INTEGRAL p-ADIC HODGE THEORY
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ABSTRACT

We construct a new cohomology theory for proper smooth (formal) schemes over the ring of integers of C,,. It takes
values in a mixed-characteristic analogue of Dieudonné modules, which was previously defined by Fargues as a version of
Breuil-Kisin modules. Notably, this cohomology theory specializes to all other known p-adic cohomology theories, such as
crystalline, de Rham and étale cohomology, which allows us to prove strong integral comparison theorems.

The construction of the cohomology theory relies on Faltings’ almost purity theorem, along with a certain functor
Ln on the derived category, defined previously by Berthelot-Ogus. On affine pieces, our cohomology theory admits a
relation to the theory of de Rham—Witt complexes of Langer-Zink, and can be computed as a ¢-deformation of de Rham
cohomology.
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1. Introduction

This paper deals with the following question: as an algebraic variety degenerates
from characteristic O to characteristic p, how does its cohomology degenerate?

1.1. Background. — To explain the meaning and the history of the above question,
let us fix some notation. Let K be a finite extension of Q,, and let Ox C K be its ring of
integers. Let X be a proper smooth scheme over Ok;' in other words, we consider only
the case of good reduction in this paper, although we expect our methods to generalize
substantially. Let £ be the residue field of @, and let £ and K be algebraic closures.

There are many different cohomology theories one can associate to this situation.
The best understood theory is £-adic cohomology for £ # p. In that case, we have étale
cohomology groups H (Xg, Z,) and H. (X}, Z;), and proper smooth base change the-

! We use the fractal letter for consistency with the main body of the paper, where X will be allowed to be a formal
scheme.
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orems in étale cohomology imply that these cohomology groups are canonically isomor-
phic (once one fixes a specialization of geometric points),

Hét(xl_(’ ZZ) = Hét(%}f, Zg)

In particular, the action of the absolute Galois group Gk of K on the left side factors
through the action of the absolute Galois group G of the residue field £ on the right side;
1.e., the action of Gy is unramified.

Grothendieck raised the question of understanding what happens in the case £ = p.
In that case, one still has well-behaved étale cohomology groups HY (X, Z,) of the
generic fiber, but the étale cohomology groups of the special fiber are usually too small;
for example, if 7 = 1, they capture at best half of the étale cohomology of the generic fiber.
A related phenomenon is that the action of Gk on Hét(%f{, Z,) is much more interesting
than in the £-adic case; in particular, it is usually not unramified. As a replacement for
the étale cohomology groups of the special fiber, Grothendieck defined the crystalline
cohomology groups crys(%/f /W(k)). These are Dieudonné modules, i.e. finitely gener-
ated W(k)-modules equipped with a Frobenius operator ¢ which is invertible up to a
power of p. However, Hét(f{K, ,) and Him(:{k /W(k)) are cohomology theories of very
different sorts: the first is a variant of singular cohomology, whereas the second is a vari-
ant of de Rham cohomology. Over the complex numbers G, integration of differential
forms along cycles and the Poincaré lemma give a comparison between the two, but alge-
braically the two objects are quite unrelated. Grothendieck’s question of the mysterious
functor was to understand the relationship between H (Xg,Z,) and H' (X, /W(k)),
and ideally describe each in terms of the other.

crys

Fontaine obtained the conjectural answer to this question using his period rings,
after inverting p, in [32]. Notably, he defined a W(/f)[ ]-algebra B, whose definition
will be recalled below, which comes equipped with actlons of a Frobenius ¢ and of Gg,
and he conjectured the existence of a natural ¢, Gg-equivariant isomorphism

(%K, Q,/?) ®Q_p crys — H(‘ryg(%k/w(k))[ ] ®W (k) Bcrys-

The existence of such an isomorphism was proved by Tsuji [64], after previous work by
FontainefMessing [34], Bloch-Kato [12], and Faltings [27]. This allows one to recover
(ffk/W(k))[ ] from H (Xg, Q,) by the formula

1 1 Gk
cm(%A/W(k))[p] ( Cm(aek/W(/f))[ }@w,c) ]BCWS>

~ 7 G
= (Hét(‘%f{’ Q,p) ®Q[, Bcrys) .
Conversely, Fontaine showed that one can recover Hl (Xz, Q) from Hcryq(x v /W(/f))[pl]

together with the Hodge filtration coming from the identification Hmb(%k/W(/f)) Qw
K =H/; (Xx).

CFVS
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Unfortunately, when p is small or K/Q, is ramified, the integral structure is not
preserved by these isomorphisms; only when i < p — 1, where ¢ is the ramification index
of K/Q,, most of the story works mtegrally, roughly using the integral version Ay, of
B.,ys instead, as for example in work of Caruso [19]; cf. also work of Faltings [28], in the
case ¢ < p — 1 with ¢ arbitrary.

1.2. Results. — In this paper, we make no restriction of the sort mentioned above:
very ramified extensions and large cohomological degrees are allowed throughout. Our
first main theorem is the following; it is formulated in terms of formal schemes for wider
applicability, and it implies that the torsion in the crystalline cohomology is an upper
bound for the torsion in the étale cohomology.

Theorem 1.1. — Let X be a proper smooth_formal scheme over Ok, where Ok s the ring of
integers in a complete discretely valued nonarchimedean extension K of Q, with perfect residue field k.

Let G be a completed algebraic closure of K, and write X _for the (geometric) rigid-analytic generic fiber
of X. Fix some 1 > 0.

(1) There is a comparison isomorphism

Hél(%(}a Zp) ®Zp Bcrys = Hi (%k/w(k)) ®W(k) Bcrys’

crys

compatible with the Galois and Frobenius actions, and the filtration. In particular,
Hét(%c, Q,) 15 a crystalline Galos representation.
(i) For all n > 0, we have the inequality

lengthy, (FL,, (X/ W), /p") = lengthy (HE (Xc, Z,)wr/t)-

In particular, if Hirys (X:/W(k)) is p—torsion—free,Q then so is Hét(ffc, Z,).

(11) Assume that Hirys (X:/W(k)) and Hi}:i(%k JW(k)) are p-torsion-free. Then one can

recover Hirys(ffk JW(k)) with its @-action from Hét(.'fc, Z,) with its Gg-action.

Part (i) is the analogue of Fontaine’s conjecture for proper smooth formal schemes
over Ok. In fact, our methods work more generally: we directly prove the comparison iso-
morphism in (i) and the inequalities in (i) (as well as a variant of (1i1), formulated below)
for any proper smooth formal scheme that is merely defined over O. For formal schemes
over discretely valued base fields, part (i) has also been proved recently by Colmez—Niziol
[20] (in the more general case of semistable reduction), and Tan—Tong [63] (in the abso-
lutely unramified case, building on previous work of Andreatta—Iovita [3]).

Intuitively, part (ii) says the following. If one starts with a proper smooth variety
over the complex numbers C, then the comparison between de Rham and singular
(co)homology says that any class in singular homology gives an obstruction to integrating
differential forms: the integral over the corresponding cycle has to be zero. However, for

2 We show that this is equivalent to requiring Hij, (X) being a torsion-free Ox-module (for any fixed i).
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torsion classes, this is not an actual obstruction: a multiple of the integral, and thus the
integral itself] is always zero. Nevertheless, part (i1) implies the following inequality:

(1) dimy Hi (£,) > dimg, H. (X, F)).

In other words, p-torsion classes in singular homology still produce non-zero obstructions
to integrating differential forms on any (good) reduction modulo p of the variety. The re-
lation is however much more indirect, as there is no analogue of “integrating a differential
form against a cycle” in the p-adic world.

Remark 1.2. — Theorem 1.1(i1) “explains” certain pathologies in algebraic geom-
etry in characteristic p. For example, it was observed (by classification and direct calcula-
tion, see [43, Corollaire 7.3.4 (a)]) that for any Enriques surface S; over a perfect field &
of characteristic 2, the group H)jz (S;) is never 0, contrary to what happens in any other
characteristic. Granting the fact that any such S; lifts to characteristic O (which is known,
see [25, 53]), this phenomenon is explained by Theorem 1.1(i1): an Enriques surface Sc
over C has H (Sc, Fy) £ F, # 0 as the fundamental group is Z/2, so the inequality (1)
above forces Hlj (S;) # 0.

Remark 1.3. — We also give examples illustrating the sharpness of Theorem 1.1(i1)
in two different ways. First, we give an example of a smooth projective surface over Z, for
which all étale cohomology groups are 2-torsion-free, while H?_ _ has nontrivial 2-torsion;
thus, the inequality can be strict. Note that this example falls (just) outside the hypotheses
of previous results like those of Caruso [19], which give conditions under which there is
an abstract isomorphism Hiws (X,/W(k)) = H, (Xg, Z,) @z, W(k). Similar examples of
smooth projective surfaces can also be constructed over (unramified extensions of) Z,[¢,],
which shows the relevance of the bound w« < p — 1. Secondly, we construct a smooth
projective surface X over Ok where Hgt(%K, Z).,=121/ p*Z, while Hzrys(.'fk/ W) or =
k @ k; thus, the inequality in part (i1) cannot be upgraded to a subquotient relationship
between the corresponding groups.

Part (i11) implies that the crystalline cohomology of the special fiber (under the
stated hypothesis) can be recovered from the generic fiber. The implicit functor in this re-
covery process relies on the theory of Breuil-Kisin modules, which were defined by Kisin
[49], following earlier work of Breuil [17]; for us, Kisin’s observation that one can use the
ring & = W(K)[T] in place of Breuil’s S involving divided powers is critical. The precise
statement of (iii) is the following. As H! (X, Z,) is torsion-free by (ii) and the assump-
tion, it is a lattice in a crystalline Gg-representation by (i). Kisin associates to any lattice
in a crystalline Gg-representation a finite free & = W(k)[T]-module BK(H. (X, Z,))
equipped with a Frobenius ¢, in such a way that BR(H, (Xc, Z,)) Qs W(/f)[%] (where
the map G — W(k) sends T to 0 and is the Frobenius on W(%)) gets identified with

(Hi(Xc. Z)) @z, Buy) ™ = Hi,(X1/W(H) L—)]-
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Then, under the assumptions of part (iii), we show that
BK (H,, (¥c, Z,)) ®s Wb = H.,_,(X,/W(B)

as submodules of BK(H;(%C, Z)) Qs W(k)[%] = Hiws(%k/W(k))[i].

As alluded to earlier, there is also a variant of Theorem 1.1(iii§ if K 1s algebraically
closed. In fact, our approach is to reduce to this case; so, from now on, let C be any
complete algebraically closed nonarchimedean extension of Q,, with ring of integers O
and residue field £. In this situation, the literal statement of Theorem 1.1(iii) above is
clearly false, as there is no Galois action. Instead, our variant says the following:

Theorem 1.4. — Let X be a proper smooth_formal scheme over O. Assume that H' _ (X;/

W(k)) and Hi;}s(%k/W(k)) are p-torsion-free. Then H (X;/W(k)), with its go—actf(;n, can

crys
be recovered functorially from the rigid-analytic generic fiber X of X. More precisely, the Z,-module
H. (X, Z,) equipped with the de Rham comparison isomorphism (as in Theorem 1.7 below) functori-

ally recovers H' (X, /W (k)).

crys

The proof of this result (and the implicit functor) relies on a variant of Breuil-Kisin
modules, due to Fargues [30], formulated in terms of Fontaine’s period ring A;,¢ instead of
the ring &. To explain this further, we recall the definitions first. The ring A;.¢ is defined
as

Ainf = W(Ob) ’
where O = l(ir_n(p O/p is the “tilt” of O. Then O is the ring of integers in a complete

algebraically closed nonarchimedean field C’ of characteristic p, the tilt of C; in particu-
lar, the Frobenius map on O” is bijective, and thus A,y = W(O”) has a natural Frobenius
automorphism ¢, and Ay,/p = O".

We will need certain special elements of A;,r. Fix a compatible system of primitive
p-power roots of unity ¢, € O; then the system (1, £, &2, ...) defines an element € € O
Let u =le] —1 € Ayrand

po =1 S,
§ l—g[e] :

ol -

There is a natural map 6 : A,y — O whose kernel is generated by the non-zero-divisor .
Then Ay, is defined as the p-adic completion of the PD envelope of Aj,; with respect to
the kernel of 8; equivalently, one takes the p-adic completion of the A;,-algebra generated
by the elements %l, n > 1, inside Ainf[%]. Witt vector functoriality gives a natural map

Ajn = W(k) that carries & to p, and hence factors through A.,. Finally, the ring B,
that appeared in Fontaine’s functor is

1
Bc s:Achs e
” ‘ [M]
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This is a Q-algebra as /™' € pA.y,. We will also need BJy, defined as the &-adic com-
pletion of Ainf[%]; this 1s a complete discrete valuation ring with residue field C, uni-
formizer &, and quotient field By := B;{R[é].

With this notation, the relevant category of modules is defined as follows:

Defimtion 1.5. — A Brewil-Risin—Fargues module is a finitely presented A;ne-module M
equipped with a @-linear isomorphism @y - M[é] = M[%], such that M[%] is finite free over
Ain[5].

b

This is a suitable mixed-characteristic analogue of a Dieudonné module; in fact,
these objects intervene in the work [62] of the third author as “mixed-characteristic local
shtukas”. We note that the relation to shtukas has been emphasized by Kisin from the
start [49]. For us, Fargues’ classification of finite free Breuil-Kisin—Fargues modules is
critical.

Theorem 1.6 (Fargues). — The category of finite fiee Breuil—Risin—Fargues modules s equiv-
alent to the category of pawrs (1, B), where T is a finite free Z,-module, and & C T ®z, Bar s a
B -lattice.

Let us briefly explain how to use Theorem 1.6 to formulate Theorem 1.4. Un-
der the hypothesis of the latter, by Theorem 1.1(ii), the Z,-module T := H} (X, Z,) is
finite free. The de Rham comparison isomorphism for X, formulated in Theorem 1.7
next, gives a Bl -lattice & := HirYS(X/ Bi) in T ®z, Bar. The pair (T, E) determines
a Breuil-Kisin—Fargues module (M, ¢y) by Theorem 1.6. Then Theorem 1.4 states
that the “crystalline realization” (M, g\) ®a,, W(£) coincides with (Hirys(%k /W), ¢),
which gives the desired reconstruction.

The preceding formulation of Theorem 1.4 relies on the existence of a good
de Rham cohomology theory for proper smooth rigid-analytic spaces X over G that
takes values in BJ;-modules, and satisfies a de Rham comparison theorem. Note that
H (X) is a perfectly well-behaved object: it is a finite dimensional C-vector space. How-
ever, it is inadequate for our needs as there is no sensible formulation of the de Rham
comparison theorem in terms of H'j (X): there is no natural map C — B splitting the
map 6 : Bl — C (unlike the discretely valued case). Our next result shows that H' (X)
nevertheless admits a canonical deformation across €, and that this deformation inter-
acts well with p-adic comparison theorems. We regard this as an analogue of crystalline
cohomology (with respect to the topologically nilpotent thickening Bl — C in place of
the usual W(k) — £).

Theorem 1.7. — Let X be a proper smooth adic space over C. Then there are cohomology groups

l' + . . . . .
H,, (X/Bgr) which come with a canonical isomorphism

Hirys (X/Bg) g, Bar = H,(X,Z,) ®z, Bar-
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In case X = X,®xC arises via base change from some complete discretely valued extension K of Q,
with perfect residue field, this isomorphism agrees with the comparison isomorphism

HSR(XO) ®k Bar = HEI(X, Z,) ®z, Bar
Jrom [59] under a canonical identification

Hi

crys (X/B;_R) = HZCIR(XO) ®K B(—;—R

Moreover, Hirys (X/BiR) is a finite free Bl -module, and we have the following:

(1) (Conrad-Gabber [21]) The Hodge—de Rham spectral sequence
E) = H (X, Q,c) = HR (X)

degenerates at E; .
(i) The Hodge—Tate spectral sequence [60]

E) = H'(X, @,c)(—) = HY (X, Z,) ®, C
degenerates at Ey.

We now turn to discussing the proof of Theorem 1.1. Our strategy is to construct
a cohomology theory for proper smooth formal schemes over O that is valued in Breuil—
Kisin—Fargues modules. This new cohomology theory specializes to all other cohomology
theories, as summarized next, and thus leads to explicit relationships between them, as in
Theorem 1.1.

Theorem 1.8. — Let X be a proper smooth formal scheme over O, where O 1is the ring of integers
in a complete algebraically closed nonarchimedean extension G of Q. Then there is a perfect complex of
A;r-modules

RFAm((%) )

equipped with a @-linear map @ : RU 5, (X) — RIy (X) inducing a quasi-isomorphism

inf inf

1 1
RIA (X)) = | =RICA (X)) — |,
A )[s] A )Lo(@}

such that all cohomology groups are Brewil—RKisin—Fargues modules. Moreover, one has the following
comparison results.

(1) Wath crystalline cohomology of X

R4, (%) @ W(k) = RT 1y, (X,/W(H)).



226 BHARGAV BHATT, MATTHEW MORROW, PETER SCHOLZE

(i) With de Rham cohomology of X :
RI (%) ®% O~ RTR(X).
(iii) With crystalline cohomology of X0,
R, (X) %, Acrys = Rl ey (X0p/ Acrys) -

(iv) Wath étale cohomology of the rigid-analytic generic fiber X of X:

1 1
RI 5, (X) @y Ainf|:;:| ~RI4(X, Z)) Qz, Ainf|:;j|-

We note that statement (iii) formally implies (1) and (i1) by standard facts about
crystalline cohomology. Also, we note that (if one fixes a section k£ — O/p) there is a
canonical isomorphism

1 1
chrys (%O/};/Acrys) |:lzj| >~ RFCFYS (%k/w(k)) ®Wv(k) A(TYS [12]’

this 1s related to a result of Berthelot-Ogus [7]. Thus, combining parts (ii1) and (iv), we
get the comparison

RT ey (X4/W(K)) ®wit) Berys = RUa, (X)) @, Berys
~ RFé[ (X, Z/;) ®Z/, B(‘rys’

which proves Theorem 1.1(1); note that since each fomt‘(f{)[l] is free over Ay 1], the de-
rived comparison statement above immediately yields one for the individual cohomology
groups.

The picture here is that there is the cohomology theory RI'y, (X) which lives
over all of Spec Ayy¢, and which over various (big) subsets of Spec A;¢ can be described
through other cohomology theories. These subsets often overlap, and on these overlaps
one gets comparison isomorphisms. However, the cohomology theory RI'y, (X) itself is
a finer invariant which cannot be obtained by a formal procedure from the other known
cohomology theories. In particular, the base change RI'y (X) ®kmf O does not admit a
description in classical terms, and gives a specialization from the étale cohomology of X
with F-coefficients to the de Rham cohomology of X, (by Theorem 1.8(ii) and (iv)), and
is thus responsible for the inequality in Theorem 1.1(11).

Remark 1.9. — It is somewhat surprising that there is a Frobenius acting on
RTy,,(X), as there is no Frobenius acting on X itself. This phenomenon is reminiscent of
the Frobenius action on the de Rham cohomology RI'4r (Y) of a proper smooth W(%)-
scheme Y. However, in the latter case, the formalism of crystalline cohomology shows
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that RI"4r (Y) depends functorially on the special fiber Yy; the latter lives in character-
istic p, and thus carries a Frobenius. In our case, though, the theory RI'y, (X) is not a
functor of Xp, (see Remark 2.4), so there is no obvious Frobenius in the picture. Instead,

in our construction, the Frobenius on RI'y, (X) comes from the Frobenius action on the
“tlt” of X.

Let us explain the definition of RI'y, (X). We will construct a complex AQx of
sheaves of Aj,-modules on Xz,,, which will in fact carry the structure of a commutative
Ajy-algebra (in the derived category).” Then

RTy, (X)) :=RI'(X 70, AQx).

inf

Let us remark here that, in the way constructed in this paper, AQ2x depends on the map
X — SpfO, and so it would be better to write AQx,0 instead. We write AQx to keep
notation light.*

The comparison results above are consequences of the following results on AQ2x.

Theorem 1.10. — Let X/O be as in Theorem 1.8. For the complex AQLx of sheaves of
Ajup-modules defined below, there are canonical quasi-isomorphisms of complexes of sheaves on Xz,
(compatible with multiplicative structures).

(1) Wath crystalline cohomology of X

Here, the tensor product is p-adically completed, and the right side denotes the de Rham—Witt
complex of Xy, which computes crystalline cohomology of X .
(i) With de Rham cohomology of X:

L ~ (O®cont
AQ% ®Ainf O - Qx/o ’
t,cont __ 1: i
where 2510 =Mz 0m-
(iii) With crystalline cohomology of Xoyp: tf u: (X0 Acrys)erys —> Xzar denoles the projec-
tion, then
AQx®Ly

~ crys
Acrys > Ruy, 0360/p JAays”

inf’

(iv) With (a variant of) étale cohomology of the rigid-analytic generic fiber X over X: if v :
Koproct = Xzar denotes the projection, then

| |
AQx R, Ainf|:_:| >~ (RvAjex) Qay Ai11f|:_]-
m n

% Our constructions can be upgraded to make AQx into a sheaf of Eq,-Aj,-algebras, but we will merely consider
it as a commutative algebra in the derived category of Ay,r-modules on X.
* In fact, by [8], AQ2x only depends on X itself.
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We note that Theorem 1.10 implies Theorem 1.8. This is clear for parts (i), (i) and
(i11). For part (iv), one uses the following result from [59] (cf. [29, §3, Theorem 8]): the
canonical map

RI«(X, Z)) ®z, Ainr = R 0e(X, Ainrx)

is an almost quasi-isomorphism; in particular, it is a quasi-isomorphism after inverting .
Here, A, ¢ x 1s a relative version of Fontaine’s period ring A;,s, obtained by repeating the
construction of A;r on the pro-étale site.

Theorem 1.10 provides two different ways of looking at AS2x. On one hand, it
can be regarded as a deformation of the de Rham complex of X from O to its pro-
infinitesimal thickening A; s — O, by (ii). This is very analogous to regarding crystalline
cohomology of X; as a deformation of the de Rham complex of X; from £ to its pro-
infinitesimal thickening W(%) — £. This turns out to be a fruitful perspective for certain
problems; in particular, if one chooses coordinates on X, then AQx can be computed
explicitly, as a certain “g-deformation of de Rham cohomology”. This is very concrete,
but unfortunately it depends on coordinates in a critical way, and we do not know how to
see directly that AQ2x is independent of the choice of coordinates in this picture.

Remark 1.11. — This discussion raises an interesting question: is there a site-
theoretic formalism, akin to crystalline cohomology, that realizes AS2x? Note that
AQx®Ly, Acys does indeed arise by the crystalline formalism thanks to Theorem 1.10(ii).
It is tempting to use the infinitesimal site to descend further to Ay,; however, one can
show that this approach does not work, essentially for the same reason that infinitesimal
cohomology does not work well in characteristic p.”

On the other hand, by Theorem 1.10(iv), one can regard AQ2x as being Rv,A; ¢ x,
up to some p-torsion, i.e. as a variant of étale cohomology. It is this perspective with
which we will define AQ2y; this has the advantage of being obviously canonical. How-
ever, this definition is not very explicit, and much of our work goes into computing the
resulting AQ2x, and, in particular, getting the comparison to the de Rham complex. It
is this computation which builds the bridge between the apparently disparate worlds of
étale cohomology and de Rham cohomology.

1.3. Strategy of the construction. — We note that computations relating étale coho-
mology and differentials, as alluded to above, have been at the heart of Faltings’ approach
to p-adic Hodge theory; however, they always had the problem of some unwanted “junk
torsion”. The main novelty of our approach is that we can get rid of the “junk torsion”
by the following definition:

% Footnote added in print: The question raised in this remark has been answered affirmatively by the construction
of the prismatic site that shall appear in the forthcoming [10].
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Defination 1.12. — Let
Vv Xproer = Xzar
denote the projection (or the “nearby cycles map™). Then
AQy = Ln, Ry, Apex).

Remark 1.13. — If one is careful with pro-sheaves, one can replace the pro-étale
site with Faltings’ site [29] [2], in Definition 1.12.

Here, u = [€] — 1 € Ayr 1s the element introduced above. The critical new in-
gredient is the operation Ly, defined on the derived category of A-modules,’ for any
non-zero-divisor f/ € A. Concretely, if D* is a complex of f-torsion-free A-modules, then
nyD* is a subcomplex of D*[ },] with terms

(njD)l — {X EfiDi | dx efi+lDi+l }

One shows that this operation passes to an operation Lz, on the derived category. This
relies on the observation that

H'(n/D%) = H'(D®)/H'(D*)[f].
In particular, the operation 7, has the effect of killing some torsion on the level of co-

homology groups, which is what makes it possible to kill the “junk torsion” mentioned
above. We warn the reader that L, is not an exact operation.

Remark 1.14. — We note that the operation Lz, appeared previously, notably in
the work of Berthelot-Ogus [6, Section 8]. There, they prove that for an affine smooth
scheme SpecR over £, ¢ induces a quasi-isomorphism

RT s (Spec R/W(k)) 2 LRI .y, (Spec R/W(k)),

with applications to the relation between Hodge and Newton polygon. Illusie has
strengthened this to an isomorphism of complexes

WEQR = MWER /1
of. [43,1.3.21.1.5).

Remark 1.15. — For any object K in the derived category of Z,-modules equipped
with a quasi-isomorphism Ln,K 2>~ K, we show that the complex K /4" admits a canonical
representative K* for each 7, with Kfz = H'(K/p"). In the case K = Ry (Spec R/W(k)),
equipped with the Berthelot-Ogus quasi-isomorphism mentioned in Remark 1.14, this
canonical representative i1s the de Rham-Witt complex; this amounts essentially to

% In fact, we define Ln; operation on any ringed topos, such as (X7, Aing), which is the setup in which we are using
it in Definition 1.12.
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Katz’s reconstruction of the de Rham-Witt complex from crystalline cohomology via
the Cartier isomorphism, cf. [44, §III.1.5].

Next, we explain the computation of AQ2x when X = SpfR is an affine formal
scheme, which is “small” in Faltings’ sense, i.e. there exists an étale map

O:SpfR — G =SpfO(T", ..., T, )
to some (formal) torus; this is always true locally on Xz,,. In that case, we define
Roo =R®p 12y O(TY ", T ),

on which the Galois group I' = Z;f acts; here we use the choice of p-power roots of unity
in O. Faltings’ almost purity theorem implies that the natural map

(2) chont (F, Ainf(Roo)) - RFprOét (X, Ainf,X)

1s an almost quasi-isomorphism, in the sense of Faltings’ almost mathematics (with respect
to the ideal [m"] C Ay, where m” C O is the maximal ideal). The key lemma is that the
Ln-operation converts the preceding map to an Aonest quasi-isomorphism:

Lemma 1.16. — The induced map
LnMRFcont(F7 Ainf(Roo)) - LnMRFproét(Xs Ainf,X)
s a quasi-isomorphism.

This statement came as a surprise to us, and its proof relies on a rather long list
of miracles; we have no good a priori reason to believe that this should be true. Part of
the miracle is that the lemma can be proved by only showing that the left side is nice,
without any extra knowledge of the right side than what follows from the almost quasi-
isomorphism (2) above. In the announcement [9], we did not use this lemma, and instead
had a more complicated definition of AQ2x.

Moreover, the right side

LT]//.RFproét (X, Ainf,X)

is equal to AQg := RI'(SpfR, AQg¢r). This is not formal as Ly does not commute with
taking global sections, but is also not the hard part of the argument.
Thus, one can compute AR as

Ln/Lchonl(F’ Ainf(Roo)) .
This computation can be done explicitly, following the previous computations of Faltings.

Before explaining the answer the general, we first give the description in the case of the

torus; the result is best formulated using the so-called g-analogue [i], := ";_;11 of an integer
1eZ.
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Theorem 1.17. — IfR = O(T*"), then AQ is computed by the q-de Rham complex

84
9,T

Aine(TH') = Ae(TH) : T [0, T, g=[€] € Aur.
In closed form,

9, _J(@D) = /(D)
5TU(D%_ gT =T

g
is a finte q-difference quotient.

In general, the formally étale map O(TT', ..., T5") — R deforms uniquely to a_formally
étale map

Ape(TE . T — AR,

Foreach 1 =1, ..., d, one has an automorphism y; of Amf(TTl, e T;,H) sending 'T; to qT; and
T; to T for j # 1, where g = [€]. This automorphism lifls umiquely to an automorphism y; of AR)"
such that y; = 1 mod (¢ — 1), so that one can define commuting “q-derivations™

81] Vi —

= AR = AR)E.
o~ gT,—T, R) R)

Then AR s computed by the g-de Rham complex
/I T i

( T, O\ d O\
AR = > A(A®)) - -

0 AR)? "L

d
- AA®"Y) - o,
where all higher differentials are exterior powers of the furst differential.

In particular, after setting ¢ = 1, this becomes the usual de Rham complex, which
is related to part (i) of Theorem 1.10. In fact, already in Ay, the elements [¢], and :
differ by a unit, which is related to part (ii1) of Theorem 1.10.

Interestingly, the ¢g-de Rham complex admits a natural structure as a differential
graded algebra, but a noncommutative one: when commuting a function past a differen-
tial, one must twist by one of the automorphisms y;. Concretely, the Leibniz rule for aj_qT
reads

9 9 9
S0 (f(D2(D) =/ (1) (e(D) +¢(g D) 5= (/1)

q aflT‘ q
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where g(¢T) appears in place of g('T'). (Note that this is not symmetric in / and g, so there
are really two different formulas.) If one wants to rewrite this as the Leibniz rule
9
0, T

8‘1
9, T

0
(f(T)g(T)) =f(T)8—fF(g(T)) + —L(f(D)g(D),
q

one has to introduce noncommutativity when multiplying the ¢-differential ;j—"T (f(T)) by
the function g('T); this can be done in a consistent way. Nevertheless, one can show that
the ¢-de Rham complex is an E-algebra (over A;y), so the commutativity is restored up
to consistent higher homotopies.

Remark 1.18. — The occurrence of the perhaps less familiar (and more general)
notion of an E-algebra, instead of the stricter and more hands-on notion of a commu-
tative differential graded algebra, is not just an artifact of our construction, but a fun-
damental feature of the output: even when R = O(T*!), the Eq-Aj-algebra AQg (or

even AS2g/p) cannot be represented by a commutative differential graded algebra (see
Remark 7.8).

Finally, let us say a few words about the proof of Lemma 1.16. Its proof relies on a
relation to the de Rham—Witt complex of Langer—Zink [52]. First, recall that there is an
alternative definition of A;, as

Ainf = 1<1£1 W,(O),

F

similarly, we have

Aui(R) =lim W, (Ro,).

F

Roughly, Lemma 1.16 follows by taking the inverse limit over 7, along the F maps, of the
following variant.

Lemma 1.19. — For any r > 1, the natural map
LnMchont(rv Wr(Roo)) - LnuRrpmét(X7 Wr(@\;))

is a quast-isomorphism; let WTQR denote thewr common value. Then (up to the choice of roots of unity)
there are canonical isomorphisms

HI(W,S2p) = W25

where the right side denotes p-adically completed versions of the de Rham—Witt groups of Langer—Sink
[52].



INTEGRAL p-ADIC HODGE THEORY 233

Remark 1.20. — Tt is also true that W,Qp = AQg ®% W,(0), and AQg =
lim W, Q.

Here, the strategy is the following. One first computes the cohomology groups of
the explicit left side

LnuRFcont (F7 W7 (ROO))

and matches those with the de Rham—Witt groups. These are made explicit by Langer—
Zink, and we match their description with ours; this is not very hard but a bit cumber-
some, as the descriptions are quite combinatorially involved. In fact, we can a prior1 give
the cohomology groups the structure of a “pro-F-V-complex” (using a Bockstein opera-
tor as the differential), so that by the universal property of the de Rham—-Witt complex,
they receive a map from the de Rham—Witt complex; it is this canonical map that we
prove to be an isomorphism. In particular, the isomorphism 1s compatible with natural d,
F, V, R and multiplication maps.

After this computation of the left side, one proves a lemma that if D; — Dy is an
almost quasi-isomorphism of complexes such that D, is sufficiently nice, then Ly, D; —
Ln,Dy is a quasi-isomorphism, see Lemma 8.11. In fact, this argument only needs a
qualitative description of the left side, and one can prove the main results of our paper
without establishing the link to de Rham-Witt complexes.

We note that the complexes W, provide a partial lift of the Cartier isomorphism
to mixed characteristic. More precisely, A;,c admits two different maps 5, s Ay — W,(O)
and 6, = @(p’ : Apr = W,(O) to W,(0), the first of which comes from the description
A= 1(11r_r1F W, (O); the map 6, agrees with Fontaine’s map 0 used above. Then formal

properties of the Ln-operation (Proposition 6.12, Lemma 6.11) show that

AQx ®% , W,(0)

1,cont

is computed by a complex whose terms are the cohomology groups W, €25y of
W,Qx = AQx ® 5 W,(0).

By the crystalline comparison, AQx ®% , W,(O) computes the crystalline cohomology
of X/W.,(O) (equivalently, of Xp/,/W,(O)). Thus, this reproves in this setup that Langer—
Zink’s de Rham-Witt complex computes crystalline cohomology. On the other hand,
after base extension from A;,r to W(k), the maps 6, and 57 agree up to a power of Frobe-
nius on W(k). Thus, reformulating this from a slightly different perspective, there are
two different deformations of AQx ®kim‘ W, (k) ~ WrQSek A mixed characteristic: one
is the de Rham—Witt complex AQ ®kmr,97~ W,(0) ~ W,Q;é;?;t, the other is the complex

AQx @Y - W,(0) = W\,/Qx whose cohomology groups are the de Rham—Witt groups

Ainfvgr
W,Q%95". From this point of view, the fact that these two specialize to the same complex
over W, (k) recovers the Cartier isomorphism.
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1.4. The genesis of this paper. — We comment briefly on the history of this paper.
The starting point for this work was the question whether one could geometrically con-
struct Breuil-Kisin modules, which had proved to be a powerful tool in abstract integral
p-adic Hodge theory. A key point was the introduction of Fargues’ variant of Breuil-
Kisin modules, which does not depend on any choices, contrary to the classical theory of
Breuil-Kisin modules (which depends on the choice of a uniformizer). The search for a
natural A;,-valued cohomology theory took off ground after we read a paper of Hessel-
holt [40], that computed the topological cyclic homology (or rather topological Frobenius
homology) of O = Og,, with the answer being given by the Breuil-Kisin-Fargues ver-
sion of Tate twists. This made it natural to guess that in general, (a suitable graded piece
of) topological Frobenius homology should produce the sought-after cohomology theory.
A computation of the homotopy groups of TR'(R; p, Z,) then suggested the existence of
complexes W, Qg with cohomology groups given by Wrﬂi’{c/o(gt, as in Lemma 1.19. The

naive guess R .¢ (X, W,(O;E)) for these complexes is correct up to some small torsion.
In fact, it gets better as r — 00, and in the limit » = 00, the naive guess can be shown
to be almost correct; this gives an interpretation of the “junk torsion” as coming from
the non-integral terms of the de Rham-Witt complex, cf. Proposition 11.17. Analyzing
the expected properties of AQ2g then showed that one needed an operation like Ly with
the property of Proposition 6.12 below: the naive guess D = RI',,,«(X, Ajyrx) has the
property that H'(D/u) is almost given by WQ;’{C/%;‘, whereas the correct complex AQy
should have the property that AQg /u is (almost) quasi-isomorphic to the de Rham—Witt
complex of R. In this context we rediscovered the Ln-operation. Thus, although topolog-
ical Hochschild homology has played a key role in the genesis of this paper, it does not
play any role in the paper itself (although it may become important for future develop-
ments). In particular, we do not prove that our new cohomology theory is actually related
to topological Hochschild homology in the expected way.’

1.5. Outline. — Finally, let us explain the content of the different sections. As it 1s
independent of the rest of the paper, we start in Section 2 by giving some examples of
smooth projective surfaces illustrating the sharpness of our results.

In Sections 3 through 7, we collect various foundations. In Section 3, we recall a
few facts about perfectoid algebras. This contains much more than we actually need in
the paper, but we thought that it may be a good idea to give a summary of the different
approaches and definitions of perfectoid rings in the literature, notably the original def-
mnition [58], the definition of Kedlaya—Liu [48], the results of Davis—Kedlaya [22], and
the very general definition of Gabber-Ramero [38]. Next, in Section 4, we recall a few
facts from the theory of Breuil-Kisin modules, and the variant notion over A;,; defined
by Fargues. In particular, we state Fargues’ classification theorem for finite free Breuil-
Kisin—Fargues modules. This classification is in terms of data that can be easily defined

7 Footnote added in print: the reconstruction of the AQ complexes via topological Hochschild homology as sug-
gested in this paragraph has appeared in [8].
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using rational p-adic Hodge theory (using only the generic fiber). We recall some relevant
facts about rational p-adic Hodge theory in Section 5, including a brief reminder on the
pro-étale site. In Section 6, we define the Ln-operation in great generality, and prove var-
1ous basic properties. In Section 7, we recall that in some situations, one can use Koszul
complexes to compute group cohomology, and discuss some related questions, such as
multiplicative structures.

In Sections 8 through 14, we construct the new cohomology theory, and prove the
geometric results mentioned above. As a toy case of the general statements that will fol-

low, we construct in Section 8 the complex Qr = W, Q. All statements can be proved
directly in this case, but the arguments are already indicative of the general case. After
dealing with this case, we define and study A2 in Section 9. In that section, we prove
Lemma 1.19, and deduce Lemma 1.16, except for the identification with de Rham-Witt
groups. In Section 10, we recall Langer—Zink’s theory of the relative de Rham—Witt com-
plex. In Section 11, we show how to build an “F-V-procomplex” from the abstract struc-
tures of the pro-étale cohomology groups, and use this to prove the identification with
de Rham-Witt groups. It remains to prove the comparison with crystalline cohomology,
which is the content of Section 12. Our approach here is very hands-on: we build explicit
functorial models of both AQg and crystalline cohomology, and an explicit functorial
map. There should certainly be a more conceptual argument. In Section 13, we give a
similar hands-on presentation of a de Rham comparison isomorphism for rigid-analytic
varieties over G,, and show that it is compatible with the result from [59]. We use this
to prove Theorem 1.7. In the final Section 14, we assemble everything and deduce the
main results.

2. Some examples

In this section, we record some examples proving our results are sharp. First, in
Section 2.1, we give an example of a smooth projective surface over Zy where there is no
torsion in étale cohomology of the generic fiber (in a fixed degree), but there is torsion in
crystalline cohomology of the special fiber (in the same degree); thus, the last implication
in Theorem 1.1(i1) cannot be reversed. Secondly, in Section 2.2, we record an example of
a smooth projective surface over a (ramified) extension of Z, such that the torsion in the
étale cohomology of the generic fiber is not a subquotient of the torsion in the crystalline
cohomology of the special fiber; this shows that the length inequality in Theorem 1.1(ii)
cannot be upgraded to an inclusion of the corresponding groups.

We note that both constructions rely on the interesting behavior of finite flat group
schemes in mixed characteristic: In the first example, a map of finite flat group schemes
degenerates, while in the second example a finite flat group scheme itself degenerates.

2.1. A smooth projective surface over Zy. — The goal of this section is to prove the
following result.
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Theorem 2.1. — There ts a smooth projective geometrically connected (relative) surface X over
Z; such that

(1) the étale cohomology groups Hét(XQQ, Z,) are free over Zy for all i € Z, and
2

CWS(XFQ/ Z,) has nontrivial 2-torsion given by

(i1) the second crystalline cohomology group H
H(Q‘,rys (XFQ/ZQ)IOr = F2~

We are not aware of any such example in the literature. In fact, we are not aware
of any example in the literature of a proper smooth scheme X over the ring of integers O
in a p-adic field for which there is not an abstract isomorphism

H.,, (Xi/Wh) =H, Xk, Z;) ®z, W(k).

For example, Illusie [43, Proposition 7.3.5] has proved that the crystalline cohomology of
any Enriques surface in characteristic 2 “looks like” the étale cohomology of an Enriques
surfaces in characteristic 0, and all other examples we found were of a similar nature.

We will construct X as a generic hypersurface inside a smooth projective 3-fold
with similar (but slightly weaker) properties. Let us describe the construction of this 3-fold
first. We start with a “singular” smooth Enriques surface S over Zy; here, singular means
that Pic’ (S) = s as a group scheme, and it is equivalent to the condition that 7, (Sg,) =
Z/2Z. Tor existence of S, we note that there are singular Enriques surfaces over Fy (see
below), and all of those lift to Zy by a theorem of Lang and Ogus [51, Theorem 1.3,
1.4]. In particular, there is a double cover S— S, and in fact S is a K3 surface. Explicitly,
cf. [13, pp. 222-223], one can take for §FQ the smooth intersection of three quadrics in
P;. (with homogeneous coordinates x1, x,, x3, 91, 72, 73) given by the equations

x% + xox3 +yf + x91 =0,
X§ + x1x5 + 95 + x99 = 0,
xg + %129 +y§ + w393 = 0.

This admits a free action of Z/2Z given by (x; : ;) = (x; : x; + ;). Then §F2 is a K3
surface, and Sy, = §FQ /(Z/2Z) is a singular Enriques surface.”

Moreover, we fix an ordinary elliptic curve E over Z,. This contains a canonical
subgroup e C E, and we get a nontrivial map

n:Z/2Z — py — E.

8 The Z/2Z-action is free away from x; = xy = x; = 0, which would intersect §p2 only when y; = y9 =33 =0,
which is impossible. To check smoothness, use the Jacobian criterion to compute possible singular points. The minor for
the differentials of yy, yo, y5 shows xjx9x3 = 0; assume wlog x; = 0. Then the minor for xy, x9, y9 shows xﬁxa =0, so wlog
xg = 0. Then the first equation gives y, = 0, and the second yo = 0. Now the minor for x;, xy, x5 shows xéyg =0, which
together with the third equation shows x3 = y; = 0.
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Note that 1q, 1s nonzero, while 7, is zero. Finally, we let 7 : D — S be the E-torsor
which is the pushout of the Z/2Z-torsor S—>S along n; then D is a smooth projective
geometrically connected 3-fold.

Proposition 2.2. — The smooth projective 3-fold D over Zy has the following properties.

(i) The étale cohomology groups H_, (DQ_ , ZLy) are free over Ly fori =0, 1, 2.

(1) The crystalline cohomology group H (DFz /Zy) has nontrivial 2-torsion, given by F.

Proof. — We start with part (i1). Let £ = Fy. Then D, = S; x E; is the triv-
ial E;-torsor by construction. Thus, the Kiinneth formula and Illusie’s computation of
* (Si/W(k)) [43, Proposition 7.3.5], show that H2_ (D;/W(k)) e = k.

CI’YQ
Now we deal with part (1). Let C = QQ. It is a general fact that Hét(DC, Z,) is free
over Zy for i = 0, 1. Let 7;(D¢)*™? be the maximal abelian pro-2-quotient of 7, (D¢);
equivalently, 7, (D)™ % = H, (D¢, Zo). Then it is again a general fact that H2 (D¢, Zy)

is free over Z, if and only if 771 (D)™ ? = H, (D¢, Zy) is free over Zj. Indeed, thls follows
from the short exact sequence

(‘I"V%

0— Eth (Hl,él(DCv Z2)9 ZQ) - H?,t(DC, ZQ) - Hom(HQ,éL(DC1 ZQ)? Z2)

— 0.

Thus, it suffices to prove that m;(D¢)™? is free over Zy. We can, in fact, compute
the whole fundamental group m,(D¢) of D¢. Namely, pulling back gc — S¢ along
¢ : Do — Sc gives a Z/2Z-cover ﬁc — D¢, and D¢ = gc x E¢ decomposes as a prod-
uct, which implies that

m1(De) = 71 (Be) 2 Z x Z.
Thus, ;(D¢) 1s an extension of (not necessarily commutative) groups
0— m(Ec) = m(De) = Z/2Z — 0.

On the other hand, we have the map D¢ — Ec, which is by construction equivariant for
the Z/2Z-action which is the covering action of D¢ — D¢ on the left, and is translation
by n:Z/2Z — E( on the right. As this action is nontrivial we may pass to the quotient
and get a map D¢ — Eq/n = E(,, where E(, is another elliptic curve over C. We get a
commutative diagram with exact rows:

0 — m(Eg) — 71(Dg) — Z/2Z —— 0

|

0 —— m(Ee) —> m(EL) —> Z/2Z —— 0.
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This shows that 77 (D¢) = 7, (E() = Z x Z, so that in particular 77, (D¢)™2 = Zy x Z, is
free over Z,. O

Proof of Theorem 2.1. — Let D over Zy be the smooth projective 3-fold constructed
above. Let X C D be a smooth and (sufficiently) ample hypersurface; this can be chosen
over Zy: One has to arrange smoothness only over Fy, so the result follows from the
Bertini theorem over finite fields due to Gabber [36], and more generally Poonen [55].

Let C = QQ as above. First, we check that Hét(Xc, Z,) is free over Z, for all ; € Z.
Clearly, only : =0, 1, 2, 3, 4 are relevant, and by Poincaré duality it is enough to consider
1=20,1,2, and again : =0, | are always true. Let U =D \ X, which is affine. Then we
have a long exact sequence

Hiét(UC? Z,) — Hgt(Dc, Z,) — Hgt(Xc, Z,) — Hié[(Uc, Z))— ---.
Recall that as U is affine, smooth and 3-dimensional, Hi’ét(UC,Zg) = Hf,.,ét(Uc,
Z/2Z) = 0 for : < 3 by Artin’s cohomological bounds. In particular, Hf’ «Uc, Zy) 1s

free over Z,, and so the displayed long exact sequence implies that HZ (X, Z,) is free
over Zo, as desired.
Let £ =F,. We claim that the map

H. (Dy/W(k) — H._ (Xi/W(K))

crys crys
is an isomorphism for ¢ = 0, I and is injective for ¢ = 2 with torsion-free cokernel, if X
was chosen sufficiently ample. This follows from a general weak Lefschetz theorem for
crystalline cohomology by Berthelot [5], but can also be readily checked by hand by
reducing to the similar question for HQR(Dk) — HSR(Xk), cf. Lemma 2.12 below. ]

Remark 2.3. — In this example, the cospecialization map
H} (Xg,. Zo) — H}, (Xg,. Z5)

is not injective. Indeed, the left side contains a torsion class coming from the pullback of
the Z/2Z-cover Si, — Sg,, whereas the right side is torsion-free.

Remark 2.4. — In this example, the 3-fold D provides one lift of the smooth projec-
tive k-scheme D, >~ S, x E, to Z,, and has Hgt(DQQ, Z,) being torsion-free. On the other
hand, the 3-fold D’ := S x E gives another lift of D to Z, such that Hzt(D’QQ, Z,) con-
tains 2-torsion coming from S. Thus, the torsion in the étale cohomology of the generic
fiber of a smooth and proper Z,-scheme is not a functor of the special fiber. In particular,
the theory RI'y, (X) from Theorem 1.8 is not a functor of the special fiber X¢/,; in fact,
not even RI'y, (X)/p is.

2.2. An example of degenerating torsion in cohomology. — Let O be the ring of integers
in a complete nonarchimedean algebraically closed extension C of Q,.” Let k be the

¥ One can also realize the example over some sufficiently ramified finite extension of Q.
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residue field of O. The goal of this section is to give an example of a smooth projective
surface H/O such that the torsion in cohomology degenerates from Z/p*Z (in the étale
cohomology of H¢) to £ @ £ (in the crystalline cohomology of Hy); the precise statement
is recorded in Theorem 2.10.

2.2.1. The construction. — The strategy of the construction is to first produce an
example of the desired phenomenon in the world of algebraic stacks by using an inter-
esting degeneration of group schemes; later, we will push the example to varieties. The
basic idea is to degenerate the constant group scheme Z/p*Z to a group scheme that is
killed by p; this is not possible in characteristic 0, but can be accomplished over a mixed
characteristic base.

Lemma 2.5. — Let E/O be an elliptic curve with supersingular reduction. Let x € E(C)
be a point of exact order p*, and let G C E be the flat closure of the subgroup generated by x. Then
Ge = Z/P*Z and G, = E[p].

Progf: — We only need to identify G, C Ey; but E; has a unique subgroup of order
p’ for any r, given by the kernel of the r-fold Frobenius. Thus, G, = E;[p] as both are
subgroups of order /. U

Remark 2.6. — With suitable definitions of étale and crystalline cohomology for
stacks, the classifying stack BG of the group scheme constructed in Lemma 2.5 is a proper
smooth stack over O, and satisfies: HEI(BGC, Z,)~ Z/p’Z, while H?WS(BG/{/W(/f)) o~
k @ k; this follows from the computations given later in the section.

We now fix a finite flat group scheme G sitting in an elliptic curve E with supersin-
gular reduction as above. Our goal is to approximate BG by a smooth projective variety
in a way that reflects the phenomenon in Remark 2.6. First, we find a convenient action
of G on a projective space. (In fact, the construction below applies to any finite flat group
scheme G.)

Lemma 2.7. — There exists a projective space P/O with an action of G such that the locus
Zyp C P of pownts with non-trivial stabilizers has codimension > 2 on the special fiber.

Remark 2.8. — The number 2 in Lemma 2.7 can be replaced by any positive
integer.

The closed set Zp C P mentioned above is (by definition) the complement of the
maximal open Up C P with the following property: the base change 4 : F — P of the
actionmap a: G x P — P x P given by (g, x) = (gx, x) along the diagonal A: P — P x P
1s an isomorphism over Up. As b is finite surjective, one can alternately characterize the
closed subset Zp C P by the following two equivalent conditions:
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(1) Zp 1s the set of those x € P such that the fiber of 4 over « (x) has length > 1.
(i) Zp is the support of b,Op/Op.

In particular, the formation of Up and Zyp (as subsets of P) commutes with taking fibers
over points of Spec(Q), and they are both G-stable subsets of P.

Progf: — Choose a faithful representation G — GL(V), inducing a G-action on
P(V). By replacing V if necessary, we may also assume that the G-action on P(V) is
faithful on each fiber. In particular, there is a maximal G-stable open U C P(V) that 1s
fiberwise dense such that the G-action on U has no stabilizers (constructed as Up above).
The complement Y C P(V) is a closed subset that has codimension > 1 on each fiber.
Now fix an integer ¢ > 2, and consider the induced G-action on W :=[]_, V. Set P:=
P(W). We claim that this satisfies the conclusion of the lemma.

LetUCV— {0} be the inverse image of U under V — {0} — P(V), and let Y=
V=T, so Y — {0} is the inverse image of Y. Note that Y, equipped with its reduced
structure, 1s a G,,-equivariant closed subset of V with codimension > 1 on each fiber.
Now consider 7/ := [T, YCcW:= [T, V. Then 7 (say with its reduced structure)
defines a G,,-equivariant closed subset of W of codimension > ¢ on each fiber. Removing
0 and quotienting by G,, defines a proper closed subset Z' C P of codimension > ¢ on
each fiber. It is easy to see that the locus Zp C P of points with non-trivial stabilizers is
contained in 7/, so Zp also has codimension > ¢ > 2 on each fiber. ]

Choose P and G as in Lemma 2.7. We can use this action to approximate BG by
passing to the quotient as follows. Let 2 : P — X = P/G be the scheme-theoretic quotient,
so that X is a projective scheme, flat over O. Inside X, we have the open subset Ux C X
defined as the quotient Up/G, with complement Zx = X \ Ux.

Lemma 2.9. — The construction satisfies the following properties.

(1) The closed subset Zx C X has codimension > 2 on the special fiber.
1) The map X — Spec(O) is smooth over Ux.
p p

Proof: — The map £ is finite surjective and G-equivariant. Our construction shows
that 4(Zp) = Zx, giving (1). For (i1), observe that Up — Ux is a G-torsor, and thus faithfully
flat. Moreover, the formation of this map is compatible by base change. Thus, since Up
is smooth, so 1s Ux: It is enough to check that Ux is regular (by the fibral criterion of
smoothness), equivalently of finite Tor-dimension, which follows from the existence of the
faithfully flat map Up ; — Ux; from the regular scheme Up. 0J

We now fix a very ample line bundle L. on X once and for all. Let H C X be a
smooth complete intersection of dim(P) — 2 hypersurfaces of sufficiently large degree
such that H C Ux. Such H exist, as Zx C X has codimension > 2 on the special fiber,
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so a general complete intersection surface H will miss Zx, i.e., HN Zx = @ (first on the
special fiber, and thus globally by properness); thus, H C Ux. Since Ux is smooth, the
general such H will also be smooth by Bertini.

We will check that H 1s a sufficiently good approximation to BG for our purposes.
More precisely:

Theorem 2.10. — The above construction gives a smooth projective (relative) surface H over
Spec(QO) such that Hé(Hc, Z) >~ Z/p°Z, while H?  (H,/W(k))or = k D k.

crys

Remark 2.11. — 1In this example, one can also show that H},(H¢, Z/p) >~ Z/p,
while H' (H;) >~ £ @ k. Thus, the inequality dimg, H'(He., F,) < dim,; HfiR(Hk) coming
from Theorem 1.1(ii) can be strict.

Progf. — Yor étale cohomology, let H C P be the preimage of H, so H— His
a G-torsor. As He C P 1s a smooth complete intersection of ample hypersurfaces, the
weak Lefschetz theorem implies that Hi, (H¢, Z,) is given by Z,, 0, and a torsion-free
group, in degrees 0, 1, and 2, respectively. Now we use the Leray spectral sequence for
the G¢ = Z/p*Z-cover He — Hg,

H'(Z/p*Z, W, (H¢, Z,)) = H. (He, Z)).

et
This implies that
H;Hc.Z). =H(Z/p°Z,Z,) =Z/p"Z.

For crystalline cohomology, consider the quotient P x E — (P x E)/G =: Xi. As
G acts freely on E, and thus on P x E, this is a G-torsor. We have a projection Xy =
(P x E)/G — X = P/G, which is an E-torsor Ux, — Ux over the open subset Ux. In
particular, over H C Uy, we get an E-torsor Hy — H.

Now note that Hy C X = (P x E)/G is a smooth intersection of dim P — 2 sections
of L¥", for sufficiently large 7, where Ly on Xy, is the pullback of the ample line bundle L
on X = P/G. Note that L 1s not ample, but it has the weakened Serre vanishing property
that for any coherent sheaf F on Xg, H'(Xg, F ® L?”) = 0 for all sufficiently large n and
¢ > 1. Indeed, this follows from Serre vanishing on X and the Leray spectral sequence
for Xy — X. By a version of the weak Lefschetz theorem in crystalline cohomology,
cf. Lemma 2.12 below, we see that the map

H | (Xeo/WH) — H (He /W)

crys

is an isomorphism for ¢ = 0, 1, and injective with torsion-free cokernel for : = 2. The
left side can be computed by using the Leray spectral sequence for the projection Xy, ; =
(Pr x Ey) /G, — E;/G; = E4, with fibers given by P;. The result is that for =0, 1, the
composite map Hg ; — X — E;/G; = E; induces an isomorphism

H(E/W(h) = HE (He /W),

crys

and H2 _(Hg ,/W(k)) is torsion-free.

crys
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Now we consider the Ey-torsor f : Hg  — Hy, and the associated Leray spectral
sequence

Hipys (Hts Rl ey O ) = Hill (He i/ W ().

crys

In particular, in low degrees, we get a long exact sequence

3) 0— H!  (Hy/WK) - H. (He/Whk) — H (Hi, Ry Ony,)

crys crys crys

— H? (Hy/W(h) > H (He /WHE) — -+

crys crys

Fix a point x € H; then the map a can be analyzed through the composition

H (E/W(B) = HL (He/W(H) = H (Hy, Ry Oty )

crys crys crys

< HL (E/W®)).
Here x* is the map given by restriction to the fiber E; of Hg, — H; over x. The induced
endomorphism of Hcl,rys (Ex/W(k)) is induced by the map E, — E,/G, = E;/E/[p] = E4,
and is thus given by multiplication by p. This is injective, so it follows that a is injective.
Moreover, the image of x* is saturated, which forces x* to be an isomorphism. It follows
that « is injective, with cokernel given by Hirys(E;C /W) /p =k D k.

Coming back to the sequence (3), we find H! _(H;/W(k)) = 0, while H2_(H;/

crys crys

W(k))or = k @ £, as desired. ]

The following version of weak Lefschetz was used in the proof.

Lemma 2.12. — Let k be a perfect field of characteristic p, and let X be a smooth projective
variety of dimension d over k, with a line bundle L.. Let 1, > 0 be an integer such that for any co-
herent sheaf F on X, the cohomology group H'(X, F @ LE") vanishes if n is sufficiently large and
1> iL.

Then there exists some integer ny such that for all n > ny and any smooth hypersurface H C X
with divisor L®", the map

H, (X/W(0) > H, (H/W ()
is an womorphism for j < d — i, — 1, and injective with torsion-free cokernel for j = d — y, — 1.

Progf- — Berthelot [5], proved this when L is ample, 1.e. 31, = 0. His proof immedi-
ately gives the general result: Let K be the cone of RI'¢y(X/W(%)) — RIq(H/W(£)).
It suffices to show that K € D=1 "with H"%~!(K) torsion-free. As K is p-complete,
this is equivalent to proving that K/p € D="%~!, But K/p is the cone of R[4 (X) —
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RI'qr (H). Thus, it suffices to prove that for any j > 0, the cone K; of
R (X, @) — R (H, )

lies in D=4"27~! Let Z C Ox be the ideal sheaf of H; then Z = L®~". Now we have a
short exact sequence

07T ®0, ' — AU/T— Q) — 0.

As RT' (X, Z ®o, Q%) is Serre dual to RT' (X, L¥ @0, Q% '), it lies in D=4 if n is large
enough. It remains to see that

RT(X. Z ®0, Q;};l) e D4
if n 1s large enough; we will prove more generally that for any fixed » > 1,
RI(X, Z% ®oy ;') € D707,
if n is large enough. For this, we induct on j. If j = 1, we use the short exact sequence
0— I8 5 I8 5 I8 g6 Oy — 0

to reduce to R['(X, L®) € D=/ (and with r + 1 in place of 7) for sufficiently large 7,
which follows from Serre duality and the assumption on L. For j > 1, we have a short
exact sequence

0> T4 G0, 25— I o, 25— I @0y 25— .

By induction, RT" of the first term lies in D="L7*! and RT" of the second term lies in
D=%""; this gives the required bound on the last term. U

3. Algebraic preliminaries on perfectoid rings

The goal of this section is to record some facts about perfectoid rings. In Sec-
tion 3.1, we recall a slightly non-standard perspective on Fontaine’s ring A;,r. In partic-
ular, we introduce the 6, and 6, maps which play a crucial role in the rest of the paper;
the construction applies to a fairly large class of rings. In Section 3.2, we specialize these
constructions to perfectoid rings; with an eye towards our intended application, we ana-

lyze the kernel of the 6, and 6, maps in the case of perfectoid rings with enough roots of
unity. Along the way, we try to summarize the definitions and relations between various
classes of perfectoid rings in the literature. Finally, in Section 3.3, we collect some results
on perfectoid fields; notably, we prove in Proposition 3.24 that W,(Q) is coherent for the
ring of integers O in a perfectoid field.
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3.1. Fontaine’s ring Ayyp. — Fix a prime number p, and let S be a commutative ring
which is w-adically complete and separated for some element w € S dividing p (note
that it follows that S is p-adically complete by, for example [1, Tag 090T]). Denoting
by ¢ : S/pS — S/pS the absolute Frobenius, let S” := l(ir_nw S/pS be the tilt of S, which

is a perfect F,-algebra on which we will continue to denote the Frobenius by ¢. In this
situation, we have Fontaine’s ring A;,¢(S).

Defination 3.1. — Fontaine’s ring is given by
Aur(S) = W(S),
which s equipped with a Frobenius automorphism ¢.
We start by recalling a slightly nonstandard perspective on A;(S).

Lemma 3.2. — Let S be as above, i.e., a ring which s 7 -adically complete with respect to some
element w € S dinding p.

(1) The canonical maps

lim S —> S’ =1im S/4S —> LimS/7S
! % %

are isomorphisms of monowds/ rings.

(1) forany f €S, the following inclusions hold: W,(f'"’_l S) CLfIW,(S) CW,(fS); also
[p1* € pW,(S) and p'W,(S) T W, (pS). It follows that the rings W,(S) and W(S) are
complete for the [ ], [p], and p-adic topologies.

(i11) The homomorphism

= Li;_nW,,(Sb) — LiIr{_nW,(Sb),

induced by the homomorphisms @’ : W,(S”) — W,(S) for r > 1, is an isomorphism.
(iv) The homomorphism

l(i;_nW,(Sb) — Lili_nW,,(S/nS),

induced by the canonical map S* — S/7S, is an isomorphism.
(v) The canonical homomorphism

1<iF£1W7(S) — Li;_nwr(s/ﬂs)

s an 1somorphism.
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In particular, there s a canonical isomorphism

Aine(S) =Im W, (S).

F

Under this identification, the restriction operator R on the right side gets identified with ¢~ on the left
side; in particular, R s an automorphism of l(ir_nF W, (S).

Progf: — Parts (1) and (i1) are standard: for example, the proof of (i) is just as in
[58, Lem. 3.4(i)]; to see that [p]* € pW,(S) (which is true already for S = Z), note that
[p] € VW,_1(S) + pW,(S), and VW,_(S)? C pW,(S) as follows from the identity

VEIVDI= V([ FV) V(7))

(using V(aF (b)) = V(a)b and FV = p) for 1 > ;. Also, p" = 0 in W,(S/p) (as W,(F,) =
Z/pZ),s0 pfW,(S) C W,(pS). Part (iii) is a trivial consequence of S” being perfect.

For part (iv), note that since W, commutes with inverse limits of rings we have,
using (1),

. b .4 .. ~ .
Ll;_nw,(s )= l(l;_nl(l;_nW,(S/JTS) = L%ngi_nw,,(S/nS) > Ll;_nWT(S/T[S),
where the final projection is an isomorphism since ¢ induces an automorphism of the
ring l(lr_nF W.(S/7S) (thanks to the formulae Rg = @R = F in characteristic p).

Finally, for part (v): For any fixed s > 1 we claim first that the canonical morphism
of pro-rings

(W(S/7°S)} e = {WiS/79)]

rwrtl

1s an isomorphism. As it is surjective, it is sufficient to show that the kernel {W, (7 S/m°S)},
1s pro-isomorphic to zero; fix r > 1. By (i1), there is some ¢ such that p° is zero in
W,(S/7*S), and we claim that F** : W, . (S/7°S) — W,(S/7*S) kills the kernel
W,i,4.(wS/m*S). Indeed, the kernel is generated by elements V'[a] fori > 0, a € 7S/7°S,
and F'™V'[a] =0 € W,(S/7*S) as either i > ¢, in which case F**V'[a] = pF'V'~[a] = 0,
or else i < ¢, in which case F*Vi[a] = p[a)"" = 0. This proves the desired pro-
isomorphism, from which it follows that

Lir_nw,(S/nfs) > lim W, (S/xS).

F F

Taking the limit over s > 1, exchanging the order of the limits, and using W,(S) =
l(ir_ns W, (S/7°S) completes the proof. 0J
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Continue to let S be as in the previous lemma. According to the lemma there is a
chain of isomorphisms

Aqi(S) = Li;_nwy(sb) — Li;_nW,-(Sb) — I W5/78) «— W)

through which each canonical projection 1<1r_nF W,(S) —> W,(S) induces a homomor-
phism

0, : Au(S) > W,(S).
Denoting by ¢ the Frobenius on A;(S), we define
0, :=0,0" : Aii(S) —> W,(S)

for each r > 1. The maps 6, and especially 6, are of central importance in the com-
parison between the theory developed in this paper, and the theory of de Rham-Witt
complexes.

Explicitly, identifying l(ingpr S and S” as monoids by Lemma 3.2(i) and following
the usual convention of denoting an element x of S” as x = (x©,x",...) € lim S

. PARVENGY
these maps are described as follows.

Lemma 3.3. — For any x € S* we have 0,([x]) = [¥”] € W,(S) and 5,.([96]) = [xD] for
r>1.

Progf: — 'This follows from a straightforward chase through the above isomor-
phisms. U

In particular Lemma 3.3 implies that 6 := 6, : Ajx(S) — S (and not 51) 1s the usual
map of p-adic Hodge theory, and also shows that the diagram

0,
A(S) — W?‘(S)

“| |

W,(S") ——= W,(S/pS)

commutes, where the bottom arrow is induced by the canonical map S” = l(ir_n(p S/pS —

S/pS, x > x©. Indeed, by p-adic continuity it is sufficient to check commutativity of
the diagram on Teichmiiller lifts, for which it follows immediately from the previous
lemma.

Further functorial properties of the maps 6, are presented in the following lemma.
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Lemma 3.4. — Continue to let S be as in the previous two lemmas. Then the following diagrams
commule:
0,41 0,41 041
Ain(S) ——= W1 () Aini(S) ——= W1 () Apn(S) ——= W1 ()
id l l R ¢ l l F YT T T Y
0 0, 0,
Aine(S) ———= W(S) Aine(S) ———= W(S) Aine(S) ———= Wi(S)

where the third diagram requires an element A, € AinfLS) satisfying 0,11 (A, 1) = V(1) m W, (S).

Equwvalently, the following diagrams involving 6, commute.

0,41 011 0

Apne(S) ———= W41 (S) Apnr(S) ———= W41 (S) Ainr(S) B Wi41(5)
T AT
g g i
Aie(S) ———= W,(S) Apnf(S) ——— W,(S) Apnf(S) ——— W,(S)

Here, %y = 0" (Ay11) € Aine(S) is an element satisfying 0,41 (hrir) = V(1) € W, (S).

Proof: — We check that the second set of squares commute. Under the above chain
of isomorphisms A;¢(S) = l<i£1F W,(S), we showed in Lemma 3.2 that the action of ¢!
on A;,¢(S) corresponds to that of the restriction map R on l(ir_nF W, (S); hence the diagram

9)'+I
Air(S) —— W, (S)

Aui(S) —— W,(S)

commutes. Gommutativity of the second diagram follows from the definition of the
maps 0,.

Finally, using commutativity of the second diagram, the commutativity of the third
diagram follows from the fact that VI is multiplication by V(1) on W, (S). ]

By the first diagram in the previous lemma, we may let »r — 00 to define a map
Ono : Ain(S) = W(S) satisfying 0, ([x]) = [xV] for any x € S”. We will analyze this map
further in Lemma 3.23 below.

3.2. Perfectoid rings. — We will be interested in the following class of rings.

Defination 3.5. — A ning S 15 perfectoid if and only if it 15 7w -adically complete for some
element T € S such that ! divides p, the Frobenius map @ = S/pS — S/pS s surjective, and the
kernel of 0 = Ay (S) — S s principal.
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Example 3.6. — The following rings are examples of perfectoid algebras. First, any
perfect F,-algebra is perfectoid (where we take 77 = 0); here, perfect means that the Frobe-
nius map is an isomorphism. Moreover, the p-adic completion Zlc,YCI of Z,[{~] is perfec-
toid; one may also take the p-adic completion of the ring of integers of any other algebraic
extension of Q, containing the cyclotomic extension. Another example is Z;‘Vd(Tl/f’oo),
and there are many obvious variants.

Remark 3.7. — 'The original definition [58], of a perfectoid K-algebra, where K is
a perfectoid field, was in a slightly different context. We refer to Lemma 3.20 below for
the relation.

Remark 3.8. — In [38], Gabber and Ramero define a “perfectoid” condition for
a complete topological ring S carrying the I-adic topology for some finitely generated
ideal I. In fact, S is perfectoid in their sense if and only if S (as a ring without topology) is
perfectoid in the sense of the definition above: From [38, Proposition 14.2.9], it already
follows that their definition is independent of the topology (which can be taken to be
the p-adic topology). Now [38, Lemma 14.1.16 (iv)] shows that if' S is perfectoid in their
sense, then there exists a 7 € S and a unit u € S* such 7’ = pu, and ¢ : S/pS — S/pS
is surjective. The last condition that Ker@ is principal is part of their definition of a
perfectoid ring. Conversely, if S is perfectoid in our sense and we endow it with the p-
adic topology, then by Lemma 3.9 below, there exists 7 € S and a unit « € S* such that
! = pu; taking I = (7r) shows that S is a P-ring in the sense of [38, Definition 14.1.14].
Among P-rings, perfectoid rings in their sense are singled out by having the property that
Ker# is principal [38, Definition 14.2.1], which is also part of our definition.

In relation to this, let us discuss surjectivity properties of the Frobenius:

Lemma 3.9. — Let S be a ring which is 7w -adically complete with respect to some element v € S
such that ! divides p. Then the following are equivalent:

(1) Every element of S/ pS 15 a pth-power.
(11) Every element of S/pS 1s a pth-power.
(itl) Every element of S/7c?S is a pth-power.
(iv) The Watt vector Frobenius ¥ : W, (S) — W, (S) is surjective for all r > 1.
(v) The map 6, : Ay (S) = W,(S) s surjective for all r > 1.

Moreover, if these equivalent conditions hold then there exist u, v € S* such that umw and vp admit
systems of p-power roots in S.

Progf: — The implications (i)=>(ii)=>(iii) are trivial since wpS C pS C 7S.

Assuming (ii1), a simple inductive argument allows us to write any given element
x €S as an infinite sum x = Y oo, 7" for some x; € S; but then x = (37, ')’ mod
pS, establishing ().
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Condition (iv) states that the transition maps in the inverse system 1(ir_nF W, (S) are

surjective, which implies that each map 6, is surjective, and hence that each map 6, is
surjective, 1.e., (V).

Next, (v) implies (i1) since any element of S in the image of 6§ = 6, is a pth-power
mod p.

It remains to show that (i1) implies (iv), but we will first prove the “moreover” asser-
tion using only (1). Applying Lemma 3.2(i) to both S and S/m p implies that the canonical
map l(i&quxp S — l(ir_anxp S/mp is an isomorphism. Applying (i) repeatedly, there there-

fore exists @ € lim | S such that ®® =7 mod 7pS (resp. = p mod 7pS). Writing

X=X

0 =7 + 7 px (resp. @ = p+ 7 px) for some x € S, the proof of the “moreover” claim
is completed by noting that 1 4 px € S* (resp. 1 + wx € S*).

Finally, assuming (i1) (which we have shown implies (1)), the “moreover” assertion
implies that there exist 7" € S and v € S* satisfying 7'# = vp. Note that S is 7’-adically
complete, and so we may apply the implication (i1)=>(i) for the element 7’ to deduce
that every element of S/m’pS is a pth-power; it follows that every element of S/Ip is a
pth-power, where I is the ideal {a € S : @’ € pS}. Now apply implication “(xiv)’ =(ii)” of
Davis—Kedlaya [22] to complete the proof. U

Next, we analyze injectivity of the Frobenius map.

Lemma 3.10. — Let S be a ring which is 7w -adically complete with respect to some element
7T € S such that ! divides p, and assume that ¢ : S/wS — S/7’S is surjective.

(i) IfKer6 s a principal ideal of Ay (S), then ¢ : S/mtS — S/7!S is an isomorphism, and
any generator of Ker 6 is a non-zero-divisor.

(i) Conversely, if ¢ : S/S — S/7!'S is an isomorphism and 1w is a non-zero-divisor, then
Ker 8 s a principal ideal (and hence S is perfectoid).

Proof. — Since multiplying 7 by a unit does not affect any of the assertions, we
may assume by the previous lemma that 7 admits a compatible sequence of p-power
roots, i.e., that there exists 7° € S” satisfying 7" = 7.

We begin by constructing a certain element of Ker (a “distinguished” or “prim-
itive” element, cf. Remark 3.11 below). By the hypothesis that 7/ divides p, and
Lemma 3.9, it is possible to write p = m760(—x) for some x € Ay,(S), whence & =
p+Im "Tx belongs to Ker@ (recall here that 6 ([7"]) = 7). Then there is a commutative
diagram

An(S)E — =3

|

Ainf(S)/(S’ [T’:b]p) — S/Tr/’S
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in which the lower left entry identifies with Ay(S)/(p, [7")) = S°/7"S" and the lower
horizontal arrow identifies with the map S"/7”S” — S/x’S induced by the canonical
projection S* = l(ir_nw S/n?’S — S/n’S.

Suppose first that Ker 6 is principal and let £’ be a generator; we claim that Ker6
is actually generated by the element &. Let §&" = (&7, &/, ...) € Ay,((S) be the Witt vector
expansion. Write & = &a for some a € A;,((S), and consider the resulting Witt vector
expansions:

(ﬂbpxo, : +7‘[bﬁ2x1,___) =/ [T[b]px:%- =&'a= (s(/)"i:l/’-.-)(ao,dly-.-)
= (Eja0, &1 +£(d, ..

It follows that £/d) =1+ 7 Py — £/ a;. We claim that this is a unit of S". To check this,
using that S” = l(ir_n(p S/mS, it is enough to check that the image ofé{a{; in S/7'S is a unit.
But this image is simply 1, as both 7" and &/ have trivial image in S/7S. So both &/ and
ay are units of S’; in particular, this implies that a € A;,((S)*, thereby proving that § = §'a
is also a generator of Ker6, as required.

Now, for part (i), if 0 : Ay(S)/€ — S is an isomorphism, then so is S"/7”S* —
S/7?S by the displayed diagram above. The map ¢ : S/7S — S/7’S gets identified with
@:S/n"S" — S°/7"SP, which is an isomorphism. We also need to check that & is a non-
zero-divisor (as then any other generator of Ker@ differs from & by a unit). So suppose
that b € Ay,(S) satisfies (p+ [7°1Px)b = 0. Then also (¢’ + [7"]”x")b = 0 for any odd r > 1,
since p+ [7°)x divides p” + [7"]”"«", and so p'b € ["]”"A;i(S). Using this to examine the
Witt vector expansion of b = (by, by, ...) shows that b’f e 7S for each i > 0; hence
b € m"S? since S is perfect. As this holds for all odd r > 1, and as S is 7°-adically
complete and separated, it follows that ; =0 for all : > 0, i.e., b = 0.

Conversely, for part (i), assume that S/7S — S/7’S is an isomorphism, and
that 7 is a non-zero-divisor in S. Note first that the first condition implies that for
all >0, S/7'”'S — S/7'//"'S is an isomorphism, by taking the quotient modulo
7'/, This implies that the kernel of S” — S/7S is generated by 7°: Indeed, given
x=(xO,xM )esS = l(ingHX/} S with ¥ € 7S, one inductively checks that x® is

divisible by 7'/#", using that ¢ : S/7'"'S — S/7'//'"'S is an isomorphism. This im-
plies that x is divisible by 7°. Thus, we see that S”/7"S” — S/7S is an isomorphism.
Now let x € Ay(S) satisfy 0(x) = 0. Then one can write x = &y + [°]x;, where
70 (x;) = O([7"]x;) = 0. As 7 is a non-zero-divisor, this implies 6(x;) = 0, so we can
inductively write x = &(yy + [7"]y; + - - - ), showing that Ker6 is generated by &. UJ

Remark 3.11 (Dustinguished elements). — Let S be a perfectoid ring, and let & € Ker6.
Then § is said to be distinguished if and only if its Witt vector expansion & = (&), &, ...)
has the property that & is a unit of S’. The argument in Lemma 3.10 shows that &
generates Ker 6 if and only if it is distinguished.
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For example, let § € A;,«(S) satisfy 6,(§) = V(1) in W,(S) for some r > 1 (for
any fixed » > 1, such an element § does exist by Lemma 3.9(v)). We claim that & is a
distinguished element of Kerf, whence it is a generator. Indeed, noting that V(1) =
(0,1,0,...,0), the first diagram of Lemma 3.4 shows that 6(§) = 0, while the commu-
tative diagram immediately before Lemma 3.4 shows that & 1(0) = | mod pS, whence & is
a unit of S”.

We return to the maps 6,, describing their kernels in the case of a perfectoid ring:

Lemma 3.12. — Suppose that S is a perfectoid ring, and let & € Ay(S) be any element
generating Ker 0. Then Ker 6, is generated by the non-zero-divisor

£ =607 (©) 9N (®)
Jor any r > 1. Equwalently, Ker6, is generated by

E:=¢'(5) = 0E)p*E) - ¢ (§).

Proof: — We prove the result by induction on r > 1, the case r = | being covered
by the hypotheses; so fix » > | for which the result is true. By the previous remark we may,
after multiplying § by a unit (depending on the fixed > 1), assume that 6,;,(§) = V(1).

Hence Lemma 3.4 implies that there is a commutative diagram

—1

0
0 Au(S) —— Ap(S) ——= S —— 0

\L 0, l 041

0 ——= W) —= Wuu(§) —=S —=0
A\ R’

in which both rows are exact. Since Ker6, is generated by £p~'(§) -+ - o~ (&), it fol-
lows that Ker,,, is generated by £¢~' (&) - - - 9 (£), as desired. O

Henceforth we will often identify Ay«(S)/E, with W,(S) via 6,. Some Tor-
independence assertions related to this identification are summarized in the following
lemma:

Lemma 3.13. — Let S — S’ be a map between perfectord rings. Then the canonical maps
Wi(S) &%, ) Aini(S) — Wi(S), Wi(S) @5, 5 Wi (S) — WilS)

are quasi-isomorphisms for all 1 < j < r. Here, W;(S) 1s considered as a W ,(S)-module along either
the Frobenius or restriction map.
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Proof: — Let & € Aj(S) be a generator of Ker6, and let g be as in the previous
lemma, which is a non-zero-divisor of A;,¢(S). The image of & in A;,¢(S') is still a generator
of Ker@, as the condition of being distinguished passes through ring homomorphisms.
Thus, we may apply Lemma 3.12 to both S and S’ to see that

Wi(S) ®%. s Aune(S) = Ain(S)/ g ®x. (s Aue(S) = Aine(S')/ gj =W,(S).

Note that this argument also works with §j replaced by &;.
Using this result also with 7 in place of j, we get

Wi(S) @iy, s) Wi (S") = Wi(S) @3, 5 Wi(S) ®, s Aune(S)
= W;(S) ®,I{inr(5) Ainf(sl) = W;‘(S/),

as required; this works with either the restriction or Frobenius map (using either the 6 or
the 6-maps implicitly). 0J

An important property of perfectoid rings is the automatic vanishing of the cotan-
gent complex.

Lemma 3.14. — Let S — S' be a map between perfectoid rings. Then L s QL F, >~ 0;in
particular, the (derwed) p-adic completion L /s > 0.

Proof. — Note that S’ =S ®11§;nf(s) A ¢(S'); thus, by base change for the cotangent
complex, it is enough to show that Ly, s/au) ®% F, 2 0. But Ly, /s ®% F,
Ls»/s». But for any perfect ring R of characteristic p, Lg/r, >~ 0 (as Frobenius is both
an isomorphism and zero [37, Lem. 6.5.13(1)]), so that a transitivity triangle shows
Lg» /8 = 0. 0

Example 3.15 (Perfect rings of characteristic p). — Suppose that S is a ring of charac-
teristic p. Then S is perfectoid if and only if it is perfect. Indeed, if S is perfect, then the
kernel of 8 : W(S) — S is generated by p, and the other conditions are clear. For the
converse, by assumption ¢ : S — S is surjective. The element p € Ker(0 : A;x(S) = S) is
distinguished, and thus a generator. Therefore, S = A;,(S)/p = S’ is perfect.

In particular, in this case S =S, 0, : Ay (S) — W(S) is an isomorphism, and the
maps 0, : A, i(S) = W,(S) identify with the canonical Witt vector restriction maps.

Example 3.16 (Roots of unity). — Suppose that S is a perfectoid ring which contains
a compatible system ¢, r > 1, of p-power roots of unity, where ¢, is a “primitive p-th root
of unity” in the sense that 1 +¢, +--- + (;_1 = 0. Note that this includes the case that S
is of characteristic p, and all {,, = 1.

Define ¢ := (1, ¢, ¢, ...) € S = l(ir_nx'_)xp S. We claim that

Ei= 14 [+ [ + - 4[]



INTEGRAL p-ADIC HODGE THEORY 253

is a generator of Ker @ satisfying 6,(§) = V(1) for all » > 1. Note that
0E) =14¢+ -+ =0

by assumption on ¢,. It will then follow from Lemma 3.12 that Ker 6, is generated by

-1
E=0@¢' )9 =) el
=0

According to Remark 3.11 it 1s sufficient to check that 6,(§) = V(1) for all r> 1.
By functoriality it is sufficient to prove this in the special case that S := Z;‘Vd as in Ex-
ample 3.6, which has the advantage that S is now p-torsion free. So the ghost map
gh : W,(S) — S’ is now injective and it is sufficient to prove that gh(6,(§)) = gh(V(1)).
But it follows easily from Lemma 3.3 that the composition gh o, : A;x(S) — S’ is given
by (0, 0¢, ...,0¢""), and so in particular that

gh(6,(8)) = (0(5), 09(®), ..., 09" (©)).

Since 6(¢) = 0 and gh(V(1)) = (0, p, p, p, - - . ), it remains only to check that O¢'(§) = p
for all 7 > 1, which is straightforward:

00 &) =01+ [ 1+[¢" T+ +[ ] )=1+1+--+1=p

This completes the proof of the assertions about &.

The most important case of perfectoid rings for the paper are those which are
flat over Z, and contain enough p-power roots of unity, for which we summarize in the
following result some additional properties of Ay,¢(S).

Proposition 3.17. — Let S be a perfectoid ring which is flat over Z,, and contains a compat-
ible sequence ¢, Ly, . .. of primitive p-power roots of unity; let € € S* and §, &, € Ayi(S) be as in
Example 3.16, and set pu .= [e] — 1 € Ay(S). Then, for any r > 0:

(1) The element 5,(“) = [y ] — 1 € W,(S) 15 a non-zero-divisor;
(1) The element 1 € Ay (S) ts a non-zero-divisor; -
(i11) The element . divides g’(,u) =[]l —1,and & = @' () / 10.

(iv) The element p divides &, — p'.

Progf: — 'The identity é:(,u,) = [¢y] — 1 follows from Lemma 3.3. To check that
[¢y] — 1 is a non-zero-divisor of W,(S) for all » > 1, we note that since S is p-torsion-free,
the ghost map is injective and so we may check this by proving that

ch(lg1—1) = — 1,51 —1,...,5,— 1)
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is a non-zero-divisor of §'; i.e., we must show that {,, — I is a non-zero-divisor in S for all
r>1.But ¢, — 1 divides p, and S is flat over Z,.

This proves (1). We get (i1) by noting that A,¢(S) ,: l(ir_nF W, (S). Now (i11) is imme-
diate from the definitions. For (iv), observe that &, = [[1’;—_—11 =Y [e]~! by (iii). If we set
u=0,then [e]=1,s0 §, is congruent to {:1 1 =" modulo w, as wanted. O

Corollary 3.18. — Let S be a perfectoid ring whach 1s flat over Z, and contains a compatible
sequence §y, $p2, . . . of primitive p-power roots of unity. Then, for any 0 <j <r:
(1) The following ideals of W ,(S) are equal:

[é-/ﬂ'] —1

Anny, s Vi(1),  ker(W,(S) 2> W,_(9)). i
e

W,(S).

(1) 7he following ideals of W ,(S) are equal:

[&]—1
[gy]—1

(i) The map ¥ and multiplication by NV (1) induce isomorphisms of W, (S)-modules

Annw,,(s)( ) VI(DW,(S), VW, (S).

. ~ il—1 ~ i1—1
FiWr—](S) <~ Wr(S)/ E?) } —1 - Annw,.(s) ( E?) } — 1)
v v

Remark 3.19. — The proof also shows that if S is any perfectoid ring, then

Anny, ) V/(1) = ker(W,(S) L W,_i(9),  V(DHW,(S) = VW, (S),
and via IV and multiplication by V/(1),
W,_(S) < W,(8)/ Anny sy V(1) = VW, _(S).

This i1s a partial analogue of the statement that for perfect rings S of characteristic p,
W, (S) admits a filtration (by p#/W,(S)) where all graded pieces are S.

Proof. — (i): Injectivity of V/ : W,_i(S) = W,(S) and the identity xVI(1) =
VIi(F/(x)), for~x € W,(S), show thagy the stated annihilator and kernel are equal. As
W, (S) = Aj¢/&, and W,_;(S) = A;¢/§,—; (compatible with the transition map F), it fol-
[¢,/1-1
[gpr]-1"

(ii): Surjectivity of F/ : W,(S) — W._;(S) (Lemma 3.9) implies that V/(1) gener-
ates the ideal V’IW,._]-(S), since VV(IV(x)) = xV/(1) for x € W,(S). Since [(p] —1is a
[¢,1-1
[(/;’]*1

lows that the kernel is generated by 5,(5,_]-) =

non-zero-divisor of W,(S) by the previous proposition, the elements [¢,] — 1 and



INTEGRAL p-ADIC HODGE THEORY 255

have the same annihilator. Clearly V/(1) annihilates [&y] — 1, since ([g,] — DHVi(1) =
VIF[g,] — V(1) = V(1) — V(1) = 0. Finally, if x annihilates [£,;] — 1 then R"™7(x) =0
since R"7([¢,/] — 1) 1s a non-zero-divisor, and so x € VW,_;(S).

(i11): This follows from (1) and (i1). UJ

Let us now compare the notion of a perfectoid ring introduced above with another
notion, that of a perfectoid Tate ring. Let R be a complete Tate ring, 1.e., a complete topolog-
ical ring R containing an open subring Ry C R on which the topology is 7 -adic for some

7 € Ry such that R = RO[%]. Recall that a ring of integral elements R™ C R is an open and

integrally closed subring of powerbounded elements. For example, the subring R® C R of
all powerbounded elements is a ring of integral elements.

In the terminology of Fontaine [33], extending the original definition [58], R is said
to be perfectoid if and only if it 1s uniform (i.e., its subring R° of powerbounded elements 1s
bounded) and there is a topologically nilpotent unit 7 € R such that 7/ divides p in R®,
and the Frobenius is surjective on R°/m/R°.

Lemma 3.20. — Let R be a complete Tate ring with a ring of integral elements R* C R. If R
is perfectoid in Fontaine’s sense, then R™ is perfectoid. Conversely, if R is perfectoid and bounded in R,
then R s perfectord in Fontaine’s sense.

We remark that perfectoid K-algebras in the sense of [58] (as well as perfec-
toid Q,-algebras in the sense of [48]) are complete Tate rings which are perfectoid in
Fontaine’s sense (and conversely a complete Tate ring which is perfectoid in Fontaine’s
sense and is a K-, resp. Q,-, algebra is a perfectoid K-, resp. Q,-, algebra in the sense of
[58], resp. [48]).

Progf: — Assume that R 1s perfectoid in Fontaine’s sense. First, we check that R° 1s
perfectoid. As R° is bounded, it follows that R® is 7 -adically complete. By Lemma 3.10,
to show that R° is perfectoid, we need to see that the surjective map ¢ : R°/7R° —
R°/m’R® is an isomorphism. But if x € R° is such that x” =’y for some y € R°, then
z=x/m € R has the property that 2 = y is powerbounded, which implies that z itself is
powerbounded, 1.e. x € wR°. Thus, R° is perfectoid.

Now we want to see that then also R* is perfectoid. Note that 7R° consists of
topologically nilpotent elements, and so 7R° C R™ as the right side is open and integrally
closed. By Lemma 3.9 we know that any element of R°/pmR® is a p-th power. Take any
element x € R*, and write x =y + prr 7 for some y, z € R°. Then 7 = 7z € R*, so that
x =y’ + p7. It follows that y* = x — p7 € R, and so y € R*. Thus, the equation x =
"+ p7 shows that ¢ : RT /p — R* /p is surjective, and in particular so is ¢ : RT/rRT —
R*/mn’R*. For injectivity, we argue as for R°. Using Lemma 3.10 again, this implies that
R™ is perfectoid.

For the converse, note first that since RT C R is by assumption bounded, so is
R° C R, as 7R° C R¥; thus, the first part of Fontaine’s definition is verified. It remains to
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see that there is some topologically nilpotent unit 7 € R such that # divides p in R°, and
the Frobenius is surjective on R°/m?R°. Let assume for the moment that there is some
topologically nilpotent unit 7 € R such that 7 divides p in R°. Given x € R°, mx € R
can be written as wx =y’ + pmz with y, z € R, by Lemma 3.9. Note that 7 € R* can
be assumed to have a p-th root 7'/ € R* by changing it by a unit; then y = y/7'/# € R
actually lies in R° as y” = x — pz € R°. But then x =" + pz with ', z € R°, so Frobenius
is surjective on R°/pR°, and a fortiori on R°/7?R°.

It remains to see that if R is perfectoid, then there is some topologically nilpotent
unit 7 € R such that 77 divides p in R°. The problem here is to ensure the condition that
7 is a unit in R.

Pick any topologically nilpotent unit 7y € R, so 7y € R*. We have the surjection 6 :
A, ((R*) — R* whose kernel is generated by a distinguished element & € A;,((R*). From
[46, Lemma 5.5], it follows that there is some 7” € (R*)” and a unit z € (R)* such that
0(["]) = urry. Now 7 = O (["'#"]) for n sufficiently large has the desired property. [

A related lemma is the following.

Lemma 3.21. — Let Ry be a perfectoid ring which ts 1 -adically complete for some non-zero-
divisor T such that ! divides p. Then R = RO[%], endowed with the 1 -adic topology on Ry, is a
complete Tate ring which is perfectoid in Fontaine’s sense. Moreover, TR® C Ry.

More precisely, Ry C R°, and the cokernel is killed by any fractional power of 7.
Proof. — Argue as in [58, Lemma 5.6]. 0

3.3. The case of a perfectoid field. — Finally, we add some additional results in the
case that S = O = Ok is the ring of integers in a perfectoid field K of characteristic 0
containing all p-power roots of unity. In this section, we abbreviate A;,r = Ay (O).

We lete =(1,¢,,8p,...) € ©", and consider the elements /L [e] — 1 € Ayr and

&= _1 e which generates the kernel of 6. We also have &, = W which generates the

kernel of 6,, and S =¢ ;" ) which generates the kernel of 6,, as in Proposition 3.17.
Before going on, let us recall some more of Fontaine’s period rings.

Defination 3.22. — Consider the following rings associated with K.

(1) Let Aqys be the p-adic completion of the Ajye-subalgebra of Amt[ | generated by all Em
m > 0. Thus s the universal p-adically complete PD thickening (companblg with the PD
structure on Z,) of O, or equivalently of O /p.

(i) Let B:’Ws = Acrys[;—)], and B,ys = Acrys[i] = ms[ 1, noting that u*~' = & mod p €
Aing, and thus ="' € PAcrys-
(ili) Let Blg be the & -adic completion of BLr « Which 1s a complete discrete valuation ring with

residue field K, and Bgr = FraCB R = B [ ].
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Lemma 3.23. — The kernel of the natural map

Ooc : Aine = W(O) =lim W ,(0O),
R

guen as the limit of the maps 0,, is generated by . Equivalently,

w
ﬂ TAinf = UAiy
o~ (1)

r

In particular, the ideal (ju) C Agnr ts independent of the choice of roots of unity.

257

The cokernel of O is killed by W(m). If K is spherically complete, then O, induces an

wsomorphism

Aint/ 11 = W(O).

Recall that a nonarchimedean field is spherically complete if any decreasing se-

quence of discs a; + 1, D ag + Iy D --- has nonempty intersection, or equivalently,

l(iglll, = 0. This condition is stronger than completeness as one does not ask that the radii
r _~

of the discs goes to 0, and for example G, = @ is not spherically complete. However, any

nonarchimedean field K admits an extension IZ/ K which 1s spherically complete.

Proof. — The kernel of 6, is the intersection of the kernels of the maps 6,, which

are generated by £ = ——. To check that

()"
M
m TAinf = UAins,
e (w)

it suffices, since (p, &,) 1s a regular sequence, to check that

€e—1
ﬂ e/ — 10b = (- D0,

r

which follows from a consideration of valuations.
For each » > 1, we have a short exact sequence

0= £Ainr — Ar— W,(0) — 0.

Passing to the limit gives a long exact sequence

0 — uAur— Apr— W(O) — Lir_nlérAinf — 0.

T
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Thus, it remains to prove that 1(11’_1111 £ Ay 1s killed by W(m"), and is 0 if K is spherically
complete. Writing down the similar sequences modulo p* for any s > 1 (which are still
exact), one sees that

].(iI'_l'l 1 SrAinf = l(ll'_n ].(iI'_l’ll ‘(;:rAinf/ps s

T S 7

and one reduces to proving that

l<i£11$7(9b3

r

which is 0 if K” is spherically complete by the observation before the proof, is always
killed by m”. But for any m € m”, multiplication by m on the system (§,0"), factors, for
sufficiently large r, through the constant system (uO"),, which has trivial l(ilr_nl . It remains
only to observe that if K is spherically complete then so is K”. Given a decreasing se-
quence of ideals I, of O" with radii not going to zero, we may rescale to assume that
I, D 7°OP for all r, where ° € O satisfies O°/n” = O/x for some & € O; let J, C O
be the corresponding ideal such that J,/7O =I,/7"O". Then l(ll’_nj I, = 1<ir_nrlL [0 =
1(121“, /mO = 1<1r_n:J, = 0 by spherical completeness of K. U

Another result we will need is the following coherence result. For this, let O = Ok
be the ring of integers in any perfectoid field K.

Proposition 3.24. — For any r > 1, the ring W,(Q) s coherent.

Unfortunately, in general A;,; is not coherent, cf. [47]. We start with some re-
minders on coherent rings |1, Tag 05CU]. Recall that a ring R is coherent if every finitely
generated ideal is finitely presented. Equivalently, any finitely generated submodule of a
finitely presented module is finitely presented. Then the category of finitely presented
R-modules is stable under extensions, kernels and cokernels.

Lemma 3.25. — Let R be a ring and I C R a finitely generated ideal.

(1) An R/I-module M s finitely presented as an R /1-module if and only if M is finitely
presented as an R-module.
(i1) If R s coherent, then R /1 is coherent.

Progf- — For part (1), if M 1s finitely presented as an R-module, then taking @gR/I
of any finite presentation of M as an R-module shows that M is finitely presented as an
R/I-module. Conversely, take a finite presentation

R/D)" = (R/D)" — M — 0.
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This gives an exact sequence
R'@¢Il" > R"—->M— 0,

giving finite presentation of M as an R-module, as I is finitely generated.

For part (ii), let J C R/I be any finitely generated ideal, with preimagej CR.AsI
and ] are finitely generated (as an R—modules),j is finitely generated. As R is coherent,
jis finitely presented, so we can find an exact sequence

R"— R™ —KT_’ 0.
This gives an exact sequence
(R/D" — (R/D" = J/IJ — 0,

SO thatj/ fj is finitely presented as an R/I-module. On the other hand, we have an exact
sequence

I/I2 —>j/fj—>J -0

of R/I-modules, where I/I? is finitely generated. This makes J a quotient of a finitely
presented R/I-module by a finitely generated R /I-module, thus ] is finitely presented as
an R/I-module. 0

Lemma 3.26. — Let S — R be a surjective map of rings with square-zero kernel 1 C S.
Assume that R s coherent and 1 is a finitely presented R-module. Then S is coherent.

Proof. — LetJ C S be a finitely generated ideal. One has an exact sequence
0—-JNI—-]J—>Jr—0,

where Jg C R is the image of J. Then Ji is a finitely generated ideal of R, and there-
fore finitely presented as an R-module. By Lemma 3.25(1), it is also finitely presented as
S-module. As ] is finitely generated and Jr is finitely presented, it follows that J N1 is
finitely generated (as an S-module, and thus as an R-module). Now J NI C I is a finitely
generated R-submodule of the finitely presented R-module I, making J NI finitely pre-
sented (as an R-module, and thus as an S-module). Therefore, ] is an extension of finitely
presented S-modules, and hence itself finitely presented. U

Lemma 3.27. — Let R be a ring, f € R a non-zero-divisor. Assume that (R, f) satisfy the
Artin-Rees property, v.e. for every inclusion M C N of finitely generated R-modules, the restriction of the
f-adic topology on N to M is the f-adic topology of M. Then R is coherent if R[f '] and R/f are
coherent.
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Proof. — First, observe that by Lemma 3.26 (and the assumption that / is a non-
zero-divisor) coherence of R/f implies coherence of R/f" for all > 1. Let I C R be a
finitely generated ideal, and choose a surjection R" — I with kernel K C R”. We have to
prove that K is finitely generated. By assumption K[ #~'] is finitely generated, so we may
find a map R” — K with cokernel C being f-torsion. Now C embeds into the cokernel of
R™ — R"; it follows from the Artin-Rees property that the f-torsion-part of the cokernel
of R” — R" is of bounded exponent. (There is some N such that the preimage of f~R”
lies in the image of fR"™; then, if x is such that fNx is in the image of R, it is in fact in
the image of fR™, so that /N~ 'x is already in the image of R™.) This means that C is of
bounded exponent: fNC = 0 for some N. Thus, it is enough to prove that K/f™ is finitely
generated, or even that K// is finitely generated.

Note that as I C R has no f-torsion, K/f occurs in a short exact sequence

0—-K/f—=R'/f—=1/fT= 0.

Therefore, it is enough to prove that I/f1 is finitely presented as an R/f-module.

Now, by the Artin-Rees property again, there is some M such that I N MR C f1.
As R/fM is coherent, I/ (I NfMR) € R/fM is finitely presented as an R/fM-module. As
I/f1is a quotient of I/(I N fMR) by the finitely generated module /1, it follows that I/f1
is a finitely presented R/f™M-module. By Lemma 3.25, it follows that I/f1 is also finitely
presented as an R/f/-module. 0J

Lemma 3.28. — Let g : R — S be an imjective map of rings, f € R such that both R and
S are f -torsion _free. Assume moreover that the cokernel of g (as a map of R-modules) us killed by some
power [ of f. Then (R, [) satisfies the Artin-Rees property if and only iof (S, f) does.

Progf: — 'The functors M = M ®g S and N — N induce inverse equivalences of
categories between the category of R-modules up to bounded f-torsion and the category
of S-modules up to bounded f-torsion. As the Artin-Rees property does not depend on
bounded f-torsion, one easily checks the lemma. 0J

After these preparations, we can prove that W,(Q) is coherent.

Proof of Proposition 3.24. — Assume first that K is of characteristic p. Then O is a
perfect valuation ring of characteristic p, and in particular coherent. Moreover, W,(O) —
O is a successive square-zero extension by a copy of O, which shows that W,(O) is co-
herent by Lemma 3.26.

Thus, assume now that K is of characteristic 0. Note that as O is p-torsion free,
the map W,(O) — []._, O given by the ghost components is injective, with cokernel
bounded p-torsion. Note that O, and thus [['_, O, is coherent and satisfies the Artin-
Rees property with respect to f/ = p. By Lemma 3.27 and Lemma 3.28, it is enough to
prove that W,(O)/p is coherent. But W,(O)/p=W,(O/p™)/p for N big enough, so that
it is enough to prove that W,(O/pY) is coherent.
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Now we argue by induction on 7, so assume W,_;(O/pY) is coherent. For any
i =0,...,N, consider R; = W,(O/p™)/V'(pO/pN). Then Ry = W,_,(O/p) and
Rx = W,(O/pN). We claim by induction on ¢ that R; is coherent. Note that R;,; — R; is
a square zero extension by p'O/p 'O regarded as an R,-module via R; —> O/pN —

r—1
O/p 50 p. This 1s finitely presented as an R;-module, so the result follows from
Lemma 3.26. O

Corollary 3.29. — Let M be a finitely presented W,(O)-module. Then there are no non-zero
elements of M which are killed by W,(m).

Note that W,(m) C W,(O) defines an almost setting, of the nicest possible sort:

that i3, W,(m) is an increasing union of principal ideals generated by non-zero-divisors,
cf. Corollary 10.2.

Proof: — Assume that x € M is killed by W,(m). The submodule M’ C M gener-
ated by «x is a finitely generated submodule of the finitely presented W,(O)-module M,
thus by coherence of W,(Q), M’ is finitely presented. Thus, M" = W,(0)/I for some
finitely generated ideal I C W,(O). On the other hand, as x is killed by W, (m), we have
W,(m) C I. Thus, M’ is a quotient of W,(O)/W,(m) = W, (k), where £ is the residue
field of O. As such, M’ = W, (k) for some 0 < s < r. But the kernel I of W,(O) — W, (k)
is not finitely generated: if it were, then the kernel m of O — £ would also be finitely
generated. UJ

4. Breuil-Kisin-Fargues modules

The goal of this section is to study the mixed characteristic analogue of Dieudonné
modules, i.e., Breuil-Kisin modules [17, 49] (for discretely valued fields) and Breuil~
Kisin—Fargues modules [30] (for perfectoid fields). We begin in Section 4.1 by recalling
facts about Breuil-Kisin modules; the most important results here are the structure theo-
rem in Proposition 4.3 and Kisin’s Theorem 4.4 about lattices in crystalline Galois repre-
sentations. The perfectoid analogue of Kisin’s theorem is Fargues’ classification of finite
free Breuil-Kisin—Fargues modules in Theorem 4.28, which forms the highlight of Sec-
tion 4.3. In between, in Section 4.2, we study the algebraic properties of the A;,-modules
that arise as Breuil-Kisin—Fargues modules; this discussion includes an analogue of the
structure theorem mentioned above in Proposition 4.13 (which rests on a classification
result of Kedlaya, see Lemma 4.6), and the length estimate in Corollary 4.15, which is
crucial to our eventual applications.

4.1. Brewl—Kisin modules. — Let us start by recalling the “classical” theory of
Breuil-Kisin modules. Here, we start with a complete discretely valued extension K of
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Q, with perfect residue field £, and let O = Ok be its ring of integers. Moreover, we fix a
uniformizer 7 € K.
In this situation, we have a natural surjection

6:6=WMh[IT]—- O

sending T to 7. We call this map 6 as it plays the role of 6 over Ay The kernel of 8 is
generated by an Eisenstein polynomial E = E(T) € W(k)[T] for the element 7. There is
a Frobenius ¢ on & which is the Frobenius on W(%), and sends T to T”.

Definition 4.1. — A Brewil—Kisin module is a finitely generated S -module M equipped with an
wsomorphism

I 1

QOMZM®G,¢6 E =M E .

The definition may differ slightly from other definitions in the literature. With our
definition, the category of Breuil-Kisin modules forms an abelian tensor category.

Example 4.2 (Tate twist). — There is a “Tate twist” in the Breuil-Kisin setup. This
is given by G{1} with underlying G-module & and Frobenius given by ¢e;1)(x) = £¢(x),
where x € G{1} = G and « € G is some explicit unit depending on the choice of E.
This object 1s ®-invertible in the category of Breuil-Kisin modules. It can be defined as
follows. For each r, consider the map

6,:6—> &/E,
where E, := E@(E) --- ¢ ' (E) (so E; = E). Let
(G/E){1} = Lk el—11 = E;-G/EEG,

which is a free &/E,-module of rank 1. Here, as everywhere else in the paper, we
use cohomological indexing. We claim that for r > s, there is a natural isomorphism
(S/E){1} ®s/r, 6/E; = (6/E/){1}. Indeed, there is an obvious map

E,6/E6 — E,G/E!G,

and the image is precisely p'E,& /E?G, as :— 1s congruent to a unit times p’'~* modulo E;.

Thus, dividing the obvious map by p~°, we get the desired natural isomorphism
(G/E){1} ®s/k, 6/E, = (G/E){1]}.
We may now define &{1} = 1<ir_nr(6/E,){l}, which becomes a free & = @’_G/E,.—

module of rank 1. Concretely,

6{1} = {(dlEl, CZQEQ, .. ) € HEZG/E?G | al-+1El-+1 E[)aiEl— mod EZQ},
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which maps isomorphically to
{(alEl,agEg, )
e [TES/Ep(E: )& 41 Eier =k mod By (E; ).
There is a map
Epsqy : 6{1} = &{1}: (a,E}, aoEo, ...)
= (O, Eg(a)@(E1), Ep(a)(Ey), )
= (0, p(a)Eo, p(@)Es, ...) € [ [ EiS/Bap (B )8,

where on the target, we use the second description of G{1}. In particular, we get a map
1 1
psn:6{1} ®e,, 6 Bl S{1} El
For any integer n, we define M{n} = M ®¢ S{1}®".

We have the following structural result. One reason that we state this is to motivate
our definition of Breuil-Kisin—Fargues modules later, which will have the condition that
M[ﬁl] is finite free as an assumption (as it is not automatic in that setup).

Proposition 4.3. — Let (M, @) be a Brewil—Risin module. Then there is a canonical exact
sequence of Breuil—Risin modules

0 — (Mor, oM,,) = M, onm) = (Mgee (,01\/1&66) - (M, ox) — 0,

where:

(1) The module Mo, C M s the torsion submodule, and s killed by a power of p.
(1) The module M. ts a finite free S-module.

11 ¢ module M is a torsion S -module, kille a power of (p, T).

i11) 7he module M S-module, killed by a p (», T)

In particular, M| i] = Miee| pl] is a finite free S| %]—mOdule.

Proof. — Let My,, C M be the torsion submodule. Then M’ = M/M,,, is a torsion-
free &-module. As such, it is projective in codimension 1, i.e. M’ defines a vector bundle
& on Spec G \ {s}, where s € Spec S is the closed point. As & is a 2-dimensional regular
local ring, this implies that M. = H’(Spec & \ {5}, £) is a vector bundle on Spec &, i.c. a
finite free &-module. The map M" — M., is injective, and the cokernel is supported
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set-theoretically at {s} C Spec G, i.e. killed by a power of (p, T). All constructions are
functorial, and thus there are induced Frobenii on all modules considered.

It remains to prove that My, is killed by a power of p. Let I = Fitt;(M) C & be any
Fitting ideal of M. We have to show that if I # 0, then a power of p lies in I; equivalently,
we must check that &/I vanishes after inverting p. First, we remark that the existence of
¢m and the base change compatibility of Fitting ideals imply that

1 1
ree o] [g)

4 (6/1)[%] — (&/¢') [%]

and therefore

as quotients of 6[%]. On the other hand, applying the Iwasawa classification of modules
over G, we find

1 n
A= (6/D) [ﬂ ~ ]‘[KO[T]/(ﬁ(T)"f),

where f(T) € W(k)[T] is a monic irreducible polynomial congruent to T% modulo p,
n; > 1 is an integer, and f; # f; for ¢ #j. We will show that A = 0. Fix an algebraic clo-
sure G of K, and consider the finite set Z := Spec(A)(C) of the C-valued points of A.
By the condition on f;, this set can be identified with a finite subset of the maximal
ideal m C O¢ C C, i.e., of the C-points of the open unit disc of radius 1 about 0. Now
Equation (4) shows that if we set Z' ={x e m | x’ € Z}, then ZN U =7’ N U where
U=m— {m, ..., n} with the 7;’s being the distinct roots of E in C (with 7y = 7, our
chosen uniformizer). We will show that this leads to a contradiction unless A =0 (or,
equivalently, Z = ). If Z # (), choose x € Z with |x| maximal. Then there exists some
y € with y? = x. If |x| > |7|, then |y| > |x| > |7, s0 y € ZZNU =7ZNU, and thus we
obtain y € Z with |y| > |x|, contradicting the maximality in the choice of x. Thus |x| < |7 |
forall x € Z. But then x e ZNU =7'NU, so x” € Z as well. Continuing this way, we
obtain that ¥ € Z for all n > 0. As Z is finite and |x| < 1, this is impossible unless x = 0.
Thus, Z = {0}, which translates to A = Ky[T]/(T“) for some d > 0. Equation (4) then
tells us that Ko[T]/(T%) >~ Ko[T]/(T%). By considering lengths, we see that d = 0, and
thus A = 0. This shows that (G/I)[i] =0, so p" € I for some n> 0. (]

Let us now recall the relation to crystalline representations of Gi. Fix an algebraic
closure K of K with fixed p-power roots 7" e K of m, and let Ko, = K(7'/#™) c K.
Let C be the completion of K with ring of integers O¢ C C, and Ay = Ap(Oc), with
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corresponding Ay, Berys. In particular, there is an element =@, .. ) e Kb, with
[7"] € Ayr. We have a map G — Ay, which sends T to [7°). Thus, the diagram

6
6 ——20

-

Ainf > OC.

commutes. This diagram is equivariant for the action of Gk, = Gal(K/K,,) (but not for
Gk = Gal(K/K)).

If Vis a crystalline Gg-representation on a Q ,-vector space, we recall that there i3
an associated (rational) Dieudonné module

Dcrys (V) = (V ®Q/, Bcrys)GK9
which comes with a ¢, Gg-equivariant identification
Dcrys (V) ®\N(k)[%] Bcrys =V ®Qp Bcrys'

Theorem 4.4 ([49]). — There is a natural fully faithful tensor functor T +— M(T) from
Z,-lattices 'T in crystalline Gy -representations V to finite free Breuil—Raisin modules. Moreover, given T,
M(T) us characterized by the existence of a ¢, Gk -equivariant dentification

M(T) ®s W(C") =T ®z, W(C").

We warn the reader that the functor is not exact: One critical part of the con-
struction 1is the extension of a vector bundle on the punctured spectrum Spec & \ {s},
where s € SpecR is the closed point, to a vector bundle on Spec S, and this functor is
not exact.

Remark 4.5. — We will check below in the discussion around Proposition 4.34 that
M(T) actually satisfies the following statements.

(1) There 1s an identification
1 1
M(T) ®s Ainf|:_i| =T g, Ainf|:_i|
0 0
which is equivariant for the ¢ and Gg_ -actions.
(i1) There is an equality
M(T) ®s B

crys

B+

/l) ] Herys

= Dcryg (V) ®\V(/€)[
as submodules of

M(T) ®6 Bcrys == T ®Z}, Bcrys = Dcrys (V) ®VV(/€)[%] Bcrys-
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In particular, there is an identification of rational Dieudonné modules M(T) Qg
W(/f)[/l}] = D¢(V) by tensoring the second identification with W(k)[’%], and passing
to Gk -invariants. Thus,

M(T) ®6 W(k)  M(T) @6 W(k) [ﬂ — D (V)

defines a natural lattice in crystalline cohomology, functorially associated with the Gg-
stable lattice T'C V. A main goal of this paper is to show that, at least under suitable
torsion-freeness assumptions, this algebraic construction is compatible with the geometry.

Proof of Theorem 4.4. — The existence of the functor and the identification are
stated in [50, Theorem 1.2.1]. Assume that M(T)’ is any other module with the stated
property. By [49, Proposition 2.1.12], to check that M(T) = M(T)’ equivariantly for ¢, it
suffices to check this after base extension to the p-adic completion 6[%] /f of 6[%]. There,
it follows from the equivalence between finite free ¢-modules over 6[%]11A and finite free
Z,-modules with Gg_ -action, see [45, Proposition 4.1.1] or [35, Proposition 2.32]. (Im-
plicit here is that the functor from crystalline Gg-representations to Gk -representations
1s fully faithful.) But this Gk _ -representation is in both cases T, by the displayed identifi-
cation for M(T) and M(T)'. O

In Corollary 4.33, we will check that Z,(1) is sent to G{1} under this functor.

4.2. Some commutative algebra over Ayyy. — In order to prepare for the definition of
Fargues’ variant over A;,;, we study commutative algebra over the nonnoetherian ring
Ainf-

We fix a perfectoid field K with ring of integers O. Let O” C K" be the tilt of
O C K, and fix an element x € A;; = W(O") which is the Teichmiiller lift of a nonzero
noninvertible element of O°. We study modules over A;,;, and show that they behave
somewhat analogously to modules over a 2-dimensional regular local ring (such as &).

We begin by proving an analogue over A of the well-known fact that all vector
bundles on the punctured spectrum of a 2-dimensional regular local ring are trivial. In
fact, the proof below can be easily adapted to show the latter. This result is due to Ked-
laya, and the proof below was first explained in a lecture course at UC Berkeley in 2014

[62].

Lemma 4.6. — Let s € Spec(Any) denote the closed point, and let U := Spec Ayyp \ {s} be
the punctured spectrum. Then restriction induces an equivalence of categories between vector bundles on
Spec(Aing) and vector bundles on U. In particular, all vector bundles on U are free.

Proof. — Let R=Ay, Ry = R[%], R, = R[%], and Ry = R[é]. If we set U; =
Spec(R,) forz € {1, 2,12}, then U=U,; U Uy, and U, N Uy = Ujj,.
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To show the restriction functor is fully faithful, it suffices to show that A,y — O(U)
1s an isomorphism, since all vector bundles on Ay, are free. Using the preceding affine
open cover of U, and viewing all rings in sight as subrings of R, it suffices to show
R =R, NRy C Ryy. This follows easily by combining the following observations: The
element x is a Teichmiiller lift, the Teichmdller lift is multiplicative, and each element
of A can be written uniquely as a power series » ., ; - #' with a; being a Teichmiiller
lift.

>0

For essential surjectivity, we can identify vector bundles M on U with triples
(M, My, h), where M; is a finite projective R;-module, and /: M; ®g, Rj9 = My Qg, Ri9
is an isomorphism of Rjo-modules; write M,y for the latter common value, and let
be the rank of any of these finite projective modules. Let M :=ker(M; & My — M)y).
As a quasi-coherent sheaf on Spec(A;y), this is simply .M where j : U — Spec(Ayy) is
the defining quasi-compact open immersion. In particular, we have M ®g R; >~ M; for
1e{l,2,12}. We will check that M 1is a finite projective A;,-module of rank d.

First, we claim that M is contained in a finitely generated A;,;-submodule M' C M,
with M'/M killed by a power of p. Write M, as a direct summand of a free module F,
over R;, and let I} C I, be the corresponding free module over R; let ¥ : F; — M,
be the resulting map. As n € Z varies, the images ¥ (p~"F}) C M, give a filtering fam-
ily of finitely generated Aj,-submodules of M, and we will show that M lies inside
one of these. Let Fjy := F, ®g, Ry be the corresponding free Rjs-module, and let
F}, C Fis be the corresponding free Ry-module. Then we have an induced projection
Y Fig — Myy. Also, we know p7"F) = F, N p7"F}, C Fyy for all n, so it is enough
to show that M C M,y is contained in some ¥ (p"F],) C Fio. As M = M,; N My, it
suffices to check that My C ¥ (p~"F7],). But this is immediate as My is finitely gener-
ated, and U,y (p7"F},) = Myy. Thus, if we set M’ := ¢ (p7"F}) for n > 0, then M’ is
finitely generated and M C M'. To verify that M'/M is killed by a power of p, note that
M[/%] =M [ll)] = M;. Thus, M'/M is a finitely generated A;,-module killed by invert-
ing p, and so it must be killed by a finite power of p.

Next, we show dim;(M ®y,, £) > d. For this, let W = W(£), and L = W[%]. The
inclusion M C M, then defines a map M ®4,, W — M, ®,,, W =~ L®. The image of
this map generates the target as a vector space (since M[pl] = M,) and is contained in a

inf inf
finitely generated W-submodule of L®¢ by the previous paragraph. As W is noetherian,
this image is free of rank d, so the claimed inequality follows immediately by further
tensoring with £.

Next, we claim that M is p-adically complete and separated. Note that My is p-
adically separated as it is a finite projective module over the p-adically separated ring
Ry. As M C Moy, it follows that M is p-adically separated. For completeness, take any
elements m; € M; we want to form the sum ), f'm;. Choose a surjection Al ; — M/,
and fix elements m; € Al lifting the image of m; in M'. Then we can form the sum
=Y., p'm €A, and the image s € M’ of s maps to 0 in M'/M, as M'/M is killed by
a powe; of p; thus, s € M, and is the desired limit of the partial sums.
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As M is p-adically complete and p-torsion free, we immediately reduce to checking
that M/p is finite free of rank d: any map A?; — M that is an isomorphism after reduc-
tion modulo p is an isomorphism (by arguing inductively with the 5-lemma modulo p",
and then passing to the inverse limit). Now consider the exact sequence

0—)M—>M1@M2_)C_>O’

where C is defined as the cokernel. Then C C M, is p-torsion free, so it follows that
M/p — M,/p @& My/p is injective. But M,/p = 0, so M — My/p is injective. Now
My/p >~ My ®g, Ry/p >~ My ®g, K’ is a K’-vector space of dimension d. So we are
reduced to checking that M/p C My/p >~ (K")? is a finite free O°-module of rank d. We
already know that dim;,(M/p ®g, £) = dim;(M ®a,,, £) > d. By Lemma 4.7, we have
dim;(M/p ®g, k) = d. Lemma 4.8 then gives the claim. U

The following two facts concerning modules over valuation rings were used above:

Lemma 4.77. — Any O"-submodule ¥. of (K)? satisfies dim;(E ® k) < d.

Proof. — Assume towards contradiction that there exists a map f : F — E with F
finite free of rank > d such that ' ® £ is injective. Then the image F' of / is a finitely
generated torsion free O’-submodule of E. As O” is a valuation ring, any finitely gener-
ated torsion free module is free, so I is finite free of rank < d. But then the composite
S ®k:F®k— I ®k— E® £k has image of dimension < d, which contradicts the
assumption. U

Lemma 4.8. — If D C (K*)? is an O°-submodule with dimy(D ® k) = d, then D is finite
Jree of rank d.

Progf- — We show this by induction on d. If d = 1, then D is one of three possible
modules: a principal fractional ideal, a fractional ideal of the form m” ® J =m" - J for a
principal fraction field J, or K" itself. One easily checks that the second and third possi-
bility cannot occur: one has D ® k£ = 0 for both those cases (using m” ® m” >~ m” for the
second case), contradicting dim;(D ® £) = 1. Thus, D is a principal fractional ideal, and
thus finite free of rank 1.

For d > 1, choose any map O° — D that hits a basis element v after applying
— ® k, and is thus injective. Saturating the resulting inclusion O C D defines an injective
map g : J — D with torsion free cokernel such that J has generic rank 1, and the image
¢ ® k has dimension > 1 (as it contains v). In fact, since dim;(J ® £) <1 (by the d =1
analysis above), it follows that dim;(J ® £) = 1, and that g ® £ is injective with image of
dimension 1. This gives a short exact sequence

0—-]J—-D—-=D/]—0
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where J and D/J are torsion free of ranks 1 and d — 1 respectively. Applying — & £ and
calculating dimensions gives dim;(D/J ® £) = d — 1. By induction, both J and D/J are
then free, and thus so is D. O

Next, we observe that finitely presented modules over A;,¢ are sometimes perfect,
1.e. admit a finite resolution by finite projective modules. Some of the subtleties here arise
because (in general) Ay, is not coherent.

Lemma 4.9. — Let M be a finitely presented A;ne-module such that M[/l)] is finite _free over
Ainf[]%]. Then:

(1) The Ajnp-module M s perfect as an Agnp-complex.
(1) The submodule Mo, C M of torsion elements s killed by p* for n > 0, and finitely
presented and perfect over Ay
(1) M has Tor-dimension < 2, and Torf;i"“(M, W(k)) = 0. Moreover, if M has no x-
torsion, then Tor?i"f(M, W(k)) =0 for i > 0.

We freely use Lemma 3.25 and Lemma 3.26 in the proof below.

Progf: — Tor (1), assume first M[%] = 0. Then, by finite generation, M is killed by

" for some n > 0, and thus is a finitely presented W,(O”)-module. By induction on n, we
will show that any finitely presented W,(O”)-module M is perfect over Ay, If n =1, then
M is a finitely presented O°-module. But then M is perfect over O (as O is a valuation
ring), and thus also over A (as O =A,/ p 1s perfect as an A;-module). In general, for
a finitely presented W,(O”)-module M, we have a short exact sequence

0—pM—>M— M/pM — 0.

Then M/pM is finitely presented over O, and thus perfect over A; by the n =1 case.
Also, since W,(O) is coherent, pM C M is finitely presented over W,(O”). Moreover,
P pM = "M = 0, so pM is a finitely presented W, (O")-module. By induction, pM
1s also perfect over A;r. The exact sequence then shows that M is perfect over Ayy.

For general M, by clearing denominators on generators of M[1], we can find a
free Aj,-module N and an inclusion N C M that is an isomorphism after inverting p. The
quotient Q) is then a finitely presented A;,-module killed by inverting p, so Q is perfect
by the preceding argument. Also, N is perfect as it is finite free; it formally follows that M
1s perfect as well.

For (i), choose N and Q) as in the previous paragraph. Then M,,, "N =0 as N
has no torsion. Thus, M,,, — Q) is injective, so My, is killed by p" for some n > 0, and so
M, = M[p"]. Now consider K :=M ®kmf Aye/p". This is perfect over Aye/p" = W,(O”)
by (i) and base change. As W,(O") is coherent, each H'(K) is finitely presented. But
H~1(K) = M[p"], so M[p"] is finitely presented over W,(O"), and thus also over A,,. The
perfectness now follows from (1) applied to M[p"].
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For (ii1), the fact that M has Tor-dimension < 2 follows easily from the previous
arguments using the fact that any finitely presented O°-module has Tor-dimension <1
over @, and thus Tor-dimension < 2 over A;,. For the rest, let W = h_r)nn A/ (7, s0
we have a short exact sequence

0— Q—>W— W(k) — 0.

The last map in this sequence is the p-adic completion map and Wis p-torsion-free. Thus,
Qis an Ainf[;i]—module, and thus Tor‘l-Ai“"(M, Q)=0fori> 0 as M[i] is finite free. Also,
since x € Ay Is a non-zero-divisor, the Ay -module W has Tor-dimension 1; it follows
from the long exact sequence on Tor that Torﬁ‘i“"(M, W(k)) = 0. Now if M is further
assumed to have no x-torsion, then Tor;™ (M, \7\7) = 0 for ¢ > 0. Thus, we have a short
exact sequence

0 — Tory™ (M, W(k)) = M ®a,, Q = M ®a,, W — M ®y,, W(k) — 0.

inf

As M[jl)] is finite free, the first term above is killed after inverting p. On the other hand,

p acts invertibly on QQ and thus on the second term above; thus Tor‘?“‘f M, W(k)) =0, as
wanted. O

Next, we give a criterion for an A;j,-module to define a vector bundle on U =
Spec Ay \ {s}. This is a weak analogue over A;, of the fact that a finitely generated
torsion free module over a 2-dimensional regular local ring gives a vector bundle on the
punctured spectrum.

Lemma 4.10. — Let M be a finitely generated p-torsion-free Ayp-module such that M[%] i

finite projective over Ainf[%]. Then the quasi-coherent sheaf associated to M restricts to a vector bundle
on U.

Proof. — It is enough to check that M ®4,, Ay 1s finite free, where Ay 1s
the localization at the prime ideal (p) C Ay, But Ayyg () 1s a discrete valuation ring: The
function sending Z i>0[al~]pi € A, with ¢, € O to the minimal integer ¢ for which a; # 0
defines a discrete valuation on Ay, with corresponding prime ideal (p), and correspond-
ing discrete valuation ring Ajy, ). As M ®a,, Aing,(p 1s a finitely generated p-torsion-free
module, it is thus finite free, as desired. ([l

Remark 4.11. — In Lemma 4.10, it is unreasonable to hope that M itself is finite
projective. For example, if M is the ideal (x, p) C Ayyr, then M is not finite projective over
Ay, and yet restricts to the trivial line bundle over U.

Corollary 4.12. — Let N be a finite projective Ainf[;{]—module. Then N s free.
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Progf. — Let M C N be a finitely generated A;,-submodule such that M[i] =

N[pl]. Then M satisfies the hypothesis of Lemma 4.10, and thus by Lemma 4.6 there
is some finite free A;,r-module M’ such that the vector bundles corresponding to M and
M’ agree on U = Spec Ay \ {s}. In particular, M’ [;—)] =N [%], which is therefore finite
free. ]

Putting the above results together, we obtain the following structural result:

Proposition 4.13. — Let M be a finately presented A, ¢-module such that M| i] i finate projective

(equivalently, free) over Ainf‘[%]. Then there is a_functorial exact sequence
0— My — M — Mg > M — 0

satisfying:

(1) Mo, ts finutely presented and perfect as an Ayp-module, and s killed by p" for n > 0.
(1) Miee 25 a finite free Ajnp-module.
(iti) M is finitely presented and perfect as an Ay-module, and is supported at the closed point
s € Spec(Aqn), e, it is killed by some power of (x, p).

Moreover, M 15 a finite free Asne-module if either M @, W (k) s p-torsion-free, or if K has characteristic
zero and M @, O is p-torsion-free.

Progf: — Let My,, C M be the torsion submodule of M. Then (i) is immediate from
Lemma 4.9. Let N = M/M,,,, so N is a finitely presented A;,-module (by (1)) that is free
after inverting p (as M is so) and has no p-torsion. Lemma 4.10 then implies that N
defines a vector bundle on U. Lemma 4.6 implies that Mg, := H°(U, N) is a finite free
Ajyr-module, giving (ii). Also, since N had no p-torsion, the induced map N — Mg, is
injective and an isomorphism over U. Thus, the cokernel M is a finitely presented Ay,
module supported at the closed point s € Spec(A;yr), proving most of (iii); the perfectness
of M follows from the perfectness of the other 3 terms.

For the final statement, we first note that in general, if R is a local integral domain
with residue field £, and quotient field £,, and M is a finitely generated R-module such
that

dimy, (M ®r £;) = dimy, (M ®r £,),

then M i1s finite free. Indeed, any nonzero Fitting ideal I C R of M has to be all of R,
as otherwise the rank of M ®g £, would differ from the rank of M ®g £, since £, ¢
Spec(R/I) while £ € Spec(R/I). Applying this to R = Ay and the given module M
gives the conclusion, as the dimension at the generic point agrees with the dimension at
W(/f)[%] and O[ i] because M[ll)] 1s finite free over Ay }1—)], and this dimension agrees with
the dimension of M @, , £ by assumption. UJ

inf
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We record an inequality stating roughly that rank goes up under specialization for
finitely presented modules.

Lemma 4.14. — Let M be a finitely presented W ,(O")-module. Let M, and M be the base
change of M along W,(O") — W,(K") and W,(O°) — W, (k) respectively. Then M,, and M,
have finite length over the corresponding local rings, and we have:

£(M,) < £(M,).

In the proof below, the length function £(—) applied to certain perfect complexes
K over W, (k) simply means the usual alternating sum ) _.(— D¢ (H (K)).

Progof: — Note that M ®{Jvn(ob) W, (k) M ®f§mf W(k). By Lemma 4.9, it follows

7 b . . .
that each Tory O )(M, W, (%)) has finite length, and vanishes for ¢ > 1.
We now show the more precise statement

£(M,) = £(M,) — £(Tor)" @7 (M, W,(b))).

The left hand side is £(M ®{“VH O" W,(K")) as W,(O”) — W, (K") is flat, while the right
hand side is £(M ®L,n " W,.(k)) by the vanishing shown above. With this reformulation,
both sides above are additive in short exact sequences in M. Writing M as an extension of
M/p"~"M by "~ '"M/p"M, we inductively reduce down to the case n = 1; here we use the
identification M ®{“Nn o W, (k) M (X)IéD k when M 1s killed by p. By the classification of
finitely presented modules over valuation rings, we may assume M = O” or M = O’ /(x")
for suitable non-zero 7 in the value group of K. Both these cases can be checked directly:

the relevant lengths are both 1 in the first case, and 0 in the second case. Thus, we are
done. O

Using this, we arrive at an inequality relating the specializations of certain Ay~
modules over W(k) and W(K"):

Corollary 4.15. — Let M be a finitely presented Ainp-module such that M[pl] i free over

Ainf[/%]. Let My :=M ®4., W(K®) and My := M Q.. W(k) be the displayed scalar extensions.
Then:

inf inf

(1) The modules M, and My have the same rank.
(i) Foralln>1,¢(My/p") = €M, /p").

Proof: — The first assertion is immediate as both Ml[%] and Mg[%] are base

changes of the finite free module M[%] Part (i1) follows by applying Lemma 4.14 to
M/p". 0

The next lemma will help in understanding the crystalline specialization.
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Lemma 4.16. — Let C € D(Ayy) such that Y (C)[/l)] i _free for each j. Fix some index 1.
Then the natural map H'(C) ®,,. W (k) — H'(C ®kim_W(k)) is injective, and byjective afler invert-
ing p. Furthermore, if U (C) has no x-torsion, then this map is bijective.

Proof — The bijectivity after inverting p is formal from the assumption on the
H (C)[ p] For the rest, let W= hmAmf/ (Y1), so W(k) is the p-adic completion of Ww.
We first observe that

H/(C) @, W — H (C®f fw)

is injective: by compatibility of both sides with filtered colimits, this reduces to the cor-
responding statement for A;,¢/(x/#"), which can be checked easily using the Koszul pre-
sentation for the latter ring over A;,;. This analysis also shows that if H*'(C) has no
x-torsion, then the above map is bijective.

Now let Q = Ker(W — W(%)), so there is a short exact sequence

0—>Q—>V~V—>W(/f)—>0.

Since W(£) is the p-adic completion of the p-torsion-free module W, it follows that Qs
an Al /l)]-module. In particular, by the hypothesis that all the H/(C)[ jlb] are free, we have

H(C) ®a,, Q> HI(C®%, Q).

Now consider the following diagram of canonical maps:

W —— H/(C) ®,,

inf

H'(C) ®4,, Q — H(C) @4

inf

| | |

H(C ek, Q — H(CoY, W) —— H(Cok, W).

Wk —— 0

Here both rows are exact, the map « is bijective, and the map b is injective (as explained
above for both). A diagram chase then shows that the map ¢ is injective, as wanted.
Furthermore, we claim that the map labelled ¢ then must be surjective. Indeed,
the obstruction to surjectivity is the boundary map H'(C % W) — H™*(C ®% . Q)
extending the bottom row to a long exact sequence; but this map must be 0 since the
target is an Ainf[/l;]—module, and we know that d [l)] 1s surjective, as ¢[1] is. The diagram
now shows that the surjectivity of ¢ follows from the surjectivity of 4. But the latter was
shown above under the hypothesis that H"!(C) has no x-torsion, so we are done. [

Combining Proposition 4.13 with Lemma 4.16, we essentially obtain:
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Corollary 4.17. — Let C. € D(Ayy) be a perfect complex such that H (C)[’%] i free over
Ain[‘[ﬁl] Jor all j € Z. Then, for every j, H (C) is a Sinately presented Ainp-module. Moreover, for
fixed i, if H'(C ®kinr W(k)) is p-torsion-free, then H'(C) is a finite fiee Air-module, and in particular
H/(C ®kinf W(K®)) = H(C) ®a,, W(KP) is p-torsion-fiee. If moreover H' (C) @4, W(k) is
p-torsion-free (e.g., by Lemma 4.16, this happens if H+'(C ®kinf W(k)) is p-torsion-free), then

H'(C) ®a

We remark here that the equality H'(C ®kim_W(Kb)) =H'(C) ®4,, W(K) invoked
above follows from the flatness of A;,r — W(K?), see proof of Lemma 4.10.

W(k) =H'(C®% W(®).

inf

Proof. — First, we check that H/(C) is a finitely presented A;,-module for all j. We
prove this by descending induction on j, noting that it is trivially true for all  >> 0 as then
H/(C) = 0. Ifit is true for all j/ > j, then H/'(C) is perfect for all j/ > j by Lemma 4.9. This
implies that T¥'C is still perfect, so that H/(C) is the top cohomology group of a perfect
complex, which is always finitely presented.

Now if H*!(C) ®,,, W(k) is p-torsionfree, then H'(C) is finite free by the
last statement in Proposition 4.13, and thus has no x-torsion. The last statement in
Lemma 4.16 now yields the desired equality. O

The next lemma implies that torsion-freeness conditions on the de Rham or crys-
talline specializations are equivalent. Here, as well as in Lemma 4.19 and Corollary 4.20,
we assume that K is of characteristic 0 and contains all p-power roots of unity.

Lemma 4.18. — Let C. € D(Ayy) be a perfect complex such that H (C) [fl}] u5 free over Ayl /l)]
Jorallj € Z. Fix some index i. Then H'(C ®%. W(k)) is p-torsion-fiee if and only if Hi(C ®% . 0)
s p-torsion-free.

Proof. — Note that the stated hypothesis imply that each H/(C), and hence each
truncation of C, is perfect over Ay by the previous corollary and Lemma 4.9. As-
sume first that H (C ®kim_ W(k)) is p-torsion-free. Then H'(C) ®a. . W(k) is p-torsion-free
by Lemma 4.16, and then H'(C) is finite free by Proposition 4.13. As Tor?i“f(Hf(C),
W(k)) = 0 for all j and 7 > 1 by Lemma 4.9(iii), this implies (t='C) ®kinf W) ~
(C ®II§M W(k)). Now 13(C ®kmf W(k)) ®\I;,(k) k € D='(k) by the assumption that
H/(C ®II§M W(k)) has no torsion, so 7='C ®kmf k € D=(k) as well. Rewriting, we see
(t*'C ®%  0) ®p k € D*(k). This implies the following: (a) the perfect complex
2C ®kinf O € D’(O) must lie in D=(0), and (b) H' of this last complex is free; here we
use the following fact: a finitely presented O-module is free if and only if Tor? (M, ) = 0
(see the end of the proof of Proposition 4.13). The first of these properties implies
that 7>'C ®% O ~ 7>(C ®% ), and the second then implies that H'(C ®% O) is
p-torsion-free, as wanted. The converse is established in exactly the same way. 0J



INTEGRAL p-ADIC HODGE THEORY 275

We record a criterion for M[%] being finite projective.

Lemma 4.19. — Let M be a finitely presented Aip-module. Let pp = [€] — 1, with € as in
Example 3.16. Assume the following:

1) M[ ﬁ] i finite projective over Amf[ 1 ]
(i) M ®a,, Bm i finite projective over B
Then M[%] is finite free over Ainf[%].

crys®

Progf: — LetR = Amf[ ], andlet N = M[ ]. Then u € R is a non-zero-divisor; let

R be the p-adic completion of R. We first show that the canonical map R — R factors
through Bm/b To check this, we need to produce a canonical map Ay, —> Ainl p] /"

for all n (which will then factor through B} = Acrys[%]). Fix some such n. It suffices

(‘ry§
to show that the images of % € Ainf[;] for varying m belong to a bounded subalgebra

of Ainf[%]/u”. Note that the cokernel of the map Ay/p" — Aui/E" ® A/~ ()" is
bounded p-torsion: this cokernel is finitely presented over A, and acyclic after inverting p
(since p =& mod (¢~ 'w)). Certainly, fn—”, maps to 0 in Ainf‘[%]/sn for m > n, so it remains
to handle the second factor. For this, note that £ = ¢~ ' ()’”! mod p in Ay, so adjoining
all & —! is equivalent to adjoining all %
Apr/@ " ()" for m > n, finishing the proof that R — R factors through BmS

By the Beauville-Laszlo lemma [4], and Corollary 4.12, it is enough to check that
N[ ] 1s finite projective over R[ ], that N ®g R is finite projective over R and that N
has no p-torsion. The first part 1 is true by assumption (1). The second part follows from

assumption (i1) as the map R — R factors through the canonical map R — B}, as shown

crys?

Now these elements have trivial image in

in the previous paragraph. It remains to show that N has no p-torsion. For this, observe
that we have a short exact sequence

0—>R—>R— Q—0
with Q) being an R[i]—module. Tensoring this with N, and using that

Tor*(N, Q) = Tor, * (N[i],Q) —0

by projectivity of N[i], we get an injection N — N ®g R, which is ju-torsion-free. [

Let us state a corresponding version of Corollary 4.17.

Corollary 4.20. — Let C € D(Aynp) be a perfect complex such that for all j € Z, H](C)[ ]
is_free over Aql W] and (C QL A Cr}S) is_free over B .. Then, for every j, H(C) is a ﬁmtel
presented Aqp-module with H’(C)[%] free over Ainf‘[/:].

CI‘VS
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Moreover, for fixed i, if H'(C ®kmf W(k)) is p-torsion-fiee, then H'(C) is a finite_free Aine-
module, and in particular H'(C ®kim_ W(K®)) = H(C) ®a,, W(K") is p-torsion-free. If moreover
H™(C) @, W(k) is p-torsion-free (e.g, f HT(C Q% W(k)) is p-torsion-fiee), then

H'(C) @4, W(H) = H (C &%, W(B).

inf

Proof. — We only need to prove that H/ (C)[ pl] 1s finite free over A; %]; the rest is
Corollary 4.17. For this, one argues again by decreasing induction on j, so one can assume

that j is maximal with H/(C) # 0. Then H/(C) satisfies the hypothesis of Lemma 4.19,
which gives the conclusion. O

Remark 4.21. — Using Lemma 4.18, the hypothesis on H'(C ®kme(k)) in Corol-
lary 4.17 and Corollary 4.20 can be replaced by the same hypothesis on H'(C ®% O).

inf

4.3. Brewl—Kisin—Fargues modules. — Let K be a perfectoid field with ring of integers
O = Ok = K° C K. We get the ring Ay, = Ay (O) = W(O) equipped with a Frobenius
automorphism ¢, where O° = l(ir_n(p O/p as usual. Fix a generator & of Ker(6 : Ay, — O),

and let € = p(£).

Defination 4.22. — A Breuil-Kisin—Fargues module s a finitely presented Ai-module M
with an isomorphism

1] ~ |
oM M@0 Ainf‘[fg] — M[g},

such that M[ /l;] is a finite projective (equivalently, free) Al %]—module.

This should be regarded as a mixed-characteristic version of a Dieudonné module.
The next example illustrates why we impose the condition that M[/l)] is finite free.

Example 4.23. — Let K = C where C is a completed algebraic closure of Q,.
Let u = [€] — 1, with notation as in Example 3.16. Set I = (1), and M := A;¢/I; this
is a finitely presented A;,-module. As u | (), we have ¢*(I) C I, which induces a
map @y - @*M — M. Moreover, as ¢*(I) C I becomes an equality after inverting '5, SO
does ;.

Again, there is a version of the Tate twist.

Example 4.24 (1ate twist). — There 1s a Breuil-Kisin—Fargues module A;¢{1} given
by

1
Apef1} = m (Ainf Rz, Zp(l))
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if K is of characteristic 0 and contains all p-power roots of unity. Here, u = [e] — 1 as
usual. The Frobenius on Ay¢{1} is induced by the usual Frobenius on A;,;. More canoni-
cally, we have the following description. Recall the maps

57- : A = WL(0),

with kernel generated by £, Then the cotangent complex
W,(O){1} :=Luy,0)/2,[= 11 = Ly, 0 nul =11 = & At /8 A

is free of rank 1 over W,(0). As in the Breuil-Kisin case, for r > s the obvious map
W, (O} = & Aut/5] Awe = Eut/E] A = W,(O) 1)

has image p' "W (O){1}; thus, dividing it by p"~*, we can take the inverse limit

A1} = Llf_nwr(@){ 1}
to get an A;,-module which is free of rank 1. Again, it is equipped with a natural Frobe-
nius. Moreover, if K contains all p-power roots of unity and we fix a choice of roots of
unity and the standard choice & = ﬁ with u = [€] — 1, then the system of elements
E,. € W,(O){1} define a compatible system of elements (using that ¢(§) = p mod &), in-
ducing a basis element e € A;i{1}, on which ¢ acts by ¢+ %Le. More canonically, there is
a map

dlog: W,(0)" — Q\I\',,(O)/z,,’
which on p-adic Tate modules induces a map
dlog: Z,(1) = T,(Q4y 0 /z,,) =W,(O){1}.

These maps are compatible for varying r, inducing a map Z,(1) — Aj,{1} which is equiv-
ariant for the trivial ¢-action on Z,(1), and thus a map A;y @z ’ Z,(1) — Aje{1}, which
can be checked to have image A, {1}. More concretely, this amounts to checking that
the elements

( L dgy])

(L1 =1 [¢] >5>1 € Tp(Qxlv,(O)/zp) =W, (O){1}

are generators.

If M is any A;,-module, we set M{n} = M ®4, . Aj{ 1}®" for n € Z.

inf
Remark 4.25. — Assuming again that K contains the p-power roots of unity, there
1s @ nonzero map Ajyr = Ay Qz, Z,(1) — Aje{l}, whose cokernel is the module from
Example 4.23 above. Thus, the category of Breuil-Kisin—Fargues modules is not stable
under cokernels. It is still an exact tensor category, where the Tate twist is invertible.
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Let us discuss the étale specialization of a Breuil-Kisin—Fargues module. For this,
we assume that K = C is algebraically closed of characteristic 0, and fix p-power roots of
unity giving rise to € € C” and u = [€] — 1 as usual.

Lemma 4.26. — Let (M, o\1) be a Brewil—Risin—Fargues module, where the base field K = C
is algebraically closed of characteristic O. Then

T= (M ®Ainf W(cb))‘pM=l
(where o\ means oy @ @) is a fimtely generated Z,-module which comes with an identification

M ®,,, W(C") =T ®z, W(C’).

inf
Moreover, one has

1 1
M ®Ainf Ain[‘[—] =T ®Z{, Ain[‘[_]
G G

as submodules of the common base extension to W(C").

Geometrically, T corresponds to étale cohomology.

Progf. — As C” is an algebraically closed field of characteristic p, finitely gener-
ated W(C”)-modules with a Frobenius automorphism are equivalent to finitely generated
Z,-modules; this proves that T is finitely generated and comes with an identification

M ®a,, W(C”) =T ®z, W(C").

To prove the statement
1 1
M ®Aiuf Ainf — | = T ®Zp Ainf I K
M M

one can formally reduce to the case where M 1is finite free, using Proposition 4.13 and
the observation that if M is p-torsion, then M ®a, W(C") =M ®4 Ainf[i]. Thus, we
assume from now on that M is finite free.

First, we claim that T C M ®,

M{n} for sufficiently large n so that ¢y, maps M into M. In that case, we claim the
stronger statement T' C M. Let » > 1, take any element ¢t € (M ®a4, W,(C"))™=!and
look at an element x € O of minimal valuation for which [x]¢ € M/p’. Assume that x is
not a unit. We have ¢y;(¢) = ¢, or equivalently ¢ = (,01\_/11 (1), so [x]t = (p;,l1 ([x)?1). But then
[x)'t € [x}~'M/p’, and thus (p;f([x]f’t) € [x]P"VPM/p, as (,01511 preserves M by assump-
tion. Thus, [x]¢ € [x]*~V/M/p’, which contradicts the choice of x. Thus, x is a unit, so
that £ € M/p’. Passing to the limit over » shows that T C M, as desired.

inf

inf

Ainf[i]. To prove this, we may replace M by
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Applying the result T ®4,, Ainf‘[ﬁ] C M ®a,

inf

Ainf[i] also for the dual module M*
and dualizing again shows the reverse inclusion, finishing the proof that M ®a, Aint‘[i] =
T ®z, Ainf[ﬁ]- UJ

Let us also mention the following result concerning the crystalline specialization,
which works whenever K is of characteristic 0.

Lemma 4.27. — Let M be a Breuil—Risin—Fargues module. Then M' =M @4, W(k) is a
Sfinutely generated W (k)-module equipped with a Frobenius automorphism after inverting p. Fix a section
k — Ox/p, which induces a section W(k) — Ay Then there is a (noncanonical) @-equivariant
wsomorphism
M ®, inf Bl =M Wk B j—YYs

crys

reducing to the identity over W (k) [%].

Progf: — 'This follows from a result of Fargues—Fontaine [31, Corollaire 11.1.14].
OJ

We will see that in geometric situations, the g-equivariant isomorphism

M ®a,, Bl =M @wiy B,

crys

is canonical, cf. Proposition 13.21. One can check using Lemma 4.19 that for Breuil-
Kisin—Fargues modules equipped with the choice of such an isomorphism, and mor-
phisms respecting those, the kernel and cokernel are again Breuil-Kisin—Fargues mod-
ules, so that this variant category is an abelian tensor category in which the objects com-
ing from geometry live. However, the constructions for proper smooth (formal) schemes
of this paper have analogues for p-divisible groups where the resulting identification is
not canonical. In that case, the phenomenon that the category of Breuil-Kisin—Fargues
modules is not abelian is related to the existence of the morphism of p-divisible groups

Q.p/zp - /’leoo

over Ok, if K contains all p-power roots of unity, which does not have any reasonable
kernel or cokernel as it is 0 in the special fiber, but an isomorphism in the generic fiber.

The main theorem about Breuil-Kisin—Fargues modules is Fargues’ classification;
we refer to [62] for a proof.

Theorem 4.28 (Fargues). — Assume that K = C s algebraically closed of characteristic 0.
The category of finite free Breuil—RKisin—Fargues modules is equivalent to the category of pairs (T, E),
where T is a finile free Z,-module, and B is a By -lattice in T ®z, Bar. Here, the functor is given by
sending a finite free Breuil—Risin—Fargues module (M, @n) to the parr (T, E), where

T= (M, W)™

inf
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and

E = M ®A - B(TR C M ®Ainf BdR ; T ®Z/) BdR'

inf

Remark 4.29. — TYor the proof of our main theorems, we only need fully faith-
fulness of the functor M — (T, E), which is easy to prove directly. Indeed, faithful-
ness follows directly from Lemma 4.26 and the observation that A;; — AuL] is in-
jective. Now, given two Breuil-Kisin—Fargues modules (M, ¢y;) and (N, ¢n) and a map
T(M) — T(N) mapping (M) into E(N), Lemma 4.26 gives a canonical ¢-equivariant
map M[i] — N[i]. We have to see that this maps M into N. By finite generation of M,
M maps into u~"N for some n > 0, which we assume to be minimal. Assume n > 0;
replacing N by u™""'N, we may reduce to the case n = 1. We claim that M maps into
@ "(n)"'N for all r > 0, by induction on r. For this, we need to see that the induced maps

M— ¢ (w)'N/o7 ' (W) 'N=N/g " (§)N
=N ®Ainf',90<ﬂ’ 0N ®Ainf’9°<ﬂ7’ C

are zero, where the isomorphism is multiplication by ¢ (1). But note that by assump-
tion, E(M) = M ®,,, Blz maps into E(N) = N ®,. . Bz, and so by the diagram

inf inf

+ +
M ®Ainl'3(pr BdR N ®Ainl-y(pr BdR

%J/% Elwf\&

M ®x,, Bir N ®a,, Bix

inf inf

also M ®a, ., Big maps into N ®4,, Biz for all r > 0. Therefore, the map M —
N ®a,,,000 C induced by multiplication by ¢ ™" (u) is zero, showing that indeed M maps
into ¢~ () "'N for all 7 > 0. But now N = M=o ¢ (w)"'N by Lemma 3.23, so M maps
mto N, as desired. -

We warn the reader that, like in Theorem 4.4, this equivalence of categories is not
exact. More precisely, the functor from Breuil-Kisin—Fargues modules to pairs (T, E) is
exact, but the inverse is not.

As an easy example, A; {1} corresponds to T=2Z,(1) and E =& (T ®z, BIR).

4.4. Relating Brewil-Risin and Brewil—Risin—Fargues modules. — Let us observe that any
Breuil-Kisin module defines a Breuil-Kisin—Fargues module. For this, we start again
with a complete discretely valued extension K of Q, with perfect residue field £ and fixed
uniformizer 7 € K, and let C be a completed algebraic closure of K with fixed roots
77" € Q, giving an element 7” € C". Then & = W(k)[T] is equipped with a Frobenius
automorphism ¢, and the map 6:6— Ok given by T+ 7. The constructions over K
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and C are related by the map & — A that sellds T to [7"] and is the Frobenius on
W(%); note that this map commutes with ¢ and 6. We first check that this map is flat:

Lemma 4.30. — The map S — Ay, above is flat.

Progf. — We must check that M ®'é Ay 1s concentrated in degree 0 for any G-
module M. By approximation, we may assume M is finitely generated. As G is regular,
any such M is perfect. Thus, M ® Ay, is also perfect. In particular, it is derived p-adically
complete, so we can write M ®'é A RIim(M/p" ®Ié e Ape/p"); here we implicitly use
the Artin—Rees lemma over & to replace the pro-system {M ®% &/p"} with {M/p"}. Tt is
now enough to check that & /p" — A;,¢/p" is flat. As both rings are flat over Z/p", we may
assume n = 1, i.e., we need to show &/p — Ay/p > O is flat; this is clear as the source
1s a discrete valuation ring, and the target is torsionfree. U

Remark 4.31. — More generally, one has: if A — B is a map of p-adically complete
p-torsionfree rings with A noetherian and A/p — B/p flat, then A — B is flat. To prove
this, one simply replaces perfect complexes with pseudo-coherent complexes in the proof
above.

Base change along this map relates Breuil-Kisin modules to Breuil-Kisin—Fargues
modules:

Proposition 4.32. — The association M — M Qg Ayyr defines an exact tensor functor from
Brewll—Kisin modules over S to Breutl—Risin—Fargues modules over Ay

Proof. — Let (M, ¢y1) be a Breuil-Kisin module over &, i.e., M is a finitely pre-
sented G-module equipped with an identification ¢y : ((,0*1\/[)[%] o~ M[%], where E(T) €
G 1s the Eisenstein polynomial defining 7. We claim that N := M ®g Aiyr equipped with
the identification (¢y ® id) : (¢*N) [‘}%] ~ N[A/%] is a Breuil-Kisin—Fargues modules.
For this, first note that E :=f(E) 1s a generator of the kernel of 6 : Apr — Oc. More-
over, M[L] is free by Proposition 4.3, so N [1]is free as well; this verifies that we obtain a
Breuil-Kisin—Fargues module. The resulting functor is clearly symmetric monoidal, and
exactness follows from Lemma 4.30. ]

Corollary 4.33. — Under the functor of Theorem 4.4, Z,(1) s sent to G{1}.

Progf: — From the definition in terms of cotangent complexes, we see that
S{1} ®s Air = Air{1} as Breuil-Kisin—Fargues modules, compatibly with the Gg_ -
action. As there 1s a canonical identification

1
Ainf{l} -

m (Z,(1) ®z, Ainy),
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in particular we get a ¢, Gg__-equivariant identification
S{1} ®s W(C") = Z,(1) ®z, W(C"),
which by Theorem 4.4 proves that Z,(1) is sent to G{1}. UJ

Finally, we want to relate Theorem 4.4 with Theorem 4.28. Thus, let T be a lattice
in a crystalline Gg-representation V. We get

Dcrys (V) = (V ®Q_1, Bcrys)GK’
which comes with a ¢, Gg-equivariant identification
Dcrys (V) ®\\T(/{)[[—l7] Bcrys = V ®Qp Bcrys-

On the other hand, by Theorem 4.4, we have the finite free Breuil-Kisin module M(T)
over G, which gives rise to a finite free Breuil-Kisin-Fargues module M(T) ® g Ay By
Theorem 4.4 and Lemma 4.26, we have a Gk -equivariant identification

1 1
M(T) ®e Ainf[—] =T Qg, Ainf[—]-
% %
Proposition 4.34. — One has an equality
M(T) Vs B:;ys = Dcrys (V) ®W(k)[},] B:rrys
as submodules of
M(T) ®G Bcrys = T ®Zp Bcrys = Dcrys (V) ®W‘(k)[/ll] Bcrys-

In particular, under Fargues’ classification, M('T) @g A corresponds to the pair (T, E),

where

E =Dey(V) ®w(k)[/1]] Bjx C T ®z, Bar;
equivalently,

E =D (V) @k Bjy C T ®z, Bar,
where Dar (V) = (T @z, Bar)CE.

The moral of the story here is that if one does p-adic Hodge theory over C, there
is no Galois action on T anymore, and instead one should keep track of a B -lattice in
T ®z, Bar, which is a shadow of the de Rham comparison isomorphism. In Section 13
below we will give a geometric construction of a B -lattice in étale cohomology tensored
with Bgg for any proper smooth rigid-analytic variety over C (in a way compatible with
the usual de Rham comparison isomorphism).
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Proof: — This follows from Kisin’s construction of M(T), which starts with the
crystalline side and an isomorphism between M(T) and D (V) ® 6[%] on some rigid-
analytic open of the generic fiber of Spf &, cf. [49, Section 1.2, Lemma 1.2.6]. U

5. Rational p-adic Hodge theory

In this section, we recall a few facts from rational p-adic Hodge theory, in the
setting of [59]. Let K be some complete discretely valued extension of Q, with perfect
residue field £, and let X be a proper smooth rigid-analytic variety over K, considered as
an adic space. Let C be a completed algebraic closure of K with absolute Galois group
Gk, and let Bg = B4r (C) be Fontaine’s field of p-adic periods.

Theorem 5.1 (/59]). — The p-adic étale cohomology groups H., (X, Z,) are finitely generated
Z,-modules, and there is a comparison 1somorphism

Hét(XC’ Z,) ®z,Br = HQR(X) ®k Bar,

compatible with the Gy -action, and natural filtrations. In particular, Hét(XC, Q,) w5 de Rham as a
G -representation.

In particular, the theorem gives a natural B -lattice
Hyx X) ® By € H,(Xc, Z)) ®z, Bar,

where HQR X)= (HQL(XC, Z,) Rz, Bar)®%. Thus, by Theorem 4.28, the torsion-free quo-
tient of H,, (Xc, Z,) and this B -lattice given by de Rham cohomology define a finite free
Breuil-Kisin—Fargues module, which we will call

BKF(H, (Xc, Z))).

Remark 5.2. — Assume that the torsion-free quotient of H., (X, Z,) is crystalline
as a Galois representation. Then, by Theorem 4.4, there is an associated Breuil-Kisin
module

BK(H,,(Xc,Z))).
By Proposition 4.34, we then have
BKF(H!,(Xc, Z,)) = BK(H, (Xc, Z))) ® A
In fact, the B -lattice

Hi, (X) ®k Bl € H, (X, Z,) ®z, Bar
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depends only on X¢.. We postpone discussion of this point until later, see Section 13. This
implies that the construction of BKF(H, (X, Z,)) works for any proper smooth rigid-
analytic space X over C.

The goal of this paper is to show that if X is the generic fiber of some proper
smooth formal scheme X/Ok, then this Breuil-Kisin—Fargues module can be constructed
geometrically, and deduce comparisons between the Breuil-Kisin—Fargues module and
the crystalline cohomology of the special fiber.

In this section, we will recall aspects of pro-étale cohomology following [59], and
then briefly recall the strategy of the proof of Theorem 5.1.

3.1. The pro-étale site of an adic space. — We first recall the pro-étale site [59, Defi-
nition 3.9] associated to a locally Noetherian adic space X. Let pro—Xg, be the category
of pro-objects associated to the category X, of adic spaces which are étale over X. Ob-
jects of pro—X, will be denoted by “l(igq ”iel U;, where I is a small cofiltered category
and I — X, 1+ U; is a functor. The underlying topological space of “l(ir_n”iel U, is by
definition l(ir_nieI |U;|, where |U;| is the underlying topological space of U;.

An object U € pro—X,, is said to be pro-étale over X if and only if U is isomorphic
in pro—Xg to an object “l(ir_n”ieI U; with the property that all transition maps U; — U;
are finite étale and surjective.

The pro-étale site X,,roe of X 1is the full subcategory pro—X consisting of those
objects which are pro-étale over X; a collection of maps {f; : U; — U} in X,,,¢ is defined
to be a covering if and only if the collection {|U,;| — |U|} is a pointwise covering of the
topological space |U|, and moreover each f; satisfies the following assumption (which
is stronger than asking that f; is pro-étale in the sense of [59, Definition 3.9], but the
notions agree for countable inverse limits).!" One can write U; — U as an inverse limit
U, = l(ir_nﬂd U, of U, € X,,0¢ along some ordinal A, such that Uy — U is étale (i.e. the

pullback of a map in X), and for all u > 0, the map

U, = U= lim Uy
wW<p

is finite étale and surjective, i.e. the pullback of a finite étale and surjective map in X
(cf. [59, Lemma 3.10 (v)]).
There is a natural projection map of sites

v Xproét - Xét7
with the property that

HI(U, v F) = lim H (U, )

1€l

10 Cf. [61].
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for any abelian sheaf F on X, j >0, and any U = “1<ir_n ”iel U; € X, for which [U] 1s
quasi-compact and quasi-separated [59, Lemma 3.16].

Suppose now that X is a locally Noetherian adic space over Spa(Q,, Z,). An object
U € X,o6 18 said to be affinoid perfectord [59, Definition 4.3] if and only if it is isomorphic
in X6 to an object “l(ir_n ”Z_d U; with the following three properties:

(1) the transition maps U; — U; are finite étale surjective whenever j > ;
(i) U; = Spa(R;, R) is affinoid for each i

(i11) the complete Tate ring R := (li_r)ni RD; ®z, Q, 1s perfectoid.

We note that the final condition implies that R* := (li_r)ni R)" is a perfectoid ring,
by Lemma 3.20.

Continuing to assume that X is a locally Noetherian adic space over Spa(Q,, Z,),
it is known that the affinoid perfectoid objects in X,;.¢ form a basis for the topology
[59, Proposition 4.8]. We will only require this result when X is smooth over Spa(C, O),
where C is a perfectoid field of mixed characteristic and O = O¢ = C° C C is its ring of
integers; in this case we recall some details of the proof (see [59, Example 4.4, Lemma 4.6,
Corollary 4.7]). Locally, X admits an étale map to the d-dimensional torus

T’ :=Spa(C(T7", ..., T;'), O(T}, ..., ;)

that factors as a composite of rational embeddings and finite étale covers. In this case, we
have the following lemma.

Lemma 5.3 (59, Lemma 4.5]). — Let X — T be an étale map that factors as a composite
of rational embeddings and finite étale maps. For r > 1, let

X, =X x T,
where
nys nys L1/ 1/
T! =Spa(C(TT 7, ..., T, "), o777, ... Ty ).
Then “l(ir_n ”r X, € Xiproer 15 affinord perfectord.

We recall the main sheaves of interest on X,,.o¢t, and explicitly state their values on
an affinoid perfectoid U = * 1(121 ”}d Spa(R;, RY).
1

Defimation 5.4. — Consider the following sheaves on Xro¢-

(i) The integral structure sheaf OF = v*OF, .

(i) The structure sheaf Ox = v*Ox,.
(itl) The completed integral structur/e\ sheaf /(?;Z =lim oLy
(iv) The completed structure sheaf Ox = OF[ 1—1)].
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(v) The tilted (completed) integral structure sheaf 5;2» = l(ir_nw O%/p.
(Vi) Fontaine’s period sheaf A x, the derived p-adic completion of W(@+,).

Remark 5.5. — The sheaves (’9\;5 and W,(@;E) are derived p-adically complete
(cf. Section 6.2 for the definition of derived completeness). This follows from the next
lemma and its natural version for W,(O5) and the observation that almost zero mod-
ules are always derived complete in these contexts. However, it is not clear to us whether
W(OY,) is derived p-adically complete. (Its failure to be derived p-adically complete is
[mb]/—\torsion.) This is the reason that we define A;¢x as the derived p-adic completion of
W(OS,) (which actually makes it a sheaf of complexes).

Lemma 5.6 (159, Lemma 4.10, Lemma 5.10, Theorem 6.5]). — Let U = “l(ir_n ”iUi €
Koot be affinoid perfectoid, where the U; = Spa(R;, R}") are affinoid, such that the p-adically com-
pleted direct imit (R, R™) of the (R, R;r) i perfectord. Then
OLU)=limR{,  OxU)=lmR,  OYU)=R",

Ox(U)=R,  OLU)=R™,  H(U,Ayx) =Au(R").
Moreover, for i > 0, the groups
H/(U, Ox) = H'(U, Ox) =0

vanish, the O-modules H' (U, OF) and H' (U, (/9\;2) are killed by m, the O"-module H' (U, (’9\;;) is
killed by w°, and the Ayc-module H (U, Ay x) 15 killed by [m”°].

We note that using the argument from the proof of Theorem 5.7 below, it follows
that H'(U, A ¢ x) is actually killed by W(m").

Also, using the same formulae as Lemma 3.2, there is a chain of natural morphisms
of sheaves on X, o¢:

W(OL) =lmW,(0%) £ tmW,(5%) — W, (0%/2)

F F

Each of these morphisms is an isomorphism of sheaves; this follows from sheafifying the
proof of Lemma 3.2. Therefore, there are induced morphisms

57- :Ainf,X - Wr(@\;(_)’ 07‘ = 57§07 :Aiﬂf’x - W’ ((9\;(_)’

and 0 :=0, : A x — 6§, as the target is in all cases derived p-adically complete already.
By checking on affinoid perfectoids, the results of Section 3 imply similar results on the
level of sheaves on X,

We will need the following result.
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Theorem 3.7 ([59, proof of Theorem 8.4]). — Assume that C s algebraically closed, and
X 15 a proper smooth adic space over C. Then the inclusion Ay — Aypx tnduces an almost quasi-
isomorphism

RI«(X, Z)) ®z, Ainr = RT (Xpoet> Ainrx);

more precisely, the cohomology of the cone is killed by W(m”).

Proof. — The cohomology of the cone is killed by [m’], and derived p-complete
(cf. Lemma 6.15). Thus, it becomes a module over the derived p-completion of A¢/[m’],
which is given by W(k) = A;,i/W(m"). In particular, it is killed by W(m"). O

Let us now briefly recall the proof of Theorem 5.1. Let X/K be a proper smooth
rigid-analytic variety. Theorem 5.7 implies that

RT.(Xc, Zy) ®z, Bix = RT e (X, Bl x)»

where B,  is the relative period sheaf defined in [59]. On the other hand, one can
define a sheaf (’)BIR’X as a suitable completion of Ox ®w BIR,X,“ which comes with a
connection V (induced from the Ox-factor), and there is a Poincaré lemma:

+ + v + 1
0—>Birx— OBdR,X > OBdR,X oy Q2 —> -

is exact; this is inspired by work of Andreatta—Iovita [3]. One finishes by observing that
the cohomology of OBY, ([£7'] is the same as the cohomology of Ox®xBar, which
follows from a direct Galois cohomology computation, due to Brinon [18].

6. The Ln-operator

Consider a ring A and non-zero-divisor f € A, and denote by D(A) the derived
category of A-modules. If M*® is a cochain complex such that M is f-torsion free for all
1 € Z, we denote by n,M* the subcomplex of M*[ }l,] defined as

(M) == {xef M :dve M}

In Section 6.1, we show that the functor 7,(—) descends to the derived category, inducing
a (non-exact!) functor Ly, : D(A) — D(A), and study various properties of the resulting
construction. In Section 6.2, we recall some basic properties of completions in the derived
category, and study their commutation with Lp.

' The original definition was slightly wrong, cf. [61].
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6.1. Construction and properties of Ln. — For applications, it will be important to
have the Lz -operation also on a ringed site (or topos), so let us work in this generality.
Let (T, Or) be aringed topos. Let D(Oy) be the derived category of Op-modules. Recall
that D(Or) is, by definition, the localization of the category K(Oy) of complexes of O-
modules (up to homotopy) at the quasi-isomorphisms.

Recall that a complex C* € K(Oy) is K-flat if for every acyclic complex D*® €
K(Ory), the total complex Tot(C* ®p, D*®) is acyclic, cf. [1, Tag 06YN]. Let us say that
C* is strongly K-flat if in addition each C is a flat Op-module.

Lemma 6.1. — For every complex D* € K(Ory), there is a strongly K-flat complex C* €
K(Or) and a quasi-isomorphism C* — D*.

In particular, D(Or) is the localization of the full subcategory of strongly K-flat complexes in
K(Or), along the quasi-isomorphisms.

Progf: — 'The first sentence follows from [1, Tag 077]] (and its proof to see that
the complex is strongly K-flat, noting that filtered colimits of flat modules are flat). The
second sentence is a formal consequence. 0J

Now let Z C Or be an invertible ideal sheaf. Weakening the notion of strongly K-
flat complexes, we say that C* is Z-torsion-free if the map Z ® C — C! is injective for all
i € Z; we denote its image by Z - C' C C'.

Definition 6.2. — Let C* € K(Or) be an L-torsion-free complex. Define a new (L -torsion-
Jree) complex nzC* = (nzC)* € K(Or) with terms

(zC) ={xeC'|dx el -C*} ®p, I
and differential

Ay - (nzC)" = (nzC)™!
making the following diagram commute:

(IC[®I®i

(nIC)i - . T. Ci+1 ®I®i

d(nZC)i l J/ =

(T]IC)H—I C CH—I ®I®(i+1).

Remark 6.3. — The definition is phrased to depend only on the ideal Z, and not
on a chosen generator / € Z. If f € 7 is a generator (assuming it exists), then one has

(nIC)i — (nfc)z - {X efici | dx EfH_lCH_l},
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and the differential is compatible with the differential on C*[1]. Moreover, in this case,
there 1s an isomorphism nz(C[1]) 2= (nzC)[1] given by multiplication by / in each de-
gree.

One can describe the effect of this operation on cohomology as killing the Z-
torsion:

Lemma 6.4. — Let C* € K(Or) be an I-torsion-free complex. Then there is a canonical
isomorphism

H'(nzC*) = (H'(C*)/H'(C*)[Z]) ®o, T
Jorall 1 € Z. Here,
H'(C*)[Z] = Ker(H'(C*) - H(C*) ®0, Z%7') CH'(C")

is the L -torsion.
In particular, if o : C* — D* 15 a quasi-isomorphism of L-torsion free complexes, then so is
nze :nzC* — nzD°.

Proof. — Let Z'(C*) C Ci, Zi(nzC*) C (nzC)" be the cocycles. Then there is a
natural isomorphism
Zi(C') ®OT I®i = Zi(nZC'),
inducing a surjection
Hi(C.) ®01‘ I®i —> Hi(ﬂzc.).
Unraveling the definitions, one sees that if x € Z'(C®) @, Z®' is a cocycle, then its image
in H(nzC*®) vanishes if and only if there is an element y € C'~' ® 0, Z®“~ Y such that
d €7 Qo, I%" = Homo, (Z,Z' ®0, L*')

agrees with the map Z C Op = Z/(C*) ® o, Z®'. This happens precisely when x gives an
Z-torsion element of H'(C®). The final statement follows formally. ]

In particular, the following corollary follows.

Corollary 6.5. — The functor nz_from strongly K-flat complexes in K(Or) to D(Or) factors
canonically over a_functor Lng : D(O1) — D(Or). The functor Lz commutes with all filtered
colimuts.

Moreover, Lz : D(Ot) — D(Or) commutes with canonical truncations, i.e. for all a < b in
Z U {—o00, oo} and any C € D(Or), one has

Lz (¢11C) = ¢y (C).
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We repeat a warning made earlier:

Remark 6.6. — The functor Lnz : D(Or) — D(Or) constructed above is not exact.
For example, when T is the punctual topos and Z = (p) C Z, then Lnz(Z/pZ) = 0, but

Lnz(Z/p°Z) =Z/pZ # 0.
The operation Lz interacts well with the ®-structure:

Proposition 6.7. — There is a natural lax symmetric monoidal structure on Lz : D(Ot) —
D(Ovy), te. for all C, D € D(Oy), there is a natural map

LnzC ®I(“9,l, LnzD — Lnz (C ®I(“9,l, D),

Sunctorial in G and D, and symmetric in C and D.

Progf: — Let CG*, D* be strongly K-flat representatives of C and D. Then one has

a natural map
Tot((nzC)* ®o, (12D)*) — nzTot(C* ®o, D),
given termwise by the map
(12C)' @, (12D — nrTot(C* ®o, D)™
compatible with
(C'®0, I%) ®o, (D ®0, I%) — (C' ®0, D) @0, I8P,
observing that if x € C' and y € IV have the property dx € Z - C*! and dy € Z - D’'"!, then
dx®y) =dx@y+ (—D)x@dyeZ- (C* Qo, D & C' ®o, D).

This map gives the structure of a lax symmetric monoidal functor nz :
KstronglyK_ﬁat(OT) — D(Or), which factors uniquely over a lax symmetric monoidal func-

tor Lnz : D(Or) — D(Or). 0

In an important special case, this operation even commutes with the @-product:

Proposition 6.8. — Assume that T is the punctual topos, and R = O is a valuation ring. Let
J € R be any generator of L. Then Ly, is symmetric monoidal.

Proof. — As everything commutes with filtered colimits, it is enough to check that
if C and D are perfect complexes, then the natural map

Ln,C ® LnD — Ly, (C ®g D)
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is a quasi-isomorphism. Note that R is coherent, so that all cohomology groups of C
and D are finitely presented. Moreover, finitely presented modules over valuation rings
are finite direct sums of modules of the form R/g for elements g € R, by the elementary
divisor theorem. These are of projective dimension 1, so that both C and D split as a
direct sum 6P, H (C)[—1], @iHi(D)[—i]. Thus, we can reduce to the case C = (R/g)[],
D = (R/#)[j] for some elements g, h € R, ¢,j € Z. We may assume ¢ =7 = 0 as all op-
erations commute with shifts (see Remark 6.3). If either g or % divides f, then we claim
that both sides are trivial. Indeed, assume without loss of generality that g divides f.
Then Ly,C =0, and all cohomology groups of C ®% D are killed by g, and thus by f, so
that L, (C ®% D) = 0 as well. Finally, if / divides both g and %, then Ln,C =R/ (g/f),
Ln/D =R/(4/f), and one verifies that

Ly (R/g ® R/h) =R/ (g/f) ®% R/(R/)),

cf. Lemma 7.9 below for a more general statement. U

The next lemma bounds how far Lz is from the identity.
Lemma 6.9. — For any integer m, is a natural transformation
I%" @0, T" — "Lz
of functors on D(Or). For any integer n, there is a natural transformation
.L.ZnLnI N I®n ®(9T .L.Zn

of functors on the full subcategory of those C. € D(Ot) with H'(C) being L-torsion-free. On this
subcategory, if n < m, then the composites

I®(m—n) ®(9v1< _L,[n,m]LTlI N I®m ®O>I~ _L,[n,m] N _L,[n,m]LnI’

I@m ®OT T[n,m] - ,L,[n,m]LnI - I®n ®OT T[n,m]

are the identity maps tensored with the inclusions T < Oy resp. T®™ — T®".

Proof. — It suffices to construct similar natural transformations on the category of
7-torsion-free complexes, so let C* be an Z-torsion-free complex. For the first transfor-
mation, it suffices to construct a map

18" ®0, T="C* — n7C".

But for i < m, (n7C)’ contains Z®" ® C! (where we regard Z®" as embedded into Z®' by
regarding both as ideal sheaves), and if i = m, it still contains Z®" ® Z", where Z" C C"
denotes the cocycles.
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For the second transformation, let C* be an Z-torsion-free complex with
H"(C*)[Z] = 0. We will show that there is a canonical map

n7C* — I%" ®p, T="C".

For this, note that (n7C)' is contained in Z%" ®p, C’ for i > n, when both sides are
viewed as subsheaves of Ci[%] in the usual way; this defines the preceding map in degrees
> n. To get the map in degree < n by the same recipe, it is enough to show that the
sheaf Z%" ®, C"~! contains (and is thus equal to) the sheaf (n7C)""!, as subsheaves
n C”_l[%]. But this immediate for us: the quotient (n7C)"~!/(Z®" @, C"') is easily
identified with Z®"~! @ H"(C)[Z], which vanishes by hypothesis. This gives the desired
natural transformation on the subcategory.

The identification of the composites is immediate from the definition. 0J

The following special case will come up repeatedly in the sequel:

Lemma 6.10. — Let C € D=°(Oy) such that H(C)[Z] = 0. Then there is a canonical
map LnzC — C.

Progf- — 'This map is obtained by applying the second natural transformation con-
structed in Lemma 6.9 for n =0 to C. 0J

Composing two such operations behaves as expected:

Lemma 6.11. — Let T, J C Oy be two invertible ideal sheaves, with product T @ o, J =
T -J C Oy. Thereis a canonical equivalence of functors

Lnz.7 =LnzoLnys : D(Or) — D(Oy).

Proof. — Consider the category of Z - J-torsion-free complexes; this category is
preserved by both nz and 17, and nz.7 = nz o n7 on this category. Deriving gives the
desired equivalence. 0J

A crucial property is the following observation.'?

Proposition 6.12. — If C. € D(Or), construct a complex H*(C/ L) with terms
H'(C/I) =H'(C ®p, O1/I) Qo, L*

and with differential induced by the Bockstein-type boundary map corresponding to the short exact se-
quence

0—Z/I*— O/ — Or)T — 0.

12 Tt is this property of the Ly-operation that had initially led us to rediscover it.



INTEGRAL p-ADIC HODGE THEORY 293

Then there is a natural quasi-isomorphism
LnzC ®y, Or/I — H*(C/D).

More precisely, if C* is an L-torsion-free representative of C, then there is a natural map of
complexes

nzC* ®o, Or/Z — H*(C/D),
which 1s a quasi-isomorphism; moreover, the left side represents the derived tensor product.

Note that even when C does not have a distinguished representative in K(Or), the
proposition shows that LnzC ®I(‘9T Or/Z does have a distinguished representative as a
complex, namely H*(C/Z). As we will see, this is related to the canonical representative
(given by the de Rham—Witt complex) of the complex computing crystalline cohomol-

ogy.

Proof. — It is enough to prove the assertion about C*. Note that nzC*® is Z-torsion-
free, and for Z-torsion-free complexes, the underived tensor product with O /Z repre-
sents the derived product.

Note that there is a natural map

(nZC)ﬂ — Zﬂ(co/l') ®OT I@n
from the definition of (7zC)". One gets an induced map
(n2C*)/Z = nzC* ®o, Or/T — H*(C/T),

and one checks that this is compatible with the differentials.

Now we check that this map of complexes is a quasi-isomorphism; it suffices to
check that one gets an isomorphism on H' (as the situation at H" is just a twist and shift).
First, we check injectivity of

HY((12C°)/T) — HO(H*(C/T)).
Let @ € H((nzC*)/Z). We can lift & to an element
aemC)'={yeC’|dyeZ C'},

with da € Z - (n7C)' (so that « is a cocycle modulo Z), and we have to show if @ maps to
0 in H(H*(C/Z)), then there is some

BemC) ' ={yeC ' |dy eT-C"} ®0, I
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such that 8 —a € Z - (n7C)". The assumption that & maps to 0 in H’(H*(C/Z)) means
that there is some

BeH ' (C/T) ®0p, I°

which maps to @ under the Bockstein. We may lift 8 to an element g € C™' ®¢p, Z®7'.
The property that it is a cocycle modulo Z means that 8 € C°, and the property that
the Bockstein is & means that df —« € Z - C°. Thus, in fact, implies df —a € Z - (,C)".
Indeed, twisting the defining equation of (1,C)" by Z, we have

I-(nfC)O:{y EI'COIdyEI‘X)Q-Cl},
and d(dp —a) = —da € T - (n;C)' C I®*-C!,

It remains to check surjectivity of
H"((nzC*)/Z) — H°(H*(C/D)).

Thus, take an element & € H°(C/Z) which is killed by the Bockstein. This means that
@ lifts to an element of H°(C/Z?), and so we can lift & to an element o € C° with da €
Z%%.C'. But this implies that & € (n7C)° and satisfies

do €T - (n,C)',

as it lies in Z%? - G! and is killed by d. Thus, & defines a cocycle of (nzC*®)/Z, giving an
element of H’((n7C*)/Z) mapping to &. O

We observe that 7 preserves Z-torsion-free differential graded algebras, and that
this structure is compatible with the isomorphism from Proposition 6.12.

Lemma 6.13. — Let R*® be a differential graded Ov-algebra with I -torsion-free terms. Then
nzR® s naturally a differential graded algebra, with L-torsion-free terms. Moreover, H*(R*/Z) has
a natural structure of differential graded algebra, where multiplication is given by the cup product. The
quasti-isomorphism

n7R* Qo, Or/Z — H*(R*/Z)
s a morphism of differential graded algebras.

Progf- — FEasy and left to the reader. UJ

Finally, we observe that the Ln-operation commutes with pullback along a flat
morphism of topoi. More precisely, let / : (T", Op) — (T, Or) be a flat map of ringed
topoi. Two important cases are the case where / is a point of (T, Or), and the case where
T =T", which amounts to a flat change of rings. Let Z C O be an invertible ideal sheaf
with pullback Z" = f*Z C O, which is still an invertible ideal sheatf.
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Lemma 6.14. — The diagram

*

s
D(Or) — D(Or)

Lnz \L l Lz
f*

D(Or) — D(Or)
commules, i.e. there is a natural quasi-isomorphism Lnz f*C = f*LinzC _for all C € D(Or).

Proof. — Represent C by an Z-torsion-free complex C®. Then f*C* is Z'-torsion-
free as /™ is exact, by flatness of /. One then verifies immediately that nz/*C® =

f*nzc°. 0

6.2. Completions. — In this section, we make a few remarks about completions,
and their commutation with Ln. The discussion works in a replete topos [11, Definition
3.1.1], but the only relevant case for us is the case of the punctual topos, so the reader is
invited to forget about all topoi. Throughout this section, we assume that T is replete.

Assume that J C Or is a locally finitely generated ideal, as in [11, §3.4]. Recall
that by [11, Lemma 3.4.12], a complex K € D(Or) is derived J -complete if K > K, where
the completion K is given locally by

K|y = RIm(Kly @75 o ZUA - S/ (- )

if J |y is generated by f1, ..., ;.

Perhaps surprisingly, this condition on a complex can be checked on its cohomol-
ogy groups.

Lemma 6.15 ([11, Proposition 5.4.4, Lemma 3.4.14]). — A complex K € D(Or) is derived
T -complete if and only if each O-p-module H'(K) is derived T -complete.

The category of derived J -complete Or-modules is an abelian Serre subcategory of the category
of all O-modules, i.e. closed under kernels, cokernels, and extensions.

Remark 6.16. — We pause to remark that this statement is already interesting (and
not very well-known) in the simplest case of the punctual topos, Op =Z and J = (p). In
this case, it says that a complex K € D(Z) is derived p-complete, i.e.

K ~Rlim(K ®7 Z/p'Z),

if and only if each H'(K) satisfies
H(K) ~ Rl(ir_n(Hi(K) QFZ/Y'Z).

n
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Note that any complex K whose terms are p-torsion-free and p-adically complete is de-
rived p-complete. However, its cohomology groups may not be separated, as for example
in the case of

<-[@2 " @)

n>1 n>1

Here, the differential is injective, but H'(K) is not p-adically separated: The element
(1, p, p*,...) projects to a nonzero element of H'(K), which is divisible by any power
of p. Surprisingly, the Z,-module M = H'(K) still has some intrinsic property, namely it
is derived p-complete.

Recall that an Op-module M is classically [T -complete if the natural map

M—>1(h/:_nM/j’“

is an isomorphism.

Lemma 6.17 ([11, Proposition 5.4.2]). — Let M be an Or-module. Then M is classically
T -complete if and only if it is derived J -complete and T -adically separated, i.e. (| "M = 0.

We will often use the following lemma, identifying the cohomology groups of a
(derived) completed direct sum.

Lemma 6.18. — Let C; € D(Or), i € 1, be derived [T -complete complexes, and assume that
J s locally generated by one element.

Assume that for each 1 € 1, H(C;) is classically T -complete, and H°(C;)[T*] =
H(C)[T™] for some n > O independent of i. Let C. be the derived J -completion of @,; C;. Then
H°(C) is the classical T -adic completion of el H°(C)),

0 . 0 k
H'(C) = lim @ H"(C)/T*.

kel

Proof. — First, we observe that if M;, ¢ € I, are derived J-complete modules, then
the derived J-completion of €, M; is again concentrated in degree 0. This may be
done locally, so let / be a local generator of J. Then the only possible obstruction comes
from the term 1<ir_r1lC D,.; ML[ /] (where the transition maps are multiplication by /), which
however embeds into

i [ [M/] =] [timM{ ] =0,
kel iel &

as each M; is derived f-complete.
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In particular, the spectral sequence computing the cohomology of C in terms of
the derived completions of the direct sums of the cohomology groups of the C; collapses,
saying that H(C) is the derived completion of D, H°(C)).

Using the assumption H°(C)[f*] = HYC)[f"], one sees that
l(lr_n; D;a H°(C))[/*] = 0. Thus, the derived inverse limit of {D, H(C;)[/*1}; vanishes,
so that in fact H°(C) is the classical completion of P el H°(C)). ]

Now we turn to relations between Ln and completions.

Lemma 6.19. — Let T C Oy be an wnvertible ideal sheaf, and let C: € D(Oy) be derived
T -complete. Then LnzC is derived [J -complete.

Proof- — We have to see that
H'(LyzC) = H'(C)/H(C)[Z]

is derived 7 -complete. But H'(C) is derived 7 -complete by assumption, and hence so is
H!(C)[Z] as the kernel of a map of derived 7 -complete modules, and thus also H'(Ly7C)
as a cokernel. O

Note that the lemma does not say that Lnz commutes with J-adic completions.
This is, in fact, not true in general. However, it is true in the important case J =Z.

Lemma 6.20. — Assume that T C Oy is an invertible ideal sheaf which is locally fiee of
rank 1. Let C € D(Or) with derived L-adic completion C.. Then the natural maps

In7C — LnC — Rlim Lz (C ®%, Or/T")

are quast-isomorphisms. Here, the first map exusts because ana w5 L-adically complete.

Proof. — We may work locally, and assume Z is generated by a non-zero-divisor
/€ Or. Moreover, all three complexes are derived f-complete. Thus, to prove that
the maps are quasi-isomorphisms, it suffices to check that they are quasi-isomorphisms
after reduction modulo f. Now Proposition 6.12 shows that the first map is a quasi-
isomorphism, as H'(C/f) = Hi(a /f), and the Bockstein stays the same.

Applying similar reasoning for the second map, it is enough to prove that

H'(C/) — {H'((C®%, Or/f")/f)},

is a pro-isomorphism. But in fact for any complex D of O /f-modules (like D = C/f),
the map

D — {D®y, Or/f"},

is a pro-quasi-isomorphism. O
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7. Koszul complexes

In this section, we collect various useful facts about Koszul complexes.

Defination 7.1. — Let M be an abelian group with commuting endomorphisms f; : M — M,
t=1,...,d. The Roszul complex

Klﬂ(ﬁ PACC ’ﬁ)
is defined as

M(/gg)@l\/[—) @ M—...— @ M—...

1<i<d I<ij<iy<d I<ij<--<g=d
where the differential from M wn spot 1, < --- <y to M wn spot j; < -+ < jpy1 15 nonzero only if

(i, oo u T s e e o gir1)s 1 which case it is given by (—1)’”‘1j§m, whereme {1,..., k+ 1} s
the unique integer such that j,, & {u1, ..., 4}.

In other words,

d
Kai(fis - ofD) = M &z Q2L - S 2 ZIf - Ji),
=1

where the tensor product is taken over Z[ /1, ..., f;], and the complex sits in nonnegative
cohomological degrees. Note that this presentation shows that Ky (f, ..., f;) is canoni-
cally independent of the order of the f;, as the tensor product on cochain complexes is
symmetric monoidal. Also, Ky (f1, ..., f;) computes M ®;[f1’“'zﬁ/] Z up to a shift by |I].
We give one example of this construction that will be quite useful in the sequel:

Example 7.2. — Let A be a commutative ring, and let R = A[x, ..., x,]. For : =
l,...,d,let f; : R = R be the A-linear endomorphism given by % Then Kr (1, ..., /1)
is simply the de Rham complex €2 5.

Lemma 71.3. — Let T4 = ]_[f:1 Z be the free abelian group on generators y\, . .., Ya, and
I'= l_[jzl Z,, its p-adic completion.

(1) Let M be a T gisc-module. The group cohomology RT" (I gise, M) s computed by Ky (y) —

1,...,)/d— 1)
(i1) Let N be a continuous I -module that can be written as an inverse limit N =1lim Ny of
<=1

continuous discrete U -modules Ny, killed by p*. Then the natural map
chont(r9 N) - RF(Fdisca N)

is a quasi-tsomorphism, and thus RT .on (I N) @5 computed by Kn(yy — 1, ..., ya—1).
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Proof. — 'The first part is standard: One has a free resolution

R(ZUT ] = Z[T]) > Z

1

of Z as Z[I 4. ]-module, and taking homomorphisms into M gives a resolution of M by
acyclic I'gi.-modules, leading to the Koszul complex.

For the second, we may assume that N — N, is surjective for any £ (by replacing
N by the image of N — N;). Then

chont(r’ N) - R1<iI_nchont(F’ Nk)
k

1s a quasi-isomorphism, as follows from the description by continuous cocycles. The sim-
ilar result holds true for the cohomology of I' 4. by part (i). Thus, we can assume that N
itself is a discrete I"'-module killed by a power of p. In that case, we have a similar free
resolution

®(Zpﬂrﬂ = Z,[r]) - Z,,
which leads to the same result. O

We will often implicitly use the following remark to see that our constructions are
independent of the choice of roots of unity.

Remark 7.4. — In part (11), if one changes the basis y; € I' into ¢(2)y; for ¢(2) € Z;,
the resulting Koszul complexes are canonically isomorphic. Indeed, let J; C Z,[I'] be the

ideal generated by y; — 1; this is the kernel of Z,[I"] — Z,[T"/ )/izﬁ]], and so depends only
on y; up to scalar. Then one has the free resolution

Ui~ Z[(r1]) > Z;

mapping this into M gives a resolution by acyclic I'-modules, leading to a complex com-
puting RI',,(I', N). Once one fixes the generators y; — 1 € J;, this becomes identified
with the Koszul complex above.

Next, we analyze the multiplicative structure.

Lemma 7.5. — Let R be a (not necessarily commutative) A-algebra, for some commutative
ring A, and let T g5 = Hle Z be a free abelian group acting on R by A-algebra automorphisms. Then

Kreyi = 1L,...,va— 1)
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has a natural structure as a differential graded algebra over A such that the quasi-isomorphism
Kr(yi =1, ..., va — 1) @ RE (Pgise, R)

s a quasi-isomorphism of algebra objects in the derwed category D(A). In particular, on cohomology
groups, it induces the cup product.

Remark 7.6. — Even if R is commutative, the resulting differential graded algebra
will not be commutative. However, if there is some element / € A such that the action of
I' on R/f is trivial, then Kr(yy — 1, ..., ys — 1)/f is commutative.

Progf- — We give a presentation of a differential graded algebra Kj over A, and
then check that as a complex of A-modules, it 1s given by Kg(y; — 1, ..., ¥, — 1), and is
quasi-isomorphic to RI"'(I'gi., R) compatibly with the multiplication.

Consider the differential graded algebra K} over A which is generated by R in
degree 0 and an additional variable x; of cohomological degree | for each 1 =1, ...,4d,
subject to the following relations.

(i) Anticommutation: X%, = —x;x;, xf =0foralls,je{l,...,d}.
(i) Commutation with R: Forallre Rand:=1,...,4d,
xir = yi(r)x;.
(i11) Differential: dy; =0fori=1,...,d, and
d

dr = Z(yi(r) — r)xl-.

=1

We observe that the Leibniz rule d(r7') = r-dr’ +dr - for r, 7" € R is automatically
satisfied:
d

red’ +dr-r = Z(r(yi(r’) — 7 )xi 4 (v:(r) — 1) xr)

=1

- i((m(/) — ')+ (y(r) = (7)) )
= i(y,-(w/) - 77/)%‘

= d_(rr’).

This, in fact, essentially dictates the rule x;7 = y;(r)x; (which introduces noncommutativity
even when R is commutative).

It follows that in degree £, K} is a free R-module on the elements x; A+ - Ax;, ) <
.-+ < 4. The corresponding identification of the terms of Kj, with Kg(y; — 1, ..., y,—1)
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is compatible with the differential. We leave it to the reader to check that it is compatible
with the multiplication on group cohomology. U

Let us discuss an example.

Example 7.7 (The q-de Rham complex). — Let A be a commutative ring with a unit
q € A*, and consider the A-algebra R = A[T*!]. This admits an action of g = yZ,
where y acts by T+ ¢T. In that case RI'(I'4s, R) 1s computed by the complex

C*: RIS R=(A[T*] - A[T]x) : T" > (¢ — 1) T",

Here, we have used a formal symbol x for the generator in degree 1. In this case, the
multiplication is given as follows. In degree 0, the multiplication is the usual commutative
multiplication of A[T*']. It remains to describe the products £ (T) - (g(T)x) and (g(T)x) -
F(T), where f(T), g(T) € A[T*!]. These are given by

S - (¢(Dx) =f(Dg(Dx,  (g(T)x) - f(T) = g(T)f (¢T)x.

In other words, the only interesting thing happens when one commutes x past the func-
tion f(T), which amounts to replacing /('T) by f(¢T).

We note that we can now also apply the operator n,_, to C°. This leads to the
complex

1-1C*A[ T | - A[T*]|dlog, T: T" = [n],T"dlog, T.

Here, we use the formal symbol dlog, T (= (¢ — 1)x) for the generator in degree 1, and

[n], = (’;_—_11 € A is the ¢-deformation of the integer n. We call this the ¢g-de Rham complex

q- Q:*[.T*‘] /a- We stress that this complex depends critically on the choice of coordinates:

there is no well-defined complex ¢-} , for any smooth A-algebra R. In closed form,
the differential in the ¢-de Rham complex is given by

LD =Dy p LD =S,
=

S(T) > q pr A

where we have formally set ¢, T = Tdlog, T. Note that if one sets ¢ = 1, this finite ¢-
difference quotient becomes the derivative. Again, this is a differential graded algebra,
and the interesting multiplication rule is

dlog, T -f(T) =f(¢T) - dlog, T.

One can also define the ¢g-de Rham complex in several variables

d
. _ _O°
q- QA[’I'lil,.‘.,'l'dilj/A - ® q QA[Tf“J/A’
i=1
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where the tensor product is taken over A. This can be written as

anlKA[Tlil Tjﬂ](l’l —L..,v—D,

.....

where y; acts by sending T} to ¢T;, and T} to I} for j # 1. In particular, this computes
L, RT (Caie, A[TT, .., TS]).

The ¢-de Rham complex is still a differential graded algebra. In degree 1, it has elements
dlog . T;fori=1,...,d, and we have the multiplication rule

dlog, T;-f(Ty,...., Ty =/(T1,....qT; ..., T,) - dlog,T..

We briefly discuss (using some oco-categorical language) why the ¢-de Rham com-
plex does not admit the structure of a commutative differential graded algebra.

Remark 7.8. — Take A = Fy[¢*'] in Example 7.7, and R = A[T*']. Set E, :=
RI'(lgise, R) and E, = Ln,_E;, viewed as objects in the derived oo-category of
A-modules. In this remark, we freely use the following: (a) Eo admits an E.-A-algebra
structure as RI'(I'gis, —) 1s lax symmetric monoidal, (b) E; admits an E-A-algebra
structure as L, is lax symmetric monoidal, and (c) the map E; — E, lifts to a map of
E-A-algebras. Granting these, we claim that the E-Fs-algebra E; cannot be modeled
by a commutative differential graded algebra over F.

Recall that the cohomology groups H*(E) of an E-Fy-algebra E carry a functorial
Steenrod operation SqO : H*(E) — H*(E) which acts as the identity on H*(X, Fy) for any
space X, and vanishes on H'(D) for ¢ > 0 when D is a commutative differential graded
algebra over Fy. Now observe that Sq”(x) = x for the element x € H'(E,) coming from
x € C! (with notation as in the previous example); this can be seen by using the canonical
map C*(S', Fy) > RI(Tgise, F2) = RI(Tgie, R) =: Eg, which carries the generator in
H'(S',F,) to x € H'(E,). Since dloqu € H'(E;) maps to (¢ — 1)x € H'(Ey) and Sq0
is @-linear on E..-A-algebras, it follows that Sq0 (a’logq T) e H'(E;) maps to (¢ — 1)*x €
H'(E,). As the latter is non-zero, so is Sq°(d log , 1. In particular, Sq” acts non-trivially
on H'(E,), so E; cannot be represented by a commutative differential graded algebra
over Fy.

Moreover, we need a lemma about the behavior of Ly on Koszul complexes.

Lemma 7.9. — Let f be a non-zero-divisor of a ring R, let M* be a complex of f -torsion-
Jree R-modules, and let g, , . .., g, € R be non-zero-divisors, each of which is either divisible by | or

divides f .
1If there is some v such that g; divides f, then
n(M* ®r Ke (g1, - -, 1))

us acyclic.
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On the other hand, if | divides g; for all i, then there is an isomorphism of complexes
anR(gls g ERr@ /gl

and more generally an isomorphism of complexes
Uf(M' ®r Kr (g, ... agm)) =nM* Qr Kr(@1/f, ..., aulf)-

Progf: — Arguing inductively, we may assume that : = 1, and let g := g;. Assume
first that g divides /. Note that on any complex of the form M* ®r Kg(g), multiplication
by ¢ is homotopic to 0. As g divides /by assumption, it follows that multiplication by f is
homotopic to 0, and in particular all H'(M* ®g Kg(g)) are killed by /. This implies that
ny(M* ®r Kgr(g)) is acyclic by Lemma 6.4.

8l

Now assume that f divides g. We embed K(g/f) = (R — R) into K(g) =
(R - R) by using multiplication by f in degree 1. The complex M* ®@r K(g) is given
explicitly (in degree n and n+ 1) by

_”_>M71®Mn71 _)MﬂJrl @Mn_>
(x,) > (dx, dy+ (—1)"g)

One can realize n,(M*® ®gr K(g)) as the subcomplex of (M* ®g K(2))[f~'] which
in degree n consists of those elements (x, ) € f"M" & f"M"~! with (dx, dy + (—1)"gy) €
SIMH @ /"M, Using the similar model for n,M?®, this implies that x € (7,M)",
and also y € f(n,M)""!, as dy + (—1)"gx € /""'M", where gx € gf"M" C f"*'M" since
/ divides g. Conversely, if x € (n,M)" and y ef(nfM)”_l, then (dx,dy + (—1)"gy) €
SHIM @ M, so that we have identified 7,(M*® Qg K(g)) with the complex

o= (M) @S (M) — (i M) @ f (M) — -
(x,9) > (dv, dy + (—1)"gx)

But this complex is precisely n,M* Qg K(g/f), under the fixed embedding
K(g/f) = K(9). O

In some situations, one can compute the cohomology of Koszul complexes.

Lemma 7.10. — Let g be an element of a ring R.
(1) Let M* be a complex of R-modules. If multiplication by g on M*® s homotopic to O, then

the long exact cohomology sequence
~CHTH (M) S HN(M®) — HY(M @k Kr(g)) — H'(M®)

L (M) > -
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Jor M* @gr KR (g) breaks into short exact sequences,
0— H"'(M*) > H"(M* ®r Kg(9)) > H'(M*) — 0,

which are moreover split.
(i1) Let M be an R-module. If g\, . . ., g, € R are all divisible by g, and g; is g times a unit for
some 1, then there is an isomorphism of R-modules

m—1

H'(Kni(g1, - - g) = Annyi(9) (") @ M/gM ),

Proof. — (i): Given a cocycle x € M", the assumption implies that gx = dx’ for some
x' € M"™! depending on x via a homomorphism (given by the homotopy); the association
x> (x,¥) € M" ® M"! induces a well-defined homomorphism H"(M*®) — H*(M* ®g
Kg(g)) which splits the canonical map.

(i1): Without loss of generality, we may assume g; = g. Then this follows by induc-
tion from (1) applied to Kyi(g, ..., g-1) as g is homotopic to 0 on Ky(g, ..., g-1) for
each 1. 0J

8. The complex 5235

Fix a perfectoid field K of characteristic O that admits a system of primitive p-power
roots ¢y, r > 1, which we will fix for convenience, although our constructions are inde-
pendent of this choice. Let O = Ok = K° be the ring of integers, which is endowed with
the p-adic topology.

Now let X/O be a smooth p-adic formal scheme, i.e. X is locally of the form SpfR,
where R is a p-adically complete flat O-algebra such that R/p is a smooth O /p-algebra;
equivalently, by a theorem of Elkik [26], R is the p-adic completion of a smooth O-
algebra. We will simply call such R formally smooth O-algebras below. Let X be the
generic fiber of X, which is a smooth adic space over K. We have the projection

v Xproél g xZar-

In everything we do, we may as well replace v by the projection X,,ec = X4, but the
Zariski topology is enough.

Definition 8.1. — The complex Qx € D(Xz) is given by
5% = L’?;,,—l (RV*@;E)’

where 6;{ is defined in Definition 5.4.
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As the ideal (§, — 1) is independent of the choice of ¢, so is 6235 In this paper,
we consider €2y merely as an object of the derived category (and not an oo-categorical

enhancement). Then 5233 is naturally a commutative Ox-algebra object in D(Xz,,), as
both Rv, and L, are lax symmetric monoidal.

Our goal is to identify the cohomology groups of this complex with differential
forms on X; this identification involves a Tate twist (or, rather, a Breuil-Kisin—Fargues
twist), so we define that first, cf. Example 4.24.

Definition 8.2. — Set
O{1} :="T,(Rpz,) = Losz,[— 11 = Loy, [~ 11 = EAu/E A

this is a _free O = Ainf/g—module of rank 1 that canonically contains the Tate twist O(1) as a free
submodule with cokernel annihilated exactly by (¢, — 1) = (p"/ D)y,

Explicitly, if we regard the ¢, as fixed, one gets a trivialization O{1} = O with
generator given by the system of

! d(@)) 1
—— ) €T, .
(é‘p -1 {p’ ) /’( O/Zp)

For any O-module M and n € Z, we write M{n} = M ®» Of{n}. Our main result here is:

Theorem 8.3. — There ts a natural isomorphism
H'(Qx) = Q555 (—1)

of sheaves on X,.. Here, Q;‘;’g = hm Qi
hals.

(/@) denoles the Ox-module of continuous differen-

In particular, Qx isa perfect complex of Ox-modules.

Note that Rv*@\Jr is a complex that is only almost (in the technical sense) under-
stood, using Faltings’ almost purity theorem. It is thus surprising that in the theorem,
we can identify the cohomology sheaves of Qp = Lngp_le*(’) on the nose. This is
possible as Lin;, | turns certain (but not all) almost quasi-isomorphisms into actual quasi-
isomorphisms, cf. Lemma 8.11 below.

The theorem can be regarded as a version of the Cartier isomorphism in mixed
characteristic, except that Q2 is not the de Rham complex; however, we will later see that
its reduction to the residue field £ of O agrees with the de Rham complex of R ®¢ &.

Remark 8.4. — In Proposition 8.15, we also prove that the complex T51Qy s
canonically identified with the p-adic completion of Lyx,z,[—1]{—1}. Now the p-adic

completion of Ly /z, gives an extension of Q;;C(’;t O{1}[1]; the corresponding Ext?-

class measures the obstruction to lifting X to mf/S Thus, T='Qy also measures the
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same obstruction; this gives an integral lift of the analogous Deligne-Illusie identfication
[24, Theorem 3.5] over the special fiber. In particular, if X does not lift to A;,/&2, then

2x does not split as a direct sum of its cohomology sheaves.

The rest of the section is dedicated to proving Theorem 8.3. It will be useful to
prove a stronger local result, which we will now formulate. The following definition is
due to Faltings.

Definition 8.5. — Let R be a_formally smooth O-algebra. Then R is called small if there is
an étale map

SpfR — G! = SpfO(TT!, ..., TF!).

Let X = SpfR with generic fiber X = Spa(R[[%], R). We will denote such “fram-
ing” maps

0:X — G! =SpfO(TE, ..., T!)
to the torus by the symbol L. Given a framing, we let

_DpPAa +1/p> +1/p>
ROO—R®O<T111 ’’’’’ le)O(Tl ""’Td ),

which is a perfectoid ring, integrally closed in the perfectoid K-algebra Roo[l—l)]. In partic-
ular, the corresponding tower

€ 9 +1/p" +1/p"
l(lr_n Spa(R(X)O(TIﬂ T{/il)K(Tl R b ),

.....

oy OTE )

,,,,,,

in X, 18 affinoid perfectoid, with limit Spa(Rw[%], Rw), and so Lemma 5.6 applies.
There is an action of ' = Zp(l)d on R, where after a choice of roots of unity, a generator
voi=1,....dactsby T, > g T T > T forj # .

On the other hand, assume for the moment that SpfR 1s connected. Then we can
consider the completion R of the normalization R of R in the maximal (pro-)finite étale

extension of R[%], on which A = Gal(ﬁ[i]/R[%]) acts. Again, R is perfectoid. Then

R., C R and A surjects onto I'. By Faltings’ almost purity theorem, the map

RT o (T, Rog) = R eon (A, R)

is an almost quasi-isomorphism, i.e. all cohomology groups of the cone are killed by the
maximal ideal m of O.
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Using [59, Proposition 3.5, Proposition 3.7 (iii), Corollary 6.6], one can identify
the cohomology groups on the pro-finite étale site with continuous group cohomology
groups, to see that

RT 0e(A, R) = RT (Xpporee: OF).

Note that the right side is well-defined even if SpfR is not connected.
In this situation, we can consider the following variants of Q2x.

Definition 8.6. — Let R be a small formally smooth O-algebra as above, and let

O:SpfR — G! = SpfO(T{!, ..., TF!),
be a_framing. Define the following complexes:
QF = L, | RT (T, Ry

diét = L’?;,]—lRF (Xprofétv 6;2)
QR = Lipg, | RT (Xpuois OF).

Note that there are obvious maps
QY — QO QP

By the almost purity theorem, more precisely by [59, Lemma 4.10 (v)], and the observa-
tion that Ln,,—, takes almost quasi-isomorphisms to almost quasi-isomorphisms, they are
almost quasi-isomorphisms. Finally, there is a map

QP > RI(X, Qx).
Theorem 8.7. — Let R be a small formally smooth O-algebra. The maps
QY — QP 5 QPO 5 RIV(X, Qx)
are quasi-isomorphisms; write Qr Jor therr common value. Then there are natural isomorphisms
H'(Qr) = Q55 (1),
where Qi’{/o(gt denotes the locally free R-module Qi’{/(gt = 1(1r_n QiR IO of continuous differentials.
Proof that Theorem 8.7 implies Theorem 8.3. — As any sufficiently small Zariski open
of X is of the form SpfR for a small formally smooth (J-algebra R, it suffices to

check that the isomorphisms H'(Qg) = Qi‘{;gt{—i} constructed in the proof of The-
orem 8.7 are compatible with localization. As these isomorphisms are multiplicative

1,cont

(Corollary 8.13(11)), we reduce to the case ¢ = 1. In this case, the isomorphism Q5" —

H'(Qy) is described in co-ordinate free terms in Proposition 8.15 and the following dis-
cussion. U
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. . . . S profé
Remark 8.8. — Without the assumption that R is small, one can still define Qf "
and Q™. However, we do not know whether the maps

QP QP 5 RI(X, Q%)

are quasi-isomorphisms without the assumption that R is small. (One can check that they
are almost quasi-isomorphisms.)

8.1. The local computation. — Let R be a small formally smooth O-algebra with a
fixed framing

0): ¥ =SpfR — G.
Let

+1/p> +1/p>
=y O(TT 7T )

------

which has a T' = Z,(1)“-action as above. We start by recalling the computation of the
cohomology groups of the complex

RFCOHI(F’ ROO)7

in a presentation which uses the choice of the framing [J and a choice of roots of unity
¢y . Note that Qlli’/cglt is a free R-module with basis dlog(T)), ..., dlog(T,), and thus

i,cont ~ \ ~ d
Q= AR'=RO.

Proposition 8.9. — For all 1 > 0, the map

AR =H! ("\R) - H_ (" Ry)

cont

is split injective, with cokernel killed by ¢, — 1. Moreover, H' (I',Ry) and H._ (', Ry) /(¢ ,— 1)

cont cont

have no almost zero elements.

Recall that an element m in an O-module M is called almost zero if it is killed by

Proof. — Note that R — Ry admits a I"-equivariant section, as R is the p-adic
completion of

b rT.TH

a1 @ €Z310[0.1)



INTEGRAL p-ADIC HODGE THEORY 309

this shows that the induced map on cohomology is split injective. By [59, Lemma 5.5],
the cokernel is killed by ¢, — 1. In fact, the cokernel is given by

) ajy aq
R ®0 &y H (0,0 -T)...T%),
0y, 00 (@ a) €IS IN0, D)

To check whether H?

cont

it remains to check whether the displayed module has almost zero elements (as /\i R?
and /\"(R/ & — 1))? have no almost zero elements, using Lemma 8.10 below). As R is
topologically free over O, cf. Lemma 8.10 below, it is enough to see that the big direct
sum has no almost zero elements, for which it is enough to see that each term in the direct

(T',Ry) and H'

cont

(I', Rso)/ (¢, — 1) have almost zero elements,

sum has no almost zero elements. But each direct summand is a cohomology group of
a perfect complex of O-modules, which (as O is coherent) implies that all cohomology
groups are finitely presented O-modules. Now, it remains to recall that finitely presented
O-modules do not have almost zero elements, cf. Corollary 3.29. U

The following lemma was used in the proof.

Lemma 8.10. — Any formally smooth O-algebra R s the p-adic completion of a free O-
module.

Progf- — Let k be the residue field of O, and fix a section £ — O/p. Then, as R/p is
a smooth O/p-algebra and in particular finitely presented, we see that for r large enough,
R/(¢y — 1) is isomorphic to R, ®; O/(¢, — 1), where R, =R ®0 £ is the special fiber.
Thus, as Ry is a free A&-module, R/ (g, — 1) is a free O/(&, — 1)-module. Picking any lift
of the basis of R/(§, — 1) to R gives a topological basis of R. U

To check that the maps
~O Sprofét Sproét
Qp = Qp  — Q
are quasi-isomorphisms, we use the following lemma.

Lemma 8.11. — Let A be a ring with an ideal 1 C A. Let | € 1 be a non-zero-divisor.

(1) Let M be an A-module such that both M and M/f have no non-zero elements killed by 1.
Let o : M — N be a map of A-modules such that the kernel and cokernel are killed by 1.
Then the induced map B : M/M[ f]1— N/NI /1 ts an isomorphism.

(1) Let g: G — D be a map in D(A) such that for all i € Z, the kernel and cokernel of
the map H'(C) — H(D) are killed by 1. Assume moreover that for all i € Z, H'(C)
and H'(C) /f have no non-zero elements killed by 1. Then Lnsg: Ln,C — Ly/D 15 a

quast-isomorphism.
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Remark 8.12. — The lemma is wrong without some assumptions on C. For ex-
ample, in the case A= 0O, I=m, f = ¢, — 1, the almost isomorphism m — O does not
become a quasi-isomorphism after applying L, —1; here m/(§, — 1)m has almost zero el-
ements. Similarly, O/(¢, — )m — O/(¢, — 1)O does not become a quasi-isomorphism;
here O/(¢, — 1)m has almost zero elements.

It is a bit surprising that, in (ii), it is enough to put assumptions on C, and none
on D.

Proof. — Part (ii) follows from part (i) and Lemma 6.4. For part (i), as the kernel of o
is killed by I but M has no non-zero elements killed by I, & is injective. As M/M[ /] = fM
via multiplication by f, this implies that 8 : /M — /N is injective. On the other hand, we
have the inclusions If N C fM C fN C M as submodules of N. Thus, fN/fM — M/fM
consists of elements killed by I, and thus vanishes by assumption. Thus, fN = fM, and B

is an isomorphism. 0

The following corollary proves the first half of Theorem 8.7; the natural identifi-
cation of the cohomology groups with differentials will be proved as a consequence of
Proposition 8.15 below.

Corollary 8.13. — Let R be a small_formally smooth O-algebra with framing UJ.
(1) The maps
QY — QU Qb
are quast-isomorphisms.
From now on, we will write Qg for any of QE, ’ngfét and ﬁgOét, using

superscripts only when the distinction becomes important.
(1) Lor all 1 > 0, there is an isomorphism (depending on our choice of framing)

R’ S H' (%),

whose exterior powers induce 1somorphisms

/\Rd = H(QR).

(itl) For any formally étale map R — R’ of small formally smooth O-algebras, the natural
map

QR ®{RJ R/ — §R’

s a quasi-isomorphism.
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(iv) The map
Qr — RI'(X, Q%)

is a quast-tsomorphism.

Progf: — Tor part (1), let C = RI' o, (I", Ro), and let D be either of
RI’ (Xprofétv 6;) ) RI’ (Xproéta (/9\)—2) .

Then we have a map g: G — D which is an almost quasi-isomorphism, and C satisfies
the hypothesis of Lemma 8.11 (with A= O, I =m, f = ¢, — 1) by Proposition 8.9. It
follows that the map

Ln;-/),lg . LT’);—/),IC — L?’];ple

1s a quasi-isomorphism, as desired.
Part (ii) follows from Proposition 8.9 and the formula

H'(Ln,,,C) = H'(C)/H'(C)[g, — 1],

which i1s compatible with cup products. Using this identification of the cohomology
groups, part (iii) follows.
For part (iv), note that there is an induced map

’SVZR ®R Ox —> ﬁx,

and it is enough to show that this is a qyasi—isomorphism in D(Xz,.), as the left side
defines a coherent complex whose RI" is Qg. Note that for any affine open ${ = SpfR’ C
SpfR with generic fiber U, by part (ii1) the left side evaluated on il is given by

Ln{ﬁ—IRF (Uproétv @i) .
To check whether the map
’gsz Rr Ox — ﬁx,

1s a quasi-isomorphism, we can check on stalks at points, so let x € X be any point. The
stalk of the left side is

h_l’)nLr}gp—lRF (Uproét’ O;)’
Usx
and (using that Ln commutes with taking stalks by Lemma 6.14), the stalk of the right
side 1s
Ln{,,—l h_r)nRF (Uproél’ O;)
Usx

But Ln commutes with filtered colimits, so the result follows. 0
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Note that by functoriality of the pro-étale (or pro-finite ¢étale) site, the association
R — Qg is functorial in R. We end this section by observing a Kiinneth formula for €2.

Proposition 8.14. — Let Ry and Ry be two small formally smooth O-algebras, and let R =
R, ®0Ry. Then the natural map

§R1 ®O ’SVZRQ — ’SVZR
is a quast-isomorphism.
Proof. — Choose framings []; and [J, for R; and Ry, and endow R with the prod-

uct framing [J = [J; x [y. We may, using part (ii1) of Corollary 8.13, reduce to the case
Ry =O(T{, ..., Ty, Re=O(T;,, ..., T, ). In that case, one has

+1/p> +1/p> >
ROO:O<TI /ﬁ 7-",Td1.|{§2 >:R1,OO®OR2,OO‘

As the continuous group cohomology of I' = Z,(1)"*% =T'| x Iy is given by a Koszul
complex, one deduces that

RFcont(Fv Roo) = chom(rl s Rl,oo)®ORFcom(F2, RQ,oo)-

It remains to see that Ly, behaves in a symmetric monoidal way in this case, i.e. the
induced natural map

oS bk SO
QRl ®@QR2 — Qp

1s a quasi-isomorphism. This follows from Proposition 6.8 and Lemma 6.20 (noting that
p-adic and ¢, — 1-adic completion agree). U

8.2. The dentification of 7=1Qr. — As before, let R be a small formally smooth
O-algebra, with X = SpfR and X = Spa(R[})], R). In this subsection (and the next), we

want to get a canonical identification of t=! Qg with the p-adic completion of
Li/z,[—11{—1}.
First, we construct the map. Consider the transitivity triangle
Loz, [—11®0 O% — Loy 7 [— 11— Lo jo[—1]

of p-completed cotangent complexes on X Observe that Los o ~ 0 as in fact

Ls 0 22 0 for any perfectoid O-algebra S, see Lemma 3.14. We obtain a map
Lyz,[— 1] > RT (X Loy 7, [~ 11) = RT (X Lojz, [— 11 ®0 O5)
= RT (Xproei» OF) {1}
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Proposition 8.15. — The map
Lz, [~ 11{—1} = RT (X, OF)
Just constructed factors uniquely over a map
Lz, [—11{=1} = Lig, | RT (Xpuoeir OF) = S,
and this induces an equivalence
Liz [—11{~=1} = t='Gx.
Note that from the transitivity triangle
i:(Q/Zp[— ll®o R — i:R/z,,[—l] — iR/O[_l]a
one sees that the cohomology groups of’

Lz, [—11{—1)

1,cont

are given by R in degree 0 and ) {—1} in degree 1. Thus, the proposition gives a
canonical identification

Qo' =1} =H' (),

and combining this with Corollary 8.13 finishes the proof of the canonical identification
Q=) = H'(Qp),

thereby also finishing the proof of Theorem 8.7, and thus of Theorem 8.3.

Proof. — First, we check that the factorization is unique. This is the content of the
following lemma.

Lemma 8.16. — Let A be a ring with a non-zero-divisor f, and let o : C— D be a map in
D(A) such that H(C) =0 for i > 1, H(D) = 0 for i < 0, and H°(D) is f-torsion-fiee. Then
there 15 at most one factorization of o as the composite of a map B : C — LD and the natural map
Ln/D — D from Lemma 6.10, and it exists 1of and only if the map

H'(C®% A/f) - H' (D ®% A/f)

is zero, which happens if and only if the map H' (C) — H' (D) factors through f H' (D).
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Progf — First, we make the elementary verification that H'(C ®% A/f) —
H'(D ®% A/f) is zero if and only if H'(C) — H'(D) factors through fH'(D). Note
that H'(C) surjects onto H'(C ®k A/f), and H'(D)/f injects into H' (D ®k A/f). Thus,
the claim follows from observing that in the diagram

H!(C) H'(D)/f

| |

H'(C®5A/) — H' (DL A/,

the lower arrow is zero if and only if the upper arrow is zero.

Note that H(D) = 0 for ¢ < 0 and H(D) is_f-torsion free. By Lemma 6.10, there
is a natural map LnD — D. We may assume that H'(D) = 0 for ¢ > 1, as « factors
through 7='D, and Lz, commutes with truncations (so that any factorization g : C —
Ln,D factors uniquely over 7='Ly,D = Ln,(r='D)). For such D with H'D)=0for:> 1
or i < 0 and H(D) being f-torsion-free, there is a distinguished triangle

LnD —D — H'(D/AH)[-11,

where the second map is the tautological map D — D/f — t='D/f = H'(D/f)[—1].
Applying Hom(C, —) gives an exact sequence

Hom(C, H'(D//)[—2]) — Hom(C, Lyj;D) — Hom(C, D)
— Hom(C, H'(D/A)[-1]).

Now Hom(C, H'(D/f)[—2]) = 0 since C € D='(A). This shows that there is at most
one factorization of @ : C — D through a map B : C — Ln/D. Moreover, such a

exists if and only if the composite C = D — H'(D/f)[—1] vanishes. This composite

1 o
is identified with the composite G — C/f — H(C/NI=11" <" H'(D/)[~1]. Thus,

such a B exists if and only if H'(ae/f) = 0; this gives everything but the last phrase of
the lemma. For the last phrase, it is enough to observe that H'(C/f) = H'(C)/f and
H!(D/f) = H'(D)/f since C, D € D=!(A). (|

This applies in particular in our situation to imply that the factorization in the
proposition is unique if it exists.

Now we do a local computation, so fix a framing [J: X — ai. Let S =
O(TF, ..., T3"), so we have a formally étale map S — R. Then by Corollary 8.13,

we have a quasi-isomorphism

55 ®SR—) ’SVZR.
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Similarly, there is a quasi-isomorphism
Ls/z, ® R — Ly/z,,

by the transitivity triangle and the vanishing of L /5. Thus, if we can prove the proposition
for S, giving an equivalence

i:S/zﬁ[—l]{—l} — TSI@S,

then the result for R follows by base extension.
Thus, we may assume that R = O(Ty", ..., T7'). Also, we may replace the map

Lz, [~ 11{~1} = RT (Xpua, OF)
by the map
Lz, [=11{=1} = REwu(Z, (D, O[T, 7))

constructed similarly, as the resulting fZR-complexes agree. By Lemma 8.16, to check that
the desired factorization exists and gives the desired quasi-isomorphism, we have to see
that

R = H°(Ly/z [~ 11{—1}) — H

cont

(Z,(H%, O[T, . 1)
is an isomorphism and

Quit{—1} = H! (Z, ()", O[Ty 1))

cont

is an isomorphism onto (§, — 1)H!, . The first statement follows directly from the def-

initions. For the second statement, we note that both QII{%“{—I} and (¢, — DH! , are
isomorphic to R? with bases on either side coming from the choice of coordinates (and
the choice of roots of unity). It is enough to check that basis elements match, which by
functoriality reduces to the case d = 1. We finish the proof of Proposition 8.15 in the next

subsection. O

8.3. The key case X = am. — Assume now that X = ﬁm = SpfR, where R =
O(T*"). Set Roo = O(T*!#™) Jand let T' = Z,(1) be the natural group acting R-linearly
on R.

We recall the map considered above. We start with the map

LR/Z,, — Lg /Z,

induced by p-completion of the pullback. Since R — R is I'-equivariant, this induces a
map

iR/Z,, — R coni (T, i:Roo/z,,) = Rl(if_nRFcom(F, Ly, /z, Rz Z/").

n
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We want to describe the image of dlog(T) = % e H’ (Lr/z,) = Qfl{’;?gm under this map;

note that this is an R-module generator of QI'{/%“‘

Proposition 8.17. — Under the identification
RT0n (T, Ly, /z,) = R o (T, Re)[11{1},
the image of dlog(T) € H'(Ly,z,) in

Hgont(r’ i:Roo/Zp) = Hl (F’ Roo){l}

cont
us gen by the image of
dlog®l e H! (T, 0{1}) o R=H! (T, O{1} ®0 R)

cont cont

— H! (T, 01} ®0 Rw),

cont

cont

map on p-adic Tate modules induced by the map dlog : p,(O) — /2,

where dlog € H!._ (T, O{1}) = Hom, (T, Tﬁ(Q}Q/Zp)), I'=27Z,(1) =T,(u(0)), is the

Note that by Proposition 8.9, the map
H! ([, O{1})) @ R=H! (T, O{1} ®> R) — H!

cont cont

(T, O{1} ®0 R)
induces an equality

(¢, — DH.,,(T. O{1}) ®0 R = (¢, — DH],, (T, O{1} ®0 Ru),
and the element dlog € H! (', O{1}) = O{1}(—1) is a generator of (¢, — NO{1}(—1);

cont

thus, the proposition gives the remaining step of the proof of Proposition 8.15.

Progf: — Since we work with p-complete objects, it is enough to describe what
happens modulo " for all . In this case, we can compute RIcon (T, Li./z, Q% Z/p") by
the total complex of

g—1
1
Reo/Z, S2ROQ/Z/)

9 ﬁ” T pn T

g—1
— = Q!

Reo/Zy

~

1
QROO/Z,,

where top left term is in bidegree (0, 0), and g € I' is a generator, corresponding to a
choice of p-power roots of unity ¢,, r > 1. Now dlog(T) defines an element of the top left
corner of this bicomplex, and we have

dlog(T) =p" - dlog(T""").
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Thus, in H? of the totalization of the above bicomplex, the element d1og(T) coming from
the top left corner is equivalent to

(g — Ddlog(T'"") = gdlog(T""") — dlog(T'""")
= dlog(gy T") — dlog(T'"")
= leg(Q)n) + dlog(Tl/pn) — dlog(Tl/pn) = dlog(é’pn),

viewed as coming from the bottom right corner. The result follows. U

9. The complex AQ x

Let X/O be a smooth formal scheme with generic fiber X as in the previous
§§Ction. In this section, we extend the complex Qx from O to Ay = W(O") along
0 : Ajr — O, i.e. we construct a complex AQx € D(X,,) of Aj,-modules such that

AQx ®% ~O=Q;.

Ainf,0

9.1. Statement of results. — The definition is very analogous to the definition of Q.
Fix a system of primitive p-power roots of unity ¢, r > 1, which give rise to an element
e=(1,¢,...)¢€ @, and let u = [e] — 1. Note that the ideal (@) is independent of the
choice of roots of unity by Lemma 3.23.

Definition 9.1. — The complex AQ2x € D(Xz.,) s given by
AQx = Ln, (Rv,Apex).

Note that AQx admits a structure of commutative ring in D(Xz,,) by Proposi-
tion 6.7, and is an algebra over (the constant sheaf) Ay

Theorem 9.2. — The complex A2x has the following properties.
(i) The natural map

AQx ®% 50— L, (Rn,05) = Gx

s a quasi-isomorphism.
(11) More generally, for any r > 1, the natural map

AQx @ = W,(O) = L, 11 (Rv.W, (0F)) = W,y

Aunt, 0,

i a quast-isomorphism.
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(1) Forany r > 1 and @ € Z, there 1s a natural isomorphism

HI(W, Q) =W, Q550 {—1}

of sheaves on Xz,., where W,Qg’ec/og = limWrQi36 1O is a continuous version of
the de Rham—Witt sheaf of Langer—Sink [52], and {—1} denotes a Brewil—Risin—Fargues
twist as in Example 4.24.

Note that part (iii) extends the corresponding result for £2 proved in the last section.
As in the previous section, it will be important to formulate a stronger local statement.

Definition 9.3. — Let R be a small formally smooth O-algebra, and let
O:SpfR — G = SpfO(TE, ..., T,
be a_framing, giving rise to

£1/p™ £1/p
=y O(TT 7T ),

111111

on which the Galois group T' = Z,(1)* acts. Define the_following complexes:

W,y = Ly, -1 RT e (T, W, (Ro0))

W2 ™ = Lijgg, 11 RT (Xprotes W, (05))

W™ =Ly, 1 1 RT (Xpuoie, W(O5)),

as well as

AQR =Ly, RT (T, Ainr(Re0))

AQE"™ = L, RT (Kpofier Aint:x)

AQR™ = L0, RT (Xyrots Ainx)-

We will prove the following result, which implies Theorem 9.2.

Theorem 9.4. — Let R be a small formally smooth O-algebra with a _framing O, and let
X = SpfR with generic fiber X.

(1) The natural maps

AQY ®% - W,(0) > Wy

are quasi-1somorphisms.
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(i) The natural maps
W, - Wak™ - Walk™ - RI(X, W)

are quast-isomorphisms; we denote the common value by W, 2y .
(i11) 7he natural maps

AQY — AQR 5 AQR™ — RT(X, AQy)

are quasi-isomorphisms; we denote the common value by AQg.
(iv) Forany r > 1 and 1 € Z, there is a natural isomorphism

HI(W, Q) = W, 2555 (=),

t,cont __ 12 i
where W,QR/O = @WrQ(R/p")/(O/ﬁ")'

In this section, we will prove these theorems, except for part (iv) of Theorem 9.4
(and the corresponding part (iii) of Theorem 9.2), which will be proved in the next sec-
tions.

9.2. Progfs. — Let O = Ok be the ring of integers in a perfectoid field K of char-
acteristic 0, containing all primitive p-power roots of unity ¢, giving rise to the usual
elements &, u € Ayy = W(O"). Let R be a small formally smooth O-algebra, with fram-

ll’lg
O: % =SpfR — G, =SpfO(TE, ..., T*!),
As usual, let

= +£1/p% +£1/4%
R =R®p#1, 1= O[T, ..., T,

~~~~ d

on which I' = Z,(1)? acts. We get the complexes
AQR = L, RT cou (T, Aine(Reo)),
—~ 0
W, =Ly, -1 R o (T, W, (Reo)):

note that both of them have canonical representatives as actual differential graded alge-
bras, by computing the continuous group cohomology as the standard Koszul complex
(which gives a p-torsion-free, resp. [, ] — l-torsion-free, resolution on which one can
apply 71,,, resp. Myg,1-1)-

It turns out that AQEY can be described (up to quasi-isomorphism) as a g-de Rham
complex, at least after fixing the system of p-power roots ¢, . Let us first define the relevant
version of the ¢g-de Rham complex. Consider the surjection

AudU*) > O(T*), Ui T,
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which is given by 0 : A;y — O on Ay As [ is (formally) étale, one can lift R uniquely
to a (p, u)-adically complete A -algebra A(R)™ which is formally étale over Ay (U,
Moreover, there is an action of I' = Zﬁ(l)d on Ay (U*"): if we fix the p-power roots of
unity and let y; € I' be the corresponding :-th basis vector, then it acts by sending U;
to [€]U;, and U; to U; for j # i. This action respects the quotient O(T*"Y and is trivial
there. As Ap(U) — AR)Y is étale, this action lifts uniquely to an action of ' on
AR)"™ which is trivial on the quotient AR)" — R. Actually, as the I'-action becomes
trivial on Ap(U*!) /([€] — 1), the -action on A(R)™ is also trivial on A(R)Z/([e] — 1).
In particular, for any : =1, ..., d, we can look at the operation

% _ 7=l ®)P AR
8,10g(U)  [e]—1

IfR = O(T*), then ARR)Y = A,,((U*!), and
d

S A— ) = [ '.Zf
9,log(U) (U K ) [”l]qu_.[u |

where as usual ¢ = [€]. Using this, one verifies that the following definition gives in this

AU 1]/ O

case simply the (p, n)-adic completion of the ¢-de Rham complex ¢- €2
Example 7.7.

Definition 9.5. — The q-de Rham complex of the framed small_formally smooth O-algebra R
us gien by
Q. _ K a’] 87
T2 5A®P i = AR 0, log(Ul)’ o d,1og(Uy)

B/I
(G
9, log(U;)
—

= AR)" AR > (AR - ... (A®)D) @,

To connect this to AQY, we first observe that there is a canonical isomorphism
AR) By, 0o AufU77) = Au(Rov),
r ’ r+1
U e (T T )]

equivariant for the I'-action. Indeed, this is evident modulo &, and then follows by rigidity.
Reducing along 6, : Aj,y = W,(0), we get a quasi-isomorphism

~ oy~ 5 r+s
AR)/E By 0y WAO)UH™) S W Ry), U e [T,

cf. Lemma 3.3 for the identification of the map. The following lemma proves part (i) of
Theorem 9.4.
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Lemma 9.6. — There are injective quasi-isomorphisms

7- 2 w0/a, = N1 Kawo W = 1, ...ove =D — AQE
= N1 Kaproy V1 = L ooy v — 1)
and

. ~ ~ O
7= S0/ & 7 Wil

Moreover, the left side represents the derived reduction modulo E,., and so the natural map
O oL Tol
AQp ®y 7 W,(O) - W,Q,
s a quasi-isomorphism.

Proof. — We will prove only the first identification of AQY as a g-de Rham com-

. . . .0 .
plex; the identification of W,€2, works exactly in the same way. For the final statement,
note that the ¢-de Rham complex has §,-torsion-free terms.
We start from the identification

AR) By s Auf U 77) = Aur(Rov).
Using this, we get a I'-equivariant decomposition
Air(Roe) = AR)™ @ Ayyr(Ro)™™,

where A(R)" is the “integral” part, and the second summand is the nonintegral part,
given by the completed tensor product of AR) with the (p, m)-adically complete
Ainf(gﬂ y-submodule of Ainf<gi‘/f’°°) generated by non-integral monomials. First, we ob-
serve that all cohomology groups

Hi (1’1’ Ainf(Roo)nonim)

cont

are killed by ¢! (1) = [€]'/# — 1 (and thus by ), so that in particular
Ln,uRFconl (Fv Ainf(Roo)nonim)

is 0. In fact, we will check that multiplication by ¢~' (i) on RT (T, Ajur(Roo)™M) is
homotopic to 0. By taking a decomposition according to the first non-integral exponent,
we have a decomposition

d
Ainf(Roo)nonim = @Ainf(Roo)nonim’i.

=1
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Now, to prove that multiplication by ¢ ™' (1) on

RT cone (T Aine(Roo) "™ ) = Ky ywogyonini (1 — 1, ., ya— 1)
is homotopic to 0, it suffices to show that multiplication by ¢~ (i) on

vi—l

Ainf(Roo ) nonint, 1 RANIN Ainf(Roo ) nonint,i

is homotopic to 0. Indeed, the whole Koszul complex is built from this complex by taking
successive cones, to which this homotopy will lift. Thus, we have to find the dotted arrow
in the diagram

Ainf(Roo)nonlnt,L ; inf(l{oo)nnnmt,l

B
) N o' w
L

vl o
Ainf(Roo)nomnt,l %_ inf(Roo)nomm‘l.

This decomposes into a completed direct sum of many pieces of the form

vi— L ARZ . TOTTTY - AR - TO T[T,
t J 1 ]
J#i i

where a(z) =m/p € Z[;—]], r>1,meZ\ pZ. This complex is the same as

et -
AR LT AR,

Up to changing the roots of unity, we may assume that m = 1. Moreover, the map
T .. =1 ..

vile"”1 — 1 divides the map )/Z-p [€]'? — 1, so it is enough to produce a homotopy £
r—1

for )/l-/] [€]' — 1. This amounts to finding a map #: AR)"Y - AR)Y such that

V! (@) [€1 — h(a) = ¢~ ().

Asy!" = id modulo y, we can write ¥/ = id +u for some map 8 : ARR)Y — A(R)T.
The equation becomes

ud(h(@))[e]"! = ™" (1) (a — h(a)),
or equivalently
h(a) = a — £8(h(a)) (€]

By successive &-adic approximation, it is clear that there is a unique solution to this. This
handles the non-integral part of AQY.
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On the other hand, by the existence of the ¢g-derivatives

% _ 7=l AR o AR,
d,log(U;)  [e]—1

the differentials in the complex calculating
chom(F9A(R)D) =Ko — L ...,y — 1)

are divisible by u = [€] — 1, and one gets (by Lemma 7.9)

v — 1 Ve—1
RI.. (T, AR)Y) =K
R (I ARY) A<R)D<[e]—1 [e]—l)
= 7= R0 N

Next, we need some qualitative results on the complex RI' ., (I', W, (R)).
Lemma 9.7. — Consuder the Koszul complex
C*'=Kwroi—1L....7a— 1
computing RI o (I'; W, (Roo)).
(1) The complex C* can be wnitten as a completed direct sum of Koszul complexes
Ky ([¢"]=1.....[¢"] = 1)

Jorvarying ay, ..., a; € Z[/l]]. Here £* € O is short-hand for ij’a k= 1% € Z[jl)].
(i) The cohomology groups

(W2 = H'(mig 11 C7)

are p-torsion-free.
(i) For any perfect complex E. € D(W,(O)), the W,(O)-modules

H(C" @0 B),  H(C" &0, B)/ (1571 - 1)
have no almost zero elements, i.e. no elements killed by W,(m).

Progf: — We begin with a rough computation of
RE (I W, (O(T17))

as a complex of W,(QO) (Qﬂ y-modules, where U; — [T};]. Here, we normalize the action
so that the ¢-th basis vector y; € I' = Zp(l)d acts by sending [Tl.l/p ]to [Q,XTW ].

1
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We can write

R on (T, W, (O(T*777)))

mn d
= @ RT one <F, W,.((’))(Hﬂ) . H[Ti]ai).

a1 @ €25 1N[0,1) =1

Moreover, each summand can be written as a Koszul complex

d
RFcont<F, Wr(o)(E:H) : l_[[Ti]ai>

i=1
=Kw,ou([e"] = 1. [¢"] = 1)
Next, we want to get a similar description of
RT con (T, W, (R0)).
Recall that A ((Ry) = Ainf(gﬂ/f’oo)@AM@ﬂ)A(R)D, so that by base change along 6,, we
get
W, (Roe) = W, (O U7 )@y 0w AR) /8

also, W,(O)(U*V7™y = W, (O(T*"™)) by passing to the p-adic completion in
Lemma 9.8 below. This implies

RI (T, W,(Reo)) = R o (T, W, (O(TE77))) By, 0yt AR) T /8,3

note that the tensor product is underived modulo any power of p by étaleness. Therefore,
we get a decomposition

L —

RTon (T, W,(Ro)) = @ Kagose ([67] =1, -, [¢4] = 1).

al,...,adeZ[zl)]ﬁ[O,l)

Finally, as in Lemma 8.10, A(R)" /&, is topologically free over W,(0), finishing the proof
of (3).
For (i1), note that by Lemma 7.9,

g Ko ([¢"] =1, [¢] = 1)

1s acyclic if p’a; ¢ Z for some 7, and otherwise it is given by

[coa1—1  [¢%]— 1)
K V. e I A *
“’“”( [c,1— 1 (1 —1
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The cohomology groups of this complex are p-torsion-free by Lemma 7.10 and Corol-
lary 3.18. Also, 1y, 1-1 commutes with the completed direct sum by Lemma 6.20. Thus,
we can apply Lemma 6.18 to compute the cohomology groups

HZ(W\,/QE) = Hi(T][;ﬁ?]_lC.)

as a classical p-adic completion of the direct sum of the p-torsion-free cohomology groups
of the Koszul complexes above. In particular, they are p-torsion-free.

For (111), assume first that K = Ky, oy ([¢“]1—1, ..., [¢“] — 1) 13 a Koszul complex.
Then K ®%v,((9) E is a perfect complex of W,(O)-modules. Thus, as W,(O) is coherent,
every cohomology group is finitely presented, and thus contains no almost zero elements
by Corollary 3.29; the same argument works for H'/ ([¢p]1 = D).

Now we have a decomposition C* = C" @ C™"" where C™™ is a completed direct
sum of Koszul complexes

Kw,o([¢"]=1.....[¢“] - 1),

where the denominator of each ¢ is at most p’, and C*"" is a completed direct sum of
Koszul complexes

Kw,o([¢"]=1.....[¢“] = 1)

where the denominator of some ¢ is at least "', Note that C™""" is actually just (quasi-
isomorphic to) the direct sum of these Koszul complexes, as multiplication by [, ] — 1 is
homotopic to 0 on each of the Koszul complexes, and thus on their direct sum.

It suffices to prove the similar assertions for H/(C™ ®{J\r‘,(0) E) and
H%C“‘mim ®£§’,(O) E). Note that only finitely many different Koszul complexes appear
in G by taking a corresponding isotypic decomposition, we can reduce to the case that
C is the p-adic completion of a direct sum of copies of one Koszul complex

K=Kw,o([¢"]-1.....[¢"] - 1).

In that case, H'(CI™ ®Iv17,,((9) E) is the classical p-adic completion of a similar direct sum
of copies of the finitely presented W,(O)-module H'(K ®{“v,.((9) E) (by Lemma 6.18, using
that the p-torsion submodule of finitely presented W,(O)-modules is of bounded expo-
nent), for which we have already checked the assertion. Similarly in the second case,
Hi (Cronint ®{‘Vl ©) E) decomposes as a (noncompleted) direct sum of the cohomology
groups of H'(K ®%&,,(O) E) for Koszul complexes K. U

We used the following lemma in the proof.
Lemma 9.8. — Let S be any ring. There are natural inclusions

W,(S[TY,..., T}]) cW.S)[U,, ..., U] CW,(S[T}, ..., T,]),
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and
£y 4y
W,(S[T7", ..., T,”]) cW.(S)[UT', ..., U | W, (S[TT, ..., T ]),
where U; = ['1';]. In particular, by passing to a union over all p-power roots, we have equalities
w,(S[T/", ..., T/ ) =W [u/, . U,
W, (S[TE™, . TE]) = W) [UE™™, ... udm],

Proof. — The Laurent polynomial case follows from the polynomial case by local-
ization. The polynomial case follows for example from [52, Corollary 2.4]. 0J

Moreover, we need the following base change property.

Lemma 9.9. — Let R be as above, and let R — R be a_formally étale map, i.e. R/p" —
R'/p" is étale for all n, and R' s p-adically complete. Let (1 be the induced framing of SpfR'. Then
the natural map

~ /

~ [~ / O
W7»QR ®W,(R)W,»(R ) — W,QR/
is a quasi-isomorphism.

Remark 9.10. — We note that modulo p", the tensor product is underived by The-
orem 10.4. Indeed, by Elkik [26], we may always find a smooth O-algebra R, and
an étale Ry-algebra Rj such that R — R’ is the p-adic completion of Ry — R{. Then
W, (Rg) = W,(R)) is étale and hence so is W,(Ry) /p" — W,(R})/p", which agrees with
W,(R)/p" — W,(R)/p".

Proof. — Fix a map Ry — Rj as in the remark. By Theorem 10.4,
W, (RL) = W,(Ro)®w, )W, (R),
where the tensor product is underived modulo p". Taking cohomology, we get
RIon (T, W,(RL)) = R on (T, W, (Reo) ) ®w, iy W, (R').

Moreover, using Lemma 6.20 and the observation that Ly commutes with flat base
change W,(Ry) — W,(R}), cf. Lemma 6.14, we get

Ln[Cpr]—lRFCont (F’ Wr (R:X))) = Ln[g'pr]—lRFCont (F’ Wr(Roo))®\V,(R)Wr(R/)v
as desired. ]

We can now prove part (ii) of Theorem 9.4.
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Corollary 9.11. — The natural maps
W, - Wak™ - W™ — RI(X, Wy)
are quasi-isomorphisms.

Progf. — Let C = RI',n (I, W,(Rw)), and let D be either of
RI’ (Xprofétv W;(é\;)) ) RI’ (Xproét, Wr (6;(_)) s

where X is the generic fiber of X = SpfR. Then the map g: C — D is an almost quasi-
isomorphism, and hence by Lemma 8.11 applied with A = W,(O), I = W,(m), / =
[¢y]1— 1, the induced map L, 1-14 is @ quasi-isomorphism, as by Lemma 9.7, C satisfies
the necessary hypothesis. ~

For the comparison to RI'(X, W,Q2x), we look at the map

\//\T;QR®W,(R)W,(OJ@) —> W\,/Qx
The same arguments as in the proof of Corollary 8.13(iv) show that this is a quasi-

isomorphism in D(X7,,), using Lemma 9.9. Passing to global sections gives the result. [J

Finally, we prove part (iii) of Theorem 9.4. Once more, we need a lemma that Ly,
turns certain almost quasi-isomorphisms into quasi-isomorphisms. Recall that the ideal
W(m®) C Ay, does not in general satisfy W(m”)* = W(m”), so we have to be careful about
the meaning of “almost” here.

Lemma 9.12. — Let f : C— D be a map of derived p-complete complexes in D(Ainr), and

assume that the following conditions are satisfied.

(1) The morphism f ®Iz‘p F, in D(O") is an almost quasi-isomorphism.
(1) Forall i € Z, the map Hi(Ln,,f) : Hi(LnMC) — Hi(LnMD) s injective.
(i11) For all i € Z, one has

N Ew©=uro©).
m

meW(m®),m| 11
Then Ln,f : Ln,C — Ln,D is a quasi-isomorphism.
Proof. — We need to show that for all € Z, the map
B Hi(Ln,C) = H(C)/H!(C)[p] — H(D)/HI(D)[12] = H'(Lyj, D)
is an isomorphism; let
« : H(C) - H'(D)

be the map inducing . By assumption (ii), B is injective.
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To prove surjectivity of B, we have to see that the map
H'(D)[u] — Cokera
is surjective. For this, we observe first that for all » > 1, the map
S ®5Z/V2:CRY Z/)Z— D&Y, Z/yZ

is an almost quasi-isomorphism with respect to the ideal W,(m”) C W,(O"). This implies
that the induced map

W,»(mb) ®Wf,((9b) (C ®;ﬁ Z//)’Z) — W,(mb) ®\\rr(0)) (D ®;ﬁ Z/p’Z)
1s a quasi-isomorphism. In particular, there is a map
W, (m") ®w, 0 (D ®F Z/§Z) =W, (m’) ®w, o) (C ®F Z/p'Z)
L 7
— C ®z, Z/pZ.
Thus, for any element m € W(m”), there is a canonical map
m:D®y Z/pZ— C®z Z/)Z

whose composite with f ®]i,, Z/p'Z (on either side) is multiplication by m. Passing to the
limit over r, using that C and D are p-complete, we get a canonical map m: D — C
whose composite with / (on either side) is multiplication by m.

Now, pick any element x € Coker «, and lift it to x € H (D). We claim that

e N %Hf(C)cuHi(C).

meW(m®),m|u

Indeed, for any m € W(m”), we have m(x) € H'(C), and then fi(x) = Zm(x) € ZH'(C). By
assumption (iii), we get that 11(x) € uH(C), so after subtracting (the image in H'(D) of)
an element of H'(C) from x, we may assume that ft(x) = 0, so that in particular x =0,
i.e. x € H(D)[u]. Thus, H(D)[] — Cokera is surjective, finishing the proof. O

Lemma 9.13. — Let
C - chont(rv Ainf(Roo)) € D(Ainf)'

Then for all 1 € Z, the intersection

N Ew©=uwro.
m

meW(mP),m|u
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We note that it is actually not so easy to find many elements m € W(m”) with
m|p. The only elements we know are the ¢ " (1), and we will only use these elements in
the proof. In particular, we do not know whether one can write p as a product of two
elements in W(m").

Proof. — We will freely make use of

m %Ainf = UAns,

meW(mP),m|u
cf. Lemma 3.23. We may decompose C = C™ @ C"™" according to the decomposition
Ainf(Roo) = Ainf(Roo)im oy Ainf(Roo)nonint

from the proof of Proposition 9.6.
We handle first the non-integral part C™"™, This can be written as a completed
direct sum of complexes of the form

Kawo (nlel® — 1, ..., yulel™ — 1),

where a(l),...,a(d) € Z[%] N[0, 1), not all 0. We compute the cohomology groups of
each of the summands. Permuting the coordinates, we may assume that a(1) =m/p" has
the largest denominator p’. The argument for existence of  in the proof of Proposition 9.6
shows that y,[€]*" — 1 has image precisely [€]"/ ? — 1. Moreover, the image of y;[€]"® — 1
is contained in the image of [e]'"” —1,as y,=1 mod u.

Applying Lemma 7.10(i1) for the commutative algebra of endomorphisms of
AR)V generated by g = [e]VV —1, g =vile]"” — 1 and ‘% shows that

Hi(KA(mD ()/1 [e]"D —1, ..., yle]? — 1))

can be written as a finite direct sum of copies of A(R)V /([e]"? — 1). This is a topologi-

cally free Ay¢/([€]"? — 1)-module. It follows that the cohomology groups of C"*™™ are a

p-adically completed direct sum of copies of A/ ([e]'Y = 1) for varying 7 > 1. Thus, by

Lemma 6.18, it suffices to prove the similar assertion for A;,r/([€ 1/ — 1), which is easy.
It remains to handle the integral part

C" =Kawo — 1, ..oy ya—1).

Here, we note that all y; — 1 are divisible by . This implies that H'(C™) /4 is isomorphic
to Z/(C") /. Thus, it remains to prove that

ﬂ %Zi(cint) — Mzi(cint)‘

meW(mP),m|u
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But as the cocycles form a submodule of the corresponding term of K,go(y —
l,...,y¥s— 1), which is a complex of p-torsion-free modules, it suffices to prove the
similar result for the terms of the Koszul complex. Now any term is a topologically free
Aj,-module, for which the claim is known. ]

Proposition 9.14. — The canonical maps
AQY — AQR 5 AQR™ — RI(X, AQy)

are quast-1somorphisms.

Progf. — Let C =R (I, Aif(R)), and let D be either of
RI (Xproféta Ainf,X) ) RI’ (Xproétv Ainf,X)a

so there is a natural map f : C — D. We want to verify the conditions of Lemma 9.12.
Condition (i) is immediate from the almost purity theorem. Condition (iii) is the content
of Lemma 9.13. It remains to prove that

H'(Ln,C) — H'(Ly,D)

is injective. For this, we note that for each r > 1, there is a commutative diagram

Ln,C Ln,D

l l

proét

W, —— Wb

(More precisely, one has such a commutative diagram in the derived category of
N-indexed projective systems, where the upper row is regarded as a constant system.)
Passing to the limit over 7, we get a commutative diagram

Ln,C Ln,D

| -

Rlim W, — Rlim W,
<7 <7

Now we note that by Lemma 9.6, the left vertical map is a quasi-isomorphism. By Corol-
lary 9.11, the lower horizontal map is a quasi-isomorphism. Thus, looking at cohomology
groups, we get the desired injectivity.

This shows that

O profét proét
AQE ~ AQR ~ AQE™,
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we denote them simply AQg in the following. It remains to show that AQgr =~
RI'(X, AQx). Previously, we argued by extending some variant of AQg to (some kind
of) a quasicoherent sheaf, and did the comparison on the sheaf level. However, AQy is
not a module over R, or any variant of R (like W, (R)), so this does not work here. Instead,
we argue by reducing to the known case of W, Q by an inverse limit argument.

Let %ES; be the presheaf topos on the set of affine opens SpfR’ C X. There is a

map of topoi ) : Xz, — X‘%jlr, where j, is the forgetful functor, and j* is the sheafification

functor. We can form
AQpSh =Ln,R pShA
X W l)* inf, X s

where VPP =j 0 v : X0 — .'f;:hr By Lemma 6.14, the value of AQI;h on an affine open
SpfR’ C X is given by AQY™" = AQg/. Moreover, using Lemma 6.14 again, we have
]'*AQpagSh = .*LWR]'*RV*Amf,X = anj*R].*RV*Ainf,X = L1, Rv,Airx
= Af2y,

1.e. AQx is the sheafification of AQg)esh. By adjunction, we get a map
AQE" — Rj,AQyx = RjJFAQY",

which we want to prove is a quasi-isomorphism (as then on global sections, it gives the
desired quasi-isomorphism AQg >~ RI"(X, AQ%)). In other words, we want to prove that
AQI;h is already a sheaf. But as for any SpfR’ C X, we have

AQp = Rl(ir‘_nAQR/ JE = Rl(ir_nWTQR,,
we have an equality

sh . < psh
AQY" =R1ImW,Q%",

for the evident definition of W,Q2%". By Theorem 9.4(iii), we know that W,Q%" is a sheaf,
Le.

VVTQP;h — Iy'g'*WTQI;h
is a quasi-isomorphism. We conclude by using the following lemma, saying that an inverse

limit of sheaves is a sheaf (which holds true in vast generality).

Lemma 9.15. — Let C, € D(%I}j]r), r> 1, be a projective system, with homotopy limit C =

Rl(ir_n C,. Assume that for each r > 1, C, is a sheaf, 1.e. C, — Rjy*C, is a quasi-isomorphism. Then
C s a sheaf, 1.e. C — Rjyy*C is a quasi-isomorphism.
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Proof: — Let G,. =7*C,, and let C= Rl(ir_n é,, € D(Xz.); we note that this is not
a priori given by j*C. There is a quasi-isomorphism C = Rﬁé, given as a limit of the

quasi-isomorphisms C, = Rj*@ Applying j* shows that j*C = ]*Rj*é = C, and thus
C = Ryy*C as desired. O

9.3. Further properties of AS2. — Let us end this section by noting several further
properties of AQx. First, the complex AQy satisfies a Kiinneth formula.

Lemma 9.16. — Let Ry and Ry be small formally smooth O-algebras with completed tensor
product R = R, ®pRy. Then the natural map

Ay, ®F A, — AQy

inf’
is a quasi-isomorphism.

Proof: — As both sides are derived g-complete, it suffices to check modulo E, where
it follows from Proposition 8.14. O

Also, by construction A2y comes equipped with a Frobenius.

Proposition 9.17. — Let R be a small_formally smooth O-algebra. Then there is a natural
@-lnear map ¢ : AQr — AQr which factors as the composite of a @-linear quasi-isomorphism
AQg >~ LngAQg and the natural map LngAQr — AQg.

In particular, if X is a smooth_formal scheme over O, then there is a @-linear map ¢ : AQx —
AQx factoring over a -lnear quasi-isomorphism A2y ~ Lz AQx.

Progf: — Let X be the generic fiber of X = SpfR. The Frobenius ¢x is an auto-
morphism of RI',¢ (X, Ay x), and thus induces a quasi-isomorphism

P AQR = ‘P*LnuRrpmét(X, Aprx) Lﬂw(u)‘P*RFpmét(X, Airx)
* @
= LnEL’?;N’ RFproét (X, Ainf,X) é LngLnMRrpmét(Xa Ainf,X)
>~ L AQg. U

Moreover, let us note that Ly behaves in a symmetric monoidal way in a relevant
case.

Lemma 9.18. — Let R be a small formally smooth O-algebra, and let D = RI 06 (X,
W,(O)), so that W,Qy = L, 11D Let E.€ DIW,(O)) be any complex. The natural map

L, 11D @Y, 0, g, 1-1E = L, 1-1 (D &7 (0, E)

s a quasi-isomorphism.
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In fact, the same result holds if D s replaced by any complex which admats an almost quasi-
wsomorphism RT .o (I, W,(Rs)) = D, where RT o (', W,(R)) s defined using a_framing as
usual.

Progf: — We may assume that E is perfect, as the general result follows by passage
to a filtered colimit. Choose a framing [, and let C = RT",, (I', W,(R)) using standard
notation. In that case, the argument of Corollary 9.11 works to prove that

L’?[;,,f]—l (C ®{Jv,,((9) E) — Ln[iﬁr]—l (D ®{‘V,(O) E)’
using the general form of Lemma 9.7(ii1). Thus, it is enough to show that
L, 1-1C @ (o) Lot 1-1E = L, 121 (C @5, 0, E)

is a quasi-isomorphism. But G decomposes into a completed direct sum of Koszul com-
plexes. Thus, the result follows from the case of Koszul complexes, Lemma 7.9, and the
commutation of Ln with p-adic completion, Lemma 6.20. O

10. The relative de Rham-Witt complex
In this section we review the theory of de Rham—-Witt complexes.

10.1. Wit groups. — Let A be a ring. As before, we use W, (A) to denote the finite
length p-typical Witt vectors (normalized so that W (A) = A) and W(A) :=1lim W,(A).
In this section we recall some results about how ideals of A induce ideals of r(A).

IfI C A is an ideal then W,(I) := Ker(W,(A) — W,(A/I)), which may be alterna-
tively defined as the Witt vectors of the non-unital ring I. We also let [I] C W, (A) denote
the ideal generated by {[4] : a € I}, which is contained in W, (I).

Lemma 10.1. — Suppose that 1 is a finitely generated ideal of a ring A, and let ¥ C 1 be a
finate set of generators. Then the following five chains of ideals of W,(A) are all intertwined:

([¢]:ee=) O [I] WO W/(T), s=>1

(The first denotes the ideal generated by the elements [a'], for a € X.) More precisely, we have contain-
ments

W,(I%7) c ([a]:ae =) C (11" C [I'] € W(T), I € W,(D)' € W,(I)

Proof. — Firstly, any element of W,(A) may be written as Z:;(l) V'[4;] for some
unique dq, . .., @_1; applying the same observation to A/I we see that W,(I) is precisely
the set of elements of W, (A) such that each element ¢; occurring in this expansion belongs
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to I. Moreover, for any two ideals J;,Jo C A, we have W,(J, + J2) = W,(J1) + W,(J2)
(induct on r and use the formula for [a] + [b]).

The inclusions ([a'] : a € X) C [IJ° C [I'] C W,(I’) and [I]* C W,(I)’ are then clear,
and W, (I)* C W,(I’) is a consequence of the identity Vila]V/[b] = iji([ab”L_j]) (ct. proof
of Lemma 3.2) for all ¢, b € A and ¢ > j, and do not require finite generation of I. Con-
versely, IIFV C (¢/* : a € ), and

W, (@ aex)=> W,(

aex

by the additivity of W, of ideals. Finally, W,(a”*A) C [a]'W,(A). Combining these obser-
vations shows that

W, (I%7) c([a] :a € ). O

Corollary 10.2. — If 1 C A is an ideal satisfying 1 = 1? such that 1 can be written as an
increasing union of principal ideals generated by non-zero-divisors, then W,(1) = [1], and W,(I) C
W,(A) is again an ideal satisfying W,(1)> = W, (1) such that W, (1) can be written as an increasing
union of principal ideals generated by non-zero-divisors.

Proof: — Write I = U_]— JiA, where f; € A is a non-zero-divisor. Applying the previ-

ous lemma to all A and passing to a direct limit over j (noting that the constants are
independent of j) shows that the sequences of ideals

Uuprw.@ 1] m w,a wi(r), s>1
J

are intertwined, and are all contained in the last sequence W,(I'). However, this last

sequence is constant as [ = 1> = I* = - ... Thus, all systems are constant and equal, and
in particular [I] =W,(I) = U LAIW, (A) Since the Teichmiiller lift of a non-zero-divisor
is still a non-zero-divisor, this completes the proof. 0J

The next lemma shows that [p]-adic and p-adic completion are the same:
Lemma 10.3. — Let A be a ring. The following chains of ideals are intertwined:
[PFW(A) - W.(pA) pW(A), s> 1.
More precisely,
[PPPWA(A) CHPWA), WA CW,(pA), W, (pA)” C [pI'W.(A).

Proof — Recall from Lemma 3.2 that [p]* € pW,(A); this implies [P1*W,(A) C
P'W,(A). As p" = 0 in the W (F,) = Z/p'Z-algebra W,(A/pA), we have p" € W,(pA) and
thus p"W,(A) C W, (pA)’. Finally, the last inclusion was proved in Lemma 10.1. 0J
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Let us also recall that Witt rings behave well with respect to the étale topology.
The first part of the following theorem appeared first in work of van der Kallen [65,
Theorem 2.4]. Under the assumption that the rings are F-finite, the result is proved by
Langer-Zink in [52, Corollary A.18]. The general result appears (in even greater gener-
ality) in work of Borger [14, Theorem 9.2, Corollary 9.4].

Theorem 10.4. — Let A — B be an étale morphism. Then W,(A) — W, (B) s also étale.
Moreover, if A — A is any map with base extension B =B ®@x A, then the natural map

WT(A/) ®w, ) W,(B) > W, (B/)

is an 1somorphism.

Proof. — If R is a Z[%]-algebra, then W,(R) >~ []'_, R as rings functorially in R
via the ghost maps. Thus, if A (and thus every ring involved) is a Z[ %]—algebra, the claim
is clear. As the functor W,(—) commutes with localization, we may then assume that A
(and thus every ring involved) is a Z,)-algebra. Now if A and B are F-finite (e.g., finitely
generated over Z,)) and A’ is arbitrary, this is [52, Corollary A.18]. Let us observe that
this formally implies the general case: Indeed, we may find a finitely generated Z,)-

algebra A and an étale Aj-algebra By such that B = By ®,, A along some morphism
Ay — A. Then W, (B)) is étale over W,(Ag), and

W, (Bo) ®w, iy W, (A) = W,(B)

1s an isomorphism. Thus, W,(B) 1s étale over W,(A), as the base extension of an étale
map. Similarly,

W, (By) ®w, ) W,(A’) — W,,(B’)
is an isomorphism, so that
W, (A) ®w, ) W, (B) = W,(A") ®w,ay) W,(Boy) =W, (B),
as desired. U

10.2. Relative de Rham—Whit complex. — We recall the notion of an F-V-procomplex
from the work of Langer-Zink [52]. From now on, we assume that A is a Z,-algebra.

Defination 10.5. — Let B be an A-algebra. An ¥-N -procomplex for B/A consusts of the fol-
lowing data W?*, R, F, V, X,):

() a commutative differential graded W,(A)-algebra W = D, W' for each integer
r>1;
(i) morphisms R : W? | — RW? of differential graded W, ., (A)-algebras for r > 1;
(1) morphisms F: W?, | — FINV?® of graded W, (A)-algebras for r > 1;

r+1
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(iv) morphisms NV : FE IV — W2 of graded W ;. (A)-modules for r > 1;
(v) morphisms A, : W,(B) = W for each r > 1, commuting with the F, R and V maps;

such that the following identities hold: R commutes with both ¥ and V, ¥V = p, FdV = d,
V(¥ (x)y) = xV (), and the Teichmiiller identity

Fdn, (81) = A, (161) d2, ([5])
JorbeB,r>1.

In the classical work on the de Rham—Witt complex, the restriction operator R
is regarded as the “simplest” part of the data; however, in our work, it will actually be
the most subtle of the operators (in close analogy to what happens in topological cyclic
homology). In particular, we will be explicit about the use of the operator R, and it
would probably be more appropriate to use the term F-R-V-procomplex, but we stick
to Langer—Zink’s notation.

Remark 10.6. — The Teichmiiller rule of the previous definition is automatic in
the case that W! is p-torsion-free, since one deduces from the other rules that dF(x) =

FAdVF(x) = Fd(V(1)x) = F(V(1)dx) = pFdx, and thus
P81 dn (181) = da,(1BY) = dFA, (161) = pFdi, 1 (18)).

There 1s an obvious definition of morphism between F-V-procomplexes. In partic-
ular, it makes sense to ask for an initial object in the category of all F-V-procomplexes for

B/A.

Theorem 10.7 ([52]). — There is an initial object {W,S2} \}, in the calegory of F-V-
procomplexes, called the relative de Rham—Witt complex.

In other words, if W?*, R, F, V, X,) s any F-V-procomplex for B/A, then there are unique
morphisms of differential graded W ,(A)-algebras

A iW.Qp = WP

which are compatible with R, ¥,V in the obvious sense and such that A0 : W,(B) — W? is the
structure map A, of the Wit complex for each r > 1.

10.3. Elementary properties of relative de Rham—Witt complexes. — In this section we
summarize various properties of relative de Rham—-Witt complexes.

Lemma 10.8 (Etale base change). — Let A — R be a morphism of Z ) -algebras, and let R
be an étale R-algebra. The natural map

W, Q2% 5 ®w,) W, (R) - W, Q% /a

s an 1somorphism.
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Proof. — If p is nilpotent in S or S is F-finite, this 1s [52, Proposition 1.7]; this
assumption is used in [52] only to guarantee that W,(R) — W, (R') is étale, which is
however always true by Theorem 10.4. Thus, one can either reduce the general case to
the F-finite case by Noetherian approximation, or observe that by Theorem 10.4, the
argument of [52] works in general. 0

The next lemma complements Lemma 10.1; if I C R is an ideal, then we write
W, 14 7= Ker (W, Q2 4 —> Wi Qg 0)-

Lemma 10.9 (Quotients). — Let A — R be a morphism of Z ) -algebras, and 1 C R an ideal.
Then:

i) D,=0 WLk /a 18 the differential graded wdeal of W, K2y | generated by W, (1).
(1) If 1 us finately generated and X C 1 1s a finite set of generators, then the following two chains
of deals of W, Q2 | are intertwined:

<[ax:| S 2)W7QI.{/A WerR,I‘Y)/j\’ S Z 1

Progf. — (i): Write €D, W/ Qg 1,4 for the differential graded ideal of W, Qf{/ A
generated by W, (1); certainly W Q{g 1), C W, Qg 1)/, and so there is a canonical surjec-
tion

. ° Zall °
7T W, Q% /W% 14 = W2k 1y

Elements of W;_SZ’(’R’D /A are by definition finite sums of terms of the form ayda, - - - da,
where at least one of qj,...,a, € W,(A) belongs to W,(I). From this it is rela-
tively straightforward to prove that R(W/(g 1y/0) C W QR 10 FOIW Q0 10 C
W Qg 14> and VW] Q{g 1) 4) C W Qg 141 we refer the reader to [39, Lemma 2.4
for the detailed manipulations, where the same result is proved for the absolute de Rham—
Witt complex. Since W,(R)/W,(I) = W,(R/I) by definition, it follows that the quotients
W, Q% /a/W, 8% 1y/as 7 = 1, inherit the structure of an F-V-procomplex for R/I over A.
The universal property of the relative de Rham-Witt complex therefore implies that
7 has a section; since 7 is surjective, it is therefore actually an isomorphism and so
WIQ 14 = W, 8% 1y/a as required.

(i1): The inclusion ([¢'] : a € Z)Werz/A C W, Q% 1y /A is clear. Conversely, in
Lemma 10.1 we proved that for each s > 1 there exists ¢ > 1 such that W,(I') C
(['] : a € ). It follows that any element of W;Q’(’R’I,) /A 1s a finite sum of terms of the
form w = ayda, - - - da, where at least one of the elements ay, ..., a, € W,(R) may be
written as [a']b, with ¢ € ¥ and b € W,(R); the Leibniz rule now easily shows that
wel{la ) :ac Z)W, 2% /4 as required. (]
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Corollary 10.10. — Let A — R be a morphism of Z,)-algebras, and 1 C A a finitely gener-
ated ideal. ‘Then the canonical map of pro-differential graded-W,(A)-algebras

{W.Q% 4 ®w,0) WA)/[T]], — AW QG g asm

us an wsomorphism. In particular,

l<ir_nWrQ;{/A ®\\",(A) WI(A)/[IJ] —> Lir_nw"QZR/ISR)/(A/I’)’

S

Progf: — 'This follows directly from part (i) of the previous lemma, noting that
Wikl erya = Wildlg iy U

In particular, we make the following definition, where the stated equality follows
from the previous corollary applied to I = pA, and we use Lemma 10.3.

Definition 10.11. — The continuous de Rham—Witt complex of a morphism A — R of Z ;-
algebras s given by

i,cont __ 1: ] 1 1
Wilgya" = Um WSk ) = U W2 0 /5
S s

It would perhaps be more appropriate to let this notion depend on a choice of ideal
1,cont

of definition of A, but we will only need this version in the paper. We note that W, Qg
still has the structure of an F-V-procomplex for R/A.

10.4. Relative de Rham—Witt complex of a (Laurent) polynomial algebra. — We now recall
Langer—Zink’s results concerning the relative de Rham—Witt complex of a polynomial al-
gebra A[T] :=A[T}, ..., T,]. We will be more interested in the Laurent polynomial al-
gebra A[T*']:= A[TT', ..., TF'], and trivially extend their results to this case by noting
that W"Qg[fl] /A is the localization of the W,(A[T])-module WrQZ[I] Ja At the non-zero-
divisors [T1], ..., [T4] by [52, Remark 1.10].

Fix afunction a: {1, ..., d} — p~'Z (this notation is slightly more convenient than
thinking of a as an element of p~'Z), which is usually called a “weight”. Then we set
v(a) := min; v(a(?)), where v(a(2)) = v,(a(z)) € Z U {00} is the p-adic valuation of a(i);

more generally, given a subset I C {1, ..., d}, we define v(a|;) := min; v(a(z)). Let P,
denote the collection of disjoint partitions Iy, ..., I, of {1, ..., d} satisfying the following
conditions:

1) I, ..., I, are non-empty, but I is possibly empty;
(11) all elements of a(I;_;) have p-adic valuation < those elements of a(l;), for j =
I,...,n
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(i11) an additional ordering condition, strengthening (ii) and only necessary in the
case that v : {1, ..., d} — Z is not injective, to eliminate the possibility that
two different such partitions might be equal after reordering the indices; to
be precise, we fix a total ordering <, on {l,...,d} with the property that
v:{l,...,d} = Zis weakly increasing, and then insist that all elements of I,_,
are strictly <,-less than all elements of I;, forj =1, ..., n.

Fix such a partition (Iy,...,I,) € P,, and let p; be the greatest integer between 0 and
n such that v(allpl) < 0 (take p; = 0 if there 1s no such integer); similarly, let py be the
greatest integer between 0 and 7 such that v(aleQ) < 00.

It is convenient to set u(a) := max{—v(a), 0}. Then, given x € W,_,,,(A), we de-

fine an element e(x, a, Iy, ..., 1,) € W,Q”A[Iﬂ]/A as follows:

Case 1: (Iy # ¥) the product of the elements

(a1,
Vv vlp) (xl_[[Ti]a(z)/ﬁ o ))

1€lp
ovlar)

YV H[Ti]“(l)/p y j=1,...,p1,

iEIj

v(alr. a(l U({[‘l‘) y

F(“/)dl_[[Tz‘]()/p J J=p+1,..., 09

€l

dlogl_[[Ti] J=pat+ L
i€l

Case 2: (Ip =¥ and v(a) < 0) the product of the elements

()
dv—““n)(xl—[[Ti]““)/” ' )

1€ly
ovldr)
AV V) H[Ti]a(l)/p J J=2,...,p1,
i€l;
., vlalr)
Fv(allf)dl_[[Ti]a(l)/p J j =p+1,..., 09,
i€l
dlogl_[[Ti] J=prt+ L
i€l

Case 3: (Ip =¥ and v(a) > 0) the product of x € W,(A) with the elements

o)
Fv(ahj)d H[Ti]a(l)/j) g ] = 1, ceey 09,

i€l;

dlogH[Ti] j=p+1,...,n

i€l
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Theorem 10.12 ([52, Proposition 2.17]). — The map of W,(A)-modules

¢ @ @ VOW, 0 (A) — W2 1)

afl,....d}—>p~"Z (lp,....I,)€P,
given by the sum of the maps

Vu(a)wr‘fu(a) (A) — WrQZ[Til]/Aa Vu(a) (x) = e(x9 d, IO? ety Iﬂ)

is an isomorphism.

Proof. — Langer—Zink prove this for A[T] in place of A[T*'], in which case L
should be replaced by p~Z-. To deduce the desired result for Laurent polynomials,

recall that Wyﬂf\[lil] /A is the localization of the W, (A[L])-module W, €2} /a at the non-

zero-divisors [T], ..., [Ty], and hence W’an\[lil]/z\ = U].ZO[Tl]_f ‘e [Td]_f'W,Qf\[I]/A 1s
an increasing union of copies of W, €2} 4.

We also remark that Langer—Zink work with weights whose valuations are bounded
below by 1 —r rather than —7; since W,_ax(,0)(A) = 0 this means that we are only adding

redundant zero summands to the description. UJ
The ntegral part Wi“tQ;[IiI] /A of W,Q;[Iﬂ] /A is its differential graded W,(A)-

subalgebra generated by the elements [T ... [T € W(A[T#']). In other words,
the integral part is the image of the canonical map of differential graded W, (A)-algebras

T2 s, T WS a

induced by U, — [T;]. We note that the integral part depends on the choice of coordi-
nates.

Theorem 10.13 (/52, Proof of Theorem 3.5]). — The map of complexes T is an injective
quasti-isomorphism.

Proof. — In terms of the previous theorem, the image of 7 is easily seen to be
the W, (A)-submodule spanned by the weights a: {1,...,d} = p~'Z with v(a) > 0, i.e.,
with value in Z. One then checks directly firstly that the complement, i.e., the part of
W, Q

AT /A
ing a similar explicit description of 2

corresponding to weights with v(a) < 0, is acyclic, and secondly, by writ-
WHA)UF /W, (A)?
image. U

that 7 is an isomorphism onto its

10.5. The case of smooth algebras over a perfectoid base. — Finally, we want to explain
some nice features in the case where the base ring A is perfectoid, and R is a smooth
A-algebra. The next proposition will be applied in particular to the homomorphism
O — £ of perfectoid rings.
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Proposition 10.14. — Let A — A’ be a homomorphism of perfectoid rings, and R a smooth
A-algebra, with base change R' = R @, A'.

(1) The W,(A)-modules W, /a and W, (A) are Tor-independent.
(1) The canonical map of differential graded W ,(A) -algebras

W,-Qf{/A ®W,(A) Wy (A/) —> W?‘Q.R’/A’

is an isomorphism.

Proof. — Both statements can be checked locally on SpecR, so we may assume
that there is an étale map A[T*] = A[Tfl, e T;H] — R. In that case, Lemma 10.8
shows

WVQ”R/A =W,(R) ®w,,(A[Ii1]) WrQZ[Iﬂ] JA?

and similarly

W, Qjn = Wi (R) @y, ey W2,

A/[Iil]/A/'

From Theorem 10.12, Lemma 3.13 and Remark 3.19, we see that W,QZ[
independent from W,(A’) over W,(A), and

TEiya Tor-

W,Q, Bw, WH(A) =W,

T/A TH/A"

As W, (R) is flat over Wr(A[IjEI])> we see that W, Qp /A is Tor-independent from W, (A")
over W,(A), and

W,—Q%//A/ = W, (R/) ®V\Y;-(A/[I:H]) WTQZ’[I:H]/A/

= W,(R) ®y,ar=ty W, (A [T ]) @w, avprety W1
=W, (R) ®w, =1y WrEy 121
= W, (R) ®\Nr(A[Ii1]) W"QZ[IiI]/A ®‘V',(A) Wy (A/)

= WTQ”R/A Qw, ) Wr(A/),

using Theorem 10.4 in the second step. U

11. The comparison with de Rham-Witt complexes

In this section, we will give the proof of part (iv) of Theorem 9.4:
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Theorem 11.1. — Let R be a small formally smooth O-algebra. Then for r > 1,1 > 0, there
us a natural isomorphism

HI(W,Qp) = W, Q50 {—i).

We start with a general construction that starts from a complex like RT}0¢(X,
A;;x) and produces the structure of an F-V-procomplex. In this way, we define first
the elaborate structure of an F-V-procomplex on the left side, and then show that the
resulting universal map is an isomorphism (that is then automatically compatible with
the extra structure).

11.1. Constructing ¥-V-procomplexes. — Let S be a perfectoid ring and £ a gen-
erator of Kerf : A,¢(S) — S which satisfies 6,(§) = V(1) for all » > 1; in particu-
lar, 0,(5) =pfor all » > 1. Let D € D(A;(S)) be a commutative algebra object, with
H'(D) = H/(D/&) = 0 for i < 0, equipped with a g-linear automorphism ¢, : D > D.
Note that by assumption H(D) is &-torsion-free, and thus also ¢’ (&)-torsion-free for all
r € Z; in particular, it is g,.-torsion—free for all 7 > 1, and so H'(D /5,) =0for:<0.

11.1.1. Furst construction. — We now present a construction of (essentially) an
F-V-procomplex from D. It is interesting to see the rather elaborate structure of an
F-V-procomplex emerge from the rather simple input that is D. It will turn out that
this preliminary construction must be refined, which will be done in the next subsection.

For each » > 1 we may form the algebra D ®k_ OF W,(S) over W,(S) = A (S) /E,

and take its cohomology
Wi (D) 1= H*(D ®% 5 Air(S)/5)

to form a graded W, (S)-algebra. Equipping these cohomology groups with the Bockstein
differential & : W*(D),,;. = W"t!1(D),,. associated to

~ -
0—> D®} s Au(S)/& —> D&Y s Aui(S)/E’
—D ®kinf(s) Ainf(s)/gr —0

makes VW’ (D), into a differential graded W, (S)-algebra.
Now let

R/ . W;:—l (D)pre —> Wr* (D)pre
F: W,i] (D)prc - Wr* (D)PrC

V . W,* (D)pre - W;:—l (D)pre
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be the maps of graded W, (S)-modules induced respectively by

-1
~ (p ~
D ®% s Auni(S)/E 11 —> D . ) Aur(S)/&,

can. proj.

D® s Aur(S)/Es1 —> DR Au(S)/E

AN e
D ®,I{M(s) Aii(S)/§, —='D ®11{im‘(s) Aii(S) /41,
cf. Lemma 3.4. Instead of R’, we will be primarily interested in
R:=6,6)R - W), (D)o = W (D) e
Proposition 11.2. — The groups YV (D), together with the ¥, R, V, d and multiplication
maps, satisfy the following properties.
(1) W2 D)pre 15 a differential graded W,(S)-algebra, and satisfies the (anti)commutativity
xp = (—1)"Wlyx for homogeneous elements x, y of degree |x|, ||;
(i) R’ is a homomorphism of graded W ,(S)-algebras, and R s a homomorphism of differential
graded W ,(S)-algebras;
(i1) V is additive, commutes with both R" and R, and satisfies V(F(x)p) = xV(p);
(iv) F us a homomorphism of graded rings and commutes with both R and R;
(v) FdV =d;
(i) FV is multiplication by p.

We note that in general, W* (D), may fail to be a commutative differential graded
algebra, as the equation x* = 0 for |x| odd may fail (if A is 2-adic).

Proof: — Part (1) is formal.
(i1): R" is a homomorphism of graded rings by functoriality; the same is true of R
since it is twisted by increasing powers of an element. Moreover, the commutativity of

~  En N -
0 —= An(S)/E+1 — Au(S)/EL, —— Au(S)/E11 — 0

| el

0 — Ani(S)/E, — = Ay(S)/E?2 A(S)/E —— 0

and functoriality of the resulting Bocksteins implies that

WH_](D)pre - Wy-‘,—l (D)pre

R’ l l 6,(&R

Wrn(D)pre 7' W:l+1(D)])re

commutes; hence d commutes with R.
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(i1): V 1s clearly additive, and it commutes with R’ since it already did so before
taking cohomologys; it therefore also commutes with R. Secondly, V(F(x)y) = «V () fol-
lows by tensoring the commutative diagram below with D over A;,¢(S) (resp. with D ® D
over Ai,r(S) @ Ay(S) on the left), and passing to cohomology:

Aii(S) /&1 ® Ain(S) /&4 m Aii(S) /&1
id®e™*! (6)
Ai(3)/511 ® Ai(S) /5, G
can. proj.®id
mult

A (S) /g; ® Aine(S) /gr

Ainf(S) /’gl

(iv): F is a graded ring homomorphism, and it commutes with R’ by definition, and
then also with R.

(v): This follows by tensoring the commutative diagram below with D over A;¢(S),
and looking at the associated boundary maps on cohomology:

z

0 —— Au(S)/E, Aii(S) /22 An(S)/E ——= 0

e tlE) l o)

~ &1 ~ o~ ~
0 —— Ainf(S)/ ff - Ainf(s)/ 5757-+1 - Ainf(S)/ 51+1 — 0

can. proj. T

~ g’“#l ~, ~
0 - Ainf(S)/%-r-H - Ainf(s)/ 72+1 - inf(S)/%-r—H - O

(vi): This is a consequence of the assumption that 5,.((,07“(5 ) =pforall r>1
which is equivalent to 6,(§) = p for r > 1). ]
q V4

Now suppose further that there exists an S-algebra B and W, (S)-algebra homo-
morphisms A, : W,(B) = WY(D) which are compatible with R, F, V, i.e., such that the
diagrams

At ~ Artl ~
Wi (B) —— HO(D/&H) Wi (B) —— HO(D/SrJrl)
R l (pgl F l \L can. proj.
Ay ~ Ay ~
W, (B) H(D/§) W.(B) H(D/§))
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A1 ~
W7+l (B) —— H’ (D/Er+1)

\Y% Tqﬂ‘“(s)
W,(B) —— H(D/E)

commute, and which satisfy the Teichmiiller rule Fd,.,([6]) = A, ([6])?"'dA,([4]) for
beB, r > 1. Moreover, assume that VW (D), is a commutative differential graded al-
gebra; the only remaining issue here being the equation x* = 0 for |x| odd.

Then the data (W? (D), R, V,F, 4,) form an F-V-procomplex for B over S,
and so there exist unique maps of differential graded W,(S)-algebras A7 : W, Q3 | —
W? D)y which are compatible with R, F, V and satisfy X? =A,.

Remark 11.3 (The need to improve the construction). — Unfortunately, from the surjec-
tivity of the restriction maps for W,€2} ¢ and the definition of the restriction map for

W?(D)pre, we see that

ImA! € () Im(W’, (D) = W' D)) C ()0,E) W D)y

s>1 s>1

where the right side is in practice much smaller than W/(D),.. Hence W? (D), is too
large in applications: in the next section we will modify its construction to cut it down by
a carefully controlled amount of torsion.

11.1.2. Improvement. — Let D € D(Ay,¢(S)) be an algebra as above, equipped with
a Frobenius isomorphism ¢p : D = D. Moreover, we assume that there is a system of
primitive p-power roots of unity ¢, € S, and S is p-torsion-free, so we are in the situation
of Proposition 3.17 above. This gives rise to the element € = (1, ¢, {p,...) € S, and
w=1[e] — 1 € Ay«(S), which is a non-zero-divisor. We let & = /¢~ (1), which satisfies
the assumption 6,(£§) = V(1) for all » > 1. Finally, we assume that H°(D) is p-torsion-
free.

We can now refine the construction of W?(D),,. in the previous section by re-
placing D by the algebra Ln,D over A;j«(S), on which ¢p induces a @-linear map
¢p : Ln,D > Lnz(Ln,D) — Ln,D (as LnzLn, = Lnz, = Lny). Moreover, there is
a natural map L»n,D — D by Lemma 6.10, and the diagram

@D
Ly, —— Ln,D

L,

commutes.
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More precisely, we consider the cohomology groups
WD) == H"(Ln,D ®% o Au(S)/E).

Equipped with the Bockstein differential, they form a differential graded W, (S)-algebra
as before (satisfying the Leibniz rule, and the anticommutativity xp = (—1)"P!yx, but not

necessarily x* = 0 for |x| odd), and the map Ly, D — D induces a morphism of differen-
tial graded W, (S)-algebras

i W; (D) — W: (D)pre-

Moreover, letting F: W | (D) — W!(D) and V: WD) — W, (D) be the maps
induced respectively by

can. prO]

LnMD®A «(S) 1nf(S)/gl+1 — LnuD®Am(g) 1nf(S)/E

and

LnMD ®A () lnf(S)/%— Ln,U.D ®A 2(S) 1nf(S)/$r+l )

it is clear that 7 commutes with F and V. It is more subtle to define R : W}, | (D) —
W!(D); in the proof below, we give a “point-set level” construction based on picking
an actual model of D as a complex. It is not clear to us whether the construction is
independent of the choice of this model, so we impose the following assumption which
helps us prove independence; it is verified in our applications.

Assumption 11.4. — For all r > 1, n> 0, the group W"(D) is p-torsion-free.

Proposition 11.5. — Assume that Assumption 11.4 is verified. Then the following statements
hold.

(1) The differential graded W ,(S)-algebra VW (D) is commutative; in particular, it satisfies
x> =0 for |x| odd.

(i) Forallr>1,n> 0, the map W' (D) — VV,"(D)prc is mjective.

(1) The maps ¥, R : W' (D)pre = W!D)pre, Vi WI(D)pre = Wi (D)pre and
d: W!HD)pe = VV”“(D)pre induce (necessarily unique) maps ¥, R : W"_ (D) —
WD), V: WD) — W, (D) and d : W!(D) — WHHH(D). In the case of F, V
and d, these agree with the maps described above.

(iv) The map R : W? (D) — RW?(D) s a map of differential graded W, (A)-
algebras, the map ¥ : W2, (D) — F V(D) s a map of graded W, (A)-algebras,
the map V : EW? (D) — W2 (D) is a map of graded W, (A)-modules, and the
wdentities RF = FR, RV = VR, V(F(x)y) = xV (), FV = p and ¥dV = d hold.
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(v) Assume that B s an S-algebra equipped with W,(S)-algebra maps X, : W,(B) —
WO(D) for r > 1, compatible with F, R and V. Then the Teichmiiller identity

Fdo, 1 ([61) = 2, (181)"" d2, (151)

holds true for all x € B, r > 1. In particular, VW?* (D) forms an ¥-V-procomplex for B/S,
and there s an induced map

AW, Qo = WD)
of differential graded algebras for r > 1, compatible with the ¥, R and V maps.

Proof: — For (i), we only need to verify that x> = 0 for |x| odd, which under the
standing assumption follows from 2x* = 0, which is a consequence of the anticommuta-
tivity.

For part (i1), the statement does not depend on the algebra structure of D, so we
may assume that D € D%+ (A ¢(S)) by passing to a truncatlon note that this does not
change WD), = H”(D/é) or W'D) = H”((LnMD)/S) for any r. Then there are
maps D — Ln, D, Ly, D — D whose composite in either direction is multiplication by

w"*! by Lemma 6.9. Since u divides p” modulo g, by Proposition 3.17(iv), the kernel of
the map

H"((Ln,D)/E) — H'(D/E)

is p-torsion. By our assumption, W*(D) = H"((Ln,D) /E,) 1s p-torsion-free, so we get the
desired injectivity.

In part (ii1), it is clear that the 4, F and V maps defined above commute with the
corresponding maps on W'(D),.. It remains to handle the case of R, so fix n > 0. Note
that the definition of R depends only on D € D(A;x(S)) with the automorphism ¢y, :
D> D, but not on the algebra structure of D. We may assume that D € DI%"T1(A; «(S)),
and then pick a bounded above representative D*® of D by projective A;,¢(S)-modules.
Then ¢p : D — D can be represented by a map ¢p. : D* — D®. Replacing D* by the
homotopy colimit of D* under ¢p., we can assume that D*® is a bounded above complex
of flat A,¢(S)-modules, on which there is a g-linear automorphism ¢p. : D* S Do

Now pick an element a € W,7+L§D) = H”((nﬂD')/g,H). This can be represented
by an element o € u'D" with da = &,,,8 for some B € u"'D"!. The element o' =
E”a € p(u)"D" satisfies

do! = gn§+lﬂ c (p(gr)gerrluerranJrl — gD(g)gO(M)nJrlD'Hl ’

so that @’ € (1,(,yD)". Thus, R(e) := ¢, (@') € (n,D)", and it satisfies

d(R(@)) = ¢5 (d') € o5 (9(E) ()™ ' D) = & D"
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so that in fact d(R(a)) = 0 € (1,,D)"*'/&.. This shows that R(a) mod &, induces an
element of H"((n,D*) /E,) One checks that under the inclusion W(D) < WD),
this 1s the image of @ under R.
In part (iv), all statements follow formally from the results for W' (D)., and (ii).
Finally, in part (v), the Teichmiiller identity always holds after multiplication by p,
cf. Remark 10.6, so that by our assumption, it holds on the nose. 0J

Note also that the map W/(D) — W/(D),,. has image in @(M)’ZW,"(D)WC, and is
an isomorphism if n = 0.

Remark 11.6. — Assume in addition that for all » > 1, the natural map

(Ln,D)/& — L, (D/E)

is a quasi-isomorphism, as is the case for D = RI'},,¢ (X, Ay x) by Theorem 9.2(1), where
X is the generic fiber of X = SpfR for a small formally smooth O-algebra R. In that case,
the image of

W!(D) = H'((Ly,D)/&,) = H"(Ln,(D/£)) — H'(D/E) = W' (D)pe

is exactly a,(u)”W:l(D)pre. Indeed, in general the image of H"(Ln,C) — H"(C), for C €
D=’ with H(C) being f-torsion-free, is given by /"H"(C). This makes it easy to see that
R preserves WW(D). Moreover, one can give a different description of the restriction map,
as follows. Indeed, composing the map

WD) = H"(Ln,(D/E,)) — H"(Ln,(D/&)) /H"(Ly,.(D/E)) €]
= H"(LngL, (D/Z)))
with
H"(LyjgLin, (D/£))) = H" (Liy ) (D/))) — H" (Ling (D/9 1))
=" H'(Ln,(D/E-) = W, (D)

defines the restriction map.

11.2. A realization of the de Rham—Witt complex of the torus. — Let O = Ox C K be
the ring of integers in a perfectoid field K of characteristic 0 containing all p-power roots
of unity; we fix a choice of ¢, € O, giving rise to the elements € = (1,¢,,...) € O,
w=I[e]l—1eA,;=W(O") and & = /¢~ (u) as usual.

Consider the Laurent polynomial algebra

AU ] o= A[UT, L 0T
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It admits an action 70f VA = @?:1 vZ, where the element y; acts by sending Uzl 7 to
[e]/7U;”", and Ujl/p to U]W for j # i. We consider

D =RT(Z’, Ail[U*""™]) € D(Asp),

which is a commutative algebra in D(A;,). Note that H'(D) = 0 for i < 0, and H’(D) C
Ay JUEY *1is torsion-free. We will see below in Theorem 11.13 that D satisfies Assump-
tion 11.4; thus, we may apply the constructions of Section 11.1. Our goal is to prove the
following theorem.

Theorem 11.7. — There are natural isomorphisms

W) (D) = H'(Ln,D &%, Aut/&) EW, Q0 oo

compatible with the d, ¥, R, V and multiplication maps.

We begin by computing L, D. The result will turn out to be the ¢g-de Rham com-
plex

d
- Q;inl'[gil]/Ainf = ®(Ainf[Uiil] - Ainf[Uiil] dlog Ui) ’

=1
U! > [£],Uf dlog U;

k
1.
£ is
g—1

from Example 7.7, where ¢ = [€], the tensor product is taken over Aj,;, and [£], =
the ¢g-analogue of the integer £ € Z.
Note that there is a standard Koszul complex computing D, namely the complex

Do — KAinf[Eil/poo](yl —_ 1, ey )/d - 1)

Recall also that there is a Frobenius automorphism ¢p of D, coming from the auto-
morphism of A, JUEV? ™1 which is the Frobenius of Aiyr, and sends U; to U}; for all
t=1,...,d. This automorphism ¢p, of D lifts to an automorphism ¢p. of D®, given by
acting on each occurrence of Ainf[gi” »*1. Note that D* is a complex of free Aj,-modules,
so that one can use it to compute Lz, D.

Proposition 11.8. — There ts a natural injective quasi-isomorphism
[€]- 823 qusym = M- Bayusnn = Loy = 1)

= 1D =0 Koy sy (v = Lo ve = .

Moreover, the natural map

(Ln,D)/& — Lng,1-1(D/E)

s a quasi-isomorphism.
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Progf: — 'This is an easier version of Lemma 9.6. Note that A [UEY " 1is naturally
Z[ i]d -graded, and this grading extends to the complex D*, giving a decomposition

d
D= P XA U LS AU,

a{l o d)=>2[ 5] =1
Here, the complex

[e]"? -1

(A U 25 Ay U%) 2 (A D5 Ay) = Koy, (110 — 1),
so that

D = @ KAM([E]“(I) —1,..., [E]rz(d) B 1)

afl, ..., d}—>Z[}}]

Observe that if k ¢ Z, then [€]f — 1 divides & = [€] — 1; indeed, this is clear for [e]'/? — 1,
and in general if k = j/p" with j € Z \ pZ, then [e]f — 1 differs from [€]"/” — 1 by a unit.
On the other hand, if £ € Z, then u = [e] — 1 divides [€]* — 1, with quotient [£],, where

q=Ilel.
Now, we distinguish two cases. If a(2) ¢ Z for some i, then

K, (10 = 1, [e]"@ — 1)

is acyclic by Lemma 7.9. On the other hand, if a(7) € Z for all ¢, then by the same lemma,
K (€1 = L., [€]? = 1) =Ky ([aD] , ... [a(@)] )

where ¢ = [€]. Assembling the summands for a : {1,...,d} — Z gives precisely
L€]- Q:\inf[EiI]/Ainf'
The final statement follows by repeating the calculation after base extension along

57 : Ay = W, (0). U
It will be useful to have an a priori description of the groups
WD) = H"((Ly,D)/£).

Lemma 11.9. — For each n > 0 there is an isomorphism of W,(QO)-modules

WD P WO

a{l,...d}—>p~"Z

where u(a) is as in Section 10.4. In particular, VW (D) s p-torsion-free.
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Proof. — Using the interpretation of Lz, D as a ¢-de Rham complex from Propo-
sition 11.8, we have

LD~ EB (X) o UR0 2 A U0)

wd}—>Z =1

= P Kula], ... [a@]).

afl,....d}>Z

where as usual ¢ = [€]. Taking the base change along @ A = W,(0), we get

z "1—-1  [g@1-1
Ln,D/& ~ Kw, o) (7, ey 7)
' a:{l,@ﬁz [gl"] -1 [gp'] -1

u(l'_"a>]_

f4
[{p’]—l
agrees with it up to a unit, it follows from Lemma 7.10(ii) that the Koszul complex in the

Since each element on the right side is divisible by , and at least one element

summand on the right side has cohomology

5" 1= 1\ () 57 1= 1 ()
Ann\\’,(O)(W) ( A )/mwr(o)> .

This is isomorphic to W,_ 4 (O) () by Corollary 3.18(1i1). Renaming p~"a by a finishes
the proof. U

Remark 11.10. — It may be useful to contrast the p-torsion-freeness of W) (D) with
the cohomology groups W!(D),,,. = H"(D/ S ) obtained without applying L7,,, which are
well-known to contain a lot of torsion, coming from the summands parametrized by non-
integral a. This is one important motivation for introducing the improved construction

of Section 11.1.2.

In order to equip W*(D) with the structure of an F-V-procomplex for O[T*']/O,
it remains to construct the maps A, : W,(O)[T*'] — W?Y(D). This is the content of the
next lemma.

Lemma 11.11. — There is a unique collection of W,(O)-algebra morphisms A, :
W,(O[T*']) — WD) for r > 1, which satisfp L, ([T;]) =U; for i = 1,...,d and which

commute with the ¥, R and NV maps. Moreover, each morphism A, is an isomorphism.

Progf: — We have

W?(D) = H'((Ln,D)/£) = H* (L, -1 (D/E)) = H'(D/E),
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as H'(D /ET) is p-torsion-free (and thus [, ] — 1-torsion-free). Note that by definition of
D =RI'(Z/, Au[US77]),

SO
H'(D/E) = W,(O)[U*~ 7,

where y; acts by sending Uzwr to [Cpm]U}/ﬁ, and Ujl//f to Ujl/pr for j # ¢; let us recall that
[e]'! [¢y+] by Lemma 3.3.
Now note that by (a renormalization of) Lemma 9.8, there 1s an identification

Wy(@)[gil/pm] _ WT((/)[Iil/p“’])’ U;//v“ - [T;/p"ﬂ].

Under this identification, y; acts by sending T;/ " 1o Q,.XT;/ " and le/ " to T; " for J# 1 in
particular, the Z/-action on W, (O[TE#7]) is induced by an action on O[T*VF™], with
invariants O[T*']. It follows that
~ ]
H'(D/E) =W, (O[T ])" =w,(0[1*]),
and one verifies compatibility with F, R and V. UJ

Corollary 11.12. — There are unique maps

)\.: . W,Qb[l;t] ]/O — W;(D)

compatible with the d, ¥, R, V and multiplication maps.

Proof: — This  follows from Proposition 11.5(v), Lemma 11.11 and
Lemma 11.9. [

We can now state the following more precise form of Theorem 11.7.
Theorem 11.13. — For each r > 1, n > 0, the map

MW, — W' (D)

T+/0

is an 1somorphism.

Proof. — We first observe that the source and target of A look alike. More precisely,
both admit natural direct sum decompositions according to functions a: {1,...,d} —
p~"Z, by Theorem 10.12 and Lemma 11.9 respectively, with similar terms. We need to
make this observation more explicit.
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Define an action of Z[/%]d =P, Z[/%]yl- on O[T*"] and A, [U'™], via O-
resp. Ajy-algebra automorphisms, by specifying that /%yz- actsvia T; > ¢,'T; and T, = T;
for j # 1, resp. U; > [€]//'U; and U; = U; for j # i. In the latter case this action is of
course extending the action of Z? on A;nf(S)[Qil//’m] which has been considered since
the start of the section; in the former case, the action of Z¢ C Z[%]d 1s trivial.

There are induced actions of Z[i]’i on W*(D) and W,SZEQ[TiI] 0 which are com-

patible with all extra structure and (thus) commute with A?.

Lemma 11.14. — Fix n > 0. Then the W,(O)-modules W' (D) and W,€2"

orTH0 admut

unique direct sum decompositions of the form €, rz My, where

..... dy—p~

(1) the decomposition is compatible with the action of Z[})]d, i such a way that [%yi eZ| é]d
acts on M, as multiplication by [¢ ;(i)] e W,(O), where ¢/ := ;ﬁfo.
(ii) each M, is isomorphic to a finite direct sum of copies of W,— ) (O);

(i11) the decompositions are compatible with A

Moreover, X is an 1somorphism if and only if A Qw, 0y W, (k) s an 1somorphism.

Remark 11.15. — The reader may worry that the description of the action in
(1) does not seem to be trivial on yila Z[i]d; however, [;‘pr]”r”(") does act trivially on
W,_.(0), and thus on M, by (ii).

Proof. — In the case of W,.Q’(’Q[Iil] /o We use Theorem 10.12: by directly analyzing
Cases 1-3 of the definition of the element e(x, @, Iy, .. ., I,) one sees that the weight a part
of WTQQ[PI] /A has property (1); it has property (i) by Corollary 3.18(iii). In the case of
WD), the result follows from Lemma 11.9.

Now, knowing that both sides of the map A’ : W"QED[Iil] 0~ WD) admit de-
compositions satisfying (1) and (i1), we claim that the map is automatically compatible with
the decompositions. This follows by a standard “isotypical component argument” from
the observation that if a : {1,...,d} — p~'Z is non-zero and x € W;(O) is an element
fixed by [¢ ;fi)] for all ]%yi, then x = 0; this observation is proved by noting that the hy-
potheses imply that x is killed in particular by [¢,;] — 1, which is a non-zero-divisor of
W;(O) by Proposition 3.17(i).

For the final statement, it suffices to prove that if / : M — N is map between two
W,(O)-modules M, N which are finite direct sums of copies of W;(O) for some fixed
0 <j < r (regarded as W,(O)-module via '), and f Qo) W, (k) is an isomorphism,
then so is f. To check this, we may assume that j = 7. Now W,(O) is a local ring, over
which a map of finite free modules is an isomorphism if and only if it is an isomorphism
over the residue field. UJ
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By the lemma, it is enough to prove that
W =00 @w,0) Woh) - W, Q% 1y o ®w,o) W ()
— WD) Qw,0) W, (k) =: W/ (D),
is an isomorphism. By Proposition 10.14, the source
Wiy 0 ®w, 0 Wilh) = WikZpary -
Lemma 11.16. — There is an isomorphism of differential graded algebras

Wi D) =W, 28

In degree 0, 1t is compatible with the identification )»? ®w, ) W, (k) : WD), = W, (K[ T=']).

Note that we do not a priori claim that this isomorphism is related to X:.

Progf. — First, we note that W”"(D) is Tor-independent from W,(QO) over W, (k)
by part (ii) of the previous lemma and Lemma 3.13; this implies that

W) (D), = H"(Ln, D @Y, W, (k).

This identification is multiplicative; the differential on the left is induced from the Bock-
stein differential in the triangle

v
Ln,D ®% W,(k) — Ln,D®% Wy, (k) > Ln,D &% W,(k).

But one has an identification between Ln,D ®kinf W(k) and Q;V(k)[Til] W by Proposi-
tion 11.8, noting that the ¢g-de Rham complex becomes a usual de Rham complex over
W(k) as ¢ = [e] = | € W(k). This identification is compatible with the multiplicative
structure. We get an isomorphism of graded algebras

WD), = H'(Ly, D &% W,(h) = H'(

_ n
Wk)[zil]/w,(k)) =W.£2

HTE /8

using the Cartier isomorphism [44, §III.1.5] in the last step. This identification is com-
patible with the differential, as both are given by the same Bockstein. One checks that in
degree 0, this is the previous identification. UJ

Thus,

)\.r . W"Q]:[Iil]/k - W}’.(D)k ; WrQ]:[Iil]/k

can be regarded as a differential graded endomorphism of W,Q;[
tity in degree 0. But W,Q/:[

T which is the iden-

Tk is generated in degree 0, so it follows that the displayed

map is the identity, and so A: is an isomorphism. 0J
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11.3. Proof of Theorem 11.1. — Finally, we can prove part (iv) of Theorem 9.4.
Recall that this states for a small formally smooth O-algebra R, there is a natural isomor-
phism

HI(W, Q) = W, Q50 ().

Proof. — Note that we have already proved in Lemma 9.7 and Corollary 9.11 that
all

H'(W,Qp) = H'(Ly,, D/£)
are p-torsion-free, where D = RI'},,« (X, Ay, x). Moreover, we have

H(W, Q) = HY, . (X, W,(O5)) = W,(R).

proét
Thus, we can apply the machinery from Section 11.1 to get canonical maps of F-V-
procomplexes

A TW,Qp 0 — H (W, Q).

To verify that these are isomorphisms after p-completion, we use Elkik’s theorem
[26], to choose a smooth O-algebra R with an étale map O[T*'] = R, which after
p-completion gives O(T*') — R, and consider the diagram

W, Q ®w, O[T W,(Rg) —— H"(W,-QO(Iﬂ)) Ow,orT*) W, (Ry)

| |

W, 258" H"(W,Qp).

n
orr£lyo

Here, the left vertical map is an isomorphism after p-completion by Lemma 10.8 (and
the equation W,Q%g?g = W,,Q'ﬁ;%lt), the upper horizontal arrow is an isomorphism after
p-completion by Theorem 11.13, and the right vertical arrow is an isomorphism after
p-completion by Lemma 9.9.

Note that in this section, we have regarded roots of unity as fixed; undoing the
choice introduces the Breuil-Kisin—Fargues twist, as can easily be checked from the defi-
nition of the differential in Section 11.1 as a Bockstein for

0— grAinf/ g,QAinf — A/ g,?Ainf — A/ ErAinf — 0.

Finally, to see that the isomorphism for » = 1 agrees with the one from Theo-
rem 8.7, it suffices to check in degree : = 1 by multiplicativity. It suffices to check on
basis elements of 911{7?91“, so one reduces to the case R = O(T*!), where it is a direct

verification. O
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11.4. A variant. — Let us end this section by observing that as a consequence, one
gets the following variant. Let R be a small formally smooth O-algebra as above, with X
the generic fiber of X = SpfR.

Proposition 11.17. — For any integers r > 1, s > 0, there is a natural isomorphism

Hi (Ln[§ﬁ1+.x]—lRFpr0ét (X’ Wr(O;(_))) gws Hi(WH-sQR ®a',_+5(0) W,(O))
= (W5 / VW20 ) (=il
where the map W, ,(O) — W,(O) is the restriction map.

Note that as s — oo, the left side becomes almost isomorphic to H;mét(X,
W,(05)), so this gives an interpretation of the “junk torsion” (i.e., the cohomology of
the terms coming from non-integral exponents « in the computation) in terms of the

de Rham-Witt complex.

—_—

Proof. — The first isomorphism follows from Lemma 9.18 applied to W, ,£2; and
E = W,(O) considered as W, ,(O)-module via restriction, as

W,(0%) ZW,..(05) &% 0y WAO)

by Lemma 3.13. For the identification with de Rham—Witt groups, note that there is an
exact triangle

P E) () T2

—~— —_ ~—" L
WxQR - W7+sQR - W,HQR ®\\’7+x(0) Wr(O),
as one has a short exact sequence

HE)-@ T (E)
—

0— W,0)* W,,(0) = W,(0) — 0,

—_—

and VV:QR =W, Qp ®%~',+,\(O),F' W,(O). Passing to cohomology, we get a long exact
sequence

LV .
> Wssz@glt{_l} ’ WH-JQQ;(();H{_Z}

— H” (Wr+JQR ®{J\rr+x(0) WI(O)) — .

As V' is injective (since F"'V" = p" and the groups are p-torsion-free), this splits into short
exact sequences, giving the result. 0J
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12. The comparison with crystalline cohomology over A,

Let X/O be a smooth p-adic formal scheme, and let Y = X xg,r0 Spec O/p be
the fiber modulo p of X. Note that this is a large nilpotent thickening of the special fiber
X Xgpro Spechk.

Let u: (Y/Z))crys — Yzar = Xz, be the canonical map from the (absolute) crys-
talline site of Y down to the Zariski site. Recall that Ay, is the universal p-adically
complete PD thickening of O/p (compatible with the PD structure on Z,), so we have
(Y/Z,) orys = (Y /Acrys)erys, and for psychological reasons we prefer the second interpreta-
tion. Recall that we have defined AQ2x = Ln, (Rv,A;,;x), where X is the generic fiber
of X. Our goal is to prove the following comparison result:

Theorem 12.1. — There ts a canonical isomorphism
= crys
AQ3€®Aiancrys ~ Ru, OY/ACWS

in D(Xzap). In particular, of X 1s qegs, this gives an isomorphism
RF (%, AQX)éAiancrys ad RFcrys (Y/Acrys) .

The first step of the proofis to construct the identification locally using a framing of
X in Section 12.1. To globalize, in Section 12.2, we reinterpret the previous identification
in a choicefree fashion: instead of working with étale maps (i.e., the framing) attached to a
finite set of units, we work with closed immersions provided by working with “all possible
units”; this gives a strictly functorial isomorphism, and thus globalizes.

12.1. The local isomorphism. — We start by verifying the assertion in the case X =
SpfR for a small formally smooth O-algebra R, with a fixed framing

O: SpfR — SpfO(Ty!, ..., T;') = SpfO(T*').

The isomorphism will a priori be noncanonical.

Recall that in this situation we have a formally smooth A;,-algebra AR)"Y, with
AR)Y/& = R; more precisely, it 1s formally étale over Apr(UE"). The action of T’ =
Zp(l)d which lets the basis vector y; € I' act by sending U to [€]U; and U; to U; forj # 1
lifts uniquely to an action on A(R)™, and we have the g-derivatives

% _ 7=l ®P S A®)”.
3,log(U)  [e]—1

This gives rise to the ¢-de Rham complex

9 0
o =K ..., . :
T73EA®)D Ay AR)D (aq log(U)) 9, log(Ud)>




358 BHARGAV BHATT, MATTHEW MORROW, PETER SCHOLZE

On the other hand, we have the usual de Rham complex

i) 0
* =K ey
AR)D/Aing AR ( dlog(U)) dlog(Uy,) )

written using the basis dlog(U,), ..., dlog(U,) of QL(LIZI;E o Also, define the Agys-
algebra Ay (R)Y = A(R)"®4, Acrys; then

Aays = Q%

:\(RF/Am@AM orys Acrys (R /Acrys”
Before go on, we observe a few facts about elements of Ays.
Lemma 12.2. — Let ¢ = [€] € Ay, as usual.

() The element “=2— - lies in Acryss

(g—D"
(n+1)!

and 1t 1s topologically nilpotent in the p-adic topology.

(1) foranyn> 0, t/ze element
n— Q.
(ii)) The element 1og(q) € Ay can be written as log(q) = (g — 1)u for some unit u € Ay

lies in Ay, and converges to O in the p-adic topology as

In particular, the elements

log(¢)" _ (g— D!
nl(g—1) n!

lie n Ay, and converge to 0 in the p-adic topology.

Progf- — Tor (1), note that § = m //, - lies in Ker6 1 Ay — O. Thus, E € Aqys. On

the other hand, &’ = (¢ — 1)’~! mod , already in A;y. Therefore, (q;%l € Auys. As it
lies in the kernel of 6 : A, = O, it has divided powers, and in particular is topologically
nilpotent.

For part (i1), let m = L - ]. Then by part (i)

(g— 1"V
pm

converges to 0 as m — 00. But note that the p-adic valuation of (z+ 1)! is bounded by m.
Thus,

€ Acrys

- _ (g — Dr—me=b P (=1
(n+1)! (n+ 1! "

€ Acrys ’

where each factor lies in Ay, and the last factor converges to 0.
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Finally, for part (ii1), write

_1)
log<q>=<q—1><1+2( )<q—1>").
n>1

n+1

We claim that the sum is topologically nilpotent. As all the terms with n > p are divisible
by p by (ii), it suffices to check that the terms with n < p are topologically nilpotent. This
is clear if n < p— 1, as ¢ — 1| is topologically nilpotent, and for n = p — 1, it follows

from (). U

In the sequel, the following torsionfreeness property of AcryS(R)Ij shall be used
freely.

Lemma 12.3. — The ring Acrys(R)Ij is L-torsionfree.

Progf. — Let us first note that ACWS(R)':I is the derived p-completion of a free Ay~
module: by base change (first along Ay, — Ay and then along A;,; — O), this reduces
to showing that R is the derived p-completion of a free O-module. As both R and O are
p-torsionfree, it suffices to show any smooth O /p-algebra S is free as a O/p-module. But
this is clear: any such S is the base change of a smooth algebra defined over an artinian
subring of O/p (as O/p is 0-dimensional and thus a direct limit of its artinian subrings),
and any flat module over an artinian ring is free.

We now show ACWS(R)D[/L] = 0 by showing that the Koszul complex
Kos(AcryS(R)D; w) has no H;. By the previous paragraph, the complex Kos(Ays R)Z; 1)
is the derived p-completion of a complex of the form Kos(®iA.ys; 1) for some set L.
Since Ay, 1s itself p-torsionfree, we have Kos(®rAqys; ) >~ D1Aqy/ 1 via projection
to H’. We are thus reduced to showing that Hl(®IAcrys /m) =0, where @ denotes the
derived p-completion of the direct sum. By general properties of derived completions of
abelian groups, this H; is identified with the p-adic Tate module T,(©1Ay/1). But the
obvious map T, (B1Aqy /1) — [T T)(Acrys/ 1) 1s trivially injective, and T (A, /) =0
as Aqys/ 1 1s already derived p-complete, so we get the desired vanishing, O

The following formula expresses the ¢-derivative in terms of the derivative, via a
Taylor expansion.

Lemma 12.4. — One has an equality of endomorphisms of Acr>,s(R)D,

9, _log(g) @ 10g(q)2( 9 )2+...
9,log(Uy) — g—1dlog(U) = 2(g— 1)\ 9log(U;)

_Z log(¢)" ( 0 )”
 Lal(g— 1) \dlog(Uy ) °

n>1
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Proof. — As Agys (R)H is pu-torsionfree, the formula is equivalent to the formula

B log(¢)" 0 " 0
n=2 = (810g(U,-)> _eXp<IOg(q)8log(Ul—)>'

n=>0

To check this formula, we must show that the right side is a well-defined continuous Ay-
algebra endomorphism of AcrYS(R)D, reducing to the identity on R = ACWS(R)D Ao O,
and that the identity holds in the case R = O(T*") (as these properties determine y;).
The formula is well-defined by Lemma 12.2. Moreover, it defines a continuous
Aqys-linear map. Multiplicativity follows from standard manipulations. Also, after base
extension along 6 : A, — O, log(¢g) vanishes, and the formula reduces to 1 = 1. Finally,
we need to check the action on the U; is correct. Certainly, the right side leaves U; for

J # 1 fix. It sends U, to

1 n
Z Og(Q) U, =4qU;,

|
=0 n.

as desired. UJ
Corollary 12.5. — There is an isomorphism of complexes

L]
q- QA(RﬁAnf@AmfAW = QM«R) 0/ Acrys

inducing the identity A(R)D® At Perys = Acrys(R)D in degree 0.

Note that as Acm(R)D is a (formally) smooth lift of R/p from O/p to Ay, the right
side computes RI'.((Spec R/p) /Acys). Also recall from Lemma 9.6 that ¢- €25 AR /A
computes AQ2g. Thus, the proposition verifies the existence of some isomorphism as in
Theorem 12.1 in this case. We note that the isomorphism of complexes will not be an
isomorphism of differential graded algebras (as the left side is non-commutative, but the
right side is commutative).

The isomorphism constructed in the proof will agree with the canonical isomor-
phism from Theorem 12.1 in the derived category.

Progf. — For each 7, one can write

0, __ 9 <10g(q)+z log(g)" ( 0 )”‘1>,
d,log(U;)  dlog(U) \ ¢—1 = n!(¢g—1) \ dlog(U,)

102(4)

where the second factor is invertible. Indeed, Og(f)

logically nilpotent and converges to 0 by Lemma 12.2.

is invertible, and ;€ Acrys 1s topo-
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In general, if g, : =1, ..., d, are commuting endomorphisms of M, and 4, 1 =
l,...,d, are automorphisms of M commuting with each other and with the g;, then

KM(glhla ---,gd/ld) = KM(gl’ ---,gd)-

Applying this in our case with M = ACFYS(R)D, g = m and gh; = %“(U_), where /;
itself is given by the formula above, we get the result. 0
12.2. The canonical isomorphism. — In this subsection, we modify the construction

of the previous subsection to construct specific complexes computing RI'.(Spec(R/p)/

Adys, O) and AQR®Ami arys» and a map of complexes between them, which is a quasi-
isomorphism. These explicit complexes, and the map between them, will be functorial
in R, and thus globalize.

Let R/O be a formally smooth O-algebra. Assume that R is small, i.e., there is an
¢tale map SpfR — Gd Here, we assume additionally that there is a closed immersion
SpfR C G” for some n > d; let us call such R very small. Of course, any formally smooth
O-algebra R is locally on (SpfR)z,, very small.

The (simple) idea is to extra roots not just of some system of coordinates, but instead
of any sufficiently large set of invertible functions on R. Thus, fix any finite set & C R*
of units of R such that the induced map SpfR — Gm, n=|X], 1s a closed embedding,
and there is some subset of d elements of ¥ for which the induced map SpfR — Gd is
étale. Let Sy, be the group algebra over Ay, of the free abelian group @, 5 Z generated
by the set X; for u € X, we write x, € Sy, for the corresponding variable. This gives a
torus Spec(Sx) over Aqys. There is an obvious map Sy ®a,,,, O — R sending x, to «, and
we get a natural closed immersion Spec(R/p) C Spec(Sy) by assumption on R. Let Dy
be the p-adically completed PD envelope (compatible with the PD structure on Agy,) of
Sy = R/p; as R/p is smooth over O/p, Dy is flat over Z,.

Let Sy — S 5 be the map on group algebras corresponding to the map

Pz-Pp z[ ]
uex uex
of abelian groups, so there is a well-defined element x* € S, x for each u € T and k €
Z[/l)], extending the obvious meaning in Sy if £ € Z. Using this, let Ry 5 be the p-adic
completion of the normalization of R in (R ®s; Soo,z)[%]. Note that R x 1s perfectoid.
There is a natural map Sz — Ay(Ro 5) sending x, to [«’], where @’ = (u, ul’?
W) e RZO,S is a well-defined element, as we have freely adjoined p-power roots
of u. This extends to a map Dy — AR 5/p) by passing to p-adically complete PD
envelopes. Here, A.ys(Ro 5 /p) denotes the universal p-adically complete PD thickening
of Ry 5 /p compatible with the PD structure on Z,; equivalently,

Acrys (Roo, p) //7) = Ainf(Roo, p) ) ®A;n¢~Acrys .
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Let I' = [[,.x Z,(1) be the corresponding profinite group, so there is a natural
["-action on Sy, Dy, Se.y and Ry x. Explicitly, if one fixes primitive p-power roots
¢y € O, giving rise to [€] € Ay, then the generator y, € I' corresponding to u € X acts
on Se x by fixing x/// € S for u# v € ¥, and sends /" to [e]'/"" - x!/1".

Let LieI" = [[,.5 Z,(1) denote the Lie algebra of I'. In this simple situation of an
additive group, this is just the same as I', and there is a natural “exponential” isomor-
phism ¢: Lie ' =T (which is just the identity [[,.5 Z,(1) =[] .5 Z,(1)).

Lemma 12.6. — There ts a natural action of Lie" on Dy, via letting g € Lie " (with
y = e(g) € I') act via the deriwation

(=D ]
g=log) =) ——-1"

n>1

One can recover the action of " on Dy, from the action of Lie " by the formula

y =exp(g) :Zi—j

n>0

Moreover, the action of the basis vector g, € Lle I corresponding to u € X (and a choice of
primative p-power rools of unmity) is gwen by log([€]) 77— ( < recall here that the derivations 375 g(x) of
Sy extend uniquely to continuous derwations of the p- aa’zcally completed PD envelope Dy .

Progf: — Note first that y — 1 takes values in ([e] — 1)Dy. Indeed, acting on Sy,
it is clear that y — 1 takes values in ([€] — 1)Ss. Now, if x € Sy lies in the kernel of
Sy — R/p with divided power ’;—,I € Dy, then yx = x+ ([e] — 1)y for some y € Sy, and
thus

(X) (x4 ([e] = Dy)"
)/ =

n! n!

B K ([6] _ 1)m_))m
X_: m!

(n—m)!

n n—m

A" X ([6] _ 1),,1,1 .
= + ([‘5] - 1) Z D

(n—m)! m!

m=1

n

—+ ([6] - I)Dz,

where we use that ([6— € Dy by Lemma 12.2.

Therefore, the n -fold composition (y — 1)" takes values in ([€] — 1)"Dx. The el-
ement L ]n D" Jies in Dy and converges to 0 as n — 00; this shows that the formula for
log(y) converges to an endomorphism of Dy, which in fact takes values in ([e] — 1)Dy.
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¢ ([e]—nD”*1 lies in Dy, by Lemma 12.2. Similarly, us-

ing the same lemma, one checks that exp(g) converges. To verify the identity y = exp(g),
note that exp(g) defines a continuous A,y-algebra endomorphism; it is then enough to
check the behavior on the elements x,, which is done as in the proof of Lemma 12.4
above.

By uniqueness, the formula for the action of LieI" can be checked on Sy. This
decomposes into a tensor product of Laurent polynomial algebras in one variable, so it
suffices to check the similar assertion for the action of Z,(1) on Ay [X*!]. Here,

For this last observation, use that in fac

_ — 1)t _ e N _
g(xz)zz( n) (el — 1) X" =log([€]') X' = ilog([€]) X', O

n>1
Corollary 12.7. — Consuder the Koszul complex
KD): ((gu) P )

corresponding to Dy, and the endomorphisms g, for all u € 3 ; it computes the Lie algebra cohomology
RI'(LieI', Dy).

(1) There ts a natural isomorphism of complexes

K 0 =n,K
(7)) = K@)

Here, the left side computes RT s (Spec(R/p) /Acrys, O).
(i) There is a natural isomorphism of complexes

KD): ((gu)MGZ) = KD): ((yu - l)uGZ)’
where the right side computes RT .o (I', Dx).

In particular, there is a natural map

a1 Kp <<L> )—>77 Kps (7 = Diex)
R P Blog(xu) s " b} u ue

- nI‘LKAcrys(Roo,E /f)) ((yll - 1 )MEE) )
where the source computes RT ¢y (Spec(R/p) /Acrys, O).

We note that a similar passage between group cohomology and Lie algebra coho-
mology also appears in the work of Colmez—Niziol [20].

Again, the isomorphism in (ii) is not compatible with the structure of differential
graded algebras. However, the left side is naturally a commutative differential graded
algebra, and one can check that it models the E-algebra RI',, (I', D).
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Progf: — By the formula g, = log(u)@ and the observation that log(u) = pv
for some unit v € Ay, cf. Lemma 12.2, part (i) follows from Lemma 7.9.

For part (i1), one uses that g, = (y, — 1)4, for some automorphism 7, of Dy com-
muting with everything else, as in the proof of Corollary 12.5 above. 0J

The map oy, is essentially the map we wanted to construct, but unfortunately we
do not know whether the target actually computes AQr®" 5, Ays. The problem is that
Ay 18 a rather ill-behaved ring, and notably A/ is not p-adically separated. However,
we have the following lemma.

Lemma 12.8. — Let Ag’r”y?s C Acrys be the p-adic completion of the Aiy-subalgebra generated by
f./—! Jorj < m, so that Ay 15 the p-adic completion of h_I)n" A

crys”®

() If m> p?*, then £ = PV for some unit v € A™ | and Lemma 12.2 holds true with Ag’;?s

crys?
in place of Agyys.
(i1) The systems of ideals ({x | px € p’Ag’r’;?S}),, and (p’Ag’r’%)f are intertwined.
(i11) T he intersection

"
——— A = pAL.
ﬂ e (pn) " o

r

(iv) For any m > p*, the natural map

(n,uKAin[(Rw,):)((yu - l)uEZ))éT‘AianEZ;?S - U”’KAinl'(Roo.Z)®A~ A ((yu - l)uEZ)

inf* SCTYS

is a quasi-isomorphism. Here, the left side computes AQr @Lx, A™

inf” “crys”

(v) Under the identification Acrys R x/p) = Ainf(Roo,E)® AMACWS, the map

0
0K —_ —n,K . — 1),
ap : Kp, Tl ). . 1K Rz /0 (Ve = Dies)

of complexes factors canonically over a map of complexes

ot Ko ( (o)) o (Ko (0 D),
b alog(xu) s _m> K= Ainf(Roo, ) ®A pActys )

where the lefl side computes R ¢y (Spec(R/p) /Acrys) as before, and the right side com-
putes AQrQLA, Acys.

Progf. — Yor part (i), the arguments given in the case of Ay, work as well for
AEZS. For parts (ii) and (iii), we approximate the situation by noetherian subrings. More
precisely, consider Ay = Z,[T] C A, where T is sent to [€] /0 Then the element pt € Ay¢

is the image of T? — 1, and & is the image of § = T/"! + ... + T + 1 € Ay. One can
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then define analogues Ag oy, A" of Ay and A : for example, Aqys 18 the p-adic

0,crys crys? o
completion of the PD envelope of Ay — Ag/&). Then Ay = Ag crys @, Ainr and AW =

crys
Agﬁ?rys®A[,Ainf. As Ay 1s topologically free over Ay, it suffices to prove the analogue of (ii)

for A" But A™

0,crys* 0,crys

(TP — DAY c A and the p-adic topology gives (ii).

0,crys 0,crys
Part (ii1) is equivalent to the statement

M
7A(7nl/u — O
ﬂ @ ()

r

is a noetherian ring. Thus, the Artin—Rees lemma for the inclusion

But by part (i), A" /u = 1<1r_n A™ /(w, p*), so it suffices to prove the similar statement for

crys crys

A™ /(1 p*). Now note that

CYYS
AD (12 0) = Ao/ (TP = 1. 9) @ serr—1.0) Aint/ (12 1)

We claim that more generally, for any Ay/(T? — 1, p°)-module M, there are no elements
n

M Qg /c1r—1,) Aint/ (145 )

that are killed by ¢7"(u) for all » > 1. Assume that x was such an element. In particular,
x is killed by ¢ — 1, so as A/ (1, p°) is flat over Ay/(T? — 1, p'), x lies in M" ® 4, /crr—1,)
Aqe/ (1, p’), where M" C M is the T — 1-torsion submodule. We can then assume that
M =M is T — l-torsion, i.e. an Ay/(T — 1, p") = Z/p"Z-module. We can also assume
that px = 0; if not, replace x by p'x with i maximal such that pix # 0. In that case, we can
assume that M is p-torsion, and thus an F,-vector space. Finally, it remains to see that

F, @y -1 Aint/ (1, ') = At/ (07 (), p) = O°/ (' — 1)

has no elements killed by all €'/ — 1, which is clear.

For part (iv), pick an étale map [ : SpfR — SpfO(T5!, ..., T="), corresponding
to fixed units 4, ..., u, € X; this exists by choice of 2. This gives rise to R C Ry 5, on
which the quotient []Z, Z,(1) of T" acts.

The proof of Proposition 9.14 shows that

1s a quasi-isomorphism (in particular, the right side computes AS2R), and the proof of
Lemma 9.6 shows that

(nu Ka, r.) ((J/ui —1 )z’:l,...,d) ) @‘AmrAiﬁl

= 1Ky o8

inf’

Is a quasi-isomorphism.
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It remains to see that

"ltKAin«Roo)@Am,-AE’r”g?s((Vw - 1)i=1s~~->d) - ”MKAinf(Roo,:@AMAE?&((Vu - l)uez)

is a quasi-isomorphism. This can be proved using Lemma 9.12 (one does not need a vari-
ant for A ). Let C* = KAinf(Roo)® A AL (Y — D=1

ety Aui(Roe )8, A (Ve —

1),ex). Condition (i) is immediate from Faltings’ almost purity, and condition (iii) is proved

.....

like Lemma 9.13, using part (iii) of the current lemma. Finally, in order to verify the in-
jectivity condition (ii) of Lemma 9.12, we will momentarily prove that the map

Ly, C* — Rlim(Ln, (C*/,))

is a quasi-isomorphism, and for each r», Ln,(C*/§,) — Ln,(D*®/§,) is a quasi-iso-
morphism; the commutative diagram

Ln,C* Ln,D*

| |

Rlim (L, (C*/)) — Rlim (Ln, (D*/E)
then proves the desired injectivity. Note that Lemma 9.18 shows that

L, (D*/&) = Ly, (C*/5) = W, Q@ w, 0 L. (A./5)
~ AQRé\LAmenM (Agﬂy)s/g) ’

and, as Ln, (Ag’r’i/)s /E,) = Ag’r"y)s /x| ux € E,Agfly)s}, parts (1) and (i) show that (as AQy is
derived p-complete)

inf” “crys*

R Iim (AQr &L, Ly, (ALL/E)) = AQr@Fa, AL

7

For part (v), one can write Dy similarly as the p-adic completion of the union of
p-adically complete subrings DY C Dy, where DY’ C Dy, only allows divided powers of
order at most m. Following the construction of ey through with D(y:") in place of Dy gives,

9
for m large enough, maps from KD(E””((M)%E) to nMKAinf(Roo,E)®Ainl- A0 (Ve = Dyex).

crys

Passing to the direct limit over m and p-completing gives the desired map ag. 0J

To finish the proof of Theorem 12.1, it remains to prove that oy is a quasi-
isomorphism: Passing to the filtered colimit over all sufficiently large X2, all our con-
structions become strictly functorial in R, and thus immediately globalize.
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Proposition 12.9. — The map

0 . A
o . KDE ((8 IOg(Xu) ) ueZ) - (h_rr>l nlLKAinf(ROO-):)@Aiangf?s ((J/u - l)uez))p

m

s a quasi-isomorphism.

Proof. — Pick an étale map (0 : SpfR — SpfO(TT', ..., T") as in the previous
proof. We get a diagram

SpecR/p SpfAcrys(R) H

| E

SpfDy —— SpfA., (T, ..., T;").

As SpfDy is a (pro-)thickening of SpecR/p, the infinitesimal lifting criterion for (for-
mally) étale maps shows that there is a unique lift SpfDy — SpfA. (R)” making the
diagram commute. One can then redo the construction of ag using only the coordinates
Ty, ..., T, and (using notation from the previous proof) one gets a commutative diagram

| Il

P .
Kpy (( Tlog(xn) Juex) (h_r)nm nMKAinf(Roc.E )@AMAQ& ((Yu — Dues ))Z\ .

Here, the right vertical map is a quasi-isomorphism, as was proved in the pre-
vious proof, and the left vertical map is a quasi-isomorphism, as both compute
RT s (Spec(R/p) /Acys, O). Finally, the upper horizontal map is a quasi-isomorphism
by Corollary 12.5 (noting that in this situation, the map

AEZ’QS((VW_ 1)i=1’~-~»d)); - WMKACI-YS(Roo/p)((Vui— D)ot d)

(h_r>n UL
m

inf’

is a quasi-isomorphism, as both sides compute AQY R,

iancry5>' [

12.3. Multiplicative structures. — The previous discussion had the defect that it was
not compatible with the structure of differential graded algebras. Let us note that this
is a defect of the explicit models we have chosen. More precisely, we claim that the
isomorphism of Theorem 12.1 can be made into an isomorphism of (sheaves of) Eq-
A.ys-algebras. For this discussion, we admit that Ln can be lifted to a lax symmet-
ric monoidal functor on the level of symmetric monoidal co-categories. Then AQgr =



368 BHARGAV BHATT, MATTHEW MORROW, PETER SCHOLZE

L, RT e (X, Ajyrx) 18 an Eqo-Ajp-algebra, and we want to show that

chrys (SpeC(R/p)/Acrysv O) E AQR@A Acrys

inf’

as Eoo-Aqys-algebras, functorially in R. This implies formally the global case (as the Eq-
structure encodes all the information necessary to globalize).

We want to redo the construction of the previous section by replacing all Koszul
complexes computing group cohomology by the E-algebra RI',,(I', —). This has the
advantage of keeping more structure, but the disadvantage that we have no explicit com-
plexes anymore. However, the construction of the map ap in Corollary 12.7 is done in
two steps: Part (i) is an isomorphism of commutative differential graded algebras, which
gives an isomorphism of Ey-algebras. On the other hand, part (ii) can be checked with-
out reference to explicit models, and indeed one can check directly that the commutative
differential graded algebra Kyp, ((g,),ex) models the Ey-algebra RI'.,(I', Dx). These
steps work exactly the same with D(zm) in place of Dy. As the final map

L1 RT cou (T, D5”) = L R o (T, Ainr(Roc, 2) B, AlL)

inf* “crys

1s a map of E-algebras, this gives (by passing to the filtered colimit over all sufficiently
large ) the desired functorial map of Eqo-A.y-algebras

[05: 3¢ chrys (SpeC(R/p)/Acrysa O) — AQRé\I‘Aim'ACrYS7

which we have already proved to be an equivalence.

13. Rational p-adic Hodge theory, revisited

Let C be an algebraically closed complete extension of Q,, with ring of integers O
and residue field £ as usual. The goal of this section is to prove a de Rham comparison
theorem for rigid spaces over C. As the continuous projection Bf; — C does not admit
a continuous section, the usual formulation of the de Rham comparison theorem does
not make sense in this case. On the other hand, as the map Bl — C can be regarded
as pro-infinitesimal thickening of C, one has a well-behaved crystalline cohomology for
proper smooth C-schemes taking values in Bz -modules, and deforming usual de Rham
cohomology along B, — C. It is then natural to wonder if this deformation of de Rham
cohomology to Bz can be compared with étale cohomology. The primary goal of this
section is to explain how to construct this deformation more generally for proper smooth
rigid spaces, and to prove the de Rham comparison theorem:

Theorem 13.1. — Let X be a proper smooth adic space over C.. Then there are cohomology
groups Hérys(X /BIR) which come with a canonical isomorphism

Hirys (X/Bg) g, Bar = H,(X,Z,) ®z, Bar-
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In case X = X,®xC arises via base change from some complete discretely valued extension K of Q,
with perfect residue field, this isomorphism agrees with the comparison_from Theorem 5.1 above, under
the identification

H. (X/Biz) = Hir (Xo) ®k B

crys

of Remark 13.20 below.

Our strategy is to define a cohomology theory RI ., (X/BJy) for any smooth adic
space X by imitating one possible definition of crystalline cohomology, namely, in terms
of de Rham complexes of formal completions of embeddings of X into smooth spaces
over By; in order to get a strictly functorial theory, we simply take the colimit over all
possible choices of embeddings.

More precisely, for any smooth affinoid C-algebra R equipped with a suffi-
ciently large finite subset X of units in R°, we consider the canonical surjective map
B:{R((Xuil)uez) — R, viewed roughly as (dual to) an embedding of Spa(R, R°) into a
smooth rigid space over Bly; the precise language to set this up involves taking a limit
over n of “rigid geometry over B, /", and is set up in Lemma 13.4. The completion
D5 (R) of Bz ((XF!) .5 ) along the kernel of this map is then shown to be a well-behaved
object, roughly analogous to the formal completion of the afore-mentioned embedding;
the precise statement is recorded in Lemma 13.12, and the proof entails approximat-
ing our smooth C-algebra R in terms of smooth algebras defined over a much smaller
base A. The de Rham complex €2° + 1s then shown to be independent of ¥ up to

Dz (R)/Bjr
quasi-isomorphism in Lemma 13.13; the key point here is that €2

Ds®R)/
identified up to quasi-isomorphism with Q3 ¢, which is obviously independent of X. Tak-

ing a filtered colimit over all possible choices of X then gives a functorial (in R) complex,
independent of all choices. For a general smooth adic space X over C, this construction
gives a presheaf of complexes on a basis of X whose hypercohomology is (by definition)
RT s (X/BJ); when X is proper, this theory is then shown to satisfy Theorem 13.1.

g+ /& 1s canonically
dR

Remark 13.2. — It is probably possible to develop a full-fledged analogue of the
crystalline site in this context (which actually reduces to the infinitesimal site), replac-
ing the usual topologically nilpotent thickening W(k) — £ by Bjy — C. Our somewhat
pedestrian approach, via building strictly functorial complexes on affinoid pieces, is engi-
neered to be compatible with the A, -comparison of the previous section.

As an application of the construction of the Bz -cohomology theory, we can prove
degeneration of the Hodge—Tate spectral sequence [60], in general.

Theorem 13.3. — Let X be a proper smooth adic space over C.
(1) (Conrad-Gabber) The Hodge—de Rham spectral sequence

B = H (X, Q,c) = Hi (X)

degenerates at E; .
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(i1) The Hodge—Tate spectral sequence
E) = H'(X, @4 ,0) () = Hi (X, Z,) ®, C
degenerates at Eo.

Both parts of Theorem 13.3 rely on the work [21] of Conrad-Gabber yield-
ing a “Lefschetz principle” for proper rigid spaces. In fact, the degeneration of the
Hodge-de Rham spectral sequence follows directly from (and was one of the motiva-
tions for) [21]; the degeneration of the Hodge—Tate spectral sequence also uses the B -
cohomology theory. The work [21] relies on establishing a relative version of classical
results in the deformation theory of proper varieties. Since the classical version actually
suffices for our application, we give a self-contained exposition of the relevant statements
in Section 13.2.

13.1. The B, -cohomology of affinoids. — In this section, we explain how to construct
the Bz -cohomology for certain smooth affinoids. To do so, we need some basic lemmas
on “rigid geometry over Bl /€"”. Note that Bl /6" = Ay/& ”[}J] is a complete Tate-Q,-
algebra.

Lemma 13.4. — Let R be a complete Tate-Bjy /€"-algebra.

(1) The following conditions on R are equivalent.
(@) There is a surjective map B /E" (X1, ..., X,) = R for some m.
(b) The algebra R /& s topologically of finite type over C.
In case they are satisfied, we say that R is topologically of finite type over By /E".
(i) IfR is topologically of finite type over Bl /&", the following further properties are satisfied.
(@) The ring R is noetherian.
(b) Any ideal I C R s closed.
(1) A p-adically complete p-torsion free Aqnr/&"-algebra Ry s by definition topologically of finite
type if there is a surjective map Aq/E" (X1, ..., X,) = Ry _for some m. In this case, the
Jollowing properties are satisfied.

(@) The ring Ry s coherent.
(b) Any ideal 1 C Ry such that R /1 is p-torsion free is finitely generated.
(c) The Tate-Bli /&"-algebra R = RO[%] is topologically of finite type.
(ii) IfR is topologically of finite type over Biy /E", then there exists a ring of definition Ry C R
such that Ry s topologically of finite type over Ayne/E".

We note that all assertions are well-known for n = 1, i.e. over Bl /& = C. We will
use this freely in the proof.
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Proof. — Tor (i), clearly condition (a) implies (b). On the other hand, given a sur-
jection

C(Xy,...,X,) = R/&,

one can lift the X; arbitrarily to R; they will still be powerbounded as R — R/& has
nilpotent kernel. Thus, one gets a map B /6"(X, ..., X,) = R, which is automatically
surjective.

In part (ii), it is enough to prove these assertions in the case R = Bl /§"(X,, ...,
X,.)- This is a successive square-zero extension of the noetherian ring C(X, ..., X,,) by
finitely generated ideals, and thus noetherian itself. We will prove part (b) at the end.

For part (ii1), part (c) is clear, and the other assertions reduce to Ry = A;,¢/§" (X,

..+ X,). This is a successive square-zero extension of the coherent ring O(X,, ..., X,)

by finitely presented ideals, and thus coherent itself, cf. Lemma 3.26. For part (b), let more
generally M be a finitely generated p-torsion free Ry-module; we want to prove that M is
finitely presented. Applying this to M = R,/1 gives (b). Let M = im(M — M/&[ ;7]). Then
M is a p-torsion free finitely generated R, /&-module, and thus finitely presented as R, /&-
module, and thus also as Ry-module, cf. Lemma 3.25(i). Therefore, M = Ker(M — M) is
also a finitely generated p-torsion free Ry-module. But M is killed by £"~': If m € M, then
prm € EM for some k, and then £"~'pfm € €"M = 0. As M is p-torsion free, this implies
that £""'m = 0. We see that M’ is a finitely generated p-torsion free Ry/£"'-module, so
induction on 7 finishes the proof.

In part (iv), if Bl /6"(X, ..., X,,) = R is surjective, then the image of

Ainf/%-’Z(X], ey Xm> — R

defines a ring of definition Ry C R which is topologically of finite type.

Finally, for (i1) (b), let I C R be any (necessarily finitely generated) ideal, and Ry C R
a ring of definition which is topologically of finite type. Let Iy = INR,. Then Ry /Iy C R/I
is p-torsion free, and thus I, is finitely generated over Ry. This implies that I 1s p-adically
complete, and thus I C Ry is closed, and so is I C R. ]

Defination 13.5. — Let R be a smooth Tate C-algebra of dimension d. We say that R s very
small of there exst finite subsets {1, ..., T;} C X C (R°)* with the following properties:
(1) The map
(X

defined by X, = u is surjective.
(i1) On adic spectra, the map

Spa(R,R°) — T’ :=Spa(C(T}", ..., T;"), O[T, ..., T;")

)—>R

uex

by the 'T';’s 1s étale and factors as a composition of rational embeddings and finite étale maps.
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Note that the subset ¥ C (R°)* appearing in the definition of very smallness is
not fixed; in particular, we are allowed to enlarge ¥ without affecting either of (¢) or (u)
above. Let us explain how to construct pro-infinitesimal thickenings of very small rings
relative to B .

Construction 13.6. — Fix very small R and subset {T,...,T;} C ¥ C (R°)* asin
Definition 13.5. We have a surjective map

BL{(X) )= R,

uex

sending X! to «*!. Here, for any finite set I,
B:er<(Xz:'H)ieI> = l(ing:;R/E"((XZ?H)ieI).

For v € X, there are natural commuting continuous derivations

0 0
=X,
dlog(X,) X,

BR((XE) )= BR((XF)

u€2> ueE)'

Now let Dy (R) be the completion of BIR((XMil)ueg) with respect to the 1deal

I(R) = Ker(Bf((X;"), o) = R).
By Lemma 13.4, all powers I(R)" C BIR((Xuil)uez) are closed, so that with its natural
topology, D5 (R) is a complete and separated Bf;-algebra. The derivations m for
u € ¥ extend continuously to Dy (R). ‘

To proceed further, we shall need the following noetherian approximation lemma
that roughly says that a very small smooth Tate C-algebra can be defined over a smooth
algebra over a discretely valued field in such a way that the set of units witnessing “very

smallness” are p-adically close to units that also descend.

Lemma 13.7. — Let R be a very small smooth Tate C-algebra R; fix finite subsets
{Ty,...., T} C X C (R as in Definttion 13.5. Then, at the expense of enlarging X, we can
find the following:

(1) A smooth adic space S = Spa(A, A°) of finite type over W(/f/)[%] Jor some perfect field
K C k and a W(K')-algebra map A — C.
(i) A smooth morphism Spa(Rya, RY) — Spa(A, A°) and an identification R >~ RA®AC.
(111) Finate subsets {1y, ..., Ty} C Xx C(RR)* such that
(@) The identification R\®@,C >~ R carries S5 into X while preserving the T .
(b) The map

A(X)

defined by X, = u 1s surjective.

>—)RA

UE XA
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(c) On adic spectra, the map
Spa(RA, Rf;) — Tg
=S Xspa,zy) Spa(Qu(TT, ..., T, Z,(T7, ..., 1))

by the 'I';’s 1s étale and factors as a composition of rational embeddings and finite étale
maps.

The proof below shows that we can take £ = F, in (i), i.e., we can take A to be a
smooth Tate Q -algebra.

Progf. — By de Jong’s theorem [23], we can write O as a filtered colimit of finite
type regular Z,-algebras B, (and thus Bi[/l)] is smooth over Q). We shall show that taking

A= /ﬁj[%] for j sufficiently large does the job; note that Spa(C, O) = lim; Spa(ﬁi[ll)], E).

Consider the étale map
Spa(R,R°) — T =Spa(C(T7", ..., T;"), O[T}, ..., T7 ).

This map factors as a composition of rational embeddings and finite étale maps by hy-
pothesis. As both rational embeddings and finite étale maps admit suitable “noetherian
approximation” results, setting A = E[l] for sufficiently large j, we immediately get (1),
(i), and a map as in part (c) of (ii1) that descends the previous map. It remains to show
that, after possibly enlarging 2 and replacing A with a finer approximation, we can also
find the subset X, C (R})* satisfying parts (a) and (b) in (iii). For this, we first enlarge X
by adding in small perturbations, and then replace A with rational localizations. More
precisely, we first note that there exists some N > 0 such that any map

C(X)ex) = R

defined by X, > u + pNa, (for some a, € R°) is surjective: this follows from Lemma 13.8
below applied to the map on power bounded elements (and our hypothesis that this map
is surjective when all the g, equal 0). Now the map

lim R} ®g B; — R°

iz
has dense image in a ring of definition. It follows that at the expense of enlarging j, we can
choose a subset 25 C (R})* containing {1, ..., T} such that the corresponding map

a:B:=A(X") . )= Ry

UEXA

is surjective after base change along A — C; this immediately gives (ii1) (a). We also obtain
the surjectivity required in (ii1) (b) by replacing A with a rational localization around the
point x € Spa(A, A°) determined by the map A — C using Lemma 13.9 below. UJ
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The next three lemmas were used above.

Lemma 13.8. — Let f : M — N be a map of p-torsionfree and p-adically complete abelian
groups with fI1/p] s surjective. There exists some m > O such that any map g : M — N with
g =/ mod p", the map g[1/p] ts also surjective.

Proof. — By the open mapping theorem, there exists some 7 > 0 such that N' :=
"N C f(M). Write M’ := f~1(N'), so f restricts to a map_f’ : M’ — N’ that is surjective.
We shall show that taking m = n 4 1 does the job. Fix a map #: M — N, and let g =
f + p""'h. We must show that g[1/p] is surjective. Now if x € M/, then f(x) € N and
P h(x) = p - p'h(x) € pN. Tt immediately follows that g carries M into N’ and that the
induced map g’ : M' — N’ agrees with /* modulo p. In particular, ¢’ surjective modulo p.
But then g must be surjective: any map between derived p-complete modules that is
surjective modulo p is surjective: apply [1, Tag 09B9] to the cokernel. It is also clear that
g11/pl = gl1/pl, so the claim follows. O

Lemma 13.9. — Let A — B > C be maps of affinoid algebras that are topologically of finite
lype over a nonarchimedean field K. Assume that there exists a rank 1 point x € Spa(A, A°) such

that B& k() 5 C® ak(x) s surjective. Then there exists some rational subset U C Spa(A, A°)
contarming x such that oy : By — Cy s surjective; here Ay = OSpa( aay(U), By := BRAAy and
simalarly for Cy.

The assumption that x be a rank 1 point is critical to the conclusion above. In fact,
taking x be any point of rank > 1 on any affinoid A gives a counterexample as follows.
Take A = B and let C = Ay be the rational localization corresponding to a rational subset
V' C Spa(A, A®) that contains the unique rank 1 generalization x,, of x but does not
contain x; these exist as rational subsets give a basis for the topology. As £(x) = £(x,,), the
map «, is bijjective. Now if U is any rational open that contains x, then the map oy : Ay —
Au®aAy >~ Apny is a rational localization corresponding to the inclusion UNV C U. If
ay were surjective for some U containing x, then UNV C U would be a closed subset by
[42, §1.4.1]. But this is impossible as U NV is not closed under specialization in U: the
point x,, lies in U NV and its specialization x lies in U (by assumption on U) but not in V
(by choice of V).

Progf: — In this proof, the symbol U will be reserved to denote an element of
the collection Y of all rational subsets of Spa(A, A°) that contains x. Let us begin by
fixing some compatible rings of definition. Without loss of generality, we may assume
A =K(Ty,..., T,) is a Tate algebra. In particular, for each U € 4, we simply use
Aoy := Ay, as the ring of definition for Ay; write Ag = Ag spaca.ae) for the ring of defi-
nition of A itself. Write C = A(Y, ..., Y,)/I for some ideal I, write f; € C for the image
of Y;, and choose a ring of definition Cy C C that contains the f’s as well as the im-
age of Ay. By writing B as a quotient of a Tate algebra, we may assume without loss
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of generality that B = A(X, ..., X,), so By = Ay(X,,...,X,) C B is a ring of defini-
tion. We may enlarge the ring of definition C if necessary to ensure that a(By) C Cy.
Then By, := By®a,k(x)* ~ k(x)* (X, ..., X,) is a ring of definition of B, := B&xk(x)
k(x) (X, ..., X,); similarly, By y 1= BO®A0A0,U C By 1s a ring of definition. The p*>°-
torsion in Co®a,Aq.u and CQ®AOk(x)+ 1s bounded by [16, Lemma 1.2 (c)], and the quo-
tients Cy y := (30@ Ao, u/(p>-torsion) and Gy, := CO®AO/~6(JC)Jr /(p>-torsion) give rings
of definition of Cy and C, respectively. For future reference, note that the natural maps
lim _ Byuy— By, and lim
—>Ueld & ’ —> Uel
and that Cy and C, are topologically generated by the f’s over Ay and £(x) respectively.

Next, let us fix some constants that we are allowed to perturb the f’s by with-

Co.u = Cy,, are isomorphisms after p-adic completions,

out affecting the fact that they topologically generate G or its localizations. Recall that
we have chosen a presentation C = A(Y,,...,Y,)/I. In particular, the natural map
Ao(Y1, ..., Y,) = Cy is surjective after inverting p. By the open mapping theorem, this
map has a cokernel annihilated by ™ for some fixed N > 0. By base change, the coker-
nel of the map Ay y(Y1,...,Y,) = Cou is also annihilated by pN for U € 4. It follows
from Lemma 13.8 (and its proof) that any £/ € Cyy such that ' = f; mod p~"'Cyy also
provides a topological generating set for Cy over Ay for all U € U as well as for C, over
k(x).

Now consider the map «, : B, = C,. By assumption, this map is surjective. By the
open mapping theorem, the induced map «, : By, — C, has cokernel killed by p™" for
some m > 0. So we can choose gi, ..., g € By, such that o, (g;) = p"/; for all i.. Moreover,
note that both «,(By,) and G, are topologically finitely generated rings of definition
of the tft £(x)-algebra C,. Their integral closures must coincide with the subring C? of
power bounded elements by [15, §6.3.4, Proposition 1] (see also [4], Lemma 4.4]). In
particular, Gy , is integral over o, (B ,). So for each ¢ € {1, ..., 7}, there exists a monic
polynomial Q;(T) € By ,[T] such that «,(Q;)(f)) = 0.

As the natural map li_r)nU Bo.u — By, 1s surjective modulo any power of p, we
can find /%;,..., h € Byy for a sufficiently small U € U such that the image of % in
By, differs from g by pNT™ B ,. Then ay(h) € Coy are elements whose image in
Co,, differs from p"f; by pN+1Cy .. As the map lim _ Cou — Co,, is an isomorphism
after p-adic completion, it follows that after possibly shrinking U € [, we can ensure
that ay (k) — p"fi € PN Coy. Dividing by p" shows that f/ := “%(}“) € Co,u and that
S = f € PPT'Cou. By our choice of N in the second paragraph of this proof, it fol-
lows that f/,....f’ € Cyu give a topological generating set that lies in the image of
BO,U[%)] =By — Cu.

By shrinking U € i further, we can find monic polynomials P;('T) € By v[T] such
that the image of P,('T) in By ,[T] differs from Q;(T) by pB .. Since [ — f; € PNTCo v,
it follows that the image of oy (P;)(f’) in Cy, lies in pC ,. By shrinking U € 4 further,
we can ensure that ay(P,)(f') € pCou. Applying Lemma 13.10 below to the inclusion
im(By y — Cy u) C Cyu and the elements f/, ..., f’ € Cy u then gives the result. ]
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Lemma 13.10. — Let By C Cyy be an inclusion of p-adically complete and p-torsionfree rings
such that Cy s generated as a p-adically complete Bo-algebra by f, ..., [, € Co. Assume this data
satusfies the _following:

(1) We have f; € Bo[i]for all e
(i) There exist monic polynomials Py, ..., P, € Bo[x] such that P;(f;) € pC.

Then p*Co C By for some k> 0.

Progf: — It 1s enough to show that Cy is a finite Bp-module. Indeed, then each
i would satisfy a monic polynomial over By, so (i) would show Bo[/l)] = Co[%], whence
/'Co C By for £ > 0 by the open mapping theorem. To show the finiteness, by
Nakayama’s lemma and completeness, it is enough to show the same modulo p. But then
itis clear: By/p — Cy/p 1s a finite ring map simply because the generators f;, ..., f; € Co/p
are integral over By /p by (ii). UJ

For the rest of this section, fix notation as in Lemma 13.7, though we shall use the
flexibility of enlarging > as necessary. Note that by smoothness of A over a discretely
valued field, there are continuous maps A — B lifting the map to C; we fix one such
map. Let Dy, (Ry) be the completion of

A((XE) )= R

UEXA

Again, all powers of the ideal Ker(A((XZIEl )uesy) — Ra) are closed, and thus this defines a
complete and separated algebra. Our next goal is to compare this with Construction 13.6.

For this, we shall need a structural property that we prove first. Let R\®,Bl; be
defined as the inverse limit of R\®,B_; /£", where we note that R, A and By, /" are
all complete Tate Q ,-algebras, and hence there is a well-defined completed tensor prod-
uct: if Sy <= S; — S5 is a diagram of complete Tate-Q ,-algebras with rings of definition
So.0 <= S1.0 = S50, then

~ . 1
Se®s, S5 = (lm(sz,o ®s, 3,0 = Sy s, Sz)); [1;]

The structural property that we need is the following:
Lemma 13.11. — The algebra RA\QxB is a & -adically complete flat By -algebra, with
(RA®ABIR)/S =R
and more generally
(Ra®aBlr) /6" = Ra®aB /8",

which is topologically fiee over Bl /&".



INTEGRAL p-ADIC HODGE THEORY 377

Proof. — Tt is enough to see that R\®, By /&" is topologically free (in particular,
flat) over B /&" for all n > 1, with (RA®B_/€")/& =R.

There is a finitely generated A°[TE!, ...,le]—algebra R, ¢tale after invert-
ing p, such that Ry = (RA,alg)Q[%] by [42, Corollary 1.7.3 (iii)]. Fix any topologically
finitely generated ring of definition (Bl /") C Bl /€" containing & and the image of A°.
Then

RA®sBir/&" = ((RA’alg ®ac (BIR/sﬂ)o)/(p_torSion))f’ [;i|

Now S, = Ry a1 ®ac (B(TR /&")o 1s a finitely presented (B:{R /&")o-algebra which 1s smooth,
and in particular flat, after inverting p. Then S, /& is a finitely presented O-algebra which
is smooth after inverting p. As it is finitely presented over O, the p-power torsion T' C S, /&
is finitely generated; thus, there is some power of p killing T. Now, if S, has no connected
components living entirely over the generic fiber Spec B /&”, then also (S,/£)/T has no
connected components living entirely over Spec C, and thus (S,/&)/T is free over O by
a result of Raynaud—Gruson [56, Théoréme 3.3.5]. We assume that this is the case; in
general one simply passes to the biggest direct factor of S, with this property. Pick a basis
(5:)ie1 of (S,/€)/T as O-module, and lift the elements 5; to s; € S,. This gives a map

o @(B:{R/g”)o — S,
i€l

We claim that o is injective, and that the cokernel of « is killed by a power of p. For
injectivity, it is enough to check that

1
B /6" — S,H
é‘? drR »

is an isomorphism. But both modules are flat over B /&”, so it is enough to check that

c—s.e B]

1€l

is an isomorphism, which follows from the choice of the s;. Now, to check that the cokernel
of « 1s killed by a power of p, it suffices to check modulo &; there, again the result follows
from the choice of the s;, and the fact that T 1s killed by a power of p.

It follows that in the formula

~ ) Al
RA®Bi:/&" = (S,l/(p—torsmn))p [;],

one can replace S, by @iGI(BZ{R /€M) o, which shows that RA® AB:{R /&" 1s topologically free
over B:R /&". Moreover, the proof shows that (RA® AB(J{R /€M /E =R. ]
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We can now give the promised comparison between Dy, (Ry) and Dy (R).

Lemma 13.12. — One has the_following description of D, (Rp) and Dy (R).

(1) There ts a unique isomorphism of topological algebras

Ds,(Ry) = RA[[(Xu - u)ueEA,u;ﬁTl,...,Td]]

compatible with the projections to R, and the structure of A((Xuil)uegf\)—algebms, where
X, = T on the right.
(1) If' X s sufficiently large, there s an isomorphism of topological algebras

DE (R) = (RA®AB3_R)[[(XZ¢ _z)ueE,u7éT1 ,,,,, T,l]]9

compatibly with the projection to R, and the structure of Bix (XF"),cx)-algebras (via
X, > T;). Here, % € RA\®aBl is a lifi of u € RA®AC. In particular, Dx(R) is
& -adically complete and & -torsion-free.

Proof. — Tor (i), we first want to find a lift Ry — Dy, (Ra) of the projection
Dy, (Ra) = Ry4. The strategy is to pick the obvious lifting on A(Tfl, e Tdﬂ) send-
ing T; to Xr,, and then extend to R, by étaleness; however, the second step needs some
care because of topological issues.

As above, there is a finitely generated A°[T}', ..., T+']-algebra R a, ¢tale after
inverting p, such that Ry = (RA,alg)/f[/l]] by [42, Corollary 1.7.3 (ii1)].

The map A°[T}", ..., T;']1 = Ds, (Ry) given by T, > Xr, lifts uniquely to Ry g
We claim that it also extends to the p-adic completion. For this, note that the comple-
tion of A((Xuil)uez) — R, is an inverse limit of complete Tate A-algebras D; which
are topologically of finite type, with reduced quotient R,. In particular, the subring of
powerbounded elements DO C D; is the preimage of R} C Rs. Thus, Ry 4 1s a finitely
generated A°-algebra mappmg into D?; as such, it maps into some ring of definition of
D;, and therefore the map extends to the p-adic completion. This gives the desired map
Ray — Dg,(Ry).

In particular, we get a canonical continuous map

RA[[(Xu - u)uEE,\,uaéT],.‘.,'1',1]] — Dy, (Ra).

We claim that this is a topological isomorphism. For this, we use the commutative dia-
gram

A((Xuil)ueEA> - RA[[(Xu_u)uEEA,u;£T1 ..... T,,]]

T

DEA (RA)

Ra,
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where we use the identity

-1
-1 _ -1 Xu_u
X, =u 1+
u

in RA[(X, — wues, uz1,....1,] to define the upper map. The upper part of the diagram

implies that there is a continuous map

Dz, (Ry) — RA[[(Xu — WueTr AT .. Td]]-

The maps are inverse: In the direction from Dy, (Ry) back to Dy, (Ry), this follows
by construction. In the other direction, the resulting endomorphism of the separated
ring RA[(X, — #)uex, wet,,..1,] must be the identity on Ry 4, and all X,, and thus by
continuity everywhere, finishing the proof of ().

For part (i1), we repeat the same arguments, using Lemma 13.4 and Lemma 13.11.

O

As observed in Construction 13.6, the derivations ﬁ extend continuously to
Ds (R). Thus, we can build a de Rham complex *

0
K — b
Ds(R) (( 0 log(Xu) ) u62>

which starts with

d
GloexX )"
0-Ds®) =5 PDrR) - -

uex

By abuse of notation, we will denote it by €2° This complex, or rather the filtered

Dy (R)/BL;"
colimit over all sufficiently large X, is our explicit model for (the so far undefined)

R, (Spa(R. R%)/B).

We note that in Lemma 13.13, we will check that the transition maps £2° ;=

Dy (R)/Bd[{

Q'D:/ ®Ry/BE, A quasi-isomorphisms, for any inclusion ¥ C X’ of sufficiently large subsets

of R°*.
We want to compare crystalline and de Rham cohomology. For this, it 1s convenient
to introduce an intermediate object: Namely, let Ds(R) be the completion of

(D= (R)/£)®R — R.

This comes with derivations M—(X) forue X, and —— T ( ) fori=1, ,d, and one can

build a corresponding de Rham Complex Q2 (takmg into account both derivations).

Dx(R)/C
Note that this complex does not actually depend on the choice of coordinates T, ..., T,
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1,cont

as one can parametrize the second set of derivations canonically by (the dual of) €2)¢"
Then there are natural maps of complexes

QDz(R)/B(TR/S - Qﬁz(R)/C < QR/c-

Again, there is also a version taking into account the algebra R,. Namely, let Ds(Ry) be
the completion of

Dz (R)®pt (Ra®aBR) — R.
In this case, there are natural maps of complexes as follows:

(] Y ° Py +
QDz(RVBIR - Qf)z(RAVB;R < QRA/A®ABdR‘

Lemma 13.13. — The maps
2

z(R)/Bd*R/E = QF_xyc < SLric

and
° ° ° o~ +
hsmmg " Ehsmomg, < Shya®aBa

are quasi-isomorphisms.
In particular, for any inclusion & C X" of sufficiently large subsets of R°*, the map

Q° + —> Q°

D (R)/BJy Dy (R)/B

is a quasi-isomorphism.
Proof. — Explicitly,

Dy (R) = R[[(X, — 0wz ]].

which easily shows that the second map is a quasi-isomorphism. On the other hand, we
claim that

This presentation implies that the first map is a quasi-isomorphism. To check the claim,
we use Lemma 13.12 to see that Dy (R) is the completion of

R[[(Xu - u)uez,u;ﬁ'l‘l,..‘,TJ]]®CR - R

,,,,,

,,,,,

The second part follows, as everything is derived &-complete (as the terms of the
complexes are &-adically complete and & -torsion free), so it suffices to check that one gets
a quasi-isomorphism modulo &, which reduces to the first part. 0J
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Using the last statement of the preceding lemma, one can define a fully functorial
Bz -valued cohomology theory on the category of very small smooth affinoids over C as
follows.

Definition 13.14. — For a very small smooth Tate C-algebra R with X := Spa(R, R®),

define the B -complex Gy (X/ BiR) as the filtered colimit li_r)n): Ql.); R)/BE where X ranges over

all sufficiently large finite subsets of units in R°. Write RT y«(X/Bx) € D(B3R) for the image of
G (X/ Biik) i the derived category.

It is easy to see that the G (—/ Bi:) gives a presheaf of Bz -complexes on the
category of very small smooth affinoids over C. Moreover, by Lemma 13.13, we have a
natural quasi-isomorphism

L ~ O°
R crys (X/ B:R) ®B§R Cx QR/C'
We shall later extend these constructions to proper smooth rigid spaces over C.

13.2. Interlude: spreading out proper nigid spaces, following Conrad-Gabber. — In this sec-
tion, we prove that any proper rigid space can be realized as the fiber of a family defined
over a discretely valued field (Corollary 13.16). Our strategy is to reduce to a similar
statement about formal models. The latter is a special case of the following result.

Proposition 13.15. — Let (W, m) be a complete noetherian local ring with residue field k. Let
O be an m-adically complete local W-algebra such that the local ring O /mQ is O-dimensional with
residue field k. Let X0/ O be a proper flat adic formal scheme, where O is topologized w-adically. Then
there exist the following:

(1) A complete noetherian local W-algebra R with residue field k, and a proper flat adic formal

scheme Xg /R, where R s topologized by powers of its maximal ideal.
(i) A W-algebra map n : R — O and an isomorphism  : n*Xr = Xo of formal O-

schemes.

Note that any ring R as in (1) above is a quotient of a formal power series

ring over W: if a,...,a, € R are generators of the maximal ideal, then the map
= a; . . . .
Wi, ..., %] —= R is a surjection of local rings.

Proof- — For any discrete O-algebra B, write X /B for base change of X /O; as
B is discrete, Xg/B is a proper flat B-scheme. In particular, the special fiber X,/ is a
proper k-scheme; we shall construct the required pair X /R as a versal deformation of
X /k relative to W.

Let Art be the category of artinian W-algebras with residue field £. Consider the
functor Defy, : Art — Set of deformations of X, i.e., Defx, (A) is the set of isomorphism
classes of lifts of X to proper flat A-schemes. By Schlessinger [57, Proposition 3.10] (see
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also [1, Tag OET6]), this functor admits a versal deformation, 1.e., there exists a complete
noetherian local W-algebra R with residue field £ and a proper flat adic formal scheme
Xr/R (where R is topologized by powers of its maximal ideal) deforming X /£ such that
the induced classifying map /g := Homw(R, —) — Def, is formally smooth, i.e., for
any surjection B — A in Art, the map /g (B) = /i (A) X Defy, (A) Defy,(B) is surjective.
We shall check that this construction does the job. Note that (1) and (ii) are clear from the
construction.

Let us first explain how to extend functors defined on Art to a slightly larger class of
We-algebras that includes rings of the form O/mQ. Let IndArt be the category of local 0-
dimensional W-algebras A with residue field 4. Note that Art C IndArt, and each O/m"O
also lies in IndArt. Further, the maximal ideal m, of any A € IndArt is locally nilpotent as
Spec(A) has a single point by 0-dimensionality. We can thus write such an A as a filtered

colimit of its artinian W-subalgebras: any finite subset S := {qa,, ..., a,} C m4 lies in the
image of the map W{xy, ..., x,] 7% A, and this image 1s artinian as some power of the
maximal ideal of W{x, ..., x,] maps to 0 by local nilpotence of m,. By length considera-

tions, it follows that Art C IndArt is exactly the category of compact objects, and that the
map Art — IndArt realizes the target as the Ind-completion of the source. In particular,
any functor F : Art — Set has a unique extension E) : IndArt — Set that preserves fil-
tered colimits: explicitly, if A € IndArt, then we simply set E) (A) = li_r)nAch F(A;), where
the colimit runs over all artinian subalgebras of A. Crucial to our purposes will be the
following stability property of this construction: if F — G is a formally smooth map of
functors on Art, then ¥ — g) is also formally smooth, i.e., for any surjection B — A in
IndArt, the map E) B) —» E) (A) x G 9) (B) 1s surjective. To see this, one first observes
that the surjection B — A can be written as a filtered colimit of surjections B, — A; in
Art: write B as a union of its artinian subalgebras B, C B, and set A; C A to be the im-
age of B;. The desired surjectivity now follows as the formation of filtered colimits in the
category of sets commutes with fiber products and preserves surjections.

We now specialize the considerations in the previous paragraph to the functors
of interest. First, note that the extension /Ay : IndArt — Set as defined above coincides

—
with Homw (R, —) as R is a quotient of a formal power series ring over W in finitely
many variables. Similarly, as the functor specifying finitely presented schemes or their
isomorphisms commutes with filtered colimits of rings, the set Defy, (A) is simply the

—

set of isomorphism classes of deformations of X; to A for any A € IndArt. Also, by the
previous paragraph, the induced map iz — Defy, of functors on IndArt is formally
——

smooth.
Let us now give the proof of (iii). We have a canonical map 1, : R — £ and an iso-
morphism v : njXr 22 X of k-schemes. Applying the formal smoothness of @ — Defy,
—

to the surjection O/mO — £ in IndArt, we can choose a map 7, : R = O/mO lifting
1o and an isomorphism ¥ : n]Xg = Xo/mo of O/mO-schemes lifting 1. Similarly, we
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can inductively choose a compatible system of maps 7, : R = O/m"O and isomorphisms
Y, i X = Xojmno of O/m"O-schemes for each n > 1. The proposition now follows by
taking an inverse limit in 7. O

Corollary 13.16 (Conrad-Gabber [21]). — Let C/K be an extension of complete nonar-
chimedean fields with the same residue field. 1If X/C s a proper nigid space, then there exists a proper
Sflat morphism [ 2 X — S of rigid spaces over K such that X/C: arises as the fiber of [ over a point
n € S(C). If X/C s smooth, then we may choose S, X and f to be smooth.

In particular, any proper smooth rigid space over C can be realized as the fiber of a proper smooth
morphism of smooth rigid spaces defined over a discretely valued subfield of C.

Proof: — We are free to replace K with smaller complete nonarchimedean sub-
fields of C in proving the corollary. Taking K to be the fraction field of a Cohen ring
of the residue field of C, we may thus assume that K is discretely valued. Let W C K
and O C C be the valuation rings, so W is discrete. By the theory of formal models, the
proper rigid space X/C arises as the generic fiber of a proper flat adic formal scheme
X/O (see [54, Lemma 2.6] for an explanation of the properness of the formal model).
Choose Xg/R and the map n: R — O as in Proposition 13.15. Setting X/S to be
the generic fiber (i.e., the base change along Spa(K, W) — Spf(W) in the language of
adic spaces) of Xg /R then gives the desired family. The smoothness assertions in the last
part follow immediately: given a proper flat morphism f : X — S of rigid spaces over K
and a point 1 € S(C) where f is smooth, we may replace S by a suitable locally closed
subset containing 1 to conclude that both S and f (and hence X’) may be taken to be
smooth. UJ

Remark 13.17. — With a little extra effort, the method described in this subsection
can be used to prove a refinement of Corollary 13.16 where the assumption that C and K
have the same residue field is relaxed to the assumption that the residue field of C is purely
inseparable over that of £. We do not spell this out as the preprint [21] proves a strong
form of Corollary 13.16 by dropping the assumption on the residue field completely. In
particular, for a p-adic field C, they show that any proper rigid space X/C arises as the
fiber of a family that is defined over Q,. This stronger statement is not necessary for
our purposes. It is also considerably more complicated to prove as the necessary analog
of Proposition 13.15 entails developing an analog of Schlessinger’s work [57] for the
versal deformation rings of proper schemes over positive dimensional base rings (arising by
approximating the residue field £ with smooth algebras over the prime field).

13.3. Bl -cohomology of proper smooth rigid spaces. — We may extend the construction
of the BJi-valued cohomology theory from small affinoids to the proper case by taking
hypercohomology.
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Definition 13.18. — For a proper smooth adic space X/C., write RT «(X/Br) € D(Bjx
Jor the hypercohomology of the presheaf U +— G2 (U/ Biix) defined on the category of all smooth open
affinoids U C X that are very small.

Gluing analogous isomorphisms for affinoids shows that
RTy(X/Bj) @y C=RIgr(X).

As Ry (X/ B.z) is derived & -complete and de Rham cohomology is finite-dimensional,
this implies, in particular, that each Hirys(X/ Bz) is a finitely generated Bj;-module

which vanishes for |i| > 0. In particular, RT(X/B3) is a perfect Bj;-complex. In
fact, we can do better:

Theorem 13.19. — Let X/ C be a proper smooth adic space. Then Hirys(X/ B.ix) is finite free
over By forall i € Z.

Proof: — 1f k denotes the perfect residue field of C, then we can split the projection
Oc/p — k by the ind-smoothness of £/F,. By deformation theory, this lifts uniquely to
a map W(k) - Oc, and thus gives an inclusion W) [ =K cC of complete nonar-
chimedean fields with the same residue field. By Corolfary 13.16, we can find a proper
smooth map f : X — S of smooth adic spaces over K such that X/C arises as the fiber
of f at a point n € S(C). By shrinking S, we may assume S := Spa(A, A°) is a smooth
affinoid, so the map n corresponds to a continuous map A — C of Tate K-algebras. By
the smoothness of A/K, we can lift this to a continuous map A — BJ. Write Rfir,Ox
for the relative de Rham cohomology of /, viewed as a complex of A-modules. Applying
Lemma 13.13 to a hypercover of X by small smooth affinoids gives a map

Rfir:Ox Q% Bl — R qry (X/ BIR)

in D(B}) that is an isomorphism after applying — ®Iﬁ+ Bix/& by base change for de
dR

Rham cohomology along the map A — C. Now each R4z, Oy is a coherent Os-module
equipped with an integrable connection, and therefore locally free. In particular, both the
source and target of the above map are derived &-complete; as the map was an isomor-
phism modulo &, it must thus be an isomorphism. Since each R, Oy is a finite pro-
jective A-module, it now follows that each Hérys (X/Bi) is a finite projective, and hence

finite free, Bj; -module. O

Remark 13.20. — In the special case of Theorem 13.19 where the proper smooth
adic space X/C arises as the base change of a proper smooth adic space X,/K defined
over a discretely valued subfield K C C, the proof above shows that there is a canonical
identification

Hip (Xo/K) ®k Bl @ H._ (X/B)

crys



INTEGRAL p-ADIC HODGE THEORY 385

of Bz -modules, where the implicit map K — B is the unique continuous lift of K — C
that exists since K is discretely valued.

Finally, we can prove Theorem 13.1 and Theorem 13.3.

Proof of Theorem 15.1. — We start by constructing a natural map
chrys (X/B:R) — RT (Xproét’ BJR’X) = Rrét(X’ Zp) ®Z/] B(TR

Afterwards, we will check that after inverting &, this gives a quasi-isomorphism. Our
strategy 1s to construct a strictly functorial map of complexes locally, so that this map is
already locally a quasi-isomorphism after inverting &; this reduces us to the local case.

In the local situation, assume that X = Spa(R, R°) admits an étale map to the
torus T that factors as a composite of rational embeddings and finite étale maps. In this
case, for any sufficiently large & C R°*, we have the B -algebra Dy (R) which is defined
as the completion of

Bl (X0 ex) = R

Moreover, we have a canonical pro-finite-étale tower X, 5 = “lim” X; — X which ex-
tracts p-power roots of all elements ¥ € X. In particular, this tower contains the tower of
Lemma 5.3, so that Xy = “l(ir_n”z_Xi is affinoid perfectoid. Let I' =[], Z,(1) be the
Galois group of the tower X v /X. Then, by Lemma 5.6 and [59, Corollary 6.6], we
have

RF (Xproéta B;‘{—R,X) = chont(ra BQ_R(RW,E))’

where (Roo 5, R 3) is the completed direct limit of (R;, R}"), where X; = Spa(R;, R").

Let us fix primitive p-power roots of unity £, € O; one checks easily that the fol-
lowing constructions are independent of this choice up to canonical isomorphisms. We
get basis elements y, € I for each « € £, and one can compute RI" o, (T, B:{R (Rx.x)) by
a Koszul complex

( u_l)u
KBjR(Rm,z)((Vu - l)uEE) iBIR(Roo,z) = @B:R(Roo,z) —

Now, by repeating the arguments of Section 12.2; there 1s a natural map of com-
plexes

i)
(Fogez )

Dz (R) @®,.D=(R)

| |

(yu_l)u
B Ry x) P, Bir(Reoz) — ...
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Here, the map D5 (R) — B (Ro ) in degree 0 comes via completion from the map
Bi (X)) > B (R )

sending X, to [(X,, X}/ rooo)] e B:{R(Roo,z), which is a well-defined element as we have
freely adjoined p-power roots of all X,.

D (R)/Bf
e KBIR<Roo,z)((yu — 1),ex), which finishes the proof of the comparison. This is completely
analogous to the proof of Proposition 12.9.

To check that this construction is compatible with the isomorphism from The-

orem 5.1, use that in that case R = Rx®xC comes as a base change, and there is a

We claim that this induces a quasi-isomorphism between £2 and

commutative diagram

Ds(R) ﬁz (Rg) RK@KB:IFR

| |

B:{R(ROO,E) - OBIR(ROO,Z) ~ RK@KBIR

Here, the left vertical arrow gives rise to the comparison isomorphism just constructed
(after passing to Koszul complexes), the lower row encodes the comparison isomorphism
from Theorem 5.1 (after simultaneously passing to Koszul and de Rham complexes), and
the upper row encodes the comparison between crystalline and de Rham cohomology
in Lemma 13.13. The commutativity of the diagram (together with the relevant extra
structures) proves the desired compatibility. OJ

Proof of Theorem 13.5. — Using Corollary 13.16, we may realize X/C as the fiber
of a proper smooth morphism f : X — S of smooth adic spaces over a discretely val-
ued subfield K C C. By passage to a suitable locally closed subset, we can assume that
R4, ss 1s a locally free Os-module for all 7 and j, as is R/fir+Ox, and everything com-
mutes with arbitrary base change. To check (i), we need to check that the ranks of Hodge
cohomology add up to the rank of de Rham cohomology. This can now be checked on
classical points, where it is [59, Corollary 1.8].

Thus, we see that the dimension of de Rham cohomology is the sum of the dimen-
sions of Hodge cohomology. On the other hand, the dimension of de Rham cohomology
is the same as the rank of the free B} -module Hirys (X/Bir), which is the same as the rank
of the free Bj-module H! (X, Z,) Qz, Bz by Theorem 13.1. This, in turn, is the same
as the dimension of étale cohomology; it follows that the Hodge—Tate spectral sequence
degenerates. 0J
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13.4. The B, -cohomology in the good reduction case. — Let us give an alternate de-
scription of R (X/ B;’R) in the good reduction case in terms of the A.y-cohomology
theory. Let X be a proper smooth formal scheme over O, with generic fiber X. In this situ-
ation, we can consider the scheme Y = X xg,r0 Spec O/p. The universal p-adically com-
plete PD thickening (compatible with the natural PD structure on Z,) of O/p is Fontaine’s
ring A

arys- Thus, we can consider the crystalline cohomology groups

H (Y/Aay).

On the other hand, we can consider the special fiber Y = X X spro Speck, and its crys-
talline cohomology groups

which are finitely generated W(£)-modules.

Proposition 13.21. — Fix a section k — O/p. Then there is a canonical ¢-equivariant iso-
morphism
: | B 1
Hcrys (Y/A(‘T,VS) 1_7 = Hcrys (Y/W(k)) ®W’(/€) Acrys IZ .

In particular, H' _ (Y/ Acrys) [%] i a finite free Acrys[%]—module.

crys

This is a variant on a result of Berthelot—Ogus [7].

Proof- — First, we check that for any qcgs smooth O/p-scheme Z, the Frobenius

(p : Hiry‘s (Z/ACYYS) ®Acrys!<ﬂ ACYYS - Hi (Z/AcrYS)

crys

1s an isomorphism after inverting p. Indeed, this reduces to the affine case. In that case,

there is an isomorphism 7Z = 7 Xspect Spec O/p, where 7=7 X spec0/p Speck (as by finite

presentation, there is such an isomorphism modulo p'/#" for some n, and one can lift this

isomorphism by smoothness), and the result follows by base change from the case of Z /.
Note that

Hirys (Y/Acrys) ®Acrys,<p Acrys = Hi(YO/pl//’/(p_l (Acrys)) ®<p*1(Acry5),<p Acrys
by base change. Repeating, we see that
Hirys (Y/A(rys) ®Acws,(p” Acrys = Hi(YO/pl///" /gain(Acrys)) ®(p*"(Acry;),(p” Acrys7

where the left side agrees with H._ (Y/ Aeys) after inverting . On the other hand, if 7 is

crys
large enough, then there is an isomorphism

Y x O/plir" = ? X Speck Spec O/pl/ﬁ"
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reducing to the identity over Speck, by finite presentation. Moreover, any two such iso-
morphisms agree after increasing n. Base change for crystalline cohomology implies the
result. a

Remark 13.22. — The choice of section £ — O/p in Proposition 13.21 is unique
in the important special case when £ = F,. Indeed, to see this, it is enough to observe the
following: if R — F, is a surjection of F,-algebras with a locally nilpotent kernel, then
there is a unigue section F, — R. To prove this, we can write R =limR; as a filtered
colimit of its finitely generated F,-algebras R; C R. Passing to a cofinal subsystem, we
may assume that the composite R; — R — F, is surjective for each . But then R; is an
artinian local F)-algebra with residue field F,, so there is a unique section F, — R since
F,— F, is étale.

In particular, we get a finite free Bl -module

Hi (Y/Acrys) Qa,

+
crys B dR*

crys

Proposition 13.23. — There ts a natural quasi-isomorphism
chrys (Y/Acrys) ®ACrys BIR = chrys (X/BIR) .
In particular, H' (X /Biy) is fee over By .

crys

Progf. — The crystalline cohomology of Y over Ay, can be computed via explicit
complexes as in the definition of RT . (X/BJ), as in Section 12.2. Using these explicit
models, one can write down an explicit map, which is locally, and thus globally, a quasi-
1somorphism (as locally, both complexes are quasi-isomorphic to de Rham complexes for

a smooth lift to Ay, resp. BJp). 0J

14. Proof of main theorems

Finally, we can assemble everything to prove our main results. Let C be a complete
algebraically closed extension of Q,, with ring of integers O and residue field £. Let X be
a smooth formal scheme over O, with generic fiber X. Recall Theorem 1.10:

Theorem 14.1. — There are canonical quasi-isomorphisms of complexes of sheaves on Xz,
(compatible with multiplicative structures).

(1) With crystalline cohomology of X

AQx @, W) = WQS -

inf

Here, the tensor product is p-adically completed, and the right side denotes the de Rham—Witt
complex of Xy, which computes crystalline cohomology of X.
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(i) Wath de Rham cohomology of X :
AQx ®% O~ QY5

r,cont __ 12 ;
w/z.ere Q0 = 1<1r_n” Qe m10m)- .
(iil) With crystalline cohomology of Xop: If u: (X0 /p/ Acrys)erys —> Xzar denotes the projec-
tion, then

Al‘ ~v CerS
AQ%@ A;,,fAcrys — Ru* O;{O/p//\m,: .

(iv) Wath (a variant of) étale cohomology of the generic fiber X of X: If v : Xiroer = Xzar
denotes the projection, then

1 1

AQx @y Aint| — | = (R, Aingx) @y Aine| — |-

I n

Remark 14.2. — In fact, this result needs only that C is perfectoid, with all p-power
roots of unity.

Progf: — Part (111) 1s Theorem 12.1, and part (iv) follows directly from the definition
of AQx. Moreover, part (iil) implies parts (i) and (ii).

Alternatively, one can use the relation to the de Rham—~Witt complex to prove (i)
and (ii). For simplicity, let us fix roots of unity for this discussion. For example, one can
prove (ii) via

AQx ®Y, , O = (L, Ru.Auex) ®Y, , O

S (Lo RvAinrx) 8% 50

= Lnz(Ln, Rv,Aucx) ®kinf,§ o

= (LipAQz) ® 7O

= H*(AQx/%)

= QY0
using Proposition 6.12 in the second-to-last step, and Theorem 8.3 in the last step. More
generally, for any » > 1,

AQZ{ ®kinfa67 Wr(O) = (Ln,uRv*Ainf,X) ®kinf’67 W;(O)

~ ¢

- (LT]W(;L)RU*Ainf,X) ®I[';infs§r W?(O)
= Lng, (LnuRv*Ainf,X) ®kinfs§1 W,(O)
= (L AQz) ®% 5 W,(O)
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= H"(AQx/5)
= W,Q;E’%“,
using Theorem 11.1 in the last step. Extending this quasi-isomorphism from W,(O) to

W, (k) and taking the limit over r proves (i).
Note that we now have two quasi-isomorphisms

AQx ®F , W(O) = W,Q558":

The one just constructed, coming from Theorem 11.1, and the one resulting from The-
orem 12.1 by extending along Ay, — W,(0) and using Langer—Zink’s comparison [52,
Theorem 3.5], between de Rham—-Witt cohomology and crystalline cohomology. Let us
give a sketch that these quasi-isomorphisms are the same; for this, we use freely notation
from Section 12. We look at the functorial complex

nuKAmf(Roo,z) ((Vu —1 )MEE)

computing AQg for very small affine open SpfR C X (where we are suppressing the
filtered colimit over all sufficiently large ¥ C R°* from the notation). By Proposition 6.12,
this admits a map of complexes

MK ®oox) (Ve = Duex) = H* (0000 Kay®oo ) (Ve = Duex) ) /&)
= H* (AR /).
as above. Now we observe that this map factors through a map

(nuKAinf(vaz)@_\, Ag’?\((yu - 1)1462)); - H.(AQR/E—;)

inf

Indeed, for any m, there is a natural map

Aé’;;?s((yu — Dies)
Ao (= Dies)) /5),

N KAinf(Roo, )@

— H* ((’7¢"<M>KAi,.f<Roo,z>®A.

inf”

and there is a quasi-isomorphism
n¢77(ﬂ)KA;,,{(ROO,):)@AmrAg;L((y” - 1)”62) - AQR@Aint‘(p’ (Acz”ﬂvs)
by the usual arguments. Therefore,

H.((nwir(#)KAinl'(Roo,Z)@Aianﬁg?s (()/u - l)ueE))/Sr)

;q)" H. (AQ;-®Amf(pr (AE’Y’;)S)/E,) ’
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and there is a natural map ¢’ (A™)) /E, — W,(0), leading to a canonical map

crys

A . TN~ o, con
(n“KAinf(Roo,z)@Aian((-'r’?s((y" - I)MEE))ﬁ — H*(AQR/§,) = WrQR/Ol,

as desired. This map is compatible with multiplication by construction; to check compat-
ibility with the Bockstein differential, use that the target is p-torsionfree, and that there is
a map ¢ (Aay(m) /B[] = Au/E2TL].

In particular, one can compose the map ar from Lemma 12.8(v) with this map to
get a functorial map of complexes

0
K — Wyﬂ”com.
b ((a logocu))uez) R/O

In fact, this is a map of commutative differential graded algebras: To check compatibil-
ity with multiplication, use that ag becomes compatible with multiplication after base
extension to W,(0).

Here, the left side is the complex computing crystalline cohomology in terms of the

embedding into the torus given by all units in ¥. One can then check that this map agrees
with the similar map constructed by Langer—Zink in [52, §3.2]: As it is a continuous map
of commutative differential graded algebras generated in degree 0, one has to check only
that it behaves correctly in degree 0. UJ

Now assume that X is also proper. Recall Theorem 1.8:

Theorem 14.3. — Let X be a proper smooth_formal scheme over O with generic fiber X. Then
Rl (X) =RI(X, AQx)

is a perfect complex of Anp-modules, equipped with a @-linear map @ : RT 4, (X) — Ry, (X) in-
ducing an isomorphism RT" 5, (X) [%] >~ RT, (X) [@], such that all cohomology groups are Breuil—
Risin—Fargues modules. Moreover, one has the following comparison results.

(1) With crystalline cohomology of X

RI, (%) ®%  W(k) 2 R (X1/W(K)).

inf
(i) Wath de Rham cohomology of X :

RI 5, (%) ®kim. O >~ RIgr (X).
(iii) With crystalline cohomology of Xo,:

RFAinf'(x) ®kinf Acrys = chrys (%O/p/Acrys)~
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(iv) With étale cohomology of X:
1 1
R0, (X) @y Ainf|:;:| ~RI4(X, Z)) Qz, Ainf|:;j|-

Progf- — The comparison results (1), (i1), (ii1) and (iv) follow immediately from The-
orem 14.1, using Theorem 5.7 for part (iv).

Note that AQyg is derived &-complete for any small affine open SpfR C X by
Lemma 6.19; thus, AQx is derived &-complete, and so is RI'y, (X). Then, to prove that
RT 4, (%) is perfect, it is enough to prove that RI's, (X) ®% , O is perfect, which follows
from (i1).

By Proposition 9.17, there is a ¢-linear quasi-isomorphism

¢ 1 AQx = LipAQx,

inducing in particular a ¢-linear map ¢ : AQ2x — AQx. This induces a similar map on
RTI 'y, (X), which becomes an isomorphism after inverting '5 =@(§).

It follows that all cohomology groups are finite free after inverting p by Corol-
lary 4.20 and comparisons (ii1) and (iv), using also Proposition 13.21. Thus, all cohomol-
ogy groups are Breuil-Kisin—Fargues modules. 0J

Remark 14.4. — In the situation of Theorem 14.3, if we fix a cohomological in-
dex z, then the following conditions are equivalent:

(i) H'  (X;/W(k)) is torsion-free.

crys

(i) H'g (%) is torsion-free.

Indeed, this follows by combining parts (i) and (i1) of Theorem 14.3 with Remark 4.21.
The weaker equivalence where both H' and H*! are simultaneously required to be

torsion-free can be proven easily using the universal coefficients theorem relating H} (X)
and HY  (X,/W(k)) with H (X;). However, for a fixed index 7 as above, we do not know

crys

a direct “crystalline” proof of this equivalence.

Let us now state a version of Theorem 1.1 over C.

Theorem 14.5. — Let X be a proper smooth _formal scheme over the ring of integers O in a
complete algebraically closed extension of Q,,, with residue field k; let X be the generic fiber of X. Let
1> 0.

(1) There is a canonical isomorphism
H.,, (X03/Acy) @, By = HL,(X, Z,) ®z, Bory.
1t is compatible with the isomorphism

H.,  (X/Bf) ®pt, Bar = H. (X, Z,) ®z, Ba
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via the identification
H,, (X05/Acrys) ®a, Bix = H., (X/Bl).-
(1) For all n > 0, we have the inequality
lengthw(k) (Hirys (.’fk / W(/~c))tOr / p") > lengtth (H;t X, Zp) o/ p").

In particular, if Hirys(%k JW(K)) is p-torsion-free, then so is Hi_t X,Z).
(i) Assume that H_ (X,/W(k)) and HX1 (X, /W(k)) are p-torsion-free. Then one can
recover HE__ (X, /W (k)) with its @-action from Hi.t (X, Z,) with the natural Bl -lattice

crys crys
crys

H;,, (X/B) C Hi (X, Z)) ®z, B

crys

More preciseby, the pair of H., (X, Z,) and this B3y -lattice give rise to a finile_free Breuil—
Kisin—Fargues module BKF(Hét(X, Z,)) by Theorem 4.28. Then, assuming only that
H:  (X;/W(k)) is p-torsion-fiee, we have a canonical isomorphism

H) (%) =BKF(H,(X,Z,)),
and

W(&),

inf

Her (B1/W(B) > BRF(H, (X, Z))) @4

crys

compatibly with the @-action. If H’:{VL (X1 /W(K)) s also p-torsion-free, then the last in-
clusion us an equality.

Proof. — The isomorphism in part (i) follows from Theorem 14.1. The compatibil-
ity with the B -lattice Hirys(X/ Biz) amounts to the compatibility between the isomor-
phisms of Theorem 12.1 and Theorem 13.1, which one checks on the level of the explicit
complexes.

For part (ii), we use Theorem 14.1, Lemma 4.16 and Corollary 4.15 together with
the observation that for any injective map M < N of finitely generated W(£)-modules

with torsion cokernel Q),
lengthy (N/p”) > lengthyy (M/p”) ,
as follows from the exact sequence
Tory ™(Q, W(k) /") = M/p" — N/p" — Q/p' — 0,

and the equality

lengthyy Tory “(Q, W(k)/p") = lengthyy, (Q/4"),

which holds for any torsion W(%)-module.
For part (ii1), we use the equivalence of Theorem 4.28 together with Corollary 4.20,
and the identification of the B -lattice in part (i). UJ
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Finally, we can prove Theorem 1.1:

Theorem 14.6. — Let X be a proper smooth formal scheme over O, where O is the ring of
integers in a complete discretely valued nonarchimedean extension K of Q, with perfect residue field k,
and let 1 > 0. Let C be a completed algebraic closure of K, with corresponding absolute Galois group
Gk, and let X /K be the rigid-analytic generic fiber of X.

(1) There is a comparison isomorphism

H. (X, Z,) ®z, Berys = H; (X:/W()) @waiy Beryss

crys

compatible with the Galois and Frobenius actions, and the filtration. In particular,
H (Xc, Q,) 15 a crystalline Galows representation.
(1) for all n> 0, we have the inequality

lengthy, (HL,, (Xe/ W), /p") = lengthy, (Hi (Xe, Zy)o/1')-

In particular, if HE_ (X,/W(k)) is p-torsion-free, then so is Hét X, Zy).

crys

(i) Assume that H_ (X,/W(k)) and HX1 (X, /W(k)) are p-torsion-free. Then one can

crys crys

recover H__ (X /W (k)) with its @-action_from Hét(Xc, Z,) with its G -action.

crys
More precisely, Theorem 4.4 associates a finite free Breuil—Kisin module

BK(H,,(Xc, Z,))

over & = W(k)[T] to the lattice Hét(Xc, Z,) in a crystalline Gy -representation. This
comes with an identification

BK(H,(Xc.Z)) ®s BL = H. (X:/W(k) @we B

crys crys crys

by Proposition 4.34 and part (1). In particular, by extending scalars along Bjm —

W(/_f)[%], we get an identification BK(H;(XC, 7)) ®s W(k)[%] = Hirys(%k/

W(k))[/l)].
Then

BK (H,,(Xc, Z,)) ®s W(h) = H.,, (X/W(®))

as submodules of the common base extension to W (k)[ 1—1)].

Progf- — Note that in this situation, there is a canonical section k — O/p — Oc/p,
so part (i) follows from Theorem 14.5(1) and Proposition 13.21. For the compatibility with
the filtration, we also use that the isomorphism

Hi (XC/BIR) ®B3—R BdR g Hit(Xc, Z/,) ®Zp BdR

crys
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from Theorem 13.1 is compatible with the isomorphism
H} (X) ®k Bar = H,,(Xc, Z)) ®z, Bar

from Theorem 5.1.
Part (ii) is immediate from Theorem 14.5(ii). Finally, part (ii1) follows from Theo-
rem 14.5(111) and Proposition 4.34. 0
Remark 14.7. — Using Remark 14.4, each torsion-freeness hypothesis on Hérys X/
W(k)) in parts (ii) and (iii) of Theorem 14.5 and Theorem 14.6 can be replaced by the
hypothesis that the O-module HSR(.'{) 1s torsion-free.
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