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ABSTRACT

We construct a new cohomology theory for proper smooth (formal) schemes over the ring of integers of Cp. It takes
values in a mixed-characteristic analogue of Dieudonné modules, which was previously defined by Fargues as a version of
Breuil–Kisin modules. Notably, this cohomology theory specializes to all other known p-adic cohomology theories, such as
crystalline, de Rham and étale cohomology, which allows us to prove strong integral comparison theorems.

The construction of the cohomology theory relies on Faltings’ almost purity theorem, along with a certain functor
Lη on the derived category, defined previously by Berthelot–Ogus. On affine pieces, our cohomology theory admits a
relation to the theory of de Rham–Witt complexes of Langer–Zink, and can be computed as a q-deformation of de Rham
cohomology.
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1. Introduction

This paper deals with the following question: as an algebraic variety degenerates
from characteristic 0 to characteristic p, how does its cohomology degenerate?

1.1. Background. — To explain the meaning and the history of the above question,
let us fix some notation. Let K be a finite extension of Q p, and let OK ⊂K be its ring of
integers. Let X be a proper smooth scheme over OK;1 in other words, we consider only
the case of good reduction in this paper, although we expect our methods to generalize
substantially. Let k be the residue field of O, and let k̄ and K̄ be algebraic closures.

There are many different cohomology theories one can associate to this situation.
The best understood theory is �-adic cohomology for � �= p. In that case, we have étale
cohomology groups Hi

ét(XK̄,Z�) and Hi
ét(Xk̄,Z�), and proper smooth base change the-

1 We use the fractal letter for consistency with the main body of the paper, where X will be allowed to be a formal
scheme.
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orems in étale cohomology imply that these cohomology groups are canonically isomor-
phic (once one fixes a specialization of geometric points),

Hi
ét(XK̄,Z�)∼=Hi

ét(Xk̄,Z�).

In particular, the action of the absolute Galois group GK of K on the left side factors
through the action of the absolute Galois group Gk of the residue field k on the right side;
i.e., the action of GK is unramified.

Grothendieck raised the question of understanding what happens in the case �= p.
In that case, one still has well-behaved étale cohomology groups Hi

ét(XK̄,Zp) of the
generic fiber, but the étale cohomology groups of the special fiber are usually too small;
for example, if i = 1, they capture at best half of the étale cohomology of the generic fiber.
A related phenomenon is that the action of GK on Hi

ét(XK̄,Zp) is much more interesting
than in the �-adic case; in particular, it is usually not unramified. As a replacement for
the étale cohomology groups of the special fiber, Grothendieck defined the crystalline
cohomology groups Hi

crys(Xk/W(k)). These are Dieudonné modules, i.e. finitely gener-
ated W(k)-modules equipped with a Frobenius operator ϕ which is invertible up to a
power of p. However, Hi

ét(XK̄,Zp) and Hi
crys(Xk/W(k)) are cohomology theories of very

different sorts: the first is a variant of singular cohomology, whereas the second is a vari-
ant of de Rham cohomology. Over the complex numbers C, integration of differential
forms along cycles and the Poincaré lemma give a comparison between the two, but alge-
braically the two objects are quite unrelated. Grothendieck’s question of the mysterious
functor was to understand the relationship between Hi

ét(XK̄,Zp) and Hi
crys(Xk/W(k)),

and ideally describe each in terms of the other.
Fontaine obtained the conjectural answer to this question, using his period rings,

after inverting p, in [32]. Notably, he defined a W(k)[ 1
p
]-algebra Bcrys whose definition

will be recalled below, which comes equipped with actions of a Frobenius ϕ and of GK,
and he conjectured the existence of a natural ϕ,GK-equivariant isomorphism

Hi
ét(XK̄,Q p)⊗Q p

Bcrys
∼=Hi

crys

(

Xk/W(k)
)

[

1
p

]

⊗W(k)[ 1
p ] Bcrys.

The existence of such an isomorphism was proved by Tsuji [64], after previous work by
Fontaine–Messing [34], Bloch–Kato [12], and Faltings [27]. This allows one to recover
Hi

crys(Xk/W(k))[ 1
p
] from Hi

ét(XK̄,Q p) by the formula

Hi
crys

(

Xk/W(k)
)

[

1
p

]

=
(

Hi
crys

(

Xk/W(k)
)

[

1
p

]

⊗W(k)[ 1
p ] Bcrys

)GK

∼= (Hi
ét(XK̄,Q p)⊗Q p

Bcrys

)GK
.

Conversely, Fontaine showed that one can recover Hi
ét(XK̄,Q p) from Hi

crys(Xk/W(k))[ 1
p
]

together with the Hodge filtration coming from the identification Hi
crys(Xk/W(k))⊗W(k)

K=Hi
dR(XK).
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Unfortunately, when p is small or K/Q p is ramified, the integral structure is not
preserved by these isomorphisms; only when ie < p− 1, where e is the ramification index
of K/Q p, most of the story works integrally, roughly using the integral version Acrys of
Bcrys instead, as for example in work of Caruso [19]; cf. also work of Faltings [28], in the
case i < p− 1 with e arbitrary.

1.2. Results. — In this paper, we make no restriction of the sort mentioned above:
very ramified extensions and large cohomological degrees are allowed throughout. Our
first main theorem is the following; it is formulated in terms of formal schemes for wider
applicability, and it implies that the torsion in the crystalline cohomology is an upper
bound for the torsion in the étale cohomology.

Theorem 1.1. — Let X be a proper smooth formal scheme over OK, where OK is the ring of

integers in a complete discretely valued nonarchimedean extension K of Q p with perfect residue field k.

Let C be a completed algebraic closure of K, and write XC for the (geometric) rigid-analytic generic fiber

of X. Fix some i ≥ 0.

(i) There is a comparison isomorphism

Hi
ét(XC,Zp)⊗Zp

Bcrys
∼=Hi

crys

(

Xk/W(k)
)⊗W(k) Bcrys,

compatible with the Galois and Frobenius actions, and the filtration. In particular,

Hi
ét(XC,Q p) is a crystalline Galois representation.

(ii) For all n≥ 0, we have the inequality

lengthW(k)

(

Hi
crys

(

Xk/W(k)
)

tor
/pn
)≥ lengthZp

(

Hi
ét(XC,Zp)tor/pn

)

.

In particular, if Hi
crys(Xk/W(k)) is p-torsion-free,2 then so is Hi

ét(XC,Zp).

(iii) Assume that Hi
crys(Xk/W(k)) and Hi+1

crys(Xk/W(k)) are p-torsion-free. Then one can

recover Hi
crys(Xk/W(k)) with its ϕ-action from Hi

ét(XC,Zp) with its GK-action.

Part (i) is the analogue of Fontaine’s conjecture for proper smooth formal schemes
over OK. In fact, our methods work more generally: we directly prove the comparison iso-
morphism in (i) and the inequalities in (ii) (as well as a variant of (iii), formulated below)
for any proper smooth formal scheme that is merely defined over OC. For formal schemes
over discretely valued base fields, part (i) has also been proved recently by Colmez–Niziol
[20] (in the more general case of semistable reduction), and Tan–Tong [63] (in the abso-
lutely unramified case, building on previous work of Andreatta–Iovita [3]).

Intuitively, part (ii) says the following. If one starts with a proper smooth variety
over the complex numbers C, then the comparison between de Rham and singular
(co)homology says that any class in singular homology gives an obstruction to integrating
differential forms: the integral over the corresponding cycle has to be zero. However, for

2 We show that this is equivalent to requiring Hi
dR(X) being a torsion-free OK-module (for any fixed i).
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torsion classes, this is not an actual obstruction: a multiple of the integral, and thus the
integral itself, is always zero. Nevertheless, part (ii) implies the following inequality:

(1) dimk Hi
dR(Xk)≥ dimFp

Hi
ét(XC,Fp).

In other words, p-torsion classes in singular homology still produce non-zero obstructions
to integrating differential forms on any (good) reduction modulo p of the variety. The re-
lation is however much more indirect, as there is no analogue of “integrating a differential
form against a cycle” in the p-adic world.

Remark 1.2. — Theorem 1.1(ii) “explains” certain pathologies in algebraic geom-
etry in characteristic p. For example, it was observed (by classification and direct calcula-
tion, see [43, Corollaire 7.3.4 (a)]) that for any Enriques surface Sk over a perfect field k

of characteristic 2, the group H1
dR(Sk) is never 0, contrary to what happens in any other

characteristic. Granting the fact that any such Sk lifts to characteristic 0 (which is known,
see [25, 53]), this phenomenon is explained by Theorem 1.1(ii): an Enriques surface SC

over C has H1
ét(SC,F2)∼= F2 �= 0 as the fundamental group is Z/2, so the inequality (1)

above forces H1
dR(Sk) �= 0.

Remark 1.3. — We also give examples illustrating the sharpness of Theorem 1.1(ii)
in two different ways. First, we give an example of a smooth projective surface over Z2 for
which all étale cohomology groups are 2-torsion-free, while H2

crys has nontrivial 2-torsion;
thus, the inequality can be strict. Note that this example falls (just) outside the hypotheses
of previous results like those of Caruso [19], which give conditions under which there is
an abstract isomorphism Hi

crys(Xk/W(k))∼=Hi
ét(XK̄,Zp)⊗Zp

W(k). Similar examples of
smooth projective surfaces can also be constructed over (unramified extensions of) Zp[ζp],
which shows the relevance of the bound ie < p − 1. Secondly, we construct a smooth
projective surface X over OK where H2

ét(XK̄,Zp)tor = Z/p2Z, while H2
crys(Xk/W(k))tor =

k ⊕ k; thus, the inequality in part (ii) cannot be upgraded to a subquotient relationship
between the corresponding groups.

Part (iii) implies that the crystalline cohomology of the special fiber (under the
stated hypothesis) can be recovered from the generic fiber. The implicit functor in this re-
covery process relies on the theory of Breuil–Kisin modules, which were defined by Kisin
[49], following earlier work of Breuil [17]; for us, Kisin’s observation that one can use the
ring S=W(k)�T� in place of Breuil’s S involving divided powers is critical. The precise
statement of (iii) is the following. As Hi

ét(XC,Zp) is torsion-free by (ii) and the assump-
tion, it is a lattice in a crystalline GK-representation by (i). Kisin associates to any lattice
in a crystalline GK-representation a finite free S =W(k)�T�-module BK(Hi

ét(XC,Zp))

equipped with a Frobenius ϕ, in such a way that BK(Hi
ét(XC,Zp))⊗S W(k)[ 1

p
] (where

the map S→W(k) sends T to 0 and is the Frobenius on W(k)) gets identified with

(

Hi
ét(XC,Zp)⊗Zp

Bcrys

)GK =Hi
crys

(

Xk/W(k)
)

[

1
p

]

.
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Then, under the assumptions of part (iii), we show that

BK
(

Hi
ét(XC,Zp)

)⊗S W(k)=Hi
crys

(

Xk/W(k)
)

as submodules of BK(Hi
ét(XC,Zp))⊗S W(k)[ 1

p
] ∼=Hi

crys(Xk/W(k))[ 1
p
].

As alluded to earlier, there is also a variant of Theorem 1.1(iii) if K is algebraically
closed. In fact, our approach is to reduce to this case; so, from now on, let C be any

complete algebraically closed nonarchimedean extension of Q p, with ring of integers O
and residue field k. In this situation, the literal statement of Theorem 1.1(iii) above is
clearly false, as there is no Galois action. Instead, our variant says the following:

Theorem 1.4. — Let X be a proper smooth formal scheme over O. Assume that Hi
crys(Xk/

W(k)) and Hi+1
crys(Xk/W(k)) are p-torsion-free. Then Hi

crys(Xk/W(k)), with its ϕ-action, can

be recovered functorially from the rigid-analytic generic fiber X of X. More precisely, the Zp-module

Hi
ét(X,Zp) equipped with the de Rham comparison isomorphism (as in Theorem 1.7 below) functori-

ally recovers Hi
crys(Xk/W(k)).

The proof of this result (and the implicit functor) relies on a variant of Breuil–Kisin
modules, due to Fargues [30], formulated in terms of Fontaine’s period ring Ainf instead of
the ring S. To explain this further, we recall the definitions first. The ring Ainf is defined
as

Ainf =W
(

O�
)

,

where O� = lim←−ϕ
O/p is the “tilt” of O. Then O� is the ring of integers in a complete

algebraically closed nonarchimedean field C� of characteristic p, the tilt of C; in particu-
lar, the Frobenius map on O� is bijective, and thus Ainf =W(O�) has a natural Frobenius
automorphism ϕ, and Ainf/p=O�.

We will need certain special elements of Ainf. Fix a compatible system of primitive
p-power roots of unity ζpr ∈O; then the system (1, ζp, ζp2, . . .) defines an element ε ∈O�.
Let μ= [ε] − 1 ∈ Ainf and

ξ = μ

ϕ−1(μ)
= [ε] − 1
[ε]1/p − 1

=
p−1
∑

i=0

[ε]i/p.

There is a natural map θ : Ainf →O whose kernel is generated by the non-zero-divisor ξ .
Then Acrys is defined as the p-adic completion of the PD envelope of Ainf with respect to
the kernel of θ ; equivalently, one takes the p-adic completion of the Ainf-algebra generated
by the elements ξ n

n! , n ≥ 1, inside Ainf[ 1
p
]. Witt vector functoriality gives a natural map

Ainf → W(k) that carries ξ to p, and hence factors through Acrys. Finally, the ring Bcrys

that appeared in Fontaine’s functor is

Bcrys = Acrys

[

1
μ

]

.
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This is a Q p-algebra as μp−1 ∈ pAcrys. We will also need B+dR, defined as the ξ -adic com-
pletion of Ainf[ 1

p
]; this is a complete discrete valuation ring with residue field C, uni-

formizer ξ , and quotient field BdR := B+dR[ 1
ξ
].

With this notation, the relevant category of modules is defined as follows:

Definition 1.5. — A Breuil–Kisin–Fargues module is a finitely presented Ainf-module M
equipped with a ϕ-linear isomorphism ϕM : M[ 1

ξ
] ∼= M[ 1

ϕ(ξ)
], such that M[ 1

p
] is finite free over

Ainf[ 1
p
].
This is a suitable mixed-characteristic analogue of a Dieudonné module; in fact,

these objects intervene in the work [62] of the third author as “mixed-characteristic local
shtukas”. We note that the relation to shtukas has been emphasized by Kisin from the
start [49]. For us, Fargues’ classification of finite free Breuil–Kisin–Fargues modules is
critical.

Theorem 1.6 (Fargues). — The category of finite free Breuil–Kisin–Fargues modules is equiv-

alent to the category of pairs (T,�), where T is a finite free Zp-module, and � ⊂ T⊗Zp
BdR is a

B+dR-lattice.

Let us briefly explain how to use Theorem 1.6 to formulate Theorem 1.4. Un-
der the hypothesis of the latter, by Theorem 1.1(ii), the Zp-module T := Hi

ét(X,Zp) is
finite free. The de Rham comparison isomorphism for X, formulated in Theorem 1.7
next, gives a B+dR-lattice � := Hi

crys(X/B+dR) in T⊗Zp
BdR. The pair (T,�) determines

a Breuil–Kisin–Fargues module (M, ϕM) by Theorem 1.6. Then Theorem 1.4 states
that the “crystalline realization” (M, ϕM)⊗Ainf W(k) coincides with (Hi

crys(Xk/W(k)), ϕ),
which gives the desired reconstruction.

The preceding formulation of Theorem 1.4 relies on the existence of a good
de Rham cohomology theory for proper smooth rigid-analytic spaces X over C that
takes values in B+dR-modules, and satisfies a de Rham comparison theorem. Note that
Hi

dR(X) is a perfectly well-behaved object: it is a finite dimensional C-vector space. How-
ever, it is inadequate for our needs as there is no sensible formulation of the de Rham
comparison theorem in terms of Hi

dR(X): there is no natural map C→ B+dR splitting the
map θ : B+dR → C (unlike the discretely valued case). Our next result shows that Hi

dR(X)

nevertheless admits a canonical deformation across θ , and that this deformation inter-
acts well with p-adic comparison theorems. We regard this as an analogue of crystalline
cohomology (with respect to the topologically nilpotent thickening B+dR → C in place of
the usual W(k)→ k).

Theorem 1.7. — Let X be a proper smooth adic space over C. Then there are cohomology groups

Hi
crys(X/B+dR) which come with a canonical isomorphism

Hi
crys

(

X/B+dR

)⊗B+dR
BdR

∼=Hi
ét(X,Zp)⊗Zp

BdR.
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In case X = X0̂⊗KC arises via base change from some complete discretely valued extension K of Q p

with perfect residue field, this isomorphism agrees with the comparison isomorphism

Hi
dR(X0)⊗K BdR

∼=Hi
ét(X,Zp)⊗Zp

BdR

from [59] under a canonical identification

Hi
crys

(

X/B+dR

)=Hi
dR(X0)⊗K B+dR.

Moreover, Hi
crys(X/B+dR) is a finite free B+dR-module, and we have the following:

(i) (Conrad-Gabber [21]) The Hodge–de Rham spectral sequence

Eij

1 =Hj
(

X,�i
X/C

)⇒Hi+j

dR(X)

degenerates at E1.

(ii) The Hodge–Tate spectral sequence [60]

Eij

2 =Hi
(

X,�
j

X/C

)

(−j)⇒Hi+j

ét (X,Zp)⊗Zp
C

degenerates at E2.

We now turn to discussing the proof of Theorem 1.1. Our strategy is to construct
a cohomology theory for proper smooth formal schemes over O that is valued in Breuil–
Kisin–Fargues modules. This new cohomology theory specializes to all other cohomology
theories, as summarized next, and thus leads to explicit relationships between them, as in
Theorem 1.1.

Theorem 1.8. — Let X be a proper smooth formal scheme over O, where O is the ring of integers

in a complete algebraically closed nonarchimedean extension C of Q p. Then there is a perfect complex of

Ainf-modules

R�Ainf(X),

equipped with a ϕ-linear map ϕ :R�Ainf(X)→R�Ainf(X) inducing a quasi-isomorphism

R�Ainf(X)

[

1
ξ

]

�R�Ainf(X)

[

1
ϕ(ξ)

]

,

such that all cohomology groups are Breuil–Kisin–Fargues modules. Moreover, one has the following

comparison results.

(i) With crystalline cohomology of Xk :

R�Ainf(X)⊗L
Ainf

W(k)�R�crys

(

Xk/W(k)
)

.
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(ii) With de Rham cohomology of X:

R�Ainf(X)⊗L
Ainf

O �R�dR(X).

(iii) With crystalline cohomology of XO/p:

R�Ainf(X)⊗L
Ainf

Acrys �R�crys(XO/p/Acrys).

(iv) With étale cohomology of the rigid-analytic generic fiber X of X:

R�Ainf(X)⊗Ainf Ainf

[

1
μ

]

�R�ét(X,Zp)⊗Zp
Ainf

[

1
μ

]

.

We note that statement (iii) formally implies (i) and (ii) by standard facts about
crystalline cohomology. Also, we note that (if one fixes a section k → O/p) there is a
canonical isomorphism

R�crys(XO/p/Acrys)

[

1
p

]

�R�crys

(

Xk/W(k)
)⊗W(k) Acrys

[

1
p

]

;

this is related to a result of Berthelot–Ogus [7]. Thus, combining parts (iii) and (iv), we
get the comparison

R�crys

(

Xk/W(k)
)⊗W(k) Bcrys �R�Ainf(X)⊗L

Ainf
Bcrys

�R�ét(X,Zp)⊗Zp
Bcrys,

which proves Theorem 1.1(i); note that since each Hi
Ainf

(X)[ 1
p
] is free over Ainf[ 1

p
], the de-

rived comparison statement above immediately yields one for the individual cohomology
groups.

The picture here is that there is the cohomology theory R�Ainf(X) which lives
over all of Spec Ainf, and which over various (big) subsets of Spec Ainf can be described
through other cohomology theories. These subsets often overlap, and on these overlaps
one gets comparison isomorphisms. However, the cohomology theory R�Ainf(X) itself is
a finer invariant which cannot be obtained by a formal procedure from the other known
cohomology theories. In particular, the base change R�Ainf(X)⊗L

Ainf
O� does not admit a

description in classical terms, and gives a specialization from the étale cohomology of X
with Fp-coefficients to the de Rham cohomology of Xk (by Theorem 1.8(ii) and (iv)), and
is thus responsible for the inequality in Theorem 1.1(ii).

Remark 1.9. — It is somewhat surprising that there is a Frobenius acting on
R�Ainf(X), as there is no Frobenius acting on X itself. This phenomenon is reminiscent of
the Frobenius action on the de Rham cohomology R�dR(Y) of a proper smooth W(k)-
scheme Y. However, in the latter case, the formalism of crystalline cohomology shows
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that R�dR(Y) depends functorially on the special fiber Yk ; the latter lives in character-
istic p, and thus carries a Frobenius. In our case, though, the theory R�Ainf(X) is not a
functor of XO/p (see Remark 2.4), so there is no obvious Frobenius in the picture. Instead,
in our construction, the Frobenius on R�Ainf(X) comes from the Frobenius action on the
“tilt” of X.

Let us explain the definition of R�Ainf(X). We will construct a complex A�X of
sheaves of Ainf-modules on XZar, which will in fact carry the structure of a commutative
Ainf-algebra (in the derived category).3 Then

R�Ainf(X) :=R�(XZar,A�X).

Let us remark here that, in the way constructed in this paper, A�X depends on the map
X→ SpfO, and so it would be better to write A�X/O instead. We write A�X to keep
notation light.4

The comparison results above are consequences of the following results on A�X.

Theorem 1.10. — Let X/O be as in Theorem 1.8. For the complex A�X of sheaves of

Ainf-modules defined below, there are canonical quasi-isomorphisms of complexes of sheaves on XZar

(compatible with multiplicative structures).

(i) With crystalline cohomology of Xk :

A�X
̂⊗L

AinfW(k)�W�•
Xk/W(k).

Here, the tensor product is p-adically completed, and the right side denotes the de Rham–Witt

complex of Xk , which computes crystalline cohomology of Xk .

(ii) With de Rham cohomology of X:

A�X⊗L
Ainf

O ��
•,cont
X/O ,

where �
i,cont
X/O = lim←−n

�i
(X/pn)/(O/pn).

(iii) With crystalline cohomology of XO/p: if u : (XO/p/Acrys)crys → XZar denotes the projec-

tion, then

A�X
̂⊗L

AinfAcrys �Ru∗Ocrys
XO/p/Acrys

.

(iv) With (a variant of) étale cohomology of the rigid-analytic generic fiber X over X: if ν :
Xproét →XZar denotes the projection, then

A�X⊗Ainf Ainf

[

1
μ

]

� (Rν∗Ainf,X)⊗Ainf Ainf

[

1
μ

]

.

3 Our constructions can be upgraded to make A�X into a sheaf of E∞-Ainf-algebras, but we will merely consider
it as a commutative algebra in the derived category of Ainf-modules on X.

4 In fact, by [8], A�X only depends on X itself.
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We note that Theorem 1.10 implies Theorem 1.8. This is clear for parts (i), (ii) and
(iii). For part (iv), one uses the following result from [59] (cf. [29, §3, Theorem 8]): the
canonical map

R�ét(X,Zp)⊗Zp
Ainf →R�proét(X,Ainf,X)

is an almost quasi-isomorphism; in particular, it is a quasi-isomorphism after inverting μ.
Here, Ainf,X is a relative version of Fontaine’s period ring Ainf, obtained by repeating the
construction of Ainf on the pro-étale site.

Theorem 1.10 provides two different ways of looking at A�X. On one hand, it
can be regarded as a deformation of the de Rham complex of X from O to its pro-
infinitesimal thickening Ainf →O, by (ii). This is very analogous to regarding crystalline
cohomology of Xk as a deformation of the de Rham complex of Xk from k to its pro-
infinitesimal thickening W(k)→ k. This turns out to be a fruitful perspective for certain
problems; in particular, if one chooses coordinates on X, then A�X can be computed
explicitly, as a certain “q-deformation of de Rham cohomology”. This is very concrete,
but unfortunately it depends on coordinates in a critical way, and we do not know how to
see directly that A�X is independent of the choice of coordinates in this picture.

Remark 1.11. — This discussion raises an interesting question: is there a site-
theoretic formalism, akin to crystalline cohomology, that realizes A�X? Note that
A�X

̂⊗L
AinfAcrys does indeed arise by the crystalline formalism thanks to Theorem 1.10(iii).

It is tempting to use the infinitesimal site to descend further to Ainf; however, one can
show that this approach does not work, essentially for the same reason that infinitesimal
cohomology does not work well in characteristic p.5

On the other hand, by Theorem 1.10(iv), one can regard A�X as being Rν∗Ainf,X,
up to some μ-torsion, i.e. as a variant of étale cohomology. It is this perspective with
which we will define A�X; this has the advantage of being obviously canonical. How-
ever, this definition is not very explicit, and much of our work goes into computing the
resulting A�X, and, in particular, getting the comparison to the de Rham complex. It
is this computation which builds the bridge between the apparently disparate worlds of
étale cohomology and de Rham cohomology.

1.3. Strategy of the construction. — We note that computations relating étale coho-
mology and differentials, as alluded to above, have been at the heart of Faltings’ approach
to p-adic Hodge theory; however, they always had the problem of some unwanted “junk
torsion”. The main novelty of our approach is that we can get rid of the “junk torsion”
by the following definition:

5 Footnote added in print: The question raised in this remark has been answered affirmatively by the construction
of the prismatic site that shall appear in the forthcoming [10].
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Definition 1.12. — Let

ν :Xproét →XZar

denote the projection (or the “nearby cycles map”). Then

A�X := Lημ(Rν∗Ainf,X).

Remark 1.13. — If one is careful with pro-sheaves, one can replace the pro-étale
site with Faltings’ site [29] [2], in Definition 1.12.

Here, μ = [ε] − 1 ∈ Ainf is the element introduced above. The critical new in-
gredient is the operation Lηf , defined on the derived category of A-modules,6 for any
non-zero-divisor f ∈ A. Concretely, if D• is a complex of f -torsion-free A-modules, then
ηf D• is a subcomplex of D•[ 1

f
] with terms

(ηf D)i = {x ∈ f iDi | dx ∈ f i+1Di+1
}

.

One shows that this operation passes to an operation Lηf on the derived category. This
relies on the observation that

Hi
(

ηf D•)=Hi
(

D•)/Hi
(

D•)[ f ].
In particular, the operation ηf has the effect of killing some torsion on the level of co-
homology groups, which is what makes it possible to kill the “junk torsion” mentioned
above. We warn the reader that Lηf is not an exact operation.

Remark 1.14. — We note that the operation Lηf appeared previously, notably in
the work of Berthelot–Ogus [6, Section 8]. There, they prove that for an affine smooth
scheme Spec R over k, ϕ induces a quasi-isomorphism

R�crys

(

Spec R/W(k)
)� LηpR�crys

(

Spec R/W(k)
)

,

with applications to the relation between Hodge and Newton polygon. Illusie has
strengthened this to an isomorphism of complexes

W�•
R/k
∼= ηpW�•

R/k,

cf. [43, I.3.21.1.5].

Remark 1.15. — For any object K in the derived category of Zp-modules equipped
with a quasi-isomorphism LηpK�K, we show that the complex K/pn admits a canonical
representative K•

n for each n, with Ki
n =Hi(K/pn). In the case K=R�crys(Spec R/W(k)),

equipped with the Berthelot-Ogus quasi-isomorphism mentioned in Remark 1.14, this
canonical representative is the de Rham–Witt complex; this amounts essentially to

6 In fact, we define Lηf operation on any ringed topos, such as (XZar,Ainf), which is the setup in which we are using
it in Definition 1.12.
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Katz’s reconstruction of the de Rham–Witt complex from crystalline cohomology via
the Cartier isomorphism, cf. [44, §III.1.5].

Next, we explain the computation of A�X when X = Spf R is an affine formal
scheme, which is “small” in Faltings’ sense, i.e. there exists an étale map

� : Spf R→ ̂Gd
m = SpfO

〈

T±1
1 , . . . ,T±1

d

〉

to some (formal) torus; this is always true locally on XZar. In that case, we define

R∞ =R̂⊗O〈T±1
1 ,...,T±1

d 〉O
〈

T±1/p∞
1 , . . . ,T±1/p∞

d

〉

,

on which the Galois group � = Zd
p acts; here we use the choice of p-power roots of unity

in O. Faltings’ almost purity theorem implies that the natural map

(2) R�cont

(

�,Ainf(R∞)
)→R�proét(X,Ainf,X)

is an almost quasi-isomorphism, in the sense of Faltings’ almost mathematics (with respect
to the ideal [m�] ⊂ Ainf, where m� ⊂O� is the maximal ideal). The key lemma is that the
Lη-operation converts the preceding map to an honest quasi-isomorphism:

Lemma 1.16. — The induced map

LημR�cont

(

�,Ainf(R∞)
)→ LημR�proét(X,Ainf,X)

is a quasi-isomorphism.

This statement came as a surprise to us, and its proof relies on a rather long list
of miracles; we have no good a priori reason to believe that this should be true. Part of
the miracle is that the lemma can be proved by only showing that the left side is nice,
without any extra knowledge of the right side than what follows from the almost quasi-
isomorphism (2) above. In the announcement [9], we did not use this lemma, and instead
had a more complicated definition of A�X.

Moreover, the right side

LημR�proét(X,Ainf,X)

is equal to A�R :=R�(Spf R,A�Spf R). This is not formal as Lη does not commute with
taking global sections, but is also not the hard part of the argument.

Thus, one can compute A�R as

LημR�cont

(

�,Ainf(R∞)
)

.

This computation can be done explicitly, following the previous computations of Faltings.
Before explaining the answer the general, we first give the description in the case of the
torus; the result is best formulated using the so-called q-analogue [i]q := qi−1

q−1 of an integer
i ∈ Z.
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Theorem 1.17. — If R=O〈T±1〉, then A�R is computed by the q-de Rham complex

Ainf

〈

T±1
〉

∂q

∂qT−→ Ainf

〈

T±1
〉 :Ti �→ [i]qTi−1, q= [ε] ∈ Ainf.

In closed form,

∂q

∂qT

(

f (T)
)= f (qT)− f (T)

qT−T

is a finite q-difference quotient.

In general, the formally étale map O〈T±1
1 , . . . ,T±1

d 〉 → R deforms uniquely to a formally

étale map

Ainf

〈

T±1
1 , . . . ,T±1

d

〉→ A(R)�.

For each i = 1, . . . , d, one has an automorphism γi of Ainf〈T±1
1 , . . . ,T±1

d 〉 sending Ti to qTi and

Tj to Tj for j �= i, where q= [ε]. This automorphism lifts uniquely to an automorphism γi of A(R)�

such that γi ≡ 1 mod (q− 1), so that one can define commuting “q-derivations”

∂q

∂qTi

:= γi − 1
qTi −Ti

: A(R)� → A(R)�.

Then A�R is computed by the q-de Rham complex

0→ A(R)�
(

∂q

∂qT1
,...,

∂q

∂qTd
)

−→ (

A(R)�)d → ·· ·→
i
∧
(

A(R)�)d → ·· ·

→
d
∧
(

A(R)�)d → 0,

where all higher differentials are exterior powers of the first differential.

In particular, after setting q= 1, this becomes the usual de Rham complex, which
is related to part (ii) of Theorem 1.10. In fact, already in Acrys, the elements [i]q and i

differ by a unit, which is related to part (iii) of Theorem 1.10.
Interestingly, the q-de Rham complex admits a natural structure as a differential

graded algebra, but a noncommutative one: when commuting a function past a differen-
tial, one must twist by one of the automorphisms γi . Concretely, the Leibniz rule for ∂q

∂qT

reads

∂q

∂qT

(

f (T)g(T)
)= f (T)

∂q

∂qT

(

g(T)
)+ g(qT)

∂q

∂qT

(

f (T)
)

,
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where g(qT) appears in place of g(T). (Note that this is not symmetric in f and g, so there
are really two different formulas.) If one wants to rewrite this as the Leibniz rule

∂q

∂qT

(

f (T)g(T)
)= f (T)

∂q

∂qT

(

g(T)
)+ ∂q

∂qT

(

f (T)
)

g(T),

one has to introduce noncommutativity when multiplying the q-differential ∂q

∂qT( f (T)) by
the function g(T); this can be done in a consistent way. Nevertheless, one can show that
the q-de Rham complex is an E∞-algebra (over Ainf), so the commutativity is restored up
to consistent higher homotopies.

Remark 1.18. — The occurrence of the perhaps less familiar (and more general)
notion of an E∞-algebra, instead of the stricter and more hands-on notion of a commu-
tative differential graded algebra, is not just an artifact of our construction, but a fun-
damental feature of the output: even when R = O〈T±1〉, the E∞-Ainf-algebra A�R (or
even A�R/p) cannot be represented by a commutative differential graded algebra (see
Remark 7.8).

Finally, let us say a few words about the proof of Lemma 1.16. Its proof relies on a
relation to the de Rham–Witt complex of Langer–Zink [52]. First, recall that there is an
alternative definition of Ainf as

Ainf = lim←−
F

Wr(O);

similarly, we have

Ainf(R∞)= lim←−
F

Wr(R∞).

Roughly, Lemma 1.16 follows by taking the inverse limit over r, along the F maps, of the
following variant.

Lemma 1.19. — For any r ≥ 1, the natural map

LημR�cont

(

�,Wr(R∞)
)→ LημR�proét

(

X,Wr

(

̂O+
X

))

is a quasi-isomorphism; let ˜Wr�R denote their common value. Then (up to the choice of roots of unity)

there are canonical isomorphisms

Hi(˜Wr�R)∼=Wr�
i,cont
R/O ,

where the right side denotes p-adically completed versions of the de Rham–Witt groups of Langer–Zink

[52].
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Remark 1.20. — It is also true that ˜Wr�R
∼= A�R ⊗L

Ainf
Wr(O), and A�R =

lim←−r
˜Wr�R.

Here, the strategy is the following. One first computes the cohomology groups of
the explicit left side

LημR�cont

(

�,Wr(R∞)
)

and matches those with the de Rham–Witt groups. These are made explicit by Langer–
Zink, and we match their description with ours; this is not very hard but a bit cumber-
some, as the descriptions are quite combinatorially involved. In fact, we can a priori give
the cohomology groups the structure of a “pro-F-V-complex” (using a Bockstein opera-
tor as the differential), so that by the universal property of the de Rham–Witt complex,
they receive a map from the de Rham–Witt complex; it is this canonical map that we
prove to be an isomorphism. In particular, the isomorphism is compatible with natural d ,
F, V, R and multiplication maps.

After this computation of the left side, one proves a lemma that if D1 → D2 is an
almost quasi-isomorphism of complexes such that D1 is sufficiently nice, then LημD1 →
LημD2 is a quasi-isomorphism, see Lemma 8.11. In fact, this argument only needs a
qualitative description of the left side, and one can prove the main results of our paper
without establishing the link to de Rham–Witt complexes.

We note that the complexes ˜Wr�R provide a partial lift of the Cartier isomorphism
to mixed characteristic. More precisely, Ainf admits two different maps˜θr : Ainf →Wr(O)

and θr =˜θrϕ
r : Ainf → Wr(O) to Wr(O), the first of which comes from the description

Ainf = lim←−F
Wr(O); the map θ1 agrees with Fontaine’s map θ used above. Then formal

properties of the Lη-operation (Proposition 6.12, Lemma 6.11) show that

A�X⊗L
Ainf,θr

Wr(O)

is computed by a complex whose terms are the cohomology groups Wr�
i,cont
X/O of

˜Wr�X = A�X⊗L
Ainf,˜θr

Wr(O).

By the crystalline comparison, A�X⊗L
Ainf,θr

Wr(O) computes the crystalline cohomology
of X/Wr(O) (equivalently, of XO/p/Wr(O)). Thus, this reproves in this setup that Langer–
Zink’s de Rham–Witt complex computes crystalline cohomology. On the other hand,
after base extension from Ainf to W(k), the maps θr and˜θr agree up to a power of Frobe-
nius on W(k). Thus, reformulating this from a slightly different perspective, there are
two different deformations of A�X ⊗L

Ainf
Wr(k) �Wr�

•
Xk/k to mixed characteristic: one

is the de Rham–Witt complex A�X ⊗L
Ainf,θr

Wr(O)�Wr�
•,cont
X/O , the other is the complex

A�X ⊗L
Ainf,˜θr

Wr(O) = ˜Wr�X whose cohomology groups are the de Rham–Witt groups
Wr�

•,cont
X/O . From this point of view, the fact that these two specialize to the same complex

over Wr(k) recovers the Cartier isomorphism.
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1.4. The genesis of this paper. — We comment briefly on the history of this paper.
The starting point for this work was the question whether one could geometrically con-
struct Breuil–Kisin modules, which had proved to be a powerful tool in abstract integral
p-adic Hodge theory. A key point was the introduction of Fargues’ variant of Breuil–
Kisin modules, which does not depend on any choices, contrary to the classical theory of
Breuil–Kisin modules (which depends on the choice of a uniformizer). The search for a
natural Ainf-valued cohomology theory took off ground after we read a paper of Hessel-
holt [40], that computed the topological cyclic homology (or rather topological Frobenius
homology) of O = OCp

, with the answer being given by the Breuil–Kisin–Fargues ver-
sion of Tate twists. This made it natural to guess that in general, (a suitable graded piece
of) topological Frobenius homology should produce the sought-after cohomology theory.
A computation of the homotopy groups of TRr(R; p,Zp) then suggested the existence of
complexes ˜Wr�R with cohomology groups given by Wr�

i,cont
R/O , as in Lemma 1.19. The

naive guess R�proét(X,Wr(̂O+
X)) for these complexes is correct up to some small torsion.

In fact, it gets better as r →∞, and in the limit r =∞, the naive guess can be shown
to be almost correct; this gives an interpretation of the “junk torsion” as coming from
the non-integral terms of the de Rham–Witt complex, cf. Proposition 11.17. Analyzing
the expected properties of A�R then showed that one needed an operation like Lη with
the property of Proposition 6.12 below: the naive guess D = R�proét(X,Ainf,X) has the
property that Hi(D/μ) is almost given by W�

i,cont
R/O , whereas the correct complex A�R

should have the property that A�R/μ is (almost) quasi-isomorphic to the de Rham–Witt
complex of R. In this context we rediscovered the Lη-operation. Thus, although topolog-
ical Hochschild homology has played a key role in the genesis of this paper, it does not
play any role in the paper itself (although it may become important for future develop-
ments). In particular, we do not prove that our new cohomology theory is actually related
to topological Hochschild homology in the expected way.7

1.5. Outline. — Finally, let us explain the content of the different sections. As it is
independent of the rest of the paper, we start in Section 2 by giving some examples of
smooth projective surfaces illustrating the sharpness of our results.

In Sections 3 through 7, we collect various foundations. In Section 3, we recall a
few facts about perfectoid algebras. This contains much more than we actually need in
the paper, but we thought that it may be a good idea to give a summary of the different
approaches and definitions of perfectoid rings in the literature, notably the original def-
inition [58], the definition of Kedlaya–Liu [48], the results of Davis–Kedlaya [22], and
the very general definition of Gabber–Ramero [38]. Next, in Section 4, we recall a few
facts from the theory of Breuil–Kisin modules, and the variant notion over Ainf defined
by Fargues. In particular, we state Fargues’ classification theorem for finite free Breuil–
Kisin–Fargues modules. This classification is in terms of data that can be easily defined

7 Footnote added in print: the reconstruction of the A� complexes via topological Hochschild homology as sug-
gested in this paragraph has appeared in [8].
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using rational p-adic Hodge theory (using only the generic fiber). We recall some relevant
facts about rational p-adic Hodge theory in Section 5, including a brief reminder on the
pro-étale site. In Section 6, we define the Lη-operation in great generality, and prove var-
ious basic properties. In Section 7, we recall that in some situations, one can use Koszul
complexes to compute group cohomology, and discuss some related questions, such as
multiplicative structures.

In Sections 8 through 14, we construct the new cohomology theory, and prove the
geometric results mentioned above. As a toy case of the general statements that will fol-
low, we construct in Section 8 the complex ˜�R = ˜W1�R. All statements can be proved
directly in this case, but the arguments are already indicative of the general case. After
dealing with this case, we define and study A�R in Section 9. In that section, we prove
Lemma 1.19, and deduce Lemma 1.16, except for the identification with de Rham–Witt
groups. In Section 10, we recall Langer–Zink’s theory of the relative de Rham–Witt com-
plex. In Section 11, we show how to build an “F-V-procomplex” from the abstract struc-
tures of the pro-étale cohomology groups, and use this to prove the identification with
de Rham–Witt groups. It remains to prove the comparison with crystalline cohomology,
which is the content of Section 12. Our approach here is very hands-on: we build explicit
functorial models of both A�R and crystalline cohomology, and an explicit functorial
map. There should certainly be a more conceptual argument. In Section 13, we give a
similar hands-on presentation of a de Rham comparison isomorphism for rigid-analytic
varieties over Cp, and show that it is compatible with the result from [59]. We use this
to prove Theorem 1.7. In the final Section 14, we assemble everything and deduce the
main results.

2. Some examples

In this section, we record some examples proving our results are sharp. First, in
Section 2.1, we give an example of a smooth projective surface over Z2 where there is no
torsion in étale cohomology of the generic fiber (in a fixed degree), but there is torsion in
crystalline cohomology of the special fiber (in the same degree); thus, the last implication
in Theorem 1.1(ii) cannot be reversed. Secondly, in Section 2.2, we record an example of
a smooth projective surface over a (ramified) extension of Zp such that the torsion in the
étale cohomology of the generic fiber is not a subquotient of the torsion in the crystalline
cohomology of the special fiber; this shows that the length inequality in Theorem 1.1(ii)
cannot be upgraded to an inclusion of the corresponding groups.

We note that both constructions rely on the interesting behavior of finite flat group
schemes in mixed characteristic: In the first example, a map of finite flat group schemes
degenerates, while in the second example a finite flat group scheme itself degenerates.

2.1. A smooth projective surface over Z2. — The goal of this section is to prove the
following result.



236 BHARGAV BHATT, MATTHEW MORROW, PETER SCHOLZE

Theorem 2.1. — There is a smooth projective geometrically connected (relative) surface X over

Z2 such that

(i) the étale cohomology groups Hi
ét(XQ2

,Z2) are free over Z2 for all i ∈ Z, and

(ii) the second crystalline cohomology group H2
crys(XF2/Z2) has nontrivial 2-torsion given by

H2
crys(XF2/Z2)tor = F2.

We are not aware of any such example in the literature. In fact, we are not aware
of any example in the literature of a proper smooth scheme X over the ring of integers O
in a p-adic field for which there is not an abstract isomorphism

Hi
crys

(

Xk/W(k)
)∼=Hi

ét(XK̄,Zp)⊗Zp
W(k).

For example, Illusie [43, Proposition 7.3.5] has proved that the crystalline cohomology of
any Enriques surface in characteristic 2 “looks like” the étale cohomology of an Enriques
surfaces in characteristic 0, and all other examples we found were of a similar nature.

We will construct X as a generic hypersurface inside a smooth projective 3-fold
with similar (but slightly weaker) properties. Let us describe the construction of this 3-fold
first. We start with a “singular” smooth Enriques surface S over Z2; here, singular means
that Picτ (S)∼= μ2 as a group scheme, and it is equivalent to the condition that π1(SF2

)∼=
Z/2Z. For existence of S, we note that there are singular Enriques surfaces over F2 (see
below), and all of those lift to Z2 by a theorem of Lang and Ogus [51, Theorem 1.3,
1.4]. In particular, there is a double cover˜S→ S, and in fact˜S is a K3 surface. Explicitly,
cf. [13, pp. 222–223], one can take for˜SF2 the smooth intersection of three quadrics in
P5

F2
(with homogeneous coordinates x1, x2, x3, y1, y2, y3) given by the equations

x2
1 + x2x3 + y2

1 + x1y1 = 0,

x2
2 + x1x3 + y2

2 + x2y2 = 0,

x2
3 + x1x2 + y2

3 + x3y3 = 0.

This admits a free action of Z/2Z given by (xi : yi) �→ (xi : xi + yi). Then ˜SF2 is a K3
surface, and SF2 =˜SF2/(Z/2Z) is a singular Enriques surface.8

Moreover, we fix an ordinary elliptic curve E over Z2. This contains a canonical
subgroup μ2 ⊂ E, and we get a nontrivial map

η : Z/2Z→ μ2 → E.

8 The Z/2Z-action is free away from x1 = x2 = x3 = 0, which would intersect ˜SF2 only when y1 = y2 = y3 = 0,
which is impossible. To check smoothness, use the Jacobian criterion to compute possible singular points. The minor for
the differentials of y1, y2, y3 shows x1x2x3 = 0; assume wlog x1 = 0. Then the minor for x1, x2, y2 shows x2

2x3 = 0, so wlog
x2 = 0. Then the first equation gives y1 = 0, and the second y2 = 0. Now the minor for x1, x2, x3 shows x2

3y3 = 0, which
together with the third equation shows x3 = y3 = 0.
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Note that ηQ2 is nonzero, while ηF2 is zero. Finally, we let π : D → S be the E-torsor
which is the pushout of the Z/2Z-torsor˜S→ S along η; then D is a smooth projective
geometrically connected 3-fold.

Proposition 2.2. — The smooth projective 3-fold D over Z2 has the following properties.

(i) The étale cohomology groups Hi
ét(DQ2

,Z2) are free over Z2 for i = 0,1,2.

(ii) The crystalline cohomology group H2
crys(DF2/Z2) has nontrivial 2-torsion, given by F2.

Proof. — We start with part (ii). Let k = F2. Then Dk = Sk × Ek is the triv-
ial Ek-torsor by construction. Thus, the Künneth formula and Illusie’s computation of
H∗

crys(Sk/W(k)) [43, Proposition 7.3.5], show that H2
crys(Dk/W(k))tor = k.

Now we deal with part (i). Let C=Q2. It is a general fact that Hi
ét(DC,Z2) is free

over Z2 for i = 0,1. Let π1(DC)ab,2 be the maximal abelian pro-2-quotient of π1(DC);
equivalently, π1(DC)ab,2 =H1,ét(DC,Z2). Then it is again a general fact that H2

ét(DC,Z2)

is free over Z2 if and only if π1(DC)ab,2 =H1,ét(DC,Z2) is free over Z2. Indeed, this follows
from the short exact sequence

0→ Ext1
(

H1,ét(DC,Z2),Z2

)→H2
ét(DC,Z2)→Hom

(

H2,ét(DC,Z2),Z2

)

→ 0.

Thus, it suffices to prove that π1(DC)ab,2 is free over Z2. We can, in fact, compute
the whole fundamental group π1(DC) of DC. Namely, pulling back ˜SC → SC along
πC :DC → SC gives a Z/2Z-cover ˜DC →DC, and ˜DC =˜SC×EC decomposes as a prod-
uct, which implies that

π1(˜DC)= π1(EC)∼=̂Z×̂Z.

Thus, π1(DC) is an extension of (not necessarily commutative) groups

0→ π1(EC)→ π1(DC)→ Z/2Z→ 0.

On the other hand, we have the map ˜DC → EC, which is by construction equivariant for
the Z/2Z-action which is the covering action of ˜DC →DC on the left, and is translation
by η : Z/2Z→ EC on the right. As this action is nontrivial we may pass to the quotient
and get a map DC → EC/η = E′C, where E′C is another elliptic curve over C. We get a
commutative diagram with exact rows:

0 π1(EC) π1(DC) Z/2Z 0

0 π1(EC) π1(E′C) Z/2Z 0.
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This shows that π1(DC)= π1(E′C)∼=̂Z×̂Z, so that in particular π1(DC)ab,2 ∼= Z2×Z2 is
free over Z2. �

Proof of Theorem 2.1. — Let D over Z2 be the smooth projective 3-fold constructed
above. Let X⊂D be a smooth and (sufficiently) ample hypersurface; this can be chosen
over Z2: One has to arrange smoothness only over F2, so the result follows from the
Bertini theorem over finite fields due to Gabber [36], and more generally Poonen [55].

Let C=Q2 as above. First, we check that Hi
ét(XC,Z2) is free over Z2 for all i ∈ Z.

Clearly, only i = 0,1,2,3,4 are relevant, and by Poincaré duality it is enough to consider
i = 0,1,2, and again i = 0,1 are always true. Let U= D \X, which is affine. Then we
have a long exact sequence

H2
c,ét(UC,Z2)→H2

ét(DC,Z2)→H2
ét(XC,Z2)→H3

c,ét(UC,Z2)→ ·· · .
Recall that as U is affine, smooth and 3-dimensional, Hi

c,ét(UC,Z2) = Hi
c,ét(UC,

Z/2Z) = 0 for i < 3 by Artin’s cohomological bounds. In particular, H3
c,ét(UC,Z2) is

free over Z2, and so the displayed long exact sequence implies that H2
ét(XC,Z2) is free

over Z2, as desired.
Let k = F2. We claim that the map

Hi
crys

(

Dk/W(k)
)→Hi

crys

(

Xk/W(k)
)

is an isomorphism for i = 0,1 and is injective for i = 2 with torsion-free cokernel, if X
was chosen sufficiently ample. This follows from a general weak Lefschetz theorem for
crystalline cohomology by Berthelot [5], but can also be readily checked by hand by
reducing to the similar question for Hi

dR(Dk)→Hi
dR(Xk), cf. Lemma 2.12 below. �

Remark 2.3. — In this example, the cospecialization map

H2
ét(XF̄2

,Z2)→H2
ét(XQ̄2

,Z2)

is not injective. Indeed, the left side contains a torsion class coming from the pullback of
the Z/2Z-cover˜SF̄2

→ SF̄2
, whereas the right side is torsion-free.

Remark 2.4. — In this example, the 3-fold D provides one lift of the smooth projec-
tive k-scheme Dk � Sk ×Ek to Z2, and has H2

ét(DQ̄2
,Z2) being torsion-free. On the other

hand, the 3-fold D′ := S× E gives another lift of Dk to Z2 such that H2
ét(D

′
Q̄2

,Z2) con-
tains 2-torsion coming from S. Thus, the torsion in the étale cohomology of the generic
fiber of a smooth and proper Z2-scheme is not a functor of the special fiber. In particular,
the theory R�Ainf(X) from Theorem 1.8 is not a functor of the special fiber XO/p; in fact,
not even R�Ainf(X)/p is.

2.2. An example of degenerating torsion in cohomology. — Let O be the ring of integers
in a complete nonarchimedean algebraically closed extension C of Q p.9 Let k be the

9 One can also realize the example over some sufficiently ramified finite extension of Q p.
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residue field of O. The goal of this section is to give an example of a smooth projective
surface H/O such that the torsion in cohomology degenerates from Z/p2Z (in the étale
cohomology of HC) to k ⊕ k (in the crystalline cohomology of Hk ); the precise statement
is recorded in Theorem 2.10.

2.2.1. The construction. — The strategy of the construction is to first produce an
example of the desired phenomenon in the world of algebraic stacks by using an inter-
esting degeneration of group schemes; later, we will push the example to varieties. The
basic idea is to degenerate the constant group scheme Z/p2Z to a group scheme that is
killed by p; this is not possible in characteristic 0, but can be accomplished over a mixed
characteristic base.

Lemma 2.5. — Let E/O be an elliptic curve with supersingular reduction. Let x ∈ E(C)

be a point of exact order p2, and let G ⊂ E be the flat closure of the subgroup generated by x. Then

GC � Z/p2Z and Gk = Ek[p].

Proof. — We only need to identify Gk ⊂ Ek ; but Ek has a unique subgroup of order
pr for any r, given by the kernel of the r-fold Frobenius. Thus, Gk = Ek[p] as both are
subgroups of order p2. �

Remark 2.6. — With suitable definitions of étale and crystalline cohomology for
stacks, the classifying stack BG of the group scheme constructed in Lemma 2.5 is a proper
smooth stack over O, and satisfies: H2

ét(BGC,Zp) � Z/p2Z, while H2
crys(BGk/W(k)) �

k⊕ k; this follows from the computations given later in the section.

We now fix a finite flat group scheme G sitting in an elliptic curve E with supersin-
gular reduction as above. Our goal is to approximate BG by a smooth projective variety
in a way that reflects the phenomenon in Remark 2.6. First, we find a convenient action
of G on a projective space. (In fact, the construction below applies to any finite flat group
scheme G.)

Lemma 2.7. — There exists a projective space P/O with an action of G such that the locus

ZP ⊂ P of points with non-trivial stabilizers has codimension > 2 on the special fiber.

Remark 2.8. — The number 2 in Lemma 2.7 can be replaced by any positive
integer.

The closed set ZP ⊂ P mentioned above is (by definition) the complement of the
maximal open UP ⊂ P with the following property: the base change b : F → P of the
action map a :G×P→ P×P given by (g, x) �→ (gx, x) along the diagonal � : P→ P×P
is an isomorphism over UP. As b is finite surjective, one can alternately characterize the
closed subset ZP ⊂ P by the following two equivalent conditions:
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(i) ZP is the set of those x ∈ P such that the fiber of b over κ(x) has length > 1.
(ii) ZP is the support of b∗OF/OP.

In particular, the formation of UP and ZP (as subsets of P) commutes with taking fibers
over points of Spec(O), and they are both G-stable subsets of P.

Proof. — Choose a faithful representation G → GL(V), inducing a G-action on
P(V). By replacing V if necessary, we may also assume that the G-action on P(V) is
faithful on each fiber. In particular, there is a maximal G-stable open U ⊂ P(V) that is
fiberwise dense such that the G-action on U has no stabilizers (constructed as UP above).
The complement Y ⊂ P(V) is a closed subset that has codimension ≥ 1 on each fiber.
Now fix an integer c > 2, and consider the induced G-action on W :=∏c

i=1 V. Set P :=
P(W). We claim that this satisfies the conclusion of the lemma.

Let ˜U⊂ V− {0} be the inverse image of U under V− {0} → P(V), and let ˜Y=
V − ˜U, so ˜Y − {0} is the inverse image of Y. Note that ˜Y, equipped with its reduced
structure, is a Gm-equivariant closed subset of V with codimension ≥ 1 on each fiber.
Now consider ˜Z′ :=∏c

i=1
˜Y ⊂ W :=∏c

i=1 V. Then ˜Z′ (say with its reduced structure)
defines a Gm-equivariant closed subset of W of codimension ≥ c on each fiber. Removing
0 and quotienting by Gm defines a proper closed subset Z′ ⊂ P of codimension ≥ c on
each fiber. It is easy to see that the locus ZP ⊂ P of points with non-trivial stabilizers is
contained in Z′, so ZP also has codimension ≥ c > 2 on each fiber. �

Choose P and G as in Lemma 2.7. We can use this action to approximate BG by
passing to the quotient as follows. Let h : P→X= P/G be the scheme-theoretic quotient,
so that X is a projective scheme, flat over O. Inside X, we have the open subset UX ⊂X
defined as the quotient UP/G, with complement ZX =X \UX.

Lemma 2.9. — The construction satisfies the following properties.

(i) The closed subset ZX ⊂X has codimension > 2 on the special fiber.

(ii) The map X→ Spec(O) is smooth over UX.

Proof. — The map h is finite surjective and G-equivariant. Our construction shows
that h(ZP)= ZX, giving (i). For (ii), observe that UP →UX is a G-torsor, and thus faithfully
flat. Moreover, the formation of this map is compatible by base change. Thus, since UP

is smooth, so is UX: It is enough to check that UX,k is regular (by the fibral criterion of
smoothness), equivalently of finite Tor-dimension, which follows from the existence of the
faithfully flat map UP,k →UX,k from the regular scheme UP,k . �

We now fix a very ample line bundle L on X once and for all. Let H ⊂ X be a
smooth complete intersection of dim(P) − 2 hypersurfaces of sufficiently large degree
such that H ⊂ UX. Such H exist, as ZX ⊂ X has codimension > 2 on the special fiber,
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so a general complete intersection surface H will miss ZX, i.e., H ∩ ZX = ∅ (first on the
special fiber, and thus globally by properness); thus, H ⊂ UX. Since UX is smooth, the
general such H will also be smooth by Bertini.

We will check that H is a sufficiently good approximation to BG for our purposes.
More precisely:

Theorem 2.10. — The above construction gives a smooth projective (relative) surface H over

Spec(O) such that H2
ét(HC,Zp)tor � Z/p2Z, while H2

crys(Hk/W(k))tor � k⊕ k.

Remark 2.11. — In this example, one can also show that H1
ét(HC,Z/p) � Z/p,

while H1
dR(Hk)� k ⊕ k. Thus, the inequality dimFp

Hi(HC,Fp) ≤ dimk Hi
dR(Hk) coming

from Theorem 1.1(ii) can be strict.

Proof. — For étale cohomology, let ˜H ⊂ P be the preimage of H, so ˜H → H is
a G-torsor. As ˜HC ⊂ PC is a smooth complete intersection of ample hypersurfaces, the
weak Lefschetz theorem implies that Hi

ét(
˜HC,Zp) is given by Zp, 0, and a torsion-free

group, in degrees 0, 1, and 2, respectively. Now we use the Leray spectral sequence for
the GC

∼= Z/p2Z-cover ˜HC →HC,

Hi
(

Z/p2Z,Hj

ét(˜HC,Zp)
)⇒Hi+j

ét (HC,Zp).

This implies that

H2
ét(HC,Zp)tor =H2

(

Z/p2Z,Zp

)= Z/p2Z.

For crystalline cohomology, consider the quotient P× E→ (P× E)/G=:XE. As
G acts freely on E, and thus on P × E, this is a G-torsor. We have a projection XE =
(P× E)/G→ X = P/G, which is an E-torsor UXE → UX over the open subset UX. In
particular, over H⊂UX, we get an E-torsor HE →H.

Now note that HE ⊂XE = (P×E)/G is a smooth intersection of dim P−2 sections
of L⊗n

E , for sufficiently large n, where LE on XE is the pullback of the ample line bundle L
on X= P/G. Note that LE is not ample, but it has the weakened Serre vanishing property
that for any coherent sheaf F on XE, Hi(XE,F ⊗L⊗n

E )= 0 for all sufficiently large n and
i > 1. Indeed, this follows from Serre vanishing on X and the Leray spectral sequence
for XE → X. By a version of the weak Lefschetz theorem in crystalline cohomology,
cf. Lemma 2.12 below, we see that the map

Hi
crys

(

XE,k/W(k)
)→Hi

(

HE,k/W(k)
)

is an isomorphism for i = 0,1, and injective with torsion-free cokernel for i = 2. The
left side can be computed by using the Leray spectral sequence for the projection XE,k =
(Pk × Ek)/Gk → Ek/Gk

∼= Ek , with fibers given by Pk . The result is that for i = 0,1, the
composite map HE,k →XE,k → Ek/Gk

∼= Ek induces an isomorphism

Hi
crys

(

Ek/W(k)
) �→Hi

crys

(

HE,k/W(k)
)

,

and H2
crys(HE,k/W(k)) is torsion-free.
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Now we consider the Ek-torsor f : HE,k → Hk , and the associated Leray spectral
sequence

Hi
crys

(

Hk,Rj fcrys∗OHE,k

)⇒Hi+j
crys

(

HE,k/W(k)
)

.

In particular, in low degrees, we get a long exact sequence

(3) 0→H1
crys

(

Hk/W(k)
)→H1

crys

(

HE,k/W(k)
) a−→H0

crys

(

Hk,R1fcrys∗OHE,k

)

→H2
crys

(

Hk/W(k)
)→H2

crys

(

HE,k/W(k)
)→ ·· · .

Fix a point x ∈Hk ; then the map a can be analyzed through the composition

H1
crys

(

Ek/W(k)
) �→H1

crys

(

HE,k/W(k)
) a−→H0

crys

(

Hk,R1fcrys∗OHE,k

)

x∗
↪→H1

crys

(

Ek/W(k)
)

.

Here x∗ is the map given by restriction to the fiber Ek of HEk
→Hk over x. The induced

endomorphism of H1
crys(Ek/W(k)) is induced by the map Ek → Ek/Gk = Ek/Ek[p] ∼= Ek ,

and is thus given by multiplication by p. This is injective, so it follows that a is injective.
Moreover, the image of x∗ is saturated, which forces x∗ to be an isomorphism. It follows
that a is injective, with cokernel given by H1

crys(Ek/W(k))/p∼= k⊕ k.
Coming back to the sequence (3), we find H1

crys(Hk/W(k)) = 0, while H2
crys(Hk/

W(k))tor = k⊕ k, as desired. �

The following version of weak Lefschetz was used in the proof.

Lemma 2.12. — Let k be a perfect field of characteristic p, and let X be a smooth projective

variety of dimension d over k, with a line bundle L. Let iL ≥ 0 be an integer such that for any co-

herent sheaf F on X, the cohomology group Hi(X,F ⊗ L⊗n) vanishes if n is sufficiently large and

i > iL.

Then there exists some integer n0 such that for all n≥ n0 and any smooth hypersurface H⊂X
with divisor L⊗n, the map

Hj
crys

(

X/W(k)
)→Hj

crys

(

H/W(k)
)

is an isomorphism for j < d − iL − 1, and injective with torsion-free cokernel for j = d − iL − 1.

Proof. — Berthelot [5], proved this when L is ample, i.e. iL = 0. His proof immedi-
ately gives the general result: Let K be the cone of R�crys(X/W(k))→R�crys(H/W(k)).
It suffices to show that K ∈ D≥d−iL−1, with Hd−iL−1(K) torsion-free. As K is p-complete,
this is equivalent to proving that K/p ∈ D≥d−iL−1. But K/p is the cone of R�dR(X)→
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R�dR(H). Thus, it suffices to prove that for any j ≥ 0, the cone Kj of

R�
(

X,�
j

X

)→R�
(

H,�
j

H

)

lies in D≥d−iL−j−1. Let I ⊂OX be the ideal sheaf of H; then I ∼= L⊗−n. Now we have a
short exact sequence

0→ I ⊗OX �
j−1
H →�

j

X/I→�
j

H → 0.

As R�(X,I ⊗OX �i
X) is Serre dual to R�(X,L⊗n⊗OX �d−i

X ), it lies in D≥d−iL if n is large
enough. It remains to see that

R�
(

X,I ⊗OX �
j−1
H

) ∈D≥d−iL−j,

if n is large enough; we will prove more generally that for any fixed r ≥ 1,

R�
(

X,I⊗r ⊗OX �
j−1
H

) ∈D≥d−iL−j,

if n is large enough. For this, we induct on j. If j = 1, we use the short exact sequence

0→ I⊗(r+1) → I⊗r → I⊗r ⊗OX OH → 0

to reduce to R�(X,L⊗−rn) ∈D≥d−iL (and with r + 1 in place of r) for sufficiently large n,
which follows from Serre duality and the assumption on L. For j > 1, we have a short
exact sequence

0→ I⊗(r+1)⊗OX �
j−2
H → I⊗r ⊗OX �

j−1
X → I⊗r ⊗OX �

j−1
H → 0.

By induction, R� of the first term lies in D≥d−iL−j+1, and R� of the second term lies in
D≥d−iL ; this gives the required bound on the last term. �

3. Algebraic preliminaries on perfectoid rings

The goal of this section is to record some facts about perfectoid rings. In Sec-
tion 3.1, we recall a slightly non-standard perspective on Fontaine’s ring Ainf. In partic-
ular, we introduce the θr and ˜θr maps which play a crucial role in the rest of the paper;
the construction applies to a fairly large class of rings. In Section 3.2, we specialize these
constructions to perfectoid rings; with an eye towards our intended application, we ana-
lyze the kernel of the θr and ˜θr maps in the case of perfectoid rings with enough roots of
unity. Along the way, we try to summarize the definitions and relations between various
classes of perfectoid rings in the literature. Finally, in Section 3.3, we collect some results
on perfectoid fields; notably, we prove in Proposition 3.24 that Wr(O) is coherent for the
ring of integers O in a perfectoid field.
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3.1. Fontaine’s ring Ainf. — Fix a prime number p, and let S be a commutative ring
which is π -adically complete and separated for some element π ∈ S dividing p (note
that it follows that S is p-adically complete by, for example [1, Tag 090T]). Denoting
by ϕ : S/pS → S/pS the absolute Frobenius, let S� := lim←−ϕ

S/pS be the tilt of S, which
is a perfect Fp-algebra on which we will continue to denote the Frobenius by ϕ. In this
situation, we have Fontaine’s ring Ainf(S).

Definition 3.1. — Fontaine’s ring is given by

Ainf(S)=W
(

S�
)

,

which is equipped with a Frobenius automorphism ϕ.

We start by recalling a slightly nonstandard perspective on Ainf(S).

Lemma 3.2. — Let S be as above, i.e., a ring which is π -adically complete with respect to some

element π ∈ S dividing p.

(i) The canonical maps

lim←−
x �→x p

S−→ S� = lim←−
ϕ

S/pS−→ lim←−
ϕ

S/πS

are isomorphisms of monoids/rings.

(ii) For any f ∈ S, the following inclusions hold: Wr( f pr−1
S)⊂ [ f ]Wr(S)⊂Wr( f S); also

[p]2 ∈ pWr(S) and prWr(S)⊆Wr(pS). It follows that the rings Wr(S) and W(S) are

complete for the [π ], [p], and p-adic topologies.

(iii) The homomorphism

ϕ∞ : lim←−
F

Wr

(

S�
)−→ lim←−

R

Wr

(

S�
)

,

induced by the homomorphisms ϕr :Wr(S�)→Wr(S�) for r ≥ 1, is an isomorphism.

(iv) The homomorphism

lim←−
F

Wr

(

S�
)−→ lim←−

F

Wr(S/πS),

induced by the canonical map S� → S/πS, is an isomorphism.

(v) The canonical homomorphism

lim←−
F

Wr(S)−→ lim←−
F

Wr(S/πS)

is an isomorphism.
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In particular, there is a canonical isomorphism

Ainf(S)∼= lim←−
F

Wr(S).

Under this identification, the restriction operator R on the right side gets identified with ϕ−1 on the left

side; in particular, R is an automorphism of lim←−F
Wr(S).

Proof. — Parts (i) and (ii) are standard: for example, the proof of (i) is just as in
[58, Lem. 3.4(i)]; to see that [p]2 ∈ pWr(S) (which is true already for S = Z), note that
[p] ∈VWr−1(S)+ pWr(S), and VWr−1(S)2 ⊂ pWr(S) as follows from the identity

Vi[x]Vj[ y] =Vi
([x] · FiVj[ y])= p jVi

([

xypi−j ])

(using V(aF(b)) = V(a)b and FV = p) for i ≥ j. Also, pr = 0 in Wr(S/p) (as Wr(Fp) =
Z/prZ), so prWr(S)⊂Wr(pS). Part (iii) is a trivial consequence of S� being perfect.

For part (iv), note that since Wr commutes with inverse limits of rings we have,
using (i),

lim←−
F

Wr

(

S�
)= lim←−

F

lim←−
ϕ

Wr(S/πS)= lim←−
ϕ

lim←−
F

Wr(S/πS)
�→ lim←−

F

Wr(S/πS),

where the final projection is an isomorphism since ϕ induces an automorphism of the
ring lim←−F

Wr(S/πS) (thanks to the formulae Rϕ = ϕR= F in characteristic p).
Finally, for part (v): For any fixed s ≥ 1 we claim first that the canonical morphism

of pro-rings

{

Wr

(

S/π sS
)}

rwrtF
→ {Wr(S/πS)

}

rwrtF

is an isomorphism. As it is surjective, it is sufficient to show that the kernel {Wr(πS/π sS)}s
is pro-isomorphic to zero; fix r ≥ 1. By (ii), there is some c such that pc is zero in
Wr(S/π sS), and we claim that Fs+c : Wr+s+c(S/π sS) → Wr(S/π sS) kills the kernel
Wr+s+c(πS/π sS). Indeed, the kernel is generated by elements Vi[a] for i ≥ 0, a ∈ πS/π sS,
and Fs+cVi[a] = 0 ∈Wr(S/π sS) as either i ≥ c, in which case Fs+cVi[a] = pcFsVi−c[a] = 0,
or else i < c, in which case Fs+cVi[a] = pi[a]ps+c−i = 0. This proves the desired pro-
isomorphism, from which it follows that

lim←−
F

Wr

(

S/π sS
) �→ lim←−

F

Wr(S/πS).

Taking the limit over s ≥ 1, exchanging the order of the limits, and using Wr(S) =
lim←−s

Wr(S/π sS) completes the proof. �
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Continue to let S be as in the previous lemma. According to the lemma there is a
chain of isomorphisms

Ainf(S)= lim←−
R

Wr

(

S�
) ϕ∞←− lim←−

F

Wr

(

S�
)−→ lim←−

F

Wr(S/πS)←− lim←−
F

Wr(S),

through which each canonical projection lim←−F
Wr(S) −→ Wr(S) induces a homomor-

phism

˜θr : Ainf(S)→Wr(S).

Denoting by ϕ the Frobenius on Ainf(S), we define

θr :=˜θrϕ
r : Ainf(S)−→Wr(S)

for each r ≥ 1. The maps θr and especially ˜θr are of central importance in the com-
parison between the theory developed in this paper, and the theory of de Rham–Witt
complexes.

Explicitly, identifying lim←−x �→x p
S and S� as monoids by Lemma 3.2(i) and following

the usual convention of denoting an element x of S� as x = (x(0), x(1), . . . ) ∈ lim←−x �→x p
S,

these maps are described as follows.

Lemma 3.3. — For any x ∈ S� we have θr([x])= [x(0)] ∈Wr(S) and ˜θr([x])= [x(r)] for

r ≥ 1.

Proof. — This follows from a straightforward chase through the above isomor-
phisms. �

In particular Lemma 3.3 implies that θ := θ1 : Ainf(S)→ S (and not˜θ1) is the usual
map of p-adic Hodge theory, and also shows that the diagram

Ainf(S)
θr

R

Wr(S)

Wr(S�) Wr(S/pS)

commutes, where the bottom arrow is induced by the canonical map S� = lim←−ϕ
S/pS→

S/pS, x �→ x(0). Indeed, by p-adic continuity it is sufficient to check commutativity of
the diagram on Teichmüller lifts, for which it follows immediately from the previous
lemma.

Further functorial properties of the maps θr are presented in the following lemma.
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Lemma 3.4. — Continue to let S be as in the previous two lemmas. Then the following diagrams

commute:

Ainf(S)

id

θr+1

Wr+1(S)

R

Ainf(S)
θr

Wr(S)

Ainf(S)

ϕ

θr+1

Wr+1(S)

F

Ainf(S)
θr

Wr(S)

Ainf(S)
θr+1

Wr+1(S)

Ainf(S)
θr

λr+1ϕ−1

Wr(S)

V

where the third diagram requires an element λr+1 ∈ Ainf(S) satisfying θr+1(λr+1)=V(1) in Wr+1(S).

Equivalently, the following diagrams involving˜θr commute.

Ainf(S)

ϕ−1

˜θr+1

Wr+1(S)

R

Ainf(S)

˜θr

Wr(S)

Ainf(S)

id

˜θr+1

Wr+1(S)

F

Ainf(S)

˜θr

Wr(S)

Ainf(S)

˜θr+1

Wr+1(S)

Ainf(S)

˜θr

˜λr+1

Wr(S)

V

Here,˜λr+1 = ϕr+1(λr+1) ∈ Ainf(S) is an element satisfying˜θr+1(˜λr+1)=V(1) ∈Wr+1(S).

Proof. — We check that the second set of squares commute. Under the above chain
of isomorphisms Ainf(S) ∼= lim←−F

Wr(S), we showed in Lemma 3.2 that the action of ϕ−1

on Ainf(S) corresponds to that of the restriction map R on lim←−F
Wr(S); hence the diagram

Ainf(S)

ϕ−1

˜θr+1

Wr+1(S)

R

Ainf(S)
˜θr

Wr(S)

commutes. Commutativity of the second diagram follows from the definition of the
maps˜θr .

Finally, using commutativity of the second diagram, the commutativity of the third
diagram follows from the fact that VF is multiplication by V(1) on Wr+1(S). �

By the first diagram in the previous lemma, we may let r →∞ to define a map
θ∞ : Ainf(S)→W(S) satisfying θ∞([x])= [x(0)] for any x ∈ S�. We will analyze this map
further in Lemma 3.23 below.

3.2. Perfectoid rings. — We will be interested in the following class of rings.

Definition 3.5. — A ring S is perfectoid if and only if it is π -adically complete for some

element π ∈ S such that π p divides p, the Frobenius map ϕ : S/pS → S/pS is surjective, and the

kernel of θ : Ainf(S)→ S is principal.
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Example 3.6. — The following rings are examples of perfectoid algebras. First, any
perfect Fp-algebra is perfectoid (where we take π = 0); here, perfect means that the Frobe-
nius map is an isomorphism. Moreover, the p-adic completion Zcycl

p of Zp[ζp∞] is perfec-
toid; one may also take the p-adic completion of the ring of integers of any other algebraic
extension of Q p containing the cyclotomic extension. Another example is Zcycl

p 〈T1/p∞〉,
and there are many obvious variants.

Remark 3.7. — The original definition [58], of a perfectoid K-algebra, where K is
a perfectoid field, was in a slightly different context. We refer to Lemma 3.20 below for
the relation.

Remark 3.8. — In [38], Gabber and Ramero define a “perfectoid” condition for
a complete topological ring S carrying the I-adic topology for some finitely generated
ideal I. In fact, S is perfectoid in their sense if and only if S (as a ring without topology) is
perfectoid in the sense of the definition above: From [38, Proposition 14.2.9], it already
follows that their definition is independent of the topology (which can be taken to be
the p-adic topology). Now [38, Lemma 14.1.16 (iv)] shows that if S is perfectoid in their
sense, then there exists a π ∈ S and a unit u ∈ S× such π p = pu, and ϕ : S/pS→ S/pS
is surjective. The last condition that Ker θ is principal is part of their definition of a
perfectoid ring. Conversely, if S is perfectoid in our sense and we endow it with the p-
adic topology, then by Lemma 3.9 below, there exists π ∈ S and a unit u ∈ S× such that
π p = pu; taking I= (π) shows that S is a P-ring in the sense of [38, Definition 14.1.14].
Among P-rings, perfectoid rings in their sense are singled out by having the property that
Ker θ is principal [38, Definition 14.2.1], which is also part of our definition.

In relation to this, let us discuss surjectivity properties of the Frobenius:

Lemma 3.9. — Let S be a ring which is π -adically complete with respect to some element π ∈ S
such that π p divides p. Then the following are equivalent:

(i) Every element of S/πpS is a pth-power.

(ii) Every element of S/pS is a pth-power.

(iii) Every element of S/π pS is a pth-power.

(iv) The Witt vector Frobenius F :Wr+1(S)→Wr(S) is surjective for all r ≥ 1.

(v) The map θr : Ainf(S)→Wr(S) is surjective for all r ≥ 1.

Moreover, if these equivalent conditions hold then there exist u, v ∈ S× such that uπ and vp admit

systems of p-power roots in S.

Proof. — The implications (i)⇒(ii)⇒(iii) are trivial since πpS⊂ pS⊂ π pS.
Assuming (iii), a simple inductive argument allows us to write any given element

x ∈ S as an infinite sum x =∑∞
i=0 x

p

i π
pi for some xi ∈ S; but then x ≡ (

∑∞
i=0 xiπ

i)p mod
pπS, establishing (i).
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Condition (iv) states that the transition maps in the inverse system lim←−F
Wr(S) are

surjective, which implies that each map ˜θr is surjective, and hence that each map θr is
surjective, i.e., (v).

Next, (v) implies (ii) since any element of S in the image of θ = θ1 is a pth-power
mod p.

It remains to show that (ii) implies (iv), but we will first prove the “moreover” asser-
tion using only (i). Applying Lemma 3.2(i) to both S and S/πp implies that the canonical
map lim←−x �→x p

S→ lim←−x �→x p
S/πp is an isomorphism. Applying (i) repeatedly, there there-

fore exists ω ∈ lim←−x �→x p
S such that ω(0) ≡ π mod πpS (resp. ≡ p mod πpS). Writing

ω(0) = π + πpx (resp. ω(0) = p+ πpx) for some x ∈ S, the proof of the “moreover” claim
is completed by noting that 1+ px ∈ S× (resp. 1+ πx ∈ S×).

Finally, assuming (ii) (which we have shown implies (i)), the “moreover” assertion
implies that there exist π ′ ∈ S and v ∈ S× satisfying π ′ p = vp. Note that S is π ′-adically
complete, and so we may apply the implication (ii)⇒(i) for the element π ′ to deduce
that every element of S/π ′pS is a pth-power; it follows that every element of S/Ip is a
pth-power, where I is the ideal {a ∈ S : ap ∈ pS}. Now apply implication “(xiv)′ ⇒(ii)” of
Davis–Kedlaya [22] to complete the proof. �

Next, we analyze injectivity of the Frobenius map.

Lemma 3.10. — Let S be a ring which is π -adically complete with respect to some element

π ∈ S such that π p divides p, and assume that ϕ : S/πS→ S/π pS is surjective.

(i) If Ker θ is a principal ideal of Ainf(S), then ϕ : S/πS→ S/π pS is an isomorphism, and

any generator of Ker θ is a non-zero-divisor.

(ii) Conversely, if ϕ : S/πS→ S/π pS is an isomorphism and π is a non-zero-divisor, then

Ker θ is a principal ideal (and hence S is perfectoid).

Proof. — Since multiplying π by a unit does not affect any of the assertions, we
may assume by the previous lemma that π admits a compatible sequence of p-power
roots, i.e., that there exists π� ∈ S� satisfying π�(0) = π .

We begin by constructing a certain element of Ker θ (a “distinguished” or “prim-
itive” element, cf. Remark 3.11 below). By the hypothesis that π p divides p, and
Lemma 3.9, it is possible to write p = π pθ(−x) for some x ∈ Ainf(S), whence ξ =
p+ [π�]px belongs to Ker θ (recall here that θ([π�])= π ). Then there is a commutative
diagram

Ainf(S)/ξ
θ

S

Ainf(S)/(ξ, [π�]p) S/π pS
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in which the lower left entry identifies with Ainf(S)/(p, [π�]p) = S�/π�pS� and the lower
horizontal arrow identifies with the map S�/π�pS� → S/π pS induced by the canonical
projection S� = lim←−ϕ

S/π pS→ S/π pS.
Suppose first that Ker θ is principal and let ξ ′ be a generator; we claim that Ker θ

is actually generated by the element ξ . Let ξ ′ = (ξ ′0, ξ
′
1, . . . ) ∈ Ainf(S) be the Witt vector

expansion. Write ξ = ξ ′a for some a ∈ Ainf(S), and consider the resulting Witt vector
expansions:

(

π�px0,1+ π�p2
x1, . . .

)= p+ [π�
]p

x= ξ = ξ ′a= (ξ ′0, ξ ′1, . . .
)

(a0, a1, . . . )

= (ξ ′0a0, ξ
′p
0 a1 + ξ ′1a

p

0, . . .
)

It follows that ξ ′1a
p

0 = 1+ π�p2
x1 − ξ

′p
0 a1. We claim that this is a unit of S�. To check this,

using that S� = lim←−ϕ
S/πS, it is enough to check that the image of ξ ′1a

p

0 in S/πS is a unit.

But this image is simply 1, as both π� and ξ ′0 have trivial image in S/πS. So both ξ ′1 and
a0 are units of S�; in particular, this implies that a ∈ Ainf(S)×, thereby proving that ξ = ξ ′a
is also a generator of Ker θ , as required.

Now, for part (i), if θ : Ainf(S)/ξ → S is an isomorphism, then so is S�/π�pS� →
S/π pS by the displayed diagram above. The map ϕ : S/πS→ S/π pS gets identified with
ϕ : S�/π�S� → S�/π�pS�, which is an isomorphism. We also need to check that ξ is a non-
zero-divisor (as then any other generator of Ker θ differs from ξ by a unit). So suppose
that b ∈ Ainf(S) satisfies (p+[π�]px)b= 0. Then also (pr+[π�]prxr)b= 0 for any odd r ≥ 1,
since p+ [π�]px divides pr + [π�]prxr , and so prb ∈ [π�]prAinf(S). Using this to examine the
Witt vector expansion of b= (b0, b1, . . . ) shows that b

pr

i ∈ π�pr+i+1rS� for each i ≥ 0; hence
bi ∈ π�pi+1rS� since S� is perfect. As this holds for all odd r ≥ 1, and as S� is π�-adically
complete and separated, it follows that bi = 0 for all i ≥ 0, i.e., b= 0.

Conversely, for part (ii), assume that S/πS → S/π pS is an isomorphism, and
that π is a non-zero-divisor in S. Note first that the first condition implies that for
all n ≥ 0, S/π 1/pn

S → S/π 1/pn−1
S is an isomorphism, by taking the quotient modulo

π 1/pn

. This implies that the kernel of S� → S/πS is generated by π�: Indeed, given
x = (x(0), x(1), . . .) ∈ S� = lim←−x �→xp

S with x(0) ∈ πS, one inductively checks that x(n) is

divisible by π 1/pn

, using that ϕ : S/π 1/pn

S → S/π 1/pn−1
S is an isomorphism. This im-

plies that x is divisible by π�. Thus, we see that S�/π�S� → S/πS is an isomorphism.
Now let x ∈ Ainf(S) satisfy θ(x) = 0. Then one can write x = ξ y0 + [π�]x1, where
πθ(x1) = θ([π�]x1) = 0. As π is a non-zero-divisor, this implies θ(x1) = 0, so we can
inductively write x= ξ( y0 + [π�]y1 + · · · ), showing that Ker θ is generated by ξ . �

Remark 3.11 (Distinguished elements). — Let S be a perfectoid ring, and let ξ ∈Ker θ .
Then ξ is said to be distinguished if and only if its Witt vector expansion ξ = (ξ0, ξ1, . . . )

has the property that ξ1 is a unit of S�. The argument in Lemma 3.10 shows that ξ

generates Ker θ if and only if it is distinguished.
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For example, let ξ ∈ Ainf(S) satisfy θr(ξ) = V(1) in Wr(S) for some r > 1 (for
any fixed r > 1, such an element ξ does exist by Lemma 3.9(v)). We claim that ξ is a
distinguished element of Ker θ , whence it is a generator. Indeed, noting that V(1) =
(0,1,0, . . . ,0), the first diagram of Lemma 3.4 shows that θ(ξ)= 0, while the commu-
tative diagram immediately before Lemma 3.4 shows that ξ

(0)

1 ≡ 1 mod pS, whence ξ1 is
a unit of S�.

We return to the maps θr , describing their kernels in the case of a perfectoid ring:

Lemma 3.12. — Suppose that S is a perfectoid ring, and let ξ ∈ Ainf(S) be any element

generating Ker θ . Then Ker θr is generated by the non-zero-divisor

ξr := ξϕ−1(ξ) · · ·ϕ−(r−1)(ξ)

for any r ≥ 1. Equivalently, Ker˜θr is generated by

˜ξr := ϕr(ξr)= ϕ(ξ)ϕ2(ξ) · · ·ϕr(ξ).

Proof. — We prove the result by induction on r ≥ 1, the case r = 1 being covered
by the hypotheses; so fix r ≥ 1 for which the result is true. By the previous remark we may,
after multiplying ξ by a unit (depending on the fixed r ≥ 1), assume that θr+1(ξ)=V(1).
Hence Lemma 3.4 implies that there is a commutative diagram

0 Ainf(S)
ξϕ−1

θr

Ainf(S)
θ

θr+1

S 0

0 Wr(S)
V

Wr+1(S)
Rr

S 0

in which both rows are exact. Since Ker θr is generated by ξϕ−1(ξ) · · ·ϕ−(r−1)(ξ), it fol-
lows that Ker θr+1 is generated by ξϕ−1(ξ) · · ·ϕ−r(ξ), as desired. �

Henceforth we will often identify Ainf(S)/˜ξr with Wr(S) via ˜θr . Some Tor-
independence assertions related to this identification are summarized in the following
lemma:

Lemma 3.13. — Let S→ S′ be a map between perfectoid rings. Then the canonical maps

Wj(S)⊗L
Ainf(S) Ainf

(

S′
)−→Wj

(

S′
)

, Wj(S)⊗L
Wr(S) Wr

(

S′
)−→Wj

(

S′
)

are quasi-isomorphisms for all 1 ≤ j ≤ r. Here, Wj(S) is considered as a Wr(S)-module along either

the Frobenius or restriction map.
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Proof. — Let ξ ∈ Ainf(S) be a generator of Ker θ , and let˜ξj be as in the previous
lemma, which is a non-zero-divisor of Ainf(S). The image of ξ in Ainf(S′) is still a generator
of Ker θ , as the condition of being distinguished passes through ring homomorphisms.
Thus, we may apply Lemma 3.12 to both S and S′ to see that

Wj(S)⊗L
Ainf(S) Ainf

(

S′
)= Ainf(S)/˜ξj ⊗L

Ainf(S) Ainf

(

S′
)= Ainf

(

S′
)

/˜ξj =Wj

(

S′
)

.

Note that this argument also works with˜ξj replaced by ξj .
Using this result also with r in place of j, we get

Wj(S)⊗L
Wr(S) Wr

(

S′
)=Wj(S)⊗L

Wr(S) Wr(S)⊗L
Ainf(S) Ainf

(

S′
)

=Wj(S)⊗L
Ainf(S) Ainf

(

S′
)=Wj

(

S′
)

,

as required; this works with either the restriction or Frobenius map (using either the θ or
the˜θ -maps implicitly). �

An important property of perfectoid rings is the automatic vanishing of the cotan-
gent complex.

Lemma 3.14. — Let S→ S′ be a map between perfectoid rings. Then LS′/S ⊗L
Z Fp � 0; in

particular, the (derived) p-adic completion̂LS′/S � 0.

Proof. — Note that S′ = S⊗L
Ainf(S) Ainf(S′); thus, by base change for the cotangent

complex, it is enough to show that LAinf(S′)/Ainf(S) ⊗L
Z Fp � 0. But LAinf(S′)/Ainf(S) ⊗L

Z Fp �
LS′�/S� . But for any perfect ring R of characteristic p, LR/Fp

� 0 (as Frobenius is both
an isomorphism and zero [37, Lem. 6.5.13(i)]), so that a transitivity triangle shows
LS′�/S� � 0. �

Example 3.15 (Perfect rings of characteristic p). — Suppose that S is a ring of charac-
teristic p. Then S is perfectoid if and only if it is perfect. Indeed, if S is perfect, then the
kernel of θ : W(S)→ S is generated by p, and the other conditions are clear. For the
converse, by assumption ϕ : S→ S is surjective. The element p ∈Ker(θ : Ainf(S)→ S) is
distinguished, and thus a generator. Therefore, S= Ainf(S)/p= S� is perfect.

In particular, in this case S� = S, θ∞ : Ainf(S)→W(S) is an isomorphism, and the
maps θr : Ainf(S)→Wr(S) identify with the canonical Witt vector restriction maps.

Example 3.16 (Roots of unity). — Suppose that S is a perfectoid ring which contains
a compatible system ζpr , r ≥ 1, of p-power roots of unity, where ζp is a “primitive p-th root
of unity” in the sense that 1+ ζp + · · · + ζ

p−1
p = 0. Note that this includes the case that S

is of characteristic p, and all ζpr = 1.
Define ε := (1, ζp, ζp2, . . . ) ∈ S� = lim←−x �→x p

S. We claim that

ξ := 1+ [ε1/p
]+ [ε1/p

]2 + · · · + [ε1/p
]p−1
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is a generator of Ker θ satisfying θr(ξ)=V(1) for all r > 1. Note that

θ(ξ)= 1+ ζp + · · · + ζ
p−1
p = 0

by assumption on ζp. It will then follow from Lemma 3.12 that Ker˜θr is generated by

˜ξr = ϕ(ξ)ϕ2(ξ) · · ·ϕr(ξ)=
pr−1
∑

i=0

[ε]i.

According to Remark 3.11 it is sufficient to check that θr(ξ)= V(1) for all r ≥ 1.
By functoriality it is sufficient to prove this in the special case that S := Zcycl

p as in Ex-
ample 3.6, which has the advantage that S is now p-torsion free. So the ghost map
gh :Wr(S)→ Sr is now injective and it is sufficient to prove that gh(θr(ξ))= gh(V(1)).
But it follows easily from Lemma 3.3 that the composition gh◦θr : Ainf(S)→ Sr is given
by (θ, θϕ, . . . , θϕr−1), and so in particular that

gh
(

θr(ξ)
)= (θ(ξ), θϕ(ξ), . . . , θϕr−1(ξ)

)

.

Since θ(ξ)= 0 and gh(V(1))= (0, p, p, p, . . . ), it remains only to check that θϕ i(ξ)= p

for all i ≥ 1, which is straightforward:

θϕ i(ξ)= θ
(

1+ [εpi−1]+ [εpi−1]2+ · · ·+ [εpi−1]p−1)= 1+ 1+ · · ·+ 1= p.

This completes the proof of the assertions about ξ .

The most important case of perfectoid rings for the paper are those which are
flat over Zp and contain enough p-power roots of unity, for which we summarize in the
following result some additional properties of Ainf(S).

Proposition 3.17. — Let S be a perfectoid ring which is flat over Zp and contains a compat-

ible sequence ζp, ζp2, . . . of primitive p-power roots of unity; let ε ∈ S� and ξ,˜ξr ∈ Ainf(S) be as in

Example 3.16, and set μ := [ε] − 1 ∈ Ainf(S). Then, for any r ≥ 0:

(i) The element˜θr(μ)= [ζpr ] − 1 ∈Wr(S) is a non-zero-divisor;

(ii) The element μ ∈ Ainf(S) is a non-zero-divisor;

(iii) The element μ divides ϕr(μ)= [εpr ] − 1, and˜ξr = ϕr(μ)/μ.

(iv) The element μ divides ˜ξr − pr .

Proof. — The identity ˜θr(μ) = [ζpr ] − 1 follows from Lemma 3.3. To check that
[ζpr ] − 1 is a non-zero-divisor of Wr(S) for all r ≥ 1, we note that since S is p-torsion-free,
the ghost map is injective and so we may check this by proving that

gh
([ζpr ] − 1

)= (ζpr − 1, ζpr−1 − 1, . . . , ζp − 1)
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is a non-zero-divisor of Sr ; i.e., we must show that ζpr − 1 is a non-zero-divisor in S for all
r ≥ 1. But ζpr − 1 divides p, and S is flat over Zp.

This proves (i). We get (ii) by noting that Ainf(S) = lim←−F
Wr(S). Now (iii) is imme-

diate from the definitions. For (iv), observe that ˜ξr = [ε]pr−1
[ε]−1 =

∑pr

i=1[ε]i−1 by (iii). If we set

μ= 0, then [ε] = 1, so ˜ξr is congruent to
∑pr

i=1 1= pr modulo μ, as wanted. �

Corollary 3.18. — Let S be a perfectoid ring which is flat over Zp and contains a compatible

sequence ζp, ζp2, . . . of primitive p-power roots of unity. Then, for any 0≤ j ≤ r:

(i) The following ideals of Wr(S) are equal:

AnnWr(S) Vj(1), ker
(

Wr(S)
Fj−→Wr−j(S)

)

,
[ζp j ] − 1

[ζpr ] − 1
Wr(S).

(ii) The following ideals of Wr(S) are equal:

AnnWr(S)

( [ζp j ] − 1

[ζpr ] − 1

)

, Vj(1)Wr(S), VjWr−j(S).

(iii) The map F j and multiplication by Vj(1) induce isomorphisms of Wr(S)-modules

F j
∗Wr−j(S)

�←Wr(S)/
[ζp j ] − 1

[ζpr ] − 1
�→ AnnWr(S)

( [ζp j ] − 1

[ζpr ] − 1

)

.

Remark 3.19. — The proof also shows that if S is any perfectoid ring, then

AnnWr(S) Vj(1)= ker
(

Wr(S)
Fj−→Wr−j(S)

)

, Vj(1)Wr(S)=VjWr−j(S),

and via F j and multiplication by Vj(1),

Wr−j(S)
�←Wr(S)/AnnWr(S) Vj(1)

�→VjWr−j(S).

This is a partial analogue of the statement that for perfect rings S of characteristic p,
Wr(S) admits a filtration (by p jWr(S)) where all graded pieces are S.

Proof. — (i): Injectivity of Vj : Wr−j(S) → Wr(S) and the identity xVj(1) =
Vj(F j(x)), for x ∈ Wr(S), show that the stated annihilator and kernel are equal. As
Wr(S) = Ainf/˜ξr and Wr−j(S) = Ainf/˜ξr−j (compatible with the transition map F j ), it fol-

lows that the kernel is generated by˜θr(˜ξr−j)= [ζ
p j ]−1

[ζpr ]−1 .

(ii): Surjectivity of F j : Wr(S)→ Wr−j(S) (Lemma 3.9) implies that Vj(1) gener-
ates the ideal VjWr−j(S), since Vj(F j(x)) = xVj(1) for x ∈ Wr(S). Since [ζpr ] − 1 is a

non-zero-divisor of Wr(S) by the previous proposition, the elements [ζp j ] − 1 and
[ζ

p j ]−1

[ζpr ]−1
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have the same annihilator. Clearly Vj(1) annihilates [ζp j ] − 1, since ([ζp j ] − 1)Vj(1) =
VjF j[ζp j ] −Vj(1)=Vj(1)−Vj(1)= 0. Finally, if x annihilates [ζp j ] − 1 then Rr−j(x)= 0
since Rr−j([ζp j ] − 1) is a non-zero-divisor, and so x ∈VjWr−j(S).

(iii): This follows from (i) and (ii). �

Let us now compare the notion of a perfectoid ring introduced above with another
notion, that of a perfectoid Tate ring. Let R be a complete Tate ring, i.e., a complete topolog-
ical ring R containing an open subring R0 ⊂R on which the topology is π -adic for some
π ∈ R0 such that R= R0[ 1

π
]. Recall that a ring of integral elements R+ ⊂ R is an open and

integrally closed subring of powerbounded elements. For example, the subring R◦ ⊂R of
all powerbounded elements is a ring of integral elements.

In the terminology of Fontaine [33], extending the original definition [58], R is said
to be perfectoid if and only if it is uniform (i.e., its subring R◦ of powerbounded elements is
bounded) and there is a topologically nilpotent unit π ∈ R such that π p divides p in R◦,
and the Frobenius is surjective on R◦/π pR◦.

Lemma 3.20. — Let R be a complete Tate ring with a ring of integral elements R+ ⊂R. If R
is perfectoid in Fontaine’s sense, then R+ is perfectoid. Conversely, if R+ is perfectoid and bounded in R,

then R is perfectoid in Fontaine’s sense.

We remark that perfectoid K-algebras in the sense of [58] (as well as perfec-
toid Q p-algebras in the sense of [48]) are complete Tate rings which are perfectoid in
Fontaine’s sense (and conversely a complete Tate ring which is perfectoid in Fontaine’s
sense and is a K-, resp. Q p-, algebra is a perfectoid K-, resp. Q p-, algebra in the sense of
[58], resp. [48]).

Proof. — Assume that R is perfectoid in Fontaine’s sense. First, we check that R◦ is
perfectoid. As R◦ is bounded, it follows that R◦ is π -adically complete. By Lemma 3.10,
to show that R◦ is perfectoid, we need to see that the surjective map ϕ : R◦/πR◦ →
R◦/π pR◦ is an isomorphism. But if x ∈ R◦ is such that x p = π py for some y ∈ R◦, then
z= x/π ∈ R has the property that zp = y is powerbounded, which implies that z itself is
powerbounded, i.e. x ∈ πR◦. Thus, R◦ is perfectoid.

Now we want to see that then also R+ is perfectoid. Note that πR◦ consists of
topologically nilpotent elements, and so πR◦ ⊂R+ as the right side is open and integrally
closed. By Lemma 3.9 we know that any element of R◦/pπR◦ is a p-th power. Take any
element x ∈ R+, and write x = yp + pπz for some y, z ∈ R◦. Then z′ = πz ∈ R+, so that
x = yp + pz′. It follows that yp = x − pz′ ∈ R+, and so y ∈ R+. Thus, the equation x =
yp+ pz′ shows that ϕ :R+/p→R+/p is surjective, and in particular so is ϕ :R+/πR+ →
R+/π pR+. For injectivity, we argue as for R◦. Using Lemma 3.10 again, this implies that
R+ is perfectoid.

For the converse, note first that since R+ ⊂ R is by assumption bounded, so is
R◦ ⊂R, as πR◦ ⊂R+; thus, the first part of Fontaine’s definition is verified. It remains to
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see that there is some topologically nilpotent unit π ∈R such that π p divides p in R◦, and
the Frobenius is surjective on R◦/π pR◦. Let assume for the moment that there is some
topologically nilpotent unit π ∈ R such that π p divides p in R◦. Given x ∈ R◦, πx ∈ R+

can be written as πx = yp + pπz with y, z ∈ R+, by Lemma 3.9. Note that π ∈ R+ can
be assumed to have a p-th root π 1/p ∈ R+ by changing it by a unit; then y′ = y/π 1/p ∈ R
actually lies in R◦ as y′p = x− pz ∈R◦. But then x= y′p + pz with y′, z ∈R◦, so Frobenius
is surjective on R◦/pR◦, and a fortiori on R◦/π pR◦.

It remains to see that if R+ is perfectoid, then there is some topologically nilpotent
unit π ∈R such that π p divides p in R◦. The problem here is to ensure the condition that
π is a unit in R.

Pick any topologically nilpotent unit π0 ∈R, so π0 ∈R+. We have the surjection θ :
Ainf(R+)→R+ whose kernel is generated by a distinguished element ξ ∈ Ainf(R+). From
[46, Lemma 5.5], it follows that there is some π� ∈ (R+)� and a unit u ∈ (R+)× such that
θ([π�])= uπ0. Now π = θ([π�1/pn]) for n sufficiently large has the desired property. �

A related lemma is the following.

Lemma 3.21. — Let R0 be a perfectoid ring which is π -adically complete for some non-zero-

divisor π such that π p divides p. Then R = R0[ 1
π
], endowed with the π -adic topology on R0, is a

complete Tate ring which is perfectoid in Fontaine’s sense. Moreover, πR◦ ⊂R0.

More precisely, R0 ⊂R◦, and the cokernel is killed by any fractional power of π .

Proof. — Argue as in [58, Lemma 5.6]. �

3.3. The case of a perfectoid field. — Finally, we add some additional results in the
case that S = O = OK is the ring of integers in a perfectoid field K of characteristic 0
containing all p-power roots of unity. In this section, we abbreviate Ainf = Ainf(O).

We let ε = (1, ζp, ζp2, . . .) ∈O�, and consider the elements μ= [ε] − 1 ∈ Ainf and
ξ = μ

ϕ−1(μ)
, which generates the kernel of θ . We also have ξr = μ

ϕ−r(μ)
which generates the

kernel of θr , and˜ξr = ϕr(μ)

μ
which generates the kernel of˜θr , as in Proposition 3.17.

Before going on, let us recall some more of Fontaine’s period rings.

Definition 3.22. — Consider the following rings associated with K.

(i) Let Acrys be the p-adic completion of the Ainf-subalgebra of Ainf[ 1
p
] generated by all ξm

m! ,
m ≥ 0. This is the universal p-adically complete PD thickening (compatible with the PD

structure on Zp) of O, or equivalently of O/p.

(ii) Let B+crys = Acrys[ 1
p
], and Bcrys = Acrys[ 1

μ
] = B+crys[ 1

μ
], noting that μp−1 ≡ ξ p mod p ∈

Ainf, and thus μp−1 ∈ pAcrys.

(iii) Let B+dR be the ξ -adic completion of B+crys, which is a complete discrete valuation ring with

residue field K, and BdR = FracB+dR = B+dR[ 1
ξ
].
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Lemma 3.23. — The kernel of the natural map

θ∞ : Ainf →W(O)= lim←−
R

Wr(O),

given as the limit of the maps θr , is generated by μ. Equivalently,

⋂

r

μ

ϕ−r(μ)
Ainf = μAinf.

In particular, the ideal (μ)⊂ Ainf is independent of the choice of roots of unity.

The cokernel of θ∞ is killed by W(m�). If K is spherically complete, then θ∞ induces an

isomorphism

Ainf/μ∼=W(O).

Recall that a nonarchimedean field is spherically complete if any decreasing se-
quence of discs a1 + I1 ⊃ a2 + I2 ⊃ · · · has nonempty intersection, or equivalently,
lim←−

1
r
Ir = 0. This condition is stronger than completeness as one does not ask that the radii

of the discs goes to 0, and for example Cp = ̂Qp is not spherically complete. However, any

nonarchimedean field K admits an extension ˜K/K which is spherically complete.

Proof. — The kernel of θ∞ is the intersection of the kernels of the maps θr , which
are generated by ξr = μ

ϕ−r(μ)
. To check that

⋂

r

μ

ϕ−r(μ)
Ainf = μAinf,

it suffices, since (p, ξr) is a regular sequence, to check that

⋂

r

ε − 1
ε1/pr − 1

O� = (ε − 1)O�,

which follows from a consideration of valuations.
For each r ≥ 1, we have a short exact sequence

0→ ξrAinf → Ainf →Wr(O)→ 0.

Passing to the limit gives a long exact sequence

0→ μAinf → Ainf →W(O)→ lim←−
r

1ξrAinf → 0.
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Thus, it remains to prove that lim←−
1
r
ξrAinf is killed by W(m�), and is 0 if K is spherically

complete. Writing down the similar sequences modulo ps for any s ≥ 1 (which are still
exact), one sees that

lim←−
r

1ξrAinf = lim←−
s

lim←−
r

1ξrAinf/ps,

and one reduces to proving that

lim←−
r

1ξrO�,

which is 0 if K� is spherically complete by the observation before the proof, is always
killed by m�. But for any m ∈ m�, multiplication by m on the system (ξrO�)r factors, for
sufficiently large r, through the constant system (μO�)r , which has trivial lim←−

1. It remains
only to observe that if K is spherically complete then so is K�. Given a decreasing se-
quence of ideals Ir of O� with radii not going to zero, we may rescale to assume that
Ir ⊇ π�O� for all r, where π� ∈ O� satisfies O�/π� = O/π for some π ∈ O; let Jr ⊂ O
be the corresponding ideal such that Jr/πO = Ir/π

�O�. Then lim←−
1
r
Ir = lim←−

1
r
Ir/π

�O� =
lim←−

1
r
Jr/πO = lim←−

1
r
Jr = 0 by spherical completeness of K. �

Another result we will need is the following coherence result. For this, let O =OK

be the ring of integers in any perfectoid field K.

Proposition 3.24. — For any r ≥ 1, the ring Wr(O) is coherent.

Unfortunately, in general Ainf is not coherent, cf. [47]. We start with some re-
minders on coherent rings [1, Tag 05CU]. Recall that a ring R is coherent if every finitely
generated ideal is finitely presented. Equivalently, any finitely generated submodule of a
finitely presented module is finitely presented. Then the category of finitely presented
R-modules is stable under extensions, kernels and cokernels.

Lemma 3.25. — Let R be a ring and I⊂R a finitely generated ideal.

(i) An R/I-module M is finitely presented as an R/I-module if and only if M is finitely

presented as an R-module.

(ii) If R is coherent, then R/I is coherent.

Proof. — For part (i), if M is finitely presented as an R-module, then taking⊗RR/I
of any finite presentation of M as an R-module shows that M is finitely presented as an
R/I-module. Conversely, take a finite presentation

(R/I)n → (R/I)m →M→ 0.
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This gives an exact sequence

Rn ⊕ Im →Rm →M→ 0,

giving finite presentation of M as an R-module, as I is finitely generated.
For part (ii), let J⊂R/I be any finitely generated ideal, with preimage˜J⊂R. As I

and J are finitely generated (as an R-modules),˜J is finitely generated. As R is coherent,
˜J is finitely presented, so we can find an exact sequence

Rn →Rm →˜J→ 0.

This gives an exact sequence

(R/I)n → (R/I)m →˜J/I˜J→ 0,

so that˜J/I˜J is finitely presented as an R/I-module. On the other hand, we have an exact
sequence

I/I2 →˜J/I˜J→ J→ 0

of R/I-modules, where I/I2 is finitely generated. This makes J a quotient of a finitely
presented R/I-module by a finitely generated R/I-module, thus J is finitely presented as
an R/I-module. �

Lemma 3.26. — Let S → R be a surjective map of rings with square-zero kernel I ⊂ S.

Assume that R is coherent and I is a finitely presented R-module. Then S is coherent.

Proof. — Let J⊂ S be a finitely generated ideal. One has an exact sequence

0→ J∩ I→ J→ JR → 0,

where JR ⊂ R is the image of J. Then JR is a finitely generated ideal of R, and there-
fore finitely presented as an R-module. By Lemma 3.25(i), it is also finitely presented as
S-module. As J is finitely generated and JR is finitely presented, it follows that J ∩ I is
finitely generated (as an S-module, and thus as an R-module). Now J ∩ I⊂ I is a finitely
generated R-submodule of the finitely presented R-module I, making J ∩ I finitely pre-
sented (as an R-module, and thus as an S-module). Therefore, J is an extension of finitely
presented S-modules, and hence itself finitely presented. �

Lemma 3.27. — Let R be a ring, f ∈ R a non-zero-divisor. Assume that (R, f ) satisfy the

Artin-Rees property, i.e. for every inclusion M⊂N of finitely generated R-modules, the restriction of the

f -adic topology on N to M is the f -adic topology of M. Then R is coherent if R[ f −1] and R/f are

coherent.
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Proof. — First, observe that by Lemma 3.26 (and the assumption that f is a non-
zero-divisor) coherence of R/f implies coherence of R/f n for all n ≥ 1. Let I ⊂ R be a
finitely generated ideal, and choose a surjection Rn → I with kernel K⊂Rn. We have to
prove that K is finitely generated. By assumption K[ f −1] is finitely generated, so we may
find a map Rm →K with cokernel C being f -torsion. Now C embeds into the cokernel of
Rm →Rn; it follows from the Artin-Rees property that the f -torsion-part of the cokernel
of Rm → Rn is of bounded exponent. (There is some N such that the preimage of f NRn

lies in the image of f Rm; then, if x is such that f Nx is in the image of Rm, it is in fact in
the image of f Rm, so that f N−1x is already in the image of Rm.) This means that C is of
bounded exponent: f NC= 0 for some N. Thus, it is enough to prove that K/f N is finitely
generated, or even that K/f is finitely generated.

Note that as I⊂R has no f -torsion, K/f occurs in a short exact sequence

0→K/f →Rn/f → I/f I→ 0.

Therefore, it is enough to prove that I/f I is finitely presented as an R/f -module.
Now, by the Artin-Rees property again, there is some M such that I ∩ f MR⊂ f I.

As R/f M is coherent, I/(I ∩ f MR)⊂ R/f M is finitely presented as an R/f M-module. As
I/f I is a quotient of I/(I ∩ f MR) by the finitely generated module f I, it follows that I/f I
is a finitely presented R/f M-module. By Lemma 3.25, it follows that I/f I is also finitely
presented as an R/f -module. �

Lemma 3.28. — Let g : R→ S be an injective map of rings, f ∈ R such that both R and

S are f -torsion free. Assume moreover that the cokernel of g (as a map of R-modules) is killed by some

power f n of f . Then (R, f ) satisfies the Artin-Rees property if and only if (S, f ) does.

Proof. — The functors M �→M⊗R S and N �→ N induce inverse equivalences of
categories between the category of R-modules up to bounded f -torsion and the category
of S-modules up to bounded f -torsion. As the Artin-Rees property does not depend on
bounded f -torsion, one easily checks the lemma. �

After these preparations, we can prove that Wr(O) is coherent.

Proof of Proposition 3.24. — Assume first that K is of characteristic p. Then O is a
perfect valuation ring of characteristic p, and in particular coherent. Moreover, Wr(O)→
O is a successive square-zero extension by a copy of O, which shows that Wr(O) is co-
herent by Lemma 3.26.

Thus, assume now that K is of characteristic 0. Note that as O is p-torsion free,
the map Wr(O) →∏r

i=1 O given by the ghost components is injective, with cokernel
bounded p-torsion. Note that O, and thus

∏r

i=1 O, is coherent and satisfies the Artin-
Rees property with respect to f = p. By Lemma 3.27 and Lemma 3.28, it is enough to
prove that Wr(O)/p is coherent. But Wr(O)/p=Wr(O/pN)/p for N big enough, so that
it is enough to prove that Wr(O/pN) is coherent.



INTEGRAL p-ADIC HODGE THEORY 261

Now we argue by induction on r, so assume Wr−1(O/pN) is coherent. For any
i = 0, . . . ,N, consider Ri = Wr(O/pN)/Vr−1(piO/pN). Then R0 = Wr−1(O/pN) and
RN =Wr(O/pN). We claim by induction on i that Ri is coherent. Note that Ri+1 →Ri is
a square zero extension by piO/pi+1O regarded as an Ri-module via Ri → O/pN →
O/p

ϕr−1−−→ O/p. This is finitely presented as an Ri-module, so the result follows from
Lemma 3.26. �

Corollary 3.29. — Let M be a finitely presented Wr(O)-module. Then there are no non-zero

elements of M which are killed by Wr(m).

Note that Wr(m) ⊂ Wr(O) defines an almost setting, of the nicest possible sort:
that is, Wr(m) is an increasing union of principal ideals generated by non-zero-divisors,
cf. Corollary 10.2.

Proof. — Assume that x ∈M is killed by Wr(m). The submodule M′ ⊂M gener-
ated by x is a finitely generated submodule of the finitely presented Wr(O)-module M,
thus by coherence of Wr(O), M′ is finitely presented. Thus, M′ = Wr(O)/I for some
finitely generated ideal I⊂Wr(O). On the other hand, as x is killed by Wr(m), we have
Wr(m) ⊂ I. Thus, M′ is a quotient of Wr(O)/Wr(m) = Wr(k), where k is the residue
field of O. As such, M′ =Ws(k) for some 0≤ s ≤ r. But the kernel I of Wr(O)→Ws(k)

is not finitely generated: if it were, then the kernel m of O→ k would also be finitely
generated. �

4. Breuil–Kisin–Fargues modules

The goal of this section is to study the mixed characteristic analogue of Dieudonné
modules, i.e., Breuil–Kisin modules [17, 49] (for discretely valued fields) and Breuil–
Kisin–Fargues modules [30] (for perfectoid fields). We begin in Section 4.1 by recalling
facts about Breuil–Kisin modules; the most important results here are the structure theo-
rem in Proposition 4.3 and Kisin’s Theorem 4.4 about lattices in crystalline Galois repre-
sentations. The perfectoid analogue of Kisin’s theorem is Fargues’ classification of finite
free Breuil–Kisin–Fargues modules in Theorem 4.28, which forms the highlight of Sec-
tion 4.3. In between, in Section 4.2, we study the algebraic properties of the Ainf-modules
that arise as Breuil–Kisin–Fargues modules; this discussion includes an analogue of the
structure theorem mentioned above in Proposition 4.13 (which rests on a classification
result of Kedlaya, see Lemma 4.6), and the length estimate in Corollary 4.15, which is
crucial to our eventual applications.

4.1. Breuil–Kisin modules. — Let us start by recalling the “classical” theory of
Breuil–Kisin modules. Here, we start with a complete discretely valued extension K of
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Q p with perfect residue field k, and let O =OK be its ring of integers. Moreover, we fix a
uniformizer π ∈K.

In this situation, we have a natural surjection

˜θ :S=W(k)�T� →O

sending T to π . We call this map ˜θ as it plays the role of ˜θ over Ainf. The kernel of ˜θ is
generated by an Eisenstein polynomial E= E(T) ∈W(k)�T� for the element π . There is
a Frobenius ϕ on S which is the Frobenius on W(k), and sends T to Tp.

Definition 4.1. — A Breuil–Kisin module is a finitely generated S-module M equipped with an

isomorphism

ϕM :M⊗S,ϕ S

[

1
E

]

∼=M
[

1
E

]

.

The definition may differ slightly from other definitions in the literature. With our
definition, the category of Breuil–Kisin modules forms an abelian tensor category.

Example 4.2 (Tate twist). — There is a “Tate twist” in the Breuil–Kisin setup. This
is given by S{1} with underlying S-module S and Frobenius given by ϕS{1}(x)= u

Eϕ(x),
where x ∈ S{1} = S and u ∈ S is some explicit unit depending on the choice of E.
This object is ⊗-invertible in the category of Breuil–Kisin modules. It can be defined as
follows. For each r, consider the map

˜θr :S→S/Er,

where Er := Eϕ(E) · · ·ϕr−1(E) (so E1 = E). Let

(S/Er){1} := L(S/Er)/S[−1] ∼= ErS/E2
r S,

which is a free S/Er-module of rank 1. Here, as everywhere else in the paper, we
use cohomological indexing. We claim that for r > s, there is a natural isomorphism
(S/Er){1} ⊗S/Er

S/Es
∼= (S/Es){1}. Indeed, there is an obvious map

ErS/E2
r S→ EsS/E2

sS,

and the image is precisely pr−sEsS/E2
sS, as Er

Es
is congruent to a unit times pr−s modulo Es.

Thus, dividing the obvious map by pr−s, we get the desired natural isomorphism

(S/Er){1} ⊗S/Er
S/Es

∼= (S/Es){1}.
We may now define S{1} = lim←−r

(S/Er){1}, which becomes a free S = lim←−r
S/Er-

module of rank 1. Concretely,

S{1} =
{

(a1E1, a2E2, . . .) ∈
∏

i

EiS/E2
i S | ai+1Ei+1 ≡ paiEi mod E2

i

}

,
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which maps isomorphically to
{

(a1E1, a2E2, . . .)

∈
∏

EiS/Eiϕ(Ei−1)S | ai+1Ei+1 ≡ paiEi mod Eiϕ(Ei−1)
}

.

There is a map

EϕS{1} :S{1}→S{1} : (a1E1, a2E2, . . .)

�→ (0,Eϕ(a1)ϕ(E1),Eϕ(a2)ϕ(E2), . . .
)

= (0, ϕ(a1)E2, ϕ(a2)E3, . . .
) ∈
∏

EiS/Eiϕ(Ei−1)S,

where on the target, we use the second description of S{1}. In particular, we get a map

ϕS{1} :S{1} ⊗S,ϕ S

[

1
E

]

→S{1}
[

1
E

]

.

For any integer n, we define M{n} =M⊗S S{1}⊗n.

We have the following structural result. One reason that we state this is to motivate
our definition of Breuil–Kisin–Fargues modules later, which will have the condition that
M[ 1

p
] is finite free as an assumption (as it is not automatic in that setup).

Proposition 4.3. — Let (M, ϕM) be a Breuil–Kisin module. Then there is a canonical exact

sequence of Breuil–Kisin modules

0→ (Mtor, ϕMtor)→ (M, ϕM)→ (Mfree, ϕMfree)→ (M̄, ϕM̄)→ 0,

where:

(i) The module Mtor ⊂M is the torsion submodule, and is killed by a power of p.

(ii) The module Mfree is a finite free S-module.

(iii) The module M̄ is a torsion S-module, killed by a power of (p,T).

In particular, M[ 1
p
] ∼=Mfree[ 1

p
] is a finite free S[ 1

p
]-module.

Proof. — Let Mtor ⊂M be the torsion submodule. Then M′ =M/Mtor is a torsion-
free S-module. As such, it is projective in codimension 1, i.e. M′ defines a vector bundle
E on SpecS \ {s}, where s ∈ SpecS is the closed point. As S is a 2-dimensional regular
local ring, this implies that Mfree =H0(SpecS\{s},E) is a vector bundle on SpecS, i.e. a
finite free S-module. The map M′ → Mfree is injective, and the cokernel is supported
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set-theoretically at {s} ⊂ SpecS, i.e. killed by a power of (p,T). All constructions are
functorial, and thus there are induced Frobenii on all modules considered.

It remains to prove that Mtor is killed by a power of p. Let I= Fitti(M)⊂S be any
Fitting ideal of M. We have to show that if I �= 0, then a power of p lies in I; equivalently,
we must check that S/I vanishes after inverting p. First, we remark that the existence of
ϕM and the base change compatibility of Fitting ideals imply that

I⊗S,ϕ S

[

1
E

]

= I
[

1
E

]

,

and therefore

(4) (S/I)
[

1
E

]

= (S/ϕ∗I
)

[

1
E

]

as quotients of S[ 1
E ]. On the other hand, applying the Iwasawa classification of modules

over S, we find

A := (S/I)
[

1
p

]

∼=
n
∏

i=1

K0[T]/
(

fi(T)ni
)

,

where fi(T) ∈ W(k)[T] is a monic irreducible polynomial congruent to Tdi modulo p,
ni ≥ 1 is an integer, and fi �= fj for i �= j. We will show that A = 0. Fix an algebraic clo-
sure C of K, and consider the finite set Z := Spec(A)(C) of the C-valued points of A.
By the condition on fi , this set can be identified with a finite subset of the maximal
ideal m ⊂OC ⊂ C, i.e., of the C-points of the open unit disc of radius 1 about 0. Now
Equation (4) shows that if we set Z′ = {x ∈ m | x p ∈ Z}, then Z ∩ U = Z′ ∩ U where
U = m− {π1, . . . , πe} with the πi’s being the distinct roots of E in C (with π1 = π , our
chosen uniformizer). We will show that this leads to a contradiction unless A = 0 (or,
equivalently, Z = ∅). If Z �= ∅, choose x ∈ Z with |x| maximal. Then there exists some
y ∈ Z′ with yp = x. If |x| ≥ |π |, then |y|> |x| ≥ |π |, so y ∈ Z′ ∩U= Z ∩U, and thus we
obtain y ∈ Z with |y|> |x|, contradicting the maximality in the choice of x. Thus |x|< |π |
for all x ∈ Z. But then x ∈ Z ∩ U = Z′ ∩ U, so x p ∈ Z as well. Continuing this way, we
obtain that xpn ∈ Z for all n≥ 0. As Z is finite and |x|< 1, this is impossible unless x= 0.
Thus, Z = {0}, which translates to A = K0[T]/(Td) for some d ≥ 0. Equation (4) then
tells us that K0[T]/(Td)� K0[T]/(Tdp). By considering lengths, we see that d = 0, and
thus A= 0. This shows that (S/I)[ 1

p
] = 0, so pn ∈ I for some n� 0. �

Let us now recall the relation to crystalline representations of GK. Fix an algebraic
closure K̄ of K with fixed p-power roots π 1/pn ∈ K̄ of π , and let K∞ = K(π 1/p∞) ⊂ K̄.
Let C be the completion of K̄ with ring of integers OC ⊂ C, and Ainf = Ainf(OC), with
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corresponding Acrys, Bcrys. In particular, there is an element π� = (π,π 1/p, . . .) ∈ K̄�, with
[π�] ∈ Ainf. We have a map S→ Ainf which sends T to [π�]p. Thus, the diagram

S
˜θ

O

Ainf

˜θ

OC

commutes. This diagram is equivariant for the action of GK∞ =Gal(K̄/K∞) (but not for
GK =Gal(K̄/K)).

If V is a crystalline GK-representation on a Q p-vector space, we recall that there is
an associated (rational) Dieudonné module

Dcrys(V)= (V⊗Q p
Bcrys)

GK,

which comes with a ϕ,GK-equivariant identification

Dcrys(V)⊗W(k)[ 1
p
] Bcrys =V⊗Q p

Bcrys.

Theorem 4.4 ([49]). — There is a natural fully faithful tensor functor T �→ M(T) from

Zp-lattices T in crystalline GK-representations V to finite free Breuil–Kisin modules. Moreover, given T,

M(T) is characterized by the existence of a ϕ,GK∞-equivariant identification

M(T)⊗S W
(

C�
)∼=T⊗Zp

W
(

C�
)

.

We warn the reader that the functor is not exact: One critical part of the con-
struction is the extension of a vector bundle on the punctured spectrum SpecS \ {s},
where s ∈ Spec R is the closed point, to a vector bundle on SpecS, and this functor is
not exact.

Remark 4.5. — We will check below in the discussion around Proposition 4.34 that
M(T) actually satisfies the following statements.

(i) There is an identification

M(T)⊗S Ainf

[

1
μ

]

∼=T⊗Zp
Ainf

[

1
μ

]

which is equivariant for the ϕ and GK∞-actions.
(ii) There is an equality

M(T)⊗S B+crys =Dcrys(V)⊗W(k)[ 1
p ] B+crys

as submodules of

M(T)⊗S Bcrys =T⊗Zp
Bcrys =Dcrys(V)⊗W(k)[ 1

p
] Bcrys.
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In particular, there is an identification of rational Dieudonné modules M(T) ⊗S

W(k)[ 1
p
] = Dcrys(V) by tensoring the second identification with W(k̄)[ 1

p
], and passing

to GK∞ -invariants. Thus,

M(T)⊗S W(k)⊂M(T)⊗S W(k)

[

1
p

]

=Dcrys(V)

defines a natural lattice in crystalline cohomology, functorially associated with the GK-
stable lattice T ⊂ V. A main goal of this paper is to show that, at least under suitable
torsion-freeness assumptions, this algebraic construction is compatible with the geometry.

Proof of Theorem 4.4. — The existence of the functor and the identification are
stated in [50, Theorem 1.2.1]. Assume that M(T)′ is any other module with the stated
property. By [49, Proposition 2.1.12], to check that M(T)=M(T)′ equivariantly for ϕ, it
suffices to check this after base extension to the p-adic completion S[ 1

T ]∧p of S[ 1
T ]. There,

it follows from the equivalence between finite free ϕ-modules over S[ 1
T ]∧p and finite free

Zp-modules with GK∞ -action, see [45, Proposition 4.1.1] or [35, Proposition 2.32]. (Im-
plicit here is that the functor from crystalline GK-representations to GK∞ -representations
is fully faithful.) But this GK∞ -representation is in both cases T, by the displayed identifi-
cation for M(T) and M(T)′. �

In Corollary 4.33, we will check that Zp(1) is sent to S{1} under this functor.

4.2. Some commutative algebra over Ainf. — In order to prepare for the definition of
Fargues’ variant over Ainf, we study commutative algebra over the nonnoetherian ring
Ainf.

We fix a perfectoid field K with ring of integers O. Let O� ⊂ K� be the tilt of
O ⊂K, and fix an element x ∈ Ainf =W(O�) which is the Teichmüller lift of a nonzero
noninvertible element of O�. We study modules over Ainf, and show that they behave
somewhat analogously to modules over a 2-dimensional regular local ring (such as S).

We begin by proving an analogue over Ainf of the well-known fact that all vector
bundles on the punctured spectrum of a 2-dimensional regular local ring are trivial. In
fact, the proof below can be easily adapted to show the latter. This result is due to Ked-
laya, and the proof below was first explained in a lecture course at UC Berkeley in 2014
[62].

Lemma 4.6. — Let s ∈ Spec(Ainf) denote the closed point, and let U := Spec Ainf \ {s} be

the punctured spectrum. Then restriction induces an equivalence of categories between vector bundles on

Spec(Ainf) and vector bundles on U. In particular, all vector bundles on U are free.

Proof. — Let R = Ainf, R1 = R[ 1
p
], R2 = R[ 1

x
], and R12 = R[ 1

xp
]. If we set Ui =

Spec(Ri) for i ∈ {1,2,12}, then U=U1 ∪U2, and U1 ∩U2 =U12.
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To show the restriction functor is fully faithful, it suffices to show that Ainf →O(U)

is an isomorphism, since all vector bundles on Ainf are free. Using the preceding affine
open cover of U, and viewing all rings in sight as subrings of R12, it suffices to show
R = R1 ∩ R2 ⊂ R12. This follows easily by combining the following observations: The
element x is a Teichmüller lift, the Teichmüller lift is multiplicative, and each element
of Ainf can be written uniquely as a power series

∑

i≥0 ai · pi with ai being a Teichmüller
lift.

For essential surjectivity, we can identify vector bundles M on U with triples
(M1,M2, h), where Mi is a finite projective Ri-module, and h :M1⊗R1 R12 �M2⊗R2 R12

is an isomorphism of R12-modules; write M12 for the latter common value, and let d

be the rank of any of these finite projective modules. Let M := ker(M1 ⊕M2 →M12).
As a quasi-coherent sheaf on Spec(Ainf), this is simply j∗M where j : U→ Spec(Ainf) is
the defining quasi-compact open immersion. In particular, we have M⊗R Ri �Mi for
i ∈ {1,2,12}. We will check that M is a finite projective Ainf-module of rank d .

First, we claim that M is contained in a finitely generated Ainf-submodule M′ ⊂M1

with M′/M killed by a power of p. Write M1 as a direct summand of a free module F1

over R1, and let F◦1 ⊂ F1 be the corresponding free module over R; let ψ : F1 → M1

be the resulting map. As n ∈ Z varies, the images ψ(p−nF◦1) ⊂ M1 give a filtering fam-
ily of finitely generated Ainf-submodules of M1, and we will show that M lies inside
one of these. Let F12 := F1 ⊗R1 R12 be the corresponding free R12-module, and let
F◦12 ⊂ F12 be the corresponding free R2-module. Then we have an induced projection
ψ : F12 → M12. Also, we know p−nF◦1 = F1 ∩ p−nF◦12 ⊂ F12 for all n, so it is enough
to show that M ⊂ M12 is contained in some ψ(p−nF◦12) ⊂ F12. As M = M1 ∩ M2, it
suffices to check that M2 ⊂ ψ(p−nF◦12). But this is immediate as M2 is finitely gener-
ated, and ∪nψ(p−nF◦12) = M12. Thus, if we set M′ := ψ(p−nF◦1) for n � 0, then M′ is
finitely generated and M⊂M′. To verify that M′/M is killed by a power of p, note that
M[ 1

p
] = M′[ 1

p
] = M1. Thus, M′/M is a finitely generated Ainf-module killed by invert-

ing p, and so it must be killed by a finite power of p.
Next, we show dimk(M⊗Ainf k) ≥ d . For this, let W =W(k), and L =W[ 1

p
]. The

inclusion M ⊂ M1 then defines a map M⊗Ainf W → M1 ⊗Ainf W � L⊕d . The image of
this map generates the target as a vector space (since M[ 1

p
] =M1) and is contained in a

finitely generated W-submodule of L⊕d by the previous paragraph. As W is noetherian,
this image is free of rank d , so the claimed inequality follows immediately by further
tensoring with k.

Next, we claim that M is p-adically complete and separated. Note that M2 is p-
adically separated as it is a finite projective module over the p-adically separated ring
R2. As M ⊂ M2, it follows that M is p-adically separated. For completeness, take any
elements mi ∈ M; we want to form the sum

∑

i≥0 pimi . Choose a surjection Ar
inf → M′,

and fix elements m̃i ∈ Ar
inf lifting the image of mi in M′. Then we can form the sum

s̃ =∑i≥0 pim̃i ∈ Ar
inf, and the image s ∈M′ of s̃ maps to 0 in M′/M, as M′/M is killed by

a power of p; thus, s ∈M, and is the desired limit of the partial sums.
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As M is p-adically complete and p-torsion free, we immediately reduce to checking
that M/p is finite free of rank d : any map Ad

inf →M that is an isomorphism after reduc-
tion modulo p is an isomorphism (by arguing inductively with the 5-lemma modulo pn,
and then passing to the inverse limit). Now consider the exact sequence

0→M→M1 ⊕M2 →C→ 0,

where C is defined as the cokernel. Then C ⊂ M12 is p-torsion free, so it follows that
M/p → M1/p ⊕ M2/p is injective. But M1/p = 0, so M → M2/p is injective. Now
M2/p � M2 ⊗R2 R2/p � M2 ⊗R2 K� is a K�-vector space of dimension d . So we are
reduced to checking that M/p⊂M2/p� (K�)d is a finite free O�-module of rank d . We
already know that dimk(M/p ⊗R2 k) = dimk(M ⊗Ainf k) ≥ d . By Lemma 4.7, we have
dimk(M/p⊗R2 k)= d . Lemma 4.8 then gives the claim. �

The following two facts concerning modules over valuation rings were used above:

Lemma 4.7. — Any O�-submodule E of (K�)d satisfies dimk(E⊗ k)≤ d.

Proof. — Assume towards contradiction that there exists a map f : F→ E with F
finite free of rank > d such that f ⊗ k is injective. Then the image F′ of f is a finitely
generated torsion free O�-submodule of E. As O� is a valuation ring, any finitely gener-
ated torsion free module is free, so F′ is finite free of rank ≤ d . But then the composite
f ⊗ k : F ⊗ k → F′ ⊗ k → E ⊗ k has image of dimension ≤ d , which contradicts the
assumption. �

Lemma 4.8. — If D⊂ (K�)d is an O�-submodule with dimk(D⊗ k)= d, then D is finite

free of rank d.

Proof. — We show this by induction on d . If d = 1, then D is one of three possible
modules: a principal fractional ideal, a fractional ideal of the form m� ⊗ J=m� · J for a
principal fraction field J, or K� itself. One easily checks that the second and third possi-
bility cannot occur: one has D⊗ k = 0 for both those cases (using m� ⊗m� �m� for the
second case), contradicting dimk(D⊗ k)= 1. Thus, D is a principal fractional ideal, and
thus finite free of rank 1.

For d > 1, choose any map O� → D that hits a basis element v after applying
−⊗ k, and is thus injective. Saturating the resulting inclusion O� ⊂D defines an injective
map g : J→ D with torsion free cokernel such that J has generic rank 1, and the image
g ⊗ k has dimension ≥ 1 (as it contains v). In fact, since dimk(J⊗ k) ≤ 1 (by the d = 1
analysis above), it follows that dimk(J⊗ k)= 1, and that g ⊗ k is injective with image of
dimension 1. This gives a short exact sequence

0→ J→D→D/J→ 0
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where J and D/J are torsion free of ranks 1 and d − 1 respectively. Applying −⊗ k and
calculating dimensions gives dimk(D/J⊗ k) = d − 1. By induction, both J and D/J are
then free, and thus so is D. �

Next, we observe that finitely presented modules over Ainf are sometimes perfect,
i.e. admit a finite resolution by finite projective modules. Some of the subtleties here arise
because (in general) Ainf is not coherent.

Lemma 4.9. — Let M be a finitely presented Ainf-module such that M[ 1
p
] is finite free over

Ainf[ 1
p
]. Then:

(i) The Ainf-module M is perfect as an Ainf-complex.

(ii) The submodule Mtor ⊂ M of torsion elements is killed by pn for n � 0, and finitely

presented and perfect over Ainf.

(iii) M has Tor-dimension ≤ 2, and TorAinf
2 (M,W(k)) = 0. Moreover, if M has no x-

torsion, then TorAinf
i (M,W(k))= 0 for i > 0.

We freely use Lemma 3.25 and Lemma 3.26 in the proof below.

Proof. — For (i), assume first M[ 1
p
] = 0. Then, by finite generation, M is killed by

pn for some n > 0, and thus is a finitely presented Wn(O�)-module. By induction on n, we
will show that any finitely presented Wn(O�)-module M is perfect over Ainf. If n= 1, then
M is a finitely presented O�-module. But then M is perfect over O� (as O� is a valuation
ring), and thus also over Ainf (as O� = Ainf/p is perfect as an Ainf-module). In general, for
a finitely presented Wn(O�)-module M, we have a short exact sequence

0→ pM→M→M/pM→ 0.

Then M/pM is finitely presented over O�, and thus perfect over Ainf by the n = 1 case.
Also, since Wn(O�) is coherent, pM ⊂ M is finitely presented over Wn(O�). Moreover,
pn−1 · pM= pnM= 0, so pM is a finitely presented Wn−1(O�)-module. By induction, pM
is also perfect over Ainf. The exact sequence then shows that M is perfect over Ainf.

For general M, by clearing denominators on generators of M[ 1
p
], we can find a

free Ainf-module N and an inclusion N⊂M that is an isomorphism after inverting p. The
quotient Q is then a finitely presented Ainf-module killed by inverting p, so Q is perfect
by the preceding argument. Also, N is perfect as it is finite free; it formally follows that M
is perfect as well.

For (ii), choose N and Q as in the previous paragraph. Then Mtor ∩ N = 0 as N
has no torsion. Thus, Mtor →Q is injective, so Mtor is killed by pn for some n > 0, and so
Mtor =M[pn]. Now consider K :=M⊗L

Ainf
Ainf/pn. This is perfect over Ainf/pn =Wn(O�)

by (i) and base change. As Wn(O�) is coherent, each Hi(K) is finitely presented. But
H−1(K)=M[pn], so M[pn] is finitely presented over Wn(O�), and thus also over Ainf. The
perfectness now follows from (i) applied to M[pn].
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For (iii), the fact that M has Tor-dimension ≤ 2 follows easily from the previous
arguments using the fact that any finitely presented O�-module has Tor-dimension ≤ 1
over O�, and thus Tor-dimension ≤ 2 over Ainf. For the rest, let ˜W= lim−→n

Ainf/(x
1/pn

), so
we have a short exact sequence

0→Q→ ˜W→W(k)→ 0.

The last map in this sequence is the p-adic completion map and ˜W is p-torsion-free. Thus,
Q is an Ainf[ 1

p
]-module, and thus TorAinf

i (M,Q)= 0 for i > 0 as M[ 1
p
] is finite free. Also,

since x ∈ Ainf is a non-zero-divisor, the Ainf-module ˜W has Tor-dimension 1; it follows
from the long exact sequence on Tor that TorAinf

2 (M,W(k)) = 0. Now if M is further
assumed to have no x-torsion, then TorAinf

i (M, ˜W) = 0 for i > 0. Thus, we have a short
exact sequence

0→TorAinf
1

(

M,W(k)
)→M⊗Ainf Q→M⊗Ainf

˜W→M⊗Ainf W(k)→ 0.

As M[ 1
p
] is finite free, the first term above is killed after inverting p. On the other hand,

p acts invertibly on Q and thus on the second term above; thus TorAinf
1 (M,W(k))= 0, as

wanted. �

Next, we give a criterion for an Ainf-module to define a vector bundle on U =
Spec Ainf \ {s}. This is a weak analogue over Ainf of the fact that a finitely generated
torsion free module over a 2-dimensional regular local ring gives a vector bundle on the
punctured spectrum.

Lemma 4.10. — Let M be a finitely generated p-torsion-free Ainf-module such that M[ 1
p
] is

finite projective over Ainf[ 1
p
]. Then the quasi-coherent sheaf associated to M restricts to a vector bundle

on U.

Proof. — It is enough to check that M ⊗Ainf Ainf,(p) is finite free, where Ainf,(p) is
the localization at the prime ideal (p)⊂ Ainf. But Ainf,(p) is a discrete valuation ring: The
function sending

∑

i≥0[ai]pi ∈ Ainf with ai ∈O� to the minimal integer i for which ai �= 0
defines a discrete valuation on Ainf, with corresponding prime ideal (p), and correspond-
ing discrete valuation ring Ainf,(p). As M⊗Ainf Ainf,(p) is a finitely generated p-torsion-free
module, it is thus finite free, as desired. �

Remark 4.11. — In Lemma 4.10, it is unreasonable to hope that M itself is finite
projective. For example, if M is the ideal (x, p)⊂ Ainf, then M is not finite projective over
Ainf, and yet restricts to the trivial line bundle over U.

Corollary 4.12. — Let N be a finite projective Ainf[ 1
p
]-module. Then N is free.
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Proof. — Let M ⊂ N be a finitely generated Ainf-submodule such that M[ 1
p
] =

N[ 1
p
]. Then M satisfies the hypothesis of Lemma 4.10, and thus by Lemma 4.6 there

is some finite free Ainf-module M′ such that the vector bundles corresponding to M and
M′ agree on U = Spec Ainf \ {s}. In particular, M′[ 1

p
] = N[ 1

p
], which is therefore finite

free. �

Putting the above results together, we obtain the following structural result:

Proposition 4.13. — Let M be a finitely presented Ainf-module such that M[ 1
p
] is finite projective

(equivalently, free) over Ainf[ 1
p
]. Then there is a functorial exact sequence

0→Mtor →M→Mfree →M→ 0

satisfying:

(i) Mtor is finitely presented and perfect as an Ainf-module, and is killed by pn for n� 0.

(ii) Mfree is a finite free Ainf-module.

(iii) M is finitely presented and perfect as an Ainf-module, and is supported at the closed point

s ∈ Spec(Ainf), i.e., it is killed by some power of (x, p).

Moreover, M is a finite free Ainf-module if either M⊗Ainf W(k) is p-torsion-free, or if K has characteristic

zero and M⊗Ainf O is p-torsion-free.

Proof. — Let Mtor ⊂M be the torsion submodule of M. Then (i) is immediate from
Lemma 4.9. Let N=M/Mtor, so N is a finitely presented Ainf-module (by (i)) that is free
after inverting p (as M is so) and has no p-torsion. Lemma 4.10 then implies that N
defines a vector bundle on U. Lemma 4.6 implies that Mfree :=H0(U,N) is a finite free
Ainf-module, giving (ii). Also, since N had no p-torsion, the induced map N → Mfree is
injective and an isomorphism over U. Thus, the cokernel M is a finitely presented Ainf-
module supported at the closed point s ∈ Spec(Ainf), proving most of (iii); the perfectness
of M follows from the perfectness of the other 3 terms.

For the final statement, we first note that in general, if R is a local integral domain
with residue field ks and quotient field kη, and M is a finitely generated R-module such
that

dimks
(M⊗R ks)= dimkη(M⊗R kη),

then M is finite free. Indeed, any nonzero Fitting ideal I ⊂ R of M has to be all of R,
as otherwise the rank of M ⊗R kη would differ from the rank of M ⊗R ks, since kη /∈
Spec(R/I) while ks ∈ Spec(R/I). Applying this to R = Ainf and the given module M
gives the conclusion, as the dimension at the generic point agrees with the dimension at
W(k)[ 1

p
] and O[ 1

p
] because M[ 1

p
] is finite free over Ainf[ 1

p
], and this dimension agrees with

the dimension of M⊗Ainf k by assumption. �
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We record an inequality stating roughly that rank goes up under specialization for
finitely presented modules.

Lemma 4.14. — Let M be a finitely presented Wn(O�)-module. Let Mη and Ms be the base

change of M along Wn(O�)→ Wn(K�) and Wn(O�)→ Wn(k) respectively. Then Mη and Ms

have finite length over the corresponding local rings, and we have:

�(Mη)≤ �(Ms).

In the proof below, the length function �(−) applied to certain perfect complexes
K over Wn(k) simply means the usual alternating sum

∑

i(−1)i�(Hi(K)).

Proof. — Note that M ⊗L
Wn(O�)

Wn(k) � M ⊗L
Ainf

W(k). By Lemma 4.9, it follows

that each TorWn(O�)

i (M,Wn(k)) has finite length, and vanishes for i > 1.
We now show the more precise statement

�(Mη)= �(Ms)− �
(

TorWn(O�)

1

(

M,Wn(k)
))

.

The left hand side is �(M⊗L
Wn(O�)

Wn(K�)) as Wn(O�)→Wn(K�) is flat, while the right
hand side is �(M⊗L

Wn(O�)
Wn(k)) by the vanishing shown above. With this reformulation,

both sides above are additive in short exact sequences in M. Writing M as an extension of
M/pn−1M by pn−1M/pnM, we inductively reduce down to the case n= 1; here we use the
identification M⊗L

Wn(O�)
Wn(k)�M⊗L

O� k when M is killed by p. By the classification of
finitely presented modules over valuation rings, we may assume M=O� or M=O�/(xr)

for suitable non-zero r in the value group of K�. Both these cases can be checked directly:
the relevant lengths are both 1 in the first case, and 0 in the second case. Thus, we are
done. �

Using this, we arrive at an inequality relating the specializations of certain Ainf-
modules over W(k) and W(K�):

Corollary 4.15. — Let M be a finitely presented Ainf-module such that M[ 1
p
] is free over

Ainf[ 1
p
]. Let M1 :=M⊗Ainf W(K�) and M2 :=M⊗Ainf W(k) be the displayed scalar extensions.

Then:

(i) The modules M1 and M2 have the same rank.

(ii) For all n≥ 1, �(M2/pn)≥ �(M1/pn).

Proof. — The first assertion is immediate as both M1[ 1
p
] and M2[ 1

p
] are base

changes of the finite free module M[ 1
p
]. Part (ii) follows by applying Lemma 4.14 to

M/pn. �

The next lemma will help in understanding the crystalline specialization.
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Lemma 4.16. — Let C ∈ D(Ainf) such that Hj(C)[ 1
p
] is free for each j. Fix some index i.

Then the natural map Hi(C)⊗Ainf W(k)→Hi(C⊗L
Ainf

W(k)) is injective, and bijective after invert-

ing p. Furthermore, if Hi+1(C) has no x-torsion, then this map is bijective.

Proof. — The bijectivity after inverting p is formal from the assumption on the
Hj(C)[ 1

p
]. For the rest, let ˜W = lim−→Ainf/(x

1/pn

), so W(k) is the p-adic completion of ˜W.
We first observe that

Hi(C)⊗Ainf
˜W→Hi

(

C⊗L
Ainf
˜W
)

is injective: by compatibility of both sides with filtered colimits, this reduces to the cor-
responding statement for Ainf/(x

1/pn

), which can be checked easily using the Koszul pre-
sentation for the latter ring over Ainf. This analysis also shows that if Hi+1(C) has no
x-torsion, then the above map is bijective.

Now let Q=Ker(˜W→W(k)), so there is a short exact sequence

0→Q→ ˜W→W(k)→ 0.

Since W(k) is the p-adic completion of the p-torsion-free module ˜W, it follows that Q is
an Ainf[ 1

p
]-module. In particular, by the hypothesis that all the Hj(C)[ 1

p
] are free, we have

Hi(C)⊗Ainf Q�Hi
(

C⊗L
Ainf

Q
)

.

Now consider the following diagram of canonical maps:

Hi(C)⊗Ainf Q

a

Hi(C)⊗Ainf
˜W

b

Hi(C)⊗Ainf W(k)

c

0

Hi(C⊗L
Ainf

Q) Hi(C⊗L
Ainf
˜W)

d

Hi(C⊗L
Ainf

W(k)).

Here both rows are exact, the map a is bijective, and the map b is injective (as explained
above for both). A diagram chase then shows that the map c is injective, as wanted.

Furthermore, we claim that the map labelled d then must be surjective. Indeed,
the obstruction to surjectivity is the boundary map Hi(C⊗L

Ainf
W(k))→Hi+1(C⊗L

Ainf
Q)

extending the bottom row to a long exact sequence; but this map must be 0 since the
target is an Ainf[ 1

p
]-module, and we know that d[ 1

p
] is surjective, as c[ 1

p
] is. The diagram

now shows that the surjectivity of c follows from the surjectivity of b. But the latter was
shown above under the hypothesis that Hi+1(C) has no x-torsion, so we are done. �

Combining Proposition 4.13 with Lemma 4.16, we essentially obtain:
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Corollary 4.17. — Let C ∈ D(Ainf) be a perfect complex such that Hj(C)[ 1
p
] is free over

Ainf[ 1
p
] for all j ∈ Z. Then, for every j, Hj(C) is a finitely presented Ainf-module. Moreover, for

fixed i, if Hi(C⊗L
Ainf

W(k)) is p-torsion-free, then Hi(C) is a finite free Ainf-module, and in particular

Hi(C⊗L
Ainf

W(K�))=Hi(C)⊗Ainf W(K�) is p-torsion-free. If moreover Hi+1(C)⊗Ainf W(k) is

p-torsion-free (e.g., by Lemma 4.16, this happens if Hi+1(C⊗L
Ainf

W(k)) is p-torsion-free), then

Hi(C)⊗Ainf W(k)=Hi
(

C⊗L
Ainf

W(k)
)

.

We remark here that the equality Hi(C⊗L
Ainf

W(K�))=Hi(C)⊗Ainf W(K�) invoked
above follows from the flatness of Ainf →W(K�), see proof of Lemma 4.10.

Proof. — First, we check that Hj(C) is a finitely presented Ainf-module for all j. We
prove this by descending induction on j, noting that it is trivially true for all j � 0 as then
Hj(C)= 0. If it is true for all j ′ > j, then Hj′(C) is perfect for all j ′ > j by Lemma 4.9. This
implies that τ≤jC is still perfect, so that Hj(C) is the top cohomology group of a perfect
complex, which is always finitely presented.

Now if Hi+1(C) ⊗Ainf W(k) is p-torsionfree, then Hi+1(C) is finite free by the
last statement in Proposition 4.13, and thus has no x-torsion. The last statement in
Lemma 4.16 now yields the desired equality. �

The next lemma implies that torsion-freeness conditions on the de Rham or crys-
talline specializations are equivalent. Here, as well as in Lemma 4.19 and Corollary 4.20,
we assume that K is of characteristic 0 and contains all p-power roots of unity.

Lemma 4.18. — Let C ∈D(Ainf) be a perfect complex such that Hj(C)[ 1
p
] is free over Ainf[ 1

p
]

for all j ∈ Z. Fix some index i. Then Hi(C⊗L
Ainf

W(k)) is p-torsion-free if and only if Hi(C⊗L
Ainf

O)

is p-torsion-free.

Proof. — Note that the stated hypothesis imply that each Hj(C), and hence each
truncation of C, is perfect over Ainf by the previous corollary and Lemma 4.9. As-
sume first that Hi(C⊗L

Ainf
W(k)) is p-torsion-free. Then Hi(C)⊗Ainf W(k) is p-torsion-free

by Lemma 4.16, and then Hi(C) is finite free by Proposition 4.13. As TorAinf
i (Hj(C),

W(k)) = 0 for all j and i > 1 by Lemma 4.9(iii), this implies (τ≥iC) ⊗L
Ainf

W(k) �
τ≥i(C ⊗L

Ainf
W(k)). Now τ≥i(C ⊗L

Ainf
W(k)) ⊗L

W(k) k ∈ D≥i(k) by the assumption that
Hi(C ⊗L

Ainf
W(k)) has no torsion, so τ≥iC ⊗L

Ainf
k ∈ D≥i(k) as well. Rewriting, we see

(τ≥iC ⊗L
Ainf

O) ⊗L
O k ∈ D≥i(k). This implies the following: (a) the perfect complex

τ≥iC⊗L
Ainf

O ∈Db(O) must lie in D≥i(O), and (b) Hi of this last complex is free; here we
use the following fact: a finitely presented O-module is free if and only if TorO1 (M, k)= 0
(see the end of the proof of Proposition 4.13). The first of these properties implies
that τ≥iC⊗L

Ainf
O � τ≥i(C⊗L

Ainf
O), and the second then implies that Hi(C⊗L

Ainf
O) is

p-torsion-free, as wanted. The converse is established in exactly the same way. �
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We record a criterion for M[ 1
p
] being finite projective.

Lemma 4.19. — Let M be a finitely presented Ainf-module. Let μ = [ε] − 1, with ε as in

Example 3.16. Assume the following:

(i) M[ 1
pμ
] is finite projective over Ainf[ 1

pμ
].

(ii) M⊗Ainf B+crys is finite projective over B+crys.

Then M[ 1
p
] is finite free over Ainf[ 1

p
].

Proof. — Let R= Ainf[ 1
p
], and let N=M[ 1

p
]. Then μ ∈R is a non-zero-divisor; let

̂R be the μ-adic completion of R. We first show that the canonical map R→̂R factors
through B+crys. To check this, we need to produce a canonical map Acrys → Ainf[ 1

p
]/μn

for all n (which will then factor through B+crys = Acrys[ 1
p
]). Fix some such n. It suffices

to show that the images of ξm

m! ∈ Ainf[ 1
p
] for varying m belong to a bounded subalgebra

of Ainf[ 1
p
]/μn. Note that the cokernel of the map Ainf/μ

n → Ainf/ξ
n ⊕ Ainf/ϕ

−1(μ)n is
bounded p-torsion: this cokernel is finitely presented over Ainf, and acyclic after inverting p

(since p≡ ξ mod (ϕ−1μ)). Certainly, ξm

m! maps to 0 in Ainf[ 1
p
]/ξ n for m ≥ n, so it remains

to handle the second factor. For this, note that ξ ≡ ϕ−1(μ)p−1 mod p in Ainf, so adjoining
all ξm

m! is equivalent to adjoining all ϕ−1(μ)(p−1)m

m! . Now these elements have trivial image in
Ainf/ϕ

−1(μ)n for m≥ n, finishing the proof that R→̂R factors through B+crys.
By the Beauville–Laszlo lemma [4], and Corollary 4.12, it is enough to check that

N[ 1
μ
] is finite projective over R[ 1

μ
], that N⊗R ̂R is finite projective over ̂R, and that N

has no μ-torsion. The first part is true by assumption (i). The second part follows from
assumption (ii) as the map R→̂R factors through the canonical map R→ B+crys, as shown
in the previous paragraph. It remains to show that N has no μ-torsion. For this, observe
that we have a short exact sequence

0→R→̂R→Q→ 0

with Q being an R[ 1
μ
]-module. Tensoring this with N, and using that

TorR
1 (N,Q)=Tor

R[ 1
μ
]

1

(

N
[

1
μ

]

,Q
)

= 0

by projectivity of N[ 1
μ
], we get an injection N ↪→N⊗R ̂R, which is μ-torsion-free. �

Let us state a corresponding version of Corollary 4.17.

Corollary 4.20. — Let C ∈D(Ainf) be a perfect complex such that for all j ∈ Z, Hj(C)[ 1
pμ
]

is free over Ainf[ 1
pμ
], and Hj(C⊗L

Ainf
B+crys) is free over B+crys. Then, for every j, Hj(C) is a finitely

presented Ainf-module with Hj(C)[ 1
p
] free over Ainf[ 1

p
].
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Moreover, for fixed i, if Hi(C⊗L
Ainf

W(k)) is p-torsion-free, then Hi(C) is a finite free Ainf-

module, and in particular Hi(C⊗L
Ainf

W(K�))=Hi(C)⊗Ainf W(K�) is p-torsion-free. If moreover

Hi+1(C)⊗Ainf W(k) is p-torsion-free (e.g., if Hi+1(C⊗L
Ainf

W(k)) is p-torsion-free), then

Hi(C)⊗Ainf W(k)=Hi
(

C⊗L
Ainf

W(k)
)

.

Proof. — We only need to prove that Hj(C)[ 1
p
] is finite free over Ainf[ 1

p
]; the rest is

Corollary 4.17. For this, one argues again by decreasing induction on j, so one can assume
that j is maximal with Hj(C) �= 0. Then Hj(C) satisfies the hypothesis of Lemma 4.19,
which gives the conclusion. �

Remark 4.21. — Using Lemma 4.18, the hypothesis on Hi(C⊗L
Ainf

W(k)) in Corol-
lary 4.17 and Corollary 4.20 can be replaced by the same hypothesis on Hi(C⊗L

Ainf
O).

4.3. Breuil–Kisin–Fargues modules. — Let K be a perfectoid field with ring of integers
O =OK =K◦ ⊂K. We get the ring Ainf = Ainf(O)=W(O�) equipped with a Frobenius
automorphism ϕ, where O� = lim←−ϕ

O/p as usual. Fix a generator ξ of Ker(θ : Ainf →O),

and let˜ξ = ϕ(ξ).

Definition 4.22. — A Breuil–Kisin–Fargues module is a finitely presented Ainf-module M
with an isomorphism

ϕM :M⊗Ainf,ϕ Ainf

[

1
˜ξ

]

�→M
[

1
˜ξ

]

,

such that M[ 1
p
] is a finite projective (equivalently, free) Ainf[ 1

p
]-module.

This should be regarded as a mixed-characteristic version of a Dieudonné module.
The next example illustrates why we impose the condition that M[ 1

p
] is finite free.

Example 4.23. — Let K = C where C is a completed algebraic closure of Qp.
Let μ = [ε] − 1, with notation as in Example 3.16. Set I = (μ), and M := Ainf/I; this
is a finitely presented Ainf-module. As μ | ϕ(μ), we have ϕ∗(I) ⊂ I, which induces a
map ϕM : ϕ∗M→M. Moreover, as ϕ∗(I) ⊂ I becomes an equality after inverting˜ξ , so
does ϕM.

Again, there is a version of the Tate twist.

Example 4.24 (Tate twist). — There is a Breuil–Kisin–Fargues module Ainf{1} given
by

Ainf{1} = 1
μ

(

Ainf ⊗Zp
Zp(1)

)
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if K is of characteristic 0 and contains all p-power roots of unity. Here, μ = [ε] − 1 as
usual. The Frobenius on Ainf{1} is induced by the usual Frobenius on Ainf. More canoni-
cally, we have the following description. Recall the maps

˜θr : Ainf →Wr(O),

with kernel generated by˜ξr . Then the cotangent complex

Wr(O){1} :=̂LWr(O)/Zp
[−1] = LWr(O)/Ainf[−1] =˜ξrAinf/˜ξ

2
r Ainf

is free of rank 1 over Wr(O). As in the Breuil–Kisin case, for r > s the obvious map

Wr(O){1} =˜ξrAinf/˜ξ
2
r Ainf →˜ξsAinf/˜ξ

2
s Ainf =Ws(O){1}

has image pr−sWs(O){1}; thus, dividing it by pr−s, we can take the inverse limit

Ainf{1} = lim←−
r

Wr(O){1}

to get an Ainf-module which is free of rank 1. Again, it is equipped with a natural Frobe-
nius. Moreover, if K contains all p-power roots of unity and we fix a choice of roots of
unity and the standard choice ξ = μ

ϕ−1(μ)
with μ= [ε] − 1, then the system of elements

˜ξr ∈Wr(O){1} define a compatible system of elements (using that ϕ(ξ) ≡ p mod ξ ), in-
ducing a basis element e ∈ Ainf{1}, on which ϕ acts by e �→ 1

˜ξ
e. More canonically, there is

a map

d log :Wr(O)× →�1
Wr(O)/Zp

,

which on p-adic Tate modules induces a map

d log : Zp(1)→Tp

(

�1
Wr(O)/Zp

)=Wr(O){1}.
These maps are compatible for varying r, inducing a map Zp(1)→ Ainf{1} which is equiv-
ariant for the trivial ϕ-action on Zp(1), and thus a map Ainf ⊗Zp

Zp(1)→ Ainf{1}, which
can be checked to have image μAinf{1}. More concretely, this amounts to checking that
the elements

(

1
[ζpr ] − 1

d([ζps])
[ζps]

)

s≥1

∈Tp

(

�1
Wr(O)/Zp

)=Wr(O){1}

are generators.
If M is any Ainf-module, we set M{n} =M⊗Ainf Ainf{1}⊗n for n ∈ Z.

Remark 4.25. — Assuming again that K contains the p-power roots of unity, there
is a nonzero map Ainf

∼= Ainf ⊗Zp
Zp(1)→ Ainf{1}, whose cokernel is the module from

Example 4.23 above. Thus, the category of Breuil–Kisin–Fargues modules is not stable
under cokernels. It is still an exact tensor category, where the Tate twist is invertible.
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Let us discuss the étale specialization of a Breuil–Kisin–Fargues module. For this,
we assume that K=C is algebraically closed of characteristic 0, and fix p-power roots of
unity giving rise to ε ∈C� and μ= [ε] − 1 as usual.

Lemma 4.26. — Let (M, ϕM) be a Breuil–Kisin–Fargues module, where the base field K=C
is algebraically closed of characteristic 0. Then

T= (M⊗Ainf W
(

C�
))ϕM=1

(where ϕM means ϕM ⊗ ϕ) is a finitely generated Zp-module which comes with an identification

M⊗Ainf W
(

C�
)=T⊗Zp

W
(

C�
)

.

Moreover, one has

M⊗Ainf Ainf

[

1
μ

]

=T⊗Zp
Ainf

[

1
μ

]

as submodules of the common base extension to W(C�).

Geometrically, T corresponds to étale cohomology.

Proof. — As C� is an algebraically closed field of characteristic p, finitely gener-
ated W(C�)-modules with a Frobenius automorphism are equivalent to finitely generated
Zp-modules; this proves that T is finitely generated and comes with an identification

M⊗Ainf W
(

C�
)=T⊗Zp

W
(

C�
)

.

To prove the statement

M⊗Ainf Ainf

[

1
μ

]

=T⊗Zp
Ainf

[

1
μ

]

,

one can formally reduce to the case where M is finite free, using Proposition 4.13 and
the observation that if M is p-torsion, then M⊗Ainf W(C�) =M⊗Ainf Ainf[ 1

μ
]. Thus, we

assume from now on that M is finite free.
First, we claim that T ⊂ M ⊗Ainf Ainf[ 1

μ
]. To prove this, we may replace M by

M{n} for sufficiently large n so that ϕ−1
M maps M into M. In that case, we claim the

stronger statement T ⊂ M. Let r ≥ 1, take any element t ∈ (M⊗Ainf Wr(C�))ϕM=1, and
look at an element x ∈O� of minimal valuation for which [x]t ∈M/pr . Assume that x is
not a unit. We have ϕM(t)= t, or equivalently t = ϕ−1

M (t), so [x]t = ϕ−1
M ([x]pt). But then

[x]pt ∈ [x]p−1M/pr , and thus ϕ−1
M ([x]pt) ∈ [x](p−1)/pM/pr , as ϕ−1

M preserves M by assump-
tion. Thus, [x]t ∈ [x](p−1)/pM/pr , which contradicts the choice of x. Thus, x is a unit, so
that t ∈M/pr . Passing to the limit over r shows that T⊂M, as desired.
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Applying the result T⊗Ainf Ainf[ 1
μ
] ⊂M⊗Ainf Ainf[ 1

μ
] also for the dual module M∗

and dualizing again shows the reverse inclusion, finishing the proof that M⊗Ainf Ainf[ 1
μ
] =

T⊗Zp
Ainf[ 1

μ
]. �

Let us also mention the following result concerning the crystalline specialization,
which works whenever K is of characteristic 0.

Lemma 4.27. — Let M be a Breuil–Kisin–Fargues module. Then M′ =M⊗Ainf W(k) is a

finitely generated W(k)-module equipped with a Frobenius automorphism after inverting p. Fix a section

k → OK/p, which induces a section W(k) → Ainf. Then there is a (noncanonical) ϕ-equivariant

isomorphism

M⊗Ainf B+crys
∼=M′ ⊗W(k) B+crys

reducing to the identity over W(k)[ 1
p
].

Proof. — This follows from a result of Fargues–Fontaine [31, Corollaire 11.1.14].
�

We will see that in geometric situations, the ϕ-equivariant isomorphism

M⊗Ainf B+crys
∼=M′ ⊗W(k) B+crys

is canonical, cf. Proposition 13.21. One can check using Lemma 4.19 that for Breuil–
Kisin–Fargues modules equipped with the choice of such an isomorphism, and mor-
phisms respecting those, the kernel and cokernel are again Breuil–Kisin–Fargues mod-
ules, so that this variant category is an abelian tensor category in which the objects com-
ing from geometry live. However, the constructions for proper smooth (formal) schemes
of this paper have analogues for p-divisible groups where the resulting identification is
not canonical. In that case, the phenomenon that the category of Breuil–Kisin–Fargues
modules is not abelian is related to the existence of the morphism of p-divisible groups

Q p/Zp → μp∞

over OK, if K contains all p-power roots of unity, which does not have any reasonable
kernel or cokernel as it is 0 in the special fiber, but an isomorphism in the generic fiber.

The main theorem about Breuil–Kisin–Fargues modules is Fargues’ classification;
we refer to [62] for a proof.

Theorem 4.28 (Fargues). — Assume that K = C is algebraically closed of characteristic 0.

The category of finite free Breuil–Kisin–Fargues modules is equivalent to the category of pairs (T,�),

where T is a finite free Zp-module, and � is a B+dR-lattice in T⊗Zp
BdR. Here, the functor is given by

sending a finite free Breuil–Kisin–Fargues module (M, ϕM) to the pair (T,�), where

T= (M⊗Ainf W
(

C�
))ϕM=1
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and

�=M⊗Ainf B+dR ⊂M⊗Ainf BdR
∼=T⊗Zp

BdR.

Remark 4.29. — For the proof of our main theorems, we only need fully faith-
fulness of the functor M �→ (T,�), which is easy to prove directly. Indeed, faithful-
ness follows directly from Lemma 4.26 and the observation that Ainf → Ainf[ 1

μ
] is in-

jective. Now, given two Breuil–Kisin–Fargues modules (M, ϕM) and (N, ϕN) and a map
T(M)→T(N) mapping �(M) into �(N), Lemma 4.26 gives a canonical ϕ-equivariant
map M[ 1

μ
]→N[ 1

μ
]. We have to see that this maps M into N. By finite generation of M,

M maps into μ−nN for some n ≥ 0, which we assume to be minimal. Assume n > 0;
replacing N by μ−n+1N, we may reduce to the case n = 1. We claim that M maps into
ϕ−r(μ)−1N for all r ≥ 0, by induction on r. For this, we need to see that the induced maps

M→ ϕ−r(μ)−1N/ϕ−r−1(μ)−1N∼=N/ϕ−r(ξ)N

=N⊗Ainf,θ◦ϕr O ↪→N⊗Ainf,θ◦ϕr C

are zero, where the isomorphism is multiplication by ϕ−r(μ). But note that by assump-
tion, �(M)=M⊗Ainf B+dR maps into �(N)=N⊗Ainf B+dR, and so by the diagram

M⊗Ainf,ϕr B+dR

ϕr
M∼=

N⊗Ainf,ϕr B+dR

ϕr
N∼=

M⊗Ainf B+dR N⊗Ainf B+dR

also M ⊗Ainf,ϕr B+dR maps into N ⊗Ainf,ϕr B+dR for all r ≥ 0. Therefore, the map M →
N⊗Ainf,θ◦ϕr C induced by multiplication by ϕ−r(μ) is zero, showing that indeed M maps
into ϕ−r(μ)−1N for all r ≥ 0. But now N=⋂r≥0 ϕ−r(μ)−1N by Lemma 3.23, so M maps
into N, as desired.

We warn the reader that, like in Theorem 4.4, this equivalence of categories is not
exact. More precisely, the functor from Breuil–Kisin–Fargues modules to pairs (T,�) is
exact, but the inverse is not.

As an easy example, Ainf{1} corresponds to T= Zp(1) and �= ξ−1(T⊗Zp
B+dR).

4.4. Relating Breuil–Kisin and Breuil–Kisin–Fargues modules. — Let us observe that any
Breuil–Kisin module defines a Breuil–Kisin–Fargues module. For this, we start again
with a complete discretely valued extension K of Q p with perfect residue field k and fixed
uniformizer π ∈ K, and let C be a completed algebraic closure of K with fixed roots
π 1/pn ∈C, giving an element π� ∈ C�. Then S=W(k)�T� is equipped with a Frobenius
automorphism ϕ, and the map ˜θ :S→OK given by T �→ π . The constructions over K
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and C are related by the map S→ Ainf that sends T to [π�]p and is the Frobenius on
W(k); note that this map commutes with ϕ and˜θ . We first check that this map is flat:

Lemma 4.30. — The map S→ Ainf above is flat.

Proof. — We must check that M⊗L
S

Ainf is concentrated in degree 0 for any S-
module M. By approximation, we may assume M is finitely generated. As S is regular,
any such M is perfect. Thus, M⊗L

S
Ainf is also perfect. In particular, it is derived p-adically

complete, so we can write M⊗L
S

Ainf �R lim(M/pn⊗L
S/pn Ainf/pn); here we implicitly use

the Artin–Rees lemma over S to replace the pro-system {M⊗L
S
S/pn} with {M/pn}. It is

now enough to check that S/pn → Ainf/pn is flat. As both rings are flat over Z/pn, we may
assume n= 1, i.e., we need to show S/p→ Ainf/p�O� is flat; this is clear as the source
is a discrete valuation ring, and the target is torsionfree. �

Remark 4.31. — More generally, one has: if A→ B is a map of p-adically complete
p-torsionfree rings with A noetherian and A/p→ B/p flat, then A→ B is flat. To prove
this, one simply replaces perfect complexes with pseudo-coherent complexes in the proof
above.

Base change along this map relates Breuil–Kisin modules to Breuil–Kisin–Fargues
modules:

Proposition 4.32. — The association M �→M⊗S Ainf defines an exact tensor functor from

Breuil–Kisin modules over S to Breuil–Kisin–Fargues modules over Ainf.

Proof. — Let (M, ϕM) be a Breuil–Kisin module over S, i.e., M is a finitely pre-
sented S-module equipped with an identification ϕM : (ϕ∗M)[ 1

E ] �M[ 1
E ], where E(T) ∈

S is the Eisenstein polynomial defining π . We claim that N :=M⊗S Ainf equipped with
the identification (ϕM ⊗ id) : (ϕ∗N)[ 1

f (E)
] � N[ 1

f (E)
] is a Breuil–Kisin–Fargues modules.

For this, first note that ˜ξ := f (E) is a generator of the kernel of ˜θ : Ainf → OC. More-
over, M[ 1

p
] is free by Proposition 4.3, so N[ 1

p
] is free as well; this verifies that we obtain a

Breuil–Kisin–Fargues module. The resulting functor is clearly symmetric monoidal, and
exactness follows from Lemma 4.30. �

Corollary 4.33. — Under the functor of Theorem 4.4, Zp(1) is sent to S{1}.

Proof. — From the definition in terms of cotangent complexes, we see that
S{1} ⊗S Ainf

∼= Ainf{1} as Breuil–Kisin–Fargues modules, compatibly with the GK∞ -
action. As there is a canonical identification

Ainf{1} = 1
μ

(

Zp(1)⊗Zp
Ainf

)

,
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in particular we get a ϕ,GK∞ -equivariant identification

S{1} ⊗S W
(

C�
)∼= Zp(1)⊗Zp

W
(

C�
)

,

which by Theorem 4.4 proves that Zp(1) is sent to S{1}. �

Finally, we want to relate Theorem 4.4 with Theorem 4.28. Thus, let T be a lattice
in a crystalline GK-representation V. We get

Dcrys(V)= (V⊗Q p
Bcrys)

GK,

which comes with a ϕ,GK-equivariant identification

Dcrys(V)⊗W(k)[ 1
p ] Bcrys =V⊗Q p

Bcrys.

On the other hand, by Theorem 4.4, we have the finite free Breuil–Kisin module M(T)

over S, which gives rise to a finite free Breuil–Kisin–Fargues module M(T)⊗S Ainf. By
Theorem 4.4 and Lemma 4.26, we have a GK∞-equivariant identification

M(T)⊗S Ainf

[

1
μ

]

=T⊗Zp
Ainf

[

1
μ

]

.

Proposition 4.34. — One has an equality

M(T)⊗S B+crys =Dcrys(V)⊗W(k)[ 1
p ] B+crys

as submodules of

M(T)⊗S Bcrys =T⊗Zp
Bcrys =Dcrys(V)⊗W(k)[ 1

p ] Bcrys.

In particular, under Fargues’ classification, M(T) ⊗S Ainf corresponds to the pair (T,�),

where

�=Dcrys(V)⊗W(k)[ 1
p
] B+dR ⊂T⊗Zp

BdR;
equivalently,

�=DdR(V)⊗K B+dR ⊂T⊗Zp
BdR,

where DdR(V)= (T⊗Zp
BdR)GK .

The moral of the story here is that if one does p-adic Hodge theory over C, there
is no Galois action on T anymore, and instead one should keep track of a B+dR-lattice in
T⊗Zp

BdR, which is a shadow of the de Rham comparison isomorphism. In Section 13
below we will give a geometric construction of a B+dR-lattice in étale cohomology tensored
with BdR for any proper smooth rigid-analytic variety over C (in a way compatible with
the usual de Rham comparison isomorphism).
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Proof. — This follows from Kisin’s construction of M(T), which starts with the
crystalline side and an isomorphism between M(T) and Dcrys(V)⊗S[ 1

p
] on some rigid-

analytic open of the generic fiber of SpfS, cf. [49, Section 1.2, Lemma 1.2.6]. �

5. Rational p-adic Hodge theory

In this section, we recall a few facts from rational p-adic Hodge theory, in the
setting of [59]. Let K be some complete discretely valued extension of Q p with perfect
residue field k, and let X be a proper smooth rigid-analytic variety over K, considered as
an adic space. Let C be a completed algebraic closure of K with absolute Galois group
GK, and let BdR = BdR(C) be Fontaine’s field of p-adic periods.

Theorem 5.1 ([59]). — The p-adic étale cohomology groups Hi
ét(XC,Zp) are finitely generated

Zp-modules, and there is a comparison isomorphism

Hi
ét(XC,Zp)⊗Zp

BdR
∼=Hi

dR(X)⊗K BdR,

compatible with the GK-action, and natural filtrations. In particular, Hi
ét(XC,Q p) is de Rham as a

GK-representation.

In particular, the theorem gives a natural B+dR-lattice

Hi
dR(X)⊗K B+dR ⊂Hi

ét(XC,Zp)⊗Zp
BdR,

where Hi
dR(X)= (Hi

ét(XC,Zp)⊗Zp
BdR)GK. Thus, by Theorem 4.28, the torsion-free quo-

tient of Hi
ét(XC,Zp) and this B+dR-lattice given by de Rham cohomology define a finite free

Breuil–Kisin–Fargues module, which we will call

BKF
(

Hi
ét(XC,Zp)

)

.

Remark 5.2. — Assume that the torsion-free quotient of Hi
ét(XC,Zp) is crystalline

as a Galois representation. Then, by Theorem 4.4, there is an associated Breuil–Kisin
module

BK
(

Hi
ét(XC,Zp)

)

.

By Proposition 4.34, we then have

BKF
(

Hi
ét(XC,Zp)

)= BK
(

Hi
ét(XC,Zp)

)⊗S Ainf.

In fact, the B+dR-lattice

Hi
dR(X)⊗K B+dR ⊂Hi

ét(XC,Zp)⊗Zp
BdR
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depends only on XC. We postpone discussion of this point until later, see Section 13. This
implies that the construction of BKF(Hi

ét(X,Zp)) works for any proper smooth rigid-
analytic space X over C.

The goal of this paper is to show that if X is the generic fiber of some proper
smooth formal scheme X/OK, then this Breuil–Kisin–Fargues module can be constructed
geometrically, and deduce comparisons between the Breuil–Kisin–Fargues module and
the crystalline cohomology of the special fiber.

In this section, we will recall aspects of pro-étale cohomology following [59], and
then briefly recall the strategy of the proof of Theorem 5.1.

5.1. The pro-étale site of an adic space. — We first recall the pro-étale site [59, Defi-
nition 3.9] associated to a locally Noetherian adic space X. Let pro−Xét be the category
of pro-objects associated to the category Xét of adic spaces which are étale over X. Ob-
jects of pro−Xét will be denoted by “ lim←−”

i∈I
Ui , where I is a small cofiltered category

and I→ Xét, i �→ Ui is a functor. The underlying topological space of “ lim←− ”
i∈I

Ui is by
definition lim←−i∈I

|Ui|, where |Ui| is the underlying topological space of Ui .
An object U ∈ pro−Xét is said to be pro-étale over X if and only if U is isomorphic

in pro−Xét to an object “ lim←− ”
i∈I

Ui with the property that all transition maps Uj → Ui

are finite étale and surjective.
The pro-étale site Xproét of X is the full subcategory pro−Xét consisting of those

objects which are pro-étale over X; a collection of maps {fi :Ui →U} in Xproét is defined
to be a covering if and only if the collection {|Ui| → |U|} is a pointwise covering of the
topological space |U|, and moreover each fi satisfies the following assumption (which
is stronger than asking that fi is pro-étale in the sense of [59, Definition 3.9], but the
notions agree for countable inverse limits).10 One can write Ui → U as an inverse limit
Ui = lim←−μ<λ

Uμ of Uμ ∈Xproét along some ordinal λ, such that U0 →U is étale (i.e. the
pullback of a map in Xét), and for all μ > 0, the map

Uμ →U<μ := lim←−
μ′<μ

Uμ′

is finite étale and surjective, i.e. the pullback of a finite étale and surjective map in Xét

(cf. [59, Lemma 3.10 (v)]).
There is a natural projection map of sites

ν :Xproét →Xét,

with the property that

Hj
(

U, ν∗F
)= lim−→

i∈I

Hj(Ui,F)

10 Cf. [61].
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for any abelian sheaf F on Xét, j ≥ 0, and any U= “ lim←−”
i∈I

Ui ∈Xproét for which |U| is
quasi-compact and quasi-separated [59, Lemma 3.16].

Suppose now that X is a locally Noetherian adic space over Spa(Q p,Zp). An object
U ∈Xproét is said to be affinoid perfectoid [59, Definition 4.3] if and only if it is isomorphic
in Xproét to an object “ lim←−”

i∈I
Ui with the following three properties:

(i) the transition maps Uj →Ui are finite étale surjective whenever j ≥ i;
(ii) Ui = Spa(Ri,R+

i ) is affinoid for each i;
(iii) the complete Tate ring R := (lim−→i

R+
i )∧p ⊗Zp

Q p is perfectoid.

We note that the final condition implies that R+ := (lim−→i
R+

i )∧ is a perfectoid ring,
by Lemma 3.20.

Continuing to assume that X is a locally Noetherian adic space over Spa(Q p,Zp),
it is known that the affinoid perfectoid objects in Xproét form a basis for the topology
[59, Proposition 4.8]. We will only require this result when X is smooth over Spa(C,O),
where C is a perfectoid field of mixed characteristic and O =OC = C◦ ⊂ C is its ring of
integers; in this case we recall some details of the proof (see [59, Example 4.4, Lemma 4.6,
Corollary 4.7]). Locally, X admits an étale map to the d-dimensional torus

Td := Spa
(

C
〈

T±1
1 , . . . ,T±1

d

〉

,O
〈

T±1
1 , . . . ,T±1

d

〉)

that factors as a composite of rational embeddings and finite étale covers. In this case, we
have the following lemma.

Lemma 5.3 ([59, Lemma 4.5]). — Let X→ Td be an étale map that factors as a composite

of rational embeddings and finite étale maps. For r ≥ 1, let

Xr =X×Td Td
r ,

where

Td
r = Spa

(

C
〈

T±1/pr

1 , . . . ,T±1/pr

d

〉

,O
〈

T±1/pr

1 , . . . ,T±1/pr

d

〉)

.

Then “ lim←− ”
r
Xr ∈Xproét is affinoid perfectoid.

We recall the main sheaves of interest on Xproét, and explicitly state their values on
an affinoid perfectoid U= “ lim←− ”

i∈I
Spa(Ri,R+

i ).

Definition 5.4. — Consider the following sheaves on Xproét.

(i) The integral structure sheaf O+
X = ν∗O+

Xét
.

(ii) The structure sheaf OX = ν∗OXét .

(iii) The completed integral structure sheaf ̂O+
X = lim←−r

O+
X/pr .

(iv) The completed structure sheaf ̂OX = ̂O+
X[ 1

p
].
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(v) The tilted (completed) integral structure sheaf ̂O+
X� = lim←−ϕ

O+
X/p.

(vi) Fontaine’s period sheaf Ainf,X, the derived p-adic completion of W(̂O+
X�).

Remark 5.5. — The sheaves ̂O+
X and Wr(̂O+

X) are derived p-adically complete
(cf. Section 6.2 for the definition of derived completeness). This follows from the next
lemma and its natural version for Wr(̂O+

X) and the observation that almost zero mod-
ules are always derived complete in these contexts. However, it is not clear to us whether
W(̂O+

X�) is derived p-adically complete. (Its failure to be derived p-adically complete is
[m�]-torsion.) This is the reason that we define Ainf,X as the derived p-adic completion of
W(̂O+

X�) (which actually makes it a sheaf of complexes).

Lemma 5.6 ([59, Lemma 4.10, Lemma 5.10, Theorem 6.5]). — Let U = “ lim←− ”
i
Ui ∈

Xproét be affinoid perfectoid, where the Ui = Spa(Ri,R+
i ) are affinoid, such that the p-adically com-

pleted direct limit (R,R+) of the (Ri,R+
i ) is perfectoid. Then

O+
X(U)= lim−→

i

R+
i , OX(U)= lim−→

i

Ri, ̂O+
X(U)=R+,

̂OX(U)=R, ̂O+
X�(U)=R+�, H0(U,Ainf,X)= Ainf

(

R+).

Moreover, for i > 0, the groups

Hi(U,OX)=Hi(U, ̂OX)= 0

vanish, the O-modules Hi(U,O+
X) and Hi(U, ̂O+

X) are killed by m, the O�-module Hi(U, ̂O+
X�) is

killed by m�, and the Ainf-module Hi(U,Ainf,X) is killed by [m�].
We note that using the argument from the proof of Theorem 5.7 below, it follows

that Hi(U,Ainf,X) is actually killed by W(m�).
Also, using the same formulae as Lemma 3.2, there is a chain of natural morphisms

of sheaves on Xproét:

W
(

̂O+
X�

)= lim←−
R

Wr

(

̂O+
X�

) ϕ∞←− lim←−
F

Wr

(

̂O+
X�

)−→ lim←−
F

Wr

(

O+
X/p
)

←− lim←−
F

Wr

(

̂O+
X

)

.

Each of these morphisms is an isomorphism of sheaves; this follows from sheafifying the
proof of Lemma 3.2. Therefore, there are induced morphisms

˜θr : Ainf,X →Wr

(

̂O+
X

)

, θr :=˜θrϕ
r : Ainf,X →Wr

(

̂O+
X

)

,

and θ := θ1 : Ainf,X → ̂O+
X, as the target is in all cases derived p-adically complete already.

By checking on affinoid perfectoids, the results of Section 3 imply similar results on the
level of sheaves on Xproét.

We will need the following result.
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Theorem 5.7 ([59, proof of Theorem 8.4]). — Assume that C is algebraically closed, and

X is a proper smooth adic space over C. Then the inclusion Ainf ↪→ Ainf,X induces an almost quasi-

isomorphism

R�ét(X,Zp)⊗Zp
Ainf →R�(Xproét,Ainf,X);

more precisely, the cohomology of the cone is killed by W(m�).

Proof. — The cohomology of the cone is killed by [m�], and derived p-complete
(cf. Lemma 6.15). Thus, it becomes a module over the derived p-completion of Ainf/[m�],
which is given by W(k)= Ainf/W(m�). In particular, it is killed by W(m�). �

Let us now briefly recall the proof of Theorem 5.1. Let X/K be a proper smooth
rigid-analytic variety. Theorem 5.7 implies that

R�ét(XC,Zp)⊗Zp
B+dR

∼=R�proét

(

XC,B+
dR,X

)

,

where B+
dR,X is the relative period sheaf defined in [59]. On the other hand, one can

define a sheaf OB+
dR,X as a suitable completion of OX ⊗W(k) B+

dR,X,11 which comes with a
connection ∇ (induced from the OX-factor), and there is a Poincaré lemma:

0→ B+
dR,X →OB+

dR,X
∇−→OB+

dR,X ⊗OX �1
X → ·· ·

is exact; this is inspired by work of Andreatta–Iovita [3]. One finishes by observing that
the cohomology of OB+

dR,X[ξ−1] is the same as the cohomology of OX̂⊗KBdR, which
follows from a direct Galois cohomology computation, due to Brinon [18].

6. The Lη-operator

Consider a ring A and non-zero-divisor f ∈ A, and denote by D(A) the derived
category of A-modules. If M• is a cochain complex such that Mi is f -torsion free for all
i ∈ Z, we denote by ηf M• the subcomplex of M•[ 1

f
] defined as

(ηf M)i := {x ∈ f iMi : dx ∈ f i+1Mi+1
}

.

In Section 6.1, we show that the functor ηf (−) descends to the derived category, inducing
a (non-exact!) functor Lηf :D(A)→D(A), and study various properties of the resulting
construction. In Section 6.2, we recall some basic properties of completions in the derived
category, and study their commutation with Lη.

11 The original definition was slightly wrong, cf. [61].
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6.1. Construction and properties of Lη. — For applications, it will be important to
have the Lηf -operation also on a ringed site (or topos), so let us work in this generality.
Let (T,OT) be a ringed topos. Let D(OT) be the derived category of OT-modules. Recall
that D(OT) is, by definition, the localization of the category K(OT) of complexes of OT-
modules (up to homotopy) at the quasi-isomorphisms.

Recall that a complex C• ∈ K(OT) is K-flat if for every acyclic complex D• ∈
K(OT), the total complex Tot(C• ⊗OT D•) is acyclic, cf. [1, Tag 06YN]. Let us say that
C• is strongly K-flat if in addition each Ci is a flat OT-module.

Lemma 6.1. — For every complex D• ∈ K(OT), there is a strongly K-flat complex C• ∈
K(OT) and a quasi-isomorphism C• →D•.

In particular, D(OT) is the localization of the full subcategory of strongly K-flat complexes in

K(OT), along the quasi-isomorphisms.

Proof. — The first sentence follows from [1, Tag 077J] (and its proof to see that
the complex is strongly K-flat, noting that filtered colimits of flat modules are flat). The
second sentence is a formal consequence. �

Now let I ⊂OT be an invertible ideal sheaf. Weakening the notion of strongly K-
flat complexes, we say that C• is I-torsion-free if the map I ⊗Ci →Ci is injective for all
i ∈ Z; we denote its image by I ·Ci ⊂Ci .

Definition 6.2. — Let C• ∈ K(OT) be an I-torsion-free complex. Define a new (I-torsion-

free) complex ηIC• = (ηIC)• ∈K(OT) with terms

(ηIC)i = {x ∈Ci | dx ∈ I ·Ci+1
}⊗OT I⊗i

and differential

d(ηIC)i : (ηIC)i → (ηIC)i+1

making the following diagram commute:

(ηIC)i
dCi⊗I⊗i

d
(ηIC)i

I ·Ci+1 ⊗ I⊗i

∼=

(ηIC)i+1 Ci+1 ⊗ I⊗(i+1).

Remark 6.3. — The definition is phrased to depend only on the ideal I , and not
on a chosen generator f ∈ I . If f ∈ I is a generator (assuming it exists), then one has

(ηIC)i = (ηf C)i := {x ∈ f iCi | dx ∈ f i+1Ci+1
}

,
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and the differential is compatible with the differential on C•[ 1
f
]. Moreover, in this case,

there is an isomorphism ηI(C[1]) � (ηIC)[1] given by multiplication by f in each de-
gree.

One can describe the effect of this operation on cohomology as killing the I-
torsion:

Lemma 6.4. — Let C• ∈ K(OT) be an I-torsion-free complex. Then there is a canonical

isomorphism

Hi
(

ηIC•)= (Hi
(

C•)/Hi
(

C•)[I])⊗OT I⊗i

for all i ∈ Z. Here,

Hi
(

C•)[I] =Ker
(

Hi
(

C•)→Hi
(

C•)⊗OT I⊗−1
)⊂Hi

(

C•)

is the I-torsion.

In particular, if α : C• → D• is a quasi-isomorphism of I-torsion free complexes, then so is

ηIα : ηIC• → ηID•.

Proof. — Let Zi(C•) ⊂ Ci , Zi(ηIC•) ⊂ (ηIC)i be the cocycles. Then there is a
natural isomorphism

Zi
(

C•)⊗OT I⊗i ∼= Zi
(

ηIC•),

inducing a surjection

Hi
(

C•)⊗OT I⊗i →Hi
(

ηIC•).

Unraveling the definitions, one sees that if x ∈ Zi(C•)⊗OT I⊗i is a cocycle, then its image
in Hi(ηIC•) vanishes if and only if there is an element y ∈Ci−1 ⊗OT I⊗(i−1) such that

dy ∈ Zi ⊗OT I⊗(i−1) ∼=HomOT

(

I,Zi ⊗OT I⊗i
)

agrees with the map I ⊂OT
x→ Zi(C•)⊗OT I⊗i. This happens precisely when x gives an

I-torsion element of Hi(C•). The final statement follows formally. �

In particular, the following corollary follows.

Corollary 6.5. — The functor ηI from strongly K-flat complexes in K(OT) to D(OT) factors

canonically over a functor LηI : D(OT) → D(OT). The functor LηI commutes with all filtered

colimits.

Moreover, LηI :D(OT)→D(OT) commutes with canonical truncations, i.e. for all a≤ b in

Z∪ {−∞,∞} and any C ∈D(OT), one has

LηI
(

τ [a,b]C
)∼= τ [a,b]LηI(C).
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We repeat a warning made earlier:

Remark 6.6. — The functor LηI :D(OT)→D(OT) constructed above is not exact.
For example, when T is the punctual topos and I = (p)⊂ Z, then LηI(Z/pZ)= 0, but
LηI(Z/p2Z)= Z/pZ �= 0.

The operation LηI interacts well with the ⊗-structure:

Proposition 6.7. — There is a natural lax symmetric monoidal structure on LηI :D(OT)→
D(OT), i.e. for all C,D ∈D(OT), there is a natural map

LηIC⊗L
OT

LηID→ LηI
(

C⊗L
OT

D
)

,

functorial in C and D, and symmetric in C and D.

Proof. — Let C•, D• be strongly K-flat representatives of C and D. Then one has
a natural map

Tot
(

(ηIC)• ⊗OT (ηID)•
)→ ηITot

(

C• ⊗OT D•),

given termwise by the map

(ηIC)i ⊗OT (ηID)j → ηITot
(

C• ⊗OT D•)i+j

compatible with
(

Ci ⊗OT I⊗i
)⊗OT

(

Dj ⊗OT I⊗j
)→ (Ci ⊗OT Dj

)⊗OT I⊗(i+j),

observing that if x ∈Ci and y ∈Dj have the property dx ∈ I ·Ci+1 and dy ∈ I ·Dj+1, then

d(x⊗ y)= dx⊗ y+ (−1)ix⊗ dy ∈ I · (Ci+1 ⊗OT Dj ⊕Ci ⊗OT Dj+1
)

.

This map gives the structure of a lax symmetric monoidal functor ηI :
KstronglyK−flat(OT)→D(OT), which factors uniquely over a lax symmetric monoidal func-
tor LηI :D(OT)→D(OT). �

In an important special case, this operation even commutes with the ⊗-product:

Proposition 6.8. — Assume that T is the punctual topos, and R=OT is a valuation ring. Let

f ∈R be any generator of I . Then Lηf is symmetric monoidal.

Proof. — As everything commutes with filtered colimits, it is enough to check that
if C and D are perfect complexes, then the natural map

Lηf C⊗L
R Lηf D→ Lηf

(

C⊗L
R D
)
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is a quasi-isomorphism. Note that R is coherent, so that all cohomology groups of C
and D are finitely presented. Moreover, finitely presented modules over valuation rings
are finite direct sums of modules of the form R/g for elements g ∈ R, by the elementary
divisor theorem. These are of projective dimension 1, so that both C and D split as a
direct sum

⊕

i Hi(C)[−i],⊕i Hi(D)[−i]. Thus, we can reduce to the case C= (R/g)[i],
D = (R/h)[j] for some elements g, h ∈ R, i, j ∈ Z. We may assume i = j = 0 as all op-
erations commute with shifts (see Remark 6.3). If either g or h divides f , then we claim
that both sides are trivial. Indeed, assume without loss of generality that g divides f .
Then Lηf C= 0, and all cohomology groups of C⊗L

R D are killed by g, and thus by f , so
that Lηf (C⊗L

R D)= 0 as well. Finally, if f divides both g and h, then Lηf C= R/(g/f ),
Lηf D=R/(h/f ), and one verifies that

Lηf

(

R/g ⊗L
R R/h

)=R/(g/f )⊗L
R R/(h/f ),

cf. Lemma 7.9 below for a more general statement. �

The next lemma bounds how far LηI is from the identity.

Lemma 6.9. — For any integer m, is a natural transformation

I⊗m ⊗OT τ≤m → τ≤mLηI

of functors on D(OT). For any integer n, there is a natural transformation

τ≥nLηI → I⊗n ⊗OT τ≥n

of functors on the full subcategory of those C ∈ D(OT) with Hn(C) being I-torsion-free. On this

subcategory, if n≤ m, then the composites

I⊗(m−n)⊗OT τ [n,m]LηI → I⊗m ⊗OT τ [n,m] → τ [n,m]LηI,

I⊗m ⊗OT τ [n,m] → τ [n,m]LηI → I⊗n ⊗OT τ [n,m]

are the identity maps tensored with the inclusions I⊗(m−n) ↪→OT resp. I⊗m → I⊗n.

Proof. — It suffices to construct similar natural transformations on the category of
I-torsion-free complexes, so let C• be an I-torsion-free complex. For the first transfor-
mation, it suffices to construct a map

I⊗m ⊗OT τ≤mC• → ηIC•.

But for i < m, (ηIC)i contains I⊗m ⊗Ci (where we regard I⊗m as embedded into I⊗i by
regarding both as ideal sheaves), and if i = m, it still contains I⊗m ⊗ Zm, where Zm ⊂ Cm

denotes the cocycles.
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For the second transformation, let C• be an I-torsion-free complex with
Hn(C•)[I] = 0. We will show that there is a canonical map

ηIC• → I⊗n ⊗OT τ≥nC•.

For this, note that (ηIC)i is contained in I⊗n ⊗OT Ci for i ≥ n, when both sides are
viewed as subsheaves of Ci[ 1

I ] in the usual way; this defines the preceding map in degrees
> n. To get the map in degree ≤ n by the same recipe, it is enough to show that the
sheaf I⊗n ⊗OT Cn−1 contains (and is thus equal to) the sheaf (ηIC)n−1, as subsheaves
in Cn−1[ 1

I ]. But this immediate for us: the quotient (ηIC)n−1/(I⊗n ⊗OT Cn−1) is easily
identified with I⊗n−1 ⊗Hn(C)[I], which vanishes by hypothesis. This gives the desired
natural transformation on the subcategory.

The identification of the composites is immediate from the definition. �

The following special case will come up repeatedly in the sequel:

Lemma 6.10. — Let C ∈ D≥0(OT) such that H0(C)[I] = 0. Then there is a canonical

map LηIC→C.

Proof. — This map is obtained by applying the second natural transformation con-
structed in Lemma 6.9 for n= 0 to C. �

Composing two such operations behaves as expected:

Lemma 6.11. — Let I,J ⊂OT be two invertible ideal sheaves, with product I ⊗OT J
�→

I ·J ⊂OT. There is a canonical equivalence of functors

LηI·J ∼= LηI ◦ LηJ :D(OT)→D(OT).

Proof. — Consider the category of I · J -torsion-free complexes; this category is
preserved by both ηI and ηJ , and ηI·J = ηI ◦ ηJ on this category. Deriving gives the
desired equivalence. �

A crucial property is the following observation.12

Proposition 6.12. — If C ∈D(OT), construct a complex H•(C/I) with terms

Hi(C/I)=Hi
(

C⊗L
OT

OT/I
)⊗OT I⊗i

and with differential induced by the Bockstein-type boundary map corresponding to the short exact se-

quence

0→ I/I2 →OT/I2 →OT/I→ 0.

12 It is this property of the Lη-operation that had initially led us to rediscover it.
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Then there is a natural quasi-isomorphism

LηIC⊗L
OT

OT/I ∼→H•(C/I).

More precisely, if C• is an I-torsion-free representative of C, then there is a natural map of

complexes

ηIC• ⊗OT OT/I→H•(C/I),

which is a quasi-isomorphism; moreover, the left side represents the derived tensor product.

Note that even when C does not have a distinguished representative in K(OT), the
proposition shows that LηIC ⊗L

OT
OT/I does have a distinguished representative as a

complex, namely H•(C/I). As we will see, this is related to the canonical representative
(given by the de Rham–Witt complex) of the complex computing crystalline cohomol-
ogy.

Proof. — It is enough to prove the assertion about C•. Note that ηIC• is I-torsion-
free, and for I-torsion-free complexes, the underived tensor product with OT/I repre-
sents the derived product.

Note that there is a natural map

(ηIC)n → Zn
(

C•/I
)⊗OT I⊗n

from the definition of (ηIC)n. One gets an induced map
(

ηIC•)/I = ηIC• ⊗OT OT/I→H•(C/I),

and one checks that this is compatible with the differentials.
Now we check that this map of complexes is a quasi-isomorphism; it suffices to

check that one gets an isomorphism on H0 (as the situation at Hn is just a twist and shift).
First, we check injectivity of

H0
((

ηIC•)/I
)→H0

(

H•(C/I)
)

.

Let ᾱ ∈H0((ηIC•)/I). We can lift ᾱ to an element

α ∈ (ηIC)0 = {γ ∈C0 | dγ ∈ I ·C1
}

,

with dα ∈ I · (ηIC)1 (so that α is a cocycle modulo I ), and we have to show if ᾱ maps to
0 in H0(H•(C/I)), then there is some

β ∈ (ηIC)−1 = {γ ∈C−1 | dγ ∈ I ·C0
}⊗OT I⊗−1
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such that dβ−α ∈ I · (ηIC)0. The assumption that ᾱ maps to 0 in H0(H•(C/I)) means
that there is some

β̄ ∈H−1(C/I)⊗OT I⊗−1

which maps to ᾱ under the Bockstein. We may lift β̄ to an element β ∈ C−1 ⊗OT I⊗−1.
The property that it is a cocycle modulo I means that dβ ∈ C0, and the property that
the Bockstein is ᾱ means that dβ−α ∈ I ·C0. Thus, in fact, implies dβ−α ∈ I · (ηf C)0.
Indeed, twisting the defining equation of (ηf C)0 by I , we have

I · (ηf C)0 = {γ ∈ I ·C0 | dγ ∈ I⊗2 ·C1
}

,

and d(dβ − α)=−dα ∈ I · (ηf C)1 ⊂ I⊗2 ·C1.
It remains to check surjectivity of

H0
((

ηIC•)/I
)→H0

(

H•(C/I)
)

.

Thus, take an element ᾱ ∈ H0(C/I) which is killed by the Bockstein. This means that
ᾱ lifts to an element of H0(C/I2), and so we can lift ᾱ to an element α ∈ C0 with dα ∈
I⊗2 ·C1. But this implies that α ∈ (ηIC)0 and satisfies

dα ∈ I · (ηf C)1,

as it lies in I⊗2 ·C1 and is killed by d . Thus, α defines a cocycle of (ηIC•)/I , giving an
element of H0((ηIC•)/I) mapping to ᾱ. �

We observe that ηI preserves I-torsion-free differential graded algebras, and that
this structure is compatible with the isomorphism from Proposition 6.12.

Lemma 6.13. — Let R• be a differential graded OT-algebra with I-torsion-free terms. Then

ηIR• is naturally a differential graded algebra, with I-torsion-free terms. Moreover, H•(R•/I) has

a natural structure of differential graded algebra, where multiplication is given by the cup product. The

quasi-isomorphism

ηIR• ⊗OT OT/I→H•(R•/I
)

is a morphism of differential graded algebras.

Proof. — Easy and left to the reader. �

Finally, we observe that the Lη-operation commutes with pullback along a flat
morphism of topoi. More precisely, let f : (T′,OT′)→ (T,OT) be a flat map of ringed
topoi. Two important cases are the case where f is a point of (T,OT), and the case where
T= T′, which amounts to a flat change of rings. Let I ⊂OT be an invertible ideal sheaf
with pullback I ′ = f ∗I ⊂OT′ , which is still an invertible ideal sheaf.
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Lemma 6.14. — The diagram

D(OT)
f ∗

LηI

D(OT′)

LηI′

D(OT)
f ∗

D(OT′)

commutes, i.e. there is a natural quasi-isomorphism LηI ′ f
∗C∼= f ∗LηIC for all C ∈D(OT).

Proof. — Represent C by an I-torsion-free complex C•. Then f ∗C• is I ′-torsion-
free as f ∗ is exact, by flatness of f . One then verifies immediately that ηI ′ f

∗C• ∼=
f ∗ηIC•. �

6.2. Completions. — In this section, we make a few remarks about completions,
and their commutation with Lη. The discussion works in a replete topos [11, Definition
3.1.1], but the only relevant case for us is the case of the punctual topos, so the reader is
invited to forget about all topoi. Throughout this section, we assume that T is replete.

Assume that J ⊂OT is a locally finitely generated ideal, as in [11, §3.4]. Recall
that by [11, Lemma 3.4.12], a complex K ∈D(OT) is derived J -complete if K

�→ ̂K, where
the completion ̂K is given locally by

̂K|U =R lim←−
n

(

K|U ⊗L
Z[ f1,...,fr ] Z[ f1, . . . , fr]/

(

f n
1 , . . . , f n

r

))

,

if J |U is generated by f1, . . . , fr .
Perhaps surprisingly, this condition on a complex can be checked on its cohomol-

ogy groups.

Lemma 6.15 ([11, Proposition 3.4.4, Lemma 3.4.14]). — A complex K ∈D(OT) is derived

J -complete if and only if each OT-module Hi(K) is derived J -complete.

The category of derived J -complete OT-modules is an abelian Serre subcategory of the category

of all OT-modules, i.e. closed under kernels, cokernels, and extensions.

Remark 6.16. — We pause to remark that this statement is already interesting (and
not very well-known) in the simplest case of the punctual topos, OT = Z and J = (p). In
this case, it says that a complex K ∈D(Z) is derived p-complete, i.e.

K�R lim←−
n

(

K⊗L
Z Z/pnZ

)

,

if and only if each Hi(K) satisfies

Hi(K)�R lim←−
n

(

Hi(K)⊗L
Z Z/pnZ

)

.
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Note that any complex K whose terms are p-torsion-free and p-adically complete is de-
rived p-complete. However, its cohomology groups may not be separated, as for example
in the case of

K=
[

̂

⊕

n≥1

Zp

(1,p,p2,...)−→ ̂

⊕

n≥1

Zp

]

.

Here, the differential is injective, but H1(K) is not p-adically separated: The element
(1, p, p2, . . .) projects to a nonzero element of H1(K), which is divisible by any power
of p. Surprisingly, the Zp-module M=H1(K) still has some intrinsic property, namely it
is derived p-complete.

Recall that an OT-module M is classically J -complete if the natural map

M→ lim←−
k

M/J k

is an isomorphism.

Lemma 6.17 ([11, Proposition 3.4.2]). — Let M be an OT-module. Then M is classically

J -complete if and only if it is derived J -complete and J -adically separated, i.e.
⋂

J kM= 0.

We will often use the following lemma, identifying the cohomology groups of a
(derived) completed direct sum.

Lemma 6.18. — Let Ci ∈D(OT), i ∈ I, be derived J -complete complexes, and assume that

J is locally generated by one element.

Assume that for each i ∈ I, H0(Ci) is classically J -complete, and H0(Ci)[J∞] =
H0(Ci)[J n] for some n ≥ 0 independent of i. Let C be the derived J -completion of

⊕

i∈I Ci . Then

H0(C) is the classical J -adic completion of
⊕

i∈I H0(Ci),

H0(C)= lim←−
k

⊕

i∈I

H0(Ci)/J k.

Proof. — First, we observe that if Mi , i ∈ I, are derived J -complete modules, then
the derived J -completion of

⊕

i∈I Mi is again concentrated in degree 0. This may be
done locally, so let f be a local generator of J . Then the only possible obstruction comes
from the term lim←−k

⊕

i∈I Mi[ f k] (where the transition maps are multiplication by f ), which
however embeds into

lim←−
k

∏

i∈I

Mi

[

f k
]=
∏

i∈I

lim←−
k

Mi

[

f k
]= 0,

as each Mi is derived f -complete.
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In particular, the spectral sequence computing the cohomology of C in terms of
the derived completions of the direct sums of the cohomology groups of the Ci collapses,
saying that H0(C) is the derived completion of

⊕

i∈I H0(Ci).
Using the assumption H0(Ci)[ f ∞] = H0(Ci)[ f n], one sees that

lim←−
1
k

⊕

i∈I H0(Ci)[ f k] = 0. Thus, the derived inverse limit of {⊕i∈I H0(Ci)[ f k]}k vanishes,
so that in fact H0(C) is the classical completion of

⊕

i∈I H0(Ci). �

Now we turn to relations between Lη and completions.

Lemma 6.19. — Let I ⊂ OT be an invertible ideal sheaf, and let C ∈ D(OT) be derived

J -complete. Then LηIC is derived J -complete.

Proof. — We have to see that

Hi(LηIC)=Hi(C)/Hi(C)[I]
is derived J -complete. But Hi(C) is derived J -complete by assumption, and hence so is
Hi(C)[I] as the kernel of a map of derived J -complete modules, and thus also Hi(LηIC)

as a cokernel. �

Note that the lemma does not say that LηI commutes with J -adic completions.
This is, in fact, not true in general. However, it is true in the important case J = I .

Lemma 6.20. — Assume that I ⊂ OT is an invertible ideal sheaf which is locally free of

rank 1. Let C ∈D(OT) with derived I-adic completion ̂C. Then the natural maps

̂LηIC→ LηÎC→R lim←−
n

LηI
(

C⊗L
OT

OT/In
)

are quasi-isomorphisms. Here, the first map exists because LηÎC is I-adically complete.

Proof. — We may work locally, and assume I is generated by a non-zero-divisor
f ∈ OT. Moreover, all three complexes are derived f -complete. Thus, to prove that
the maps are quasi-isomorphisms, it suffices to check that they are quasi-isomorphisms
after reduction modulo f . Now Proposition 6.12 shows that the first map is a quasi-
isomorphism, as Hi(C/f )=Hi(̂C/f ), and the Bockstein stays the same.

Applying similar reasoning for the second map, it is enough to prove that

Hi(C/f )→ {Hi
((

C⊗L
OT

OT/f n
)

/f
)}

n

is a pro-isomorphism. But in fact for any complex D of OT/f -modules (like D = C/f ),
the map

D→ {D⊗L
OT

OT/f n
}

n

is a pro-quasi-isomorphism. �
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7. Koszul complexes

In this section, we collect various useful facts about Koszul complexes.

Definition 7.1. — Let M be an abelian group with commuting endomorphisms fi :M→M,

i = 1, . . . , d. The Koszul complex

KM( f1, . . . , fd)

is defined as

M
( f1,...,fd )−→

⊕

1≤i≤d

M→
⊕

1≤i1<i2≤d

M→ ·· ·→
⊕

1≤i1<···<ik≤d

M→ ·· · ,

where the differential from M in spot i1 < · · · < ik to M in spot j1 < · · · < jk+1 is nonzero only if

{i1, . . . , ik} ⊂ {j1, . . . , jk+1}, in which case it is given by (−1)m−1fjm , where m ∈ {1, . . . , k + 1} is

the unique integer such that jm /∈ {i1, . . . , ik}.
In other words,

KM( f1, . . . , fd)=M⊗Z[ f1,...,fd ]
d
⊗

i=1

(

Z[ f1, . . . , fd] fi−→ Z[ f1, . . . , fd]
)

,

where the tensor product is taken over Z[ f1, . . . , fd], and the complex sits in nonnegative
cohomological degrees. Note that this presentation shows that KM( f1, . . . , fd) is canoni-
cally independent of the order of the fi , as the tensor product on cochain complexes is
symmetric monoidal. Also, KM( f1, . . . , fd) computes M⊗L

Z[ f1,...,fd ] Z up to a shift by |I|.
We give one example of this construction that will be quite useful in the sequel:

Example 7.2. — Let A be a commutative ring, and let R= A[x1, . . . , xd]. For i =
1, . . . , d , let fi :R→R be the A-linear endomorphism given by ∂

∂xi
. Then KR( f1, . . . , fd)

is simply the de Rham complex �•
R/A.

Lemma 7.3. — Let �disc =∏d

i=1 Z be the free abelian group on generators γ1, . . . , γd , and

� =∏d

i=1 Zp its p-adic completion.

(i) Let M be a �disc-module. The group cohomology R�(�disc,M) is computed by KM(γ1−
1, . . . , γd − 1).

(ii) Let N be a continuous �-module that can be written as an inverse limit N= lim←−k≥1
Nk of

continuous discrete �-modules Nk killed by pk. Then the natural map

R�cont(�,N)→R�(�disc,N)

is a quasi-isomorphism, and thus R�cont(�,N) is computed by KN(γ1−1, . . . , γd−1).
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Proof. — The first part is standard: One has a free resolution

⊗

i

(

Z[�disc] γi−1−→ Z[�disc]
)→ Z

of Z as Z[�disc]-module, and taking homomorphisms into M gives a resolution of M by
acyclic �disc-modules, leading to the Koszul complex.

For the second, we may assume that N→ Nk is surjective for any k (by replacing
Nk by the image of N→Nk ). Then

R�cont(�,N)→R lim←−
k

R�cont(�,Nk)

is a quasi-isomorphism, as follows from the description by continuous cocycles. The sim-
ilar result holds true for the cohomology of �disc by part (i). Thus, we can assume that N
itself is a discrete �-module killed by a power of p. In that case, we have a similar free
resolution

⊗

i

(

Zp ���
γi−1−→ Zp ���

)→ Zp,

which leads to the same result. �

We will often implicitly use the following remark to see that our constructions are
independent of the choice of roots of unity.

Remark 7.4. — In part (ii), if one changes the basis γi ∈ � into c(i)γi for c(i) ∈ Z×p ,
the resulting Koszul complexes are canonically isomorphic. Indeed, let Ji ⊂ Zp ��� be the
ideal generated by γi − 1; this is the kernel of Zp ��� → Zp ��/γ

Zp

i �, and so depends only
on γi up to scalar. Then one has the free resolution

⊗

i

(

Ji → Zp

[[�]])→ Zp;

mapping this into M gives a resolution by acyclic �-modules, leading to a complex com-
puting R�cont(�,N). Once one fixes the generators γi − 1 ∈ Ji , this becomes identified
with the Koszul complex above.

Next, we analyze the multiplicative structure.

Lemma 7.5. — Let R be a (not necessarily commutative) A-algebra, for some commutative

ring A, and let �disc =∏d

i=1 Z be a free abelian group acting on R by A-algebra automorphisms. Then

KR(γ1 − 1, . . . , γd − 1)
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has a natural structure as a differential graded algebra over A such that the quasi-isomorphism

KR(γ1 − 1, . . . , γd − 1)�R�(�disc,R)

is a quasi-isomorphism of algebra objects in the derived category D(A). In particular, on cohomology

groups, it induces the cup product.

Remark 7.6. — Even if R is commutative, the resulting differential graded algebra
will not be commutative. However, if there is some element f ∈ A such that the action of
� on R/f is trivial, then KR(γ1 − 1, . . . , γd − 1)/f is commutative.

Proof. — We give a presentation of a differential graded algebra K′
R over A, and

then check that as a complex of A-modules, it is given by KR(γ1 − 1, . . . , γd − 1), and is
quasi-isomorphic to R�(�disc,R) compatibly with the multiplication.

Consider the differential graded algebra K′
R over A which is generated by R in

degree 0 and an additional variable xi of cohomological degree 1 for each i = 1, . . . , d ,
subject to the following relations.

(i) Anticommutation: xixj =−xjxi , x2
i = 0 for all i, j ∈ {1, . . . , d}.

(ii) Commutation with R: For all r ∈R and i = 1, . . . , d ,

xir = γi(r)xi.

(iii) Differential: dxi = 0 for i = 1, . . . , d , and

dr =
d
∑

i=1

(

γi(r)− r
)

xi.

We observe that the Leibniz rule d(rr′)= r · dr′ + dr · r′ for r, r′ ∈R is automatically
satisfied:

r · dr′ + dr · r′ =
d
∑

i=1

(

r
(

γi

(

r′
)− r′

)

xi +
(

γi(r)− r
)

xir
′)

=
d
∑

i=1

((

rγi

(

r′
)− rr′

)

xi +
(

γi(r)γi

(

r′
)− rγi

(

r′
))

xi

)

=
d
∑

i=1

(

γi

(

rr′
)− rr′

)

xi

= d
(

rr′
)

.

This, in fact, essentially dictates the rule xir = γi(r)xi (which introduces noncommutativity
even when R is commutative).

It follows that in degree k, K′
R is a free R-module on the elements xi1∧· · ·∧xik , i1 <

· · ·< ik . The corresponding identification of the terms of K′
R with KR(γ1−1, . . . , γd−1)
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is compatible with the differential. We leave it to the reader to check that it is compatible
with the multiplication on group cohomology. �

Let us discuss an example.

Example 7.7 (The q-de Rham complex). — Let A be a commutative ring with a unit
q ∈ A×, and consider the A-algebra R = A[T±1]. This admits an action of �disc = γ Z,
where γ acts by T �→ qT. In that case R�(�disc,R) is computed by the complex

C• :R γ−1−→R= (A[T±1
]→ A

[

T±1
]

x
) :Tn �→ (qn − 1

)

Tnx.

Here, we have used a formal symbol x for the generator in degree 1. In this case, the
multiplication is given as follows. In degree 0, the multiplication is the usual commutative
multiplication of A[T±1]. It remains to describe the products f (T) · (g(T)x) and (g(T)x) ·
f (T), where f (T), g(T) ∈ A[T±1]. These are given by

f (T) · (g(T)x
)= f (T)g(T)x,

(

g(T)x
) · f (T)= g(T)f (qT)x.

In other words, the only interesting thing happens when one commutes x past the func-
tion f (T), which amounts to replacing f (T) by f (qT).

We note that we can now also apply the operator ηq−1 to C•. This leads to the
complex

ηq−1C• : A[T±1
]→ A

[

T±1
]

d logq T :Tn �→ [n]qTnd logq T.

Here, we use the formal symbol d logq T (= (q− 1)x) for the generator in degree 1, and
[n]q = qn−1

q−1 ∈ A is the q-deformation of the integer n. We call this the q-de Rham complex
q -�•

A[T±1]/A. We stress that this complex depends critically on the choice of coordinates:
there is no well-defined complex q -�•

R/A for any smooth A-algebra R. In closed form,
the differential in the q-de Rham complex is given by

f (T) �→ f (qT)− f (T)

q− 1
d logq T= f (qT)− f (T)

qT−T
dqT,

where we have formally set dqT = Td logq T. Note that if one sets q = 1, this finite q-
difference quotient becomes the derivative. Again, this is a differential graded algebra,
and the interesting multiplication rule is

d logq T · f (T)= f (qT) · d logq T.

One can also define the q-de Rham complex in several variables

q -�•
A[T±1

1 ,...,T±1
d ]/A

=
d
⊗

i=1

q -�•
A[T±1

i ]/A
,
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where the tensor product is taken over A. This can be written as

ηq−1KA[T±1
1 ,...,T±1

d ](γ1 − 1, . . . , γd − 1),

where γi acts by sending Ti to qTi, and Tj to Tj for j �= i. In particular, this computes

Lηq−1R�
(

�disc,A
[

T±1
1 , . . . ,T±1

d

])

.

The q-de Rham complex is still a differential graded algebra. In degree 1, it has elements
d logq Ti for i = 1, . . . , d , and we have the multiplication rule

d logq Ti · f (T1, . . . ,Td)= f (T1, . . . , qTi, . . . ,Td) · d logq Ti.

We briefly discuss (using some ∞-categorical language) why the q-de Rham com-
plex does not admit the structure of a commutative differential graded algebra.

Remark 7.8. — Take A = F2[q±1] in Example 7.7, and R = A[T±1]. Set E2 :=
R�(�disc,R) and E1 = Lηq−1E1, viewed as objects in the derived ∞-category of
A-modules. In this remark, we freely use the following: (a) E2 admits an E∞-A-algebra
structure as R�(�disc,−) is lax symmetric monoidal, (b) E1 admits an E∞-A-algebra
structure as Lηq−1 is lax symmetric monoidal, and (c) the map E1 → E2 lifts to a map of
E∞-A-algebras. Granting these, we claim that the E∞-F2-algebra E1 cannot be modeled
by a commutative differential graded algebra over F2.

Recall that the cohomology groups H∗(E) of an E∞-F2-algebra E carry a functorial
Steenrod operation Sq0 :H∗(E)→H∗(E) which acts as the identity on H∗(X,F2) for any
space X, and vanishes on Hi(D) for i > 0 when D is a commutative differential graded
algebra over F2. Now observe that Sq0(x) = x for the element x ∈H1(E2) coming from
x ∈C1 (with notation as in the previous example); this can be seen by using the canonical
map C∗(S1,F2) � R�(�disc,F2) → R�(�disc,R) =: E2, which carries the generator in
H1(S1,F2) to x ∈ H1(E2). Since d logq T ∈ H1(E1) maps to (q − 1)x ∈ H1(E2) and Sq0

is ϕ-linear on E∞-A-algebras, it follows that Sq0(d logq T) ∈H1(E1) maps to (q− 1)2x ∈
H1(E2). As the latter is non-zero, so is Sq0(d logq T). In particular, Sq0 acts non-trivially
on H1(E1), so E1 cannot be represented by a commutative differential graded algebra
over F2.

Moreover, we need a lemma about the behavior of Lη on Koszul complexes.

Lemma 7.9. — Let f be a non-zero-divisor of a ring R, let M• be a complex of f -torsion-

free R-modules, and let g1, . . . , gm ∈ R be non-zero-divisors, each of which is either divisible by f or

divides f .

If there is some i such that gi divides f , then

ηf

(

M• ⊗R KR(g1, . . . , gm)
)

is acyclic.
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On the other hand, if f divides gi for all i, then there is an isomorphism of complexes

ηf KR(g1, . . . , gm)∼=KR(g1/f , . . . , gm/f ),

and more generally an isomorphism of complexes

ηf

(

M• ⊗R KR(g1, . . . , gm)
)∼= ηf M• ⊗R KR(g1/f , . . . , gm/f ).

Proof. — Arguing inductively, we may assume that i = 1, and let g := g1. Assume
first that g divides f . Note that on any complex of the form M• ⊗R KR(g), multiplication
by g is homotopic to 0. As g divides f by assumption, it follows that multiplication by f is
homotopic to 0, and in particular all Hi(M• ⊗R KR(g)) are killed by f . This implies that
ηf (M• ⊗R KR(g)) is acyclic by Lemma 6.4.

Now assume that f divides g. We embed K(g/f ) = (R
g/f−→ R) into K(g) =

(R
g−→ R) by using multiplication by f in degree 1. The complex M• ⊗R K(g) is given

explicitly (in degree n and n+ 1) by

· · · −→Mn ⊕Mn−1 −→Mn+1 ⊕Mn −→ · · ·
(x, y) �→ (dx, dy+ (−1)ngx

)

One can realize ηf (M• ⊗R K(g)) as the subcomplex of (M• ⊗R K(g))[ f −1] which
in degree n consists of those elements (x, y) ∈ f nMn ⊕ f nMn−1 with (dx, dy+ (−1)ngy) ∈
f n+1Mn+1 ⊕ f n+1Mn. Using the similar model for ηf M•, this implies that x ∈ (ηf M)n,
and also y ∈ f (ηf M)n−1, as dy + (−1)ngx ∈ f n+1Mn, where gx ∈ gf nMn ⊂ f n+1Mn since
f divides g. Conversely, if x ∈ (ηf M)n and y ∈ f (ηf M)n−1, then (dx, dy + (−1)ngy) ∈
f n+1Mn+1 ⊕ f n+1Mn, so that we have identified ηf (M• ⊗R K(g)) with the complex

· · · −→ (ηf M)n ⊕ f (ηf M)n−1 −→ (ηf M)n+1 ⊕ f (ηf M)n −→ · · ·
(x, y) �→ (dx, dy+ (−1)ngx

)

But this complex is precisely ηf M• ⊗R K(g/f ), under the fixed embedding
K(g/f )→K(g). �

In some situations, one can compute the cohomology of Koszul complexes.

Lemma 7.10. — Let g be an element of a ring R.

(i) Let M• be a complex of R-modules. If multiplication by g on M• is homotopic to 0, then

the long exact cohomology sequence

· · ·Hn−1
(

M•) g−→Hn−1
(

M•)→Hn
(

M⊗R KR(g)
)→Hn

(

M•)

g−→Hn
(

M•)→ ·· ·
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for M• ⊗R KR(g) breaks into short exact sequences,

0→Hn−1
(

M•)→Hn
(

M• ⊗R KR(g)
)→Hn

(

M•)→ 0,

which are moreover split.

(ii) Let M be an R-module. If g1, . . . , gm ∈R are all divisible by g, and gi is g times a unit for

some i, then there is an isomorphism of R-modules

Hn
(

KM(g1, . . . , gm)
)∼= AnnM(g)(

m−1
n )⊕M/gM(m−1

n−1).

Proof. — (i): Given a cocycle x ∈Mn, the assumption implies that gx= dx′ for some
x′ ∈Mn−1 depending on x via a homomorphism (given by the homotopy); the association
x �→ (x, x′) ∈Mn ⊕Mn−1 induces a well-defined homomorphism Hn(M•)→Hn(M• ⊗R

KR(g)) which splits the canonical map.
(ii): Without loss of generality, we may assume g1 = g. Then this follows by induc-

tion from (i) applied to KM(g1, . . . , gi−1) as gi is homotopic to 0 on KM(g1, . . . , gi−1) for
each i. �

8. The complex ˜�X

Fix a perfectoid field K of characteristic 0 that admits a system of primitive p-power
roots ζpr , r ≥ 1, which we will fix for convenience, although our constructions are inde-
pendent of this choice. Let O =OK =K◦ be the ring of integers, which is endowed with
the p-adic topology.

Now let X/O be a smooth p-adic formal scheme, i.e. X is locally of the form Spf R,
where R is a p-adically complete flat O-algebra such that R/p is a smooth O/p-algebra;
equivalently, by a theorem of Elkik [26], R is the p-adic completion of a smooth O-
algebra. We will simply call such R formally smooth O-algebras below. Let X be the
generic fiber of X, which is a smooth adic space over K. We have the projection

ν :Xproét →XZar.

In everything we do, we may as well replace ν by the projection Xproét → Xét, but the
Zariski topology is enough.

Definition 8.1. — The complex ˜�X ∈D(XZar) is given by

˜�X = Lηζp−1

(

Rν∗̂O+
X

)

,

where ̂O+
X is defined in Definition 5.4.
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As the ideal (ζp − 1) is independent of the choice of ζp, so is ˜�X. In this paper,
we consider ˜�X merely as an object of the derived category (and not an ∞-categorical
enhancement). Then ˜�X is naturally a commutative OX-algebra object in D(XZar), as
both Rν∗ and Lηζp−1 are lax symmetric monoidal.

Our goal is to identify the cohomology groups of this complex with differential
forms on X; this identification involves a Tate twist (or, rather, a Breuil–Kisin–Fargues
twist), so we define that first, cf. Example 4.24.

Definition 8.2. — Set

O{1} :=Tp

(

�1
O/Zp

)=̂LO/Zp
[−1] = LO/Ainf[−1] =˜ξAinf/˜ξ

2Ainf;
this is a free O = Ainf/˜ξ -module of rank 1 that canonically contains the Tate twist O(1) as a free

submodule with cokernel annihilated exactly by (ζp − 1)= (p1/(p−1)).

Explicitly, if we regard the ζpr as fixed, one gets a trivialization O{1} ∼= O with
generator given by the system of

(

1
ζp − 1

d(ζpr )

ζpr

)

r

∈Tp

(

�1
O/Zp

)

.

For any O-module M and n ∈ Z, we write M{n} =M⊗O O{n}. Our main result here is:

Theorem 8.3. — There is a natural isomorphism

Hi(˜�X)∼=�
i,cont
X/O {−i}

of sheaves on XZar. Here, �
i,cont
X/O = lim←−�i

(X/pn)/(O/pn) denotes the OX-module of continuous differen-

tials.

In particular, ˜�X is a perfect complex of OX-modules.

Note that Rν∗̂O+
X is a complex that is only almost (in the technical sense) under-

stood, using Faltings’ almost purity theorem. It is thus surprising that in the theorem,
we can identify the cohomology sheaves of ˜�X = Lηζp−1Rν∗̂O+

X on the nose. This is
possible as Lηζp−1 turns certain (but not all) almost quasi-isomorphisms into actual quasi-
isomorphisms, cf. Lemma 8.11 below.

The theorem can be regarded as a version of the Cartier isomorphism in mixed
characteristic, except that ˜�X is not the de Rham complex; however, we will later see that
its reduction to the residue field k of O agrees with the de Rham complex of R⊗O k.

Remark 8.4. — In Proposition 8.15, we also prove that the complex τ≤1
˜�X is

canonically identified with the p-adic completion of LX/Zp
[−1]{−1}. Now the p-adic

completion of LX/Zp
gives an extension of �

1,cont
X/O by O{1}[1]; the corresponding Ext2-

class measures the obstruction to lifting X to Ainf/˜ξ
2. Thus, τ≤1

˜�X also measures the



306 BHARGAV BHATT, MATTHEW MORROW, PETER SCHOLZE

same obstruction; this gives an integral lift of the analogous Deligne-Illusie identification
[24, Theorem 3.5] over the special fiber. In particular, if X does not lift to Ainf/˜ξ

2, then
˜�X does not split as a direct sum of its cohomology sheaves.

The rest of the section is dedicated to proving Theorem 8.3. It will be useful to
prove a stronger local result, which we will now formulate. The following definition is
due to Faltings.

Definition 8.5. — Let R be a formally smooth O-algebra. Then R is called small if there is

an étale map

Spf R→ ̂Gd
m = SpfO

〈

T±1
1 , . . . ,T±1

d

〉

.

Let X = Spf R with generic fiber X = Spa(R[ 1
p
],R). We will denote such “fram-

ing” maps

� :X→ ̂Gd
m = SpfO

〈

T±1
1 , . . . ,T±1

d

〉

to the torus by the symbol �. Given a framing, we let

R∞ =R̂⊗O〈T±1
1 ,...,T±1

d 〉O
〈

T±1/p∞
1 , . . . ,T±1/p∞

d

〉

,

which is a perfectoid ring, integrally closed in the perfectoid K-algebra R∞[ 1
p
]. In partic-

ular, the corresponding tower

“ lim←− ”
r

Spa
(

R⊗O〈T±1
1 ,...,T±1

d 〉 K
〈

T±1/pr

1 , . . . ,T±1/pr

d

〉

,

R⊗O〈T±1
1 ,...,T±1

d 〉O
〈

T±1/pr

1 , . . . ,T±1/pr

d

〉)

in Xproét is affinoid perfectoid, with limit Spa(R∞[ 1
p
],R∞), and so Lemma 5.6 applies.

There is an action of � = Zp(1)d on R∞, where after a choice of roots of unity, a generator
γi , i = 1, . . . , d , acts by T1/pm

i �→ ζpmT1/pm

i , T1/pm

j �→T1/pm

j for j �= i.
On the other hand, assume for the moment that Spf R is connected. Then we can

consider the completion ̂R of the normalization R of R in the maximal (pro-)finite étale
extension of R[ 1

p
], on which � = Gal(R[ 1

p
]/R[ 1

p
]) acts. Again, ̂R is perfectoid. Then

R∞ ⊂̂R and � surjects onto �. By Faltings’ almost purity theorem, the map

R�cont(�,R∞)→R�cont(�,̂R)

is an almost quasi-isomorphism, i.e. all cohomology groups of the cone are killed by the
maximal ideal m of O.
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Using [59, Proposition 3.5, Proposition 3.7 (iii), Corollary 6.6], one can identify
the cohomology groups on the pro-finite étale site with continuous group cohomology
groups, to see that

R�cont(�,̂R)=R�
(

Xprofét, ̂O+
X

)

.

Note that the right side is well-defined even if SpfR is not connected.
In this situation, we can consider the following variants of ˜�X.

Definition 8.6. — Let R be a small formally smooth O-algebra as above, and let

� : Spf R→ ̂Gd
m = SpfO

〈

T±1
1 , . . . ,T±1

d

〉

,

be a framing. Define the following complexes:

˜��
R = Lηζp−1R�cont(�,R∞)

˜�
profét
R = Lηζp−1R�

(

Xprofét, ̂O+
X

)

˜�
proét
R = Lηζp−1R�

(

Xproét, ̂O+
X

)

.

Note that there are obvious maps

˜��
R → ˜�profét

R → ˜�proét
R .

By the almost purity theorem, more precisely by [59, Lemma 4.10 (v)], and the observa-
tion that Lηζp−1 takes almost quasi-isomorphisms to almost quasi-isomorphisms, they are
almost quasi-isomorphisms. Finally, there is a map

˜�
proét
R →R�(X,˜�X).

Theorem 8.7. — Let R be a small formally smooth O-algebra. The maps

˜��
R → ˜�profét

R → ˜�proét
R →R�(X,˜�X)

are quasi-isomorphisms; write ˜�R for their common value. Then there are natural isomorphisms

Hi(˜�R)∼=�
i,cont
R/O {−i},

where �
i,cont
R/O denotes the locally free R-module �

i,cont
R/O = lim←−�i

(R/pn)/(O/pn) of continuous differentials.

Proof that Theorem 8.7 implies Theorem 8.3. — As any sufficiently small Zariski open
of X is of the form Spf R for a small formally smooth O-algebra R, it suffices to
check that the isomorphisms Hi(˜�R) ∼= �

i,cont
R/O {−i} constructed in the proof of The-

orem 8.7 are compatible with localization. As these isomorphisms are multiplicative
(Corollary 8.13(ii)), we reduce to the case i = 1. In this case, the isomorphism �

1,cont
R/O →

H1(˜�R) is described in co-ordinate free terms in Proposition 8.15 and the following dis-
cussion. �
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Remark 8.8. — Without the assumption that R is small, one can still define ˜�profét
R

and ˜�proét
R . However, we do not know whether the maps

˜�
profét
R → ˜�proét

R →R�(X,˜�X)

are quasi-isomorphisms without the assumption that R is small. (One can check that they
are almost quasi-isomorphisms.)

8.1. The local computation. — Let R be a small formally smooth O-algebra with a
fixed framing

� :X= Spf R→ ̂Gd
m.

Let

R∞ =R̂⊗O〈T±1
1 ,...,T±1

d 〉O
〈

T±1/p∞
1 , . . . ,T±1/p∞

d

〉

which has a � = Zp(1)d -action as above. We start by recalling the computation of the
cohomology groups of the complex

R�cont(�,R∞),

in a presentation which uses the choice of the framing � and a choice of roots of unity
ζpr . Note that �

1,cont
R/O is a free R-module with basis d log(T1), . . . , d log(Td), and thus

�
i,cont
R/O

∼=
i
∧

Rd ∼=R(d
i).

Proposition 8.9. — For all i ≥ 0, the map

i
∧

Rd =Hi
cont(�,R)→Hi

cont(�,R∞)

is split injective, with cokernel killed by ζp−1. Moreover, Hi
cont(�,R∞) and Hi

cont(�,R∞)/(ζp−1)

have no almost zero elements.

Recall that an element m in an O-module M is called almost zero if it is killed by
m.

Proof. — Note that R→ R∞ admits a �-equivariant section, as R∞ is the p-adic
completion of

⊕

a1,...,ad∈Z[ 1
p
]∩[0,1)

R ·Ta1
1 . . .Tad

d ;
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this shows that the induced map on cohomology is split injective. By [59, Lemma 5.5],
the cokernel is killed by ζp − 1. In fact, the cokernel is given by

R⊗O
⊕

(0,...,0)�=(a1,...,ad )∈(Z[ 1
p
]∩[0,1))d

Hi
cont

(

�,O ·Ta1
1 . . .Tad

d

)

.

To check whether Hi
cont(�,R∞) and Hi

cont(�,R∞)/(ζp − 1) have almost zero elements,
it remains to check whether the displayed module has almost zero elements (as

∧i Rd

and
∧i

(R/(ζp − 1))d have no almost zero elements, using Lemma 8.10 below). As R is
topologically free over O, cf. Lemma 8.10 below, it is enough to see that the big direct
sum has no almost zero elements, for which it is enough to see that each term in the direct
sum has no almost zero elements. But each direct summand is a cohomology group of
a perfect complex of O-modules, which (as O is coherent) implies that all cohomology
groups are finitely presented O-modules. Now, it remains to recall that finitely presented
O-modules do not have almost zero elements, cf. Corollary 3.29. �

The following lemma was used in the proof.

Lemma 8.10. — Any formally smooth O-algebra R is the p-adic completion of a free O-

module.

Proof. — Let k be the residue field of O, and fix a section k→O/p. Then, as R/p is
a smooth O/p-algebra and in particular finitely presented, we see that for r large enough,
R/(ζpr − 1) is isomorphic to Rk ⊗k O/(ζpr − 1), where Rk = R⊗O k is the special fiber.
Thus, as Rk is a free k-module, R/(ζpr − 1) is a free O/(ζpr − 1)-module. Picking any lift
of the basis of R/(ζpr − 1) to R gives a topological basis of R. �

To check that the maps

˜��
R → ˜�profét

R → ˜�proét
R

are quasi-isomorphisms, we use the following lemma.

Lemma 8.11. — Let A be a ring with an ideal I⊂ A. Let f ∈ I be a non-zero-divisor.

(i) Let M be an A-module such that both M and M/f have no non-zero elements killed by I.
Let α :M→ N be a map of A-modules such that the kernel and cokernel are killed by I.
Then the induced map β :M/M[ f ]→N/N[ f ] is an isomorphism.

(ii) Let g : C → D be a map in D(A) such that for all i ∈ Z, the kernel and cokernel of

the map Hi(C)→ Hi(D) are killed by I. Assume moreover that for all i ∈ Z, Hi(C)

and Hi(C)/f have no non-zero elements killed by I. Then Lηf g : Lηf C→ Lηf D is a

quasi-isomorphism.
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Remark 8.12. — The lemma is wrong without some assumptions on C. For ex-
ample, in the case A=O, I=m, f = ζp − 1, the almost isomorphism m→O does not
become a quasi-isomorphism after applying Lηζp−1; here m/(ζp−1)m has almost zero el-
ements. Similarly, O/(ζp − 1)m→O/(ζp − 1)O does not become a quasi-isomorphism;
here O/(ζp − 1)m has almost zero elements.

It is a bit surprising that, in (ii), it is enough to put assumptions on C, and none
on D.

Proof. — Part (ii) follows from part (i) and Lemma 6.4. For part (i), as the kernel of α
is killed by I but M has no non-zero elements killed by I, α is injective. As M/M[ f ] ∼= f M
via multiplication by f , this implies that β : f M→ f N is injective. On the other hand, we
have the inclusions If N⊂ f M⊂ f N⊂M as submodules of N. Thus, f N/f M ↪→M/f M
consists of elements killed by I, and thus vanishes by assumption. Thus, f N= f M, and β

is an isomorphism. �

The following corollary proves the first half of Theorem 8.7; the natural identifi-
cation of the cohomology groups with differentials will be proved as a consequence of
Proposition 8.15 below.

Corollary 8.13. — Let R be a small formally smooth O-algebra with framing �.

(i) The maps

˜��
R → ˜�profét

R → ˜�proét
R

are quasi-isomorphisms.

From now on, we will write ˜�R for any of ˜��
R , ˜�profét

R and ˜�proét
R , using

superscripts only when the distinction becomes important.
(ii) For all i ≥ 0, there is an isomorphism (depending on our choice of framing)

Rd �→H1(˜�R),

whose exterior powers induce isomorphisms

i
∧

Rd �→Hi(˜�R).

(iii) For any formally étale map R → R′ of small formally smooth O-algebras, the natural

map

˜�R ⊗L
R R′ → ˜�R′

is a quasi-isomorphism.
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(iv) The map

˜�R →R�(X,˜�X)

is a quasi-isomorphism.

Proof. — For part (i), let C=R�cont(�,R∞), and let D be either of

R�
(

Xprofét, ̂O+
X

)

, R�
(

Xproét, ̂O+
X

)

.

Then we have a map g : C→ D which is an almost quasi-isomorphism, and C satisfies
the hypothesis of Lemma 8.11 (with A = O, I = m, f = ζp − 1) by Proposition 8.9. It
follows that the map

Lηζp−1g : Lηζp−1C→ Lηζp−1D

is a quasi-isomorphism, as desired.
Part (ii) follows from Proposition 8.9 and the formula

Hi(Lηζp−1C)=Hi(C)/Hi(C)[ζp − 1],
which is compatible with cup products. Using this identification of the cohomology
groups, part (iii) follows.

For part (iv), note that there is an induced map

˜�R ⊗R OX→ ˜�X,

and it is enough to show that this is a quasi-isomorphism in D(XZar), as the left side
defines a coherent complex whose R� is ˜�R. Note that for any affine open U= Spf R′ ⊂
Spf R with generic fiber U, by part (iii) the left side evaluated on U is given by

Lηζp−1R�
(

Uproét, ̂O+
X

)

.

To check whether the map

˜�R ⊗R OX→ ˜�X,

is a quasi-isomorphism, we can check on stalks at points, so let x ∈ X be any point. The
stalk of the left side is

lim−→
U�x

Lηζp−1R�
(

Uproét, ̂O+
X

)

,

and (using that Lη commutes with taking stalks by Lemma 6.14), the stalk of the right
side is

Lηζp−1 lim−→
U�x

R�
(

Uproét, ̂O+
X

)

.

But Lη commutes with filtered colimits, so the result follows. �
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Note that by functoriality of the pro-étale (or pro-finite étale) site, the association
R �→ ˜�R is functorial in R. We end this section by observing a Künneth formula for ˜�.

Proposition 8.14. — Let R1 and R2 be two small formally smooth O-algebras, and let R=
R1̂⊗OR2. Then the natural map

˜�R1
̂⊗O˜�R2 → ˜�R

is a quasi-isomorphism.

Proof. — Choose framings �1 and �2 for R1 and R2, and endow R with the prod-
uct framing �=�1 ×�2. We may, using part (iii) of Corollary 8.13, reduce to the case
R1 =O〈T±1

1 , . . . ,T±1
d1
〉, R2 =O〈T±1

d1+1, . . . ,T±1
d1+d2

〉. In that case, one has

R∞ =O
〈

T±1/p∞
1 , . . . ,T±1/p∞

d1+d2

〉=R1,∞̂⊗OR2,∞.

As the continuous group cohomology of � = Zp(1)d1+d2 = �1 × �2 is given by a Koszul
complex, one deduces that

R�cont(�,R∞)=R�cont(�1,R1,∞)̂⊗OR�cont(�2,R2,∞).

It remains to see that Lηζp−1 behaves in a symmetric monoidal way in this case, i.e. the
induced natural map

˜�
�1
R1
̂⊗O˜�

�2
R2
→ ˜��

R

is a quasi-isomorphism. This follows from Proposition 6.8 and Lemma 6.20 (noting that
p-adic and ζp − 1-adic completion agree). �

8.2. The identification of τ≤1
˜�R. — As before, let R be a small formally smooth

O-algebra, with X= Spf R and X= Spa(R[ 1
p
],R). In this subsection (and the next), we

want to get a canonical identification of τ≤1
˜�R with the p-adic completion of

LR/Zp
[−1]{−1}.

First, we construct the map. Consider the transitivity triangle

̂LO/Zp
[−1] ⊗O ̂O+

X →̂L̂O+
X/Zp
[−1]→̂L

̂O+
X/O[−1]

of p-completed cotangent complexes on Xproét. Observe that ̂L
̂O+

X/O � 0 as in fact
̂LS/O � 0 for any perfectoid O-algebra S, see Lemma 3.14. We obtain a map

̂LR/Zp
[−1]→R�

(

Xproét,̂L̂O+
X/Zp
[−1])=R�

(

Xproét,̂LO/Zp
[−1] ⊗O ̂O+

X

)

∼=R�
(

Xproét, ̂O+
X

){1}.
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Proposition 8.15. — The map

̂LR/Zp
[−1]{−1}→R�

(

Xproét, ̂O+
X

)

just constructed factors uniquely over a map

̂LR/Zp
[−1]{−1}→ Lηζp−1R�

(

Xproét, ̂O+
X

)= ˜�R,

and this induces an equivalence

̂LR/Zp
[−1]{−1} �→ τ≤1

˜�R.

Note that from the transitivity triangle

̂LO/Zp
[−1] ⊗O R→̂LR/Zp

[−1]→̂LR/O[−1],
one sees that the cohomology groups of

̂LR/Zp
[−1]{−1}

are given by R in degree 0 and �
1,cont
R/O {−1} in degree 1. Thus, the proposition gives a

canonical identification

�
1,cont
R/O {−1} ∼=H1(˜�R),

and combining this with Corollary 8.13 finishes the proof of the canonical identification

�
i,cont
R/O {−i} ∼=Hi(˜�R),

thereby also finishing the proof of Theorem 8.7, and thus of Theorem 8.3.

Proof. — First, we check that the factorization is unique. This is the content of the
following lemma.

Lemma 8.16. — Let A be a ring with a non-zero-divisor f , and let α : C→D be a map in

D(A) such that Hi(C) = 0 for i > 1, Hi(D) = 0 for i < 0, and H0(D) is f -torsion-free. Then

there is at most one factorization of α as the composite of a map β : C→ Lηf D and the natural map

Lηf D→D from Lemma 6.10, and it exists if and only if the map

H1
(

C⊗L
A A/f

)→H1
(

D⊗L
A A/f

)

is zero, which happens if and only if the map H1(C)→H1(D) factors through f H1(D).



314 BHARGAV BHATT, MATTHEW MORROW, PETER SCHOLZE

Proof. — First, we make the elementary verification that H1(C ⊗L
A A/f ) →

H1(D ⊗L
A A/f ) is zero if and only if H1(C) → H1(D) factors through f H1(D). Note

that H1(C) surjects onto H1(C⊗L
A A/f ), and H1(D)/f injects into H1(D⊗L

A A/f ). Thus,
the claim follows from observing that in the diagram

H1(C) H1(D)/f

H1(C⊗L
A A/f ) H1(D⊗L

A A/f ),

the lower arrow is zero if and only if the upper arrow is zero.
Note that Hi(D)= 0 for i < 0 and H0(D) is f -torsion free. By Lemma 6.10, there

is a natural map Lηf D → D. We may assume that Hi(D) = 0 for i > 1, as α factors
through τ≤1D, and Lηf commutes with truncations (so that any factorization β : C→
Lηf D factors uniquely over τ≤1Lηf D= Lηf (τ

≤1D)). For such D with Hi(D)= 0 for i > 1
or i < 0 and H0(D) being f -torsion-free, there is a distinguished triangle

Lηf D→D→H1(D/f )[−1],
where the second map is the tautological map D → D/f → τ≥1D/f = H1(D/f )[−1].
Applying Hom(C,−) gives an exact sequence

Hom
(

C,H1(D/f )[−2])→Hom(C,Lηf D)→Hom(C,D)

→Hom
(

C,H1(D/f )[−1]).
Now Hom(C,H1(D/f )[−2]) = 0 since C ∈ D≤1(A). This shows that there is at most
one factorization of α : C → D through a map β : C → Lηf D. Moreover, such a β

exists if and only if the composite C
α→ D → H1(D/f )[−1] vanishes. This composite

is identified with the composite C→ C/f →H1(C/f )[−1] H1(α/f )→ H1(D/f )[−1]. Thus,
such a β exists if and only if H1(α/f ) = 0; this gives everything but the last phrase of
the lemma. For the last phrase, it is enough to observe that H1(C/f ) = H1(C)/f and
H1(D/f )=H1(D)/f since C,D ∈D≤1(A). �

This applies in particular in our situation to imply that the factorization in the
proposition is unique if it exists.

Now we do a local computation, so fix a framing � : X → ̂Gd
m. Let S =

O〈T±1
1 , . . . ,T±1

d 〉, so we have a formally étale map S → R. Then by Corollary 8.13,
we have a quasi-isomorphism

˜�S ⊗S R→ ˜�R.
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Similarly, there is a quasi-isomorphism

̂LS/Zp
⊗S R→̂LR/Zp

,

by the transitivity triangle and the vanishing of̂LR/S. Thus, if we can prove the proposition
for S, giving an equivalence

̂LS/Zp
[−1]{−1} �→ τ≤1

˜�S,

then the result for R follows by base extension.
Thus, we may assume that R=O〈T±1

1 , . . . ,T±1
d 〉. Also, we may replace the map

̂LR/Zp
[−1]{−1}→R�

(

Xproét, ̂O+
X

)

by the map

̂LR/Zp
[−1]{−1}→R�cont

(

Zp(1)d,O
〈

T±1/p∞
1 , . . . ,T±1/p∞

d

〉)

constructed similarly, as the resulting ˜�R-complexes agree. By Lemma 8.16, to check that
the desired factorization exists and gives the desired quasi-isomorphism, we have to see
that

R=H0
(

̂LR/Zp
[−1]{−1})→H0

cont

(

Zp(1)d,O
〈

T±1/p∞
1 , . . . ,T±1/p∞

d

〉)

is an isomorphism and

�
1,cont
R/O {−1}→H1

cont

(

Zp(1)d,O
〈

T±1/p∞
1 , . . . ,T±1/p∞

d

〉)

is an isomorphism onto (ζp − 1)H1
cont. The first statement follows directly from the def-

initions. For the second statement, we note that both �
1,cont
R/O {−1} and (ζp − 1)H1

cont are
isomorphic to Rd with bases on either side coming from the choice of coordinates (and
the choice of roots of unity). It is enough to check that basis elements match, which by
functoriality reduces to the case d = 1. We finish the proof of Proposition 8.15 in the next
subsection. �

8.3. The key case X = ̂Gm. — Assume now that X = ̂Gm = Spf R, where R =
O〈T±1〉. Set R∞ =O〈T±1/p∞〉, and let � = Zp(1) be the natural group acting R-linearly
on R∞.

We recall the map considered above. We start with the map

̂LR/Zp
→̂LR∞/Zp

induced by p-completion of the pullback. Since R→R∞ is �-equivariant, this induces a
map

̂LR/Zp
→R�cont(�,̂LR∞/Zp

) :=R lim←−
n

R�cont

(

�,LR∞/Zp
⊗L

Z Z/pn
)

.
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We want to describe the image of d log(T) = dT
T ∈ H0(̂LR/Zp

) = �
1,cont
R/O under this map;

note that this is an R-module generator of �
1,cont
R/O .

Proposition 8.17. — Under the identification

R�cont(�,̂LR∞/Zp
)=R�cont(�,R∞)[1]{1},

the image of d log(T) ∈H0(̂LR/Zp
) in

H0
cont(�,̂LR∞/Zp

)=H1
cont(�,R∞){1}

is given by the image of

d log⊗1 ∈H1
cont

(

�,O{1})⊗O R=H1
cont

(

�,O{1} ⊗O R
)

↪→H1
cont

(

�,O{1} ⊗O R∞
)

,

where d log ∈ H1
cont(�,O{1}) = Homcont(�,Tp(�

1
O/Zp

)), � = Zp(1) = Tp(μp∞(O)), is the

map on p-adic Tate modules induced by the map d log : μp∞(O)→�1
O/Zp

.

Note that by Proposition 8.9, the map

H1
cont

(

�,O{1})⊗O R=H1
cont

(

�,O{1} ⊗O R
)

↪→H1
cont

(

�,O{1} ⊗O R∞
)

induces an equality

(ζp − 1)H1
cont

(

�,O{1})⊗O R= (ζp − 1)H1
cont

(

�,O{1} ⊗O R∞
)

,

and the element d log ∈H1
cont(�,O{1})=O{1}(−1) is a generator of (ζp− 1)O{1}(−1);

thus, the proposition gives the remaining step of the proof of Proposition 8.15.

Proof. — Since we work with p-complete objects, it is enough to describe what
happens modulo pn for all n. In this case, we can compute R�cont(�,LR∞/Zp

⊗L
Z Z/pn) by

the total complex of
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�1
R∞/Zp

g−1
�1

R∞/Zp

�1
R∞/Zp

g−1

pn

�1
R∞/Zp

pn

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

where top left term is in bidegree (0,0), and g ∈ � is a generator, corresponding to a
choice of p-power roots of unity ζpr , r ≥ 1. Now d log(T) defines an element of the top left
corner of this bicomplex, and we have

d log(T)= pn · d log
(

T1/pn)

.
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Thus, in H0 of the totalization of the above bicomplex, the element d log(T) coming from
the top left corner is equivalent to

(g − 1)d log
(

T1/pn)= gd log
(

T1/pn)− d log
(

T1/pn)

= d log
(

ζpnT1/pn)− d log
(

T1/pn)

= d log(ζpn)+ d log
(

T1/pn)− d log
(

T1/pn)= d log(ζpn),

viewed as coming from the bottom right corner. The result follows. �

9. The complex A�X

Let X/O be a smooth formal scheme with generic fiber X as in the previous
section. In this section, we extend the complex ˜�X from O to Ainf = W(O�) along
˜θ : Ainf →O, i.e. we construct a complex A�X ∈D(XZar) of Ainf-modules such that

A�X⊗L
Ainf,˜θ

O ∼= ˜�X.

9.1. Statement of results. — The definition is very analogous to the definition of ˜�X.
Fix a system of primitive p-power roots of unity ζpr , r ≥ 1, which give rise to an element
ε = (1, ζp, . . .) ∈O�, and let μ= [ε] − 1. Note that the ideal (μ) is independent of the
choice of roots of unity by Lemma 3.23.

Definition 9.1. — The complex A�X ∈D(XZar) is given by

A�X = Lημ(Rν∗Ainf,X).

Note that A�X admits a structure of commutative ring in D(XZar) by Proposi-
tion 6.7, and is an algebra over (the constant sheaf) Ainf.

Theorem 9.2. — The complex A�X has the following properties.

(i) The natural map

A�X⊗L
Ainf,˜θ

O→ Lηζp−1

(

Rν∗̂O+
X

)= ˜�X

is a quasi-isomorphism.

(ii) More generally, for any r ≥ 1, the natural map

A�X⊗L
Ainf,˜θr

Wr(O)→ Lη[ζpr ]−1

(

Rν∗Wr

(

̂O+
X

))=: ˜Wr�X

is a quasi-isomorphism.
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(iii) For any r ≥ 1 and i ∈ Z, there is a natural isomorphism

Hi(˜Wr�X)∼=Wr�
i,cont
X/O {−i}

of sheaves on XZar, where Wr�
i,cont
X/O = lim←−Wr�

i
(X/pn)/(O/pn) is a continuous version of

the de Rham–Witt sheaf of Langer–Zink [52], and {−i} denotes a Breuil–Kisin–Fargues

twist as in Example 4.24.

Note that part (iii) extends the corresponding result for ˜� proved in the last section.
As in the previous section, it will be important to formulate a stronger local statement.

Definition 9.3. — Let R be a small formally smooth O-algebra, and let

� : Spf R→ ̂Gd
m = SpfO

〈

T±1
1 , . . . ,T±1

d

〉

,

be a framing, giving rise to

R∞ =R̂⊗O〈T±1
1 ,...,T±1

d 〉O
〈

T±1/p∞
1 , . . . ,T±1/p∞

d

〉

,

on which the Galois group � = Zp(1)d acts. Define the following complexes:

˜Wr�
�
R = Lη[ζpr ]−1R�cont

(

�,Wr(R∞)
)

˜Wr�
profét
R = Lη[ζpr ]−1R�

(

Xprofét,Wr

(

̂O+
X

))

˜Wr�
proét
R = Lη[ζpr ]−1R�

(

Xproét,Wr

(

̂O+
X

))

,

as well as

A��
R = LημR�cont

(

�,Ainf(R∞)
)

A�
profét
R = LημR�(Xprofét,Ainf,X)

A�
proét
R = LημR�(Xproét,Ainf,X).

We will prove the following result, which implies Theorem 9.2.

Theorem 9.4. — Let R be a small formally smooth O-algebra with a framing �, and let

X= Spf R with generic fiber X.

(i) The natural maps

A��
R ⊗L

Ainf,˜θr
Wr(O)→ ˜Wr�

�
R

are quasi-isomorphisms.
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(ii) The natural maps

˜Wr�
�
R → ˜Wr�

profét
R → ˜Wr�

proét
R →R�(X, ˜Wr�X)

are quasi-isomorphisms; we denote the common value by ˜Wr�R.

(iii) The natural maps

A��
R → A�

profét
R → A�

proét
R →R�(X,A�X)

are quasi-isomorphisms; we denote the common value by A�R.

(iv) For any r ≥ 1 and i ∈ Z, there is a natural isomorphism

Hi(˜Wr�R)∼=Wr�
i,cont
R/O {−i},

where Wr�
i,cont
R/O = lim←−Wr�

i
(R/pn)/(O/pn).

In this section, we will prove these theorems, except for part (iv) of Theorem 9.4
(and the corresponding part (iii) of Theorem 9.2), which will be proved in the next sec-
tions.

9.2. Proofs. — Let O =OK be the ring of integers in a perfectoid field K of char-
acteristic 0, containing all primitive p-power roots of unity ζpr , giving rise to the usual
elements ξ,μ ∈ Ainf =W(O�). Let R be a small formally smooth O-algebra, with fram-
ing

� :X= Spf R→ ̂Gd
m = SpfO

〈

T±1
1 , . . . ,T±1

d

〉

.

As usual, let

R∞ =R̂⊗O〈T±1
1 ,...,T±1

d 〉O
〈

T±1/p∞
1 , . . . ,T±1/p∞

d

〉

,

on which � = Zp(1)d acts. We get the complexes

A��
R = LημR�cont

(

�,Ainf(R∞)
)

,

˜Wr�
�
R = Lη[ζpr ]−1R�cont

(

�,Wr(R∞)
);

note that both of them have canonical representatives as actual differential graded alge-
bras, by computing the continuous group cohomology as the standard Koszul complex
(which gives a μ-torsion-free, resp. [ζpr ] − 1-torsion-free, resolution on which one can
apply ημ, resp. η[ζpr ]−1).

It turns out that A��
R can be described (up to quasi-isomorphism) as a q-de Rham

complex, at least after fixing the system of p-power roots ζpr . Let us first define the relevant
version of the q-de Rham complex. Consider the surjection

Ainf

〈

U±1
〉→O

〈

T±1
〉

, Ui �→Ti,
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which is given by θ : Ainf →O on Ainf. As � is (formally) étale, one can lift R uniquely
to a (p,μ)-adically complete Ainf-algebra A(R)� which is formally étale over Ainf〈U±1〉.
Moreover, there is an action of � = Zp(1)d on Ainf〈U±1〉: if we fix the p-power roots of
unity and let γi ∈ � be the corresponding i-th basis vector, then it acts by sending Ui

to [ε]Ui, and Uj to Uj for j �= i. This action respects the quotient O〈T±1〉 and is trivial
there. As Ainf〈U±1〉 → A(R)� is étale, this action lifts uniquely to an action of � on
A(R)� which is trivial on the quotient A(R)� → R. Actually, as the �-action becomes
trivial on Ainf〈U±1〉/([ε] − 1), the �-action on A(R)� is also trivial on A(R)�/([ε] − 1).

In particular, for any i = 1, . . . , d , we can look at the operation

∂q

∂q log(Ui)
= γi − 1
[ε] − 1

: A(R)� → A(R)�.

If R=O〈T±1〉, then A(R)� = Ainf〈U±1〉, and

∂q

∂q log(Ui)

(

∏

j

U
nj

j

)

= [ni]q
∏

j

U
nj

j ,

where as usual q = [ε]. Using this, one verifies that the following definition gives in this
case simply the (p,μ)-adic completion of the q-de Rham complex q -�•

Ainf[U±1]/Ainf
from

Example 7.7.

Definition 9.5. — The q-de Rham complex of the framed small formally smooth O-algebra R
is given by

q -�•
A(R)�/Ainf

=KA(R)�

(

∂q

∂q log(U1)
, . . . ,

∂q

∂q log(Ud)

)

= A(R)�
(

∂q

∂q log(Ui)
)i

−→ (

A(R)�)d → (A(R)�)(d
2)→ ·· ·→ (A(R)�)(d

d).

To connect this to A��
R , we first observe that there is a canonical isomorphism

A(R)�
̂⊗Ainf〈U±1〉Ainf

〈

U±1/p∞ 〉 �→ Ainf(R∞),

U1/pr

i �→ [(T1/pr

i ,T1/pr+1

i , . . .
)]

,

equivariant for the �-action. Indeed, this is evident modulo ξ , and then follows by rigidity.
Reducing along˜θr : Ainf →Wr(O), we get a quasi-isomorphism

A(R)�/˜ξr̂⊗Wr(O)〈U±1〉Wr(O)
〈

U±1/p∞ 〉 �→Wr(R∞), U1/ps

i �→ [T1/pr+s

i

]

,

cf. Lemma 3.3 for the identification of the map. The following lemma proves part (i) of
Theorem 9.4.
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Lemma 9.6. — There are injective quasi-isomorphisms

q -�•
A(R)�/Ainf

= ηq−1KA(R)�(γ1 − 1, . . . , γd − 1)→ A��
R

= ηq−1KAinf(R∞)(γ1 − 1, . . . , γd − 1)

and

q -�•
A(R)�/Ainf

/˜ξr → ˜Wr�
�
R .

Moreover, the left side represents the derived reduction modulo˜ξr , and so the natural map

A��
R ⊗L

Ainf,˜θr
Wr(O)→ ˜Wr�

�
R

is a quasi-isomorphism.

Proof. — We will prove only the first identification of A��
R as a q-de Rham com-

plex; the identification of ˜Wr�
�
R works exactly in the same way. For the final statement,

note that the q-de Rham complex has˜ξr-torsion-free terms.
We start from the identification

A(R)�
̂⊗Ainf〈U±1〉Ainf

〈

U±1/p∞ 〉 �→ Ainf(R∞).

Using this, we get a �-equivariant decomposition

Ainf(R∞)= A(R)�⊕ Ainf(R∞)nonint,

where A(R)� is the “integral” part, and the second summand is the nonintegral part,
given by the completed tensor product of A(R)� with the (p,μ)-adically complete
Ainf〈U±1〉-submodule of Ainf〈U±1/p∞〉 generated by non-integral monomials. First, we ob-
serve that all cohomology groups

Hi
cont

(

�,Ainf(R∞)nonint
)

are killed by ϕ−1(μ)= [ε]1/p − 1 (and thus by μ), so that in particular

LημR�cont

(

�,Ainf(R∞)nonint
)

is 0. In fact, we will check that multiplication by ϕ−1(μ) on R�cont(�,Ainf(R∞)nonint) is
homotopic to 0. By taking a decomposition according to the first non-integral exponent,
we have a decomposition

Ainf(R∞)nonint =
d
⊕

i=1

Ainf(R∞)nonint,i.
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Now, to prove that multiplication by ϕ−1(μ) on

R�cont

(

�,Ainf(R∞)nonint,i
)=KAinf(R∞)nonint,i(γ1 − 1, . . . , γd − 1)

is homotopic to 0, it suffices to show that multiplication by ϕ−1(μ) on

Ainf(R∞)nonint,i γi−1−→ Ainf(R∞)nonint,i

is homotopic to 0. Indeed, the whole Koszul complex is built from this complex by taking
successive cones, to which this homotopy will lift. Thus, we have to find the dotted arrow
in the diagram

Ainf(R∞)nonint,i
γi−1

ϕ−1(μ)

Ainf(R∞)nonint,i

ϕ−1(μ)

h

Ainf(R∞)nonint,i
γi−1

Ainf(R∞)nonint,i.

This decomposes into a completed direct sum of many pieces of the form

γi − 1 : A(R)� ·Ta(i)

i

∏

j �=i

Ta(j)

j → A(R)� ·Ta(i)

i

∏

j �=i

Ta(j)

j ,

where a(i)= m/pr ∈ Z[ 1
p
], r ≥ 1, m ∈ Z \ pZ. This complex is the same as

A(R)� γi[εm/pr ]−1−→ A(R)�.

Up to changing the roots of unity, we may assume that m = 1. Moreover, the map
γi[ε1/pr ] − 1 divides the map γ

pr−1

i [ε]1/p − 1, so it is enough to produce a homotopy h

for γ
pr−1

i [ε]1/p − 1. This amounts to finding a map h : A(R)� → A(R)� such that

γ
pr−1

i

(

h(a)
)[ε]1/p − h(a)= ϕ−1(μ)a.

As γ
pr−1

i ≡ id modulo μ, we can write γ
pr−1

i = id+μδ for some map δ : A(R)� → A(R)�.
The equation becomes

μδ
(

h(a)
)[ε]1/p = ϕ−1(μ)

(

a− h(a)
)

,

or equivalently

h(a)= a− ξδ
(

h(a)
)[ε]1/p.

By successive ξ -adic approximation, it is clear that there is a unique solution to this. This
handles the non-integral part of A��

R .
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On the other hand, by the existence of the q-derivatives

∂q

∂q log(Ui)
= γi − 1
[ε] − 1

: A(R)� → A(R)�,

the differentials in the complex calculating

R�cont

(

�,A(R)�)=KA(R)�(γ1 − 1, . . . , γd − 1)

are divisible by μ= [ε] − 1, and one gets (by Lemma 7.9)

ημR�cont

(

�,A(R)�)=KA(R)�

(

γ1 − 1
[ε] − 1

, . . . ,
γd − 1
[ε] − 1

)

= q -�•
A(R)�/Ainf

. �

Next, we need some qualitative results on the complex R�cont(�,Wr(R∞)).

Lemma 9.7. — Consider the Koszul complex

C• =KWr(R∞)(γ1 − 1, . . . , γd − 1)

computing R�cont(�,Wr(R∞)).

(i) The complex C• can be written as a completed direct sum of Koszul complexes

KWr(O)

([

ζ a1
]− 1, . . . ,

[

ζ ad
]− 1

)

for varying a1, . . . , ad ∈ Z[ 1
p
]. Here ζ k ∈O is short-hand for ζ b

pa if k = b

pa ∈ Z[ 1
p
].

(ii) The cohomology groups

Hi
(

˜Wr�
�
R

)=Hi
(

η[ζpr ]−1C•)

are p-torsion-free.

(iii) For any perfect complex E ∈D(Wr(O)), the Wr(O)-modules

Hi
(

C• ⊗L
Wr(O) E

)

, Hi
(

C• ⊗L
Wr(O) E

)

/
([ζpr ] − 1

)

have no almost zero elements, i.e. no elements killed by Wr(m).

Proof. — We begin with a rough computation of

R�cont

(

�,Wr

(

O
〈

T±1/p∞ 〉))

as a complex of Wr(O)〈U±1〉-modules, where Ui �→ [Ti]. Here, we normalize the action
so that the i-th basis vector γi ∈ � = Zp(1)d acts by sending [T1/ps

i ] to [ζps T1/ps

i ].
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We can write

R�cont

(

�,Wr

(

O
〈

T±1/p∞ 〉))

= ̂

⊕

a1,...,ad∈Z[ 1
p ]∩[0,1)

R�cont

(

�,Wr(O)
〈

U±1
〉 ·

d
∏

i=1

[Ti]ai

)

.

Moreover, each summand can be written as a Koszul complex

R�cont

(

�,Wr(O)
〈

U±1
〉 ·

d
∏

i=1

[Ti]ai

)

=KWr(O)〈U±1〉
([

ζ a1
]− 1, . . . ,

[

ζ ad
]− 1

)

.

Next, we want to get a similar description of

R�cont

(

�,Wr(R∞)
)

.

Recall that Ainf(R∞)= Ainf〈U±1/p∞〉̂⊗Ainf〈U±1〉A(R)�, so that by base change along θr , we
get

Wr(R∞)=Wr(O)
〈

U±1/p∞ 〉
̂⊗Wr(O)〈U±1〉A(R)�/ξr;

also, Wr(O)〈U±1/p∞〉 = Wr(O〈T±1/p∞〉) by passing to the p-adic completion in
Lemma 9.8 below. This implies

R�cont

(

�,Wr(R∞)
)=R�cont

(

�,Wr

(

O
〈

T±1/p∞ 〉))
̂⊗Wr(O)〈U±1〉A(R)�/ξr;

note that the tensor product is underived modulo any power of p by étaleness. Therefore,
we get a decomposition

R�cont

(

�,Wr(R∞)
)= ̂

⊕

a1,...,ad∈Z[ 1
p ]∩[0,1)

KA(R)�/ξr

([

ζ a1
]− 1, . . . ,

[

ζ ad
]− 1

)

.

Finally, as in Lemma 8.10, A(R)�/ξr is topologically free over Wr(O), finishing the proof
of (i).

For (ii), note that by Lemma 7.9,

η[ζpr ]−1KWr(O)

([

ζ a1
]− 1, . . . ,

[

ζ ad
]− 1

)

is acyclic if prai /∈ Z for some i, and otherwise it is given by

KWr(O)

( [ζ a1] − 1
[ζpr ] − 1

, . . . ,
[ζ ad ] − 1
[ζpr ] − 1

)

.
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The cohomology groups of this complex are p-torsion-free by Lemma 7.10 and Corol-
lary 3.18. Also, η[ζpr ]−1 commutes with the completed direct sum by Lemma 6.20. Thus,
we can apply Lemma 6.18 to compute the cohomology groups

Hi
(

˜Wr�
�
R

)=Hi
(

η[ζpr ]−1C•)

as a classical p-adic completion of the direct sum of the p-torsion-free cohomology groups
of the Koszul complexes above. In particular, they are p-torsion-free.

For (iii), assume first that K=KWr(O)([ζ a1]−1, . . . , [ζ ad ]−1) is a Koszul complex.
Then K⊗L

Wr(O) E is a perfect complex of Wr(O)-modules. Thus, as Wr(O) is coherent,
every cohomology group is finitely presented, and thus contains no almost zero elements
by Corollary 3.29; the same argument works for Hi/([ζpr ] − 1).

Now we have a decomposition C• =Cint⊕Cnonint, where Cint is a completed direct
sum of Koszul complexes

KWr(O)

([

ζ a1
]− 1, . . . ,

[

ζ ad
]− 1

)

,

where the denominator of each ai is at most pr , and Cnonint is a completed direct sum of
Koszul complexes

KWr(O)

([

ζ a1
]− 1, . . . ,

[

ζ ad
]− 1

)

where the denominator of some ai is at least pr+1. Note that Cnonint is actually just (quasi-
isomorphic to) the direct sum of these Koszul complexes, as multiplication by [ζpr ] − 1 is
homotopic to 0 on each of the Koszul complexes, and thus on their direct sum.

It suffices to prove the similar assertions for Hi(Cint ⊗L
Wr(O) E) and

Hi(Cnonint ⊗L
Wr(O) E). Note that only finitely many different Koszul complexes appear

in Cint; by taking a corresponding isotypic decomposition, we can reduce to the case that
Cint is the p-adic completion of a direct sum of copies of one Koszul complex

K=KWr(O)

([

ζ a1
]− 1, . . . ,

[

ζ ad
]− 1

)

.

In that case, Hi(Cint ⊗L
Wr(O) E) is the classical p-adic completion of a similar direct sum

of copies of the finitely presented Wr(O)-module Hi(K⊗L
Wr(O) E) (by Lemma 6.18, using

that the p-torsion submodule of finitely presented Wr(O)-modules is of bounded expo-
nent), for which we have already checked the assertion. Similarly in the second case,
Hi(Cnonint ⊗L

Wr(O) E) decomposes as a (noncompleted) direct sum of the cohomology
groups of Hi(K⊗L

Wr(O) E) for Koszul complexes K. �

We used the following lemma in the proof.

Lemma 9.8. — Let S be any ring. There are natural inclusions

Wr

(

S
[

Tpr

1 , . . . ,Tpr

d

])⊂Wr(S)[U1, . . . ,Ud] ⊂Wr

(

S[T1, . . . ,Td]
)

,



326 BHARGAV BHATT, MATTHEW MORROW, PETER SCHOLZE

and

Wr

(

S
[

T±pr

1 , . . . ,T±pr

d

])⊂Wr(S)
[

U±1
1 , . . . ,U±1

d

]⊂Wr

(

S
[

T±1
1 , . . . ,T±1

d

])

,

where Ui = [Ti]. In particular, by passing to a union over all p-power roots, we have equalities

Wr

(

S
[

T1/p∞
1 , . . . ,T1/p∞

d

])=Wr(S)
[

U1/p∞
1 , . . . ,U1/p∞

d

]

,

Wr

(

S
[

T±1/p∞
1 , . . . ,T±1/p∞

d

])=Wr(S)
[

U±1/p∞
1 , . . . ,U±1/p∞

d

]

.

Proof. — The Laurent polynomial case follows from the polynomial case by local-
ization. The polynomial case follows for example from [52, Corollary 2.4]. �

Moreover, we need the following base change property.

Lemma 9.9. — Let R be as above, and let R→ R′ be a formally étale map, i.e. R/pn →
R′/pn is étale for all n, and R′ is p-adically complete. Let �′ be the induced framing of Spf R′. Then

the natural map

˜Wr�
�
R
̂⊗Wr(R)Wr

(

R′)→ ˜Wr�
�′
R′

is a quasi-isomorphism.

Remark 9.10. — We note that modulo pn, the tensor product is underived by The-
orem 10.4. Indeed, by Elkik [26], we may always find a smooth O-algebra R0 and
an étale R0-algebra R′

0 such that R → R′ is the p-adic completion of R0 → R′
0. Then

Wr(R0)→Wr(R′
0) is étale and hence so is Wr(R0)/pn →Wr(R′

0)/pn, which agrees with
Wr(R)/pn →Wr(R′)/pn.

Proof. — Fix a map R0 →R′
0 as in the remark. By Theorem 10.4,

Wr

(

R′
∞
)=Wr(R∞)̂⊗Wr(R)Wr

(

R′),

where the tensor product is underived modulo pn. Taking cohomology, we get

R�cont

(

�,Wr

(

R′
∞
))=R�cont

(

�,Wr(R∞)
)

̂⊗Wr(R)Wr

(

R′).

Moreover, using Lemma 6.20 and the observation that Lη commutes with flat base
change Wr(R0)→Wr(R′

0), cf. Lemma 6.14, we get

Lη[ζpr ]−1R�cont

(

�,Wr

(

R′
∞
))= Lη[ζpr ]−1R�cont

(

�,Wr(R∞)
)

̂⊗Wr(R)Wr

(

R′),

as desired. �

We can now prove part (ii) of Theorem 9.4.
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Corollary 9.11. — The natural maps

˜Wr�
�
R → ˜Wr�

profét
R → ˜Wr�

proét
R →R�(X, ˜Wr�X)

are quasi-isomorphisms.

Proof. — Let C=R�cont(�,Wr(R∞)), and let D be either of

R�
(

Xprofét,Wr

(

̂O+
X

))

, R�
(

Xproét,Wr

(

̂O+
X

))

,

where X is the generic fiber of X= Spf R. Then the map g : C→D is an almost quasi-
isomorphism, and hence by Lemma 8.11 applied with A = Wr(O), I = Wr(m), f =
[ζpr ]−1, the induced map Lη[ζpr ]−1g is a quasi-isomorphism, as by Lemma 9.7, C satisfies
the necessary hypothesis.

For the comparison to R�(X, ˜Wr�X), we look at the map

˜Wr�R̂⊗Wr(R)Wr(OX)→ ˜Wr�X.

The same arguments as in the proof of Corollary 8.13(iv) show that this is a quasi-
isomorphism in D(XZar), using Lemma 9.9. Passing to global sections gives the result. �

Finally, we prove part (iii) of Theorem 9.4. Once more, we need a lemma that Lημ

turns certain almost quasi-isomorphisms into quasi-isomorphisms. Recall that the ideal
W(m�)⊂ Ainf does not in general satisfy W(m�)2 =W(m�), so we have to be careful about
the meaning of “almost” here.

Lemma 9.12. — Let f : C→ D be a map of derived p-complete complexes in D(Ainf), and

assume that the following conditions are satisfied.

(i) The morphism f ⊗L
Zp

Fp in D(O�) is an almost quasi-isomorphism.

(ii) For all i ∈ Z, the map Hi(Lημf ) :Hi(LημC)→Hi(LημD) is injective.

(iii) For all i ∈ Z, one has

⋂

m∈W(m�),m|μ

μ

m
Hi(C)= μHi(C).

Then Lημf : LημC→ LημD is a quasi-isomorphism.

Proof. — We need to show that for all i ∈ Z, the map

β :Hi(LημC)=Hi(C)/Hi(C)[μ]→Hi(D)/Hi(D)[μ] =Hi(LημD)

is an isomorphism; let

α :Hi(C)→Hi(D)

be the map inducing β . By assumption (ii), β is injective.
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To prove surjectivity of β , we have to see that the map

Hi(D)[μ]→Cokerα

is surjective. For this, we observe first that for all r ≥ 1, the map

f ⊗L
Zp

Z/prZ :C⊗L
Zp

Z/prZ→D⊗L
Zp

Z/prZ

is an almost quasi-isomorphism with respect to the ideal Wr(m
�)⊂Wr(O�). This implies

that the induced map

Wr

(

m
�
)⊗Wr(O�)

(

C⊗L
Zp

Z/prZ
)→Wr

(

m
�
)⊗Wr(O�)

(

D⊗L
Zp

Z/prZ
)

is a quasi-isomorphism. In particular, there is a map

Wr

(

m
�
)⊗Wr(O�)

(

D⊗L
Zp

Z/prZ
)∼=Wr

(

m
�
)⊗Wr(O�)

(

C⊗L
Zp

Z/prZ
)

→C⊗L
Zp

Z/prZ.

Thus, for any element m ∈W(m�), there is a canonical map

m̃ :D⊗L
Zp

Z/prZ→C⊗L
Zp

Z/prZ

whose composite with f ⊗L
Zp

Z/prZ (on either side) is multiplication by m. Passing to the
limit over r, using that C and D are p-complete, we get a canonical map m̃ : D → C
whose composite with f (on either side) is multiplication by m.

Now, pick any element x̄ ∈Cokerα, and lift it to x ∈Hi(D). We claim that

μ̃(x) ∈
⋂

m∈W(m�),m|μ

μ

m
Hi(C)⊂ μHi(C).

Indeed, for any m ∈W(m�), we have m̃(x) ∈Hi(C), and then μ̃(x)= μ

m
m̃(x) ∈ μ

m
Hi(C). By

assumption (iii), we get that μ̃(x) ∈ μHi(C), so after subtracting (the image in Hi(D) of)
an element of Hi(C) from x, we may assume that μ̃(x)= 0, so that in particular μx= 0,
i.e. x ∈Hi(D)[μ]. Thus, Hi(D)[μ]→Cokerα is surjective, finishing the proof. �

Lemma 9.13. — Let

C=R�cont

(

�,Ainf(R∞)
) ∈D(Ainf).

Then for all i ∈ Z, the intersection

⋂

m∈W(m�),m|μ

μ

m
Hi(C)= μHi(C).
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We note that it is actually not so easy to find many elements m ∈ W(m�) with
m|μ. The only elements we know are the ϕ−r(μ), and we will only use these elements in
the proof. In particular, we do not know whether one can write μ as a product of two
elements in W(m�).

Proof. — We will freely make use of
⋂

m∈W(m�),m|μ

μ

m
Ainf = μAinf,

cf. Lemma 3.23. We may decompose C=Cint ⊕Cnonint according to the decomposition

Ainf(R∞)= Ainf(R∞)int ⊕ Ainf(R∞)nonint

from the proof of Proposition 9.6.
We handle first the non-integral part Cnonint. This can be written as a completed

direct sum of complexes of the form

KA(R)�
(

γ1[ε]a(1) − 1, . . . , γd[ε]a(d) − 1
)

,

where a(1), . . . , a(d) ∈ Z[ 1
p
] ∩ [0,1), not all 0. We compute the cohomology groups of

each of the summands. Permuting the coordinates, we may assume that a(1)= m/pr has
the largest denominator pr . The argument for existence of h in the proof of Proposition 9.6
shows that γ1[ε]a(1)−1 has image precisely [ε]1/pr −1. Moreover, the image of γi[ε]a(i)−1
is contained in the image of [ε]1/pr − 1, as γi ≡ 1 mod μ.

Applying Lemma 7.10(ii) for the commutative algebra of endomorphisms of
A(R)� generated by g = [ε]1/pr − 1, gi = γi[ε]a(i) − 1 and gi

g
shows that

Hi
(

KA(R)�
(

γ1[ε]a(1) − 1, . . . , γd[ε]a(d) − 1
))

can be written as a finite direct sum of copies of A(R)�/([ε]1/pr − 1). This is a topologi-
cally free Ainf/([ε]1/pr − 1)-module. It follows that the cohomology groups of Cnonint are a
p-adically completed direct sum of copies of Ainf/([ε]1/pr − 1) for varying r ≥ 1. Thus, by
Lemma 6.18, it suffices to prove the similar assertion for Ainf/([ε]1/pr − 1), which is easy.

It remains to handle the integral part

Cint =KA(R)�(γ1 − 1, . . . , γd − 1).

Here, we note that all γi−1 are divisible by μ. This implies that Hi(Cint)/μ is isomorphic
to Zi(Cint)/μ. Thus, it remains to prove that

⋂

m∈W(m�),m|μ

μ

m
Zi
(

Cint
)= μZi

(

Cint
)

.
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But as the cocycles form a submodule of the corresponding term of KA(R)�(γ1 −
1, . . . , γd − 1), which is a complex of μ-torsion-free modules, it suffices to prove the
similar result for the terms of the Koszul complex. Now any term is a topologically free
Ainf-module, for which the claim is known. �

Proposition 9.14. — The canonical maps

A��
R → A�

profét
R → A�

proét
R →R�(X,A�X)

are quasi-isomorphisms.

Proof. — Let C=R�cont(�,Ainf(R∞)), and let D be either of

R�(Xprofét,Ainf,X), R�(Xproét,Ainf,X),

so there is a natural map f : C→ D. We want to verify the conditions of Lemma 9.12.
Condition (i) is immediate from the almost purity theorem. Condition (iii) is the content
of Lemma 9.13. It remains to prove that

Hi(LημC)→Hi(LημD)

is injective. For this, we note that for each r ≥ 1, there is a commutative diagram

LημC LημD

˜Wr�
�
R

˜Wr�
proét
R .

(More precisely, one has such a commutative diagram in the derived category of
N-indexed projective systems, where the upper row is regarded as a constant system.)
Passing to the limit over r, we get a commutative diagram

LημC LημD

R lim←−r
˜Wr�

�
R R lim←−r

˜Wr�
proét
R .

Now we note that by Lemma 9.6, the left vertical map is a quasi-isomorphism. By Corol-
lary 9.11, the lower horizontal map is a quasi-isomorphism. Thus, looking at cohomology
groups, we get the desired injectivity.

This shows that

A��
R � A�

profét
R � A�

proét
R ;
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we denote them simply A�R in the following. It remains to show that A�R �
R�(X,A�X). Previously, we argued by extending some variant of A�R to (some kind
of) a quasicoherent sheaf, and did the comparison on the sheaf level. However, A�R is
not a module over R, or any variant of R (like Wr(R)), so this does not work here. Instead,
we argue by reducing to the known case of ˜Wr� by an inverse limit argument.

Let Xpsh
Zar be the presheaf topos on the set of affine opens Spf R′ ⊂ X. There is a

map of topoi j : XZar → X
psh
Zar, where j∗ is the forgetful functor, and j∗ is the sheafification

functor. We can form

A�
psh
X
= LημRνpsh

∗ Ainf,X,

where νpsh = j ◦ ν :Xproét →X
psh
Zar. By Lemma 6.14, the value of A�

psh
X

on an affine open
Spf R′ ⊂X is given by A�

proét
R′ = A�R′ . Moreover, using Lemma 6.14 again, we have

j∗A�
psh
X
= j∗LημRj∗Rν∗Ainf,X = Lημj∗Rj∗Rν∗Ainf,X = LημRν∗Ainf,X

= A�X,

i.e. A�X is the sheafification of A�
psh
X

. By adjunction, we get a map

A�
psh
X
→Rj∗A�X =Rj∗j∗A�

psh
X

,

which we want to prove is a quasi-isomorphism (as then on global sections, it gives the
desired quasi-isomorphism A�R �R�(X,A�X)). In other words, we want to prove that
A�

psh
X is already a sheaf. But as for any Spf R′ ⊂X, we have

A�R′ =R lim←−
r

A�R′/˜ξr =R lim←−
r

˜Wr�R′,

we have an equality

A�
psh
X
=R lim←−

r

˜Wr�
psh
X

,

for the evident definition of ˜Wr�
psh
X

. By Theorem 9.4(iii), we know that ˜Wr�
psh
X

is a sheaf,
i.e.

˜Wr�
psh
X
→Rj∗j∗˜Wr�

psh
X

is a quasi-isomorphism. We conclude by using the following lemma, saying that an inverse
limit of sheaves is a sheaf (which holds true in vast generality).

Lemma 9.15. — Let Cr ∈D(X
psh
Zar), r ≥ 1, be a projective system, with homotopy limit C=

R lim←−Cr . Assume that for each r ≥ 1, Cr is a sheaf, i.e. Cr →Rj∗j∗Cr is a quasi-isomorphism. Then

C is a sheaf, i.e. C→Rj∗j∗C is a quasi-isomorphism.
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Proof. — Let ˜Cr = j∗Cr , and let ˜C = R lim←−˜Cr ∈ D(XZar); we note that this is not

a priori given by j∗C. There is a quasi-isomorphism C
�→ Rj∗˜C, given as a limit of the

quasi-isomorphisms Cr

�→ Rj∗˜Cr . Applying j∗ shows that j∗C ∼= j∗Rj∗˜C = ˜C, and thus
C∼=Rj∗j∗C as desired. �

9.3. Further properties of A�. — Let us end this section by noting several further
properties of A�X. First, the complex A�R satisfies a Künneth formula.

Lemma 9.16. — Let R1 and R2 be small formally smooth O-algebras with completed tensor

product R=R1̂⊗OR2. Then the natural map

A�R1
̂⊗L

AinfA�R2 → A�R

is a quasi-isomorphism.

Proof. — As both sides are derived˜ξ -complete, it suffices to check modulo˜ξ , where
it follows from Proposition 8.14. �

Also, by construction A�X comes equipped with a Frobenius.

Proposition 9.17. — Let R be a small formally smooth O-algebra. Then there is a natural

ϕ-linear map ϕ : A�R → A�R which factors as the composite of a ϕ-linear quasi-isomorphism

A�R � Lη
˜ξA�R and the natural map Lη

˜ξA�R → A�R.

In particular, if X is a smooth formal scheme over O, then there is a ϕ-linear map ϕ : A�X→
A�X factoring over a ϕ-linear quasi-isomorphism A�X � Lη

˜ξA�X.

Proof. — Let X be the generic fiber of X = Spf R. The Frobenius ϕX is an auto-
morphism of R�proét(X,Ainf,X), and thus induces a quasi-isomorphism

ϕ∗A�R = ϕ∗LημR�proét(X,Ainf,X)� Lηϕ(μ)ϕ
∗R�proét(X,Ainf,X)

= Lη
˜ξLημϕ∗R�proét(X,Ainf,X)

ϕX� Lη
˜ξLημR�proét(X,Ainf,X)

� Lη
˜ξA�R. �

Moreover, let us note that Lη behaves in a symmetric monoidal way in a relevant
case.

Lemma 9.18. — Let R be a small formally smooth O-algebra, and let D = R�proét(X,

Wr(̂O+
X)), so that ˜Wr�R = Lη[ζpr ]−1D. Let E ∈D(Wr(O)) be any complex. The natural map

Lη[ζpr ]−1D⊗L
Wr(O) Lη[ζpr ]−1E→ Lη[ζpr ]−1

(

D⊗L
Wr(O) E

)

is a quasi-isomorphism.
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In fact, the same result holds if D is replaced by any complex which admits an almost quasi-

isomorphism R�cont(�,Wr(R∞))→D, where R�cont(�,Wr(R∞)) is defined using a framing as

usual.

Proof. — We may assume that E is perfect, as the general result follows by passage
to a filtered colimit. Choose a framing �, and let C=R�cont(�,Wr(R∞)) using standard
notation. In that case, the argument of Corollary 9.11 works to prove that

Lη[ζpr ]−1

(

C⊗L
Wr(O) E

) �→ Lη[ζpr ]−1

(

D⊗L
Wr(O) E

)

,

using the general form of Lemma 9.7(iii). Thus, it is enough to show that

Lη[ζpr ]−1C⊗L
Wr(O) Lη[ζpr ]−1E→ Lη[ζpr ]−1

(

C⊗L
Wr(O) E

)

is a quasi-isomorphism. But C decomposes into a completed direct sum of Koszul com-
plexes. Thus, the result follows from the case of Koszul complexes, Lemma 7.9, and the
commutation of Lη with p-adic completion, Lemma 6.20. �

10. The relative de Rham–Witt complex

In this section we review the theory of de Rham–Witt complexes.

10.1. Witt groups. — Let A be a ring. As before, we use Wr(A) to denote the finite
length p-typical Witt vectors (normalized so that W1(A)= A) and W(A) := lim←−r

Wr(A).
In this section we recall some results about how ideals of A induce ideals of Wr(A).

If I⊂ A is an ideal then Wr(I) :=Ker(Wr(A)→Wr(A/I)), which may be alterna-
tively defined as the Witt vectors of the non-unital ring I. We also let [I] ⊂Wr(A) denote
the ideal generated by {[a] : a ∈ I}, which is contained in Wr(I).

Lemma 10.1. — Suppose that I is a finitely generated ideal of a ring A, and let � ⊂ I be a

finite set of generators. Then the following five chains of ideals of Wr(A) are all intertwined:

〈[

as
] : a ∈�

〉 [I]s [

Is
]

Wr(I)s Wr

(

Is
)

, s ≥ 1.

(The first denotes the ideal generated by the elements [as], for a ∈�.) More precisely, we have contain-

ments

Wr

(

I|�|p
r s
)⊂ 〈[as

] : a ∈�
〉⊂ [I]s ⊂ [Is

]⊂Wr

(

Is
)

, [I]s ⊂Wr(I)s ⊂Wr

(

Is
)

Proof. — Firstly, any element of Wr(A) may be written as
∑r−1

i=0 Vi[ai] for some
unique a0, . . . , ar−1; applying the same observation to A/I we see that Wr(I) is precisely
the set of elements of Wr(A) such that each element ai occurring in this expansion belongs
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to I. Moreover, for any two ideals J1, J2 ⊂ A, we have Wr(J1 + J2) = Wr(J1) + Wr(J2)

(induct on r and use the formula for [a] + [b]).
The inclusions 〈[as] : a ∈�〉 ⊂ [I]s ⊂ [Is] ⊂Wr(Is) and [I]s ⊂Wr(I)s are then clear,

and Wr(I)s ⊂Wr(Is) is a consequence of the identity Vi[a]Vj[b] = p jVi([abpi−j ]) (cf. proof
of Lemma 3.2) for all a, b ∈ A and i ≥ j, and do not require finite generation of I. Con-
versely, I|�|pr s ⊂ 〈apr s : a ∈�〉, and

Wr

(〈

apr s : a ∈�
〉)=
∑

a∈�

Wr

(

apr sA
)

,

by the additivity of Wr of ideals. Finally, Wr(a
pr sA)⊂ [a]sWr(A). Combining these obser-

vations shows that

Wr

(

I|�|p
r s
)⊂ 〈[as

] : a ∈�
〉

. �

Corollary 10.2. — If I ⊂ A is an ideal satisfying I = I2 such that I can be written as an

increasing union of principal ideals generated by non-zero-divisors, then Wr(I) = [I], and Wr(I) ⊂
Wr(A) is again an ideal satisfying Wr(I)2 =Wr(I) such that Wr(I) can be written as an increasing

union of principal ideals generated by non-zero-divisors.

Proof. — Write I=⋃j fjA, where fj ∈ A is a non-zero-divisor. Applying the previ-
ous lemma to all fjA and passing to a direct limit over j (noting that the constants are
independent of j) shows that the sequences of ideals

⋃

j

[ fj]sWr(A)
[

Is
] [I]s Wr(I)s Wr

(

Is
)

, s ≥ 1

are intertwined, and are all contained in the last sequence Wr(Is). However, this last
sequence is constant as I= I2 = I3 = · · · . Thus, all systems are constant and equal, and
in particular [I] =Wr(I)=⋃j[ fj]Wr(A). Since the Teichmüller lift of a non-zero-divisor
is still a non-zero-divisor, this completes the proof. �

The next lemma shows that [p]-adic and p-adic completion are the same:

Lemma 10.3. — Let A be a ring. The following chains of ideals are intertwined:

[p]sWr(A) Wr(pA)s psWr(A), s ≥ 1.

More precisely,

[p]2sWr(A)⊂ psWr(A), prsWr(A)⊂Wr(pA)s, Wr(pA)pr s ⊂ [p]sWr(A).

Proof. — Recall from Lemma 3.2 that [p]2 ∈ pWr(A); this implies [p]2sWr(A) ⊂
psWr(A). As pr = 0 in the Wr(Fp)= Z/prZ-algebra Wr(A/pA), we have pr ∈Wr(pA) and
thus prsWr(A)⊂Wr(pA)s. Finally, the last inclusion was proved in Lemma 10.1. �
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Let us also recall that Witt rings behave well with respect to the étale topology.
The first part of the following theorem appeared first in work of van der Kallen [65,
Theorem 2.4]. Under the assumption that the rings are F-finite, the result is proved by
Langer–Zink in [52, Corollary A.18]. The general result appears (in even greater gener-
ality) in work of Borger [14, Theorem 9.2, Corollary 9.4].

Theorem 10.4. — Let A→ B be an étale morphism. Then Wr(A)→Wr(B) is also étale.

Moreover, if A→ A′ is any map with base extension B′ = B⊗A A′, then the natural map

Wr

(

A′)⊗Wr(A) Wr(B)→Wr

(

B′
)

is an isomorphism.

Proof. — If R is a Z[ 1
p
]-algebra, then Wr(R) �∏r

i=1 R as rings functorially in R
via the ghost maps. Thus, if A (and thus every ring involved) is a Z[ 1

p
]-algebra, the claim

is clear. As the functor Wr(−) commutes with localization, we may then assume that A
(and thus every ring involved) is a Z(p)-algebra. Now if A and B are F-finite (e.g., finitely
generated over Z(p)) and A′ is arbitrary, this is [52, Corollary A.18]. Let us observe that
this formally implies the general case: Indeed, we may find a finitely generated Z(p)-
algebra A0 and an étale A0-algebra B0 such that B = B0 ⊗A0 A along some morphism
A0 → A. Then Wr(B0) is étale over Wr(A0), and

Wr(B0)⊗Wr(A0) Wr(A)→Wr(B)

is an isomorphism. Thus, Wr(B) is étale over Wr(A), as the base extension of an étale
map. Similarly,

Wr(B0)⊗Wr(A0) Wr

(

A′)→Wr

(

B′
)

is an isomorphism, so that

Wr

(

A′)⊗Wr(A) Wr(B)=Wr

(

A′)⊗Wr(A0) Wr(B0)=Wr

(

B′
)

,

as desired. �

10.2. Relative de Rham–Witt complex. — We recall the notion of an F-V-procomplex
from the work of Langer–Zink [52]. From now on, we assume that A is a Z(p)-algebra.

Definition 10.5. — Let B be an A-algebra. An F-V-procomplex for B/A consists of the fol-

lowing data (W•
r ,R,F,V, λr):

(i) a commutative differential graded Wr(A)-algebra W•
r =

⊕

n≥0 W n
r for each integer

r ≥ 1;

(ii) morphisms R :W•
r+1 →R∗W•

r of differential graded Wr+1(A)-algebras for r ≥ 1;

(iii) morphisms F :W•
r+1 → F∗W•

r of graded Wr+1(A)-algebras for r ≥ 1;
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(iv) morphisms V : F∗W•
r →W•

r+1 of graded Wr+1(A)-modules for r ≥ 1;

(v) morphisms λr :Wr(B)→W0
r for each r ≥ 1, commuting with the F, R and V maps;

such that the following identities hold: R commutes with both F and V, FV = p, FdV = d,

V(F(x)y)= xV( y), and the Teichmüller identity

Fdλr+1

([b])= λr

([b])p−1
dλr

([b])

for b ∈ B, r ≥ 1.

In the classical work on the de Rham–Witt complex, the restriction operator R
is regarded as the “simplest” part of the data; however, in our work, it will actually be
the most subtle of the operators (in close analogy to what happens in topological cyclic
homology). In particular, we will be explicit about the use of the operator R, and it
would probably be more appropriate to use the term F-R-V-procomplex, but we stick
to Langer–Zink’s notation.

Remark 10.6. — The Teichmüller rule of the previous definition is automatic in
the case that W1

r is p-torsion-free, since one deduces from the other rules that dF(x) =
FdVF(x)= Fd(V(1)x)= F(V(1)dx)= pFdx, and thus

pλr

([b])p−1
dλr

([b])= dλr

([b]p)= dFλr+1

([b])= pFdλr+1

([b]).
There is an obvious definition of morphism between F-V-procomplexes. In partic-

ular, it makes sense to ask for an initial object in the category of all F-V-procomplexes for
B/A.

Theorem 10.7 ([52]). — There is an initial object {Wr�
•
B/A}r in the category of F-V-

procomplexes, called the relative de Rham–Witt complex.

In other words, if (W•
r ,R,F,V, λr) is any F-V-procomplex for B/A, then there are unique

morphisms of differential graded Wr(A)-algebras

λ•r :Wr�
•
B/A →W•

r

which are compatible with R,F,V in the obvious sense and such that λ0
r : Wr(B) →W0

r is the

structure map λr of the Witt complex for each r ≥ 1.

10.3. Elementary properties of relative de Rham–Witt complexes. — In this section we
summarize various properties of relative de Rham–Witt complexes.

Lemma 10.8 (Étale base change). — Let A→R be a morphism of Z(p)-algebras, and let R′

be an étale R-algebra. The natural map

Wr�
n
R/A ⊗Wr(R) Wr

(

R′) �→Wr�
n
R′/A

is an isomorphism.
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Proof. — If p is nilpotent in S or S is F-finite, this is [52, Proposition 1.7]; this
assumption is used in [52] only to guarantee that Wr(R) → Wr(R′) is étale, which is
however always true by Theorem 10.4. Thus, one can either reduce the general case to
the F-finite case by Noetherian approximation, or observe that by Theorem 10.4, the
argument of [52] works in general. �

The next lemma complements Lemma 10.1; if I⊂R is an ideal, then we write

Wr�
n
(R,I)/A :=Ker

(

Wr�
n
R/A −→Wr�

n
(R/I)/A

)

.

Lemma 10.9 (Quotients). — Let A→R be a morphism of Z(p)-algebras, and I⊂R an ideal.

Then:

(i)
⊕

n≥0 Wr�
n
(R,I)/A is the differential graded ideal of Wr�

•
R/A generated by Wr(I).

(ii) If I is finitely generated and � ⊂ I is a finite set of generators, then the following two chains

of ideals of Wr�
•
R/A are intertwined:

〈[

as
] : a ∈�

〉

Wr�
•
R/A Wr�

•
(R,Is)/A, s ≥ 1.

Proof. — (i): Write
⊕

n≥0 W′
r�

n
(R,I)/A for the differential graded ideal of Wr�

•
R/A

generated by Wr(I); certainly W′
r�

n
(R,I)/A ⊂Wr�

n
(R,I)/A and so there is a canonical surjec-

tion

π :Wr�
•
R/A/W′

r�
•
(R,I)/A � Wr�

•
(R/I)/A.

Elements of W′
r�

n
(R,I)/A are by definition finite sums of terms of the form a0da1 · · · dan

where at least one of a0, . . . , an ∈ Wr(A) belongs to Wr(I). From this it is rela-
tively straightforward to prove that R(W′

r�
n
(R,I)/A) ⊂ W′

r−1�
n
(R,I)/A, F(W′

r�
n
(R,I)/A) ⊂

W′
r−1�

n
(R,I)/A, and V(W′

r−1�
n
(R,I)/A)⊂W′

r�
n
(R,I)/A: we refer the reader to [39, Lemma 2.4]

for the detailed manipulations, where the same result is proved for the absolute de Rham–
Witt complex. Since Wr(R)/Wr(I)=Wr(R/I) by definition, it follows that the quotients
Wr�

•
R/A/W′

r�
•
(R,I)/A, r ≥ 1, inherit the structure of an F-V-procomplex for R/I over A.

The universal property of the relative de Rham–Witt complex therefore implies that
π has a section; since π is surjective, it is therefore actually an isomorphism and so
W′

r�
•
(R,I)/A =Wr�

•
(R,I)/A, as required.

(ii): The inclusion 〈[as] : a ∈ �〉Wr�
•
R/A ⊂ Wr�

•
(R,Is)/A is clear. Conversely, in

Lemma 10.1 we proved that for each s ≥ 1 there exists t ≥ 1 such that Wr(It) ⊂
〈[as] : a ∈ �〉. It follows that any element of W′

r�
n
(R,It)/A is a finite sum of terms of the

form ω = a0da1 · · · dan where at least one of the elements a0, . . . , an ∈ Wr(R) may be
written as [as]b, with a ∈ � and b ∈ Wr(R); the Leibniz rule now easily shows that
ω ∈ 〈[as−1] : a ∈�〉Wr�

n
R/A, as required. �
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Corollary 10.10. — Let A→R be a morphism of Z(p)-algebras, and I⊂ A a finitely gener-

ated ideal. Then the canonical map of pro-differential graded-Wr(A)-algebras

{

Wr�
•
R/A ⊗Wr(A) Wr(A)/

[

Is
]}

s
−→ {Wr�

•
(R/IsR)/(A/Is)

}

s

is an isomorphism. In particular,

lim←−
s

Wr�
•
R/A ⊗Wr(A) Wr(A)/

[

Is
] �−→ lim←−

s

Wr�
•
(R/IsR)/(A/Is),

Proof. — This follows directly from part (ii) of the previous lemma, noting that
Wr�

•
(R/IsR)/A =Wr�

•
(R/IsR)/(A/Is). �

In particular, we make the following definition, where the stated equality follows
from the previous corollary applied to I= pA, and we use Lemma 10.3.

Definition 10.11. — The continuous de Rham–Witt complex of a morphism A→R of Z(p)-

algebras is given by

Wr�
i,cont
R/A = lim←−

s

Wr�
i
(R/ps)/(A/ps) = lim←−

s

Wr�
i
R/A/ps.

It would perhaps be more appropriate to let this notion depend on a choice of ideal
of definition of A, but we will only need this version in the paper. We note that Wr�

i,cont
R/A

still has the structure of an F-V-procomplex for R/A.

10.4. Relative de Rham–Witt complex of a (Laurent) polynomial algebra. — We now recall
Langer–Zink’s results concerning the relative de Rham–Witt complex of a polynomial al-
gebra A[T] := A[T1, . . . ,Td]. We will be more interested in the Laurent polynomial al-
gebra A[T±1] := A[T±1

1 , . . . ,T±1
d ], and trivially extend their results to this case by noting

that Wr�
n

A[T±1]/A
is the localization of the Wr(A[T])-module Wr�

n
A[T]/A at the non-zero-

divisors [T1], . . . , [Td] by [52, Remark 1.10].
Fix a function a : {1, . . . , d}→ p−rZ (this notation is slightly more convenient than

thinking of a as an element of p−rZd ), which is usually called a “weight”. Then we set
v(a) := mini v(a(i)), where v(a(i)) = vp(a(i)) ∈ Z ∪ {∞} is the p-adic valuation of a(i);
more generally, given a subset I ⊂ {1, . . . , d}, we define v(a|I) := mini∈I v(a(i)). Let Pa

denote the collection of disjoint partitions I0, . . . , In of {1, . . . , d} satisfying the following
conditions:

(i) I1, . . . , In are non-empty, but I0 is possibly empty;
(ii) all elements of a(Ij−1) have p-adic valuation ≤ those elements of a(Ij), for j =

1, . . . , n;
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(iii) an additional ordering condition, strengthening (ii) and only necessary in the
case that v : {1, . . . , d} → Z is not injective, to eliminate the possibility that
two different such partitions might be equal after reordering the indices; to
be precise, we fix a total ordering  a on {1, . . . , d} with the property that
v : {1, . . . , d}→ Z is weakly increasing, and then insist that all elements of Ij−1

are strictly  a-less than all elements of Ij , for j = 1, . . . , n.

Fix such a partition (I0, . . . , Id) ∈ Pa, and let ρ1 be the greatest integer between 0 and
n such that v(a|Iρ1

) < 0 (take ρ1 = 0 if there is no such integer); similarly, let ρ2 be the
greatest integer between 0 and n such that v(a|Iρ2

) <∞.
It is convenient to set u(a) :=max{−v(a),0}. Then, given x ∈Wr−u(a)(A), we de-

fine an element e(x, a, I0, . . . , In) ∈Wr�
n

A[T±1]/A
as follows:

Case 1: (I0 �= ∅) the product of the elements

V−v(a|I0 )

(

x
∏

i∈I0

[Ti]a(i)/p
v(a|I0 )

)

)

dV−v(a|Ij )
∏

i∈Ij

[Ti]a(i)/p
v(a|Ij )

j = 1, . . . , ρ1,

Fv(a|Ij )d
∏

i∈Ij

[Ti]a(i)/p
v(a|Ij )

j = ρ1 + 1, . . . , ρ2,

dlog
∏

i∈Ij

[Ti] j = ρ2 + 1, . . . , n.

Case 2: (I0 = ∅ and v(a) < 0) the product of the elements

dV−v(a|I1 )

(

x
∏

i∈I1

[Ti]a(i)/p
v(a|I1 )

)

dV−v(a|Ij )
∏

i∈Ij

[Ti]a(i)/p
v(a|Ij )

j = 2, . . . , ρ1,

Fv(a|Ij )d
∏

i∈Ij

[Ti]a(i)/p
v(a|Ij )

j = ρ + 1, . . . , ρ2,

dlog
∏

i∈Ij

[Ti] j = ρ2 + 1, . . . , n.

Case 3: (I0 = ∅ and v(a)≥ 0) the product of x ∈Wr(A) with the elements

Fv(a|Ij )d
∏

i∈Ij

[Ti]a(i)/p
v(a|Ij )

j = 1, . . . , ρ2,

dlog
∏

i∈Ij

[Ti] j = ρ2 + 1, . . . , n.
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Theorem 10.12 ([52, Proposition 2.17]). — The map of Wr(A)-modules

e :
⊕

a:{1,...,d}→p−rZ

⊕

(I0,...,In)∈Pa

Vu(a)Wr−u(a)(A)−→Wr�
n

A[T±1]/A

given by the sum of the maps

Vu(a)Wr−u(a)(A)→Wr�
n

A[T±1]/A, Vu(a)(x) �→ e(x, a, I0, . . . , In)

is an isomorphism.

Proof. — Langer–Zink prove this for A[T] in place of A[T±1], in which case p−rZ
should be replaced by p−rZ≥0. To deduce the desired result for Laurent polynomials,
recall that Wr�

n

A[T±1]/A
is the localization of the Wr(A[T])-module Wr�

n
A[T]/A at the non-

zero-divisors [T1], . . . , [Td], and hence Wr�
n

A[T±1]/A
=⋃j≥0[T1]−j · · · [Td]−jWr�

n
A[T]/A is

an increasing union of copies of Wr�
n
A[T]/A.

We also remark that Langer–Zink work with weights whose valuations are bounded
below by 1− r rather than−r; since Wr−max(r,0)(A)= 0 this means that we are only adding
redundant zero summands to the description. �

The integral part Wint
r �•

A[T±1]/A
of Wr�

•
A[T±1]/A

is its differential graded Wr(A)-

subalgebra generated by the elements [T1]±1, . . . , [Td]±1 ∈Wr(A[T±1]). In other words,
the integral part is the image of the canonical map of differential graded Wr(A)-algebras

τ :�•
Wr(A)[U±1]/Wr(A)

−→Wr�
•
A[T±1]/A

induced by Ui �→ [Ti]. We note that the integral part depends on the choice of coordi-
nates.

Theorem 10.13 ([52, Proof of Theorem 3.5]). — The map of complexes τ is an injective

quasi-isomorphism.

Proof. — In terms of the previous theorem, the image of τ is easily seen to be
the Wr(A)-submodule spanned by the weights a : {1, . . . , d} → p−rZ with v(a) ≥ 0, i.e.,
with value in Z. One then checks directly firstly that the complement, i.e., the part of
Wr�

•
A[T±1]/A

corresponding to weights with v(a) < 0, is acyclic, and secondly, by writ-

ing a similar explicit description of �•
Wr(A)[U±1]/Wr(A)

, that τ is an isomorphism onto its
image. �

10.5. The case of smooth algebras over a perfectoid base. — Finally, we want to explain
some nice features in the case where the base ring A is perfectoid, and R is a smooth
A-algebra. The next proposition will be applied in particular to the homomorphism
O→ k of perfectoid rings.
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Proposition 10.14. — Let A→ A′ be a homomorphism of perfectoid rings, and R a smooth

A-algebra, with base change R′ =R⊗A A′.

(i) The Wr(A)-modules Wr�
n
R/A and Wr(A′) are Tor-independent.

(ii) The canonical map of differential graded Wr(A′)-algebras

Wr�
•
R/A ⊗Wr(A) Wr

(

A′)→Wr�
•
R′/A′

is an isomorphism.

Proof. — Both statements can be checked locally on Spec R, so we may assume
that there is an étale map A[T±1] = A[T±1

1 , . . . ,T±1
d ] → R. In that case, Lemma 10.8

shows

Wr�
n
R/A =Wr(R)⊗Wr(A[T±1]) Wr�

n

A[T±1]/A,

and similarly

Wr�
n
R′/A′ =Wr

(

R′)⊗Wr(A′[T±1]) Wr�
n

A′[T±1]/A′ .

From Theorem 10.12, Lemma 3.13 and Remark 3.19, we see that Wr�
n

A[T±1]/A
is Tor-

independent from Wr(A′) over Wr(A), and

Wr�
n

A[T±1]/A ⊗Wr(A) Wr

(

A′)∼=Wr�
n

A′[T±1]/A′ .

As Wr(R) is flat over Wr(A[T±1]), we see that Wr�
n
R/A is Tor-independent from Wr(A′)

over Wr(A), and

Wr�
n
R′/A′ =Wr

(

R′)⊗Wr(A′[T±1]) Wr�
n

A′[T±1]/A′

=Wr(R)⊗Wr(A[T±1]) Wr

(

A′[T±1
])⊗Wr(A′[T±1]) Wr�

n

A′[T±1]/A′

=Wr(R)⊗Wr(A[T±1]) Wr�
n

A′[T±1]/A′

=Wr(R)⊗Wr(A[T±1]) Wr�
n

A[T±1]/A ⊗Wr(A) Wr

(

A′)

=Wr�
n
R/A ⊗Wr(A) Wr

(

A′),

using Theorem 10.4 in the second step. �

11. The comparison with de Rham–Witt complexes

In this section, we will give the proof of part (iv) of Theorem 9.4:



342 BHARGAV BHATT, MATTHEW MORROW, PETER SCHOLZE

Theorem 11.1. — Let R be a small formally smooth O-algebra. Then for r ≥ 1, i ≥ 0, there

is a natural isomorphism

Hi(˜Wr�R)∼=Wr�
i,cont
R/O {−i}.

We start with a general construction that starts from a complex like R�proét(X,

Ainf,X) and produces the structure of an F-V-procomplex. In this way, we define first
the elaborate structure of an F-V-procomplex on the left side, and then show that the
resulting universal map is an isomorphism (that is then automatically compatible with
the extra structure).

11.1. Constructing F-V-procomplexes. — Let S be a perfectoid ring and ξ a gen-
erator of Ker θ : Ainf(S) → S which satisfies θr(ξ) = V(1) for all r ≥ 1; in particu-
lar, θr(˜ξ) = p for all r ≥ 1. Let D ∈ D(Ainf(S)) be a commutative algebra object, with
Hi(D) =Hi(D/ξ) = 0 for i < 0, equipped with a ϕ-linear automorphism ϕD : D

�→ D.
Note that by assumption H0(D) is ξ -torsion-free, and thus also ϕr(ξ)-torsion-free for all
r ∈ Z; in particular, it is˜ξr-torsion-free for all r ≥ 1, and so Hi(D/˜ξr)= 0 for i < 0.

11.1.1. First construction. — We now present a construction of (essentially) an
F-V-procomplex from D. It is interesting to see the rather elaborate structure of an
F-V-procomplex emerge from the rather simple input that is D. It will turn out that
this preliminary construction must be refined, which will be done in the next subsection.

For each r ≥ 1 we may form the algebra D⊗L
Ainf(S),˜θr

Wr(S) over Wr(S)= Ainf(S)/˜ξr

and take its cohomology

W∗
r (D)pre :=H∗(D⊗L

Ainf(S) Ainf(S)/˜ξr

)

to form a graded Wr(S)-algebra. Equipping these cohomology groups with the Bockstein
differential d :W n

r (D)pre →W n+1
r (D)pre associated to

0−→D⊗L
Ainf(S) Ainf(S)/˜ξr

˜ξr−→D⊗L
Ainf(S) Ainf(S)/˜ξ 2

r

−→D⊗L
Ainf(S) Ainf(S)/˜ξr −→ 0

makes W∗
r (D)pre into a differential graded Wr(S)-algebra.

Now let

R′ :W∗
r+1(D)pre →W∗

r (D)pre

F :W∗
r+1(D)pre →W∗

r (D)pre

V :W∗
r (D)pre →W∗

r+1(D)pre
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be the maps of graded Wr(S)-modules induced respectively by

D⊗L
Ainf(S) Ainf(S)/˜ξr+1

ϕ−1
D−→D⊗L

Ainf(S) Ainf(S)/˜ξr

D⊗L
Ainf(S) Ainf(S)/˜ξr+1

can. proj.−→ D⊗L
Ainf(S) Ainf(S)/˜ξr

D⊗L
Ainf(S) Ainf(S)/˜ξr

ϕr+1(ξ)−→ D⊗L
Ainf(S) Ainf(S)/˜ξr+1,

cf. Lemma 3.4. Instead of R′, we will be primarily interested in

R :=˜θr(ξ)nR′ :W n
r+1(D)pre →W n

r (D)pre.

Proposition 11.2. — The groups W n
r (D)pre, together with the F, R, V, d and multiplication

maps, satisfy the following properties.

(i) W•
r (D)pre is a differential graded Wr(S)-algebra, and satisfies the (anti)commutativity

xy= (−1)|x||y|yx for homogeneous elements x, y of degree |x|, |y|;
(ii) R′ is a homomorphism of graded Wr(S)-algebras, and R is a homomorphism of differential

graded Wr(S)-algebras;

(iii) V is additive, commutes with both R′ and R, and satisfies V(F(x)y)= xV( y);

(iv) F is a homomorphism of graded rings and commutes with both R′ and R;

(v) FdV= d;

(vi) FV is multiplication by p.

We note that in general, W•
r (D)pre may fail to be a commutative differential graded

algebra, as the equation x2 = 0 for |x| odd may fail (if A is 2-adic).

Proof. — Part (i) is formal.
(ii): R′ is a homomorphism of graded rings by functoriality; the same is true of R

since it is twisted by increasing powers of an element. Moreover, the commutativity of

0 Ainf(S)/˜ξr+1

˜ξr+1

ξϕ−1

Ainf(S)/˜ξ 2
r+1

ϕ−1

Ainf(S)/˜ξr+1

ϕ−1

0

0 Ainf(S)/˜ξr

˜ξr

Ainf(S)/˜ξ 2
r Ainf(S)/˜ξr 0

and functoriality of the resulting Bocksteins implies that

W n
r+1(D)pre

d

R′

W n+1
r+1 (D)pre

˜θr(ξ)R′

W n
r (D)pre

d
W n+1

r (D)pre

commutes; hence d commutes with R.
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(iii): V is clearly additive, and it commutes with R′ since it already did so before
taking cohomology; it therefore also commutes with R. Secondly, V(F(x)y)= xV( y) fol-
lows by tensoring the commutative diagram below with D over Ainf(S) (resp. with D⊗D
over Ainf(S)⊗ Ainf(S) on the left), and passing to cohomology:

Ainf(S)/˜ξr+1 ⊗ Ainf(S)/˜ξr+1
mult

Ainf(S)/˜ξr+1

Ainf(S)/˜ξr+1 ⊗ Ainf(S)/˜ξr

id⊗ϕr+1(ξ)

can. proj.⊗id

Ainf(S)/˜ξr ⊗ Ainf(S)/˜ξr

mult
Ainf(S)/˜ξr

ϕr+1(ξ)

(iv): F is a graded ring homomorphism, and it commutes with R′ by definition, and
then also with R.

(v): This follows by tensoring the commutative diagram below with D over Ainf(S),
and looking at the associated boundary maps on cohomology:

0 Ainf(S)/˜ξr

˜ξr

Ainf(S)/˜ξ 2
r

ϕr+1(ξ)

Ainf(S)/˜ξr

ϕr+1(ξ)

0

0 Ainf(S)/˜ξr

˜ξr+1

Ainf(S)/˜ξr
˜ξr+1 Ainf(S)/˜ξr+1 0

0 Ainf(S)/˜ξr+1

˜ξr+1

can. proj.

Ainf(S)/˜ξ 2
r+1 Ainf(S)/˜ξr+1 0

(vi): This is a consequence of the assumption that ˜θr(ϕ
r+1(ξ)) = p for all r ≥ 1

(which is equivalent to θr(˜ξ)= p for r ≥ 1). �

Now suppose further that there exists an S-algebra B and Wr(S)-algebra homo-
morphisms λr :Wr(B)→W0

r (D) which are compatible with R,F,V, i.e., such that the
diagrams

Wr+1(B)

R

λr+1

H0(D/˜ξr+1)

ϕ−1
D

Wr(B)
λr

H0(D/˜ξr)

Wr+1(B)

F

λr+1

H0(D/˜ξr+1)

can. proj.

Wr(B)
λr

H0(D/˜ξr)
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Wr+1(B)
λr+1

H0(D/˜ξr+1)

Wr(B)

V

λr

H0(D/˜ξr)

ϕr+1(ξ)

commute, and which satisfy the Teichmüller rule Fdλr+1([b]) = λr([b])p−1dλr([b]) for
b ∈ B, r ≥ 1. Moreover, assume that W•

r (D)pre is a commutative differential graded al-
gebra; the only remaining issue here being the equation x2 = 0 for |x| odd.

Then the data (W•
r (D)pre,R,V,F, λr) form an F-V-procomplex for B over S,

and so there exist unique maps of differential graded Wr(S)-algebras λ•r : Wr�
•
B/A →

W•
r (D)pre which are compatible with R,F,V and satisfy λ0

r = λr .

Remark 11.3 (The need to improve the construction). — Unfortunately, from the surjec-
tivity of the restriction maps for Wr�

•
B/S and the definition of the restriction map for

W•
r (D)pre, we see that

Imλn
r ⊂
⋂

s≥1

Im
(

W n
r+s(D)pre

Rs−→W n
r (D)pre

)⊂
⋂

s≥1

˜θr(ξs)
nW n

r (D)pre,

where the right side is in practice much smaller than W n
r (D)pre. Hence W•

r (D)pre is too
large in applications: in the next section we will modify its construction to cut it down by
a carefully controlled amount of torsion.

11.1.2. Improvement. — Let D ∈D(Ainf(S)) be an algebra as above, equipped with
a Frobenius isomorphism ϕD : D

�→ D. Moreover, we assume that there is a system of
primitive p-power roots of unity ζpr ∈ S, and S is p-torsion-free, so we are in the situation
of Proposition 3.17 above. This gives rise to the element ε = (1, ζp, ζp2, . . .) ∈ S�, and
μ= [ε] − 1 ∈ Ainf(S), which is a non-zero-divisor. We let ξ = μ/ϕ−1(μ), which satisfies
the assumption θr(ξ) = V(1) for all r ≥ 1. Finally, we assume that H0(D) is μ-torsion-
free.

We can now refine the construction of W•
r (D)pre in the previous section by re-

placing D by the algebra LημD over Ainf(S), on which ϕD induces a ϕ-linear map
ϕD : LημD

∼→ Lη
˜ξ (LημD) → LημD (as Lη

˜ξLημ = Lη
˜ξμ = Lηϕ(μ)). Moreover, there is

a natural map LημD→D by Lemma 6.10, and the diagram

LημD
ϕD

LημD

D
ϕD

D

commutes.
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More precisely, we consider the cohomology groups

W n
r (D) :=Hn

(

LημD⊗L
Ainf(S) Ainf(S)/˜ξr

)

.

Equipped with the Bockstein differential, they form a differential graded Wr(S)-algebra
as before (satisfying the Leibniz rule, and the anticommutativity xy= (−1)|x||y|yx, but not
necessarily x2 = 0 for |x| odd), and the map LημD→D induces a morphism of differen-
tial graded Wr(S)-algebras

i :W•
r (D)−→W•

r (D)pre.

Moreover, letting F :W n
r+1(D)→W n

r (D) and V :W n
r (D)→W n

r+1(D) be the maps
induced respectively by

LημD⊗L
Ainf(S) Ainf(S)/˜ξr+1

can. proj.−→ LημD⊗L
Ainf(S) Ainf(S)/˜ξr

and

LημD⊗L
Ainf(S) Ainf(S)/˜ξr

ϕr+1(ξ)−→ LημD⊗L
Ainf(S) Ainf(S)/˜ξr+1,

it is clear that i commutes with F and V. It is more subtle to define R :W n
r+1(D) →

W n
r (D); in the proof below, we give a “point-set level” construction based on picking

an actual model of D as a complex. It is not clear to us whether the construction is
independent of the choice of this model, so we impose the following assumption which
helps us prove independence; it is verified in our applications.

Assumption 11.4. — For all r ≥ 1, n≥ 0, the group W n
r (D) is p-torsion-free.

Proposition 11.5. — Assume that Assumption 11.4 is verified. Then the following statements

hold.

(i) The differential graded Wr(S)-algebra W•
r (D) is commutative; in particular, it satisfies

x2 = 0 for |x| odd.

(ii) For all r ≥ 1, n≥ 0, the map W n
r (D)→W n

r (D)pre is injective.

(iii) The maps F,R : W n
r+1(D)pre → W n

r (D)pre, V : W n
r (D)pre → Wn

r+1(D)pre and

d :W n
r (D)pre →W n+1

r (D)pre induce (necessarily unique) maps F,R :W n
r+1(D)→

W n
r (D), V :W n

r (D)→Wn
r+1(D) and d :W n

r (D)→W n+1
r (D). In the case of F, V

and d, these agree with the maps described above.

(iv) The map R : W•
r+1(D) → R∗W•

r (D) is a map of differential graded Wr+1(A)-

algebras, the map F :W•
r+1(D)→ F∗W•

r (D) is a map of graded Wr+1(A)-algebras,

the map V : F∗W•
r (D)→W•

r+1(D) is a map of graded Wr+1(A)-modules, and the

identities RF= FR, RV=VR, V(F(x)y)= xV( y), FV= p and FdV= d hold.
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(v) Assume that B is an S-algebra equipped with Wr(S)-algebra maps λr : Wr(B) →
W0

r (D) for r ≥ 1, compatible with F, R and V. Then the Teichmüller identity

Fdλr+1

([b])= λr

([b])p−1
dλr

([b])

holds true for all x ∈ B, r ≥ 1. In particular, W•
r (D) forms an F-V-procomplex for B/S,

and there is an induced map

λ•r :Wr�
•
B/S →W•

r (D)

of differential graded algebras for r ≥ 1, compatible with the F, R and V maps.

Proof. — For (i), we only need to verify that x2 = 0 for |x| odd, which under the
standing assumption follows from 2x2 = 0, which is a consequence of the anticommuta-
tivity.

For part (ii), the statement does not depend on the algebra structure of D, so we
may assume that D ∈D[0,n+1](Ainf(S)) by passing to a truncation; note that this does not
change W n

r (D)pre = Hn(D/˜ξr) or W n
r (D) = Hn((LημD)/˜ξr) for any r. Then there are

maps D→ LημD, LημD→ D whose composite in either direction is multiplication by
μn+1 by Lemma 6.9. Since μ divides pr modulo˜ξr by Proposition 3.17(iv), the kernel of
the map

Hn
(

(LημD)/˜ξr

)→Hn(D/˜ξr)

is p-torsion. By our assumption, W n
r (D)=Hn((LημD)/˜ξr) is p-torsion-free, so we get the

desired injectivity.
In part (iii), it is clear that the d , F and V maps defined above commute with the

corresponding maps on W n
r (D)pre. It remains to handle the case of R, so fix n≥ 0. Note

that the definition of R depends only on D ∈ D(Ainf(S)) with the automorphism ϕD :
D

�→D, but not on the algebra structure of D. We may assume that D ∈D[0,n+1](Ainf(S)),
and then pick a bounded above representative D• of D by projective Ainf(S)-modules.
Then ϕD : D → D can be represented by a map ϕD• : D• → D•. Replacing D• by the
homotopy colimit of D• under ϕD• , we can assume that D• is a bounded above complex
of flat Ainf(S)-modules, on which there is a ϕ-linear automorphism ϕD• :D• �→D•.

Now pick an element ᾱ ∈W n
r+1(D) =Hn((ημD•)/˜ξr+1). This can be represented

by an element α ∈ μnDn with dα =˜ξr+1β for some β ∈ μn+1Dn+1. The element α′ =
˜ξ nα ∈ ϕ(μ)nDn satisfies

dα′ =˜ξ ñξr+1β ∈ ϕ(˜ξr)˜ξ
n+1μn+1Dn+1 = ϕ(˜ξr)ϕ(μ)n+1Dn+1,

so that α′ ∈ (ηϕ(μ)D)n. Thus, R(α) := ϕ−1
Dn (α′) ∈ (ημD)n, and it satisfies

d
(

R(α)
)= ϕ−1

Dn+1

(

dα′
) ∈ ϕ−1

Dn+1

(

ϕ(˜ξr)ϕ(μ)n+1Dn+1
)=˜ξrμ

n+1Dn+1,
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so that in fact d(R(α)) = 0 ∈ (ηϕ(μ)D)n+1/˜ξr . This shows that R(α) mod ˜ξr induces an
element of Hn((ημD•)/˜ξr). One checks that under the inclusion W n

r (D) ↪→W n
r (D)pre,

this is the image of ᾱ under R.
In part (iv), all statements follow formally from the results for W n

r (D)pre, and (ii).
Finally, in part (v), the Teichmüller identity always holds after multiplication by p,

cf. Remark 10.6, so that by our assumption, it holds on the nose. �

Note also that the map W n
r (D)→W n

r (D)pre has image in ˜θr(μ)nW n
r (D)pre, and is

an isomorphism if n= 0.

Remark 11.6. — Assume in addition that for all r ≥ 1, the natural map

(LημD)/˜ξr → Lημ(D/˜ξr)

is a quasi-isomorphism, as is the case for D=R�proét(X,Ainf,X) by Theorem 9.2(i), where
X is the generic fiber of X= Spf R for a small formally smooth O-algebra R. In that case,
the image of

W n
r (D)=Hn

(

(LημD)/˜ξr

) �→Hn
(

Lημ(D/˜ξr)
)→Hn(D/˜ξr)=W n

r (D)pre

is exactly ˜θr(μ)nW n
r (D)pre. Indeed, in general the image of Hn(Lηf C)→Hn(C), for C ∈

D≥0 with H0(C) being f -torsion-free, is given by f nHn(C). This makes it easy to see that
R preserves W n

r (D). Moreover, one can give a different description of the restriction map,
as follows. Indeed, composing the map

W n
r (D)=Hn

(

Lημ(D/˜ξr)
)→Hn

(

Lημ(D/˜ξr)
)

/Hn
(

Lημ(D/˜ξr)
)[˜ξ ]

=Hn
(

Lη
˜ξLημ(D/˜ξr)

)

with

Hn
(

Lη
˜ξLημ(D/˜ξr)

)=Hn
(

Lηϕ(μ)(D/˜ξr)
)→Hn

(

Lηϕ(μ)

(

D/ϕ(˜ξr−1)
))

∼=ϕ−1
Hn
(

Lημ(D/˜ξr−1)
)=W n

r−1(D)

defines the restriction map.

11.2. A realization of the de Rham–Witt complex of the torus. — Let O = OK ⊂ K be
the ring of integers in a perfectoid field K of characteristic 0 containing all p-power roots
of unity; we fix a choice of ζpr ∈ O, giving rise to the elements ε = (1, ζp, . . .) ∈ O�,
μ= [ε] − 1 ∈ Ainf =W(O�) and ξ = μ/ϕ−1(μ) as usual.

Consider the Laurent polynomial algebra

Ainf

[

U±1/p∞] := Ainf

[

U±1/p∞
1 , . . . ,U±1/p∞

d

]

.
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It admits an action of Zd =⊕d

i=1 γ Z
i , where the element γi acts by sending U1/pr

i to
[ε]1/pr

U1/pr

i , and U1/pr

j to U1/pr

j for j �= i. We consider

D=R�
(

Zd,Ainf

[

U±1/p∞]) ∈D(Ainf),

which is a commutative algebra in D(Ainf). Note that Hi(D)= 0 for i < 0, and H0(D)⊂
Ainf[U±1/p∞] is torsion-free. We will see below in Theorem 11.13 that D satisfies Assump-
tion 11.4; thus, we may apply the constructions of Section 11.1. Our goal is to prove the
following theorem.

Theorem 11.7. — There are natural isomorphisms

W n
r (D)=Hn

(

LημD⊗L
Ainf

Ainf/˜ξr

)∼=Wr�
n

O[T±1
1 ,...,T±1

d ]/O,

compatible with the d, F, R, V and multiplication maps.

We begin by computing LημD. The result will turn out to be the q-de Rham com-
plex

q -�•
Ainf[U±1]/Ainf

=
d
⊗

i=1

(

Ainf

[

U±1
i

]−→ Ainf

[

U±1
i

]

dlog Ui

)

,

Uk
i �→ [k]qUk

i dlog Ui

from Example 7.7, where q= [ε], the tensor product is taken over Ainf, and [k]q = qk−1
q−1 is

the q-analogue of the integer k ∈ Z.
Note that there is a standard Koszul complex computing D, namely the complex

D• =KAinf[U±1/p∞](γ1 − 1, . . . , γd − 1).

Recall also that there is a Frobenius automorphism ϕD of D, coming from the auto-
morphism of Ainf[U±1/p∞] which is the Frobenius of Ainf, and sends Ui to Up

i for all
i = 1, . . . , d . This automorphism ϕD of D lifts to an automorphism ϕD• of D•, given by
acting on each occurrence of Ainf[U±1/p∞]. Note that D• is a complex of free Ainf-modules,
so that one can use it to compute LημD.

Proposition 11.8. — There is a natural injective quasi-isomorphism

[ε] -�•
Ainf[U±1]/Ainf

= ηq−1KAinf[U±1](γ1 − 1, . . . , γd − 1)

→ ημD• = ηq−1KAinf[U±1/p∞](γ1 − 1, . . . , γd − 1).

Moreover, the natural map

(LημD)/˜ξr → Lη[ζpr ]−1(D/˜ξr)

is a quasi-isomorphism.
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Proof. — This is an easier version of Lemma 9.6. Note that Ainf[U±1/p∞] is naturally
Z[ 1

p
]d -graded, and this grading extends to the complex D•, giving a decomposition

D• =
⊕

a:{1,...,d}→Z[ 1
p ]

d
⊗

i=1

(

Ainf ·Ua(i)

i

γi−1−→ Ainf ·Ua(i)

i

)

.

Here, the complex

(

Ainf ·Ua(i)

i

γi−1−→ Ainf ·Ua(i)

i

)∼= (Ainf
[ε]a(i)−1−→ Ainf

)=KAinf

([ε]a(i) − 1
)

,

so that

D• =
⊕

a:{1,...,d}→Z[ 1
p ]

KAinf

([ε]a(1) − 1, . . . , [ε]a(d) − 1
)

.

Observe that if k /∈ Z, then [ε]k−1 divides μ= [ε]−1; indeed, this is clear for [ε]1/pr −1,
and in general if k = j/pr with j ∈ Z \ pZ, then [ε]k − 1 differs from [ε]1/pr − 1 by a unit.
On the other hand, if k ∈ Z, then μ= [ε] − 1 divides [ε]k − 1, with quotient [k]q, where
q= [ε].

Now, we distinguish two cases. If a(i) /∈ Z for some i, then

ημKAinf

([ε]a(1) − 1, . . . , [ε]a(d) − 1
)

is acyclic by Lemma 7.9. On the other hand, if a(i) ∈ Z for all i, then by the same lemma,

ημKAinf

([ε]a(1) − 1, . . . , [ε]a(d) − 1
)=KAinf

([

a(1)
]

q
, . . . ,

[

a(d)
]

q

)

where q = [ε]. Assembling the summands for a : {1, . . . , d} → Z gives precisely
[ε] -�•

Ainf[U±1]/Ainf
.

The final statement follows by repeating the calculation after base extension along
˜θr : Ainf →Wr(O). �

It will be useful to have an a priori description of the groups

W n
r (D)=Hn

(

(LημD)/˜ξr

)

.

Lemma 11.9. — For each n≥ 0 there is an isomorphism of Wr(O)-modules

W n
r (D)∼=

⊕

a:{1,...,d}→p−rZ

Wr−u(a)(O)(
d
n)

where u(a) is as in Section 10.4. In particular, W n
r (D) is p-torsion-free.
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Proof. — Using the interpretation of LημD as a q-de Rham complex from Propo-
sition 11.8, we have

LημD�
⊕

a:{1,...,d}→Z

d
⊗

i=1

(

Ainf ·Ua(i)

i

[a(i)]q−→ Ainf ·Ua(i)

i

)

=
⊕

a:{1,...,d}→Z

KAinf

([

a(1)
]

q
, . . . ,

[

a(d)
]

q

)

,

where as usual q= [ε]. Taking the base change along˜θr : Ainf →Wr(O), we get

LημD/˜ξr �
⊕

a:{1,...,d}→Z

KWr(O)

( [ζ a(1)
pr ] − 1

[ζpr ] − 1
, . . . ,

[ζ a(d)
pr ] − 1

[ζpr ] − 1

)

.

Since each element on the right side is divisible by
[ζ u(p−r a)

pr ]−1

[ζpr ]−1 , and at least one element
agrees with it up to a unit, it follows from Lemma 7.10(ii) that the Koszul complex in the
summand on the right side has cohomology

AnnWr(O)

( [ζ u(p−r a)

pr ] − 1

[ζpr ] − 1

)(d−1
n )
⊕
(

Wr(O)/
[ζ u(p−r a)

pr ] − 1

[ζpr ] − 1
Wr(O)

)(d−1
n−1)

.

This is isomorphic to Wr−u(p−r a)(O)(
d
n) by Corollary 3.18(iii). Renaming p−ra by a finishes

the proof. �

Remark 11.10. — It may be useful to contrast the p-torsion-freeness of W n
r (D) with

the cohomology groups W n
r (D)pre =Hn(D/˜ξr) obtained without applying Lημ, which are

well-known to contain a lot of torsion, coming from the summands parametrized by non-
integral a. This is one important motivation for introducing the improved construction
of Section 11.1.2.

In order to equip W•
r (D) with the structure of an F-V-procomplex for O[T±1]/O,

it remains to construct the maps λr :Wr(O)[T±1] →W0
r (D). This is the content of the

next lemma.

Lemma 11.11. — There is a unique collection of Wr(O)-algebra morphisms λr :
Wr(O[T±1]) →W0

r (D) for r ≥ 1, which satisfy λr([Ti]) = Ui for i = 1, . . . , d and which

commute with the F, R and V maps. Moreover, each morphism λr is an isomorphism.

Proof. — We have

W0
r (D)=H0

(

(LημD)/˜ξr

)=H0
(

Lη[ζpr ]−1(D/˜ξr)
)=H0(D/˜ξr),
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as H0(D/˜ξr) is p-torsion-free (and thus [ζpr ] − 1-torsion-free). Note that by definition of

D=R�
(

Zd,Ainf

[

U±1/p∞]),

so

H0(D/˜ξr)=Wr(O)
[

U±1/p∞]Zd

,

where γi acts by sending U1/ps

i to [ζpr+s]U1/ps

i , and U1/ps

j to U1/ps

j for j �= i; let us recall that
[ε]1/ps �→ [ζpr+s] by Lemma 3.3.

Now note that by (a renormalization of) Lemma 9.8, there is an identification

Wr(O)
[

U±1/p∞]=Wr

(

O
[

T±1/p∞]), U1/ps

i �→ [T1/pr+s

i

]

.

Under this identification, γi acts by sending T1/ps

i to ζps T1/ps

i , and T1/ps

j to T1/ps

j for j �= i; in
particular, the Zd -action on Wr(O[T±1/p∞]) is induced by an action on O[T±1/p∞], with
invariants O[T±1]. It follows that

H0(D/˜ξr)=Wr

(

O
[

T±1/p∞])Zd =Wr

(

O
[

T±1
])

,

and one verifies compatibility with F, R and V. �

Corollary 11.12. — There are unique maps

λ•r :Wr�
•
O[T±1]/O→W•

r (D)

compatible with the d, F, R, V and multiplication maps.

Proof. — This follows from Proposition 11.5(v), Lemma 11.11 and
Lemma 11.9. �

We can now state the following more precise form of Theorem 11.7.

Theorem 11.13. — For each r ≥ 1, n≥ 0, the map

λn
r :Wr�

n

O[T±1]/O→W n
r (D)

is an isomorphism.

Proof. — We first observe that the source and target of λn
r look alike. More precisely,

both admit natural direct sum decompositions according to functions a : {1, . . . , d} →
p−rZ, by Theorem 10.12 and Lemma 11.9 respectively, with similar terms. We need to
make this observation more explicit.
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Define an action of Z[ 1
p
]d =⊕d

i=1 Z[ 1
p
]γi on O[T±1] and Ainf[U±1/p∞], via O-

resp. Ainf-algebra automorphisms, by specifying that 1
pr γi acts via Ti �→ ζpr Ti and Tj �→Tj

for j �= i, resp. Ui �→ [ε]1/pr

Ui and Uj �→ Uj for j �= i. In the latter case this action is of
course extending the action of Zd on Ainf(S)[U±1/p∞] which has been considered since
the start of the section; in the former case, the action of Zd ⊂ Z[ 1

p
]d is trivial.

There are induced actions of Z[ 1
p
]d on W•

r (D) and Wr�
•
O[T±1]/O which are com-

patible with all extra structure and (thus) commute with λ•r .

Lemma 11.14. — Fix n≥ 0. Then the Wr(O)-modules W n
r (D) and Wr�

n

O[T±1]/O admit

unique direct sum decompositions of the form
⊕

a:{1,...,d}→p−rZ Ma, where

(i) the decomposition is compatible with the action of Z[ 1
p
]d , in such a way that 1

ps γi ∈ Z[ 1
p
]d

acts on Ma as multiplication by [ζ a(i)
ps ] ∈Wr(O), where ζ

a(i)
ps := ζ

pra(i)

pr+s .

(ii) each Ma is isomorphic to a finite direct sum of copies of Wr−u(a)(O);

(iii) the decompositions are compatible with λn
r .

Moreover, λn
r is an isomorphism if and only if λn

r ⊗Wr(O) Wr(k) is an isomorphism.

Remark 11.15. — The reader may worry that the description of the action in
(i) does not seem to be trivial on Zd ⊂ Z[ 1

p
]d ; however, [ζpr ]pra(i) does act trivially on

Wr−u(a)(O), and thus on Ma by (ii).

Proof. — In the case of Wr�
n

O[T±1]/O we use Theorem 10.12: by directly analyzing
Cases 1–3 of the definition of the element e(x, a, I0, . . . , In) one sees that the weight a part
of Wr�

n

A[T±1]/A
has property (i); it has property (ii) by Corollary 3.18(iii). In the case of

W n
r (D), the result follows from Lemma 11.9.

Now, knowing that both sides of the map λn
r :Wr�

•
O[T±1]/O →W n

r (D) admit de-
compositions satisfying (i) and (ii), we claim that the map is automatically compatible with
the decompositions. This follows by a standard “isotypical component argument” from
the observation that if a : {1, . . . , d} → p−rZ is non-zero and x ∈ Wj(O) is an element
fixed by [ζ a(i)

ps ] for all 1
ps γi , then x = 0; this observation is proved by noting that the hy-

potheses imply that x is killed in particular by [ζp j ] − 1, which is a non-zero-divisor of
Wj(O) by Proposition 3.17(i).

For the final statement, it suffices to prove that if f :M→ N is map between two
Wr(O)-modules M, N which are finite direct sums of copies of Wj(O) for some fixed
0 ≤ j ≤ r (regarded as Wr(O)-module via Fr−j ), and f ⊗Wr(O) Wr(k) is an isomorphism,
then so is f . To check this, we may assume that j = r. Now Wr(O) is a local ring, over
which a map of finite free modules is an isomorphism if and only if it is an isomorphism
over the residue field. �
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By the lemma, it is enough to prove that

λ
•
r := λ•r ⊗Wr(O) Wr(k) :Wr�

•
O[T±1]/O ⊗Wr(O) Wr(k)

→W n
r (D)⊗Wr(O) Wr(k)=:W n

r (D)k

is an isomorphism. By Proposition 10.14, the source

Wr�
•
O[T±1]/O ⊗Wr(O) Wr(k)=Wr�

•
k[T±1]/k

.

Lemma 11.16. — There is an isomorphism of differential graded algebras

W•
r (D)k

∼=Wr�
•
k[T±1]/k

.

In degree 0, it is compatible with the identification λ0
r ⊗Wr(O) Wr(k) :W n

r (D)k =Wr(k[T±1]).
Note that we do not a priori claim that this isomorphism is related to λ

•
r .

Proof. — First, we note that W n
r (D) is Tor-independent from Wr(O) over Wr(k)

by part (ii) of the previous lemma and Lemma 3.13; this implies that

W n
r (D)k =Hn

(

LημD⊗L
Ainf

Wr(k)
)

.

This identification is multiplicative; the differential on the left is induced from the Bock-
stein differential in the triangle

LημD⊗L
Ainf

Wr(k)
pr−→ LημD⊗L

Ainf
W2r(k)→ LημD⊗L

Ainf
Wr(k).

But one has an identification between LημD⊗L
Ainf

W(k) and �•
W(k)[T±1]/W(k)

by Proposi-
tion 11.8, noting that the q-de Rham complex becomes a usual de Rham complex over
W(k) as q = [ε] �→ 1 ∈ W(k). This identification is compatible with the multiplicative
structure. We get an isomorphism of graded algebras

W n
r (D)k =Hn

(

LημD⊗L
Ainf

Wr(k)
)=Hn

(

�•
Wr(k)[T±1]/Wr(k)

)=Wr�
n

k[T±1]/k
,

using the Cartier isomorphism [44, §III.1.5] in the last step. This identification is com-
patible with the differential, as both are given by the same Bockstein. One checks that in
degree 0, this is the previous identification. �

Thus,

λ
•
r :Wr�

•
k[T±1]/k

→W•
r (D)k

∼=Wr�
•
k[T±1]/k

can be regarded as a differential graded endomorphism of Wr�
•
k[T±1]/k

, which is the iden-
tity in degree 0. But Wr�

•
k[T±1]/k

is generated in degree 0, so it follows that the displayed

map is the identity, and so λ
•
r is an isomorphism. �
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11.3. Proof of Theorem 11.1. — Finally, we can prove part (iv) of Theorem 9.4.
Recall that this states for a small formally smooth O-algebra R, there is a natural isomor-
phism

Hi(˜Wr�R)∼=Wr�
i,cont
R/O {−i}.

Proof. — Note that we have already proved in Lemma 9.7 and Corollary 9.11 that
all

Hi(˜Wr�R)=Hi(LημD/˜ξr)

are p-torsion-free, where D=R�proét(X,Ainf,X). Moreover, we have

H0(˜Wr�R)=H0
proét

(

X,Wr

(

̂O+
X

))=Wr(R).

Thus, we can apply the machinery from Section 11.1 to get canonical maps of F-V-
procomplexes

λ•r :Wr�
•
R/O→H•(˜Wr�R).

To verify that these are isomorphisms after p-completion, we use Elkik’s theorem
[26], to choose a smooth O-algebra R0 with an étale map O[T±1] → R0 which after
p-completion gives O〈T±1〉→R, and consider the diagram

Wr�
n

O[T±1]/O ⊗Wr(O[T±1]) Wr(R0) Hn(˜Wr�O〈T±1〉)⊗Wr(O[T±1]) Wr(R0)

Wr�
n,cont
R/O Hn(˜Wr�R).

Here, the left vertical map is an isomorphism after p-completion by Lemma 10.8 (and
the equation Wr�

n,cont
R0/O =Wr�

n,cont
R/O ), the upper horizontal arrow is an isomorphism after

p-completion by Theorem 11.13, and the right vertical arrow is an isomorphism after
p-completion by Lemma 9.9.

Note that in this section, we have regarded roots of unity as fixed; undoing the
choice introduces the Breuil–Kisin–Fargues twist, as can easily be checked from the defi-
nition of the differential in Section 11.1 as a Bockstein for

0→˜ξrAinf/˜ξ
2
r Ainf → Ainf/˜ξ

2
r Ainf → Ainf/˜ξrAinf → 0.

Finally, to see that the isomorphism for r = 1 agrees with the one from Theo-
rem 8.7, it suffices to check in degree i = 1 by multiplicativity. It suffices to check on
basis elements of �

1,cont
R/O , so one reduces to the case R = O〈T±1〉, where it is a direct

verification. �
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11.4. A variant. — Let us end this section by observing that as a consequence, one
gets the following variant. Let R be a small formally smooth O-algebra as above, with X
the generic fiber of X= Spf R.

Proposition 11.17. — For any integers r ≥ 1, s ≥ 0, there is a natural isomorphism

Hi
(

Lη[ζpr+s ]−1R�proét

(

X,Wr

(

̂O+
X

)))∼=ϕs

Hi
(

˜Wr+s�R ⊗L
Wr+s(O) Wr(O)

)

∼= (Wr+s�
i,cont
R/O /VrWs�

i,cont
R/O
){−i},

where the map Wr+s(O)→Wr(O) is the restriction map.

Note that as s → ∞, the left side becomes almost isomorphic to Hi
proét(X,

Wr(̂O+
X)), so this gives an interpretation of the “junk torsion” (i.e., the cohomology of

the terms coming from non-integral exponents a in the computation) in terms of the
de Rham–Witt complex.

Proof. — The first isomorphism follows from Lemma 9.18 applied to ˜Wr+s�R and
E=Wr(O) considered as Wr+s(O)-module via restriction, as

Wr

(

̂O+
X

)∼=Wr+s

(

̂O+
X

)⊗L
Wr+s(O) Wr(O)

by Lemma 3.13. For the identification with de Rham–Witt groups, note that there is an
exact triangle

˜Ws�R
ϕs+1(ξ)···ϕs+r(ξ)−→ ˜Wr+s�R → ˜Wr+s�R ⊗L

Wr+s(O) Wr(O),

as one has a short exact sequence

0→Ws(O)
ϕs+1(ξ)···ϕs+r(ξ)−→ Wr+s(O)→Wr(O)→ 0,

and ˜Ws�R = ˜Wr+s�R ⊗L
Wr+s(O),Fr Ws(O). Passing to cohomology, we get a long exact

sequence

· · · →Ws�
n,cont
R/O {−i} Vr−→Wr+s�

n,cont
R/O {−i}

→Hn
(

˜Wr+s�R ⊗L
Wr+s(O) Wr(O)

)→ ·· · .

As Vr is injective (since FrVr = pr and the groups are p-torsion-free), this splits into short
exact sequences, giving the result. �
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12. The comparison with crystalline cohomology over Acrys

Let X/O be a smooth p-adic formal scheme, and let Y = X ×SpfO SpecO/p be
the fiber modulo p of X. Note that this is a large nilpotent thickening of the special fiber
X×SpfO Spec k.

Let u : (Y/Zp)crys → YZar = XZar be the canonical map from the (absolute) crys-
talline site of Y down to the Zariski site. Recall that Acrys is the universal p-adically
complete PD thickening of O/p (compatible with the PD structure on Zp), so we have
(Y/Zp)crys = (Y/Acrys)crys, and for psychological reasons we prefer the second interpreta-
tion. Recall that we have defined A�X = Lημ(Rν∗Ainf,X), where X is the generic fiber
of X. Our goal is to prove the following comparison result:

Theorem 12.1. — There is a canonical isomorphism

A�X
̂⊗AinfAcrys �Ru∗Ocrys

Y/Acrys

in D(XZar). In particular, if X is qcqs, this gives an isomorphism

R�(X,A�X)̂⊗AinfAcrys �R�crys(Y/Acrys).

The first step of the proof is to construct the identification locally using a framing of
X in Section 12.1. To globalize, in Section 12.2, we reinterpret the previous identification
in a choicefree fashion: instead of working with étale maps (i.e., the framing) attached to a
finite set of units, we work with closed immersions provided by working with “all possible
units”; this gives a strictly functorial isomorphism, and thus globalizes.

12.1. The local isomorphism. — We start by verifying the assertion in the case X=
Spf R for a small formally smooth O-algebra R, with a fixed framing

� : Spf R→ SpfO
〈

T±1
1 , . . . ,T±1

d

〉= SpfO
〈

T±1
〉

.

The isomorphism will a priori be noncanonical.
Recall that in this situation we have a formally smooth Ainf-algebra A(R)�, with

A(R)�/ξ = R; more precisely, it is formally étale over Ainf〈U±1〉. The action of � =
Zp(1)d which lets the basis vector γi ∈ � act by sending Ui to [ε]Ui and Uj to Uj for j �= i

lifts uniquely to an action on A(R)�, and we have the q-derivatives

∂q

∂q log(Ui)
= γi − 1
[ε] − 1

: A(R)� → A(R)�.

This gives rise to the q-de Rham complex

q -�•
A(R)�/Ainf

=KA(R)�

(

∂q

∂q log(U1)
, . . . ,

∂q

∂q log(Ud)

)

.
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On the other hand, we have the usual de Rham complex

�•
A(R)�/Ainf

=KA(R)�

(

∂

∂ log(U1)
, . . . ,

∂

∂ log(Ud)

)

written using the basis dlog(U1), . . . ,dlog(Ud) of �
1,cont
A(R)�/Ainf

. Also, define the Acrys-

algebra Acrys(R)� = A(R)�
̂⊗AinfAcrys; then

�•
A(R)�/Ainf

̂⊗AinfAcrys
∼=�•

Acrys(R)�/Acrys
.

Before go on, we observe a few facts about elements of Acrys.

Lemma 12.2. — Let q= [ε] ∈ Acrys as usual.

(i) The element
(q−1)p−1

p
lies in Acrys, and it is topologically nilpotent in the p-adic topology.

(ii) For any n≥ 0, the element
(q−1)n

(n+1)! lies in Acrys, and converges to 0 in the p-adic topology as

n→∞.

(iii) The element log(q) ∈ Acrys can be written as log(q)= (q− 1)u for some unit u ∈ Acrys.

In particular, the elements

log(q)n

n!(q− 1)
= un (q− 1)n−1

n!
lie in Acrys, and converge to 0 in the p-adic topology.

Proof. — For (i), note that ξ = q−1
q1/p−1 lies in Ker θ : Acrys →O. Thus, ξ p

p
∈ Acrys. On

the other hand, ξ p ≡ (q − 1)p−1 mod p, already in Ainf. Therefore, (q−1)p−1

p
∈ Acrys. As it

lies in the kernel of θ : Acrys →O, it has divided powers, and in particular is topologically
nilpotent.

For part (ii), let m= " n

p−1#. Then by part (i)

(q− 1)m(p−1)

pm
∈ Acrys

converges to 0 as m→∞. But note that the p-adic valuation of (n+ 1)! is bounded by m.
Thus,

(q− 1)n

(n+ 1)! = (q− 1)n−m(p−1) pm

(n+ 1)!
(q− 1)m(p−1)

pm
∈ Acrys,

where each factor lies in Acrys, and the last factor converges to 0.



INTEGRAL p-ADIC HODGE THEORY 359

Finally, for part (iii), write

log(q)= (q− 1)

(

1+
∑

n≥1

(−1)n

n+ 1
(q− 1)n

)

.

We claim that the sum is topologically nilpotent. As all the terms with n≥ p are divisible
by p by (ii), it suffices to check that the terms with n < p are topologically nilpotent. This
is clear if n < p − 1, as q − 1 is topologically nilpotent, and for n = p − 1, it follows
from (i). �

In the sequel, the following torsionfreeness property of Acrys(R)� shall be used
freely.

Lemma 12.3. — The ring Acrys(R)� is μ-torsionfree.

Proof. — Let us first note that Acrys(R)� is the derived p-completion of a free Acrys-
module: by base change (first along Ainf → Acrys and then along Ainf →O), this reduces
to showing that R is the derived p-completion of a free O-module. As both R and O are
p-torsionfree, it suffices to show any smooth O/p-algebra S is free as a O/p-module. But
this is clear: any such S is the base change of a smooth algebra defined over an artinian
subring of O/p (as O/p is 0-dimensional and thus a direct limit of its artinian subrings),
and any flat module over an artinian ring is free.

We now show Acrys(R)�[μ] = 0 by showing that the Koszul complex
Kos(Acrys(R)�;μ) has no H1. By the previous paragraph, the complex Kos(Acrys(R)�;μ)

is the derived p-completion of a complex of the form Kos(⊕IAcrys;μ) for some set I.
Since Acrys is itself μ-torsionfree, we have Kos(⊕IAcrys;μ) � ⊕IAcrys/μ via projection
to H0. We are thus reduced to showing that H1(̂⊕IAcrys/μ) = 0, where ̂⊕ denotes the
derived p-completion of the direct sum. By general properties of derived completions of
abelian groups, this H1 is identified with the p-adic Tate module Tp(⊕IAcrys/μ). But the
obvious map Tp(⊕IAcrys/μ)→∏I Tp(Acrys/μ) is trivially injective, and Tp(Acrys/μ)= 0
as Acrys/μ is already derived p-complete, so we get the desired vanishing. �

The following formula expresses the q-derivative in terms of the derivative, via a
Taylor expansion.

Lemma 12.4. — One has an equality of endomorphisms of Acrys(R)�,

∂q

∂q log(Ui)
= log(q)

q− 1
∂

∂ log(Ui)
+ log(q)2

2(q− 1)

(

∂

∂ log(Ui)

)2

+ · · ·

=
∑

n≥1

log(q)n

n!(q− 1)

(

∂

∂ log(Ui)

)n

.



360 BHARGAV BHATT, MATTHEW MORROW, PETER SCHOLZE

Proof. — As Acrys(R)� is μ-torsionfree, the formula is equivalent to the formula

γi =
∑

n≥0

log(q)n

n!
(

∂

∂ log(Ui)

)n

= exp
(

log(q)
∂

∂ log(Ui)

)

.

To check this formula, we must show that the right side is a well-defined continuous Acrys-
algebra endomorphism of Acrys(R)�, reducing to the identity on R= Acrys(R)�⊗Acrys,θ O,
and that the identity holds in the case R=O〈T±1〉 (as these properties determine γi ).

The formula is well-defined by Lemma 12.2. Moreover, it defines a continuous
Acrys-linear map. Multiplicativity follows from standard manipulations. Also, after base
extension along θ : Acrys →O, log(q) vanishes, and the formula reduces to 1= 1. Finally,
we need to check the action on the Uj is correct. Certainly, the right side leaves Uj for
j �= i fix. It sends Ui to

∑

n≥0

log(q)n

n! Ui = qUi,

as desired. �

Corollary 12.5. — There is an isomorphism of complexes

q -�•
A(R)�/Ainf

̂⊗AinfAcrys
∼=�•

Acrys(R)�/Acrys

inducing the identity A(R)�
̂⊗AinfAcrys = Acrys(R)� in degree 0.

Note that as Acrys(R)� is a (formally) smooth lift of R/p from O/p to Acrys, the right
side computes R�crys((Spec R/p)/Acrys). Also recall from Lemma 9.6 that q -�•

A(R)�/Ainf
computes A�R. Thus, the proposition verifies the existence of some isomorphism as in
Theorem 12.1 in this case. We note that the isomorphism of complexes will not be an
isomorphism of differential graded algebras (as the left side is non-commutative, but the
right side is commutative).

The isomorphism constructed in the proof will agree with the canonical isomor-
phism from Theorem 12.1 in the derived category.

Proof. — For each i, one can write

∂q

∂q log(Ui)
= ∂

∂ log(Ui)

(

log(q)
q− 1

+
∑

n≥2

log(q)n

n!(q− 1)

(

∂

∂ log(Ui)

)n−1)

,

where the second factor is invertible. Indeed, log(q)
q−1 is invertible, and log(q)n

n!(q−1)
∈ Acrys is topo-

logically nilpotent and converges to 0 by Lemma 12.2.
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In general, if gi , i = 1, . . . , d , are commuting endomorphisms of M, and hi , i =
1, . . . , d , are automorphisms of M commuting with each other and with the gi , then

KM(g1h1, . . . , gdhd)∼=KM(g1, . . . , gd).

Applying this in our case with M = Acrys(R)�, gi = ∂

∂ log(Ui)
and gihi = ∂q

∂q log(Ui)
, where hi

itself is given by the formula above, we get the result. �

12.2. The canonical isomorphism. — In this subsection, we modify the construction
of the previous subsection to construct specific complexes computing R�crys(Spec(R/p)/

Acrys,O) and A�R̂⊗AinfAcrys, and a map of complexes between them, which is a quasi-
isomorphism. These explicit complexes, and the map between them, will be functorial
in R, and thus globalize.

Let R/O be a formally smooth O-algebra. Assume that R is small, i.e., there is an
étale map Spf R→ ̂Gd

m. Here, we assume additionally that there is a closed immersion
Spf R⊂ ̂Gn

m for some n≥ d ; let us call such R very small. Of course, any formally smooth
O-algebra R is locally on (Spf R)Zar very small.

The (simple) idea is to extra roots not just of some system of coordinates, but instead
of any sufficiently large set of invertible functions on R. Thus, fix any finite set � ⊂ R×

of units of R such that the induced map Spf R→ ̂Gn
m, n = |�|, is a closed embedding,

and there is some subset of d elements of � for which the induced map Spf R→ ̂Gd
m is

étale. Let S� be the group algebra over Acrys of the free abelian group
⊕

u∈� Z generated
by the set �; for u ∈ �, we write xu ∈ S� for the corresponding variable. This gives a
torus Spec(S�) over Acrys. There is an obvious map S�⊗Acrys O→R sending xu to u, and
we get a natural closed immersion Spec(R/p)⊂ Spec(S�) by assumption on R. Let D�

be the p-adically completed PD envelope (compatible with the PD structure on Acrys) of
S� →R/p; as R/p is smooth over O/p, D� is flat over Zp.

Let S� → S∞,� be the map on group algebras corresponding to the map

⊕

u∈�

Z→
⊕

u∈�

Z
[

1
p

]

of abelian groups, so there is a well-defined element xk
u ∈ S∞,� for each u ∈ � and k ∈

Z[ 1
p
], extending the obvious meaning in S� if k ∈ Z. Using this, let R∞,� be the p-adic

completion of the normalization of R in (R⊗S�
S∞,�)[ 1

p
]. Note that R∞,� is perfectoid.

There is a natural map S� → Ainf(R∞,�) sending xu to [u�], where u� = (u, u1/p,

u1/p2
, . . .) ∈ R�

∞,� is a well-defined element, as we have freely adjoined p-power roots
of u. This extends to a map D� → Acrys(R∞,�/p) by passing to p-adically complete PD
envelopes. Here, Acrys(R∞,�/p) denotes the universal p-adically complete PD thickening
of R∞,�/p compatible with the PD structure on Zp; equivalently,

Acrys(R∞,�/p)= Ainf(R∞,�)̂⊗AinfAcrys.
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Let � =∏u∈� Zp(1) be the corresponding profinite group, so there is a natural
�-action on S� , D� , S∞,� and R∞,� . Explicitly, if one fixes primitive p-power roots
ζpr ∈O, giving rise to [ε] ∈ Ainf, then the generator γu ∈ � corresponding to u ∈ � acts
on S∞,� by fixing x1/pr

v ∈ S for u �= v ∈�, and sends x1/pr

u to [ε]1/pr · x1/pr

u .
Let Lie� ∼=∏u∈� Zp(1) denote the Lie algebra of �. In this simple situation of an

additive group, this is just the same as �, and there is a natural “exponential” isomor-
phism e : Lie� ∼= � (which is just the identity

∏

u∈� Zp(1)=∏u∈� Zp(1)).

Lemma 12.6. — There is a natural action of Lie� on D� , via letting g ∈ Lie� (with

γ = e(g) ∈ �) act via the derivation

g = log(γ )=
∑

n≥1

(−1)n−1

n
(γ − 1)n.

One can recover the action of � on D� from the action of Lie� by the formula

γ = exp(g)=
∑

n≥0

gn

n! .

Moreover, the action of the basis vector gu ∈ Lie� corresponding to u ∈ � (and a choice of

primitive p-power roots of unity) is given by log([ε]) ∂

∂ log(xu)
; recall here that the derivations ∂

∂ log(xu)
of

S� extend uniquely to continuous derivations of the p-adically completed PD envelope D� .

Proof. — Note first that γ − 1 takes values in ([ε] − 1)D� . Indeed, acting on S� ,
it is clear that γ − 1 takes values in ([ε] − 1)S� . Now, if x ∈ S� lies in the kernel of
S� → R/p with divided power xn

n! ∈ D� , then γ x = x + ([ε] − 1)y for some y ∈ S� , and
thus

γ

(

xn

n!
)

= (x+ ([ε] − 1)y)n

n!

=
n
∑

m=0

xn−m

(n− m)!
([ε] − 1)mym

m!

= xn

n! +
([ε] − 1

)

n
∑

m=1

xn−m

(n− m)!
([ε] − 1)m−1

m! ym

∈ xn

n! +
([ε] − 1

)

D�,

where we use that ([ε]−1)m−1

m! ∈D� by Lemma 12.2.
Therefore, the n-fold composition (γ − 1)n takes values in ([ε] − 1)nD� . The el-

ement ([ε]−1)n

n
lies in D� and converges to 0 as n→∞; this shows that the formula for

log(γ ) converges to an endomorphism of D� , which in fact takes values in ([ε] − 1)D� .
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For this last observation, use that in fact ([ε]−1)n−1

n
lies in D� , by Lemma 12.2. Similarly, us-

ing the same lemma, one checks that exp(g) converges. To verify the identity γ = exp(g),
note that exp(g) defines a continuous Acrys-algebra endomorphism; it is then enough to
check the behavior on the elements xu, which is done as in the proof of Lemma 12.4
above.

By uniqueness, the formula for the action of Lie� can be checked on S� . This
decomposes into a tensor product of Laurent polynomial algebras in one variable, so it
suffices to check the similar assertion for the action of Zp(1) on Acrys[X±1]. Here,

g
(

Xi
)=
∑

n≥1

(−1)n−1

n

([ε]i − 1
)n

Xi = log
([ε]i)Xi = i log

([ε])Xi. �

Corollary 12.7. — Consider the Koszul complex

KD�

(

(gu)u∈�

)

corresponding to D� and the endomorphisms gu for all u ∈ �; it computes the Lie algebra cohomology

R�(Lie�,D�).

(i) There is a natural isomorphism of complexes

KD�

((

∂

∂ log(xu)

)

u∈�

)

∼= ημKD�

(

(gu)u∈�

)

.

Here, the left side computes R�crys(Spec(R/p)/Acrys,O).

(ii) There is a natural isomorphism of complexes

KD�

(

(gu)u∈�

)∼=KD�

(

(γu − 1)u∈�

)

,

where the right side computes R�cont(�,D�).

In particular, there is a natural map

α0
R :KD�

((

∂

∂ log(xu)

)

u∈�

)

→ ημKD�

(

(γu − 1)u∈�

)

→ ημKAcrys(R∞,�/p)

(

(γu − 1)u∈�

)

,

where the source computes R�crys(Spec(R/p)/Acrys,O).

We note that a similar passage between group cohomology and Lie algebra coho-
mology also appears in the work of Colmez–Niziol [20].

Again, the isomorphism in (ii) is not compatible with the structure of differential
graded algebras. However, the left side is naturally a commutative differential graded
algebra, and one can check that it models the E∞-algebra R�cont(�,D�).
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Proof. — By the formula gu = log(μ) ∂

∂ log(xu)
and the observation that log(μ)= μv

for some unit v ∈ Acrys, cf. Lemma 12.2, part (i) follows from Lemma 7.9.
For part (ii), one uses that gu = (γu − 1)hu for some automorphism hu of D� com-

muting with everything else, as in the proof of Corollary 12.5 above. �

The map α0
R is essentially the map we wanted to construct, but unfortunately we

do not know whether the target actually computes A�R
̂⊗L

AinfAcrys. The problem is that
Acrys is a rather ill-behaved ring, and notably Acrys/μ is not p-adically separated. However,
we have the following lemma.

Lemma 12.8. — Let A(m)
crys ⊂ Acrys be the p-adic completion of the Ainf-subalgebra generated by

ξ j

j! for j ≤ m, so that Acrys is the p-adic completion of lim−→m
A(m)

crys.

(i) If m≥ p2, then˜ξr = prv for some unit v ∈ A(m)
crys, and Lemma 12.2 holds true with A(m)

crys
in place of Acrys.

(ii) The systems of ideals ({x | μx ∈ prA(m)
crys})r and (prA(m)

crys)r are intertwined.

(iii) The intersection

⋂

r

μ

ϕ−r(μ)
A(m)

crys = μA(m)
crys.

(iv) For any m≥ p2, the natural map

(

ημKAinf(R∞,�)

(

(γu−1)u∈�

))

̂⊗L
AinfA

(m)
crys → ημKAinf(R∞,�)̂⊗Ainf A

(m)
crys

(

(γu−1)u∈�

)

is a quasi-isomorphism. Here, the left side computes A�R
̂⊗L

AinfA
(m)
crys.

(v) Under the identification Acrys(R∞,�/p)= Ainf(R∞,�)̂⊗AinfAcrys, the map

α0
R :KD�

((

∂

∂ log(xu)

)

u∈�

)

→ ημKAcrys(R∞,�/p)

(

(γu − 1)u∈�

)

of complexes factors canonically over a map of complexes

αR :KD�

((

∂

∂ log(xu)

)

u∈�

)

→ (lim−→
m

ημKAinf(R∞,�)̂⊗Ainf A
(m)
crys

(

(γu−1)u∈�

))∧
p
,

where the left side computes R�crys(Spec(R/p)/Acrys) as before, and the right side com-

putes A�R
̂⊗L

AinfAcrys.

Proof. — For part (i), the arguments given in the case of Acrys work as well for
A(m)

crys. For parts (ii) and (iii), we approximate the situation by noetherian subrings. More
precisely, consider A0 = Zp �T� ⊂ Ainf, where T is sent to [ε]1/p. Then the element μ ∈ Ainf

is the image of Tp − 1, and ξ is the image of ξ0 = Tp−1 + · · · + T + 1 ∈ A0. One can
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then define analogues A0,crys, A(m)

0,crys of Acrys and A(m)
crys; for example, Acrys is the p-adic

completion of the PD envelope of A0 → A0/ξ0. Then Acrys = A0,cryŝ⊗A0Ainf and A(m)
crys =

A(m)

0,cryŝ⊗A0Ainf. As Ainf is topologically free over A0, it suffices to prove the analogue of (ii)
for A(m)

0,crys. But A(m)

0,crys is a noetherian ring. Thus, the Artin–Rees lemma for the inclusion
(Tp − 1)A(m)

0,crys ⊂ A(m)

0,crys and the p-adic topology gives (ii).
Part (iii) is equivalent to the statement

⋂

r

μ

ϕ−r(μ)
A(m)

crys/μ= 0.

But by part (ii), A(m)
crys/μ= lim←−s

A(m)
crys/(μ, ps), so it suffices to prove the similar statement for

A(m)
crys/(μ, ps). Now note that

A(m)
crys/
(

μ, ps
)= A(m)

0,crys/
(

Tp − 1, ps
)⊗A0/(Tp−1,ps) Ainf/

(

μ, ps
)

.

We claim that more generally, for any A0/(Tp − 1, ps)-module M, there are no elements
in

M⊗A0/(Tp−1,ps) Ainf/
(

μ, ps
)

that are killed by ϕ−r(μ) for all r ≥ 1. Assume that x was such an element. In particular,
x is killed by q− 1, so as Ainf/(μ, ps) is flat over A0/(Tp − 1, ps), x lies in M′ ⊗A0/(Tp−1,ps)

Ainf/(μ, ps), where M′ ⊂ M is the T − 1-torsion submodule. We can then assume that
M =M′ is T − 1-torsion, i.e. an A0/(T − 1, ps) = Z/psZ-module. We can also assume
that px= 0; if not, replace x by pix with i maximal such that pix �= 0. In that case, we can
assume that M is p-torsion, and thus an Fp-vector space. Finally, it remains to see that

Fp ⊗A0/(Tp−1,ps) Ainf/
(

μ, ps
)= Ainf/

(

ϕ−1(μ), p
)=O�/

(

ε1/p − 1
)

has no elements killed by all ε1/pr − 1, which is clear.
For part (iv), pick an étale map � : Spf R→ SpfO〈T±1

1 , . . . ,T±1
d 〉, corresponding

to fixed units u1, . . . , ud ∈�; this exists by choice of �. This gives rise to R∞ ⊂R∞,� , on
which the quotient

∏d

i=1 Zp(1) of � acts.
The proof of Proposition 9.14 shows that

ημKAinf(R∞)

(

(γui
− 1)i=1,...,d

)→ ημKAinf(R∞,�)

(

(γu − 1)u∈�

)

is a quasi-isomorphism (in particular, the right side computes A�R), and the proof of
Lemma 9.6 shows that

(

ημKAinf(R∞)

(

(γui
− 1)i=1,...,d

))

̂⊗L
AinfA

(m)
crys

→ ημKAinf(R∞)̂⊗Ainf A
(m)
crys

(

(γui
− 1)i=1,...,d

)

is a quasi-isomorphism.
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It remains to see that

ημKAinf(R∞)̂⊗Ainf A
(m)
crys

(

(γui
− 1)i=1,...,d

)→ ημKAinf(R∞,�)̂⊗Ainf A
(m)
crys

(

(γu − 1)u∈�

)

is a quasi-isomorphism. This can be proved using Lemma 9.12 (one does not need a vari-
ant for A(m)

crys). Let C• =KAinf(R∞)̂⊗Ainf A
(m)
crys

((γui
−1)i=1,...,d) and D• =KAinf(R∞,�)̂⊗Ainf A

(m)
crys

((γu−
1)u∈�). Condition (i) is immediate from Faltings’ almost purity, and condition (iii) is proved
like Lemma 9.13, using part (iii) of the current lemma. Finally, in order to verify the in-
jectivity condition (ii) of Lemma 9.12, we will momentarily prove that the map

LημC• →R lim←−
r

(

Lημ

(

C•/˜ξr

))

is a quasi-isomorphism, and for each r, Lημ(C•/ξr) → Lημ(D•/ξr) is a quasi-iso-
morphism; the commutative diagram

LημC• LημD•

R lim←−r
(Lημ(C•/˜ξr)) R lim←−r

(Lημ(D•/˜ξr))

then proves the desired injectivity. Note that Lemma 9.18 shows that

Lημ

(

D•/ξr

)� Lημ

(

C•/ξr

)� ˜Wr�R
̂⊗L

Wr(O)Lημ

(

A(m)
crys/
˜ξr

)

� A�R
̂⊗L

AinfLημ

(

A(m)
crys/
˜ξr

)

,

and, as Lημ(A(m)
crys/
˜ξr) = A(m)

crys/{x | μx ∈˜ξrA(m)
crys}, parts (i) and (ii) show that (as A�R is

derived p-complete)

R lim←−
r

(

A�R
̂⊗L

AinfLημ

(

A(m)
crys/
˜ξr

))= A�R
̂⊗L

AinfA
(m)
crys.

For part (v), one can write D� similarly as the p-adic completion of the union of
p-adically complete subrings D(m)

� ⊂D� , where D(m)

� ⊂D� only allows divided powers of
order at most m. Following the construction of α0

R through with D(m)

� in place of D� gives,
for m large enough, maps from KD(m)

�
(( ∂

∂ log(xu)
)u∈�) to ημKAinf(R∞,�)̂⊗Ainf A

(m)
crys

((γu − 1)u∈�).
Passing to the direct limit over m and p-completing gives the desired map αR. �

To finish the proof of Theorem 12.1, it remains to prove that αR is a quasi-
isomorphism: Passing to the filtered colimit over all sufficiently large �, all our con-
structions become strictly functorial in R, and thus immediately globalize.
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Proposition 12.9. — The map

αR :KD�

((

∂

∂ log(xu)

)

u∈�

)

→ (lim−→
m

ημKAinf(R∞,�)̂⊗Ainf A
(m)
crys

(

(γu − 1)u∈�

))∧
p

is a quasi-isomorphism.

Proof. — Pick an étale map � : Spf R→ SpfO〈T±1
1 , . . . ,T±1

d 〉 as in the previous
proof. We get a diagram

Spec R/p Spf Acrys(R)�

�

Spf D� Spf Acrys〈T±1
1 , . . . ,T±1

d 〉.

As Spf D� is a (pro-)thickening of Spec R/p, the infinitesimal lifting criterion for (for-
mally) étale maps shows that there is a unique lift Spf D� → Spf Acrys(R)� making the
diagram commute. One can then redo the construction of αR using only the coordinates
T1, . . . ,Td , and (using notation from the previous proof) one gets a commutative diagram

KAcrys(R)�(( ∂
∂ log(Ti)

)i=1,...,d) (lim−→m
ημKAinf(R∞)̂⊗Ainf A

(m)
crys

((γui
− 1)i=1,...,d))

∧
p

KD� (( ∂
∂ log(xu)

)u∈�)
αR

(lim−→m
ημKAinf(R∞,�)̂⊗Ainf A

(m)
crys

((γu − 1)u∈�))∧p .

Here, the right vertical map is a quasi-isomorphism, as was proved in the pre-
vious proof, and the left vertical map is a quasi-isomorphism, as both compute
R�crys(Spec(R/p)/Acrys,O). Finally, the upper horizontal map is a quasi-isomorphism
by Corollary 12.5 (noting that in this situation, the map

(

lim−→
m

ημKAinf(R∞)̂⊗Ainf A
(m)
crys

(

(γui
−1)i=1,...,d

))∧
p
→ ημKAcrys(R∞/p)

(

(γui
−1)i=1,...,d

)

is a quasi-isomorphism, as both sides compute A��
R
̂⊗L

AinfAcrys). �

12.3. Multiplicative structures. — The previous discussion had the defect that it was
not compatible with the structure of differential graded algebras. Let us note that this
is a defect of the explicit models we have chosen. More precisely, we claim that the
isomorphism of Theorem 12.1 can be made into an isomorphism of (sheaves of) E∞-
Acrys-algebras. For this discussion, we admit that Lη can be lifted to a lax symmet-
ric monoidal functor on the level of symmetric monoidal ∞-categories. Then A�R =
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LημR�proét(X,Ainf,X) is an E∞-Ainf-algebra, and we want to show that

R�crys

(

Spec(R/p)/Acrys,O
)∼= A�R

̂⊗L
AinfAcrys

as E∞-Acrys-algebras, functorially in R. This implies formally the global case (as the E∞-
structure encodes all the information necessary to globalize).

We want to redo the construction of the previous section by replacing all Koszul
complexes computing group cohomology by the E∞-algebra R�cont(�,−). This has the
advantage of keeping more structure, but the disadvantage that we have no explicit com-
plexes anymore. However, the construction of the map α0

R in Corollary 12.7 is done in
two steps: Part (i) is an isomorphism of commutative differential graded algebras, which
gives an isomorphism of E∞-algebras. On the other hand, part (ii) can be checked with-
out reference to explicit models, and indeed one can check directly that the commutative
differential graded algebra KD�

((gu)u∈�) models the E∞-algebra R�cont(�,D�). These
steps work exactly the same with D(m)

� in place of D� . As the final map

LημR�cont

(

�,D(m)

�

)→ LημR�cont

(

�,Ainf(R∞,�)̂⊗AinfA
(m)
crys

)

is a map of E∞-algebras, this gives (by passing to the filtered colimit over all sufficiently
large �) the desired functorial map of E∞-Acrys-algebras

αR :R�crys

(

Spec(R/p)/Acrys,O
)→ A�R

̂⊗L
AinfAcrys,

which we have already proved to be an equivalence.

13. Rational p-adic Hodge theory, revisited

Let C be an algebraically closed complete extension of Qp, with ring of integers O
and residue field k as usual. The goal of this section is to prove a de Rham comparison
theorem for rigid spaces over C. As the continuous projection B+dR → C does not admit
a continuous section, the usual formulation of the de Rham comparison theorem does
not make sense in this case. On the other hand, as the map B+dR → C can be regarded
as pro-infinitesimal thickening of C, one has a well-behaved crystalline cohomology for
proper smooth C-schemes taking values in B+dR-modules, and deforming usual de Rham
cohomology along B+dR →C. It is then natural to wonder if this deformation of de Rham
cohomology to B+dR can be compared with étale cohomology. The primary goal of this
section is to explain how to construct this deformation more generally for proper smooth
rigid spaces, and to prove the de Rham comparison theorem:

Theorem 13.1. — Let X be a proper smooth adic space over C. Then there are cohomology

groups Hi
crys(X/B+dR) which come with a canonical isomorphism

Hi
crys

(

X/B+dR

)⊗B+dR
BdR

∼=Hi
ét(X,Zp)⊗Zp

BdR.
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In case X = X0̂⊗KC arises via base change from some complete discretely valued extension K of Q p

with perfect residue field, this isomorphism agrees with the comparison from Theorem 5.1 above, under

the identification

Hi
crys

(

X/B+dR

)=Hi
dR(X0)⊗K B+dR

of Remark 13.20 below.

Our strategy is to define a cohomology theory R�crys(X/B+dR) for any smooth adic
space X by imitating one possible definition of crystalline cohomology, namely, in terms
of de Rham complexes of formal completions of embeddings of X into smooth spaces
over B+dR; in order to get a strictly functorial theory, we simply take the colimit over all
possible choices of embeddings.

More precisely, for any smooth affinoid C-algebra R equipped with a suffi-
ciently large finite subset � of units in R◦, we consider the canonical surjective map
B+dR〈(X±1

u )u∈�〉 → R, viewed roughly as (dual to) an embedding of Spa(R,R◦) into a
smooth rigid space over B+dR; the precise language to set this up involves taking a limit
over n of “rigid geometry over B+dR/ξ n”, and is set up in Lemma 13.4. The completion
D�(R) of B+dR〈(X±1

u )u∈�〉 along the kernel of this map is then shown to be a well-behaved
object, roughly analogous to the formal completion of the afore-mentioned embedding;
the precise statement is recorded in Lemma 13.12, and the proof entails approximat-
ing our smooth C-algebra R in terms of smooth algebras defined over a much smaller
base A. The de Rham complex �•

D�(R)/B+dR
is then shown to be independent of � up to

quasi-isomorphism in Lemma 13.13; the key point here is that �•
D�(R)/B+dR

/ξ is canonically
identified up to quasi-isomorphism with �•

R/C, which is obviously independent of �. Tak-
ing a filtered colimit over all possible choices of � then gives a functorial (in R) complex,
independent of all choices. For a general smooth adic space X over C, this construction
gives a presheaf of complexes on a basis of X whose hypercohomology is (by definition)
R�crys(X/B+dR); when X is proper, this theory is then shown to satisfy Theorem 13.1.

Remark 13.2. — It is probably possible to develop a full-fledged analogue of the
crystalline site in this context (which actually reduces to the infinitesimal site), replac-
ing the usual topologically nilpotent thickening W(k)→ k by B+dR → C. Our somewhat
pedestrian approach, via building strictly functorial complexes on affinoid pieces, is engi-
neered to be compatible with the Acrys-comparison of the previous section.

As an application of the construction of the B+dR-cohomology theory, we can prove
degeneration of the Hodge–Tate spectral sequence [60], in general.

Theorem 13.3. — Let X be a proper smooth adic space over C.

(i) (Conrad-Gabber) The Hodge–de Rham spectral sequence

Eij

1 =Hj
(

X,�i
X/C

)⇒Hi+j

dR(X)

degenerates at E1.
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(ii) The Hodge–Tate spectral sequence

Eij

2 =Hi
(

X,�
j

X/C

)

(−j)⇒Hi+j

ét (X,Zp)⊗Zp
C

degenerates at E2.

Both parts of Theorem 13.3 rely on the work [21] of Conrad-Gabber yield-
ing a “Lefschetz principle” for proper rigid spaces. In fact, the degeneration of the
Hodge–de Rham spectral sequence follows directly from (and was one of the motiva-
tions for) [21]; the degeneration of the Hodge–Tate spectral sequence also uses the B+dR-
cohomology theory. The work [21] relies on establishing a relative version of classical
results in the deformation theory of proper varieties. Since the classical version actually
suffices for our application, we give a self-contained exposition of the relevant statements
in Section 13.2.

13.1. The B+dR-cohomology of affinoids. — In this section, we explain how to construct
the B+dR-cohomology for certain smooth affinoids. To do so, we need some basic lemmas
on “rigid geometry over B+dR/ξ n”. Note that B+dR/ξ n = Ainf/ξ

n[ 1
p
] is a complete Tate-Qp-

algebra.

Lemma 13.4. — Let R be a complete Tate-B+dR/ξ n-algebra.

(i) The following conditions on R are equivalent.

(a) There is a surjective map B+dR/ξ n〈X1, . . . ,Xm〉→R for some m.

(b) The algebra R/ξ is topologically of finite type over C.

In case they are satisfied, we say that R is topologically of finite type over B+dR/ξ n.

(ii) If R is topologically of finite type over B+dR/ξ n, the following further properties are satisfied.

(a) The ring R is noetherian.

(b) Any ideal I⊂R is closed.

(ii) A p-adically complete p-torsion free Ainf/ξ
n-algebra R0 is by definition topologically of finite

type if there is a surjective map Ainf/ξ
n〈X1, . . . ,Xm〉→R0 for some m. In this case, the

following properties are satisfied.

(a) The ring R0 is coherent.

(b) Any ideal I⊂R0 such that R0/I is p-torsion free is finitely generated.

(c) The Tate-B+dR/ξ n-algebra R=R0[ 1
p
] is topologically of finite type.

(ii) If R is topologically of finite type over B+dR/ξ n, then there exists a ring of definition R0 ⊂R
such that R0 is topologically of finite type over Ainf/ξ

n.

We note that all assertions are well-known for n= 1, i.e. over B+dR/ξ = C. We will
use this freely in the proof.
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Proof. — For (i), clearly condition (a) implies (b). On the other hand, given a sur-
jection

C〈X1, . . . ,Xm〉→R/ξ,

one can lift the Xi arbitrarily to R; they will still be powerbounded as R → R/ξ has
nilpotent kernel. Thus, one gets a map B+dR/ξ n〈X1, . . . ,Xm〉→R, which is automatically
surjective.

In part (ii), it is enough to prove these assertions in the case R= B+dR/ξ n〈X1, . . . ,

Xm〉. This is a successive square-zero extension of the noetherian ring C〈X1, . . . ,Xm〉 by
finitely generated ideals, and thus noetherian itself. We will prove part (b) at the end.

For part (iii), part (c) is clear, and the other assertions reduce to R0 = Ainf/ξ
n〈X1,

. . . ,Xm〉. This is a successive square-zero extension of the coherent ring O〈X1, . . . ,Xm〉
by finitely presented ideals, and thus coherent itself, cf. Lemma 3.26. For part (b), let more
generally M be a finitely generated p-torsion free R0-module; we want to prove that M is
finitely presented. Applying this to M=R0/I gives (b). Let M̄= im(M→M/ξ [ 1

p
]). Then

M̄ is a p-torsion free finitely generated R0/ξ -module, and thus finitely presented as R0/ξ -
module, and thus also as R0-module, cf. Lemma 3.25(i). Therefore, M′ =Ker(M→ M̄) is
also a finitely generated p-torsion free R0-module. But M′ is killed by ξ n−1: If m ∈M′, then
pkm ∈ ξM for some k, and then ξ n−1pkm ∈ ξ nM = 0. As M is p-torsion free, this implies
that ξ n−1m= 0. We see that M′ is a finitely generated p-torsion free R0/ξ

n−1-module, so
induction on n finishes the proof.

In part (iv), if B+dR/ξ n〈X1, . . . ,Xm〉→R is surjective, then the image of

Ainf/ξ
n〈X1, . . . ,Xm〉→R

defines a ring of definition R0 ⊂R which is topologically of finite type.
Finally, for (ii) (b), let I⊂R be any (necessarily finitely generated) ideal, and R0 ⊂R

a ring of definition which is topologically of finite type. Let I0 = I∩R0. Then R0/I0 ⊂R/I
is p-torsion free, and thus I0 is finitely generated over R0. This implies that I0 is p-adically
complete, and thus I0 ⊂R0 is closed, and so is I⊂R. �

Definition 13.5. — Let R be a smooth Tate C-algebra of dimension d. We say that R is very
small if there exist finite subsets {T1, . . . ,Td} ⊂� ⊂ (R◦)∗ with the following properties:

(i) The map

C
(〈

X±1
u

)

u∈�

〉→R

defined by Xu �→ u is surjective.

(ii) On adic spectra, the map

Spa
(

R,R◦)→Td := Spa
(

C
〈

T±1
1 , . . . ,T±1

d

〉

,O
〈

T±1
1 , . . . ,T±1

d

〉)

by the Ti ’s is étale and factors as a composition of rational embeddings and finite étale maps.
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Note that the subset � ⊂ (R◦)∗ appearing in the definition of very smallness is
not fixed; in particular, we are allowed to enlarge � without affecting either of (i) or (ii)

above. Let us explain how to construct pro-infinitesimal thickenings of very small rings
relative to B+dR.

Construction 13.6. — Fix very small R and subset {T1, . . . ,Td} ⊂� ⊂ (R◦)∗ as in
Definition 13.5. We have a surjective map

B+dR

〈(

X±1
u

)

u∈�

〉→R,

sending X±1
u to u±1. Here, for any finite set I,

B+dR

〈(

X±1
i

)

i∈I

〉 := lim←−
r

B+dR/ξ r
〈(

X±1
i

)

i∈I

〉

.

For v ∈�, there are natural commuting continuous derivations

∂

∂ log(Xv)
=Xv

∂

∂Xv

: B+dR

〈(

X±1
u

)

u∈�

〉→ B+dR

〈(

X±1
u

)

u∈�

〉

.

Now let D�(R) be the completion of B+dR〈(X±1
u )u∈�〉 with respect to the ideal

I(R)=Ker
(

B+dR

〈(

X±1
u

)

u∈�

〉→R
)

.

By Lemma 13.4, all powers I(R)n ⊂ B+dR〈(X±1
u )u∈�〉 are closed, so that with its natural

topology, D�(R) is a complete and separated B+dR-algebra. The derivations ∂

∂ log(Xu)
for

u ∈� extend continuously to D�(R).

To proceed further, we shall need the following noetherian approximation lemma
that roughly says that a very small smooth Tate C-algebra can be defined over a smooth
algebra over a discretely valued field in such a way that the set of units witnessing “very
smallness” are p-adically close to units that also descend.

Lemma 13.7. — Let R be a very small smooth Tate C-algebra R; fix finite subsets

{T1, . . . ,Td} ⊂ � ⊂ (R◦)∗ as in Definition 13.5. Then, at the expense of enlarging �, we can

find the following:

(i) A smooth adic space S = Spa(A,A◦) of finite type over W(k′)[ 1
p
] for some perfect field

k′ ⊂ k and a W(k′)-algebra map A→C.

(ii) A smooth morphism Spa(RA,R◦
A)→ Spa(A,A◦) and an identification R�RÂ⊗AC.

(iii) Finite subsets {T1, . . . ,Td} ⊂�A ⊂ (R◦
A)∗ such that

(a) The identification RÂ⊗AC�R carries �A into � while preserving the Ti ’s.

(b) The map

A
(〈

X±1
u

)

u∈�A

〉→RA

defined by Xu �→ u is surjective.
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(c) On adic spectra, the map

Spa
(

RA,R◦
A

)→Td
S

:= S×Spa(Q p,Zp) Spa
(

Q p

〈

T±1
1 , . . . ,T±1

d

〉

,Zp

〈

T±1
1 , . . . ,T±1

d

〉)

by the Ti ’s is étale and factors as a composition of rational embeddings and finite étale

maps.

The proof below shows that we can take k′ = Fp in (i), i.e., we can take A to be a
smooth Tate Q p-algebra.

Proof. — By de Jong’s theorem [23], we can write O as a filtered colimit of finite
type regular Zp-algebras Bi (and thus Bi[ 1

p
] is smooth over Q p). We shall show that taking

A=̂Bj[ 1
p
] for j sufficiently large does the job; note that Spa(C,O)∼= limi Spa(̂Bi[ 1

p
],̂Bi).

Consider the étale map

Spa
(

R,R◦)→Td = Spa
(

C
〈

T±1
1 , . . . ,T±1

d

〉

,O
〈

T±1
1 , . . . ,T±1

d

〉)

.

This map factors as a composition of rational embeddings and finite étale maps by hy-
pothesis. As both rational embeddings and finite étale maps admit suitable “noetherian
approximation” results, setting A =̂Bj[ 1

p
] for sufficiently large j, we immediately get (i),

(ii), and a map as in part (c) of (iii) that descends the previous map. It remains to show
that, after possibly enlarging � and replacing A with a finer approximation, we can also
find the subset �A ⊂ (R◦

A)∗ satisfying parts (a) and (b) in (iii). For this, we first enlarge �

by adding in small perturbations, and then replace A with rational localizations. More
precisely, we first note that there exists some N≥ 0 such that any map

C
(〈

X±1
u

)

u∈�

〉→R

defined by Xu �→ u+ pNau (for some au ∈ R◦) is surjective: this follows from Lemma 13.8
below applied to the map on power bounded elements (and our hypothesis that this map
is surjective when all the au equal 0). Now the map

lim−→
i≥j

R◦
A
̂⊗
̂Bj
̂Bi →R◦

has dense image in a ring of definition. It follows that at the expense of enlarging j, we can
choose a subset �A ⊂ (R◦

A)∗ containing {T1, . . . ,Td} such that the corresponding map

α : B := A
(〈

X±1
u

)

u∈�A

〉→RA

is surjective after base change along A→C; this immediately gives (iii) (a). We also obtain
the surjectivity required in (iii) (b) by replacing A with a rational localization around the
point x ∈ Spa(A,A◦) determined by the map A→C using Lemma 13.9 below. �
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The next three lemmas were used above.

Lemma 13.8. — Let f :M→ N be a map of p-torsionfree and p-adically complete abelian

groups with f [1/p] is surjective. There exists some m ≥ 0 such that any map g : M → N with

g ≡ f mod pm, the map g[1/p] is also surjective.

Proof. — By the open mapping theorem, there exists some n ≥ 0 such that N′ :=
pnN⊂ f (M). Write M′ := f −1(N′), so f restricts to a map f ′ :M′ →N′ that is surjective.
We shall show that taking m = n + 1 does the job. Fix a map h : M → N, and let g =
f + pn+1h. We must show that g[1/p] is surjective. Now if x ∈ M′, then f (x) ∈ N and
pn+1h(x) = p · pnh(x) ∈ pN. It immediately follows that g carries M′ into N′ and that the
induced map g′ :M′ →N′ agrees with f ′ modulo p. In particular, g′ surjective modulo p.
But then g′ must be surjective: any map between derived p-complete modules that is
surjective modulo p is surjective: apply [1, Tag 09B9] to the cokernel. It is also clear that
g′[1/p] = g[1/p], so the claim follows. �

Lemma 13.9. — Let A→ B
α−→C be maps of affinoid algebras that are topologically of finite

type over a nonarchimedean field K. Assume that there exists a rank 1 point x ∈ Spa(A,A◦) such

that B̂⊗Ak(x)
αx−→ Ĉ⊗Ak(x) is surjective. Then there exists some rational subset U ⊂ Spa(A,A◦)

containing x such that αU : BU →CU is surjective; here AU =OSpa(A,A◦)(U), BU := B̂⊗AAU and

similarly for CU.

The assumption that x be a rank 1 point is critical to the conclusion above. In fact,
taking x be any point of rank > 1 on any affinoid A gives a counterexample as follows.
Take A= B and let C= AV be the rational localization corresponding to a rational subset
V ⊂ Spa(A,A◦) that contains the unique rank 1 generalization xgen of x but does not
contain x; these exist as rational subsets give a basis for the topology. As k(x)= k(xgen), the
map αx is bijective. Now if U is any rational open that contains x, then the map αU : AU →
AÛ⊗AAV � AU∩V is a rational localization corresponding to the inclusion U∩V⊂U. If
αU were surjective for some U containing x, then U∩V⊂U would be a closed subset by
[42, §1.4.1]. But this is impossible as U ∩V is not closed under specialization in U: the
point xgen lies in U∩V and its specialization x lies in U (by assumption on U) but not in V
(by choice of V).

Proof. — In this proof, the symbol U will be reserved to denote an element of
the collection U of all rational subsets of Spa(A,A◦) that contains x. Let us begin by
fixing some compatible rings of definition. Without loss of generality, we may assume
A = K〈T1, . . . ,Tn〉 is a Tate algebra. In particular, for each U ∈ U, we simply use
A0,U := A◦

U as the ring of definition for AU; write A0 = A0,Spa(A,A◦) for the ring of defi-
nition of A itself. Write C= A〈Y1, . . . ,Yr〉/I for some ideal I, write fi ∈ C for the image
of Yi , and choose a ring of definition C0 ⊂ C that contains the fi ’s as well as the im-
age of A0. By writing B as a quotient of a Tate algebra, we may assume without loss
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of generality that B = A〈X1, . . . ,Xn〉, so B0 = A0〈X1, . . . ,Xn〉 ⊂ B is a ring of defini-
tion. We may enlarge the ring of definition C0 if necessary to ensure that α(B0) ⊂ C0.
Then B0,x := B0̂⊗A0k(x)

+ � k(x)+〈X1, . . . ,Xn〉 is a ring of definition of Bx := B̂⊗Ak(x)�
k(x)〈X1, . . . ,Xn〉; similarly, B0,U := B0̂⊗A0A0,U ⊂ BU is a ring of definition. The p∞-
torsion in C0̂⊗A0A0,U and C0̂⊗A0k(x)

+ is bounded by [16, Lemma 1.2 (c)], and the quo-
tients C0,U := C0̂⊗A0A0,U/(p∞-torsion) and C0,x := C0̂⊗A0k(x)

+/(p∞-torsion) give rings
of definition of CU and Cx respectively. For future reference, note that the natural maps
lim−→U∈U B0,U → B0,x and lim−→U∈U C0,U → C0,x are isomorphisms after p-adic completions,
and that CU and Cx are topologically generated by the fi ’s over AU and k(x) respectively.

Next, let us fix some constants that we are allowed to perturb the fi ’s by with-
out affecting the fact that they topologically generate C or its localizations. Recall that
we have chosen a presentation C = A〈Y1, . . . ,Yr〉/I. In particular, the natural map
A0〈Y1, . . . ,Yr〉 → C0 is surjective after inverting p. By the open mapping theorem, this
map has a cokernel annihilated by pN for some fixed N ≥ 0. By base change, the coker-
nel of the map A0,U〈Y1, . . . ,Yr〉 → C0,U is also annihilated by pN for U ∈ U. It follows
from Lemma 13.8 (and its proof) that any f ′i ∈ C0,U such that f ′i ≡ fi mod pN+1C0,U also
provides a topological generating set for CU over AU for all U ∈ U as well as for Cx over
k(x).

Now consider the map αx : Bx →Cx. By assumption, this map is surjective. By the
open mapping theorem, the induced map αx : B0,x → C0,x has cokernel killed by pm for
some m≥ 0. So we can choose g1, . . . , gr ∈ B0,x such that αx(gi)= pmfi for all i. Moreover,
note that both αx(B0,x) and C0,x are topologically finitely generated rings of definition
of the tft k(x)-algebra Cx. Their integral closures must coincide with the subring C◦

x of
power bounded elements by [15, §6.3.4, Proposition 1] (see also [41, Lemma 4.4]). In
particular, C0,x is integral over αx(B0,x). So for each i ∈ {1, . . . , r}, there exists a monic
polynomial Qi(T) ∈ B0,x[T] such that αx(Qi)( fi)= 0.

As the natural map lim−→U∈U B0,U → B0,x is surjective modulo any power of p, we
can find h1, . . . , hr ∈ B0,U for a sufficiently small U ∈ U such that the image of hi in
B0,x differs from gi by pN+m+1B0,x. Then αU(hi) ∈ C0,U are elements whose image in
C0,x differs from pmfi by pN+m+1C0,x. As the map lim−→U∈U C0,U → C0,x is an isomorphism
after p-adic completion, it follows that after possibly shrinking U ∈ U, we can ensure
that αU(hi) − pmfi ∈ pN+m+1C0,U. Dividing by pm shows that f ′i := αU(hi)

pm ∈ C0,U and that
f ′i − fi ∈ pN+1C0,U. By our choice of N in the second paragraph of this proof, it fol-
lows that f ′1 , . . . , f ′r ∈ C0,U give a topological generating set that lies in the image of
B0,U[ 1

p
] = BU →CU.
By shrinking U ∈ U further, we can find monic polynomials Pi(T) ∈ B0,U[T] such

that the image of Pi(T) in B0,x[T] differs from Qi(T) by pB0,x. Since f ′i − fi ∈ pN+1C0,U,
it follows that the image of αU(Pi)( f ′i ) in C0,x lies in pC0,x. By shrinking U ∈ U further,
we can ensure that αU(Pi)( f ′i ) ∈ pC0,U. Applying Lemma 13.10 below to the inclusion
im(B0,U →C0,U)⊂C0,U and the elements f ′1 , . . . , f ′r ∈C0,U then gives the result. �
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Lemma 13.10. — Let B0 ⊂ C0 be an inclusion of p-adically complete and p-torsionfree rings

such that C0 is generated as a p-adically complete B0-algebra by f1, . . . , fr ∈ C0. Assume this data

satisfies the following:

(i) We have fi ∈ B0[ 1
p
] for all i.

(ii) There exist monic polynomials P1, . . . ,Pr ∈ B0[x] such that Pi( fi) ∈ pC0.

Then pkC0 ⊂ B0 for some k� 0.

Proof. — It is enough to show that C0 is a finite B0-module. Indeed, then each
fi would satisfy a monic polynomial over B0, so (i) would show B0[ 1

p
] = C0[ 1

p
], whence

pkC0 ⊂ B0 for k � 0 by the open mapping theorem. To show the finiteness, by
Nakayama’s lemma and completeness, it is enough to show the same modulo p. But then
it is clear: B0/p→C0/p is a finite ring map simply because the generators f1, . . . , fr ∈C0/p

are integral over B0/p by (ii). �

For the rest of this section, fix notation as in Lemma 13.7, though we shall use the
flexibility of enlarging � as necessary. Note that by smoothness of A over a discretely
valued field, there are continuous maps A→ B+dR lifting the map to C; we fix one such
map. Let D�A(RA) be the completion of

A
〈(

X±1
u

)

u∈�A

〉→RA.

Again, all powers of the ideal Ker(A〈(X±1
u )u∈�A〉→RA) are closed, and thus this defines a

complete and separated algebra. Our next goal is to compare this with Construction 13.6.
For this, we shall need a structural property that we prove first. Let RÂ⊗AB+dR be

defined as the inverse limit of RÂ⊗AB+dR/ξ n, where we note that RA, A and B+dR/ξ n are
all complete Tate Q p-algebras, and hence there is a well-defined completed tensor prod-
uct: if S2 ← S1 → S3 is a diagram of complete Tate-Q p-algebras with rings of definition
S2,0 ← S1,0 → S3,0, then

S2̂⊗S1S3 =
(

im(S2,0 ⊗S1,0 S3,0 → S2 ⊗S1 S3)
)∧

p

[

1
p

]

.

The structural property that we need is the following:

Lemma 13.11. — The algebra RÂ⊗AB+dR is a ξ -adically complete flat B+dR-algebra, with

(

RÂ⊗AB+dR

)

/ξ =R

and more generally

(

RÂ⊗AB+dR

)

/ξ n =RÂ⊗AB+dR/ξ n,

which is topologically free over B+dR/ξ n.
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Proof. — It is enough to see that RÂ⊗AB+dR/ξ n is topologically free (in particular,
flat) over B+dR/ξ n for all n≥ 1, with (RÂ⊗AB+dR/ξ n)/ξ =R.

There is a finitely generated A◦[T±1
1 , . . . ,T±1

d ]-algebra RA,alg, étale after invert-
ing p, such that RA = (RA,alg)

∧
p [ 1

p
] by [42, Corollary 1.7.3 (iii)]. Fix any topologically

finitely generated ring of definition (B+dR/ξ n)0 ⊂ B+dR/ξ n containing ξ and the image of A◦.
Then

RÂ⊗AB+dR/ξ n = ((RA,alg ⊗A◦
(

B+dR/ξ n
)

0

)

/(p−torsion)
)∧

p

[

1
p

]

.

Now Sn =RA,alg⊗A◦ (B+dR/ξ n)0 is a finitely presented (B+dR/ξ n)0-algebra which is smooth,
and in particular flat, after inverting p. Then Sn/ξ is a finitely presented O-algebra which
is smooth after inverting p. As it is finitely presented over O, the p-power torsion T⊂ Sn/ξ

is finitely generated; thus, there is some power of p killing T. Now, if Sn has no connected
components living entirely over the generic fiber Spec B+dR/ξ n, then also (Sn/ξ)/T has no
connected components living entirely over Spec C, and thus (Sn/ξ)/T is free over O by
a result of Raynaud–Gruson [56, Théorème 3.3.5]. We assume that this is the case; in
general one simply passes to the biggest direct factor of Sn with this property. Pick a basis
(s̄i)i∈I of (Sn/ξ)/T as O-module, and lift the elements s̄i to si ∈ Sn. This gives a map

α :
⊕

i∈I

(

B+dR/ξ n
)

0
→ Sn.

We claim that α is injective, and that the cokernel of α is killed by a power of p. For
injectivity, it is enough to check that

⊕

i∈I

B+dR/ξ n → Sn

[

1
p

]

is an isomorphism. But both modules are flat over B+dR/ξ n, so it is enough to check that

⊕

i∈I

C→ Sn/ξ

[

1
p

]

is an isomorphism, which follows from the choice of the si. Now, to check that the cokernel
of α is killed by a power of p, it suffices to check modulo ξ ; there, again the result follows
from the choice of the si, and the fact that T is killed by a power of p.

It follows that in the formula

RÂ⊗AB+dR/ξ n = (Sn/(p−torsion)
)∧

p

[

1
p

]

,

one can replace Sn by
⊕

i∈I(B
+
dR/ξ n)0, which shows that RÂ⊗AB+dR/ξ n is topologically free

over B+dR/ξ n. Moreover, the proof shows that (RÂ⊗AB+dR/ξ n)/ξ =R. �
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We can now give the promised comparison between D�A(RA) and D�(R).

Lemma 13.12. — One has the following description of D�A(RA) and D�(R).

(i) There is a unique isomorphism of topological algebras

D�A(RA)∼=RA

[[

(Xu − u)u∈�A,u �=T1,...,Td

]]

compatible with the projections to RA, and the structure of A〈(X±1
u )u∈�A〉-algebras, where

XTi
�→Ti on the right.

(ii) If � is sufficiently large, there is an isomorphism of topological algebras

D�(R)∼= (RÂ⊗AB+dR

)[[

(Xu − ũ)u∈�,u �=T1,...,Td

]]

,

compatibly with the projection to R, and the structure of B+dR〈(X±1
u )u∈�〉-algebras (via

XTi
�→ Ti ). Here, ũ ∈ RÂ⊗AB+dR is a lift of u ∈ RÂ⊗AC. In particular, D�(R) is

ξ -adically complete and ξ -torsion-free.

Proof. — For (i), we first want to find a lift RA → D�A(RA) of the projection
D�A(RA) → RA. The strategy is to pick the obvious lifting on A〈T±1

1 , . . . ,T±1
d 〉 send-

ing Ti to XTi
, and then extend to RA by étaleness; however, the second step needs some

care because of topological issues.
As above, there is a finitely generated A◦[T±1

1 , . . . ,T±1
d ]-algebra RA,alg, étale after

inverting p, such that RA = (RA,alg)
∧
p [ 1

p
] by [42, Corollary 1.7.3 (iii)].

The map A◦[T±1
1 , . . . ,T±1

d ]→D�A(RA) given by Ti �→XTi
lifts uniquely to RA,alg.

We claim that it also extends to the p-adic completion. For this, note that the comple-
tion of A〈(X±1

u )u∈�〉 → RA is an inverse limit of complete Tate A-algebras Dj which
are topologically of finite type, with reduced quotient RA. In particular, the subring of
powerbounded elements D◦

j ⊂ Dj is the preimage of R◦
A ⊂ RA. Thus, RA,alg is a finitely

generated A◦-algebra mapping into D◦
j ; as such, it maps into some ring of definition of

Dj , and therefore the map extends to the p-adic completion. This gives the desired map
RA →D�A(RA).

In particular, we get a canonical continuous map

RA

[[

(Xu − u)u∈�A,u �=T1,...,Td

]]→D�A(RA).

We claim that this is a topological isomorphism. For this, we use the commutative dia-
gram

A〈(X±1
u )u∈�A〉 RA �(Xu − u)u∈�A,u �=T1,...,Td

�

D�A(RA) RA,
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where we use the identity

X−1
u = u−1

(

1+ Xu − u

u

)−1

in RA �(Xu − u)u∈�A,u �=T1,...,Td
� to define the upper map. The upper part of the diagram

implies that there is a continuous map

D�A(RA)→RA

[[

(Xu − u)u∈�A,u �=T1,...,Td

]]

.

The maps are inverse: In the direction from D�A(RA) back to D�A(RA), this follows
by construction. In the other direction, the resulting endomorphism of the separated
ring RA �(Xu − u)u∈�A,u �=T1,...,Td

� must be the identity on RA,alg and all Xu, and thus by
continuity everywhere, finishing the proof of (i).

For part (ii), we repeat the same arguments, using Lemma 13.4 and Lemma 13.11.
�

As observed in Construction 13.6, the derivations ∂

∂ log(Xu)
extend continuously to

D�(R). Thus, we can build a de Rham complex

KD�(R)

((

∂

∂ log(Xu)

)

u∈�

)

,

which starts with

0→D�(R)
(

∂

∂ log(Xu)
)u

−→
⊕

u∈�

D�(R)→ ·· · .

By abuse of notation, we will denote it by �•
D�(R)/B+dR

. This complex, or rather the filtered
colimit over all sufficiently large �, is our explicit model for (the so far undefined)

R�crys

(

Spa
(

R,R◦)/B+dR

)

.

We note that in Lemma 13.13, we will check that the transition maps �•
D�(R)/B+dR

→
�•

D�′ (R)/B+dR
are quasi-isomorphisms, for any inclusion � ⊂�′ of sufficiently large subsets

of R◦×.
We want to compare crystalline and de Rham cohomology. For this, it is convenient

to introduce an intermediate object: Namely, let ˜D�(R) be the completion of
(

D�(R)/ξ
)

̂⊗CR→R.

This comes with derivations ∂

∂ log(Xu)
for u ∈ �, and ∂

∂ log(Ti)
for i = 1, . . . , d , and one can

build a corresponding de Rham complex �•
˜D�(R)/C (taking into account both derivations).

Note that this complex does not actually depend on the choice of coordinates T1, . . . ,Td ,
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as one can parametrize the second set of derivations canonically by (the dual of) �
1,cont
R/C .

Then there are natural maps of complexes

�•
D�(R)/B+dR

/ξ →�•
˜D�(R)/C ←�•

R/C.

Again, there is also a version taking into account the algebra RA. Namely, let ˜D�(RA) be
the completion of

D�(R)̂⊗B+dR

(

RÂ⊗AB+dR

)→R.

In this case, there are natural maps of complexes as follows:

�•
D�(R)/B+dR

→�•
˜D�(RA)/B+dR

←�•
RA/A
̂⊗AB+dR.

Lemma 13.13. — The maps

�•
D�(R)/B+dR

/ξ →�•
˜D�(R)/C ←�•

R/C

and

�•
D�(R)/B+dR

→�•
˜D�(RA)/B+dR

←�•
RA/A
̂⊗AB+dR

are quasi-isomorphisms.

In particular, for any inclusion � ⊂�′ of sufficiently large subsets of R◦×, the map

�•
D�(R)/B+dR

→�•
D�′ (R)/B+dR

is a quasi-isomorphism.

Proof. — Explicitly,

˜D�(R)=R
[[

(Xu − u)u∈�

]]

,

which easily shows that the second map is a quasi-isomorphism. On the other hand, we
claim that

˜D�(R)= (D�(R)/ξ
)[[

(Ti −XTi
)i=1,...,d

]]

.

This presentation implies that the first map is a quasi-isomorphism. To check the claim,
we use Lemma 13.12 to see that ˜D�(R) is the completion of

R
[[

(Xu − u)u∈�,u �=T1,...,Td

]]

̂⊗CR→R.

But the completion of R̂⊗CR→ R is given by R�(Ti ⊗ 1− 1⊗ Ti)i=1,...,d �. Combining
these observations, we see that ˜D�(R)= (D�(R)/ξ)�(Ti −XTi

)i=1,...,d �, as desired.
The second part follows, as everything is derived ξ -complete (as the terms of the

complexes are ξ -adically complete and ξ -torsion free), so it suffices to check that one gets
a quasi-isomorphism modulo ξ , which reduces to the first part. �
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Using the last statement of the preceding lemma, one can define a fully functorial
B+dR-valued cohomology theory on the category of very small smooth affinoids over C as
follows.

Definition 13.14. — For a very small smooth Tate C-algebra R with X := Spa(R,R◦),
define the B+dR-complex C•

crys(X/B+dR) as the filtered colimit lim−→�
�•

D�(R)/B+dR
where � ranges over

all sufficiently large finite subsets of units in R◦. Write R�crys(X/B+dR) ∈ D(B+dR) for the image of

C•
crys(X/B+dR) in the derived category.

It is easy to see that the C•
crys(−/B+dR) gives a presheaf of B+dR-complexes on the

category of very small smooth affinoids over C. Moreover, by Lemma 13.13, we have a
natural quasi-isomorphism

R�crys

(

X/B+dR

)⊗L
B+dR

C��•
R/C.

We shall later extend these constructions to proper smooth rigid spaces over C.

13.2. Interlude: spreading out proper rigid spaces, following Conrad-Gabber. — In this sec-
tion, we prove that any proper rigid space can be realized as the fiber of a family defined
over a discretely valued field (Corollary 13.16). Our strategy is to reduce to a similar
statement about formal models. The latter is a special case of the following result.

Proposition 13.15. — Let (W,m) be a complete noetherian local ring with residue field k. Let

O be an m-adically complete local W-algebra such that the local ring O/mO is 0-dimensional with

residue field k. Let XO/O be a proper flat adic formal scheme, where O is topologized m-adically. Then

there exist the following:

(i) A complete noetherian local W-algebra R with residue field k, and a proper flat adic formal

scheme XR/R, where R is topologized by powers of its maximal ideal.

(ii) A W-algebra map η : R → O and an isomorphism ψ : η∗XR � XO of formal O-

schemes.

Note that any ring R as in (1) above is a quotient of a formal power series
ring over W: if a1, . . . , an ∈ R are generators of the maximal ideal, then the map
W�x1, . . . , xn �

xi �→ai−−→R is a surjection of local rings.

Proof. — For any discrete O-algebra B, write XB/B for base change of XO/O; as
B is discrete, XB/B is a proper flat B-scheme. In particular, the special fiber Xk/k is a
proper k-scheme; we shall construct the required pair XR/R as a versal deformation of
Xk/k relative to W.

Let Art be the category of artinian W-algebras with residue field k. Consider the
functor DefXk

: Art→ Set of deformations of Xk , i.e., DefXk
(A) is the set of isomorphism

classes of lifts of Xk to proper flat A-schemes. By Schlessinger [57, Proposition 3.10] (see
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also [1, Tag 0ET6]), this functor admits a versal deformation, i.e., there exists a complete
noetherian local W-algebra R with residue field k and a proper flat adic formal scheme
XR/R (where R is topologized by powers of its maximal ideal) deforming Xk/k such that
the induced classifying map hR := HomW(R,−)→ DefXk

is formally smooth, i.e., for
any surjection B → A in Art, the map hR(B)→ hR(A) ×DefXk

(A) DefXk
(B) is surjective.

We shall check that this construction does the job. Note that (i) and (ii) are clear from the
construction.

Let us first explain how to extend functors defined on Art to a slightly larger class of
W-algebras that includes rings of the form O/mO. Let IndArt be the category of local 0-
dimensional W-algebras A with residue field k. Note that Art⊂ IndArt, and each O/mnO
also lies in IndArt. Further, the maximal ideal mA of any A ∈ IndArt is locally nilpotent as
Spec(A) has a single point by 0-dimensionality. We can thus write such an A as a filtered
colimit of its artinian W-subalgebras: any finite subset S := {a1, . . . , an} ⊂ mA lies in the
image of the map W�x1, . . . , xn �

xi �→ai−−→ A, and this image is artinian as some power of the
maximal ideal of W�x1, . . . , xn � maps to 0 by local nilpotence of mA. By length considera-
tions, it follows that Art⊂ IndArt is exactly the category of compact objects, and that the
map Art→ IndArt realizes the target as the Ind-completion of the source. In particular,
any functor F : Art→ Set has a unique extension F−→ : IndArt→ Set that preserves fil-
tered colimits: explicitly, if A ∈ IndArt, then we simply set F−→(A) := lim−→Ai⊂A

F(Ai), where
the colimit runs over all artinian subalgebras of A. Crucial to our purposes will be the
following stability property of this construction: if F→ G is a formally smooth map of
functors on Art, then F−→→ G−→ is also formally smooth, i.e., for any surjection B→ A in
IndArt, the map F−→(B)→ F−→(A)×G−→(A) G−→(B) is surjective. To see this, one first observes
that the surjection B→ A can be written as a filtered colimit of surjections Bi → Ai in
Art: write B as a union of its artinian subalgebras Bi ⊂ B, and set Ai ⊂ A to be the im-
age of Bi . The desired surjectivity now follows as the formation of filtered colimits in the
category of sets commutes with fiber products and preserves surjections.

We now specialize the considerations in the previous paragraph to the functors
of interest. First, note that the extension hR−→ : IndArt→ Set as defined above coincides

with HomW(R,−) as R is a quotient of a formal power series ring over W in finitely
many variables. Similarly, as the functor specifying finitely presented schemes or their
isomorphisms commutes with filtered colimits of rings, the set DefXk−−−→(A) is simply the

set of isomorphism classes of deformations of Xk to A for any A ∈ IndArt. Also, by the
previous paragraph, the induced map hR−→→ DefXk−−−→ of functors on IndArt is formally

smooth.
Let us now give the proof of (iii). We have a canonical map η0 :R→ k and an iso-

morphism ψ0 : η∗0XR �Xk of k-schemes. Applying the formal smoothness of hR−→→DefXk−−−→
to the surjection O/mO→ k in IndArt, we can choose a map η1 : R→O/mO lifting
η0 and an isomorphism ψ1 : η∗1XR � XO/mO of O/mO-schemes lifting ψ0. Similarly, we
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can inductively choose a compatible system of maps ηn :R→O/mnO and isomorphisms
ψn : η∗nXR �XO/mnO of O/mnO-schemes for each n≥ 1. The proposition now follows by
taking an inverse limit in n. �

Corollary 13.16 (Conrad-Gabber [21]). — Let C/K be an extension of complete nonar-

chimedean fields with the same residue field. If X/C is a proper rigid space, then there exists a proper

flat morphism f : X → S of rigid spaces over K such that X/C arises as the fiber of f over a point

η ∈ S(C). If X/C is smooth, then we may choose S, X and f to be smooth.

In particular, any proper smooth rigid space over C can be realized as the fiber of a proper smooth

morphism of smooth rigid spaces defined over a discretely valued subfield of C.

Proof. — We are free to replace K with smaller complete nonarchimedean sub-
fields of C in proving the corollary. Taking K to be the fraction field of a Cohen ring
of the residue field of C, we may thus assume that K is discretely valued. Let W ⊂ K
and O ⊂ C be the valuation rings, so W is discrete. By the theory of formal models, the
proper rigid space X/C arises as the generic fiber of a proper flat adic formal scheme
X/O (see [54, Lemma 2.6] for an explanation of the properness of the formal model).
Choose XR/R and the map η : R → OC as in Proposition 13.15. Setting X/S to be
the generic fiber (i.e., the base change along Spa(K,W)→ Spf(W) in the language of
adic spaces) of XR/R then gives the desired family. The smoothness assertions in the last
part follow immediately: given a proper flat morphism f :X → S of rigid spaces over K
and a point η ∈ S(C) where f is smooth, we may replace S by a suitable locally closed
subset containing η to conclude that both S and f (and hence X ) may be taken to be
smooth. �

Remark 13.17. — With a little extra effort, the method described in this subsection
can be used to prove a refinement of Corollary 13.16 where the assumption that C and K
have the same residue field is relaxed to the assumption that the residue field of C is purely
inseparable over that of k. We do not spell this out as the preprint [21] proves a strong
form of Corollary 13.16 by dropping the assumption on the residue field completely. In
particular, for a p-adic field C, they show that any proper rigid space X/C arises as the
fiber of a family that is defined over Q p. This stronger statement is not necessary for
our purposes. It is also considerably more complicated to prove as the necessary analog
of Proposition 13.15 entails developing an analog of Schlessinger’s work [57] for the
versal deformation rings of proper schemes over positive dimensional base rings (arising by
approximating the residue field k with smooth algebras over the prime field).

13.3. B+dR-cohomology of proper smooth rigid spaces. — We may extend the construction
of the B+dR-valued cohomology theory from small affinoids to the proper case by taking
hypercohomology.
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Definition 13.18. — For a proper smooth adic space X/C, write R�crys(X/B+dR) ∈D(B+dR)

for the hypercohomology of the presheaf U �→ C•
crys(U/B+dR) defined on the category of all smooth open

affinoids U⊂X that are very small.

Gluing analogous isomorphisms for affinoids shows that

R�crys

(

X/B+dR

)⊗L
B+dR

C∼=R�dR(X).

As R�crys(X/B+dR) is derived ξ -complete and de Rham cohomology is finite-dimensional,
this implies, in particular, that each Hi

crys(X/B+dR) is a finitely generated B+dR-module
which vanishes for |i| � 0. In particular, R�crys(X/B+dR) is a perfect B+dR-complex. In
fact, we can do better:

Theorem 13.19. — Let X/C be a proper smooth adic space. Then Hi
crys(X/B+dR) is finite free

over B+dR for all i ∈ Z.

Proof. — If k denotes the perfect residue field of C, then we can split the projection
OC/p → k by the ind-smoothness of k/Fp. By deformation theory, this lifts uniquely to
a map W(k)→OC, and thus gives an inclusion W(k)[ 1

p
] =:K⊂ C of complete nonar-

chimedean fields with the same residue field. By Corollary 13.16, we can find a proper
smooth map f : X → S of smooth adic spaces over K such that X/C arises as the fiber
of f at a point η ∈ S(C). By shrinking S, we may assume S := Spa(A,A◦) is a smooth
affinoid, so the map η corresponds to a continuous map A→ C of Tate K-algebras. By
the smoothness of A/K, we can lift this to a continuous map A→ B+dR. Write RfdR∗OX
for the relative de Rham cohomology of f , viewed as a complex of A-modules. Applying
Lemma 13.13 to a hypercover of X by small smooth affinoids gives a map

RfdR∗OX ⊗L
A B+dR →R�crys

(

X/B+dR

)

in D(B+dR) that is an isomorphism after applying − ⊗L
B+dR

B+dR/ξ by base change for de

Rham cohomology along the map A→C. Now each Ri fdR∗OX is a coherent OS-module
equipped with an integrable connection, and therefore locally free. In particular, both the
source and target of the above map are derived ξ -complete; as the map was an isomor-
phism modulo ξ , it must thus be an isomorphism. Since each Ri fdR∗OX is a finite pro-
jective A-module, it now follows that each Hi

crys(X/B+dR) is a finite projective, and hence
finite free, B+dR-module. �

Remark 13.20. — In the special case of Theorem 13.19 where the proper smooth
adic space X/C arises as the base change of a proper smooth adic space X0/K defined
over a discretely valued subfield K⊂ C, the proof above shows that there is a canonical
identification

Hi
dR(X0/K)⊗K B+dR �Hi

crys

(

X/B+dR

)
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of B+dR-modules, where the implicit map K→ B+dR is the unique continuous lift of K→C
that exists since K is discretely valued.

Finally, we can prove Theorem 13.1 and Theorem 13.3.

Proof of Theorem 13.1. — We start by constructing a natural map

R�crys

(

X/B+dR

)→R�
(

Xproét,B+
dR,X

)∼=R�ét(X,Zp)⊗Zp
B+dR.

Afterwards, we will check that after inverting ξ , this gives a quasi-isomorphism. Our
strategy is to construct a strictly functorial map of complexes locally, so that this map is
already locally a quasi-isomorphism after inverting ξ ; this reduces us to the local case.

In the local situation, assume that X = Spa(R,R◦) admits an étale map to the
torus Td that factors as a composite of rational embeddings and finite étale maps. In this
case, for any sufficiently large � ⊂R◦×, we have the B+dR-algebra D�(R) which is defined
as the completion of

B+dR

〈(

X±1
u

)

u∈�

〉→R.

Moreover, we have a canonical pro-finite-étale tower X∞,� = “ lim←− ”
i
Xi →X which ex-

tracts p-power roots of all elements u ∈�. In particular, this tower contains the tower of
Lemma 5.3, so that X∞,� = “ lim←− ”

i
Xi is affinoid perfectoid. Let � =∏u∈� Zp(1) be the

Galois group of the tower X∞,�/X. Then, by Lemma 5.6 and [59, Corollary 6.6], we
have

R�
(

Xproét,B+
dR,X

)=R�cont

(

�,B+
dR(R∞,�)

)

,

where (R∞,�,R+
∞,�) is the completed direct limit of (Ri,R+

i ), where Xi = Spa(Ri,R+
i ).

Let us fix primitive p-power roots of unity ζpr ∈O; one checks easily that the fol-
lowing constructions are independent of this choice up to canonical isomorphisms. We
get basis elements γu ∈ � for each u ∈�, and one can compute R�cont(�,B+

dR(R∞,�)) by
a Koszul complex

KB+dR(R∞,�)

(

(γu − 1)u∈�

) : B+
dR(R∞,�)

(γu−1)u−→
⊕

u

B+
dR(R∞,�)→ ·· · .

Now, by repeating the arguments of Section 12.2, there is a natural map of com-
plexes

D�(R)

( ∂
∂ log(Xu)

)u
⊕

u D�(R) . . .

B+
dR(R∞,�)

(γu−1)u ⊕

u B+
dR(R∞,�) . . . .
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Here, the map D�(R)→ B+
dR(R∞,�) in degree 0 comes via completion from the map

B+dR

〈(

X±1
u

)

u

〉→ B+
dR(R∞,�)

sending Xu to [(Xu,X1/p
u , . . .)] ∈ B+

dR(R∞,�), which is a well-defined element as we have
freely adjoined p-power roots of all Xu.

We claim that this induces a quasi-isomorphism between �•
D�(R)/B+dR

and
ηξKB+dR(R∞,�)((γu− 1)u∈�), which finishes the proof of the comparison. This is completely
analogous to the proof of Proposition 12.9.

To check that this construction is compatible with the isomorphism from The-
orem 5.1, use that in that case R = RK̂⊗KC comes as a base change, and there is a
commutative diagram

D�(R) ˜D�(RK) RK̂⊗KB+dR

B+
dR(R∞,�) OB+

dR(R∞,�) RK̂⊗KB+dR

Here, the left vertical arrow gives rise to the comparison isomorphism just constructed
(after passing to Koszul complexes), the lower row encodes the comparison isomorphism
from Theorem 5.1 (after simultaneously passing to Koszul and de Rham complexes), and
the upper row encodes the comparison between crystalline and de Rham cohomology
in Lemma 13.13. The commutativity of the diagram (together with the relevant extra
structures) proves the desired compatibility. �

Proof of Theorem 13.3. — Using Corollary 13.16, we may realize X/C as the fiber
of a proper smooth morphism f : X → S of smooth adic spaces over a discretely val-
ued subfield K ⊂ C. By passage to a suitable locally closed subset, we can assume that
Ri f∗�

j

X /S is a locally free OS-module for all i and j, as is Ri fdR∗OX , and everything com-
mutes with arbitrary base change. To check (i), we need to check that the ranks of Hodge
cohomology add up to the rank of de Rham cohomology. This can now be checked on
classical points, where it is [59, Corollary 1.8].

Thus, we see that the dimension of de Rham cohomology is the sum of the dimen-
sions of Hodge cohomology. On the other hand, the dimension of de Rham cohomology
is the same as the rank of the free B+dR-module Hi

crys(X/B+dR), which is the same as the rank
of the free B+dR-module Hi

ét(X,Zp)⊗Zp
B+dR by Theorem 13.1. This, in turn, is the same

as the dimension of étale cohomology; it follows that the Hodge–Tate spectral sequence
degenerates. �
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13.4. The B+dR-cohomology in the good reduction case. — Let us give an alternate de-
scription of R�crys(X/B+dR) in the good reduction case in terms of the Acrys-cohomology
theory. Let X be a proper smooth formal scheme over O, with generic fiber X. In this situ-
ation, we can consider the scheme Y=X×SpfO SpecO/p. The universal p-adically com-
plete PD thickening (compatible with the natural PD structure on Zp) of O/p is Fontaine’s
ring Acrys. Thus, we can consider the crystalline cohomology groups

Hi
crys(Y/Acrys).

On the other hand, we can consider the special fiber Ȳ = X×SpfO Spec k, and its crys-
talline cohomology groups

Hi
crys

(

Ȳ/W(k)
)

,

which are finitely generated W(k)-modules.

Proposition 13.21. — Fix a section k →O/p. Then there is a canonical ϕ-equivariant iso-

morphism

Hi
crys(Y/Acrys)

[

1
p

]

∼=Hi
crys

(

Ȳ/W(k)
)⊗W(k) Acrys

[

1
p

]

.

In particular, Hi
crys(Y/Acrys)[ 1

p
] is a finite free Acrys[ 1

p
]-module.

This is a variant on a result of Berthelot–Ogus [7].

Proof. — First, we check that for any qcqs smooth O/p-scheme Z, the Frobenius

ϕ :Hi
crys(Z/Acrys)⊗Acrys,ϕ Acrys →Hi

crys(Z/Acrys)

is an isomorphism after inverting p. Indeed, this reduces to the affine case. In that case,
there is an isomorphism Z= Z̄×Spec k SpecO/p, where Z̄= Z×SpecO/p Spec k (as by finite
presentation, there is such an isomorphism modulo p1/pn

for some n, and one can lift this
isomorphism by smoothness), and the result follows by base change from the case of Z̄/k.

Note that

Hi
crys(Y/Acrys)⊗Acrys,ϕ Acrys =Hi

(

YO/p1/p/ϕ−1(Acrys)
)⊗ϕ−1(Acrys),ϕ Acrys

by base change. Repeating, we see that

Hi
crys(Y/Acrys)⊗Acrys,ϕn Acrys =Hi

(

YO/p1/pn /ϕ−n(Acrys)
)⊗ϕ−n(Acrys),ϕn Acrys,

where the left side agrees with Hi
crys(Y/Acrys) after inverting p. On the other hand, if n is

large enough, then there is an isomorphism

Y×O/p1/pn ∼= Ȳ×Spec k SpecO/p1/pn
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reducing to the identity over Spec k, by finite presentation. Moreover, any two such iso-
morphisms agree after increasing n. Base change for crystalline cohomology implies the
result. �

Remark 13.22. — The choice of section k →O/p in Proposition 13.21 is unique
in the important special case when k = Fp. Indeed, to see this, it is enough to observe the
following: if R → Fq is a surjection of Fp-algebras with a locally nilpotent kernel, then
there is a unique section Fq → R. To prove this, we can write R = lim−→Ri as a filtered
colimit of its finitely generated Fp-algebras Ri ⊂ R. Passing to a cofinal subsystem, we
may assume that the composite Ri → R→ Fq is surjective for each i. But then Ri is an
artinian local Fp-algebra with residue field Fq, so there is a unique section Fq → R since
Fp → Fq is étale.

In particular, we get a finite free B+dR-module

Hi
crys(Y/Acrys)⊗Acrys B+dR.

Proposition 13.23. — There is a natural quasi-isomorphism

R�crys(Y/Acrys)⊗Acrys B+dR
∼=R�crys

(

X/B+dR

)

.

In particular, Hi
crys(X/B+dR) is free over B+dR.

Proof. — The crystalline cohomology of Y over Acrys can be computed via explicit
complexes as in the definition of R�crys(X/B+dR), as in Section 12.2. Using these explicit
models, one can write down an explicit map, which is locally, and thus globally, a quasi-
isomorphism (as locally, both complexes are quasi-isomorphic to de Rham complexes for
a smooth lift to Acrys, resp. B+dR). �

14. Proof of main theorems

Finally, we can assemble everything to prove our main results. Let C be a complete
algebraically closed extension of Q p with ring of integers O and residue field k. Let X be
a smooth formal scheme over O, with generic fiber X. Recall Theorem 1.10:

Theorem 14.1. — There are canonical quasi-isomorphisms of complexes of sheaves on XZar

(compatible with multiplicative structures).

(i) With crystalline cohomology of Xk :

A�X
̂⊗L

AinfW(k)�W�•
Xk/W(k).

Here, the tensor product is p-adically completed, and the right side denotes the de Rham–Witt

complex of Xk , which computes crystalline cohomology of Xk .
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(ii) With de Rham cohomology of X:

A�X⊗L
Ainf

O ��
•,cont
X/O ,

where �
i,cont
X/O = lim←−n

�i
(X/pn)/(O/pn).

(iii) With crystalline cohomology of XO/p: If u : (XO/p/Acrys)crys → XZar denotes the projec-

tion, then

A�X
̂⊗L

AinfAcrys �Ru∗Ocrys
XO/p/Acrys

.

(iv) With (a variant of) étale cohomology of the generic fiber X of X: If ν : Xproét → XZar

denotes the projection, then

A�X⊗Ainf Ainf

[

1
μ

]

� (Rν∗Ainf,X)⊗Ainf Ainf

[

1
μ

]

.

Remark 14.2. — In fact, this result needs only that C is perfectoid, with all p-power
roots of unity.

Proof. — Part (iii) is Theorem 12.1, and part (iv) follows directly from the definition
of A�X. Moreover, part (iii) implies parts (i) and (ii).

Alternatively, one can use the relation to the de Rham–Witt complex to prove (i)
and (ii). For simplicity, let us fix roots of unity for this discussion. For example, one can
prove (ii) via

A�X⊗L
Ainf,θ

O = (LημRν∗Ainf,X)⊗L
Ainf,θ

O
�→ϕ

(Lηϕ(μ)Rν∗Ainf,X)⊗L
Ainf,˜θ

O

= Lη
˜ξ (LημRν∗Ainf,X)⊗L

Ainf,˜θ
O

= (Lη
˜ξA�X)⊗L

Ainf,˜θ
O

∼=H•(A�X/˜ξ)

∼=�
•,cont
X/O ,

using Proposition 6.12 in the second-to-last step, and Theorem 8.3 in the last step. More
generally, for any r ≥ 1,

A�X⊗L
Ainf,θr

Wr(O)= (LημRν∗Ainf,X)⊗L
Ainf,θr

Wr(O)

�→ϕr

(Lηϕr(μ)Rν∗Ainf,X)⊗L
Ainf,˜θr

Wr(O)

= Lη
˜ξr
(LημRν∗Ainf,X)⊗L

Ainf,˜θr
Wr(O)

= (Lη
˜ξr

A�X)⊗L
Ainf,˜θr

Wr(O)
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∼=H•(A�X/˜ξr)

∼=Wr�
•,cont
X/O ,

using Theorem 11.1 in the last step. Extending this quasi-isomorphism from Wr(O) to
Wr(k) and taking the limit over r proves (i).

Note that we now have two quasi-isomorphisms

A�X⊗L
Ainf,θr

Wr(O)�Wr�
•,cont
X/O :

The one just constructed, coming from Theorem 11.1, and the one resulting from The-
orem 12.1 by extending along Acrys →Wr(O) and using Langer–Zink’s comparison [52,
Theorem 3.5], between de Rham–Witt cohomology and crystalline cohomology. Let us
give a sketch that these quasi-isomorphisms are the same; for this, we use freely notation
from Section 12. We look at the functorial complex

ημKAinf(R∞,�)

(

(γu − 1)u∈�

)

computing A�R for very small affine open Spf R ⊂ X (where we are suppressing the
filtered colimit over all sufficiently large � ⊂R◦× from the notation). By Proposition 6.12,
this admits a map of complexes

ημKAinf(R∞,�)

(

(γu − 1)u∈�

)→H•((ηϕ−r(μ)KAinf(R∞,�)

(

(γu − 1)u∈�

))

/ξr

)

∼=ϕr

H•(A�R/˜ξr),

as above. Now we observe that this map factors through a map
(

ημKAinf(R∞,�)̂⊗Ainf A
(m)
crys

(

(γu − 1)u∈�

))∧
p
→H•(A�R/˜ξr).

Indeed, for any m, there is a natural map

ημKAinf(R∞,�)̂⊗Ainf A
(m)
crys

(

(γu − 1)u∈�

)

→H•((ηϕ−r(μ)KAinf(R∞,�)̂⊗Ainf A
(m)
crys

(

(γu − 1)u∈�

))

/ξr

)

,

and there is a quasi-isomorphism

ηϕ−r(μ)KAinf(R∞,�)̂⊗Ainf A
(m)
crys

(

(γu − 1)u∈�

)�ϕr

A�R̂⊗Ainfϕ
r
(

A(m)
crys

)

by the usual arguments. Therefore,

H•((ηϕ−r(μ)KAinf(R∞,�)̂⊗Ainf A
(m)
crys

(

(γu − 1)u∈�

))

/ξr

)

∼=ϕr

H•(A�r̂⊗Ainfϕ
r
(

A(m)
crys

)

/˜ξr

)

,
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and there is a natural map ϕr(A(m)
crys)/
˜ξr →Wr(O), leading to a canonical map

(

ημKAinf(R∞,�)̂⊗Ainf A
(m)
crys

(

(γu − 1)u∈�

))∧
p
→H•(A�R/˜ξr)∼=Wr�

•,cont
R/O ,

as desired. This map is compatible with multiplication by construction; to check compat-
ibility with the Bockstein differential, use that the target is p-torsionfree, and that there is
a map ϕr(Acrys(m))/˜ξ 2

r [ 1
p
]→ Ainf/˜ξ

2
r [ 1

p
].

In particular, one can compose the map αR from Lemma 12.8(v) with this map to
get a functorial map of complexes

KD�

((

∂

∂ log(xu)

)

u∈�

)

→Wr�
•,cont
R/O .

In fact, this is a map of commutative differential graded algebras: To check compatibil-
ity with multiplication, use that αR becomes compatible with multiplication after base
extension to Wr(O).

Here, the left side is the complex computing crystalline cohomology in terms of the
embedding into the torus given by all units in �. One can then check that this map agrees
with the similar map constructed by Langer–Zink in [52, §3.2]: As it is a continuous map
of commutative differential graded algebras generated in degree 0, one has to check only
that it behaves correctly in degree 0. �

Now assume that X is also proper. Recall Theorem 1.8:

Theorem 14.3. — Let X be a proper smooth formal scheme over O with generic fiber X. Then

R�Ainf(X)=R�(X,A�X)

is a perfect complex of Ainf-modules, equipped with a ϕ-linear map ϕ : R�Ainf(X)→R�Ainf(X) in-

ducing an isomorphism R�Ainf(X)[ 1
ξ
] �R�Ainf(X)[ 1

ϕ(ξ)
], such that all cohomology groups are Breuil–

Kisin–Fargues modules. Moreover, one has the following comparison results.

(i) With crystalline cohomology of Xk :

R�Ainf(X)⊗L
Ainf

W(k)�R�crys

(

Xk/W(k)
)

.

(ii) With de Rham cohomology of X:

R�Ainf(X)⊗L
Ainf

O �R�dR(X).

(iii) With crystalline cohomology of XO/p:

R�Ainf(X)⊗L
Ainf

Acrys �R�crys(XO/p/Acrys).
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(iv) With étale cohomology of X:

R�Ainf(X)⊗Ainf Ainf

[

1
μ

]

�R�ét(X,Zp)⊗Zp
Ainf

[

1
μ

]

.

Proof. — The comparison results (i), (ii), (iii) and (iv) follow immediately from The-
orem 14.1, using Theorem 5.7 for part (iv).

Note that A�R is derived ξ -complete for any small affine open Spf R ⊂ X by
Lemma 6.19; thus, A�X is derived ξ -complete, and so is R�Ainf(X). Then, to prove that
R�Ainf(X) is perfect, it is enough to prove that R�Ainf(X)⊗L

Ainf,θ
O is perfect, which follows

from (ii).
By Proposition 9.17, there is a ϕ-linear quasi-isomorphism

ϕ : A�X
∼= Lη

˜ξA�X,

inducing in particular a ϕ-linear map ϕ : A�X → A�X. This induces a similar map on
R�Ainf(X), which becomes an isomorphism after inverting˜ξ = ϕ(ξ).

It follows that all cohomology groups are finite free after inverting p by Corol-
lary 4.20 and comparisons (iii) and (iv), using also Proposition 13.21. Thus, all cohomol-
ogy groups are Breuil–Kisin–Fargues modules. �

Remark 14.4. — In the situation of Theorem 14.3, if we fix a cohomological in-
dex i, then the following conditions are equivalent:

(i) Hi
crys(Xk/W(k)) is torsion-free.

(ii) Hi
dR(X) is torsion-free.

Indeed, this follows by combining parts (i) and (ii) of Theorem 14.3 with Remark 4.21.
The weaker equivalence where both Hi and Hi+1 are simultaneously required to be
torsion-free can be proven easily using the universal coefficients theorem relating H∗

dR(X)

and H∗
crys(Xk/W(k)) with H∗

dR(Xk). However, for a fixed index i as above, we do not know
a direct “crystalline” proof of this equivalence.

Let us now state a version of Theorem 1.1 over C.

Theorem 14.5. — Let X be a proper smooth formal scheme over the ring of integers O in a

complete algebraically closed extension of Q p, with residue field k; let X be the generic fiber of X. Let

i ≥ 0.

(i) There is a canonical isomorphism

Hi
crys(XO/p/Acrys)⊗Acrys Bcrys

∼=Hi
ét(X,Zp)⊗Zp

Bcrys.

It is compatible with the isomorphism

Hi
crys

(

X/B+dR

)⊗B+dR
BdR

∼=Hi
ét(X,Zp)⊗Zp

BdR
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via the identification

Hi
crys(XO/p/Acrys)⊗Acrys B+dR

∼=Hi
crys

(

X/B+dR

)

.

(ii) For all n≥ 0, we have the inequality

lengthW(k)

(

Hi
crys

(

Xk/W(k)
)

tor
/pn
)≥ lengthZp

(

Hi
ét(X,Zp)tor/pn

)

.

In particular, if Hi
crys(Xk/W(k)) is p-torsion-free, then so is Hi

ét(X,Zp).

(iii) Assume that Hi
crys(Xk/W(k)) and Hi+1

crys(Xk/W(k)) are p-torsion-free. Then one can

recover Hi
crys(Xk/W(k)) with its ϕ-action from Hi

ét(X,Zp) with the natural B+dR-lattice

Hi
crys

(

X/B+dR

)⊂Hi
ét(X,Zp)⊗Zp

BdR.

More precisely, the pair of Hi
ét(X,Zp) and this B+dR-lattice give rise to a finite free Breuil–

Kisin–Fargues module BKF(Hi
ét(X,Zp)) by Theorem 4.28. Then, assuming only that

Hi
crys(Xk/W(k)) is p-torsion-free, we have a canonical isomorphism

Hi
Ainf

(X)∼= BKF
(

Hi
ét(X,Zp)

)

,

and

Hi
crys

(

Xk/W(k)
)⊃ BKF

(

Hi
ét(X,Zp)

)⊗Ainf W(k),

compatibly with the ϕ-action. If Hi+1
crys(Xk/W(k)) is also p-torsion-free, then the last in-

clusion is an equality.

Proof. — The isomorphism in part (i) follows from Theorem 14.1. The compatibil-
ity with the B+dR-lattice Hi

crys(X/B+dR) amounts to the compatibility between the isomor-
phisms of Theorem 12.1 and Theorem 13.1, which one checks on the level of the explicit
complexes.

For part (ii), we use Theorem 14.1, Lemma 4.16 and Corollary 4.15 together with
the observation that for any injective map M ↪→ N of finitely generated W(k)-modules
with torsion cokernel Q,

lengthW(k)

(

N/pn
)≥ lengthW(k)

(

M/pn
)

,

as follows from the exact sequence

TorW(k)
1

(

Q,W(k)/pn
)→M/pn →N/pn →Q/pn → 0,

and the equality

lengthW(k)TorW(k)
1

(

Q,W(k)/pn
)= lengthW(k)

(

Q/pn
)

,

which holds for any torsion W(k)-module.
For part (iii), we use the equivalence of Theorem 4.28 together with Corollary 4.20,

and the identification of the B+dR-lattice in part (i). �
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Finally, we can prove Theorem 1.1:

Theorem 14.6. — Let X be a proper smooth formal scheme over O, where O is the ring of

integers in a complete discretely valued nonarchimedean extension K of Q p with perfect residue field k,

and let i ≥ 0. Let C be a completed algebraic closure of K, with corresponding absolute Galois group

GK, and let X/K be the rigid-analytic generic fiber of X.

(i) There is a comparison isomorphism

Hi
ét(XC,Zp)⊗Zp

Bcrys
∼=Hi

crys

(

Xk/W(k)
)⊗W(k) Bcrys,

compatible with the Galois and Frobenius actions, and the filtration. In particular,

Hi
ét(XC,Q p) is a crystalline Galois representation.

(ii) For all n≥ 0, we have the inequality

lengthW(k)

(

Hi
crys

(

Xk/W(k)
)

tor
/pn
)≥ lengthZp

(

Hi
ét(XC,Zp)tor/pn

)

.

In particular, if Hi
crys(Xk/W(k)) is p-torsion-free, then so is Hi

ét(XC,Zp).

(iii) Assume that Hi
crys(Xk/W(k)) and Hi+1

crys(Xk/W(k)) are p-torsion-free. Then one can

recover Hi
crys(Xk/W(k)) with its ϕ-action from Hi

ét(XC,Zp) with its GK-action.

More precisely, Theorem 4.4 associates a finite free Breuil–Kisin module

BK
(

Hi
ét(XC,Zp)

)

over S=W(k)�T� to the lattice Hi
ét(XC,Zp) in a crystalline GK-representation. This

comes with an identification

BK
(

Hi
ét(XC,Zp)

)⊗S B+crys
∼=Hi

crys

(

Xk/W(k)
)⊗W(k) B+crys

by Proposition 4.34 and part (i). In particular, by extending scalars along B+crys →
W(k̄)[ 1

p
], we get an identification BK(Hi

ét(XC,Zp)) ⊗S W(k)[ 1
p
] ∼= Hi

crys(Xk/

W(k))[ 1
p
].

Then

BK
(

Hi
ét(XC,Zp)

)⊗S W(k)=Hi
crys

(

Xk/W(k)
)

as submodules of the common base extension to W(k)[ 1
p
].

Proof. — Note that in this situation, there is a canonical section k→O/p→OC/p,
so part (i) follows from Theorem 14.5(i) and Proposition 13.21. For the compatibility with
the filtration, we also use that the isomorphism

Hi
crys

(

XC/B+dR

)⊗B+dR
BdR

∼=Hi
ét(XC,Zp)⊗Zp

BdR
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from Theorem 13.1 is compatible with the isomorphism

Hi
dR(X)⊗K BdR

∼=Hi
ét(XC,Zp)⊗Zp

BdR

from Theorem 5.1.
Part (ii) is immediate from Theorem 14.5(ii). Finally, part (iii) follows from Theo-

rem 14.5(iii) and Proposition 4.34. �

Remark 14.7. — Using Remark 14.4, each torsion-freeness hypothesis on Hi
crys(Xk/

W(k)) in parts (ii) and (iii) of Theorem 14.5 and Theorem 14.6 can be replaced by the
hypothesis that the O-module Hi

dR(X) is torsion-free.
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