trace map AG(X)H → Σ∞(LXH)+ arises from a genuine
equivariant trace map AG(X) → ETHH(Σ∞

G (ΩX)+) ≃ Σ∞
G×S1(LX)+. Indeed, by the tom Dieck

splitting, for any H ≤ G,

(Σ∞
G×S1(LX)+)

H ≃
∨

(H′)≤H

Σ∞
+ (LX)H

′

hWH(H′)

whose H ′ = H summand is Σ∞(LX)H+ = Σ∞(LXH)+.
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