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Preface 

The golden age of mathematics-that was not 
the age of Euclid, it is ours. 

C.J. KEYSER 

This time of writing is the hundredth anniversary of the publication (1892) 
of Poincare's first note on topology, which arguably marks the beginning 
of the subject of algebraic, or "combinatorial," topology. There was earlier 
scattered work by Euler, Listing (who coined the word "topology"), Mobius 
and his band, Riemann, Klein, and Betti. Indeed, even as early as 1679, Leibniz 
indicated the desirability of creating a geometry of the topological type. The 
establishment of topology (or "analysis situs" as it was often called at the 
time) as a coherent theory, however, belongs to Poincare. 

Curiously, the beginning of general topology, also called "point set 
topology," dates fourteen years later when Frechet published the first abstract 
treatment of the subject in 1906. 

Since the beginning of time, or at least the era of Archimedes, smooth 
manifolds (curves, surfaces, mechanical configurations, the universe) have 
been a central focus in mathematics. They have always been at the core of 
interest in topology. After the seminal work of Milnor, Smale, and many 
others, in the last half of this century, the topological aspects of smooth 
manifolds, as distinct from the differential geometric aspects, became a subject 
in its own right. While the major portion of this book is devoted to algebraic 
topology, I attempt to give the reader some glimpses into the beautiful and 
important realm of smooth manifolds along the way, and to instill the tenet 
that the algebraic tools are primarily intended for the understanding of the 
geometric world. 

This book is intended as a textbook for a beginning (first-year graduate) 
course in algebraic topology with a strong flavoring of smooth manifold 
theory. The choice of topics represents the ideal (to the author) course. 
In practice, however, most such courses would omit many of the subjects in 
the book. I would expect that most such courses would assume previous 
knowledge of general topology and so would skip that chapter, or be limited 

v 



VI Preface 

to a brief run-through of the more important parts of it. The section on 
homotopy should be covered, however, at some point. I do not go deeply 
into general topology, but I do believe that I cover the subject as completely 
as a mathematics student needs unless he or she intends to specialize in that 
area. 

It is hoped that at least the introductory parts of the chapter on 
differentiable manifolds will be covered. The first section on the Implicit 
Function Theorem might best be consigned to individual reading. In practice, 
however, I expect that chapter to be skipped in many cases with that material 
assumed covered in another course in differential geometry, ideally concurrent. 
With that possibility in mind, the book was structured so that that material 
is not essential to the remainder of the book. Those results that use the 
methods of smooth manifolds and that are crucial to other parts of the 
book are given separate treatment by other methods. Such duplication is 
not so large as to be consumptive of time, and, in any case, is desirable from 
a pedagogic standpoint. Even the material on differential forms and 
de Rham's Theorem in the chapter on cohomology could be omitted with 
little impact on the other parts of the book. That would be a great shame, 
however, since that material is of such interest on its own part as well as 
serving as a motivation for the introduction of cohomology. The section on 
the de Rham theory of cpn could, however, best be left to assigned reading. 
Perhaps the main use of the material on differentiable manifolds is its impact 
on examples and applications of algebraic topology. 

As is common practice, the starred sections are those that could be omitted 
with minimal impact on other nonstarred material, but the starring should 
not be taken as a recommendation for that aim. In some cases, the starred 
sections make more demands on mathematical maturity than the others and 
may contain proofs that are more sketchy than those elsewhere. 

This book is not intended as a source book. There is no attempt to present 
material in the most general form, unless that entails no expense of time or 
clarity. Exceptions are cases, such as the proof of de Rham's Theorem, where 
generality actually improves both efficiency and clarity. Treatment of esoteric 
byways is inappropriate(tn textbooks and introductory courses. Students are 
unlikely to retain such material, and less likely to ever need it, if, indeed, 
they absorb it in the first place. 

As mentioned, some important results are given more than one proof, as 
much for pedagogic reasons as for maintaining accessibility of results essential 
to algebraic topology for those who choose to skip the geometric treatments 
of those results. The Fundamental Theorem of Algebra is given no less than 
four topological proofs (in illustration of various results). In places where 
choice is necessary between competing approaches to a given topic, preference 
has been given to the one that leads to the best understanding and intuition. 

In the case of homology theory, I first introduce singular homology and 
derive its simpler properties. Then the axioms of Eilenberg, Steenrod, and 
Milnor are introduced and used exclusively to derive the computation of 
the homology groups of cell complexes. I believe that doing this from the 
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axioms, without recourse to singular homology, leads to a better grasp of the 
functorial nature of the subject. (It also provides a uniqueness proof gratis.) 
This also leads quickly to the major applications of homology theory. After 
that point, the difficult and technical parts of showing that singular homology 
satisfies the axioms are dealt with. 

Cohomology is introduced by first treating differential forms on manifolds, 
introducing the de Rham cohomology and then linking it to singular 
homology. This leads naturally to singular cohomology. After development 
of the simple properties of singular cohomology, de Rham cohomology is 
returned to and de Rham's famous theorem is proved. (This is one place 
where treatment of a result in generality, for all differentiable manifolds and 
not just compact ones, actually provides a simpler and cleaner approach.) 

Appendix B contains brief background material on "naive" set theory. 
The other appendices contain ancillary material referred to in the main text, 
usually in reference to an inessential matter. 

There is much more material in this book than can be covered in a one-year 
course. Indeed, if everything is covered, there is enough for a two-year course. 
As a suggestion for a one-year course, one could start with Chapter II, 
assigning Section 1 as individual reading and then covering Sections 2 through 
11. Then pick up Section 14 of Chapter I and continue with Chapter III, 
Sections 1 through 8, and possibly Section 9. Then take Chapter IV except 
for Section 12 and perhaps omitting some details about CW-complexes. Then 
cover Chapter V except for the last three sections. Finally, Chapter VI can 
be covered through Section 10. If there is time, coverage of Hopf's Theorem 
in Section 11 of Chapter V is recommended. Alternatively to the coverage 
of Chapter VI, one could cover as much of Chapter VII as is possible, 
particularly if there is not sufficient time to reach the duality theorems of 
Chapter VI. 

Although I do make occasional historical remarks, I make no attempt at 
thoroughness in that direction. An excellent history of the subject can be 
found in Dieudonne [1]. That work is, in fact, much more than a history and 
deserves to be in every topologist's library. 

Most sections of the book end with a group of problems, which are 
exercises for the reader. Some are harder, or require more "maturity," than 
others and those are marked with a •. Problems marked with a 4 are those 
whose results are used elsewhere in the main text of the book, explicitly or 
implicitly. 

Glen E. Bredon 
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CHAPTER I 

General Topology 

A round man cannot be expected to fit in a 
square hole right away. He must have time to 

modify his shape. 

MARK TWAIN 

1. Metric Spaces 

We are all familiar with the notion of distance in euclidean n-space: If x and 
yare points in Rn then 

dist(x, y) = (itl (Xi _ y;)2) 1/2. 
This notion of distance permits the definition of continuity of functions from 
one euclidean space to another by the usual E~b definition: 

f: Rn -4 Rk is continuous at XERn if, given E > 0, 

315 > 0'3 dist(x, y) < 15 => dist(f(x),f(y)) < E. 

Although the spaces of most interest to us in this book are subsets of euclidean 
spaces, it is useful to generalize the notion of "space" to get away from such 
a hypothesis, because it would be very complicated to try to verify that spaces 
we construct are always of this type. In topology, the central notion is that 
of continuity. Thus it would usually suffice for us to treat "spaces" for which 
we can give a workable definition of continuity. 

We could define continuity as above for any "space" which has a suitable 
notion of distance. Such spaces are called "metric spaces." 

1.1. Definition. A metric space is a set X together with a function 

distX x X -4R, 

called a metric, such that the following three laws are satisfied: 

(1) (positivity) dist(x,y) z 0 with equality <=> x = y; 
(2) (symmetry) dist(x, y) = dist(y, x); and 
(3) (triangle inequality) dist(x, z) ::;; dist(x, y) + dist(y, z). 
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In a metric space X we define the "E-ball," E > 0, about a point XEX to be 

I B.(x) = {YEXldist(x,y) < E}. I 
Also, a subset U c X is said to be "open" if, for each point XE U, there is 

an E-ball about x completely contained in U. A subset is said to be "closed" 
if its complement is open. If YEB.(x) and if ~ = E - dist(x, y) then B6(Y) c B.(x) 
by the triangle inequality. This shows that all E-balls are open sets. 

It turns out that, for metric spaces, continuity can be expressed completely 
in terms of open sets: 

1.2. Proposition. A function f: X -+ Y between metric spaces is continuous ~ 
f-1(U) is open in X for each open subset U of Y. 

PROOF. If f is continuous and U c Y is open and f(X)EU then there is an 
E > 0 such that B.(f(x)) cU. By continuity, there is a ~ > 0 such that f maps 
the ~-ball about x into B.(f(x)). This means that B6(X) c f -1(U). This implies 
that f- 1(U) is open. 

Conversely, suppose f(x) = y and that E > 0 is given. By hypothesis, 
f-1(B.(y)) is open and contains x. Therefore, by the definition of an open 
set, there is a ~ > 0 such that B6(X) c f -1(B.(y)). It follows that if dist(x, x') < ~ 
then f(X')EB.(y), and so dist(f(x),f(x')) < E, proving continuity in the E-~ 
~~ 0 

The only examples of metric spaces we have discussed are euclidean spaces 
and, of course, subsets of those. Even with those, however, there are other 
reasonable metrics: 

n 

dist2 (x,y) = L IXi - yd, 
i= 1 

dist3 (x, y) = max(lxi - yd)· 

It is not hard to verify, from the following proposition, that these three 
metrics give the same open sets, and so behave identically with respect to 
continuity (for maps into or out of them). 

1.3. Proposition. If dist l and dist2 are metrics on the same set X which satisfy 
the hypothesis that for any point XEX and E > 0 there is a ~ > 0 such that 

dist1 (x, y) < ~ => dist2 (x, y) < E, 
and 

then these metrics define the same open sets in X. 

PROOF. The proof is an easy exercise in the definition of open sets and is 
left to the reader. 0 



2. Topological Spaces 3 

PROBLEMS 

1. Consider the set X of all continuous real valued functions on [0,1]. Show that 

dist(j, g) = f [J(x) - g(x)[ dx 

defines a metric on X. Is this still the case if continuity is weakened to integrability? 

2. -9- If X is a metric space and Xo is a given point in X, show that the function 
J: X --+ R given by J(x) = dist(x, xo) is continuous. 

3. -9-If A is a subset of a metric space X then define a real valued function d on X 
by d(x) = dist(x,A) = inf{dist(x,Y)[YEA}. Show that d is continuous. (Hint: Use the 
triangle inequality to show that [d(x j ) - d(x 2 )[ :::; dist(x j ,x2)') 

2. Topological Spaces 

Although most of the spaces that will interest us in this book are metric 
spaces, or can be given the structure of metric spaces, we will usually only 
care about continuity of mappings and not the metrics themselves. Since 
continuity can be expressed in terms of open sets alone, and since some 
constructions of spaces of interest to us do not easily yield to construction 
of metrics on them, it is very useful to discard the idea of metrics and to 
abstract the basic properties of open sets needed to talk about continuity. 
This leads us to the notion of a general "topological space." 

2.1. Definition. A topological space is a set X together with a collection of 
subsets of X called "open" sets such that: 

(1) the intersection of two open sets is open; 
(2) the union of any collection of open sets is open; and 
(3) the empty set 0 and whole space X are open. 

Additionally, a subset C c X is called "closed" if its complement X - C is 
open. 

Topological spaces are much more general than metric spaces and the 
range of difference between them and metric spaces is much wider than that 
between metric spaces and subspaces of euclidean space. For example, it is 
possible to talk about convergence of sequences of points in metric spaces 
with little difference from sequences of real numbers. Continuity of functions 
can be described in terms of convergence of sequences in metric spaces. One 
can also talk about convergence of sequences in general topological spaces 
but that no longer is adequate to describe continuity (as we shall see later). 
Thus it is necessary to exercise care in developing the theory of general 
topological spaces. We now begin that development, starting with some 
further basic definitions. 
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2.2. Definition. If X and Yare topological spaces and f: X --+ Y is a function, 
then f is said to be continuous if f -l(U) is open for each open set U e Y. 
A map is a continuous function. 

Since closed sets are just the complements of open sets and since inverse 
images preserve complements (i.e., f-1(y - B) = X - f- 1(B)), it follows that 
a function f: X --+ Y is continuous <=> f - l(F) is closed for each closed set 
Fe Y. 

2.3. Definition. If X is a topological space and XEX then a set N is called 
a neighborhood of x in X if there is an open set U e N with XEU. 

Note that a neighborhood is not necessarily an open set, and, even though 
one usually thinks of a neighborhood as "small," it need not be: the entire 
space X is a neighborhood of each of its points. 

Note that the intersection of any two neighborhoods of x in X is a 
neighborhood of x, which follows from the axiom that the intersection of 
two open sets is open. 

The intuitive notion of "smallness" of a neighborhood is given by the 
concept of a neighborhood basis at a point: 

2.4. Definition. If X is a topological space and XEX then a collection Bx of 
subsets of X containing x is called a neighborhood basis at x in X if each 
neighborhood of x in X contains some element of Bx and each element of Bx 
is a neighborhood of x. 

Neighborhood bases are sometimes convenient in proving functions to be 
continuous: 

2.5. Definition. A function f: X --+ Y between topological spaces is said to 
be continuous at x, where XEX, if, given any neighborhood N of f(x) in Y, 
there is a neighborhood M of x in X such that f(M) e N. 

Since f(f-1(N)) eN, this is the same as saying that f-1(N) is a 
neighborhood of x, for each neighborhood N of f(x). Clearly, this need only 
be checked for N belonging to some neighborhood basis at f(x). 

2.6. Proposition. A function f: X --+ Y between topological spaces is 
continuous<=> it is continuous at each point XEX. 

PROOF. Suppose that f is continuous, i.e., that f- 1(U) is open for each open 
U e Y. Let N be a neighborhood of f(x) in Y and let U be an open set such 
that f(X)E U e N as guaranteed by the definition of neighborhood. Then 
xEf-1(U)ef-1(N) and f-1(U) is open. It follows that f-1(N) is a 
neighborhood of x. Thus f is continuous at x. 
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Conversely, suppose that 1 is continuous at each point and let U c Y be 
an open set. For any xE/- 1(U), 1-1(U) is then a neighborhood of x. Thus 
there exists an open set Vx in X with XE VX c 1 -l(U). Hence 1 -l(U) is the 
union of the sets Vx for x ranging over 1 -l(U). Since the union of any 
collection of open sets is open, it follows that 1 -l(U) is open. But U was an 
arbitrary open set in Y and, consequently, 1 is continuous. 0 

2.7. Definition. A function I: X -+ Y between topological spaces is called a 
homeomorphism if 1 - 1: Y -+ X exists (i.e., 1 is one-one and onto) and 
both 1 and 1- 1 are continuous. The notation X ~ Y means that X is 
homeomorphic to Y. 

Two topological spaces are, then, homeomorphic if there is a one-one 
correspondence between them as sets which also makes the open sets 
correspond. Homeomorphic spaces are considered as essentially the same. 
One of the main problems in topology is to find methods of deciding when 
two spaces are homeomorphic or not. 

To describe a topological space it is not necessary to describe completely 
the open sets. This can often be done more simply using the notion of a 
"basis" for the topology: 

2.8. Definition. If X is a topological space and B is a collection of subsets 
of X, then B is called a basis for the topology of X if the open sets are 
precisely the unions of members of B. (In particular, the members of Bare 
open.) A collection S of subsets of X is called a subbasis for the topology of 
X if the set B of finite intersections of members of S is a basis. 

Note that any collection S of subsets of any set X is a subbasis for some 
topology on X, namely, the topology for which the open sets are the arbitrary 
unions of the finite intersections of members of S. (The empty set and whole 
set X are taken care of by the convention that an intersection of an empty 
collection of sets is the whole set and the union of an empty collection of 
sets is the empty set.) Thus, to define a topology, it suffices to specify some 
collection of sets as a sub basis. The resulting topology is called the topology 
"generated" by this subbasis. 

In a metric space the collection of E-balls, for all E > 0, is a basis, So is 
the collection of E-balls for E = 1, t, ~, .... 

Here are some examples of topological spaces: 

1. (Trivial topology.) Any set X with only the empty set and the whole set 
X as open. 

2. (Discrete topology.) Any set X with all subsets being open. 
3. Any set X with open sets being those subsets of X whose complements 

are finite, together with the empty set. (That is, the closed sets are finite 
sets and X itself.) 
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4. X = w u {w} with the open sets being all subsets of w together with 
complements of finite sets. (Here, w denotes the set of natural numbers.) 

5. Let X be any partially ordered set. For aEX consider the one-sided 
intervals {fJEXla < fJ} and {fJEXla > fJ}. The "order topology" on X is 
the topology generated by these intervals. The "strong order topology" is 
the topology generated by these intervals together with the complements 
of finite sets. 

6. Let X = I x I where I is the unit interval [0, 1]. Give this the "dictionary 
ordering," i.e., (x, y) < (s, t) ¢> either x < s or (x = sand y < t). Let X have 
the order topology for this ordering. 

7. Let X be the real line but with the topology generated by the "half open 
intervals" [x, y). This is called the "half open interval topology." 

8. Let X = Q u {Q} be the set of ordinal numbers up to and including the 
least uncountable ordinal Q; see Theorem B.28. Give it the order topology. 

2.9. Definition. A topological space is said to be first countable if each point 
has a countable neighborhood basis. 

2.10. Definition. A topological space is said to be second countable if its 
topology has a countable basis. 

Note that all metric spaces are first countable. Some metric spaces are 
not second countable, e.g., the space consisting of any uncountable set with 
the metric dist(x, y) = 1 if x #- y, and dist(x, x) = ° (which yields the discrete 
topology). 

Euclidean spaces are second countable since the E-balls, with E rational, 
about the points with all rational coordinates, is easily seen to be a basis. 

2.11. Definition. A sequence f1' f2' ... of functions from a topological space 
X to a metric space Y is said to converge uniformly to a function f: X -+ Y 
if, for each E > 0, there is a number n such that i> n = dist(fJx), f(x)) < E for 
all XEX. 

2.12. Theorem. If a sequence f1' f2, ... ' of continuous functions from a 
topological space X to a metric space Y converges uniformly to a function 
f: X -+ Y, then f is continuous. 

PROOF. Given E > 0, let no be such that 

n ~ no = dist(f(x),fn(x)) < E/3 for all XEX. 

Given a point xo, the continuity of fna implies that there is a neighborhood 
N ofxo such that XEN = dist(fna(x),fna(xO)) < f./3. Thus,for any XEN we have 

dist(f(x), f(x o)) ~ dist(f(x), fna(x)) + dist(fna(x), fna(xo)) + dist(fna(xO)' f(xo)) 

<~+~+~=~ 0 
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2.13. Definition. A function f: X ~ Y between topological spaces is said to 
be open if f(U) is open in Y for all open U eX. It is said to be closed if f(C) 
is closed in Y for all closed C c X. 

2.14. Definition. If X is a set and some condition is given on subsets of X 
which mayor may not hold for any particular subset, then if there is a 
topology T whose open sets satisfy the condition, and such that, for any 
topology T whose open sets satisfy the condition, then the T-open sets are 
also T -open (i.e., T c T), then T is called the smallest (or weakest or coarsest) 
topology satisfying the condition. If, instead, for any topology T whose open 
sets satisfy the condition, any T -open sets are also T-open, then T is called 
the largest (or strongest or finest) topology satisfying the condition. 

The terms "weak" and "strong" are the oldest historically. However, they 
are used in some places to mean the opposite of the above meaning in general 
topology. Even some topology books disagree on their meaning. For this 
reason, the terms "coarse" and "fine" were introduced to rectify the confusion. 
They are metaphors for thinking of open sets as grains in a rock (the fewer 
grains, the coarser the rock). The terms "smallest" and "largest" were 
introduced for the same reason, and they are mathematically more precise 
as applied to the topologies as collections of open sets. We prefer the latter 
terms in general. 

For example (see Section 13), if f: X ~ Y is a function and X is a topological 
space, then there is a largest topology on Y making f continuous, namely 
that topology having open sets {V c Ylf- 1(V) is open in X}. There is also 
a smallest such topology, the trivial topology, but it is not very interesting. 
Also see Sections 8 and 13 for other examples of this concept. 

If a topology is the largest one satisfying some given condition then usually 
(in fact, always) there is another condition for which the given topology is 
the smallest one satisfying the new condition. For example, the topology on 
Y, in the example ofthe previous paragraph, is the smallest topology satisfying 
the condition "for all spaces Z and all functions g: Y ~ Z, go f continuous => g 
continuous." Thus it is meaningless to argue whether a given topology is 
"weak" or "strong," etc., unless the defining condition is specified. 

PROBLEMS 

1. -9- Show that in a topological space X: 
(a) the union of two closed sets is closed; 
(b) the intersection of any collection of closed sets is closed; and 
(c) the empty set 0 and whole space X are closed. 

2. Consider the topology on the real line generated by the half open intervals [x, y) 
together with those of the form (x, y]. Show that this coincides with the discrete 
topology. 

3. Show that the space Q u {Q} in the order topology cannot be given a metric 
consistent with its topology. 
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4. -<r If f: X -+ Y is a function between topological spaces, and f -l(U) is open for 
each open U in some subbasis for the topology of Y, show that f is continuous. 

5. -<r Suppose that S is a set and that we are given, for each XES, a collection N(x) 
of subsets of S satisfying: 
(1) NEN(x)~XEN; 
(2) N,MEN(x) => 3PEN(x)3P c N nM; and 
(3) XES => N(x) =f. 0. 
Then show that there is a unique topology on S such that N(x) is a neighborhood 
basis at X, for each XES. (Thus a topology can be defined by the specification of 
such a collection of neighborhoods at each point.) 

3. Subspaces 

There are several techniques for producing new topological spaces out of old 
ones. The simplest is the passing to a "subspace," which is merely an arbitrary 
subset inheriting a topology from the mother space in a quite natural 
way. 

3.1. Definition. If X is a topological space and A c X then the relative 
topology or the subspace topology on A is the collection of intersections of 
A with open sets of X. With this topology, A is called a subspace of X. 

The following propositions are all easy consequences of the definitions 
and the proofs are left to the reader: 

3.2. Proposition. If Y is a subspace of X then A c Y is closed in Y ¢> A = 
Y n B for some closed subset B of X. 0 

3.3. Proposition. If X is a topological space and A c X then there is a largest 
open set U with U c A. This set is called the "interior" of A in X and is 
~~~~W 0 

3.4. Proposition. If X is a topological space and A c X then there is a smallest 
closed set F with A c F c X. This set is called the "closure" of A in X and 
~~~~X 0 

If we need to specify the space in which a closure is taken (the X), we 
shall use the notation AX. A consequence of the following fact is that this 
notation need not be used very often: 

3.5. Proposition. If A eYe X then A Y = AX n Y. Thus, if Y is closed in X 
then AY = .iP. 0 

3.6. Definition. If X is a topological space and A c X then the boundary or 
frontier of A is defined to be oA = bdry(A) = An X-A. 
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3.7. Proposition. If Y c X then the set of intersections of Y with members of 
a basis of X is a basis of the relative topology of Y. D 

3.8. Proposition. If X, Y, Z are topological spaces and Y is a subspace of X 
and Z is a subspace of Y, then Z is a subspace of X. D 

3.9. Proposition. If X is a metric space and A c X then A coincides with the 
set of limits in X of sequences of points in A. 

PROOF. If x is the limit of a sequence of points in A then any open set about 
x contains a point of A. Thus x~int(X - A). Since X - int(X - A) = A (see 
the problems at the end of this section), xEA. Conversely, if xEA and n > 0 
is any integer, then B1/n(x) must contain a point in A because otherwise x 
would lie in int(X - A). Take one such point and name it Xn. Then it follows 
immediately that x = lim(xn) is a limit of a sequence of points in A. D 

3.10. Definition. A subset A of a topological space X is called dense in X if 
A = X. A subset A is said to be nowhere dense in X if int(A) = 0. 

PROBLEMS 

1. -9- Let X be a topological space and A, B c X. 
(a) Show that 

int(A) = {aeX13U open3aeU c A} 
and 

A = {xeXI'v'U open with xeU, UnA #- 0}. 

(b) Show that A is open ¢> A = int(A) and that A is closed ¢> A = A. 
(c) Show that X - int(A) = X - A and that X - A = int(X - A). 

(d) Show that int(AnB) = int(A)nint(B) and that AuB=AuB. 
(e) Show that 

nint(A«):::;) int(nAJ = int(nint(A«)), 

U A« c closure( U A«) = closure ( U A«), 

Uint(A«) c int(UA«), 

n A« :::;) closure( n A«), 

and give examples showing that these inclusions need not be equalities. 
(f) Show A c B => [A c Band int(A) c int(B)]. 

2. -9- For A c X, a t~ological space, show that X is the disjoint union of int(A), 
bdry(A), and X-A. 

3. -\>- Show that a metric space is second countable ¢> it has a countable dense set 
(a countable set whose closure is the whole space). (Such a metric space is called 
"separable.") 
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4. -¢- Show that the union of two nowhere dense sets is nowhere dense. 

5. A topological space X is said to be "irreducible" if, whenever X = F u G with F 
and G closed, then either X = F or X = G. A subspace is irreducible if it is so in 
the subspace topology. Show that if X is irreducible and U c X is open, then U 
is irreducible. 

6. A "Zariski space" is a topological space with the property that every descending 
chain F 1 ::::> F 2 ::::> F 3 ::::> ••• of closed sets is eventually constant. Show that every 
Zariski space can be expressed as a finite union X = Y1 U Y2 U ... U Yn where the 
Yi are closed and irreducible and Yi ¢ Yj for i "# j. Also show that this decomposition 
is unique up to order. 

7. Let X be the real line with the topology for which the open sets are 0 together 
with the complements of finite subsets. Show that X is an irreducible Zariski space. 

8. -¢- Let X = Au B, where A and B are closed. Let f: X --+ Y be a function. If the 
restrictions of f to A and B are both continuous then show that f is continuous. 

4. Connectivity and Components 

In a naively intuitive sense, a connected space is a space in which one can 
move from any point to any other point without jumps. Another way to 
view it intuitively is as the idea that the space does not fall into two or 
more pieces which are separated from one another. There are two ways 
of making these crude ideas precise and both of them will be important 
to us. One of them, called "connectivity," is the subject of this section, 
while the other, called "arcwise connectivity," is taken up in the problems 
at the end. 

4.1. Definition. A topological space X is called connected if it is not the 
disjoint union of two nonempty open subsets. 

4.2. Definition. A subset A of a topological space X is called clopen if it is 
both open and closed in X. 

4.3. Proposition. A topological space X is connected <=> its only clopen subsets 
are X and 0· D 

4.4. Definition. A discrete valued map is a map (continuous) from a 
topological space X to a discrete space D. 

4.5. Proposition. A topological space X is connected <=> every discrete valued 
map on X is constant. 

PROOF. If X is connected and d: X --+ D is a discrete valued map and if YED 
is in the range of d, then d- 1(y) is clopen and nonempty and so must equal 
X, and so d is constant with only value y. 



4. Connectivity and Components 11 

Conversely, if X is not connected then X = U u V for some disjoint clopen 
sets U and V. Then the map d: X ~ {O, 1} which is 0 on U and is 1 on V is 
a nonconstant discrete valued map. D 

4.6. Proposition. Iff: X ~ Y is continuous and X is connected, then f(X) is 
connected. 

PROOF. Let d:f(X)~D be a discrete valued map. Then do f is a discrete 
valued map on X and hence must be constant. But that implies that d is 
constant, and hence that f(X) is connected. D 

4.7. Proposition. If {YJ is a collection of connected sets in a topological space 
X and if no two of the Yi are disjoint, then U Yi is connected. 

PROOF. Let d: U Yi ~ D be a discrete valued map. Let p, q be any two points 
in U Yi• Suppose pE Yi and qE Yj and rE Yin Yj • Then, since d must be constant 
on each Yi, we have d(P) = d(r) = d(q). But p and q were completely arbitrary. 
Thus d is constant. D 

4.8. Corollary. The relation "p and q belong to a connected subset of X" is 
an equivalence relation. D 

4.9. Definition. The equivalence classes of the equivalence relation in 
Corollary 4.8 are called the components of X. 

4.10. Proposition. Components of space X are connected and closed. Each 
connected set is contained in a component. (Thus the components are "maximal 
connected subsets.") Components are either equal or disjoint, and fill out X. 

PROOF. The last statement follows from the fact that the components are 
equivalence classes of an equivalence relation. By definition, the component 
of X containing p is the union of all connected sets containing p, and that 
is connected by Proposition 4.7. This also implies that a connected set lies 
in a component. That a component is closed follows from the fact that the 
closure of a connected set is connected (left to the reader in the problems 
below). D 

4.11. Proposition. The statement "d(P) = d(q) for every discrete valued map d 
on X" is an equivalence relation. D 

4.12. Definition. The equivalence classes of the relation in Proposition 4.11 
are called the quasi-components of X. 

4.13. Proposition. Quasi-components of a space X are closed. Each connected 
set is contained in a quasi-component. (In particular, each component is con­
tained in a quasi-component.) Quasi-components are either equal or disjoint, 
and fill out X. 
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PROOF. If PEX then the quasi-component containing it is just 

{qEXld(q) = d(P) for all discrete valued maps d}. 

But this is 

n {d- 1(d(p))ld a discrete valued map} 

which is an intersection of closed sets and hence is closed. The rest is obvious. 
D 

PROBLEMS 

1. -<t If A is a connected subset of the topological space X and if A c B c A then 
show that B is connected. 

2. -<t A space X is said to be "locally connected" if for each XEX and each 
neighborhood N of x, there is a connected neighborhood V of x with V c N. 
If X is locally connected, show that its components are open and equal its 
quasi-components. 

3. -<t Show that the unit interval [0, 1] in the real number is connected. (Hint: Assume 
that [0,1] = U u V, where U and V are disjoint nonempty open sets, and 1 E V. 
Consider x = sup(U). Show that x < 1 and derive a contradiction.) 

4. Consider the subspace X of the unit square in the plane consisting of the vertical 
line segments {lin} x [0, 1] for n = 1,2,3, ... , and the two points (0,0) and (0, 1). 
Show that the latter two points are components of X but not quasi-components. 
Show that the two point set {(O,O), (0, I)} is a quasi-component which is not 
connected. 

5. -<t A topological space X is said to be "arcwise connected" if for any two points 
p and q in X there exists a map l: [0, 1] --+ X with l(O) = p and l(l) = q. A space 
X is "locally arcwise connected" if every neighborhood of any point contains an 
arcwise connected neighborhood. An "arc component" is a maximal arcwise 
connected subset. Show that: 
(a) an arcwise connected space is connected; 
(b) a space is the disjoint union of its arc components; 
(c) an arc component of a space is contained in some component; 
(d) the arc components of a locally arcwise connected space are c1open, and 

coincide with the components; 
(e) the space with exactly two points p and q and open sets 0, {p}, {p, q} (only) 

is arcwise connected; and 
(f) the subspace of the plane consisting of {O} x [ - 1,1] u {(x, sin(l/x))lx > O} is 

connected but not arcwise connected. 

5. Separation Axioms 

The axioms defining a topological space are extremely general and weak. It 
should be no surprise that most spaces of interest will have further restrictions 
on them. We refer here not to structures like a metric, but to conditions 
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completely describable in terms of the topology itself, i.e., in terms of the 
points and open sets. We begin with the so-called separation axioms. 

5.1. Definition. The separation axioms: 

(T 0) A topological space X is called a To-space if for any two points x #- y 
there is an open set containing one of them but not the other. 

(T 1) A topological space X is called a T I-space if for any two points x #- y 
there is an open set containing x but not y and another open set 
containing y but not x. 

(T 2) A topological space X is called a T 2-space or Hausdorff if for any two 
points x#- y there are disjoint open sets U and V with XE U and yE V. 

(T 3) A T 1-space X is called a T 3-space or regular if for any point x and closed 
set F not containing x there are disjoint open sets U and V with x E U 
and Fe V. 

(T 4) A T rspace X is called a T 4-space or normal if for any two disjoint 
closed sets F and G there are disjoint open sets U and V with FeU 
and G e V. 

Axiom To simply says that points can be distinguished by the open sets 
in which they lie. 

Axiom T 1 is the same as saying that one-point sets (singletons) are closed 
sets, because if we single out a point x and, for each different point y we 
take U y to be an open set containing y but not x, then X - {x} = U U y is the 
union of open sets and so is open. Conversely, if {x} is closed then the open 
set X - {x} can be taken, in the axiom, as the open set containing any other 
point. 

Axiom T 2 is the most important of these axioms and will be assumed in 
the majority of the text of this book. We shall see later that it essentially 
means that "limits" are unique. 

5.2. Proposition. A Hausdorff space is regular -= the closed neighborhoods of 
any point form a neighborhood basis of the point. 

PROOF. Suppose that X is regular, let XE V, with V open, and put C = X - V. 
By regularity there are open sets U, W, with XEU, C e W, and Un W = 0. 
Then X - W is closed, and we have X - W e X - C = V, so any neighborhood 
V of x contains a closed neighborhood X - W of x, as was to be shown. 

Conversely, suppose that every point has a closed neighborhood basis. 
Let x~C with C closed and put V = X - C. By the assumption, there is 
an open set U with 0 e V = X - C and XEU. Then C eX - 0, and 
U n(X - 0) = 0. Thus X is regular. 0 

5.3. Corollary. A subspace of a regular space is regular. 

PROOF. If A e X is a subspace, just intersect a closed neighborhood basis in 
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X of a point aEA with A and you get a closed neighborhood basis of a 
~A D 

PROBLEMS 

1. Give an example of a space that is not To, and an example of a To-space that 
is not T 1. (Hint: Spaces with only two points suffice.) 

2. Show that a finite T 1-space is discrete. 

3. Consider the set w of natural numbers together with two other points named x, y. 
Put a partial ordering on this set which orders w as usual and makes both x and 
y greater than any integer, but does not order x against y. Give this the strong 
order topology. Show it is T 1 but not Hausdorff. 

4. Consider the space X whose point set is the plane but whose open sets are given 
by the basis consisting of the usual open sets in the plane together with the sets 
{(x,y)lx2+y2<a,y#O}u{(O,O)} for all a>O. Show that X is Hausdorff but 
not regular. 

5. -<:r Show that a subspace of a Hausdorff space is Hausdorff. 

6. -<r Show that a Hausdorff space is normal ¢> for any sets U open and C closed 
with C c: U there is an open set V with C c: V c: V c: U. 

7. Show that there is a smallest topology on the real numbers such that every singleton 
is closed. Which of the separation axioms does it satisfy? 

8. Show that if a Zariski space (see Section 3, Problem 6) is Hausdorff then it is finite. 

9. • -<:r Show that a metric space is normal. 

6. Nets (Moore-Smith Convergence) ~ 

In metric spaces continuity of functions can be expressed in terms of the 
convergence of sequences. This is not true in general topological spaces. 
However, there is a generalization of sequences that does work and permits 
proofs of some things analogously to proofs using sequences in metric spaces. 
This can be of great help to the intuition. The generalization of a sequence 
is called a net, and we will develop this subject in this section. Although we 
will use this concept in proving a couple of important results in subsequent 
sections, those results will not be used in the main body of the book, 
and for that reason, this section can be skipped without serious harm to 
subsequent developments. 

6.1. Definition. A directed set D is a partially ordered set such that, for any 
two elements (X and {3 of D, there is a TED with T ~ (X and T ~ {3. 

6.2. Definition. A net in a topological space X is a directed set D together 
with a function <1>: D --+ X. 
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Note that a sequence is simply a net based on the natural numbers as 
indexing set. 

6.3. Definition. If <1>: D ---+ X is a net in the topological space X and A c X 
then we say that <1> is frequently in A if for any (1.ED there is a fJ;::: (1. such 
that <1>(fJ}EA. It is said to be eventually in A if there is an (1.ED such that 
<1>(fJ}EA for all fJ ;::: (1.. 

6.4. Definition. A net <1>: D ---+ X in a topological space is said to converge to 
XEX if, for every neighborhood U c X of x, <1> is eventually in U. 

Note that if a net <1> is eventually in two sets U and V then it is eventually 
in Un V. Also, this is impossible if Un V = 0. This proves half of the 
following fact. The remainder of the proof constructs a net which is typical 
of the nets encountered with general topological spaces. 

6.5. Proposition. A topological space X is Hausdorff<=> any two limits of any 
convergent net are equal. (Thus one can speak of the limit of a net in such a 
space.) 

PROOF. The implication ~ follows from the preceding discussion. Thus 
suppose that X is not Hausdorff, and that X,YEX are two points which 
cannot be separated by open sets. Consider the directed set whose elements 
are ordered pairs (1. = (U, V) of open sets where XE U and yE V with the 
ordering (U,V);:::(A,B)<=>(UcA and VcB). For any (1.=(U,V), let 
<1>((1.} be some point in Un V. This defines a net <1> which we claim converges 
to both x and y. 

To see this, let W be any neighborhood of x. We claim that <1> is eventually 
in W. In fact, take any open set V containing y and an open set U with 
x E U c Wand let (1. = ( U, V). If fJ = (A, B) ;::: (1. then A c U and B c V so 
that <1>(fJ}EAnB cUe W, as claimed. Thus <1> converges to x. Similarly, it 
converges to y. 0 

Next we show that nets are "sufficient" to describe continuity. 

6.6. Proposition. A function f: X ---+ Y between two topological spaces is 
continuous<=> for every net <1> in X converging to XEX, the net fo<1> in Y 
converges to f(x). 

PROOF. First suppose that f is continuous and let <1> be a net in X converging 
to x. Let V be any open set in Y containing f(x} and put U = f- 1(V}, which 
is a neighborhood of x. By definition of convergence, <1> is eventually in U, 
and so f 0<1> is eventually in V, and thus converges to f(x}. 

Conversely, suppose that f is not continuous. Then there is an open set 
V c Y such that K = f- 1(V} is not open. Let xEK - int(K}. Consider the 
directed set consisting of open neighborhoods of x ordered by inclusion, i.e., 
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A < B means A::J B. For any such neighborhood A of x, A cannot be 
completely inside K, so we Can choose a point w A EA - K. Define the net <I> 
by putting <I>(A) = w A- If N is any neighborhood of x and if B ~ N (i.e., BeN) 
then <I>(B) = WBEB - KeN, showing that <I> is eventually in N. Thus <I> 
converges to x. However (f o<l»(A)~ V, for any A, so that f 0<1> is not eventually 
in V, and thus does not converge to f(x). 0 

Given a particular net <1>: D -+ X let x~ = <I>(oc), for OCED. Then it is common 
to speak of {x~} as being the net in question. This notation makes discussion 
of nets similar to the notation commonly used with sequences. For example, 
one can phrase the condition in Proposition 6.6 as 

f(lim x~) = lim(f(x~)). 

6.7. Proposition. If A c X then A coincides with the set of limits of nets in A 
which converge in X. 

PROOF. If xEA then any open neighborhood U of x must intersect A 
nontrivially. Thus we can base a net on this set of neighborhoods, ordered 
by inclusion and such points xuE U (J A. This clearly converges to x. 
Conversely, if {x~} is any net of points in A which converges to a point XEX 
then, by definition, this net is eventually in any given neighborhood of x. 
Thus any neighborhood of x contains a point in A and so xEA. (Here we 
are using Problem 1(a) of Section 3.) 0 

In the case of ordinary sequences, a subsequence can be thought of 
in two different ways: (1) by discarding elements of the sequence and 
renumbering, or (2) by composing the sequence, thought of as a function 
Z + -+ X, with a function h: Z + -+ Z +, such that i > j => h(i) > h(j). The first 
of these turns out to be inadequate for nets in general spaces. For the second 
method, a little thought should convince the reader that the last condition 
of monotonicity of h is stronger than is necessary for the usual uses of 
subsequences. Modifying it leads to the more general notion of a "subnet," 
which we now define. 

6.S. Definition. If D and D' are directed sets and h: D' -+ D is a function, then 
his called final if, VbED, 3b'ED'3(oc'~b'=>h(oc')~b). 

6.9. Definition. A sub net of a net Jl: D -+ X, is the composition Jl 0 h of Jl with 
a final function h: D' -+ D. 

6.10. Proposition. A net {x~} is frequently in each neighborhood of a given 
point XEX <:;> it has a sub net which converges to x. 

PROOF. Consider the directed set D' consisting of ordered pairs (oc, U) where 
ocED, U is a neighborhood of x, and X~EU, ordered by the D ordering and 
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inclusion. If (a, U) and (/3, V) are in D' then, since {xa} is frequently in Un V, 
there is a y 2:: a, /3 with XyE U n V. Thus (y, Un V)ED' and (y, Un V) 2:: (a, U), 
(/3, V), showing that D' is directed. Map D' -+D by (a, U)Ha. For any JED, 
we have (15, X)ED'. Now (a, U) 2:: (15, X) implies that a 2:: 15, which means that 
D' -+D is final, and so {x(a,U)} is a subnet of {xa}. We claim that it converges 
to x. Let N be any neighborhood of x. By assumption, there is some xpEN. 
If (a, U) 2:: (/3, N) then x(a.U) = xaE U c N. Consequently, {x(a.u)} is eventually 
in N. The converse is immediate. 0 

Next we treat a powerful concept for nets which has no analogue for 
sequences. 

6.11. Definition. A net in a set X is called universal if, for any A c X, the 
net is either eventually in A or eventually in X-A. 

6.12. Proposition. The composition of a universal net in X with a function 
f: X -+ Y is a universal net in Y. 

PROOF. If A c Y then the net is eventually in either f -l(A) or X - f -l(A) 
by definition. But X - f-l(A) = f-l(y - A) and it follows that the composed 
net is eventually in either A or Y - A, respectively. 0 

Except for somewhat trivial cases, the definition of a universal net may 
seem so strong that the reader may reasonably doubt the existence of universal 
nets. However: 

6.13. Theorem. Every net has a universal subnet. 

PROOF. Let {xalaEP} be a net in X. Consider all collections C of subsets of 
X such that: 

(1) AEC => {xa} is frequently in A; and 
(2) A, BEC => A n BEe. 

For example, C = {X} is such a collection. Order the family of all such 
collections C by inclusion. The union of any simply ordered set of such 
collections is clearly such a collection, i.e., satisfies (1) and (2). By the 
Maximality Principle, there is a maximal such collection Co. 

Let Po = {(A,a)ECo x PIXaEA} and order Po by 

(B, /3) 2:: (A, a) <=> B c A and /3 2:: a. 

This gives a partial order on Po making Po into a directed set. Map Po -+ P 
by taking (A, a) to a. This is clearly final and thus defines a subnet we shall 
denote by {X(A,a)}' We claim that this subnet is universal. 

Suppose S is any subset of X such that {X(A,a)} is frequently in S, Then, 
for any (A,a)EPo, there is a (B,/3) 2:: (A,a) in Po with XP=X(B,p)ES. Then 
BcA, /32:: a, and XpEB. Thus xpESnBcSnA. We conclude that {xa} is 
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frequently in S n A, for any A ECo. But then we can throw S and all the sets 
S n A, for AECo, into Co and conditions (1) and (2) will still hold. By 
maximality, we must have SECo. If {X(A.<x)} were also frequently in X - S 
then X - S would be in Co, and so 0 = S n(X - S) would be in Co, by (2), 
and this is contrary to (1). Thus we conclude that {X(A,<x)} is not frequently 
in X - S, and so is eventually in S. 

We have shown that if {X(A,<x)} is frequently in a set S then, in fact, it is 
eventually in S. This implies that {X(A,<x)} is universal. 0 

Note that this proof uses the Axiom of Choice in the guise of the Maximality 
Principle. In fact, it can be shown that Theorem 6.13 is equivalent to the 
Axiom of Choice. 

The following fact is immediate from the definitions: 

6.14. Proposition. A sub net of a universal net is universal. o 

PROBLEMS 

1. Show that a sequence is a universal net if and only if it is eventually constant. 

2. Consider the space X = Q u {Q} of ordinals up to and including the first 
uncountable ordinal Q with the order topology. Show explicitly that there is a net 
in Q which converges to {Q} but that there is no sequence which does so. 

3. Prove Proposition 6.14. 

4. • Let H be a dense set in the topological space X and let f: H ..... Y be a map with 
Y regular. Let g: X ..... Y be a function. Suppose that for any net {h.} in H with 
h ...... XEX we have f(heJ ..... g(x). Then show that g:X ..... Y is continuous. Also show 
that the condition of regularity on Y is needed by giving a counterexample 
without it. 

7. Compactness 

The notion of compactness is one of the most important ideas in mathematics. 
The reader has undoubtedly already met it in connection with some of the 
fundamental facts about the real numbers used in calculus. 

7.1. Definition. A covering of a topological space X is a collection of sets 
whose union is X. It is an open covering if the sets are open. A subcover is 
a subset of this collection which still covers the space. 

If A c X then, for convenience, we sometimes use "cover A" for a collection 
of subsets of X whose union contains A. 

7.2. Definition. A topological space X is said to be compact if every open 
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covering of X has a finite subcover. (This is sometimes referred to as the 
Heine-Borel property.) 

7.3. Definition. A collection C of sets has the finite intersection property if 
the intersection of any finite subcollection is nonempty. 

The following fact is just a simple translation of the definition of compact­
ness in terms of open sets to a statement about the (closed) complements of 
those sets: 

7.4. Theorem. A topological space X is compact ~ for every collection of closed 
subsets of X which has the finite intersection property, the intersection of the 
entire collection is nonempty. D 

7.5. Theorem. If X is a Hausdorffspace, then any compact subset of X is closed. 

PROOF. Let A c X be compact and suppose XEX - A. For aEA let aEVa and 
XEVa be open sets with Van Va = 0. Now A = U(VanA), which implies, by 
compactness of A, that there are a1,a2, ••• ,an EA, such that A eVa, u ···uVan = 
V. But XE Va, n ... n Van = V, which is open, and V n V = 0. Thus XE V c 

X - V eX - A and V is open. Since this is true for any XEX - A, we conclude 
that X - A is open, and so A is closed. 0 

7.6. Theorem. If X is compact and f: X ~ Y is continuous, then f(X) is 
compact. 

PROOF. We may as well replace Y by f(X) and so assume that f is onto. 
For any open cover of Y look at the inverse images of its sets and apply the 
compactness of X. 0 

7.7. Theorem. If X is compact, and A c X is closed, then A is compact. 

PROOF. Cover A by open sets in X, throw in the open set X - A and apply 
the compactness of X. D 

The following fact provides an easy way to check that certain constructions 
yield homeomorphisms, as we shall see: 

7.S. Theorem. If X is compact and Y is Hausdorff and f: X ~ Y is continuous, 
one-one, and onto, then f is a homeomorphism. 

PROOF. We are to show that f- 1 is continuous. That is the same as showing 
that f is a closed mapping (takes closed sets to closed sets). But if A c X is 
closed, then A is compact by Theorem 7.7, so f(A) is compact by Theorem 
7.6, whence f(A) is closed by Theorem 7.5. D 
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7.9. Theorem. The unit interval 1= [0,1] is compact. 

PROOF. Let U be an open covering of I. Put 

S = {sEII [0, s] is covered by a finite subcollection of U}. 

Let b the least upper bound of S. Clearly S must be an interval of the form 
S = [0, b) or S = [0, b]. In the former case, however, consider a set U E U 
containing the point b. This set must contain an interval of the form [a, b]. 
But then we can throw U in with the hypothesized finite cover of [0, a] to 
obtain a finite cover of [0, b]. Thus we must have that S = [0, b] for some 
bE[0, 1]. But if b < 1, then a similar argument shows that there is a finite 
cover of [0, c] for some c > b, contradicting the choice of b. Thus b = 1 and 
we have found the desired finite cover of [0, 1]. D 

Note, of course, that any finite closed interval [a, b] of real numbers is 
homeomorphic to [0,1] and hence is also compact. Any closed subset of 
[a, b] is then compact. By looking at the covering of any subset of R by the 
intervals (- n, n), we see that a compact set in R must be bounded. 
Consequently, a subset of R is compact¢>it is closed and bounded. The 
reader is cautioned not to think that this holds in all metric spaces; see 
Corollary 8.7 and Theorem 9.4. 

7.10. Theorem. A real valued map on a compact space assumes a maximum 
value. 

PROOF. If f: X ~ R is continuous and X is compact then f(X) is compact 
by Theorem 7.6. Thus f(X) is closed and bounded. Thus sup(f(X)) exists, 
is finite, and belongs to f(X) since f(X) is closed. D 

7.11. Theorem. A compact Hausdorff space is normal. 

PROOF. Suppose X is compact Hausdorff. We will first show that X is regular. 
For this, suppose C is a closed subset and x¢c. Since X is Hausdorff, for 
any point YEC there are open sets Uy and Vy with XEUy, YEVy and 
Uyn Vy = 0. Since C is closed, it is compact, and the sets Vy cover it. 
Thus there are points Yl'''' ,Yn> so that C c Vy , u .. ·u VYn' If we put 
U = Uy,n .. ·nUYn and V = Vy, u .. ·u VYn then XEU,C c V, and Un V = 0 
as desired. The remainder of the proof goes exactly the same way with C 
playing the role of x and the other closed set playing the role of C. D 

The following notion is mainly of use for locally compact spaces X, Y (see 
Section 11), but makes sense for all topological spaces: 

7.12. Definition. A map f: X ~ Y between topological spaces is said to be 
proper if f - l( C) is compact for each compact subset C of Y. 

7.13. Theorem. If f: X ~ Y is a closed map and f-l(y) is compact for each 
yE Y, then f is proper. 
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PROOF. Let C c Y be compact and let {U a I aE A} be a collection of open sets 
whose union contains f-l(C). For any YEC there is a finite subset Ay c A 
such that 

Put 

and 

f-l(y) C U {U alaEAy}. 

Wy = U{UaIOCEAy} 

Vy = Y - f(X - Wy), 

which is open. Note that f-l(Vy) c Wyand YEVy. Since C is compact and is 
covered by the VY' there are points Yl, ... , Yn such that C c VYl U ... U VYn . Thus 

f-l(C) C f-l(VyJU ... U f-l(VyJ C WYl U ... U WYn 

= U{UalaEA yi; i = 1,2, ... ,n}, 

a finite union. 

7.14. Theorem. For a topological space X the following are equivalent: 

(1) X is compact. 

o 

(2) Every collection of closed subsets of X with the finite intersection property 
has a nonempty intersection. 

(3) Every universal net in X converges. 
(4) Every net in X has a convergent subnet. 

PROOF. We have already handled the equivalence of(1) and (2). For the rest: 
(1) = (3) Suppose {xa} is a universal net that does not converge. Then 

given XEX, there is an open neighborhood U x of x such that Xa is not 
eventually in U X. Then Xa is eventually in X - U x by definition of universal. 
That is, there is an index f3x such that oc 2': f3x = xa¢ U X. Cover X by 
U Xl U ... U U xn. Let a 2': f3Xi for all i. Then xa¢ U Xi for any i, which means that 
xa¢X, an absurdity. 

(3) = (4) is clear since every net has a universal subnet. 
(4) = (2) Let F = {C} be a collection of closed sets with the finite 

intersection propety. We can throw in all finite intersections and so assume 
that F is closed under finite intersection. Then F, ordered by C 2': C' ¢> C C C', 
is directed. For each CEF let XcEC, defining a net. By assumption, there is a 
convergent subnet, given by a final map f: D -+ F, say. Thus, for aED, f(a)E F 
and XJ(a) Ef(a). Suppose xJ(a)-+x. Let CEF. Then there is a f3ED3oc2':f3= 
f(a) c C, and so X J(a) Ef(a) c C. Since C is closed it follows from Proposition 6.7 
that xEC. Thus XEn {CEF}, proving (2). 0 

PROBLEMS 

1. Give a direct proof of (1) => (4) in Theorem 7.14 without use of universal nets. 

2. -¢- Let X be a compact space and let {C.IIXEA} be a collection of closed sets, 
closed with respect to finite intersections. Let C = n C. and suppose that C c U 
with U open. Show that C. c U for some IX. 



22 I. General Topology 

3. Give an example showing that the hypothesis, in Theorem 7.13, that f is closed, 
cannot be dropped. 

8. Products 

Let X and Y be topological spaces. Then we can define a topology (called 
the "product topology") on X x Y by taking the collection of sets U x V to 
be a subbase, where U c X and V c Yare open. Since 

U 1 x Vl n U 2 x V2 = (U 1 n U 2) x (Vl n V2), 

this is, in fact, a basis. Therefore the open sets are precisely the arbitrary 
unions of such "rectangles." 

Similarly we can define a product topology on finite products 
X 1 X X 2 X ... xX. of topological spaces. 

For an infinite product X {XIXIIXEA}, we define the product topology as 
the topology with a basis consisting of the sets X { U IX IIXE A} where the U IX 

are open and where we demand that U IX = X IX for all but a finite number of 
IX'S. Note that the collection of sets of the form U IX x X {X /II P #- IX} is a sub­
basis for the product topology. This topology is also called the "Tychonoff 
topology." 

8.1. Proposition. The projections nx: X x Y -4 X and ny: X x Y -4 Yare 
continuous, and the product topology is the smallest topology for which this is 
true. Similarly for the case of infinite products. 

PROOF. The subbasis last described consists of exactly those sets which must 
be open for the projections to be continuous, and the proposition is just 
expressing that. 0 

8.2. Proposition. If X is compact then the projection ny: X x Y -4 Y is closed. 

PROOF. Let C c X x Y be closed. We are to show that Y - ny(C) is open. 
Let y¢ny(C), i.e., <x,y)¢C for all XEX. Then, for any XEX, there are open 
sets Ux c X and Vx c Y such that XEUx, YEVx, and (Ux x Vx)nC = 0· 

Since X is compact there are points Xl"'" X.EX such that 
U Xl U ... u U Xn = X. Let V = VXI n ... n VXn ' Then 

(X x V)nC =(UXI u ",uUxJ X (VXI n ···n VxJnC = 0· 
Thus, yE V c Y - ny(C) and V is open. Since y was an arbitrary point of 
Y - ny(C) it follows that this set is open, and so its complement ny(C) 
is closed. 0 

8.3. Corollary. If X is compact then ny: X x Y -4 Y is proper. 

PROOF. This follows immediately from Theorem 7.13 and Proposition 8.2. 
o 
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8.4. Corollary. If X and Yare both compact, then X x Y is compact. 0 

8.5. Corollary (TychonoffTheorem for Finite Products). If the Xi are compact 
then Xl x ... X X" is compact. 0 

8.6. Corollary. The cube 1" c R" is compact. D 

8.7. Corollary. A subspace of R" is compact <0> it is closed and bounded. 

PROOF. Let X be the subspace in question. 
(~) Since X is compact, it is closed. Cover X by the open balls of radius 

k about the origin, k = 1,2, .... Since this has, by hypothesis, a finite subcover, 
X must be in one of these balls, and hence is bounded. 

( <=) If X is closed and bounded, then it is in some ball of radius k about 
the origin, which in turn is contained in [ - k, kJ x ... x [ - k, kJ (n times), 
which is compact. Thus X is a closed subset of a compact set and so is 
compact by Theorem 7.7. D 

8.8. Proposition. A net in a product space X = X X a converges to the point 
( ... ,Xa, ... ) <0> its composition with each projection Tea: X -+ X a converges to xa' 

PROOF. This is an easy exercise in the definition of product spaces and of 
convergence of nets, which will be left to the reader. 0 

8.9. Theorem (Tychonoff). The product of an arbitrary collection of compact 
spaces is compact. 

PROOF. Let X = X X a where the X a are compact. Let f: D -+ X be a universal 
net in X. Then the composition Tea 0 f is also a universal net by Proposition 
6.12. Therefore this composition converges, say to Xa by Theorem 7.14. But 
this means that the original net converges to the point whose ath coordinate 
is Xa by Proposition 8.8 and so X is compact by Theorem 7.14. D 

Tychonoff's Theorem has the reputation of being difficult. So, how can 
we prove it with such ease here? The answer is that the entire difficulty has 
been subsumed in the results about universal nets. The basic facts about 
universal nets depend on the axiom of choice, and so it follows that so does 
the Tychonoff Theorem. In fact, it is known that the Tychonoff Theorem is 
equivalent to the axiom of choice. That is why we gave a separate treatment 
of the finite case, which does not depend on the axiom of choice. (Also, the 
finite case is all that is needed in the main body of this book.) 

If X is a space and A is a set, the product of A copies of X is often denoted 
by X A and can be thought of as the space of functions f: A -+ X. In this 
context, Proposition 8.8 takes the following form: 

8.10. Proposition. A net {fa} in X A converges to f EXA <0> V X EX,fa(X) -+ f(x). 
In particular, lim{fa(x)) = (lim faHx). D 
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When A also has a topology, the notation X A is often used for the set of 
all continuous functions f: A ~ X. In that context a topology is often used 
on this set that differs from the product topology. There are several useful 
topologies in particular circumstances, and so the context must indicate what 
topology, if any, is meant by this notation. 

8.11. Definition. If X and Yare spaces, then their topological sum or disjoint 
union X + Y is the set X x {O} u Y x {1} with the topology making X x {O} 
and Y x {I} clopen and the inclusions x~(x,O) of X ~X + Y and y~(y, 1) 
of Y ~X + Y homeomorphisms to their images. More generally, if {X,IIXEA} 
is an indexed family of spaces then their topological sum +,X, is 
U { X, x {IX} IIX E A} given the topology making each X, x {IX} clopen and each 
inclusion x~(x,{3) of Xp~ + ,X, a homeomorphism to its image Xp x {{3}. 

In ordinary parlance, if X and Yare disjoint spaces, one regards X + Y 
as Xu Y with the topology making X and Y open subspaces. 

PROBLEMS 

1. Let X and Y be metric spaces. Define a metric on X x Y by 

dist( (x" y, >, (Xb Y2 > ) = (dist(x" X2)2 + dist(y" Y2)2)'/2. 

Show that the topology induced by this metric is the product topology. 

2. Do the same as Problem 1 for the metric: 

dist( (x" y, >, (x 2, Y2 » = max {dist(xlo x 2), dist(y" Y2)}' 

3. -<r For a collection of spaces Y, show that a function f:X -+ X {Y.} IS 

continuous ¢> each composition X -+ X {Y,} -+ Y., with the projection, is 
continuous. 

4. -<r Show that an arbitrary product of Hausdorff spaces is Hausdorff. Also show 
that an arbitrary product of regular spaces is regular. (Hint: Use Proposition 5.2 
for the latter.) 

5. -<r If X is a topological space, the "diagonal" of X x X is the subspace 
~ = {(X,X>IXEX}. Show that X is Hausdorff¢>~ is closed in X x X. 

6. -<r Let f, g: X -+ Y be two maps. If Y is Hausdorff then show that the subspace 
A = {xEXlf(x) = g(x)} is closed in X. 

7. Give an alternative proof of Proposition 8.2 using nets. 

8. • Let A be an uncountable set. For each IX E A let X. = {O, I} with the discrete 
topology. Put X = X .EAX •. (That is, X = {O, l}A.) Let PEX be the point with all 
components P. = 1. Let K = {qEXlq. = ° except for a countable number of IX}. 

(a) Show that P does not have a countable neighborhood basis. 
(b) Show that there is no neighborhood basis for p simply ordered by inclusion. 
(c) Show that K = X but that if H is a countable subset of K then He K. 
(d) Give an explicit description of a net in K which converges to p. 
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9. • -9- Show that a product of a family of connected spaces is connected. Do the 
same for arcwise connectivity. 

9. Metric Spaces Again 

In this section we discuss the central concept of "completeness" of a metric 
space, which says, intuitively, that sequences that should converge do, in 
fact, converge. We also show that certain topological conditions on a topo­
logical space suffice for the existence of a metric on that space consistent 
with the given topology. 

9.1. Definition. A Cauchy sequence in a metric space is a sequence Xl' X 2, X3"" 

such that 'tiE> 0, 3N > 03n,m > N => dist(xnoxm} < E. 

9.2. Definition. A metric space X is called complete if every Cauchy sequence 
in X converges in X. 

9.3. Definition. A metric space X is totally bounded if, for each E > 0, X can 
be covered by a finite number of E-balls. 

9.4. Theorem. In a metric space X the following conditions are equivalent: 

(I) X is compact. 
(2) Each sequence in X has a convergent subsequence. 
(3) X is complete and totally bounded. 

PROOF. (I) => (2) Let {xn} be a sequence. Suppose that X is not a limit of a 
subsequence. Then there is an open neighborhood U x of X containing Xn for 
only a finite number of n. Since X can be covered by a finite number of the 
U x' this contradicts the infinitude of indexes n. 

(2) => (3) Let {xn} be a Cauchy sequence. It follows from (2) that some 
subsequence xnj --+ x for some XEX. The triangle inequality then implies that 
Xn--+X and hence X is complete. Now suppose that X is not covered by a 
finite number of E-balls. Then one can choose points x 1> X2' ... such that 
dist(x;, x) > E for all j < i. It follows that the distance between any two of 
these points is greater than E. Such a sequence can have no convergent 
subsequences, contrary to (2). So, in fact, X must be totally bounded. 

(3) => (2) Let {xn} be an arbitrary sequence in X. Since X is totally bounded 
by assumption, it can be covered by a finite number of I-balls. Thus some 
one of these I-balls, say B l , must contain Xn for an infinite number ofn. Next, 
X, and hence B l , can be covered by a finite number of ~-balls and so one 
of these balls, say B2, must be such that Bl nB2 contains Xn for an infinite 
number of n. Continuing in this way we can find, for n = 1,2,3 ... , a (I/n}-ball 
Bn such that B 1 n B2 n ... n Bn contains Xi for an infinite number of i. Thus 
we can choose a subsequence {xn.} such that XniEB l n ... nBi for all i. If i < j 
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then it follows that xni and x nj are both in Bi and hence dist(xni, xn) < Iii. 
This implies that this subsequence is Cauchy and so it must converge by 
completeness. 

(2)=(1) Suppose {U~laEA} is an open covering of X. Since X is totally 
bounded (by (2) = (3)), we can find a dense sequence of points Xl> Xl"" in 
X. For each Xi there is a positive integer n such that B1/n(x;) C U~ for some 
a. Denote one such U~ by Vn,i' Now, given XEX, there is an n such that 
Bl/n(x) C V ~ for some a. By density, there is also an i such that dist(x i , x) < lin. 
Then B1/n(Xi) C Bl/n(x) C V ~ so that Vn,i is defined. Thus, xEB1/n(x;) C Vn,i' 
Therefore the Vn,i cover X and this is a countable subcover of the original 
cover. Let us rename this countable subcover {Vl' Vl''''}' If this has a finite 
subcover then we are done. If not then the closed sets 

C1 =X - V1 , 

Cl=X-(V1UVl ), 

C3 = X - (Vl U Vl u V3 ), 

are all nonempty. Also note that C1 :::J Cl:::J C3 :::J .... Choose XiECi for each 
i. By our assumption, there is a convergent subsequence xni --+ X, say. Since 
XniECn for all ni > n, and C n is closed, X must be in Cm for all n. Thus 

This contradiction completes the proof. D 

It clearly would be desirable to know when a given topological space can 
be given the structure of a metric space, in which case the space is called 
"metrizable." There are several known theorems of this nature. We shall be 
content with giving one of the simpler criteria. This development will span 
the rest of this section. 

9.5. Definition. A Hausdorff space X is said to be completely regular, or 
T 3!' if, for each point XEX and closed set C C X with x¢C, there is a 

2 

map f: X --+ [0,1] such that f(x) = ° and f == 1 on C. 

By following such a function with a map [0, 1] --+ [0, 1] which is ° on [0, i] 
and stretches [i, 1] onto [0,1], we see that the function f in Definition 9.5 
can be taken so that it is ° on a neighborhood of x. 

9.6. Proposition. Suppose X is a metric space. Define: 

d. '( ) {I if dist(x, y) > 1, 1st x,y = 
dist(x, y) if dist(x, y) ::s; 1. 

Then dist and dist' give rise to the same topology on X. 

PROOF. It is clear that the topology only depends on the open E-balls for 
small E, and these are the same in the two metrics. D 
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9.7. Proposition. Let X;, i = 1,2,3, ... , be a metric space with metric bounded 
by 1 (see Proposition 9.6). Define a metric on X {X;} by dist(x, y} = Lidist(x;, Yi)/ 
2i, where Xi is the ith coordinate of x, etc. Then this metric gives rise to the 
product topology. 

PROOF. Let X denote the product space with the product topology, and X' 
the same set with the metric topology. By Problem 3 of Section 8, to show 
that X' ---+ X is continuous, it suffices to show that its composition with the 
projection to each Xi is continuous. But this projection decreases distance 
and then multiplies it by the constant 2i and that clearly implies continuity. 
For the converse, it suffices to show that for any point XEX, the E-ball about 
x contains a neighborhood of x in the product topology. Recall that 

B.(x) = {YI~(dist(X;'Yi)/2i) < E}. 
Let n be so large that 2 -n < E/4 and then let YiEXi be such that dist(x;, yJ < E/2 
for i = 1,2, ... , n - 1 and arbitrary for i ~ n. Then we compute 

"-1 00 

dist(x, y) = L dist(xi, yJ/2i + L dist(x;, yJ/2i 
i= 1 i=n 

n-1 '+1 1 ( 1 1 ) 
< L E/2' +4E 1 +-+2+'" 

i=l 2 2 

< E/2 + E/2 = E. 

Thus 
xEB./2 (X 1) x .. · x B./2(xn- 1) x Xn X X n+ 1 x .. · cB.(x) 

and the middle term is a basic open set in the product topology. 0 

9.8. Lemma. Suppose that X is Hausdorff and that fi: X ---+ [0, 1] are maps 
(i = 1,2,3, ... ) such that, for any point XEX and any closed set C c X with 
x¢C, there is an index i such that fi(X) = ° and fi == 1 on C. Define 
f:X ---+ X {CO, 1]li = 1,2,3, ... } by f(x) = X {fi(x)li = 1,2,3, ... }. Then f is 
an embedding, i.e., a homeomorphism onto its image. 

PROOF. f is continuous by Problem 3 of Section 8. It is also clear that f is 
one-one (but not onto). Thus it suffices to show that: C c X closed => f(C) 
is closed in f(X). Suppose we have a sequence CiEC such that f(cJ ---+ f(x). 
It then suffices to show that xEC. If not, then there is an index i such that 
fi(X) = ° and fi == 1 on C. Then 1 = fi(Cn) ---+ fi(X) = ° and this contradiction 
concludes the proof. D 

9.9. Lemma. Suppose that X is a second countable and completely regular 
space and let S be a countable basis for the open sets. For each pair U, V ES 
with [j c V, select a map f: X ---+ [0,1] which is ° on U and 1 on X - V, provided 
such a function exists. Call this set of maps F, possibly empty, and note that 
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F is countable. Thenfor each XEX and each closed set C c X with xrj:C, there 
is an f EF with f == 0 on a neighborhood of x and f == 1 on C. 

PROOF. The whole point of the lemma is, of course, that the map f can be 
chosen from the previously defined countable collection F. Given xrj:C as 
stated, we can find a V ES with XE V c X - C (by definition of a basis). Since 
X is completely regular we can find a map g: X -+ [0, 1] which is 0 at x and 
1 on X-V. As remarked below Definition 9.5, this can be assumed to be 
o on a neighborhood of x. This contains a neighborhood V ES and so we have 
provided a triple V, V, g satisfying the initial requirements in the lemma. By 
assumption, this g can be replaced by another map f EF with the same 
properties and this f clearly satisfies the final requirements. 0 

9.10. Theorem (Urysohn Metrization Theorem). If a space X is second 
countable and completely regular then it is metrizable. 

PROOF. Find a countable family F of functions satisfying Lemma 9.9. Apply 
Lemma 9.8 to obtain an embedding of X into a countable (!) product of unit 
intervals. Finally, apply Proposition 9.7 to see that this countable product 
of intervals, and hence X, is metrizable. 0 

The following lemma will be useful to us later on in the book. The diameter, 
diam(A), of a subset A of a metric space is sup{ dist(p,q)lp,qEA}. 

9.11. Lemma (Lebesgue Lemma). Let X be a compact metric space and let 
{Va} be an open covering of X. Then there is a c5 > 0 (a "Lebesgue number" 
for the covering) such that (A eX, diam(A) < c5) => A c Va for some tX. 

PROOF. For each XEX there is an E(X) > 0 such that B2 €(x)(x) C Va for some 
tX. Then X is covered by a finite number of the balls B€(x)(x), say for 
x = Xl"'" xn- Define c5 = min {E(x;)1 i = 1, ... , n}. Suppose diam(A) < c5 and 
pick a point aoEA. Then there is an index 1::; i::; n such that 
dist(ao, x;) < E(XJ If aEA, then dist(a, ao) < c5 ::; E(XJ By the triangle 
inequality, dist(a,x;) < 2E(xJ Thus A c B2 €(Xi)(X;) c Va for some tX. 0 

PROBLEMS 

1. Show that a countable product of copies of the real line is metrizable. 

2. -<r Show that a subspace of a completely regular space is completely regular. 

3. Let X be a metric space. If {xn} and {Yn} are Cauchy sequences in X such that 
dist(x., Yn) --+ 0 then call {xn} and {Yn} "equivalent." Let Y be the set of equivalence 
classes [{xnD of Cauchy sequences {xn} in X. Give Y the metric 

dist([ {xn}], [{Yn}]) = Iimdist(xn,Yn)' 

(a) Show that this is a metric on Y. 
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(b) Show that the function f: X --+ Y given by Xf--+[ {x} ] is an isometric embedding 
of X as a dense subspace of Y. ("Isometric" means "preserving distance.") 

(c) Show that Y is complete. (It is called the "completion" of X.) 
(d) If g: X --+ Z is an isometry (into) and Z is complete then show that there is a 

unique factorization X L Y --"-+ Z of g with h an isometry. 
(e) If g(X), in part (d), is dense in Z then show that h is onto. 

4. Show that a completely regular space is regular. 

5. • Show that an uncountable product of unit intervals is not first countable and 
hence is not metrizable. 

10. Existence of Real Valued Functions 

In the metrization theorem of the last section, we gave conditions for 
metrizability that included complete regularity of the space. This relies on 
knowing about the existence of sufficiently many, in some sense, continuous 
real valued functions on the space. That leaves open the question of finding 
purely topological assumptions that will guarantee such functions, and that 
is what we are going to address in this section. 

10.1. Lemma. Suppose that, on a topological space X, we are given, for each 
dyadic rational number r = m/2n (0:::; m:::; 2n), an open set Ur such that 
r < s => Or C Us. Then the function f: X --+ R defined by 

is continuous. 

PROOF. Note that, for r dyadic: 

f(x)<r => XEUr 
f(x):::; r = XEUr 

Thus, for IY. real, 

hence 

hence 

ifxEU1, 

if x¢U 1, 

f(x) ~ r = x¢U" 
f(x) > r => x¢Ur => XEX - Ur. 

f-1( - OO,IY.) = {xlf(x) < IY.} = U{Urlr<lY.} 

which is open, and 

f- 1(P, 00) = {xlf(x) > P} = U {X - Urlr > P} = U {X - Osls > P} 

which is also open. Since these half infinite intervals give a subbasis for the 
topology of R, f is continuous. (See Problem 4 of Section 2.) D 

10.2. Lemma (Urysohn's Lemma). If X is normal and FeU where F is closed 
and U is open, then there is a map f: X --+ [0, 1] which is ° on F and 1 on X - U. 
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PROOF. Put VI = V and use normality to find F c V 0' V 0 c VI' 

VO CV1/2 and V1/2 CV1 , 

VO CV1/4 and V1 /4 CV1/2 and V1/ 2 CV3 /4 and V3 /4 CV1 , 

and so on. Apply Lemma 10.1. 

10.3. Corollary. Normality = Complete Regularity. 

o 

D 

10.4. Theorem (Tietze Extension Theorem). Let X be normal and F c X be 
closed and let f: F --> R be continuous. Then there is a map g: X --> R such that 
g(x) = f(x) for all xEF. Moreover, it can be arranged that 

sup f(x) = sup g(x) and inf f(x) = inf g(x). 
XEF XEX XEF XEX 

PROOF. First let us take the case in which f is bounded. Without loss of 
generality, we can assume ° ::s; f(x) ::s; 1 with infimum ° and supremum 1. By 
the U rysohn Lemma (Lemma 10.2), there exists a function g 1: X --> [o,~] such 
that 

( )_{o if xEFandf(x)::s;~, 
gl x -

~ if XEF andf(x)?: l 
Put fl = f - gl and note that o::s; fl(X)::S; t for all XEF. 

Repeating this, find g2: X --> [0, ~·t] such that 

( ) _ {o if XEF andfl(x)::s; ~·t, 
g2 X-I 2 . 2 2 

3X3 If xEFandfl(x)?:3·3. 

Put f2 = fl - g2 and note that o::s; f2(X)::S; (t? for all xEF. 
For the inductive step, suppose we have defined a function fn with 

O::s;fn(x)::S;(t)" for XEF. Then find gn+l:X -->[O,(~)(t)"] such that 

{o if XEF andfn(x)::s; (~)(t)", 
gn+ I(X) = (~)(t)" if XEF andfn(x)?: (t)(t)". 

Put fn+l = fn - gn+l· 
Now put g(x) = Lgn(X). This series converges uniformly since O::s; gn(x)::s; 

(~)(t)"-I. Thus g is continuous, by Theorem 2.12. 
For xEF we have 

f-gl=fl, 

fl-g2=f2, 

By adding and canceling we get 

f -(gl +g2 + ... +gn)=fn and O::s; fn(x)::s; (t)", 
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and taking the limit gives that g(x) = f(x) on F. Clearly the bounds are also 
correct. 

Now we consider the unbounded cases: 

Case I: f is unbounded in both directions. 
Case II: f is bounded below by a. 
Case III: f is bounded above by b. 

Let h be a homeomorphism: 

(- 00, oo)~(O, 1) 

[a, 00) ~ [0,1) 

(-oo,b]~(0,1] 

in Case I, 

in Case II, 

in Case III. 

Then ho f is bounded by 0,1 and we can extend it to gl say. If we can 
arrange that g 1 (x) is never ° (resp. 1) if h 0 f is never ° (resp. 1) then g = h - log 1 
would be defined and would extend f. 

Thus put 

C = {Xlgl(X) = ° or 1} 

C = {Xlgl(X) = 1} 

C = {Xlgl(X) = o} 

in Case I, 

in Case II, 

in Case III. 

Then C is closed and C nF = 0, so there exists a function k: X ~ [0,1] such 
that k == ° on C and k == 1 on F. Put g2 = k·g 1 + (1 - kH-. Then g2 is always 
between gl and i with g2 #- gl on C. Also, g2 = gl = hof on F. Thus 
g = h - log 2 extends f in the desired manner. D 

PROBLEMS 

1. If X is a compact Hausdorff space then show that its quasi-components are 
connected (and hence that its quasi-components coincide with its components). 
[Hint: If C is a quasi-component, let C = n c. where the C. are the clopen sets 
containing C. If C is disconnected, then C = Au B, An B = 0, A, B closed. Let 
f: X --> [0,1] be 0 on A and 1 on B. Put U = f- 1([0,k)) and apply Problem 2 of 
Section 7.] 

2. -¢- If F is a closed subspace of the normal space X then show that any map F --> Rn 
can be extended to X. 

11. Locally Compact Spaces 

There are many spaces, the most important being euclidean spaces, which 
are not compact but which contain enough compact subspaces to be important 
for many properties of the space itself. One class of such spaces is the subject 
of this section. 

11.1. Definition. A topological space is said to be locally compact if every 
point has a compact neighborhood. 
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11.2. Theorem. If X is a locally compact Hausdorff space then each neighbor­
hood of a point XEX contains a compact neighborhood of x. (That is, the 
compact neighborhoods of x form a neighborhood basis at x.) In particular, X 
is completely regular. 

PROOF. Let C be a compact neighborhood of x and U an arbitrary 
neighborhood of x. Let Vee n U be open with x E V Then Vee is compact 
Hausdorff and therefore regular. Thus there exists a neighborhood N c V 
of x in C which is closed in V and hence closed in X. Since N is closed in 
the compact space C, it is compact by Theorem 7.7. Since N is a neighborhood 
of x in V and since N = N n V, N is a neighborhood of x in the open set V 
and hence in X. 0 

11.3. Theorem. Let X be a locally compact Hausdorff space. Put 
X + = Xu { OCJ} where OCJ just represents some point not in X. Define an open 
set in X+ to be either an open set in Xc X+ or X+ - C where C c X is 
compact. Then this defines a topology on X+ which makes X+ into a compact 
Hausdorff space called the "one-point compactification" of X. Moreover, this 
topology on X+ is the only topology making X+ a compact Hausdorff space 
with X as a subspace. 

PROOF. The whole space X+ and 0 are clearly open. If V c X is open and 
U = X + - C with C c X compact then Un V = V - C which is open in X 
(C being closed in X by Theorem 7.5). The other cases of an intersection of 
two open sets are trivial. 

For arbitrary unions of open sets, let U = U {U.J If all the U ~ are open 
subsets of X then the union is clearly open. If some U D = X + - C then 
X+-U=n{X+-U~}=Cn(n{X-U~[(X#P}) which is closed in C 
and therefore compact. Thus, this is a topology. 

Suppose that {U~} is an open cover of X +. One of these sets, say U fl' 
contains {oo}. Then X - U fJ is compact and hence is covered by a finite 
subcollection of the other U~. Therefore X + is compact. 

To see that X+ is Hausdorff, it clearly suffices to separate OCJ from any 
point xEX. Let V be an open neighborhood of x in X such that V c X is 
compact. Then XEV and ooEX - V provide the required separation. 

For uniqueness, let U c X+ be an open set in some such topology. Then 
C = X + - U is closed and therefore compact. If C eX· then U is open in the 
described topology. If C ¢ X then U c X and must be open in X since X is 
a subspace. Thus, again U is open in the described topology. It remains to 
show that we are forced to take the described open sets as open. Since X is 
a subspace, if U c X is open in X then U = U' nX for some U' open in X+. 
But X is an open subset of X + since points are closed in a Hausdorff space, 
so U = U' nX is open in X+. Next, if C is compact in X then it is compact 
in X +, since compactness does not depend on the containing space, and thus 
C is closed in X +. It follows that X + - C is open in X + . 0 
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Note that if X is already compact, then 00 is an isolated point (clopen) 
in X + and X is also clopen in X + . 

11.4. Theorem. Suppose that X and Yare locally compact, Hausdorff spaces 
and that f: X ~ Y is continuous. Then f is proper ¢;> f extends to a continuous 
f+ :X+ ~ y+ by setting f+(oox) = ooy. 

PROOF. => :f+ exists as a function, so it suffices to check continuity of it. 
Suppose V c y+ is open. In case V c Y then (f+)-l(V) = f-l(V) is open. 
In the other case, V = y+ - C with C c Y compact. Then (f+)-l(V) = 
X + - f - 1( C) is open in X + since f - 1( C) is compact, and therefore closed, 
by properness. 

¢' : If f+ exists then (f+)-l(OOy) = {oox} and thus (f+)-l(y)=X. If 
C c Y is compact then it is closed and so f - 1( C) is closed in X + and hence 
is compact and is contained in X. Thus f is proper. D 

11.5. Proposition. If f:X ~ Y is a proper map between locally compact 
Hausdorff spaces, then f is closed. 

PROOF. There is an extension f +: X + ~ Y +. If F c X is closed in X then 
Fu{oo} is closed in X+ and hence compact. Consequently, f+(Fu{oo}) is 
compact by Theorem 7.6 and hence closed in y+ by Theorem 7.5. But then 
f(F) = f+(F u {oo})n Y is closed in Y. D 

11.6. Definition. A subspace A of a topological space is said to be locally 
closed if each point aEA has an open neighborhood Va such that VanA is 
closed in Va' 

11.7. Proposition. A subspace A c X is locally closed ¢;> it has the form 
A = en V where V is open in X and C is closed in X. 

PROOF. Put V = U {ValaEA}, as in Definition 11.6, which is open, and C = A 
which is closed. Then 

11.8. Theorem. For a Hausdorff space X the following conditions are 
equivalent: 

(1) X is locally compact. 
(2) X is a locally closed subspace of a compact Hausdorff space. 
(3) X is a locally closed subspace of a locally compact Hausdorff space. 

PROOF. If X is locally compact then it is an open subspace of its one-point 
compactification. Thus (1)=>(2). Clearly, (2)=>(3). If Y:::J X is locally compact 
and X = en V where C c Y is closed and V c Y is open, then C is locally 
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compact, and X = Un C is open in C and hence is also locally compact. 
Thus (3)=(1). 0 

The remainder of this section is not used in the remainder of this book 
and so can be skipped. It assumes knowledge of nets from Section 6. 

The preceding results suggest the question of when a topological space 
X can be embedded in a compact, Hausdorff space Y (as a subspace). Since 
Y is normal, it is also completely regular. Since a subspace of a completely 
regular space is completely regular, it follows that X must be completely 
regular. This turns out to be the precise condition needed. 

If X is a completely regular space, consider the set F of all maps 
f: X --+ [0, 1]. Define 

<D:X --+[0, lY = X {[O, IJlfEF} 

by <D(x)(f) = f(x). (Here we regard an element of [O,IY as a function 
F--+[O, 1].) 

11.9. Definition. If X is a completely regular space, and <D: X --+ [0, 1 J F is 
defined as above then the closure of <D(X) is called the Stone-tech 
compactiflcation of X and is denoted by f3(X). 

11.10. Theorem. If X is a completely regular space, then f3(X) is compact 
Hausdorff and <D: X --+ f3(X) is an embedding. 

PROOF. The function <D is one-one since, if <D(x) = <D(y), then f(x) = fey) for 
all maps f: X --+ [0, IJ and this implies that x = y by complete regularity. 

To prove continuity, let Xa be a net in X converging to x. Then 

lim (<D(xa)(f)) = lim (f(xa)) = f(x) = <D(x)(f) 

for all maps f: X --+ [0,1]. This implies that lim <D(xa) = <D(x) by Proposition 
8.8. 

For continuity of the inverse, suppose that {xa} is a net in X such that 
<D(xa) converges to <D(x). Then, for all maps f: X --+ [0, IJ, 

lim (f(xa)) = lim (<D(xa)(f)) = <D(x)(f) = f(x). 

If Xa does not converge to x then there is a neighborhood V of x such that 
Xa is frequently in X-V. But there is a map f: X --+ [O,IJ which is ° at x 
and 1 on X-V. Thus f(xa) is frequently 1, while f(x) = ° contradicting the 
convergence of f(xa) to f(x). 0 

11.11. Theorem. If X is completely regular and f: X --+ R is a bounded real 
valued map, then f can be extended uniquely to a map f3(X) --+ R. 

PROOF. It suffices to treat the case in which the image of f is in [0,1]. 
Consider the function l: [0, IJF --+ R defined by J(Ji') = fl(f). If {fla} is a net in 
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[0, I]F converging to )1 then 

lim (f()1a)) = lim ()1a(f)) = )1(f) = f()1), 

which shows that! is continuous. 
If XEX thenf(<J>(x)) = (<J>(x))(f) = f(x), showing that! does extend f D 

The problems give other properties of the Stone-Cech compactification. 

PROBLEMS 

1. Show that the Stone-tech compactification f3(.) is a functor on completely regular 
spaces by showing that a map f: X ---> Y induces a unique commutative diagram 

xL Y 

1 1 
f3( X) f3(f» f3 ( Y) 

such that f3(f 0 g) = f3(f) 0 f3(g) and f3(l x) = 1 PiX). 

2. Show that the Stone-tech compactification is the "largest" compactification of a 
completely regular space X by showing that if g: X ~ Y is any compactification, 
then there is a unique map f3(X) ---> Y factoring g. 

3. Let OJ be the set of natural integers and let X be its Stone-tech compactification. 
Show that the sequence given by the usual ordering of OJ can have no convergent 
subsequence in X. Conclude that X is not metrizable and not second countable. 
(Note that this sequence does have a convergent subnet since that is always true 
in a compact space.) 

12. Paracompact Spaces 

The notion of "para compactness" of a space is a type of localization of 
compactness. It is very different, however, from local compactness. Para­
compact spaces are very close to being metrizable, but the concept of para­
compactness is sometimes simpler to deal with than that of a metric. In this 
book, most spaces in which we shall be interested are paracompact. The most 
important property of paracompact spaces is the existence of "partitions of 
unity," see Definition 12.7. 

12.1. Definition. If U and V are open coverings of a space then U is said to 
be a refinement of V if each element of U is a subset of some element of V. 

12.2. Definition. A collection U of subsets of a topological space X is said 
to be locally finite if each point XEX has a neighborhood N which meets, 
nontrivially, only a finite number of the members of U. 
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12.3. Definition. A Hausdorff space X is said to be paracompact if every 
open covering of X has an open, locally finite refinement. 

12.4. Proposition. A closed subspace of a paracompact space is paracompact. 

PROOF. If A is a closed subspace of the paracompact space X, cover A with 
sets open in X. Throw in the set X-A. Take a locally finite refinement of 
this open covering of X and intersect it with A. This gives a locally finite 
refinement of the original covering of A. D 

12.5. Theorem. A paracompact space is normal. 

PROOF. We will first show the paracompact space X to be regular. Thus 
suppose XEX and C c X is closed with x¢c. For each point YEC there are 
disjoint open sets Uy, Vy with XEU y and YEVy. Cover X by X - C together 
with the sets Vy- Then there is an open locally finite refinement, say by sets 
Ua' Let U = U {Ual Ua c some Vy} and note that this contains C. Since this 
is a locally finite collection, its closure (j is the union of the closures of the 
same U a's. But X is not in any of the (j a and so x¢ (j. Thus U and X - (j 
provide the required separation. 

The same argument, with C playing the role of x and the other closed set 
playing the role of C, shows X to be normal. D 

Thus paracompact spaces are close to being metric spaces because all that 
is needed is second countability. Also, it is known that metric spaces are 
paracompact. (This is very hard to prove and we will not attempt it.) However, 
there are paracompact spaces that are not metrizable. There are also examples 
of paracompact spaces having subspaces which are not paracompact, and, 
of course, that cannot happen with metrizable spaces. 

Normality implies that a paracompact space has many real valued maps, 
a property that we will now exploit. 

12.6. Definition. If f is a real valued map then the support of f is 

support (f) = closure{xlf(x) i= o}. 

12.7. Definition. Let {UaICXEA} be an open covering of the space X. Then 
a partition of unity subordinate to this covering is a collection of maps 

{Jp:X --+[0, 1JIf3EB} 

such that: 

(1) There is a locally finite open refinement {Vplf3EB} such that 
support(fp) c Vp for all f3EB; and 

(2) Lpfp(x) = 1 for each xEX. 
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12.8. Theorem. If X is paracompact and U is an open covering of X then there 
exists a partition of unity subordinate to U. 

PROOF. Without loss of generality, we may assume that the covering 
U = {U~IIXEA} is locally finite. 

Consider a family F = {gp: X ---+ [0,1] IPEA F}, where AF c A, such that if 
Wp = {X I gp(x) > O}, then Wp c Up and {WpIPEAF} U {U~IIXEA - AF} covers 
X. Let F be a collection of such families F which is simply ordered by inclu­
sion and is a maximal such collection; see Theorem B.18(C). Let G = UFo 
We claim that GEF. Now G = {gpIPEAG = UAF for FEF}.1f G¢F then there 
is a point XEX not in any Wp for PEAG or in any U~ for IXEA - AG. Let 
{IX I , ... , IXn} be the finite nonempty set of indices for which XE U ~i' all i. Then 
each IX;EAG' Since F is simply ordered there is an FEF for which IX;EAF for 
all i = 1, ... , n. But then x must be in some W~i' a contradiction. Therefore 
GEF as claimed. 

Next we claim that AG = A. If not then let IXEA - AG and put 

Then X = D u U~. Let C = X - D which is closed and inside U a' Since X is 
normal, there exists an open set V with C c V and V c U a' By Urysohn's 
Lemma there is a map ga: X ---+ [0,1] which is 1 on C and 0 outside V. Then 
Wa:=J C and so X = D u Wa, showing that G u {ga} is a collection of maps, 
as above, properly containing G. This contradicts the maximality of F, and 
so AG = A as claimed. 

Thus we now have a collection {gaIIXEA} of maps such that the 
Wa = {xlga(x) > O} cover X and Wa c U~. Let g = Laga' which makes sense 
by the local finiteness, and note that g(x) > 0 for all X. Then put fa = ga/g. 
This fulfills our requirements. 0 

Note that we proved a little more than was stated in Theorem 12.8. 
Namely, if the original covering is already locally finite then it need not be 
refined as in Definition 12.7. Also note that the sets Wa form a covering and 
that Wa c U a' Thus, we have: 

12.9. Proposition. If X is paracompact and {U a} is a locally finite open covering 
of X then there is an open covering {Va} such that. for each IX, Va C U a' 0 

Generally it is difficult to check that a space is paracompact by just using 
the definition. Also, we would like to avoid using that metric spaces are 
paracompact, since we have not proved it. However, the following criterion 
will apply in most cases of interest to us here. 

12.10. Definition. A space is called a-compact if it is the union of countably 
many compact subspaces. 
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12.11. Theorem. A locally compact, Hausdorff space is paracompact =- it is 
the disjoint union of open a-compact subsets. 

PROOF. => : Using local compactness, cover the space with open sets Va 
such that Oa is compact. Using paracompactness it is easy to see that this 
covering can be replaced by one which is also locally finite, so assume that. 
We shall inductively construct open sets Vi whose closures are compact. We 
start with V1 = V p for some given {3. If Vn has been defined then consider all 
the Va which intersect Vw By compactness of Vn and the local finiteness of 
the cover, this set of Va's is finite. Let Vn + 1 be the union of these Va' Then 
Vn + 1 is the union of the closures of this finite set of Va's and so it is compact. 
Also Vn C Vn + l' Put V = U Vn. Then V is the union of countably many of 
the Va's. By local finiteness V is the union of the closures of these Va's but 
each of these closures is contained in some Vn C Vn+ 1 C V. Thus V = V is 
clopen and, by construction, is a-compact. The remainder of the proof of 
the implication (=» is accomplished by a Maximality Principle argument 
which will be left to the reader since this implication will not be used in this 
book. 

<= : It is clear that a disjoint union of open para compact spaces is 
paracompact, and so we may as well assume the space X to be a-compact; 
X = C 1 U C2 U ... where the Ci are compact. In sequence, alter the Ci by 
adding to each Ci + 1 (and to the following ones at the same time) a finite 
union of compact sets (by local compactness) whose interiors cover Ci . In 
this way, we get Ci c int(C i + 1) for all i. Define compact sets A1 = C 1, and 
Ai = Ci - int Ci- 1 for i> 1. (Think of the Ci as concentric disks and the Ai 
as the rings between them.) Note that each Ai intersects nontrivially with 
only (at most) A i - 1 and A i + 1 . A little more work, using the compactness, 
hence normality, of the Ai shows that we can enlarge the Ai slightly to provide 
compact sets Bi whose interiors contain the Ai and which intersect only with 
the two B j with adjoining indices. Now, given an open covering, consider 
the induced covering of each of the compact sets Ai' We can select a finite 
refinement still covering Ai and with none of the covering sets overflowing 
from Bi • It is then clear that these finite coverings taken together provide a 
locally finite refinement of the original cover. 0 

12.12. Theorem. If X is locally compact, Hausdorff, and second countable then 
its one-point compactlfzcation X+ is metrizable and X is a-compact and 
paracompact. 

PROOF. Let B be a countable basis for X and let C c X be compact. If XEC 
then x has a compact neighborhood N and there is a member VxEB with 
XE V xC N. Hence C is covered by a finite union V Xl U ... U V Xn of such sets. 
Put V = X - U OX" Then Vu {oo} is a neighborhood of 00 in X+ contained 
in the arbitrary neighborhood X+ - C. These sets V are indexed by finite 
subsets of B and hence are countable in number; see the remark below 
Theorem B.27. This shows that X+ is second countable, and also shows that 
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X is O"-compact. By Theorem 12.11, X is paracompact. By Theorem 7.11, 
Corollary 10.3 and Theorem 9.10, X+ is metrizable. 0 

PROBLEMS 

1. Without using Theorem 12.11 or the fact that metric spaces are paracompact, 
show that any open subspace of euclidean space is a-compact, and hence para­
compact by Theorem 12.11. 

2. Suppose X is paracompact. For any open subset U of X x [0, (0) which contains 
X x {O} show that there is a map f: X ---> (0, (0) such that (x, Y)E U for all Y .::; f(x). 

13. Quotient Spaces 

The notion of a quotient space or identification space is of central importance 
in topology. It gives, for example, a firm foundation for the intuitive idea of 
the operation of "pasting" spaces together. It also provides many other 
techniques of producing new spaces out of old ones. It can also be difficult 
to understand when met for the first time, and the reader is advised to study 
it fully before going further in this book. 

13.1. Definition. Let X be a topological space, Ya set, and f: X --+ Yan onto 
function. Then we define a topology on Y called the topology induced by f 
or the quotient topology, by specifying a set V c Y to be open ¢> f -l(V) is 
open in X. Note that this is the largest topology on Y which makes f continuous. 

13.2. Definition. Let X be a topological space and ~ an equivalence relation 
on X. Let Y = XI ~ be the set of equivalence classes and n: X --+ Y the 
canonical map taking XEX to its equivalence class [xJEX/~. Then Y, with 
the topology induced by n, is called a quotient space of X. 

Quotient spaces often have very non-Hausdorff topologies. For example, 
if X is the real line and x ~ y ¢> x - y is rational, then X I ~ is an uncountable 
set but has the trivial topology, as the reader is asked to verify in Problem 6. 
We will mostly be concerned with quotient spaces that are better be­
haved. 

The reader can verify the following fact directly from the definition: 

13.3. Proposition. A quotient space of a quotient space of X is a quotient space 
of X. That is, if X --+ Y --+ Z are two onto functions and Y is given the quotient 
topology from X, and Z is given the quotient topology from Y, then Z has the 
quotient topology from X induced by the composition of the two functions. 0 

13.4. Definition. A map X --+ Y is called an identification map if it is onto 
and Y has the quotient topology. 
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13.5. Proposition. A surjection f: X ~ Y is an identification map <:> (for all 
functions g: Y ~Z, (gofis continuous <:> g is continuous)). 

PROOF. The => part is clear from the definitions. For <= specialize to the 
case Z = Y as sets, with the identification topology (on Z) and g the identity 
function. Then the composition X ~ Y ~ Z is continuous, so the condition 
demands that g be continuous. But g -1 is continuous because the composition 
X ~ Z ~ Y is f which is continuous (by the case Z = Yas spaces and g = 1 y) 
and since Z has the quotient topology. Thus g is a homeomorphism, meaning 
that Y = Z as spaces. 0 

13.6. Example. The projective plane is often defined as the sphere S2 with 
antipodal points identified. That is, it is given the quotient topology from 
the relation that identifies antipodal points in a sphere. A second description 
of the projective plane one often sees is that it is the unit disk 0 2 with 
antipodal points on the boundary identified. Regard 0 2 as the upper 
hemisphere and consider the diagram: 

0 2 ~ S2 

1f 1 9 

0 2/ '" ~ S2/ '" 

where the maps f and g are the identifications, i is the inclusion, and k is 
induced (the only function making the diagram commute). If U c S2/ '" is 
open then g-1(U) is open so (gi)-1(U) = i-1(g-1(U)) is open. But this is the 
same as (kf)-1(U) = f- 1(k- 1(U)). Thus k-1(U) is open by the definition of 
the quotient topology. That means that k is continuous. But k is also clearly 
one-one and onto. Moreover, 0 2/", is compact since 0 2 is. Also, S2/ '" is 
easily seen to be Hausdorff, and so we finally conclude that k is a homeo­
morphism from Theorem 7.8. Thus, indeed, these two ways of defining the 
projective plane as a topological space are equivalent. This is a typical argu­
ment involving spaces obtained via identifications. 

An often used special case of quotient spaces is the idea of "collapsing" 
a subspace: 

13.7. Oefinition. If X is a space and A c X, then X/A denotes the quotient 
space obtained via the equivalence relation whose equivalence classes are A 
and the single point sets {x}, XEX - A. 

The following is an easy exercise: 

13.S. Proposition. If X is regular and A is closed then X/A is Hausdorff. If 
X is normal and A is closed, then X/A is normal. 0 
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Figure 1-1. The sphere as quotient space of a disk. 

13.9. Example. Consider the cylinder S" x I. Define f: S" x 1-> D" + 1 by 
f(x, t) = tx. This carries the set S" x {O} to the origin and so f factors through 
S" x Iisn x {O}. The resulting map g:sn x Iisn x {O}->D"+1 is clearly 
one-one and onto. Thus it is a homeomorphism by Theorem 7.8. 

13.10. Example. Consider the n-disk Dn. This is clearly homeomorphic to 
the lower n-hemisphere of radius 2 centered at 1 on the "vertical" axis. (See 
Figure 1-1.) We can map this onto the n-sphere sn of radius 1 centered at 
the origin by projection towards the vertical axis. It maps the boundary of 
the disk to the north pole of the sphere. This function is distance decreasing 
and hence continuous. Also consider the quotient space Dn Isn - 1. One can 
factor the projection of the disk to the sphere through this space. By an 
argument similar to that in Example 13.9 one can show that the resulting 
map D n Isn - 1 -> sn is a homeomorphism. 

If the method in Example 13.9 is not available, the following gives a 
criterion for deciding the same sort of question. 

13.11. Definition. If A c X and if ~ is an equivalence relation on X then 
the saturation of A is {xEXlx ~ a for some aEA}. 

13.12. Proposition. If A c X and ~ is an equivalence relation on X such that 
every equivalence class intersects A nontrivially, then the induced map 
k: AI ~ -> X I ~ is a homeomorphism if the saturation of every open (resp. closed) 
set of A is open (resp. closed) in X. 

PROOF. If f: A -> AI ~ and g: X -> X I ~ are the canonical maps, and U is an 
open set in AI ~ then g -1(k(U)) is the saturation of f -1(U). Moreover, by 
definition, it is open ~ k( U) is open in X I ~ . Also k is clearly one-one, onto, 
and continuous. 0 

Another common application of the idea of a quotient space is a space 
obtained by "attaching": 

13.13. Definition. Let X and Y be spaces and A c X closed. Let f: A -> Y be 
a map. Then we denote by YUrX, the quotient space of the disjoint union 
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x + Y by the equivalence relation 
a'" f(a) for aEA. 

which is generated by the relations 

(To be more precise about the equivalence relation, for points u, v in 
X + Y, u '" v if one of the following is true: (1) u = v; (2) u, vEA, and f(u) = f(v); 
(3) UEA and v = f(U)E Y.) 

Note that if Y is a one-point space then Yu f X = X/A. 
The following is an easy verification left to the reader: 

13.14. Proposition. The canonical map Y --+ YufX is an embedding onto a 
closed subspace. The canonical map X - A --+ Yu fX is an embedding onto an 
open subspace. D 

13.15. Definition. If A is a subspace of a space X then a map f: X --+ A such 
that f(a) = a for all points aEA, is called a retraction, and A is said to be a 
retract of X. 

Special cases of attachments of importance to us are the "mapping 
cylinder" and the "mapping cone." As is usual, the unit interval [O,IJ will 
be denoted by I here. 

13.16. Definition. If f: X --+ Y is a map then the mapping cylinder of f is the 
space M f = YUfoX x I where fo:X x {O}--+ Y is fo(x, 0) = f(x). See 
Figure 1-2. 

Note that X ::::: X x {I} is embedded as a closed subset of M f. By an abuse 
of notation, we will regard this as an inclusion X eMf. Also note then that 

there is the factorization of f, X eMf ~ Y where r is the retraction of M f 
onto Y induced by the projection X x I --+ X x {O}. 

13.17. Definition. If f: X --+ Y is a map then the mapping cone of f is the 
space Cf=Mf/(X x {l}). 

Figure 1-2. Mapping cylinder. 
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It is often of interest to know when a function M J ----> Z, taking a mapping 
cylinder into another space Z, is continuous. This is usually quite easy to 
check by use of the following simple fact. The proof is an easy application 
of the definition of the quotient topology on a mapping cylinder, and is left 
to the reader. 

13.18. Proposition. A function M J ----> Z is continuous ¢> the induced functions 
X x I ----> Z and Y ----> Z are both continuous. 0 

Here is a result we shall need later. 

13.19. Proposition. If f: X ----> Y is an identification map and K is a locally 
compactHausdorjJspacethenf x 1:X x K----> Y x Kisanidentificationmap. 

PROOF. Suppose that g: Y x K ----> Wand let h = go(f x 1): X x K ----> W Then, 
by Proposition 13.5, it suffices to prove that h continuous =g continuous. 
Let U c W be open and suppose that g(yo, ko)E U. Let f(x o) = Yo' Then 
h(xo, ko) = g(yo, ko)E U. Therefore there is a compact neighborhood N of ko 
such that h(xo x N) cU. Put A = {YEYlg(y x N) c U}. Then YoEA and it 
suffices to show that A is open. Thus it suffices to show that f -l(A) is open. 
Now 

f-l(A) = {xEXlh(x x N) = g(f(x) x N) c U} 

and so X - f-l(A) = nx(h- 1(W - U)n(X x N)) is closed by Proposition 8.2. 
o 

PROBLEMS 

1. -¢- If f: X ---+ A and g,' Y ---+ B are open identification maps, show that f x g: X x Y ---+ 

A x B is also an open identification map. 

2. If X, Yare normal, A c X is closed, and f,' A ---+ Y is a map, show that Yu fX is 
normal. 

3. Iff: X ---+ Y is a map between Hausdorff spaces, show that M f and C f are Hausdorff. 

4. There are four common definitions of the torus T2: 
(1) as R 2/Z2 , i.e., the plane modulo the equivalence relation (x, y) ~ (u, w)=x - u 

and y - ware both integers; 
(2) as a square with opposite edges identified (see Figure 1-3); 
(3) as the product 8 1 x 81; and 
(4) as the "anchor ring," the surface of revolution obtained by rotating a circle 

about an axis in its plane and disjoint from it. 
Show that these are all homeomorphic to one another. 

5. The "Klein bottle" K2 is a square with opposite vertical edges identified in the 
same direction and opposite horizontal edges identified in the opposite direction 
(see Figure 1-3). Consider the space (denoted by p2#p2) resulting from an annulus 
by identifying antipodal points on the outer circle, and also identifying antipodal 
points on the inner circle. Show that K2 ~P2#P2. 
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Figure 1-3. The torus (left) and Klein bottle (right). 

6. Consider the real line R, with the equivalence relation x ~ y=x - y is rational. 
Show that RI ~ has an uncountable number of points, but its topology is the 
trivial one. 

7. Consider the real line R and the integers Z. Let A = R/Z (the identification of the 
subspace Z to a point). Also consider the subspace B of the plane which is the 
union of the circles of radius lIn (n = 1,2, ... ) in the upper half plane all tangent 
to the real line at the origin. Also consider the subspace C of the plane which is 
the union of the circles of radius n (n = 1,2, ... ) in the upper half plane all tangent 
to the real line at the origin. Finally, consider the space D = S1 IN where S1 is the 
unit circle in the complex numbers and N = {ein/nln = 1,2, ... } u {1}. Which of these 
four spaces A, B, C, D are homeomorphic to which others of them? 

8. Let (X, xo) and (Y, Yo) be "pointed spaces," i.e., spaces with distinguished "base" 
points. Define the "one-point union" X v Y to be the quotient space of the 
topological sum X + Y by the equivalence relation identifying Xo with Yo. Show 
that X v Y ::;::: X x {Yo} u {xo} x Y, where the latter is regarded as a subspace of 
Xx Y. 

14. Homotopy 

A homotopy is a family of mappings parametrized by the unit interval. This 
notion is of central importance in topology. Here we lay down the basic 
definitions and properties of this concept. 

14.1. Definition. If X and Yare spaces then a homotopy of maps from X to 
Y is a map F:X x 1-+ Y, where 1= [0, 1]. 

Two maps 10' 11: X -+ Yare said to be homotopic if there exists a homotopy 
F: X x 1-+ Y such that F(x,O) = Io(x) and F(x, 1) = I1(x) for all XEX. 
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The relation "f is homotopic to g" is an equivalence relation on the set 
of all maps from X to Y (see Definition 14.11) and is denoted by f ~ g. The 
following is elementary: 

14.2. Proposition. Iff, g: X -4 Y, h: X' -4 X and k: Y -4 Y' then 

D 

14.3. Definition. A map f:X -4 Y is said to be a homotopy equivalence with 
homotopy inverse g if there is a map g: Y -4 X such that go f ~ 1 x and fog ~ 1 y. 
This relationship is denoted by X ~ Y. One also says, in this case, that X 
and Y have the same homotopy type. 

This is an equivalence relation between spaces, since, if h: Y -4 Z is another 
homotopy equivalence with homotopy inverse k then 

(gk)(hf) = g(kh)f ~ g1rf = gf ~ 1x 

and similarly for the opposite composition. 

14.4. Definition. A space is said to be contractible if it is homotopy equivalent 
to the one-point space. 

14.5. Proposition. A space X is contractible ¢> the identity map 1 x: X -4 X is 
homotopic to a map r: X -4 X whose image is a single point. 

PROOF. Let Y = {xo} = im(r). Then we have the inclusion map i: Y -4 X and 
the retraction r: X -4 Y. Now roi = 1y and ior ~ 1x by assumption. The 
converse is also easy. D 

14.6. Example. Consider euclidean space X = Rn and the homotopy 
F: X x I -4 X given by F(x, t) = tx. This is a homotopy between fl = 1x and 
fo, which is the map taking everything to {O}. Consequently, Rn is contractible. 
Note that each ft is onto for t > 0 but that, suddenly, fo is far from onto. 
This may challenge the intuition of some readers. 

14.7. Example. Consider the unit sphere sn-l in Rn and the punctured 
euclidean space Rn - {O}. Let i: sn - 1 -4 Rn - {O} be the inclusion and 
r:Rn_{O}-4sn-l be the central projection r(x)=x/llxli. Then roi= 1 and 
ior ~ 1 where the latter homotopy is given by F: (Rn - {O}) x 1-4 Rn - {O}, 
where F(x, t) = tx + (1 - t)xl II x II. Thus sn-l ~ Rn - {O}. 

These two examples illustrate and suggest the following: 

14.8. Definition. A subspace A of X is called a strong deformation retract of 


