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CHROMATIC SPLITTING FOR THE K(2)-LOCAL SPHERE AT

p=2

AGNES BEAUDRY, PAUL G. GOERSS, AND HANS-WERNER HENN

ABSTRACT. We calculate the homotopy type of L1 LK(2)50 and LK(l)LK(Q)SO
at the prime 2, where L () is localization with respect to Morava K-theory
and L1 localization with respect to 2-local K theory. In L; LK(2)50 we find
all the summands predicted by the Chromatic Splitting Conjecture, but we
find some extra summands as well. An essential ingredient in our approach is
the analysis of the continuous group cohomology H* (G2, Fo) where G2 is the
Morava stabilizer group and Ey = W[[u1]] is the ring of functions on the height
2 Lubin-Tate space. We show that the inclusion of the constants W — Ej
induces an isomorphism on group cohomology, a radical simplification.
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1. INTRODUCTION
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The problem of understanding the homotopy groups of spheres has always been
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central to algebraic topology. A period of calculation beginning with Serre’s com-
putation of the cohomology of Eilenberg- MacLane spaces and Toda’s work with the
EHP sequence culminated, in the late 1970s, with the work of Miller, Ravenel, and
Wilson on periodic phenomena in the homotopy groups of spheres and Ravenel’s
nilpotence conjectures. The solutions to most of these conjectures in the middle
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2 A. BEAUDRY, P. GOERSS, AND H.-W. HENN

1980s established the primacy of the chromatic point of view, which uses the al-
gebraic geometry of smooth 1-parameter formal groups to organize the search for
large scale phenomena in stable homotopy theory.

This has been remarkably successful. Much of what we know about stable ho-
motopy theory can be motivated and conjectured by analyzing the moduli stack of
formal groups and its quasi-coherent sheaves. See, for example, the table in Section
2 of [HG94]. In particular, this stack has a stratification by height and working
along this stratification highlights two distinct lines of research. First, we’d like to
discover all that can be learned by working at a single height; or, put another way,
we make calculations in K (n)-local homotopy theory. Second, we need to assemble
the information from different heights. This is the chromatic assembly problem.

In this paper, we give an analysis of the Chromatic Splitting Conjecture of
Hopkins at p = 2 and n = 2. At first glance, this is a chromatic assembly question,
but as we proceed here we need extensive information from height 2 calculations.
Thus, the questions of single-height calculations and chromatic assembly remain
closely related.

The Chromatic Splitting Conjecture predicts a splitting of L1 L K(Q)SO. We do get
a splitting, and it contains the expected summands, but it contains other summands
as well. That there has to be more was already proved in [Beal7a)], which in turn
builds on the papers [Beald|] and [Beal7h|, all by the first author. There are hints
at extra summands in the work of Shimomura and Wang [SW02] as well.

Fix a prime p and let K (n) be the nth Morava K-theory spectrum; by convention,
K(0) = HQ, the rational homology spectrum. Let L,, be localization with respect
to the homology theory represented by K(0) V K(1) V ---V K(n). This is the
same as localization with respect to the Johnson-Wilson theory E(n). Then for all
spectra X there is a natural map L, X — L,_1X. The Hopkins-Ravenel Chromatic
Convergence Theorem of §8.6 of [Rav92] then says that if X is a finite CW spectrum
the induced map

X— holim L, X

is localization at the homology theory H.(—,Z)).

Next, let Lgn)X be localization with respect to K(n). Then there is map
L, X — Lg@u)X and, for any spectrum X, the map L, X — L,_1X can be recov-
ered from the chromatic fracture square

(1.1.1) LnX ———> LgmX

| |

L, 1 X —— Ln—lLK(n)X

That this square is a homotopy pull-back can be found in Theorem 6.19 of [HS99)],
but is implicit in [Rav84] as well.

The chromatic fracture square and chromatic convergence together imply that
we can recover the homotopy type of a finite CW spectrum from Ly )X for all n
and all p, provided we can complete the assembly process of .

Calculations of L )X usually come down to analysis of the K (n)-local Adams-
Novikov Spectral Sequence. The cohomology theory K(n)* is complex orientable
and the associated formal group I';, is of height n. Let G,, be the automorphisms
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of the pair (F,»,I',) and let E, be the Morava E-theory associated to the pair
(Fpn,T',). By the Hopkins-Miller Theorem the profinite group G,, acts on E,,, and
hence on (Ey, )X 1= T L) (En AX). If X is a finite CW spectrum, we then have
a spectral sequence

(1.1.2) H*(Gn, ()i X) = s Licny X

where cohomology is continuous group cohomology. Much of K (n)-local homotopy
theory comes down to the analysis of the group G,, and the action of G,, on (E,)..
We give some more details in and add references to the large literature
on the subject there.

Even assuming we can master the K(n)-local calculations, there remains the
assembly question. Let M, X be the fiber of L,,X — L,_1X; then the key re-
sult needed to establish the chromatic fracture square of is that M, X —
My L)X is an equivalence. Crucial to assembly is the other fiber; that is, the
fiber of L, 1X — L, 1Lk n)X. This is the main subject of this paper. In fact, we
investigate the homotopy type of the map L, 1 X — L1 Lg)X. The Chromatic
Splitting Conjecture, due to Hopkins, is a very specific conjecture about this map,
based on hard calculations. We will get into this below; before that, however, we
will state our main results.

Let p = 2 and write F = F» for our choice of Morava E-theory at height 2. Let
W be the Witt vectors on Fy. Then there is an isomorphism E, = W/[[u;]][u™!]
where the power series ring is in degree 0 and u has degree —2. Our first result is
a K (2)-local result. See [Theorem 5.4.1| and [Theorem 5.4.4|

Theorem 1. The inclusion of constants into the power series ring induce isomor-
phisms in group cohomology

H*<G2,]F4) — H*(GQ,E()/Q)

and

H*(GQ,W) — H*(GQ,E()).

This is a remarkable simplification. We conjecture that the analogous result is
true at all heights and all primes. It is true wherever it has been checked; that is,
for n < 2 and all primes. If n = 1 this is a tautology. For n = 2 and p > 3, it can
be deduced from [SY95] (see also Corollaire 4.5 of [Lad13]). This basic case was
also proved later in [Koh13] using different techniques. For n = 2 and p = 3 it can
be deduced from [HKM13]; [GHM14]. The primes 2 and 3 are harder, as the group
G2 contains p-torsion subgroups.

The next step is to calculate differentials in the Adams-Novikov spectral sequence
for X = S°. By an old result of Morava and Lazard we know that for all n
and p the cohomology ring H*(G,,, W) ® Q is an exterior algebra on n generators
of degree 2i — 1 for 1 < i < n; thenimplies ﬂ—iLK(Q)SO has a torsion-free
generator when i = 0, —1, —3, or —4. To get further, we need to get some control
on the torsion.

For all n and p, the group G,, comes equipped with a determinant map

det: G, — Z]
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to the units in the p-adic integers. If p = 2, there is an isomorphism Z5 = Zs x Cs,
where Cy = {£1} is the cyclic group of order 2. We thus get a map

E(CQ) ®F2[X] = H*(ZQ X CQ,FQ) — H*(G27F2).

Here E(—) denotes the exterior algebra over Fy. These cohomology classes will be
discussed in [Remark 5.1.1] We will show in [Proposition 5.3.1| (but see also Theorem
6.3.24 of [Rav80]), that this map induces an injection

E(G) ® Fa[x]/(x?) ——= H* (G, Fs).

Here is one place when the prime 2 is fundamentally different. At odd primes,
Zy =7y x Cp_1, where Cp,_; is a cyclic group of order p — 1. Thus H*(Z, ,F,) =
E({2). The class x only appears at p = 2.

The class (5 is the reduction of a class of infinite order in H!(Gs,Zs); that
this class is a permanent cycle in the Adams-Novikov Spectral Sequence is well
understood. In a standard abuse of notation we also write (s € m_1L K(Q)SO for
a particular homotopy class detected by the cohomology class ;. See [DH04] and
[Proposition 2.2.1]for details. We will show that the Bockstein on the class x is also
a permanent cycle in H?(Gg,Zs) and detects a class @ € W,QLK(Q)SO of order 2.
We will then show that the Bockstein on (;x detects the class (sx € 7T_3LK(2)SO,
also of order 2.

Let V(0) be the mod 2 Moore spectrum and let ¢ : S® — Ly (2)S° be the unit.
The classes ¢, (2, © and (2x together with choices for the torsion free generators of
m—LK(g)SO for : = —3 and ¢ = —4 can be used to define a map

(1.1.3) f:80vs Vs v STtV ETRV(0) VSTV (0)— Li(a)S°

Our main result then describes chromatic splitting at n = p = 2. Let S% denote
the 2-completed n-sphere.

Theorem 2. The map f defines a weak equivalence
Li(S9V Sy 1)V Lo (S5 v Sy ) V Li(272V(0) VS 73V(0)) & Ly Ly (2)S°.
In particular, LS9 — LlLK(z)SO is a split inclusion.

The spherical summands are predicted by the Chromatic Splitting Conjecture,
but the Moore spectrum summands are the new phenomenon.

The strategy for proving is to use the chromatic fracture square (|1.1.1])

to deduce the homotopy type L;L K(Q)SO. More precisely, we prove the following
rational result. See[Theorem 5.5.2| and [Theorem 7.5.2

Theorem 3. Let S§ be the 2-complete n-sphere. Then the map f of (1.1.3]) induces
a weak equivalence

Lo(S9V S5 v 853V S5*) o LoLge(2)S°.

Furthermore, we prove the following K (1)-local result. See [Theorem 7.4.1

Theorem 4. The restriction of the map f of (1.1.3) to S° Vv S~1 v X2V (0) v
Y 73V(0) induces a weak equivalence

Ly (S°v S~ vET2V(0) vE3V(0) =~ L) LS.
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Much of the work in this paper goes into this last theorem. then
follows exactly as in the prime 3 case; see [GHM14] and [Theorem 7.5.2

We conclude this introduction by revisiting the Chromatic Splitting Conjecture.
This is due to Hopkins and can be found in the literature in [Hov95]. As we
mentioned above, there is a result of Morava and Lazard that the cohomology ring
H*(G,,W)®Q is an exterior algebra on n generators of degree 2i—1 for 1 < i < n.
Part of the Chromatic Splitting Conjecture is that, for some choice of generators
x; € H*~Y(G,, W), the exterior algebra Ez_(21,...,2y) over Z, maps non-trivially
to permanent cycles in H*(G,,, (Ey).). This would give a map out of a wedge of
spheres to L K(n)SO indexed on the monomial basis of the exterior algebra. The

following would completely describe the gluing data (L.1.1)).

Conjecture 5 (Strong Chromatic Splitting Conjecture). This map out of the
wedge of spheres induces an equivalence

LSy o\ Loy 820 ~ Ly g Ly S°

1<i1<...<i;<n

The conjecture is known to hold for n = 1 if p > 2 and for n = 2 if p > 3

([Beh12|, [GHMI4], [SY95]). However, the results of [Beal7al already implies that
does not hold when n = p = 2 and makes this completely
precise. We note that although does not hold at p = 2, there is no
evidence that it should fail at odd primes, or at least when p is large with respect
ton

We can also write down a weaker form of the conjecture, which holds for all p
and n < 2; that is, for all cases where we’ve been able to check.

Conjecture 6 (Weak Chromatic Splitting Conjecture). If X is the p-completion
of a finite spectrum, the map L, 1 X — L, 1Lk )X is a split inclusion.

This second conjecture would imply that there are maps LK(n)SO — LK(n_l)SO
such that S° ~ holim, LK(n)SO; that is, S° can be recovered from its Morava
K-theory localizations.

Organization of the paper. In we review some of the background
from chromatic homotopy theory, including some of the more technical techniques
at the prime p = 2. In we recall some classical results from homotopy
theory; most of this can be summarized in the remark that extra care is needed
because the order of the identity of the mod 2 Moore spectrum is not equal to
two. Then in we give a detailed review of K(1)-local computations at the
prime p = 2 which are used in later sections. In we begin our analysis of
the case n = p = 2. We describe the cohomology of various subgroups G of G5. The
main result in this section is the proof of [Theorem 1|in [Theorem 5.4.4] [Section 6|
is dedicated to one of the key technical results of the paper: the class x is a d3—
cycle in the K(2)-local Adams-Novikov Spectral Sequence for the Moore spectrum.
contains the proof of This theorem is shown by studying the
v1-localized Adams-Novikov Spectral Sequences computing L g (1)Lx(2)V(0) and
especially Lg1)Lg(2)Y where Y = V(0) A C(n). The spectrum Y was used in
Mahowald’s proof of the Telescope Conjecture at p = 2 and n = 1. See [Mah82].
We also deduce [Theorem 2] and [Theorem 3] at the end of [Section 7l
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We have been slightly disingenuous in our presentation above, as we actually

prove before constructing the map f of (1.1.3)); that is, we only construct
the K (1)-localization of the map f in [Section 7 In [Section 8 we complete the

difficult task of constructing f.
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Wang [SW02]. Specifically, Mark thought that those authors had identified v;-
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Careful readers of below will recognize that the techniques and ideas
there are completely different from the rest of the paper. This lateral move arises
from an insight of Mike Hopkins: namely, that the isomorphism of could
be extended to a homomorphism of homotopy fixed point spectral sequences. See
for more details. We don’t completely prove that, but we do get

enough information from this idea to prove our key We extend
heartfelt thanks to Hopkins for sharing this idea.

Finally, this work has taken place over a number years and at a number of places.
We thank the Hausdorff Institute of Mathematics, the Université de Strasbourg,
and the University of Colorado all for providing such wonderful places to work.

2. PRELIMINARIES

We begin by introducing the K (n)-local category, Morava E-theory, the Morava
stabilizer group, and general convergence results for the K (n)-local Adams-Novikov
Spectral Sequence. We then get specific at n = 2 and p = 2, discussing the role of
formal groups from supersingular elliptic curves. We close the section with some
background on algebraic and topological duality resolutions.

2.1. The K (n)-local category. Fix a prime p. Let I';, be a formal group of height
n over the finite field F,, of p elements and let End(T',/F,) be the endomorphism
ring of I'y, over Fp,. The unique map rings Z, — End(I',/F,) is an inclusion into
the center. Because T'), is defined over F,, the Frobenius map £(z) = zP also defines
an endomorphism of T',,. We will assume the endomorphism £”(z) = 2" satisfies
an equation

(2.1.1) ¢" = ap € Bnds,, (T, /F,)

where a € Z, is a unit. The Honda formal group of height n satisfies these criteria:
this has a formal group law which is p-typical and with p-series [p](z) = " = £"(x).
However, if n = 2 and p = 2, then the formal group of a supersingular elliptic curve
defined over Fy will also do, and this will be our preferred choice if p = 2; see
[Section 2.41

Let i: F,, — k be any extension of F,, and let Aut(I';,/k) be the group of auto-
morphisms of ¢*I';,, over k. Our assumption implies that for any extension
Fpn C k there is an isomorphism

Aut(T,, /Fpn) — Aut(T,, /k).
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To shorten notation we define
(2.1.2) Sy, = Aut(Ty, /Fpn).

If we choose a coordinate for I';,, then every element of S, can be expressed as a
power series ¢(x) € zlF,n[[z]] invertible under composition. The map ¢(x) — ¢'(0)
defines a surjective map

Sp — Fp.
We define S,, to be the kernel of this map; this is the p-Sylow subgroup of the
profinite group S,. There is an isomorphism .S, X IF;H ~S,.

Define the extended Morava stabilizer G,, as the automorphism group of the pair
(Fpn,T,). Elements of G,, are pairs (f,¢) where f € Aut(Fpn/F,) and ¢: '), —
f*I'y, is an isomorphism of formal groups. Since I';, is defined over [, there is an
isomorphism

(213) Gn = Aut(Fn/FPn) X Gal(Fpn/]Fp) = S’I’L X Gal(Fpn/Fp>

We next define Morava K-theory; there are many variants, all of which have the
same Bousfield class and define the same localization. To be specific, let K(n) =
K(F,»,T'y,) be the 2-periodic ring spectrum with homotopy groups

K(n). = Fyn [u®"]

and with associated formal group I';,. Here the class w is in degree —2. This slightly
unclassical choice of K (n) has the property that it receives a map E,, — K(n) from
Morava E-theory defined below in ([2.1.4]).

We will spend a great deal of time working in the K (n)-local category and, when
doing so, all our spectra will implicitly be localized. In particular, we emphasize
that we will write X AY for Ly, (X AY), as this is the smash product internal
to the K(n)-local category.

We now define the Lubin-Tate spectrum E = E,, = E(Fp,I';). This is the
complex oriented, Landweber exact, 2-periodic, F.-ring spectrum with

(2.1.4) B, = (En)s = Wug, -+ up_1]][u™]

with u; in degree 0 and w in degree —2. Here W = W(F,») is the ring of Witt
vectors on [Fp». Note that Fy is a complete local ring with residue field Fp»; the
formal group over Ej is a choice of universal deformation of the formal group T,
over Fpn. (We will be specific about this choice at n = p = 2 below in )
By the Hopkins-Miller theorem, the group G,, = Aut(I';,) x Gal(Fp» /F,) acts on
E.

Remark 2.1.1 (Morava modules). If X is a spectrum we define
E.X = ﬂ'*LK(n)(E A X).

Despite the notation, the functor E.(—) is not a homology theory, as it does not
take wedges to sums in general. Nonetheless, it is our most important algebraic
invariant intrinsic to the K (n)-local category.

The E.-module F, X is equipped with the m-adic topology where m is the max-
imal ideal in Ey. This topology is always complete, but need not be separated in
general — although, in fact, all the F,-modules we consider in this paper will be
complete and separated. See [GHMRO5| §2 for some precise assumptions which
guarantee that F,X is complete and separated.
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The action of G,, on E,, determines a continuous action of G, on (E,),X. If
n =1, we can choose E. = K., p-complete K-theory, and G; = Z;, the units in
the p-adics. The action is then through the Adams operations and in that case
we might write 1)* for the action of ¢ € Zy; for example, as in Not
withstanding this, as general rule we will simply write g, for the action of g € G,
on F,X.

This action is twisted in the sense that if g € G,,, a € F, and x € E, X, then
g«(az) = g.(a)g.(x). We will call such modules either Morava modules or twisted
FE.-G,-modules. When we consider closed subgroups H of G, and E,-modules
with an action of H satisfying the analogous formula for h € H then we call such
modules twisted E.-H-modules.

Remark 2.1.2. The FE,-algebra E,FE has a G,-action on both the left and right
factor. The action of the left factor defines the Morava module structure. Using
the action on the right factor we get a composite map

m

E.E x G, E.E b,

where m is induced by the multiplication E A E — E. The adjoint to this map is
an isomorphism

(2.1.5) E.E =2 map,,(G,, E.)

of Morava modules. Here map_,;(—, —) denotes the set of continuous maps. On
the right hand side of this equation, F, acts on the target and the G,,-action is the
diagonal action given by (g.¢))(z) = g.¢(g; ).

Caution is needed here, as the isomorphism ([2.1.5) need not hold for the Lubin-
Tate homology theory £ (k,T) for an arbitrary height n formal group I" over a field
k C F,. In the literature (2.1.5) is proved for the Honda formal group; see, for
example, Theorem 12 of [Str00]. In examining the proof there we see that what

is needed is our assumption from (2.1.1). The details needed to then produce the
isomorphism of (2.1.5)), and more information as well, can be found in §5 of [HenI§|.

Now suppose X is a finite p-local spectrum. From ([2.1.5) it follows (again see
[Str00]) that the K (n)-local E-based Adams Spectral Sequence for X has the form

(216) Hs(Gn,EtX) — WtstK(n)X-

Group cohomology here is continuous group cohomology. There is extensive dis-
cussion of this spectral sequence in [DHO04].

Complex orientations define maps of ring spectra

BP MU E.

If we localize at a prime and if X is a finite p-local spectrum, we get a diagram of
spectral sequences where the upward arrows are isomorphisms

(2.1.7) Ext}p pp(BP., BP.X) =—= 1. X

= Tg

EXt}c\/’I*U*MU(MU*,MU*X) _ 7T*X

! |

H*(Gn, E*X) —_— F*LK(n)X .
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Remark 2.1.3. For example, let F' C G,, be a closed subgroup. In [DH04] Devinatz
and Hopkins defined and studied a homotopy fixed point spectrum E" with the
property that the isomorphism of (2.1.5) descends to an isomorphism of Morava
modules

(2.1.8) E.E" ~map,, (G, /F,E,)
and a spectral sequence for X a finite CW spectrum
(2.1.9) H¥(F,E:X) = m_o(E" AX) .

If F = G, itself this spectral sequence is the K (n)-local Adams-Novikov Spectral
Sequence for LK(n)SO and, if F' is finite, this spectral sequence is the homotopy
fixed point spectral sequence for the action of FF on E. The Devinatz-Hopkins
construction is natural in F' and, in particular, if F; C F; are two closed subgroups,
we have a commutative diagram of spectral sequences

(2.1.10) H(Fy, By X) == m_s(E"2 A X)

| |

H*(F, B X) == m_4(E"" A X)

where the vertical arrows are the natural maps induced by the inclusion of Fj into
Fy.

Again, some caution is needed here, as the Devinatz-Hopkins paper works only
with the Lubin-Tate theory defined for the Honda formal group. However, a close
reading of [DHO04| shows that they need not have been so specific. They use only the
Hopkins-Miller theorem, which states that the space of Eoo-self maps of E(k,T',) is
homotopically discrete, as well as the isomorphism of . The Hopkins-Miller
theorem holds for any Lubin-Tate spectrum E(k,T') where k C F,, and I is of finite

height. In addition, (2.1.5)) holds for the formal group of This caution

will come up again below, but we won’t repeat this comment.

2.2. Subgroups of G,,. Various subgroups of G,, will play a role in this paper; we
discuss some here. Some finite subgroups will appear later, in after we
have introduced our choice of formal group.

The right action of S,, = Aut(I',,/Fpn) on End(T,,/Fyn) defines a determinant
map det: S, — Z,° which extends to a determinant map

det x1 P1

(22.1) G, =S, x Gal(F,. /F,) 7% x Gal(Fpn [F,) — = 7.

Define the reduced determinant N to be the composition

(222) G’n @:Z;/C = Zp
N

where C' C Z,' is the maximal finite subgroup. For example, C' = {£1} if p = 2.
There are isomorphisms ZX/C = Z,. We choose one for now, although we will
be much more specific in below. Write G. for the kernel of N,
S =S,NG}, and St = S, NGL. The map N: S,, — Z, is split surjective and

n’
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we have semi-direct product decompositions for all of G,,, S,,, and S,,; for example,
there is an isomorphism

St % Z, = S,.

If n is prime to p, we can choose a central splitting and the semi-direct product is
actually a product, but that is not the case of interest here.

The surjective homomorphism N: G,, — Z, defines a non-zero cohomology class
Cn € HY(Gy, Zy). Also write
(2.2.3) ¢n € HY(G,,, Eo)
for the image of this class under the map induced by the unique continuous homo-
morphism of rings Z,, — Ejy.

The class (,, detects a homotopy class in W_lLK(n)SO. Let m € G,, be any

element so that N(w) € Z, is a topological generator. Then we have a fibration
sequence

(2.2.4) Lic(n)S° ~ EhGn — > EhE. "= pho,
The following result can be found in Proposition 8.2 of [DHO04].

Proposition 2.2.1. The class (, is a non-zero permanent cycle in the Adams-
Nowvikov Spectral Sequence

HS(Gn, Et) = ﬂt_SLK(n)SO
detecting the image of the unit in WthG; under the boundary map
WthGi‘—> 7T,1LK(”)SO.

In an abuse of notation we will call this homotopy class ¢, as well.

For many purposes the action of the Galois group Gal = Gal(Fp» /F),) C G, is
harmless. This can be made precise in the following two results, which are from
Section 1 of [BGI8]. The key observation is that the extension of rings Z, — W =
W (F,n) is Galois with Galois group Gal.

Lemma 2.2.2. Let F C G, be a closed subgroup and let Fy = FNS,,. Suppose the
canonical map

F/Fy— G, /S, = Gal
is an isomorphism. Then for any twisted G, -module M we have isomorphisms
H*(F,M) = H*(Fy, M)%
H*(Fo,M) =W ®g, H*(F,M) .

This has the following topological analog. If X space, let X, denote X with
disjoint basepoint.

Lemma 2.2.3. Let F C G, be a closed subgroup and let Fy = FNS,,. Suppose the
canonical map

F/Fy—> G, /S, = Gal

is an isomorphism. Then there is a Gal-equivariant equivalence

Gal, AEM — EhFO,



CHROMATIC SPLITTING FOR THE K(2)-LOCAL SPHERE AT p =2 11

Remark 2.2.4. For a finite spectrum X and closed subgroup F' of G,, the natural
map EM A X — (E A X)" is an equivalence. Combining [Lemma 2.2.2| and
thus yields an isomorphism of spectral sequences

W@ H*(F,E,X) == W . (E A X)MF

:i lg

H*(Fy, B, X) =——— 7, (E A X)M

where the differentials on the top line are the W-linear differentials extended from
the spectral sequence for F'.

2.3. Strong vanishing lines. The K(n)-local Adams-Novikov Spectral Sequence
satisfies a very strong horizontal vanishing line condition; see
[Cemma 2.3.2] and [Theorem 2.3.5| below. We will need this throughout
These results are in the literature, but a bit hard to pull together in complete detail,
so we provide a summary here. The main references are in the proof of Corollary

15 of [Str00] and Theorem 8.9 of [HS99).

Let us write

X<---2Z

\/

for a cofiber sequence (i.e., a triangle) X — Y — Z — X X. Suppose we have a
diagram, where each of the triangles is a cofiber sequence.

(2.3.1) X< — Xy —— — Xy — — — Xg< — — —-.

\/\/\/\/

From we obtain a spectral sequence (with s > 0)
(2.3.2) EVt =1 F, = m_ X.
Recall that the spectral sequence is strongly convergent if
(2.3.3) limg 716 Xs = 0 = lim} 74 o X,
for all ¢.

Definition 2.3.1. The spectral sequence of (2.3.2)) has a strong horizontal vanish-
ing line at N if for all s and ¢ the map m; X5 — m_ nyXs_n is zero.

The following result justifies this nomenclature. The proof is a diagram chase.

Lemma 2.3.2. Suppose the spectral sequence of (2.3.2) has a strong horizontal
vanishing line at N. Then

(1) the spectral sequence is strongly convergent;
(2) for all s and t, By = ESt; and,
(8) for all s > N, E”—O
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Recall that we write Y A Z for Lg(,,)(Y A Z) when we are in the K(n)-local
category and we write £ = FE,, for our chosen Morava FE-theory at n. Then the
K (n)-local Adams-Novikov Spectral Sequence is obtained from the standard exact
couple diagram constructed from the E-based cobar complex in the K (n)-local
category:

(2.3.4) LK(n)SO <----F<—-————- EANE<————————...

/\/\/

ENE ENENE

Given a spectrum X, the K (n)-local Adams-Novikov Spectral Sequence has Fs-
term isomorphic to
Ey' 2 m°m L (ny(E" A X).

If Z is a finite spectrum and G C G, is closed, then we can set X = E"G A Z.
Then by Proposition 6.6 of [DH04] the Es-term becomes

Ey' =~ H*(G,E.Z).
Following Strickland (see Corollary 15 of [Str00]), we write iy = i: E — XL (,)S°

for the boundary map in the first triangle. Then the later boundary maps can be

written as
FA(s=1) =As —A(s—1)

INE cEF T —YFE
Furthermore we have 1dent1ﬁcat10ns

io-0iy =i B = £ Ly (n)S°
and, more generally,
(2.3.5) G100y = T LG T AN Sy
As in the proof of Corollary 15 of [Str00] we now have the following result.

Lemma 2.3.3. Let Z be in the thick subcategory of K(n)-local spectra generated
by E. Then there exists an integer N depending only on Z so that
MANZENZ 507

is null-homotopic for s > N.

Proof. If Z = FE itself, then E — E A E has a retraction given the multiplication
ENE — E. In that case, we can take N = 1. Furthermore, if we have a cofiber
sequence Z; — Zs — Z3 and the result holds for Z; and Z3 with integers N7 and
N3 respectively, then the result holds for Z; with integer N7 + N3, using .
Finally, if Zj is a retract of Z and the result holds for Z with integer NV, it also
holds for Zy with integer N. O

By Theorem 8.9 of [HS99], the K (n)-local sphere is in the thick subcategory of
the K(n)-local category generated by E. Thus [Lemma 2.3.3| gives the following
result.

Corollary 2.3.4. There is an integer N = Ngo so that
NCEMY s SV L) S°

is null-homotopic.
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This result immediately implies the following.

Theorem 2.3.5. For all spectra X, the K(n)-local Adams-Novikov Spectral Se-
quence has a strong horizontal vanishing line at an integer N < Ngo.

Corollary 2.3.6. For all K(n)-local finite spectra Z and and all closed subgroups
G C Gy, the K(n)-local Adams-Novikov Spectral Sequence

H*(G,EZ) = m;_s(E"Y A Z)
has a strong horizontal vanishing line at an integer N < Ngo.

Corollary 2.3.7. Let Z be a finite complex with a self map f : ¥*Z — Z. Then
for all closed subgroups G C Gy, the localized K (n)-local Adams-Novikov Spectral
Sequence

fYH (G B Z) = folm_o(E"Y A 2)

has a strong horizontal vanishing line at an integer N < Ngo.

2.4. Elliptic curves and subgroups of Gs at p = 2. Here we spell out what we
need from the theory of elliptic curves at p = 2; this will give us a preferred formal
group and a preferred universal deformation. Choose I'y to be the formal group
obtained from the elliptic curve Cy over Fo defined by the Weierstrass equation

(2.4.1) vy =2

This is a standard representative for the unique isomorphism class of supersingular
curves over Fo; see [SiI86], Appendix A. As a result I'y has height 2, as the notation
indicates. In addition, if £ is the Frobeniues, we have £2 = —2 in the endomorphism
ring of I's over Fy. Thus this formal group satisfied our assumption from .
See Lemma 3.1.1 of [Beal7h].

Following Strickland (see [Beal7hl, Section 2]), let C' be the elliptic curve over
W([u1]] defined by the Weierstrass equation

(2.4.2) y* 4 3urwy + (Ui — 1)y = 2°.

Remark 2.4.1. The curve C reduces to Cp modulo m = (2,u;). In the equation
note that the coefficient of xy is congruent to u; modulo 2; hence v; = ™ u;
for the formal group of C' over Fy4[[u;]]. See Proposition 6.1 of [Beal7b]. From this it
follows that the formal group C over W{[u;]] is a choice of the universal deformation
of FQ.

In [Beal7b], Cp was called C and C was called Cyy. The current notation is closer
to what we find in the number theory literature.

Again turning to [Sil86], Appendix A we have
(243) Aut(C’o/IF4) = Qg X ]FZ

where the action of F} = C5 on Qg is determined by a cyclic permutation of
generators i, j and their product k = ij. We will denote this group by Ga4. Define

(244) G48 = Aut(]F4, C()) = Aut(CO/F4) X Gal(IF4/IF2)

Since any automorphism of the pair (IFy, Cp) induces an automorphism of the pair
(F4,T2) we get a map Gus — Go. This map is an injection and we identify Gug
with its image.



14 A. BEAUDRY, P. GOERSS, AND H.-W. HENN

Remark 2.4.2. Let Cy[3] be the subgroup scheme of Cy consisting of points of
order 3; over Fy, this becomes abstractly isomorphic to Z/3 x Z/3. The group Gug
acts linearly on Cy[3] and choosing a basis for the F4-points of C[3] determines an
isomorphism Gug = GLo(Z/3).

We will be interested in various subgroups of G4s. The ones of interest are as
follows:

Remark 2.4.3. The following subgroups will play an important role in this paper.

(1) Co ={£1} C Qs;
(2) Co=Cy xFJ;
(3) Gag4 and Gyg themselves.

Remark 2.4.4. For the formal group I'y of Cp, the group So = Aut(I'y/Fs) has
a very concrete description. Let W = W(F,) be the Witt vectors on F4. The
endomorphism ring of I's is the non-commutative extension of W

W(T)/(T? = —2,aT = Ta”)

where a € W and (—)? is the action of the Frobenius on W. Then S, is the group
of units in this ring. See §3 of [BealT7h].

Remark 2.4.5. Up to conjugacy in Ss, the subgroup Qg C S, is the unique
maximal finite 2-primary subgroup. Similarly, up to conjugacy in Ss, Ga4 is the
unique maximal finite subgroup. See [Buji2]. However, for S}, neither of these
statements remains true.

More precisely, any finite subgroup of S, is necessarily in Si, but if 7 € Sy is
any element such that N(7) is a topological generator of Zo, then 7Ga4m ! is not
conjugate to Goy in S3. If w € W is a primitive cube root of untiy, then we can
choose m =1+ 2w, as in (2.3.3) of [Beald] and we define

Ghy = Gy}
to be a representative of this other conjugacy class.

The element 7 = 142w € W* satisfies det(w) = 3. There is another key element

that arises at various points. From Section 2.3 of [Beal)| (see also [Remark 7.2.9
below) we know there is an element o = 1—2w modulo (4) in W so that det(a) = —1.

Remark 2.4.6. We have been discussing Go4 as a subgroup of Sy, but it can also
be thought of as a quotient as well. Inside of So there is a normal torsion-free
pro-2-subgroup K which has the property that the composition

G24—> SQ—) SQ/K

is an isomorphism. Thus we have a decomposition K x G4 = S;. The group K is a
Poincaré duality group of dimension 4. We also define K* = S} N K; then, K! is a
Poincaré duality group of dimension 3 and we have a decomposition K xGay = S3.
The composition

/24—> SQ—> SQ/K

remains an isomorphism and defines an alternate splitting. The subgroups K and
K' play a key technical role in this paper, and we will supply more information
when we need it below. See [Remark 5.1.5| [Lemma 5.1.6] and [Remark 5.2.5 The
main reference is [Beald].
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Remark 2.4.7. In order to calculate the algebraic duality spectral sequences or
topological duality spectral sequences defined below in we will need
some information on H*(F, E,) and . E"F for the finite subgroups F = Cg and
F = Gy4. There is a detailed summary of literature in §2 of [BGI8| and here we
make only a few remarks. The spectral sequence

HS(Cg, Et) — Wt_SEhCG
is relatively simple and can be deduced from [MRO09]. The spectral sequence
HS(G24, Et) — Ft_SEhGM

is much harder, but extensively studied; see [Bau08§] or [DFHHI4]. For now we
record that there are classes c4, cg, A, and j in H°(Ga4, E.), of degrees 8, 12,
24, and 0 respectively. These are the modular forms of the curve (2.4.2), hence
necessarily invariant under the automorphisms of the curve. Then there is an
isomorphism
Wiljllics, co, AF1]/T = HO(Gas, )
where I is the ideal generated by
s —ck=(12)°A and  jA =ci.

The classes c4, j, and A8 are permanent cycles, but ¢g and A, i # 0 modulo 8 are
not. We will give more information in below.

2.5. The duality resolutions. A key computational tool in this paper is the
algebraic duality resolution of [Beal5] and its topological analog from [BG18|. We
begin with the algebraic version.

If X = lim X, is a profinite set, define Zy[[X]] = lim, o Z/2"[X,], where
Z/2"[Y] denotes the free Z/2™-module on the set Y. If G is a profinite group
let IG C Zs[[G]] be the augmentation ideal; that is, the kernel of the augmentation
e: Z3[[G]] = Zs.

The following can be found in Theorems 1.2.1 and 1.2.6 of [Beal5]. The sub-
groups Gay4, Cg, and G%, have been deﬁned in Remarks [2.4.3 H and [2.4.5| H, and the
subgroup K! was discussed in

Theorem 2.5.1 (Algebraic Duality Resolution). Let Fy = Goy, Fy = F> = Cy
and F5 = Gly.

(1) There is an evact sequence of continuous Z»[[S]]-modules
19} o2 01 €
0 —> Zs[[S5/F3]] — Z2[[Sy/ F2)] = Zo[[S3/ F1]] = Za[[S3/ Fo]] == Zz — 0.

(2) The maps 01 and 05 are trivial modulo IK'. Furthermore, 5 is multiplication
by 2 modulo (8,15%).

Remark 2.5.2. Note that part (2) of [Theorem 2.5.1] implies that modulo IS}
we have 9, = 0 = 93 and 0y is multiplication by 2 modulo (8,7S}). For many
arguments, this is all we will need.

Remark 2.5.3 (Algebraic Duality Spectral Sequence). If M is a profinite
Zs[[S}]]-module, we have a natural isomorphisms

(2‘5'1) Ethzz[[gé]](ZZHS%/FPH’M) = Hq(vaM)
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and part (1) of [Theorem 2.5.1f immediately gives a spectral sequence
BT = HI(Fy, M) == H"*(S;, M)
with differentials d,.: EP¢ — EPT™4=m+1 We will call this the algebraic duality

spectral sequence, which we may abbreviate as ADSS.

We can induce the exact sequence of up to an exact sequence of
complete Zs[[G3]]-modules

0,
0 = Zs[[G3/ Fi]] = Zs[[Sc:/ P
0: 0
= Lo[[Gy/ 1)) == Zo[[G3/Fo]] = Z2[[G2/S5]] = 0.

For any closed subgroup of F' of G, the isomorphism of (2.1.8)) gives us an isomor-
phism of twisted Go-modules

E.E" =~ Homg, (Z5[[Gs/F]), E.).
From these observations we get the following result. Note that since Ga4 and G,
are conjugate in Go, we have EhGai ~ phGaa

Corollary 2.5.4. There is an exact sequence of twisted Go-modules

0 — E.E": 5 E,E"% BB — B, E" — B,E">t 0.

The following is the main theorem of [BG18|. This is the topological duality
resolution. Note that it follows from that multiplication by A induces
an isomorphism of Morava modules E,X2** EhG24 =~ B _EhG2a for all k, but this
extends to an equivalence YL24* EhG24 ~ EFPG24 if and only if k = 0 modulo 8, as AF
is a permanent cycle in the homotopy fixed point spectral sequence only for those
k. See [DFHHI4] for history and details. This all means that the suspension factor
on the last spectrum in the following topological resolution is significant.

Theorem 2.5.5. The algebraic resolution of [Corollary 2.5.7] can be realized by a

sequence of spectra
1
[hSh [hGaa hCe EhCs _y y148 phGaa

In this sequence all compositions and all Toda brackets are zero modulo indetermi-
nacy. The sequence can be refined to a tower of fibrations

(2.5.2) EhS: Zs Z EhGaa
245EhG24 272Eh06 ZflEhCG

Remark 2.5.6 (Topological Duality Spectral Sequence). We will write &,
for the pth spectrum in the topological duality resolution of Thus
EM, p=0;
é?p: EhC(;’ p:1727
SphGap =3,
Using the notation of [Remark 2.5.3] we get spectral sequences
HS(FP, Et) — 7Tt—s£p~
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As a complement to the spectral sequence of [Remark 2.5.3) the tower of (2.5.2))
gives a spectral sequence
EYY =16, = Wq,thS;

We refer to this spectral sequences as the topological duality spectral sequence. We
may abbreviate this as the TDSS. There are variants we use; for example, we could
smash the tower of with a spectrum Y to get a spectral sequence converging
to W*LK(Q) (EhSé AN Y)

Remark 2.5.7. It may be helpful to note that the resolution of [I’heorem 2.5.5|can
be refined to a tower over E/'S2

(25.3) EMS:<— - - - Dy<————Dy=<— — — —Djq

N N N S

EhG24 EhCG EhCG Z48E‘hG24 .

As before we write
X<—---7

NS
Y

for a cofiber sequence X — Y — Z — ¥X. The dotted arrows in (2.5.3) have
Adams-Novikov filtration 1. The resulting spectral sequence is isomorphic to the
topological duality spectral sequence. For more details see Section 3 of [BGIS].

3. RECOLLECTIONS FROM HOMOTOPY THEORY

In this section we gather together some of the material we need from the homo-
topy theory literature. First, we discuss some qualitative aspects of the homotopy
groups of V(0), making explicit some interesting behavior which can be traced back
to the fact that the order of the identity of V'(0) is not 2. Then we give some basic
background on how the Hopf map o € 775° appears in the Adams-Novikov Spectral
Sequence. Both of these topics arise repeatedly in the following sections.

In this section, and all subsequent sections, we will be working in the 2-local
stable category.

3.1. Some basic homotopy theory of V(0). Let ¢: S — V(0) be the inclusion
of the bottom cell and 2: V(0) — S the collapse map onto the top cell so that

X2 p

(3.1.1) SO "2 80 Lo V(0) —— St

is the standard cofiber sequence for V(0). For a spectrum X, let j = X Av: X ~
XASY - XAV(0)and g = X Ap: X AV(0) - £X. We then have a cofiber
sequence

X 2o x 2o xAv(0) —L-35X.

Remark 3.1.1. We let 5: m,(X A V(0)) = m,—1(X A V(0)) be the homotopy
Bockstein homomorphism induced by the composite

XAV(0) —L=5x T~ nX AV(0).
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Note that any element in the image of 8 has order 2.

Remark 3.1.2. One way to see that the order of the identity of V(0) is not 2 is
to note that the induced short exact sequence in mod 2 cohomology

0 < H*V(0) <— H*(V(0) A V(0)) <— H*SV(0) <0

is not split as a module over the Steenrod algebra. This implies immediately that
the exact sequence

0= 2Z/222mV(0) 25 7 (V(0) AV(0) L5 1oV (0) = Z/2 — 0
cannot be split and, hence,
(3.1.2) m(V(0)AV(0) =2 Z/4 .

Specifically, let ¢ € moV (0) is the inclusion of the bottom cell. Define ig = j.(¢) €
mo(V(0) AV(0)) and ¢; € m1(V(0) A V(0)) to be any class with ¢.(i1) = ¢, then

(3.1.3) 2i1 =ion = j«(t)n

where 1 € m,8° is the generatorﬂ This is the universal example of the following
result.

Lemma 3.1.3. Let x € m, X have order 2. Then there is a classy € w41 (XAV(0))
so that

2y = ju(x)n € T (X AV(0)).

Furthermore, q.(y) = z.

Proof. Extend x to a map T: X"V (0) — X and then contemplate the diagram
YV (0) ——= X"V (0) A V(0) — X" H1V(0)

mi \Lz/\V(O) J/Em

XﬁX/\V(O)ﬁEX .
The class y is then the image of a generator of m1(V(0) A V(0)) under the map
(T AV(0)).. O

Remark 3.1.4. We can refine the [Lemma 3.1.3|in the case when the class of order
2 is an np-multiple. Let z € 7, X be a class of order 2. Then the Toda bracket
(z,2,m) C mpe2X is defined with indeterminaeyﬂ

xm SO + Tpt1 XN = Tpe1 XN
It follows that (x,2,7n) 2 is well-defined and the shuffle
(3.1.4) (x,2,1)2 = x(2,1,2) = xn?
shows that if zn? # 0, then any element of (z,2,7) has order 4. We also have that
xn? must be divisible by 2.

LWe write 7 as the right hand factor in this product as this fits better with our Toda bracket

conventions. See [Remark 3.1.4]

2Note that we are writing Toda brackets in composition order.
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Remark 3.1.5. Here are a few simple applications of the and
mark 3.1.4[ We will only use (3.1.5) in the sequel, but (3.1.6) and the charts of
Figure 1] make for a more complete story.

Let v € w2V (0) be either of the two classes which map to n € 71V (0) under the
boundary map mV (0) — 715, Since v1 € {1,2,7), (3.1.4) gives that

(3.1.5) 20, = n? # 0.

Let us also write vq for j.(v1) € m2(V(0) AV(0)). The image of j,. has order two
in m2(V(0) A V(0)), and hence 2v; = 0. We can then choose an element

v} € (v1,2,n) C m(V(0) AV(0)),

so named because of its Hurewicz image in BP, (V' (0) A V(0)). Then |[Remark 3.1.2
and (3.1.4)) yield relations in 7, (V(0) A V(0)):

(3.1.6) %y = ign

2 2
207 =vin” .

Remark 3.1.6. The basic relations of come as exotic extensions in any
Adams-Novikov Spectral Sequence. Using the standard calculations of [MRWT7]
or even Table 2 of [Rav78], it is an exercise to compute the BP-based Adams-
Novikov Spectral Sequence for V' (0) and V (0) AV (0) in a small range. The following
two charts display the E-pages for V(0) and V' (0) AV (0) respectively. The charts
display additive extensions, n-multiplications, and v-multiplications. A vertical line
denotes multiplication by 2. Notice that, in particular, we must have dz(v?) = 7.

(0 V1

ig| | U1 v}

0 2 4 6 0 2 4 6

FIGURE 1. The Adams-Novikov E.-pages for 7.V (0) (left) and 7. (V(0) A V(0))
(right).

We close this section with a lemma about Spanier-Whitehead duality. If X is
a finite spectrum, let DX denote its Spanier-Whitehead dual. For ¢ and p as in

(B-L1), then

Dp

DSY <2 DV (0) DS

is equivalent to

S0 <2 ¥y (0) <-— S L.
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Lemma 3.1.7. Let y: S™ — X AV(0) and let x: "1V (0) ~ ¥"DV(0) — X be
Spanier- Whitehead dual to y. Then we have a commutative diagram

S —L = ¥"V(0)

| ]

X AV(0) X .

q
If B: mp (X AV(0)) = mn—1(X AV(0)) is the homotopy Bockstein homomorphism
of FEmark IL3, then

B(y) = juz(L).
Proof. We have a commutative diagram

S™ADp

St ASTt S™ A DV(0)
y/\s—ll ly/\DV(O)
XAV(0)A s X AV(0) ADV(0) x
XAV (0)ADp

\ \LX/\m
q
XAS°

where m: V(0) A DV(0) — SV is the duality pairing. The right vertical composite
defines x. By Spanier-Whitehead duality the composite

V(0)ADp

V(O)A STt

is the desuspension of p. Now suspend.

V(0) A DV (0) —"> SO

The equation for (y) is immediate from the commutativity of this diagram. O

3.2. Finding o in the K(n)-local sphere. A crucial actor in our proof of the
decomposition of LK(l)LK(g)SO is the Hopf class o € ;S8 = Z/16. This class

. . . 1 . ..
remains non-zero in m,L K(2)50 and also in W*EhSQ, and here we discuss how it is
detected. We begin with a preliminary remark.

Remark 3.2.1 (Geometric Boundary Theorems). At various points in this pa-
per we use a Geometric Boundary Theorem to name elements in an Adams-Novikov
Spectral Sequence. Specifically, we will have a cofiber sequence X— Y — Z
which induces a short exact sequence after applying a homology theory E.(—)

0— E.X—EY—FE.Z— 0.

Here E might be different than FE,,. This gives a long exact sequence on the Fo-
term of the Adams-Novikov Spectral Sequence. Suppose x € m;_,Z is detected by
a class a € ES’tZ. We would like to assert the image of X in m;_4_ 17X is detected
by the image of a under the connecting homomorphism

§: By'Z — EyTVX.

Finding a proof of this fact in the literature in complete generality is a challenge.
We will use this result in two cases. In the first case, F will be a connected ring
spectrum such as MU or BP, and then we can appeal to Theorem 2.3.4 of [Rav86].
In the second case E' = E, for some n and E,X = m.Lgn)(E, A X), and then
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we can appeal to Proposition A.10 of [DHO04]. In either case, we will call this the
Geometric Boundary Theorem.

We must be precise about what we mean by o. It will be the generator of w75 de-
tected in Ext}lg’?g* pp(BPy, BP,) by the Greek letter construction of Miller, Ravenel,
and Wilson. Recall from Theorem 4.3.2 of [Rav86] that there is an isomorphism

Fa[vi] 2 Extyp, 5p(BPs, BP./2)

and that the a-family in Extg*P* pp(BPy, BP,) is defined by taking the image of the
powers of v; under various Bockstein homomorphisms. Specifically, from Corollary
4.23 of [MRWTT] we know that the class

(3.2.1) vi= v‘f — 8vivg € BPg
becomes a comodule primitive in BPg/16 and we define ay/4 to be the image of

this class under the connecting Bockstein homomorphism associated to the short
exact sequence

(3.2.2) 0 BP, =% BP, BP,/16 —=0 .

Then 775° — Ex‘c}g’;Bp(BP*7 BP,) is an isomorphism and we define o to be the
unique homotopy class which maps to a4/4 under this map. We also write o for
this class (that is, for ay/4) in Extgi*BP(BP*, BP,). This is an abuse of notation,
but a standard one: we typically do it for n and v as well.

Using the equation of (3.2.1)) we have that v = v} modulo 2. Using the Geometric
Boundary Theorem of [Remark 3.2.1] it follows that v itself detects a class = €
78(5°/16) which maps to o under the map 9: 735°/16 — 775°. Here, S°/16 is the
cofiber of the map 16: S° — S°. The class x is not unique, as the kernel of 9 is
Z/2 x Z/2, but the elements of the kernel all have higher Adams-Novikov filtration,
so all choices of x are detected by v. The Adams-Novikov chart for S°/16 in this
range is displayed in Table 3 of [Rav78|. The class v of is clearly displayed
there, which is why we have used that notation.

Let E = E,, be a choice of a Lubin-Tate theory at height n. We now write down
a detection result for o € 7, E" | where H C G,, is a closed subgroup. We note
that the image of vy € Extyp pp(BP., BP,/(2)) in H*(H, E./(2)) — see diagram
(2.1.7) — is the element vy of Consider the Bockstein homomorphism
in cohomology
5@ = HO(H, By/16) — H'(H, Ex)
determined by the short exact sequence

0 By 2% Es/16 — 0.

Proposition 3.2.2. Let H C G,, be a closed subgroup and let R = H°(H, Ey). Let
¢ € Eg/16 be a class so that

(1) ¢ = v} modulo 2,
(2) c is invariant under the action of H, and
(3) H°(H, Eg/2) is a cyclic R-module generated by vi.
Then, up to multiplication by a unit in R, the image of o € mEM is detected in

the spectral sequence

H*(H,E;) = m,_E""
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by the class 8 (c) € H'(H, Eg).

Proof. As above, let x € m5(S°/16) be any class which maps to o under the bound-
ary map 7g(S°/16) — m7S. We will follow this element through the following
diagram of spectral sequences

Ext}h pp(BP., BP./16) =——> .(5°/16)

QT Tu

Ext}yy aro (MU, MU, /16) == ,(5°/16)

| |

H*(H, E,/16) —= m.(E"" A S°/16) .

To obtain this diagram we combine the diagram of spectral sequences in
with the diagram of spectral sequences in with F} = H C Gy = F,.

The class 2 is detected by v in Exty, 5 p(BP., BP,/16). Since v = v} in BP, /2,
we have that v maps to an element in HY(H, Eg/16) congruent to v{ modulo 2.
Here we use the identification of v; from[Remark 2.4.1] It now follows that z is non-
zero in mg(E" A S°/16). The assumptions imply that ¢ generates H°(H, Eg/16);
therefore, ¢ detects ax for some unit @ € R/16. The result then follows from the

Geometric Boundary Theorem of O

Note that we are not asserting that o # 0 € 7w, EM . We will take this up at
various points later. See[Section 4|and[Section 7|and, in particular, |[Proposition 4.1.7|

and [Theorem 7.2.41

4. A REVIEW OF CALCULATIONS IN K (1)-LOCAL HOMOTOPY THEORY AT p = 2

In our main arguments, we will identify wedge summands of L (1)L K(2)50 equiv-
alent to LK(l)SO and L 1)V (0). As background for this, we record here known
results from K (1)-local homotopy theory at the prime 2. For example, the class
(1 € 7T,1LK(2)SO is closely related to the Hopf map o € 775 and it is important for
us to make this relationship explicit. We will also discuss L 1)V (0) and L)Y
where Y = V(0) A C(n) is the spectrum studied by Mahowald in his proof of the
telescope conjecture at n =1 and p = 2. See Section 2 of [Mah82].

None of the material in this section is new; it can be put together from [Mah82],
[MRWT7], and [Rav86] among many sources.

We begin with some basic calculations in the K (1)-local Adams-Novikov Spectral
Sequence. As noted earlier, we can choose 2-completed K-theory for our version of
Lubin-Tate theory at height 1, so we will write K for Ej.

The group G; = ZJ acts on K, X = T L1y (K A X). We write the action of
k € ZJ using the Adams operations notation; that is, if z € K, X, we write PF (x)
for the action of k on x.

We are interested in the spectral sequence

Hs(Zg,KtX) — Wt_SLK(l)X.
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4.1. Calculating 7, L 1)S° and m, Lk 1)V (0). We begin with these, the most
basic spectra. We take up the important auxiliary spectrum Y = V(0) A C(n) in
bection 4.2

Remark 4.1.1. Recall that Ky, = Zyu™" where u € K_5. The operations 1/1’“
are Zs-linear and ¥ (u™) = k"u™. Here are a few crossed homomorphisms defining
elements in the first cohomology groups H'(Z , K. *)E|

(1) x1: Z3 — Z/2 = Ky/2 is given by
x1(1 4+ 2ko) = ko.

where kg is the mod 2 reduction of k.
(2) ¢1: Z3 — Zy = Ky is defined as the composite

o l10 —
25—~ 25 (1) e (14 425) — 0 L 7,

Here the first map is the projection, the second map is the inverse of the
isomorphism defined by the composition
1+4Zy CZ5 — 7Ly [{£1},

and log(1 + ) = 3, 5, (=1)"a" /n.
(3) If nis odd, ay,: Z5 — Koy, is given by

an (k) = 5(/{‘” —Du™"
(4) If n = 2°(2t 4+ 1) with i > 0, then a,/;49: Z5 — Kj, is given by
1

—n

QU jiga(k) = W(’f" —Du

We had a class ay/4 above; see after (3.2.1). [Lemma 4.1.3| below implies that this
new class a4 will be a unit multiple of the image of the older class, and we won’t
need to distinguish between the two as we try to find ¢ in the homotopy groups of
the localizations of in V(0), Y and V(0) AY. The class (; was already discussed in
§2. See (2.2.3), and [Proposition 2.2.1]

Since we are at height one, we have v; = u~! € K, /2.

Lemma 4.1.2. The crossed homomorphisms of [Remark 4.1.1 satisfy the following
formulas:

(1) if n is odd, then vix1 = oy, modulo 2;
(2) if n is even, then v{'C1 = v, /542 modulo 2.
Proof. As a topological abelian group ZJ is generated by —1 and 5; thus we need

only show that the identities hold when evaluating at these elements. The formula
(1) is a simple calculation. For formula (2) we use

1
1 log(1 +4k) =k modulo 2. O

30ur notation differs from that of Ravenel in Lemma 2.1 of [Rav77].



24 A. BEAUDRY, P. GOERSS, AND H.-W. HENN

We also have the following result, which is immediate from Let
5@ be the ith Bockstein

6W: HY(ZF, K, /2") — H*TY(Z} ,K,) .
Write § = 6(1).
Lemma 4.1.3. We have formulas for the Bockstein homomorphisms:
(1) if nis odd, 6(v}) = ap;
(2) if n = 20(2t + 1) with i > 0, then §0+2y—" = QO jive and u™" reduces to
v} modulo 2.
The next proposition gives some basic detection results.

Proposition 4.1.4. (1) The class n € m1S° is non-zero in ﬂ*LK(l)SO detected by
7.

(2) The class o € 7S° is non-zero in W*LK(USO detected by a unit multiple of
044/4.

Proof. Part (1) follows from [Lemma 4.1.3|and the fact that 7 is always detected by
the Bockstein of v;1. Part (2) follows from [Proposition 3.2.2] [Lemma 4.1.3} and the
isomorphisms

Foof!] = K, /2= HY(ZS , K. /2) . O

Remark 4.1.5. Differentials in the K (1)-local Adams-Novikov Spectral Sequence
at p = 2 are largely determined by a standard ds. We expand on this observation.
In [Rav78 p.430], there is a generator

a3 € Extyy pp(BP., BP,) = 7/2
which is the Bockstein on v3. There, it is shown that dz(a3) = n*. Furthermore,
as reduces to nuf in Extg(;*BP(BP*, BP,V(0)), so that nds(v?) = n*. Since there

is no n torsion on the Es-term of the Adams-Novikov Spectral Sequence for V(0)
in bidegree (3, 6), this forces the differential d(v?) = n3.

Since a3 is the Bockstein on v$, it maps to the class we named a3 in[Remark 4.1.1
See Lemma 4.1.3

In general, for a 2-local MU-algebra spectrum F, the E-based Adams-Novikov
Spectral Sequence for a spectrum X is a module over the BP-based Adams-Novikov
Spectral Sequence for the sphere. There is a universal dz—differential

ds(azz) = n*z + asds(2).
Further, if 2 annihilates E,(X), this gives a universal differential

ds(1v?z) = 0z + nuids(z).
If there is no 7-torsion on the F3—term, this implies that d3(viz) = 3z + v¥d3(z).
Warning 4.1.6. The spectrum V/(0) is not a ring spectrum. However, since
BP,V(0) = BP./(2) is a graded commutative comodule algebra, the Eo-term of

an Adams-Novikov Spectral Sequence for V(0) is often a bigraded commutative
ring. Typically the spectral sequence looses the ring structure at Es, where we
have d3(v1) = 0 and d3(v?) = n3. See|[Remark 4.1.5

Nonetheless, it is often convenient to write down the Fo-term as a ring and we
will do so. These issues are classical, and we hope this doesn’t cause confusion.
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FIGURE 2. The spectral sequence computing the homotopy groups of L1,V (0).
A e denotes a copy of Z/2. Dashed vertical lines denote exotic multiplication by 2.

Remark 4.1.5] implies the following well-known result. See We use
that V(0) has a vi-self map. The fact that ; is a permanent cycle was covered in
[Proposition 2.2.1] and the additive extension is from (3.1.5)). In this result, E(—)
denotes the exterior algebra over Fs.

Proposition 4.1.7. We have an isomorphism
Fafol, o] @ B(G) 2 Falot! n] © B(o) = H*(Z}, K. /2)
with vi¢; = o. All non-zero differentials in the spectral sequence
H*(Z3, K, /2) = 7. L1V (0)

are determined by vi-linearity, the facts that v1, 1, o and ¢ are permanent cycles
and

ds(viz) = nPx + vids(x).
The spectral sequence collapses at FEy and the only additive extensions are implied
by vi-linearity, multiplication by (1, and

201 =n? .

Remark 4.1.8. Using [Proposition 4.1.7] and naturality it is possible to work out

the spectral sequence for the homotopy of Ly 1)S?. See Here are the
results in brief. We have the following non-trivial differentials

ds(aurs3) = 0P aupi
d3(ova(airs1y/3) = N Qgitrgji3, t#0 mod 2
d3(ovay3) = 0’y

The last formula can be thought of as a case of the second formula with i = co.
There are additive extensions as well. In fact, by (3.1.4) we see that n%ays, 1 must
be divisible by 2. This implies that for any t € Z

42045 42/3) = N7 Qapy1.

[Proposition 4.1.7| has the following consequence. Recall that we are writing o for
both the element in homotopy and the class in the Fs-term of the Adams-Novikov
Spectral Sequence which detects it.
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FIGURE 3. The E5 (top) and E., (bottom) pages of the spectral sequence for the
homotopy of LK(l)SO. Here, a [0 denotes a copy of Za, a e denotes a copy of Z/2,
a @ a copy of Z/4 and so on. Dashed lines denote exotic multiplications by 2.

Corollary 4.1.9. (1) In H*(Z5,K.) we have
042/4 =0=0"%
(2) In 7, L(1yS° we have o* = 0.

Proof. For part (1), it is sufficient to prove a§/4 =0 as o is a unit multiple of ay 4.
We use that

HS(Z;aK*) — HS(Z27K*/2)
is an injection if s > 1. By part (2) of |Lemma 4.1.2| we have oy /4 = v}¢; modulo
2. Since (7 = 0, the result follows.

For part (2), we deduce from [Proposition 4.1.7| that m14Lg 1)V (0) = 0. From

the long exact sequence on homotopy groups, it follows that 7r14LK(1)SO = 0.
Alternatively we could read part (2) off of O

[Proposition 4.1.7]is explicit about the Hopf maps 1 and o. The other Hopf map
v plays a more subtle role. See [Figure 2| and [Figure 3|

Proposition 4.1.10. (1) Let v € 735° 22 Z/8 be a generator. Then v is non-zero
mn W*LK(l)SO and detected by a unit multiple of 2 3.

(2) The class v is non-zero in m, Ly 1)V (0) detected by v1(1n?°.

(3) In 7. L 1)V (0), v is a multiple of 1.

Proof. From the discussion in Remark 4.1.8 we know that 7T3(LK(1)SO) sits in a
short exact sequence with kernel given by Ei”ﬁ = 7,/2 generated by 7% and quotient
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given by Ei’4 = Z/4 generated by 2as/3. The result follows because of 4v = n3 €
™3 (SO)
For the second statement, we have that v # 0 € m.Lg 1)V (0) and that 2ay,3 =

0 € H*(Z5,K./2). It follows that v must be detected by a class in filtration s = 2
or higher and, by [Proposition 4.1.7] the only class available at E., is v1(1n2.

For the third statement, we have that v is detected by a class which is a multiple
of 1 in the E-page for m. L)V (0). Since there are no non-zero elements of
higher filtration in the t — s = 3 stem, the claim follows. (]

4.2. The K(1)-local homotopy of the spectrum Y. Let C(n) be the cone
onn € mS% and let Y = V(0) A C(n). The spectrum Y is a type 1 complex
with a vi-self map vi: £2Y — Y. The map v; is not unique, but the induced
map W*EZLK(UY — m«Lg(1)Y is independent of the choice. Indeed, for any #,
kL (1)Y is one-dimensional over Z/2. See [Proposition 4.2.2,

Remark 4.2.1. By the construction of Y, there is a cofiber sequence

V(0)An 7 h

Y

(4.2.1) 2V (0) V(0) ¥2V(0)

which gives rise to a short exact sequence of B P, BP-comodules
0 — BP,V(0) - BP,Y — BP,X*V(0) - 0 .
This is not split, but is the non-zero element
n € Extpp pp(X2BP,/2,BP,/2) 2 Z/2.

+1
U1

Proposition 4.2.2. We have an isomorphism of Fa[v]"]-modules

Folor!] ® B(G) = Falvr '] @ E(o) = H*(Z3, K.Y)
with vi(; = 0. The spectral sequence
H*(Z3 ,K.Y) = m.Lgn)Y

collapses. If 1: S° — Y is the inclusion of the bottom cell, then mLg)Y is a free
module over Fo [vfl] on generators ¢ and to of degrees 0 and 7 respectively.

Proof. By Landweber exactness and we have a short exact sequence
of Z5 modules

0— K,V(0) - K.Y - K.X*V(0) = 0.

Furthermore, in the long exact sequence in group cohomology, the boundary map
is given be multiplication by 1. The claim about H*(Z5, K.Y) now follows from
[Proposition 4.1.70 The spectral sequence for m.Lg1)Y must collapse for degree
reasons. (]

Let t: S = Y and p: Y — S be the inclusion of the bottom cell and the collapse
to the top cell of Y respectively, and similarly for .: S° — V(0) and p: V(0) — S*.

Proposition 4.2.3. Let 2: Y — Y be the degree 2 map. Then there is a factoring
y o83 Yoy

2
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where v is the composite S3 ——= SO —=Y. After localization, the degree 2 map
2: LK(l)Y — LK(l)Y

is null-homotopic.

Proof. There is factoring of 2: V(0) — V(0) as

V() =51 15 v(0) .

Since n = 0 in 7Y, this gives a factoring of 2: Y — Y as a map

y sy ey
Since K.h: K.Y — K,%2V(0) is onto and 2K,Y = 0, we have that K,.f = 0.
Since mY — K3Y an injection onto the summand generated by vy, this implies f
factors as a composition

2
D2V (0) = 58 0oy,

The mod 2 cohomology of Y is cyclic over the Steenrod algebra and, hence, there
can be no splitting

H* (Y ANV(0)) 2 H'Y @ H'YY
as modules over the Steenrod algebra. Thus the order of the identity on Y is not
2 and we see g # 0. Finally, since m3Y = Z/2 generated by v, the first statement
follows. The second statement follows as v = 0 in 7. Lk (1)Y’; indeed, we showed in
[Proposition 4.1.10| that v is divisible by 7 in 7. L 1)V (0). O

Recall that classes ig and i1 in 7.V (0) A V(0) of degree 0 and 1 respectively

were defined in [Remark 3.1.2l We abuse notation and let ig = () A V(0)).io and

i1 = () AV(0))«i1 be the corresponding classes in 7. (Y A V(0)).
Corollary 4.2.4. There is an equivalence
LK(l)(Y N V(O)) ~ LK(I)Y V ELK(l)Y .

Furthermore, m. Ly (1)(Y AV (0)) is a free module over Fy il ® E(0) on generators
1o and i1 in degrees 0 and 1.

Proof. This is an immediate consequence of [Proposition 4.2.3] O

5. HEIGHT 2 COHOMOLOGY CALCULATIONS

In this section we collect together some calculations of the group cohomology of
G2 and many of its closed subgroups. Much of the material here is either back-
ground for, or a consequence of, the following result. Let G be a closed subgroup of
G2 containing S} as a normal subgroup. Then the inclusion of W — Eg & W/[[u]]
of continuous G-modules yields an isomorphism

H*(G, W) — H*(G, Ey).
See below. This is a remarkable simplification and at the heart of

much of what we can prove in K (2)-local homotopy theory.
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5.1. Preliminaries and recollections. A key to many of our calculations is the
behavior and properties of the classes in H'(Gy,Fy); these play a central role in
the story we are telling here. This is also a point where the prime 2 has extra
phenomena not seen at odd primes. The first part of this section is devoted to
analyzing these cohomology classes. We will also include some material on the
cohomology of some Poincaré duality subgroups of Sy collected from |[Bealj|.

Remark 5.1.1. In we defined the extended determinant map
det: Go— Z5 .
We also have projections
pr: 25 — 25 J{£1} 2 Zs and  po: ZS — Z/4° =2 {£1}.

We gave an explicit isomorphism ZJ /{+1} = Z, in [Remark 4.1.1l We then get

surjective homomorphisms
(5.1.1) (o :=pjodet: Go— Zso and X2 = po odet: Go— Z/2

and hence cohomology classes we label, by abuse of notation, by the same names;
thus, we have classes (; € H(G,Zs) and x2 € H' (G, F5) for any subgroup G C Gs.
We also write ( = (2 and x = x2 when there can be no confusion.

The cohomology class (s is the reduced determinant discussed earlier in ([2.2.2))
and (2.2.3); see also [Proposition 2.2.1] The class x2 is the analog of the class x;
defined in [Remark 4.1.7] for n = 1.

As a final bit of notation, we will also write (3 € H(G2,F2) to be the reduction
of (o € HY(Gy,Zy). We also define

X € H*(Go,Zy)
to be the image of x» under the Bockstein H(Gy,Fy) — H?(Go,Zs).

Remark 5.1.2. Looking back at we see that the projections p; and
pa of [Remark 5.1.1] have arisen before. In fact p; = ¢; and ps = X1, up to the
isomorphism Z/4* = Z /2. We can write

(o = (1 odet and X2 = x1 odet.
We now begin our calculations.

Lemma 5.1.3. (1) The cohomology group H'(Sy,F3) is of dimension 2 over Fy
with basis x2 and (s.

(2) The cohomology group H'(Sa,Zs) is free of rank one over Zs generated by
Ca.

Proof. The first statement follows from Theorem 6.3.12 of Ravenel [Rav77] or,
alternatively, Proposition 5.3 of by taking covinvariants with respect to
the residual action of F}. We will see below in [Proposition 5.2.12} that 0 # x3 €
H?(S},Fy), and hence in H?(S3,Fy). The second statement follows. O

“Warning! In Lemma 2.1 of Ravenel [Rav77] the mod 2 reductions of these classes have the
names (2 + p2 and (2 respectively.
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Remark 5.1.4. Here are some more refined details about the behavior of (5 and

X2. From|[Remark 2.4.6| we have decompositions K x Gas =2 Sy and K x Goy = S;.

Recall that W* C S5, with W the Witt vectors on Fy. Let w € W be a primitive
third root of unity. The element m = 1 4 2w € W* satisfies det(n) = 3. From
Section 2.3 of [Beald] (see also below) we know there is an element
a =1 — 2w modulo (4) in W so that det(a) = —1. Furthermore, o and 7 are
elements of K C S,. The elements m and « were discussed before in

(1) Since det(a) = —1, it follows that x(a) = —1 and ((a) = 0. Thus a € K*
and x: S} — Fy restricts to a non-zero class of the same name in H'(S},Fs) and
even in H!(K',Fy). By definition Si is in the kernel of the reduced determinant;
hence, ¢ restricts to zero in H' (S}, Zs).

(2) Note also that (7 = 0 in cohomology, wherever it appears, as it is the image
of a generator of H'(Zy,Zs). The exponent of y is an important point addressed
below in [Proposition 5.3.1]

Remark 5.1.5. We now add some further recollections on the cohomology of the
subgroups K and K! of Sp. Since 7 € K and det(w) = 3 maps to a topological
generator of Z5 /{+£1}, the composition

K;>SQ$Z2

remains surjective and defines a non-zero cohomology class (» € H'(K,Zy). Any
choice of splitting of this surjection gives isomorphisms Si xZo = Sy and K xZy =
K. A choice of splitting is given by sending a generator of Zs to .

The following can be found in Corollary 2.5.12 and Theorem 2.5.13 of [Bea15]E|

Lemma 5.1.6. (1) The subgroups K and K are oriented Poincaré duality groups
of dimensions 3 and 4 respectively.

(2) There is an isomorphism
H*(Ka FQ) = F2[C7X7$17582]/(427X2733% + X.Tl,l’g + X’I’Q)
where (,x, x1 and xo are in degree 1.
(3) There is an isomorphism
H*(Klan) = FQ[vath]/(XQ?‘T% =+ XT1, .T% =+ X‘TZ)
where x, x1 and xo are in degree 1.

Remark 5.1.7. We also write down the cohomology of Qs x F; = G4 and Cé.
Recall that Qg has periodic cohomology with a periodicity class k € H*(Qs, Zz) of
order 8. We will also write k € H*(Qg,Fs) for the reduction of k.

We have an isomorphism

Folz,y, k] /(2 + 2y + y°, 2%y + 2y°) = H*(Qs, F2)

5In Section 2.5 of [Bealb], the restriction of x to H! (K1, F3) is denoted by zo and the restriction
of ¢ to H'(K,F2) by x4. We use the same name for the restrictions as for the original classes.
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where z and y are in degree 1. For a choice w € Fy of a primitive cube root of unity
we have w,x = ¥y, w,y = « + ¥y, and w.k = k; from this it follows that there is an
isomorphism

Folz, k] /(2?) = H*(Qsﬂz)F“X = H*(G24,F2)

where z = 2%y = xy?. Finally, since k has order 8 in H*(Qg,Zs), the Universal
Coefficient Theorem gives an isomorphism

Zsk)/(8k) =2 H* (G4, Zs2) .
Recall further that
H*(Cs,F2) = Fah]
for a class h in degree 1 and that
H*(Cs, Z2) = Z2g]/(29)
for a class g in degree 2 which is the image of A under the connecting homomorphism
for Zo 2, Zs — Fy. The inclusion Cg = {£1} x Fy C Ga4 yields a map on
cohomology
H"(Ga4,Z2) = LK)/ (8k) — Z2[g]/(29) = H* (Cs, Z2)
sending k to g2. With Fy coefficients the map
H*(G24,F2) = Fyz, k] /(2%) = Fa[h] = H*(Ce, F2)
sends z to 0 and k to h*.

5.2. The cohomology of Si. In this section we use the algebraic duality spectral

sequence of to calculate the integral and mod 2 cohomology of S} as
graded modules over H*(Ga4,Z2). From [Remark 2.5.3| we have

(5.2.1) Ef’q = Hq(vaM) = Herq(S%aM) .

We are particularly interested in the cases M = Zy and M = Fs.

This spectral sequence has a split edge homomorphism. The augmentation map
Z[S%/G24]] — Zs induces, through the isomorphism of (2.5.1]), an edge homomor-
phism

H* (S%, ZQ) — H* (G24, Zg)
of the spectral sequence (5.2.1]). This is induced by the inclusion of G2y C S3. By

Remark 2.4.6 there is a projection S — S1/K*! = G4 which splits this inclusion,
so we immediately have the following result.

Lemma 5.2.1. Let M = Zy or Fy. The map of algebras
H*(Sy, M) — H*(G24, M)
induced by the inclusion of the subgroup Gay4 has an algebra splitting.

Remark 5.2.2. From |[Remark 5.1.7]and [Lemma 5.2.1| we get an injective map
Zolk)/(8k) = H*(Goy, Zo) — H*(S3, Zs).

We confuse k with its image in H*(S},Z2) and in the cohomology of most of its
various subgroups. To be specific, the composition

H*(Goa,Z2) — H*(S3,Z2) — H*(Ghy, 7o)
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is an isomorphism; this follows from the fact that the inclusion G%, C S} also splits

the projection S} — Ga4. Also, as in |[Remark 5.1.7, the map
H*(Goa, Zz) — H*(S3,Z) — H*(Cs, ZL2) = Zs[g]/(29)
sends k to g°.

Remark 5.2.3. It will be useful to compare the algebraic duality spectral sequence
for S} to a spectral sequence for a quotient group. Let Cy = {£1} C S, be the
central subgroup of order 2. For any group G C Sy which contains C5 define
PG = G/C5. Note that Cy is a subgroup of all of the groups S}, Cg, Gy, and Gb,.
Whenever Cy C F we have isomorphisms of S}-coset spaces S/F = PS}/PF and,
hence isomorphisms of continuous Si-modules

Z[[S}/F)) = Zs[[PSy/PF]] .
The resolution of [Theorem 2.5.1]is in fact constructed as a resolution of continuous
PSi-modules

0 — Zo[[PS}/PFs]| -2 Z,[|PSL/PFy]

(5.2.2) 2 7,([PSs/PFy)| -2 Zo[[PSY/PFy)] — Z — 0.
We have
PFy 2 Ay :=(Cy x C3) x C3
PF, = PF, = (4
PPy = A)
with A} = 7Ay4n~!, where 7 = 1 + 2w € WX. Note that, in particular, that if
p =1 or 2, then Zs[[PS}/PF,]] & Zs[[PS}/C3]] is a projective Zs[[PS}]]l-module.

This often makes arguments with this resolution simpler. For example, if M is a
profinite PS} module we have an analog of the algebraic duality spectral sequence

HY(PF,, M) = H""(PS;, M)
with EY"? = H1(C5, M) =0if p=1, 2 and ¢ > 0.

Finally, these considerations give a diagram of spectral sequences for any profinite
PS}-module M

H9(PF,, M) ==> HP*1(PS}, M)

| |

HY(F,, M) =——= HP™9(S}, M)
with the vertical maps induced by the evident quotient homomorphisms.
Lemma 5.2.4. Let M = 7y or Fy. The spectral sequence

HY(PF,, M) == HP™(PS}, M)
collapses at the Ey-page. Furthermore, if M = Fy, it collapses at the Eq-page.

Proof. Since H1(PF,,M) =0 for p = 1,2 and ¢ > 0, and since H*(PFy, M) is a
retract of H*(PS}, M), the spectral sequence collapses at E>. The d;-differential

is induced by the maps 0; of [Theorem 2.5.1} By part (2) of [Theorem 2.5.1| we have

that d; = 0 modulo 2, so the spectral sequence collapses at Ey for M = Fs. (]
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Remark 5.2.5. It is also useful to compare these spectral sequences to yet another
one defined for a subgroup of S}. Recall there is a semidirect product decomposition
S} = K x Gy, ; this implies a decomposition PS} = K x A,. Thus, the resolution
is a resolution of projective Zy[[K!]]-modules. For any profinite PS}-module
M, we get a diagram of spectral sequences

(5.2.3) ED1 >~ Ex‘c%2 (Zs[[PSy/PF,)], M) =—=> HP*4(PS}, M)

i

BP9 2 Exty 01, (Z2[[PS3/ PE)], M) == H"*I(K', M)

([Ps3]]

and in the bottom row the Ext groups vanish if ¢ > 0. This allows us to prove the

following lemma. Note that part (1) of [Lemma 5.1.6|implies H3(K*', M) = M for
M either Zs or Fs.

Lemma 5.2.6. Let M = Zs or Fy. The sequence
0— H3(Ay, M) —— H3(PS}, M) —— H3(K', M) = M — 0

is split short exact, where the maps are induced by the projection to Ay and the
inclusion of K' in PS} = K x Ay. Furthermore the restriction homomorphism
H3(SY, M) — H3(K', M)

is split surjective.

Proof. The second statement follows from the first since the map H?(PS}, M) —
H3(K*', M) factors through H3(S, M) — H3(K*', M).

For the first statement, we use the map of spectral sequences . Since
Zy|[PS3/A}]] = Zs[[K']] as a K'-module, Homg, g1} (Z2[[PS3/A}]], M) = M and,
at Ef”o, the map is the inclusion of the invariants

M*+ = Homy,((psy) (Z2([PS3/A4]], M) — Homg, v (Z2[[PS3/A4]), M) = M.

The action of A} on M is trivial, so this is an isomorphism.

By part (2) of[Theorem 2.5.1} E3° = E>° for both K and PS} as the differential
di: E12’O — Ef’o is induced by the map 93, which is zero modulo I K*. Both spectral
sequences collapse at the Fo-term. For K! this follows for degree reasons and for
PS}, this is[Lemma 5.2.4 So the map in (5.2.3) at E3 is an isomorphism. Finally,
for PS} we have E%! = EL2 = 0 by Since E%3 = H3(PF,, M) is a
retract of H3(PS}, M), the extension is split. O

Remark 5.2.7. In results to follow we will use extra structure on the algebraic
duality spectral sequence. For all profinite S}-modules M, there is a natural action
of

Exty, (o1 (Z2, Zo) = H*(S3, Z2)

on Ext%[[géﬂ(M ,Z2) so, in particular, the algebraic duality spectral sequence
HY(F,,Zs) = H"*(S},Z>)

is a spectral sequence of H* (S}, Zs)-modules. Furthermore, the action of H*(S3, Z)
on EY* = H*(F,,Zs) is through the restriction homomorphism induced by the
inclusion F, C S3.
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FIGURE 4. The E; = E-term (left) of the ADSS for H*(S},Fs) and the E;-term
(center) and Fy = E-term (right) of the ADSS for H*(S},Z>).

We go into more detail on this algebra action in see the material
after Lemma [Z.1.1]

Remark 5.2.8. We are now ready to use the algebraic duality spectral sequence
to compute the cohomology of S} with Zy and Fy coefficients. In arguments below
we may use the notation EX*(Fs) or EX*(Zz) for the algebraic duality spectral
sequences converging to H*(S3,Fy) or H*(SL,Zs) respectively.

[Figure 4] displays the E;-term with Fa-coefficients in the left column, the E;-term
with Zs-coefficients in the middle column, and the E-term with Zs-coefficients in

the right column. We will have E; = E, for Fao-coefficients. See |Corollary 5.2.11

We explain the notation in this figure; let M = Fs or Zs. Then a vertical
subcolumn in an Fi-term displays a copy of H*(F),, M) where F,, = Ga4 if p =0,
Cs if p=1or 2, or Gy if p = 3. The cohomology rings of Ga4 and Cs were
discussed in w* The symbol @) denotes a copy of Z/8, while a e denotes
a copy of Z/2. A [ denotes a copy of Zs.

We write Ag € HO(Fy, M), by € HY(Fy, M), by € HY(Fy, M), Ag € H°(F3, M)
for the obvious generators. This notation is used to facilitate references to [Bealb].
Thus, for example, E;™* 2 H*(Cg, M)by as a module over H* (S}, M).

The generators of Ag, by, by, and A are, strictly speaking, each an element of
HOY(F,, M) for some p. In the next few results we will conflate them with their
images under the edge homomorphism

HO(FZMM) — E&O < HP(S%,M)

of the algebraic duality spectral sequence.
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Before getting to our main theorems, we give some preliminary results about the
classes by, by, and Ag in EI’O for both Fy and Zs. Recall from [Remark 5.1.4{ that
X € H?(Gy,Zsy) is the Bockstein on x = x2 € H'(Gy,Fs).

Lemma 5.2.9. (1) The class by € E}°(Fy) detects x € H (S}, Fy).

(2) The class by € E>°(Fy) detects x* € H2(SL,Fy), and the class by € E}°(Zs)
detects the class X € H*(S},Za).

(8) There is a torsion-free class e € H3(S), Zy) detected by Ny € E3°(Zy) which
restricts to a generator of
H3(KY, Zy) = Zy.

Proof. For part (1) we see that in the spectral sequence for H*(S3,Fy) (the left-
hand column in [Figure 4) we have EL?(Fy) = Fy generated by by and EQ! = 0;
hence H'(S},Fy) = Fy. Since x € H'(S,Fa) is not zero, it must be detected by
bo.

For part (2) we recall from part (2) of[Theorem 2.5.1|that in the integral spectral
sequence (the central column in [Figure 4))

dy: BE;°(Zy) — E¥°(Zy)

is multiplication by 2. Thus H?(S}, Zs) = Z/2 generated by a class detected by by.
This implies that the connecting homomorphism H!(S}, Fo) — H?(S}, Z2) must be
non-zero. Since H'(S},Fy) = Fy generated by x, we must have that the generator
of H%(S},Z5) is X. From this it follows that by detects x2 € H?(S},Fy).

This leaves part (3). The integral algebraic duality spectral sequence has an
edge homomorphism

Zy = Homg, 1)) (Za[[S3/Ghall, Z2) = EY° — H(S3, Zo).

This map is injective. To see this, note that by is a permanent cycle; thus d; : Ef 0
E?? is zero. All other differentials with target E3° have zero source.

Let e be the image of Ag. That e restricts to a generator of H3(K*,Zy) follows
from [Lemma 5.2.0] O

We can now give the calculation of H*(S},Z,) as a module over H*(Ga4,Zs2).
We give the integral calculation first as there are fewer possible differentials. Some
of the generators in this result are written as products; this is meant only to be
evocative of their antecedents in the spectral sequence. Thus, for example, gy is
not a product in the cohomology ring H*(S},Zs), but a class detected by gbo.

Theorem 5.2.10. As an H*(Gay,Zo) =2 Zolk]/(8k)-module H* (S}, Zs) is gener-
ated by elements
1, 9%, 9°X; X, 9X, €
of degrees 0, 3, 5, 2, 4, and 3 respectively and subject only to the relations
29x = 2¢°x = 2X = 29X = 0.

Proof. As a reminder, we are using the algebraic duality spectral sequence of
mark 2.5.3| with M = Z,. The Ej-page is determined as an H*(Ga4, Z2)-module

by [Remark 5.1.7]and the result is displayed in the center column of Then
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Theorem 2.5.1| part (2) implies that 0 = dy: EP* — EPT if p =0 or p = 2 and

the same result implies
di: B} — EPY
is multiplication by 2 and, hence, non-zero only if ¢ = 0. From FE5 onwards, the

spectral sequence is too sparse for differentials. The result will now follow if we can
show that there are no extensions.

Because we have a spectral sequence of modules over H*(S3,Z), as in the Re-
mark we have a spectral sequence of H*(Ga4,7Zs)-modules. By periodicity
with respect to k, we need only check that the extensions

0— Zy = E30 — H3(SY,Zy) - EL2 =Ty — 0
and
0—7Z/2=FE%* - HYS},Zy) - E%* = 7/8 - 0
are split. That the first is split follows from the second statement of
with M = Z,. That the second is split follows from O

We now turn to the calculation of H*(S3,Fs), again using the algebraic duality

spectral sequence of with M = 5. The result is displayed in the left
column of

As is [Remark 5.1.7, write H*(G24,]F2) = ]FQ[Z, k]/(Z2) and H*(C67]F2) = Fg[h]
The class k € H*(Ga4,Zs) reduces to the class of the same name in H*(Gay, Fo)
and the class g € H%(Cs, Zs) reduces to h* € H*(Cg, Fa).

Corollary 5.2.11. The algebraic duality spectral sequence for H*(S3,Fy) collapses
at E1. As a module over Fo[k], H* (S, Fs) is freely generated by classes

1, z, e, ze, h'x, hix?
with 0 <1 < 3. These classes are of degrees 0, 3, 3, 6, 1 4+ 1, 2 + i respectively.

Proof. The FEi-page of the spectral sequence is displayed in the left column of

That this spectral sequence collapses follows from the
Universal Coefficient Theorem and [Theorem 5.2.101 O

A key input for our main result on the homotopy type of L 1)L (2)S° is the
exact nilpotence order of the class x = x2 € H'(G2,F;). The following is a
preliminary step. The final result is below in |Proposition 5.3.1}

Proposition 5.2.12. Let x € H'(S},Fy) be the restriction of x € H'(Go,Fs).
Then x? #0 and x> = 0 in H*(S3,Fy).

Proof. We already have x? # 0, by [Corollary 5.2.11] so we need to show x* = 0.

The homomorphism y: S% — Ty is trivial on the central element —1 € Sy, hence
it comes from a unique class b € H'(PS} Fy). This class restricts to zero in
H1(A4,Fs). We will show that b3 = 0.

To see this, recall the decomposition PS! = K! x A,. |Lemma 5.2.6/implies that
the map

H3(PS},Fo) — H3(K' Fy) x H*(A4,Fy)
defined by the two restriction maps is an isomorphism. Then, from part (2) of
Lemma 5.1.6) and the fact that x (and hence b) restricts to the class with the same
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name in H' (K Fy), we have that b® restricts to 0 in H3(K',Fy). Since b restricts
to 0 in H'(Ay,Fa), the result follows. O

5.3. The exponent of x2 in the cohomology of So. We next turn to the analysis
of the cohomology of Sy itself. It is natural to ask for a complete calculation of
H*(Sq,F2); however, at this point, we have no succinct story to tell, and we won’t
need this calculation in later sections, so we won’t pick up that story here. This
is partly because we do not have direct access to an algebraic duality spectral
sequence in this case. For this reason, to prove the next result we will examine the
Lyndon-Hochschild-Serre Spectral Sequence (LHSSS) for the split group extension
K — Sy = Gag of

Proposition 5.3.1. In H*(S,,Fs), the class x = x2 € H*(S2,F2) has nilpotence
order exactly 3; that is, x> # 0 and x> = 0.

Proof. We write H*(G) = H*(G,F;) in this argument. Recall from

tion 5.2.12 that y maps to the like-named class x € H'(S}) and there we have
x? # 0 and x® = 0. It follows immediately that x? # 0 in H2(S,). It remains to

show x® =0 in H*(Sz,Fa).
We will use that x? restricts to zero in H*(S}) and a comparison of Lyndon-
Hochschild-Serre Spectral Sequences induced by the inclusion i: S} — Ss:

(5.3.1) HP(Gaa, HI(K)) == HP*4(S,)

/| I

HP (G, HO(KY)) == HPH(S}) .
From [Lemma 5.1.6| we have a decomposition H*(K) = H*(K') ® E(¢). Since ¢

lifts to H*(Gz), it is necessarily Gaog-invariant; hence, this is an isomorphism of
Go4-algebras and we have an isomorphism
H*(Gag, H*(K)) = H*(Gaa, H* (K1) @ E(C) -
Note that ¢ € EY' = HO(Gay, H'(K,Fy)); therefore, we can deduce an isomor-
phism
(5.3.2)  E5? = HP(Goy, HU(K)) = HP(Gaa, H/(K')) ® HP (Goa, HTH(K'))C
The map i* of E; terms in (5.3.1)) is the algebra map sending ¢ to zero. The class
x is detected in ES' 2 HO(Gay, H (K, Fy)).
As with any spectral sequence, the LHSSS gives a filtration
FS’O g F2,l g F1,2 g FO,3 _ HS(SQ)
with
Egéq _ Fp7q/Fp+1,q—1
a subquotient of EL? 22 HP(Gay, HY(K)). There is a similar filtration for H?(Sy).

We will show that x3 € F3? and hence it is in the image of the map H*(Ga4) —
H*(S3) induced by the projection Sy — Go4. Since this map has a section by
and x restricts to 0 in H(Ga4) = 0, we will have x* = 0 in H*(S,).

Since x? = 0 in H?(K,F3) we have x> € FbY!. Thus x? is detected by a
permanent cycle

v E HI(G24,H1(K)) .
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It follows that the class x? is detected at EL? by the class x7.

By [Remark 5.1.7| we know H!(Gay,Fo) = H?(G24,F3) = 0. Then ([5.3.2)) forces

the map
i*: HP(Goy, HY(K)) — HP(Goy, H'(KY))

at the Eg’l—term to be an isomorphism for p = 1,2; in particular, if xyy # 0 in
HY(Goy, H*(K)) then i*(x7y) = xi*(7) # 0 in HY(Ga4, H3(K')). But x* = 0 in
H*(S}), so we have xy = 0 and we can conclude 3 € F%!.

Let x> € H*(S;) be detected by a permanent cycle ¢ in H?(Gaoy, HY(K)).
Since x* = 0 in H*(S}) and 4* is an isomorphism at E§’17 we have an equation
da(w) = i*(¢) in the LHSSS for H*(S}). Since the map i* of Fa-terms in isa
surjection, this implies ¢ itself is in the image of dy. Thus x® € F3? as needed. [

5.4. The cohomology of H*(Gs, Ey). We now come to one of the key results of
the paper,

We begin with the following basic case, which gives a tight control over the
algebraic duality spectral sequence of for M = Ey/2. As in
mark 5.2.8) and [Lemma 5.2.9| we write Ag, by, by, and Ag for the obvious gen-
erator of HO(F),,Fs), for p = 0 through 3 respectively. This gives generators in
HO(F,, Ey/2) as well.

Theorem 5.4.1. Let i: Fy — Ey/2 = Fy[[u1]] be the inclusion of the constants.
Then the induced map of algebraic duality spectral sequences

(5.4.1) HY(F,,Fy) === HP*9(S},Fy)

H(Fy, Eo/2) == H"*1(S}, Eo/2)
becomes an isomorphism at Fo and yields an isomorphism

Qv H*(S3,Fy) = H*(S3, Ey/2).

Proof. We first show that the map is one-to-one. Recall from that
v1 = u~ 'y for our formal group. This is a Go-invariant element modulo 2; hence
the quotient map

E./2 — E./(2,v1) = Fy[u*!]
is Go-equivariant. The composite map

H*(S},Fy) — H*(S, Ey/2) — H*(S, Eo/(2,u1))

is then an isomorphism because it is induced by the isomorphism Fy & Fy/(2,u)
on coefficients. For similar reasons the map on E;-terms of must also be an
injection.

The hard part is to show that the map induced by ¢ is surjective on the Fo-
term. Here we need Theorem 1.2.2 of [Beal7b]. From there we read that the
Es = E-term of the algebraic duality spectral sequence for Fy/2 is free over Fy[k]
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on elements
Ay € H(Fy, Eo/2)
viyA_ € H3(Fy, Eo/2)
h'by € H'(F1, Eo/2), <i<3,
hiby € H'(Fy, Ey/2), 0<i<3,
Ay € H(F3,E/2)
vViyA_| € H*(F3,E/2) .

This, the left column of [Figure 4] and |Corollary 5.2.11|imply that on the Fs-pages
of spectral sequences ([5.4.1) 7. induces an injective homomorphism of free graded
F4[k]-modules with the same number of generators in each bidegree. Thus our map

must be onto. O
We can now give an integral statement. By here is an isomorphism
(5.4.2) W @ H*(S), Zy) = H*(SL, W).

Hence [Theorem 5.2.10| gives an explicit computation of H*(S, W) using the alge-

braic duality spectral sequence.

Corollary 5.4.2. Leti: W — Eq = W[[u1]] be the inclusion of the constants. Then
i induces an isomorphism

Proof. That i induces an isomorphism
H*(S3, W/2") = H*(S3, Eo/2")

follows by induction on n. The base case, n = 1, is[Theorem 5.4.1] For the inductive
step, we use the five lemma. The integral result is shown by taking inverse limits

and using the lim'-exact sequence. O

We record the following companion result to for use in the proof
of [Theorem 8.1.5| If M is a profinite S}-module, let EF*9(M) be the rth page

of the algebraic duality spectral sequence of M. See Recall that
X € H?(Gy,Zs3) is the Bockstein on y € H'(Gg,Fy).

Lemma 5.4.3. (1) The unit map i: W — Ey induces an isomorphism

Ey°(W) — B3 (Eo)
where Ey* (M) denotes the Es-term of the algebraic duality spectral sequence for
M.

(2) For 0 < p < 3 we have isomorphisms

W p=0
0 p=1
]F4 p:2
W p=3

E2°(Ep) =

Fach of the non-zero groups Eg’O(EO) is generated by the cohomology class of the
unit in EV° = HO(F,, Ey).
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Proof. For part (1) we use that E3°(M) is the cohomology of the torsion-free
cochain complexes ET’O = H°(F,, M). Now, let M = W or Ej. For both choices of
M and any p, H'(F,, M) = 0. For M = W this follows from [Remark 5.1.7] and for
M = Ejy this follows from [Bau08] and [MR09], but see also Section 2 of [BGIS].
From this it follows that for all n > 1 there is a short exact sequences of complexes
0 —— H(F,, M) . H(F,,M)—— H°(F,,M/2") — 0.
Thus we deduce that we have a short exact sequence of chain complexes
0 — HO(F,, M/2") —2> H(F,, M/2""') — HO(F,, M/2) — 0.
The map of cochain complexes
H°(F,,W/2) — H°(F., Fy/2)
induces an isomorphism in cohomology by Then, using the five

lemma, we have that
HY(F,,W/2") — H°(F,, Ey/2™)

is an isomorphism. The integral result then follows by taking inverse limits and
using the lim'-exact sequence.

Part (2) is proved by combining (5.4.2)), [Lemma 5.2.9} and [Theorem 5.2.10 O

We can now extend to a larger class of groups which includes Ss,
Gy, and GJ.

Theorem 5.4.4. Let G C Gy be any closed subgroup which contains St as a normal
subgroup. Then the inclusion of Zs[[G]]-modules i: W — Ey induces an isomor-
phism

ix : H(G,W) = H*(G, Ep).

Proof. This follows from and the following diagram of Lyndon-
Hochschild-Serre Spectral Sequences

Hp(G/S%a HQ(S%,W)) — Hp+q(G’W)

i I

Hp(G/S%a Hq(SévEO)) = Hp+q(G7 EO)

Remark 5.4.5. extends to an isomorphism
iy H*(G,W/2") = H*(G, Fo/2")
for all n > 1.

Remark 5.4.6. One point that might be worth clarifying is the effect of the ex-
tension of scalars Zo — W. Using[Lemma 2.2.2) and [Theorem 5.4.4| we can conclude
that

H*(Se,Zs) = H*(Go, Ey).

Similar remarks apply to the inclusion S§ C Gi.
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Remark 5.4.7. [Lemma 5.1.3| and [Theorem 5.4.4] imply
HY (G, Ey) 2 7y
generated by (2 and [Lemma 5.1.3| and [Remark 5.4.5[ imply
HY(Gy,Fy/2) = 7)2 x 7.)2

generated by (5 and xs.

5.5. The rational cohomology of S; and G». In this subsection we make the
rational calculations needed to deduce the homotopy type of LiL K(Q)SO from the
homotopy type of LK(l)LK(g)SO. The main result is |Proposition 5.5.1L which com-
pletely calculates H*(Go, E,) ® Q.

By there exists a class
e € H*(S3,Zs)

which maps to a generator of H*(K',Zy) = Zs. Let Eqg,(—) denote exterior alge-
bras over Qy = Zs ® Q.

Proposition 5.5.1. (1) There is an isomorphism of graded rings
EQZ (6) = H*(Séa Z2) ® Q.
(2) There is an isomorphism of graded rings

Eq,(C,e) =2 H*(S3,Z2) @ Q.

Proof. The first part follows from [Theorem 5.2.10, For the second part consider the

diagram of Lyndon-Hochschild-Serre Spectral Sequences induced by the inclusion
K g Sgl
HP(ZQ, Hq(S%, Zg)) —— Hp+q(§2’ Zg)

| |

HP(Zy, HI(K', Zy)) — HP(K, Zs).

Since K C Sy and K C S} are finite index subgroups, the vertical maps are rational
monomorphisms. By part (1) of [Lemma 5.1.6, we have H*(K, Z5) ® Q = Q. Thus
the action of Zs on H3(K*',Zs) ® Q = Qo must be trivial, as needed. O

This extends immediately to a much larger calculation.

Theorem 5.5.2. Let i: W — Ey = W([u;]] be the inclusion of the constants. This
map induces an isomorphism

Eq,(C,e) = H (G2, W) © Q = H* (G2, Ey) © Q.

Proof. From [Theorem 5.4.4] |[Remark 5.4.6] and [Proposition 5.5.1] we get isomor-
phisms

Eq,(C,e) = H (G2, W) ® Q = H* (G2, Ep) ® Q.
To complete the proof, we must show H*(Gq, E}) is torsion for ¢ # 0. This is
very standard, but we give the proof as it is short.

Define Z5 — Sa C G2 by sending ¢ to the (-series [¢](x) of our chosen formal
group law. This identifies ZJ with the center of Go. Let Zy C Z5 be the subgroup



42 A. BEAUDRY, P. GOERSS, AND H.-W. HENN

topologically generated by an integer ¢ with / = 1 modulo 4. Now consider the
Lyndon-Hochschild-Serre Spectral Sequence for the extension

0—)ZQ—>G2—)G2/ZQ—>O.

If t # 0, then ¢ acts on Fy; by multiplication by ¢=¢, hence H%(Zy, Eo;) = 0 and
HY(Zs, (E2)2;) is torsion. Since Egyy1 = 0, the result follows. ]

Remark 5.5.3. By [Proposition 5.5.1| there must be a class in m_3L g (2)S° which

maps to a multiple of e € Q® 7r,3LK(2)SO. We can be very specific about this. We
will see below in [Remark 8.1.7] that

T_3Lg2)S° 2 Zy & Z/2 C H*(Ga, Ey)

generated by the classes 4e and (o.

A similar phenomenon happened at p = 3 and n = 2; there was a class e so that
3e detects a copy of Zs. See [GHM14].

6. THE CLASS X2 IS A d3-CYCLE

As should be clear by now, the class x = x2 € H!(Gz, Ey/2) is one key to
the extra subtleties we encounter at p = 2 in K(2)-local homotopy theory. Over
the next few sections we will work on some of the specific implications of the
existence of this class. We show that x is a permanent cycle in the K(2)-local

Adams-Novikov Spectral Sequence in see also for a

K (1)-local application. However, it turns out that evaluating d3 requires an entirely
different set of techniques, which we isolate in this section. The central idea of this
section is due to Mike Hopkins.

The goal is to prove the following result.

Theorem 6.1.1. In the spectral sequence
E;’t = HS(GQ, EtV(O)) — Wt_SLK(g)V(O)

the classes x and x? are dz—cycles.
Remark 6.1.2. Before proving this, we give some background to explain our meth-
ods.

We proved above in [Theorem 5.4.4] and [Remark 5.4.6| that the inclusion of the
constant power series Zo — Fj induced an isomorphism

H*(Sq,Z2) =2 H*(Go, W) = H*(Gg, Eyp).

We would like to exploit a homotopy fixed point spectral sequence for the trivial ac-
tion of Sy on the 2-completed sphere S9; the issue is that it would take considerable
effort to define such a spectral sequence. Fortunately, the class x! € H*(Sy,Fs)
is the restriction of the non-zero class h! € H*(Co,Fs) under a quotient map

x: Ga — Cs. See We can then examine the map on cohomology
H*(Cy,m,59) = H*(Gy,m,S9) — H*(Go, E,).

We will show below in [Cemma 6.1.4] that this composite map does extend to a map
of homotopy fixed point spectral sequences.

For the trivial action of Cy on the 2-completed sphere spectrum S9, we have

(S9)"2 ~ F(BCy,, S9) ~ F(RP®, S9).
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Here F(X,Y) is the function spectrum. The homotopy fixed point spectral sequence
H*(Cq,mSY) = my_ F(BCqy, S9)

is the Atiyah-Hirzebruch Spectral Sequence for the cohomotopy of RP>°. It follows
from Lin’s Theorem [LDMAS(| that (Sg)hc2 ~ S9 V RP$°; hence, the homotopy
fixed point spectral sequence is an impractical approach to Lin’s theorem. Low-
dimensional calculations can still be informative, however, and we use them to give
us the information we need.

We now set up the map of spectral sequences we will use.

Remark 6.1.3. We recall some results from Devinatz [Dev035], especially sections
2 and 3. This paper by Devinatz undertakes a thorough analysis iterating the
homotopy fixed point constructions. Let H and K be closed subgroups of G,
and suppose H is normal in K. This implies that there is a K/H-equivariant
map EMS — EM of E_-ring spectra. Let X be an E"%-module. Then, in the
K (n)-local category of E"%-modules, we can form an E"#-based Adams-Novikov
resolution of E"¢ and apply the mapping space functor Fnx (X, —) to obtain a
spectral sequence
H*(K/H, 7, Fgnx (X, ")) = 7, Fpnx (X, E"K).

The subtle part is to identify the Ea-term. This is Theorem 3.1 of [Dev05]. If Y is a
finite CW-spectrum and DY its Spanier-Whitehead dual, we can set X = EMADY
to obtain a spectral sequence

(6.1.1) H(K/H,my(EAY)") —= 71, (EAY)"E,

Furthermore, in the Appendix of [Dev05], Devinatz shows that if K/H is finite,
then this is the usual homotopy fixed point spectral sequence.

This is natural in the pair (K, H) in the sense that if Ko C K and Hy C H then
we get a diagram of spectral sequences

(6.1.2) H¥(K/H,my(EANY)M) =—= 7, (ENY)IE
H*(Ko/Hy, m(EANY)MH0) == 7, (E ANY)hEo,
Now let Hy = {e}, Ky = K = G3, and H the kernel of the map
X: Ga = (Z/4)" =2 Cy
of Remark 5.1.1} Then K/H = Cy and Ko/Hy = Go. If we set Y = V(0), then

(6.1.2)) gives a diagram of spectral sequences
(613) HS(CQ,’]Tt(E/\V(O))hH) :>7rt,SLK(2)V(O)
H? (GQ, EtV(O)) —_— Wt_sLK(Q)V(O).

Now consider that map

V(0) ~ SYAV(0) = E" AV(0) ~ (EAV(0)"H
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of Cy-equivariant spectra, with trivial action on V(0). Since the top row of (6.1.3))
is the usual homotopy spectral sequence we get a map of spectral sequences

(6.1.4) H*(Co,mV(0)) =—=m;_,V(0)"C?

l |

H*(Co, (B AV(0)") == m;_s L (2)V(0).

The top spectral sequence here is in the usual (unlocalized) stable category. Many
variants are possible here; for example, we could use the sphere as well.

We now have the following result.
Lemma 6.1.4. There is a map of spectral sequences

(6.1.5) H*(Cy,mV(0)) =——= m_,V(0)"“2

| |

H*(Ga, BV (0)) == m—s L)V (0).

from the homotopy fixed point spectral sequence for V(0) to the Adams-Novikov
Spectral Sequence of L2V (0). The map ¢ at the Ey-page is the map on coho-
mology induced by the quotient map x: Go — (Z/4)* = Cy and the Hurewicz map
.V (0) = E.V(0).

Proof. Combine the maps of spectral sequences (6.1.3)) with (6.1.4). Note the top
spectral sequence of (6.1.4]) is the homotopy fixed point spectral sequence for V(0)
with a trivial Cy action. [l

Since E A V(0) doesn’t have a ring structure, neither of the spectral sequences
of is a spectral sequence of rings. Nonetheless, the Fs-terms are graded
commutative rings and the map ¢ is a ring map. Let h be the non-zero element in
H(Cy, mV (0)) = Fy and write h' for its powers. Then, by definition, ¢(h*) = x*.

Finally, since the homotopy fixed point spectral sequence for V' (0) is the Atiyah-
Hirzebruch Spectral Sequence for V(0)*(RP{°) we have the following observation.
The inclusion of the skeleton RP™ — RP° induces a map of spectral sequences

H?*(Co, 1V (0)) =—=m;_,V (0)"2

H*(RP?, m,V(0)) == m_ F(RP}, V(0)) .

where the lower spectral sequence is the Atiyah-Hirzebruch Spectral Sequence for
V(0)* (RPY).

Proof of [Theorem 6.1.1 To prove that x is a ds—cycle, we prove that da(h) = 0
in the fixed point spectral sequence and that the only target for ds(h) maps to

zero under the map ¢ of (6.1.5). We will use our result [Proposition 5.3.1| on the
nilpotence order of x.

We begin by analyzing the do—differential. First, note that
Skely: H*(Cy,mV(0)) — H*(RP?,m,V(0))
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is an isomorphism if 0 < s < 2 and injective if s = 3. Hence, to prove that h is a
do—cycle, it suffices to prove that this holds for Skels(h).

First, note that RP? ~ SV XV (0) Vv S®. Hence,
DRP; AV(0) = V(0) VETV(0) V (S72V(0) A V(0)).
Therefore,
m_1(DRP? AV(0)) 2 Z/4® Z/4.

The needed calculations are elementary, but see also

We now turn to the analysis of the relevant Atiyah-Hirzebruch spectral sequences.
In the spectral sequence

Eyt = H*(RP3,mV(0)) = m—s(DRP3 A V(0)),
the only non-zero contributions to 7_1(DRP{ A V(0)) in E" are:

Z)4vih3}  (s,t) = (3,2)
Ey' = SZ/2{nh?}  (s,t) = (2,1)

Z/2{h} (s,t) = (1,0).

Thus da(h) must be zero, or the Fo-term would be too small to account for the
size of 7_1(DRP} A V(0)).

We turn to the ds—differential. For this we do not need to restrict to any skeleton,
but can directly use the diagram of spectral sequences ([6.1.5)). The targets for ds(h)
are in

t
t

E§’2 = H4(02,7T2V(0)) = Z/Q{U1h4}.
If d3(h) = Avih* for X € Z/2, then, by naturality,
ds(x) = Mip(h*) = Mo x™.

However, by [Proposition 5.3.1} x* = 0. This finishes the proof that Y is a dz—cycle.

By the Geometric Boundary Theorem (see [Remark 3.2.1)) and the fact that x? is
the Bockstein of y, we have that x? is also a ds—cycle. (|

7. THE DECOMPOSITION OF Ly (1)L (2)S°
In this section, we prove one of our main results; that is, we show that
LgyLi2)S° ~ Lia)(5° v S™HVET2V(0) vETV(0)) .

See Mheorem 7.4.1] below. In we will use this result to calculate
LlLK@)SO.

The subtle point to the argument is to make an analysis of the action of the
element ¢; € mLg1)S® on m L1y Lk (2)S”. In [Proposition 4.1.7| we saw that
vi¢y = 0 € mLg1)V(0), where o € m75° is the Hopf map. We gave some further

background on the role of o in K (n)-local homotopy theory in but now
we get specific and analyze the action of o in W*LK@)SO.
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7.1. A Bockstein Lemma and detecting products with ¢. Fix a prime p
and let C' = (C*,0c) be a torsion-free cochain complex over Z,). We assume all
cochain complexes are zero in negative degrees. Write

§=0dc: H¥(C/p™) — H*THO)

for the connecting homomorphism in the long exact sequence in cohomology induced
by the short exact sequence of cochain complexes

n

0 cLtsc C/p" 0.

This is, of course, the nth Bockstein homomorphism. We may write 5(0" ) if we need
to emphasize the n and we may abbreviate the Bockstein to d¢ if C is a complex for
computing the group cohomology of a group G with coeflicients in some module.

In working with the Bockstein we write @ for the image of a € C under the
reduction to C'/p™ and likewise we write § for the the image of y € H*(C) under
the reduction to H*(C/p™). By construction, if z € H*(C/p™) is any cohomology
class, then dc(x) is represented by dc(a)/p™, where a € C* is such that @ is a
representative for . The next result then follows from the Leibniz rule.

Lemma 7.1.1. Let A be a torsion-free differential graded algebra over Z,y and let
a € H*(A/p™) be a cohomology class. Let M be a torsion-free differential graded
module over A andy € H*(M). Then

dm(ay) = da(a)y.
Let A = (A®, 04) be a torsion-free differential graded algebra and

d di di dy
My e M, _4 M,

(7.1.1) M,

a cochain complex of differential graded A-modules. This is a bicomplex, but
the internal differentials Oy : Mg — Mg“ and the external differentials d; have
different behavior with respect to the A-module structure:

(7.1.2)  Oalaz) = da(a)z + (—1)48Dady (z) and dy(az) = ady(x).

Nonetheless, we get a total complex T'(M) and, by filtering by degree in p, a spectral
sequence

EV? = HIM, = H"TIT(M)
with d; = H*(dy) and d,.: EP9 — EPT™4="+1 Tt follows from (7.1.2)) that this is a
spectral sequence of H*(A) modules. Finally, there is an edge homomorphism

EPY = HP(H(M,),d,) — HP(T(M)).

The following result has generalizations, but will suffice for our purposes. The proof
is a diagram chase.

Lemma 7.1.2. Let z € HP(T(M)) be the image of a dy-cocycle y € H°(M,,) under
the edge homomorphism. Let a € H°(A/p™) be a class so that there is an element
c € A satisfying

(1) the class € is a cocycle representing a, and
(2) the class cy is a cocycle for the coboundary operator 9: M](,) — MI}.
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Then 5¥E)M)(af) € HPY(T(M)) is the image under the edge homomorphism of

[dl(cy)
pn
where [z] denotes the cohomology class of z.

We apply to the algebraic duality spectral sequence of
Applying the functor Hom.s(—, F) to the algebraic duality resolution of

gives us an exact sequence of twisted E,-Si-modules
0 — E, — Homeys(Z2[[S3/Fol), Ex) — Homes(Zo[[S3/ F1], Ex)
— Homeys(Zo[[S3/ Fo]], Ev) — Home(Zo[[Sy/ Fs)], Ev) — 0.

| e B 10)

We now let A = C*(S, E.,) be the differential graded algebra of continuous cochains
with
C"(Sé,E*) = mapcts(Sé X ... X S%,E*) &~ Homcts(Zg[[S% X ... X S%]LE*)
with n factors of S%. Furthermore let M), for 0 < p < 3 be the differential graded
A module with
M} = Homi, (ZaS} ... x SH] © Z, IS/ B I, E.) |

again with n factors of S3. The tensor product has to be taken in the appropriate
category of profinite Z[[S3]]-modules, so in fact it is a completed tensor product.
Then we get a complex of differential graded A-modules

0— My — My — My — Ms — 0

to which we will apply Note that the cohomology of the differential
graded algebra A is equal to H*(S3, E.) while the cohomology of M, is given by

Ext%z[[sé]](Zg[[S%/Fp]], E,) = H*(F),, E.). The spectral sequence of the total com-

plex T'(M) is isomorphic to the algebraic duality spectral sequence of [Remark 2.5.3
with Ei-term given as

EPY = HY(F,, E.) — H""(S}, E.).

We now get specific about the class ¢ needed for [Lemma 7.1.2 Recall from

Remark 2.4.1| that v; = wyu™t € H°(Gg, E2/2). We have, from Lemma 5.2.2 of
[BealTh], that the class

(7.1.3) cs = 9(uju™* + Sugu?)
is invariant for the action of GGo4 and invariant modulo 16 with respect to the action
of Go. Reducing modulo 16 we have class

¢4 € H°(Go, E5/16)
which reduces to v7 modulo 2. Let H C Gy be a closed subgroup and consider the
Bockstein homomorphism 64 : HO(H, Fg/16) — H'(H, Eg).

Proposition 7.1.3. Let H C Gy be any closed subgroup which contains S. Up to
multiplication by a unit in Zo, the image of o in m,E" is detected in the spectral
sequence

(7.1.4) H*(H,E;) = n;_ E"
by the class 6 (¢4) € H'(H, Eg).
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Proof. From [Beal7h|, Theorem 1.8, we have an isomorphism Fy[v1] & H* (S}, E,/2).
Since vy is Go invariant modulo 2, it immediately follows that we have an isomor-
phism

]FQ['U:[] = H*(GQ,E*/Q) .
We can now apply [Proposition 3.2.2| to prove the claim for H = Gg. The result
follows for general H by restriction in group cohomology. [

We have not yet shown that o # 0 in 7 B This will follow from [Theorem 7.2.4

below. For now we have the following detection results.

Lemma 7.1.4. Let 0 < p < 3. Let x € HP(S}, E,) be the image of a di-cocycle
y € H(F,, E,) under the edge homomorphism

HP(H(F,,E.),d1) — H"(Sy, E.).
Then 6™ (cyT) € HPTY(SY, E.,) is the image under the edge homomorphism of

[%} € B (HO(F., E.), dy) .

Proof. This is an immediately rephrasing of in this context. O

[Lemma 7.1.1} [Proposition 7.1.3| and [Lemma 7.1.4] can be combined to prove the
following result.

Proposition 7.1.5. Let 0 < s < 3. Letx € ﬂt,sEhgé be detected in the spectral
sequence

H*(S}, E,) = my_ E"S>
by the image of a class y € H*(H®(F,, E;)) under the edge homomorphism
H*(H°(F,,E;)) — H*(S}, Ey)

of the algebraic duality spectral sequence. Then ox is detected in H5 (S, Eiyg)
by the image of the class

(2] € e (1O, Bers)

under the edge homomorphism.

7.2. The group cohomology of vflE*V(O). In the next few results, we identify
products with ¢ in the algebraic duality spectral sequence and then use this to give
a description of vy ' H*(Gy, E,V(0)). See [Theorem 7.2.6| below. We begin with a
connection to homotopy theory.

Remark 7.2.1. If Z is a type 1 complex with a v;-self map f: £¢Z — Z and if
X is any spectrum, let

v XAZ)=0ANF)HXAZ).

This is independent of the choice of f and functorial by the essential uniqueness of

vp-self maps. See [HS98]. For the same reason, this construction preserves cofiber
sequences.

There is a weak equivalence

Vi N (XANZ) = Lgny(X NZ)



CHROMATIC SPLITTING FOR THE K(2)-LOCAL SPHERE AT p =2 49

and, more generally, a weak equivalence
LgmX ~holimvy (X A S/2")
where S/2™ is the mod p™-Moore spectrum.

From this we have that for any closed subgroup of G C G4 there is a localized
spectral sequence

v "H* (G, E.V(0)) = m. L) (E"® AV(0)) .

This spectral sequence has a strong horizontal vanishing line and converges strongly.
See (2.3.3)), |Definition 2.3.1} [Lemma 2.3.2} and |Corollary 2.3.7

Recall from [Warning 4.1.6|that even though V'(0) is not a ring spectrum, we often
describe the Fs-term of a spectral sequences for the homotopy of a localization of
V(0) as a ring.

The following result from is the key to all computations. The cohomol-
ogy classes x = x2 and e appeared in

Theorem 7.2.2. The localized cohomology group vy “H*(S, E.V(0)) is free on siz
generators over the subring IF4[ ,n] Specifically, in the algebraic duality resolu-
tion spectral sequence
HY(Fy, B,V (0)) = HP"(S3, E,V(0))

there are permanent cycles

(1) Ag of degree (p,q,t) = (0,0,0) detecting the unit;

(2) by of degree (p,q,t) = detecting x;
(3) by of degree (p,q,t) =
(P, qt) =
(P q,t) =

(4) bo of degree (p,q detecting x?;
(6) Ao of degree (p,q,t) = (3,0,0) detecting e.

(5) by of degree p,q7

After inverting vy, there is an isomorphism of Fy [vlﬂ, n]-modules

(721) Ul_lH*(S%7(E2)*V(O)) IF4[U1 an]{AOabOablaEmBleO}

Proof. The only point to add to Corollary 1.2.3 of is the explanation of
why by detects x, by detects x?, and A detects e. But thls follows by combining
[Lemma 5.2.9/and [Theorem 5.4.11 O

Remark 7.2.3. The generators of Ag, by, by, by, by and Ag of (7.2.1)) are, strictly
speaking, each an element of H°(F,, E.V(0)) for some p. We have conflated them
with their images under the edge homomorphism

HO(F,, E.V(0)) — EE’ C HP(S;, E.V(0))

of the algebraic duality spectral sequence. There should be no ambiguity. This
issue was also discussed in [Remark 5.2.8

Our main new computation is the following. It will allow us to rewrite the classes
b1, b1, and Ag = e in terms of o, v; and the other generators of [Theorem 7.2.2
Note that this result is a statement about cohomology classes before vi-localization.

Theorem 7.2.4. Multiplication by o gives the following identities in the cohomol-
ogy ring H*(S3, (E2).V(0)):
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(1) 0 =0A¢ =vibi; o
(2) oby = v‘llAQ or, equivalently, ox? = viAg; and
(3) aby = egv1b1 + €10t for some eg € F} and e € Fy.

This is proved below in |Proposition 7.2.8 [Proposition 7.2.10] and |Proposi-|
tion 7.2.11] For now we will draw some consequences. In the following two results,
E(—) denotes the exterior algebra over Fy.

Theorem 7.2.5. There is an isomorphism of graded algebras
Falv™ 0] @ E(0) @ Fo[x]/(x*) = vi ' H* (Sg, (E2).V(0)) -

Proof. By |Corollary 4.1.9| and [Proposition 5.3.1] we have ¢2 = 0 and x> = 0 in
vy PH*(S4, (B»).V(0)). The result now follows from (7.2.1)), and [Theorem 7.2.4. [

Theorem 7.2.6. There are isomorphisms of graded algebras
Folvy, 1] ® B(0) @ Fa[x]/(x*) 2 vy "H* (G, (E2).V(0))
and
Flvi ] @ E(0, &) © Fa[x]/(x*) = v  H* (G, (E2).V(0)) -

Proof. The first statement follows immediately from [Theorem 7.2.5 by taking Galois
fixed points since vy, , 0 and x are Galois invariant. See

To prove the second statement, note that the elements vy, 1, o and x are all in
the image of the restriction map

H*(Ga, (B2).V(0)) = H*(G3, (E2).V(0)) .
Thus the Lyndon-Hochschild-Serre Spectral Sequence for the split extension G —
Go — Zo reads
T H (G, (B2),V(0)) ® E(G) = o7 HY (Ga, (E2).V(0)).
This must collapse and, since (3 = 0 in H*(Gy, Ey), there can be no multiplicative
extensions. (]

We now turn to the proof of [Theorem 7.2.4] Our basic computational tool is
[Proposition 7.1.5 The proofs involve studying o in the integral algebraic duality

spectral sequence
(7.2.2) BT = HI(Fy, B,) = H"(S;, B.)

and then reducing modulo 2. We need the following preliminary result.

Proposition 7.2.7. Let X be a finite spectrum. In the algebraic duality spectral
sequence

EY = HY(F,,E.X) = H?T4(S}, E.X)
multiplication by o raises filtration in p.

Proof. We saw in that this is a spectral sequence of modules over

H*(S3, E.). The module structure on the E1-term is given via the restriction homo-
morphisms H*(S}, E.) — H*(F,, E.), hence it suffices to show that the restriction
of o considered as a class in H'(S}, Fg) restricts trivially to H'(F,, Eg) for all p.
Because Fy = Fy C Fy it suffices to show this for Fy = G4 and F3 = G%,. In fact,
because o comes from H'(Sy, Es) — and even from H'(Gs, Eg) — and because Fy
and Fj are conjugate in So, it suffices to consider the case of Gay.
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In the class o was defined to be the Greek letter element oy, =
5@ (v). Furthermore, by [Proposition 3.2.2| the image of v in H%(G,, Fg/(16)) is
equal to the reduction ¢4 of the integral class ¢4, up to a 2-adic unit. The class ¢4

was defined in (7.1.3). By Lemma 5.2.2 of [Beal7b] ¢, € HY(Ga4, Es/16) lifts to
H°(Ga4, Eg), so we have

—-

68}2)4(64) =0¢c Hl(G24, Eg)
as needed. O

We now come to part (1) of [Theorem 7.2.4

Proposition 7.2.8. The mod-2 reduction of o € H(S}, Eg) to H'(S}, EsV(0))
satisfies the equation
O'AQ = ’Ulbl.

Proof. By the class
Ap € HO(G247E0) = HO(FOuEO)

detects the unit in H*(S3, E.V(0)). By [Proposition 7.1.5| di(csA¢)/16 detects
0/ in the algebraic duality spectral sequence. It follows from Definition 5.2.3 and
Proposition 5.2.4 of that

dy1(csA
1(0146 0) =uv1b mod 2 .
Therefore,
oo =v1by € ELO® C HY(SL, EsV(0)). O

Remark 7.2.9. The proof of the next result uses heavily the techniques and lan-
guage of Section 5 of and in particular the finer structure of the group S,.
We recall some of the details.

In Remark 2.4.4 we recorded that
Se = (W(T)/(T? = —2,aT = Ta"))*
and in [Remark 2.4.5| we defined the element m = 1+ 2w € Sy, where w is a primitive

third root of unity. Another important element of Sy is
_1-%
V=T
where /=7 is chosen to be congruent to 1 modulo 4. Then
a=1+wl?+1? modulo (7°°).

(62N

Note that o and 7 are both in W* and hence they commute in S,.

In we discussed the subgroup Qs C S, and its elements i, j, and
k.

We can now prove part (2) of [Theorem 7.2.4

Proposition 7.2.10. In H3(S}, (E2)sV(0)) there is an equation

O'X2 = U%ZO.
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Proof. In this proof we will write

EP®t = HP(F,, Ey) = H"™(S}, E;)
for the algebraic duality spectral sequence computing H*(S3, E.). As in
and we also write

bo € H(Cs, Bo) = HO(Fy, Eo) = Ep"°
for the integral lift of the class by of [Theorem 7.2.2l This integral lift is the unit
in H°(Cs, Ep) and detects X by [Lemma 5.2.9| [Proposition 7.1.5 implies that oX

is detected by di(cab)/16. By Theorem 1.1.1 of [Beal7h], di: E¥*" — EP*' is
given by the action of

mletit+j+k)e—aHrt=nle+it+j+k)rte—alt).

Lemma 5.2.2 of applied to a~! = 1+wT? modulo T3 together with the
fact that 7! is an isomorphism congruent to the identity modulo (2,u;) implies
that

7 (e —a V) (es) = 16uu™? = 16v1v9  mod (32, 16u?)

where v1 = u1u~! and vy = 3. Since m and o commute with the elements of Cg,
77 (e — a1, (cq) is an element of ES®, and we can improve the congruence to

7 (e —a V). (cs) = 160102 mod (32, 16u}).

We compute the action of e+i+ j+k on the right hand side. Since we are reducing
modulo 32, it suffices to study the action modulo 2.

The elements 4, j and k fix v1 = wyu~! modulo 2. Furthermore, modulo 2 the
formulas in Section 2.4 of [Beal7b] give

ie(v2) = va(ur + 1), ju(v2) = vo(wuy + 1), ku(v2) = vo(w?uy +1)3,

where w € W is a third root of unity. A direct computation using the fact that
1+ w + w? = 0 implies that

(e+i+j+k)(viva) =v] mod (2).

Since e+i+j+k sends the ideal (2,uf) to (2,u}) and 7 is an isomorphism congruent
to the identity modulo (2,u1), we conclude that

(mle+i+j+k)m e—a™)).(cs) = 1607 mod (32, 16u3).
Therefore 16~ d; (c4by) = viAg mod (2,u}), so that
oby = viAy mod (2,u?)
in E£57°.

By functoriality, this identity also holds in the Algebraic Duality Spectral Se-
quence with coefficients E,V (0). By Theorem 1.2.2 of [Beal7h|] we have Fy{viAg} =
E398 C H3(SL, EsV(0)) in that spectral sequence and this proves the claim. O

We now come to the proof of the final part of
Proposition 7.2.11. There exists ¢y € ]FZ and €; € Fy such that

oby = €gv1b1 + 61’0%50

in H%(S}, (E2)sV(0)).
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Proof. Since by € EL%? and, by [Proposition 7.2.7, multiplication by o raises filtra-
tion in the algebraic duality spectral sequence,

O'bo S Egéo’s = F4{U151, 1)41160}.

The calculation of E%%8 is from Theorem 1.2.2 of [Beal7h]. Because of this, we
have an equation

oby = egu1b1 + 61’[]411[)0

with ¢; € Fy. Let 3 be the Bockstein homomorphism for H*(S3, E.V(0)) associated
to the short exact sequence

0= (E2)«/2 = (F2)s/4 — (E2)./2 = 0.

Since since by detects x and by detects x2, we have 3(bg) = bg. Then, because o is
an integral class, we have

ﬁ(o’bo) = O'BO = U%Zo 75 0.

The second equality is [Proposition 7.2.10l However, v} is invariant modulo 4, so
B(vibe) = viB(bo) = 0. This implies that e # 0. O

7.3. The localized Adams-Novikov Spectral Sequence for Ly 1)Lk 2)V(0).

In we calculated the Ey-term of the localized spectral sequence to
be

Falv!,n] @ B(o,G) @ Fa[x]/(X*) 2 vy " H* (Ga, (E2).V (0)) .
In this section, we compute the differentials and extensions. The classes 1, 1, o and
¢y are permanent cycles. We will show that the classes x and x? are permanent

cycles as well, which is the key step in the computation. We will see below in

that, in fact, they are permanent cycles before v;-localization, but
that requires considerably more work.

We break up the computation into a number of results. We will use the universal
differential of There is no n-torsion at E3 so this becomes becomes

(7.3.1) ds(viz) = vids(2) + 1’z .
Our first result is a list of basic structural properties of our spectral sequences.
Lemma 7.3.1. The localized Adams-Novikov Spectral Sequences
op HH (G}, (E2).V(0)) = L) (B AV(0))

vi ' H* (G, (B2).V(0)) = m L1y Li(2)V(0)
have the following properties:

(1) Both spectral sequences are modules over Fo[vt 1) @ E(0,(a).

(2) In the first spectral sequence (2 acts by zero.

(8) In both spectral sequences do,. = 0 for allr > 1.

(4) In both spectral sequences n>E;"™ = 0.

(5) For the first spectral sequence EZ’t = 0 for s > 6 and for the second spectral
sequence EZ’t =0 fors>T.

(6) In both spectral sequences the classes 1 and v1 are permanent cycles.
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Proof. For the first statement we use that 7, o, and (3 are permanent cycles for
the sphere and that V(0) has a v} self-map. For the second statement, we use
that (o = 0 in T, E"C2 . See |Pr0positi0n 2.2.11 Since E,V(0) is concentrated in
even degrees, the third statement is the standard sparseness result for the Adams-
Novikov Spectral Sequence.

In particular the first differential is ds. There is no n-torsion at Es, so if d3(z) =
0, (7.3.1) gives d3(viz) = n32. Part (4) follows.

To get the vanishing lines, note that every element at the E>-term of the spectral
sequence of 7. L 1)Lk (2)V (0) is an n-multiple of the classes

vixon
with 7 € Z,0 <7 <2and ¢ =0 or 1. These classes have s-filtration at most 4, so

the result follows from part (4). In the spectral sequence for ., LK(l)(EhGé AV (0)),
we have e2 = 0, and we get the better vanishing line.

The final statement is true for the BP-based Adams-Novikov Spectral Sequence

for the sphere, so is true here as well. Compare see also (2.1.7)). O
In the next proof we will use the homotopy Bockstein homomorphism
ﬂ: WHLK(l)LK(g)V(O) — ﬂ_n_lLK(l)LK(Z)V(O)-

See Any element in the image of 3 is of order 2.

Our next result is a preliminary calculation with E"G3. below gives a
partial illustration.

Lemma 7.3.2. For the spectral sequence
(7.3.2) o7 H* (G, (E2).V(0)) = L1y (E"%2 A V(0))
we have the following:
(1) The classes x, X%, and v1x?, are permanent cycles. Ify is any class detected
by X, then B(y) is detected by x?%, and 2y = B(y)n.

(2) The spectral sequence collapses at Eq. The non-trivial differentials are de-
termined by the differential

ds(v1x) = n*x?
and the fact that the spectral sequence is a module over Fo[vE?, n] @ E(o).
(3) The class nuix + vix? is a permanent cycle. If x is any class detected by

nuix +vix?, then B(x) is detected by n?x + nuix?, and 2x = B(x)n.

Proof. Recall we have
Fafvi ) @ E(0) @ F2[x]/(X*) = v ' H*(G}, (B2).V(0)) -

We begin part (1). The class x is a ds—cycle by [Theorem 6.1.1] hence it must
be a permanent cycle by part (5) of [Lemma 7.3.1} Let y be a class detected by
X in the spectral sequence (7.3.2)). Since x? is the algebraic Bockstein of y, the
Geometric Boundary Theorem (see [Remark 3.2.1)) implies x? is a permanent cycle

for this spectral sequence and detects the Bockstein 5(y). By |Lemma 3.1.3| there
must be an additive extension 2y = S(y)n in the spectral sequence.

To see v1x? is a permanent cycle, note that [Theorem 6.1.1| and the Geometric

Boundary Theorem imply that ¥ € H?(Gs, Ep) is a dz-cycle in the Adams-Novikov
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Spectral Sequence for Ly (2)S°. Since x? is the reduction of X and vy is a ds-cycles,
we have x2v; is a ds-cycle. It is then a permanent cycle by the vanishing line of

part (5) of [Lemma 7.3.1

We now take on part (2). Since the class nx? detects a class divisible by 2, we
must have n?x? = 0 at E.. It follows that there must be a non-trivial differential
originating at E§’2. This vector space has a basis given by vf?’a and v1x. The class
vy 30 is a permanent cycle, since vy is a permanent cycle and the spectral sequence
is a module over Fy [vli4, o]; hence, we must have the claimed differential

ds(v1x) = 7°x°.

We now apply [Lemma 7.3.1| parts (1), (2), and (5) to get the collapse at F; and
complete this step in the argument.

We now turn to part (3). From this, the differential from part (2), and (7.3.1)),
we can deduce the following differentials:

ds(vix) = n’x ds(vix®) = n’x?
ds(vix*) = nPv1x® ds(vix) = nPoix + n*oix’.

Then nuvyx + v?x? is a dz-cycle and hence a permanent cycle, again by the the

vanishing line from

Now let = be a class detected by nuvi;x + v?x%. We have an equation for the
algebraic Bockstein

B(nuix +vix?) = B(nuix) = n*x + nuix>.

The Geometric Boundary Theorem implies 1%y + nv;x? is a permanent cycle and

detects the Bockstein S(z). By |Lemma 3.1.3| there must be an additive extension
2z = f(x)n in the spectral sequence. 0

We now come to one the main calculations of this paper, [l'heorem 7.3.3] This
result shows that the localized Adams-Novikov Spectral Sequence ([7.3.3) for the

spectrum L (1)L (2)V (0) can be obtained from the spectral sequence of (7.3.2) for

Lk (Eh(G’é AV (0)) by tensoring with the exterior algebra E((2) and extending the
differentials by the Leibniz rule. This is by no means formal. It requires a statement
and argument which, on the surface, looks like a repetition of but

the logic requires us to prove part (2) of [Lemma 7.3.2| before proving part (1) of
[Mheorem 7.3.3

Theorem 7.3.3. The spectral sequence
(7.3.3) vy "H*(Go, (E2).V(0)) = mLx (1)L (2)V (0).
collapses at E4. We have
(1) The classes x, X%, and v1x?, are permanent cycles. Ify is any class detected
by x, then B(y) is detected by x?, and 2y = B(y)n.
(2) The spectral sequence collapses at Eq. The non-trivial differentials are de-
termined by the differential
ds(vix) = 1°x°

and the fact that the spectral sequence is a module over IFo [vli‘l, N E(o,(2).
(3) The class nuix + vix? is a permanent cycle. If x is any class detected by
nuix +vix?, then B(x) is detected by n’x + nuix?, and 2x = B(x)n.
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FI1GURE 5. Patterns for the differentials on certain classes in the spectral sequences
(7.3.2) and (7.3.3). The top figure illustrates the differential pattern on the unit 1
and the bottom figure the differential pattern on x and x2. There, a o denotes a
copy of Fy generated by an n-multiple of the class vy + v$x?. The dashed lines
denote the extension by 2 at F,.

Proof. We have
Folvi, 1] ® B0, ) @ F2[x]/(x*) = v " H(Ga, (E2).V(0)) .

We begin with part (1). The class x is a ds—cycle by [Theorem 6.1.1] Thus, by
parts (3) and (5) of [Lemma 7.3.1} x will be a permanent cycle if it is a ds-cycle.

Using part (4) of [Lemma 7.3.1] we see that the only possible non-zero differential
is
ds(x) = vi " Gon*x®.
However, by naturality with respect to the map G} — Go and by part (2) of
Lemma 7.3.2, we have d3(v1x) = n%2x? + (e for some class z € E§’4. Since (2 =0
in H*(Gy, E.), we can calculate
ds(vy *Gaovrx) = v1 *Gads(vix) = vy *Gon’x

Hence UI4C20772X2 is zero on the Ej-term. We conclude that x is a ds-cycle.
The remainder of the proof of part (1) goes through exactly as for part (1) of

[Lemma 7.3.2]
We now turn to part (2). As in part (2) of [Lemma 7.3.2] there must be a class
ina € E§’2 with ds(a) = n?x2. The vector space F;™* has basis v1x, v1la, v] 0.
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The class v1(s is a permanent cycle by (1) and (3) of [Lemma 7.3.1} The class v *o
is a permanent cycle exactly as in the proof of (2) in|Lemma 7.3.2|. Thus we have
the indicated differential.

To get the collapse at E4 we use parts (1), (2), (3), and (5). Part
(3) is proved exactly as in part (3) O
Remark 7.3.4. We have not listed all the additive extensions in the spectral
sequences (7.3.2) and (7.3.3)). In fact we have missed only those exotic extensions
by 2 implied by the extension from v; to n? already visible in [Figure 1| of [Section 3|
Indeed, it will follow from below that all additive extensions are

determined by v} and (» multiplications and the exotic extensions by 2 from v; to
n?, from x to x?n, and from nvyx + v¥x? to

X+ nPuix? = nPon.
The last equivalence follows from the fact that 3 = 0 at E;. These extension

are all shown in The upper figure shows a pattern from L1,V (0), and
h

the lower figure shows a pattern from L 1)(V(0) A V(0)). Compare [Figure 1| and

7.4. The homotopy type of LK(l)LK(Q)SO. We are now ready to prove the de-
composition of the K (1)-localization of L 2)S?. Choose a class
(741) Y € W_lLK(l)LK(Q)V(O)

detected by x € vy ' H'(Gy, E,V(0)); this is possible by [Theorem 7.3.3] The class

y is not unique, but any two choices differ by an element of higher Adams-Novikov
filtration. The proof of comes down to an Adams-Novikov Spectral

Sequence argument, and we will see that any choice will do. below
will allow us to refine our choice.

If D(—) denotes the Spanier-Whitehead duality functor, we then obtain a map
from y

(7.4.2) z: £72V(0) = £7'DV(0)— Lg)Lr2)S° -
This gives us maps
v 80— LK(Q)S’O
G ST'— L) S°
z: B72V(0)— Lga)Li(2)S°
z(o: 272V (0)— L1y Lr(2)S°

The first of these maps is the unit; the second is the class of [Proposition 2.2.1]
These maps assemble into a map

(74.3) f=1VGeVaVal: S°VS T VET?V(0) VETPV(0)— Lia)Lr@S°®.

Here is one of our main results.

Theorem 7.4.1. The map f induces a K(1)-local equivalence
Lrxay(S°v S~ vE=?v(0) v 2*31/(0)) ~ L1 Lr@S° .

This is a consequence of but to get there we need some prelimi-

naries.
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Lemma 7.4.2. Let f: X1 — X5 be a map of spectra. Suppose there is a type 1
complex Z so that the induced map

LK(l)(Xl AN Z) — LK(l)(XQ AN Z)

is an equivalence. Then Ly 1yX1 — Ly (1)X2 is an equivalence.

Proof. We will use that
Ly 1X ~ holimv; ' (X A S/2")
where S/2™ is the mod 2™ Moore spectrum. See [Remark 7.2.1] From this we see

that it is sufficient to show that
v H XL AY) = o7 (X AY)

is an equivalence for all type 1 spectra Y. The class of type 1 spectra Y for which
we have such an equivalence is a thick subcategory of 2-local finite spectra. Since
there is such an equivalence for one type 1 spectrum, there is for all. O

From this last result we see that it is enough to make a judicious choice of type

1 complex. Recall that Y = V(0) A C(n). See

Proposition 7.4.3. There are isomorphisms of Fa[vf'] @ E(o)-modules

F[vi"'] ® Br, (0) © F2[x]/(x*) 2 v "H* (G, E.Y)

Fa[vi'] @ B, (0, G2) @ Fa[x]/(x*) 2 vy ' H* (o, E.Y) .

Proof. By Landweber exactness and we have a short exact sequence
of Go-modules

0— E.V(0) = E.Y = E.X*V(0) = 0.

Furthermore, in the long exact sequence in group cohomology, the boundary map
is given be multiplication by 7. We then get a long exact sequence for the localized
cohomology groups vy ' H*(Gy, —) and the result follows from [Theorem 7.2.6] O

Let ¢: S — Y be inclusion of the bottom cell and let (5 and ¢ be the images of
the same named class under the induced map

Similarly, let 7: V(0) — Y be the inclusion of the bottom two cells; see(4.2.1)). Let
y € m_1LgyLi @2V (0) be as in (7.4.1) and call the images of y and 3(y) under
the induced map

2t ML) Lg(2)V(0) = T Lg(1)Lr(2)Y
by the same names.
Proposition 7.4.4. The localized spectral sequence

vy 'HY(Gy, (B2)Y) = m—s L) Li(2)Y

strongly converges, collapses at the Fo-term, and has no additive extensions.
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Proof. The Es-term was calculated in [Proposition 7.4.3] Convergence follows from
|Lemma 2.3.2] and |Corollary 2.3. 71 Since Y has a wvi-self map, this is a spectral
sequence of modules over Fg[vl ] ® E(0,(2). The class ( is a permanent cycle
by [Proposition 2.2.1] The Fs—term has a horizontal vanishing at s = 5 and, by
sparseness, E> = F3. By the class x is a d3—cycle, and this forces
the spectral sequence to collapse. It follows from [Theorem 7.3.3 that y is detected
by x and S(y) is detected by x2.

We turn to extensions; to do this, we must show 2 annihilates the homotopy of
L)Lk (2)Y . In fact, we have

0=2: Lga)Lrie)Y — Lrn)Lr@)Y-

To see this, recall that in [Proposition 4.2.3| we showed there is a factoring

y Yo Yoy

2

where v € w359 is the Hopf map and p is collapse onto the top cell. In
tion 4.2.3] we also showed that 0 = v € m. Lk (1)Y; hence, 0 =v € . Lg 1)L 2)Y .
O

We have one more preliminary result. We gave a short analysis of 7. (V(0) AV (0))

in [Remark 3.1.5 and found classes i and i of degree 0 and 1 respectively with the
property that 8(i1) = ig, where § is the Bockstein in homotopy. The class z in the

following result first appeared in (7.4.2).

Lemma 7.4.5. Let x: X2V (0)— LK(I)LK(Q)SO be the Spanier- Whitehead dual
of a class y € m_1 L)Lk 2)V(0) detected by x. Then under the map

z AV (0): 72V(0) A V(0)— Lgc(1)Lx(2)V(0)
the class (x AV (0)).(io) is detected by x? and (x AV (0)).(i1) is detected by x.

Proof. applied to the diagram

)

J

51 - 2-1v(0) ~1y7(0) A V(0)

by
yi iz leV(O)

LyyLi@2)V(0) — YLy Li2)S° —— SLk1) L)V (0)

B

shows that (zAV(0)). (o) is given by 3(y). Then the Geometric Boundary Theorem
(i

(see[Remark 3.2.1)) implies that (z AV (0))«(ig) is detected by x? and the homotopy

Bockstein §(i1) = ig 1mphes that (x A V(0)).(i1) is detected by some class whose
algebraic Bockstein is x2. By [Theorem 7.2.5|the only such class is x. O

Theorem 7.4.1] now follows from and the following result.
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Theorem 7.4.6. The map f of (7.4.3)) induces a K(1)-local equivalence
Ly (S°V SV E21(0) v Z_BV(O)) AY ~ LicyLi@)Y -

Proof. As a module over Fo[vi'] @ E(0), T« Lg1)Y is free of rank 1 on a class
¢ of degree 0 and m.Lg1)(Y A V(0)) is free of rank 2 on the classes ig and 4;
of degrees 0 and 1 respectively. See |Proposition 4.2.2] |Corollary 4.2.4] and the
remarks before [Corollary 4.2.4] By [Proposition 7.4.3|and [Proposition 7.4.4| we have
that m.Lg 1)Lk 2)Y is free of rank 6 over [y [vfﬂ] ® E(o) on generators ¢, (a, Y,
B(y), Cy and (5(y) of degrees 0, —1, —1, —2, —2 and —3 respectively. See the
remarks before |[Proposition 7.4.4] as well.

We show that the maps
LAY LgnyY— LgayLg@Y
GAY: ST L)Y — L)LY
cAY: S 2Lgay(V(0)AY)— Lgmy L@y
2 AY: S7PLgy(V(0O)AY)— LgayLr@)V

are all injective on homotopy and exhaust the various summands.

The map
LAY : LK(l)(SO A Y) — LK(l)LK(Q)(SO A Y)
is injective on homotopy and maps onto the Fo[vF!] @ E(c) summand generated
by ¢. Similarly (2 A'Y maps injectively onto the summand generated by (o.
These leaves the other four summands. Using the inclusion j: V(0) — Y and
[Cemma 7.4.5 we have that
T AY: S 2Ly (V(0)AY)— Loy Lr@Y
sends the generators ip and ¢; in degrees —2 and —1 to non-zero classes detected
by x? and x respectively. By multiplying with ¢, we can conclude that
2o ANY S Ly (V(0) AY)— LgayLi)Y

sends the generators ip and ¢; in degrees —3 and —2 to non-zero classes detected
by x?C2 and (s respectively. Since y is detected by x and 3(y) by x2, the result
follows from [Proposition 7.4.3] O

7.5. The homotopy types of LOLK(2)50 and LlLK(2)SO. We end this section

by recording one of the main consequences of which was stated in
the introduction as Recall that X,, denote the p-completion of X.

Theorem 7.5.1 (Chromatic Splitting). There is an equivalence
L1Lg(2)8° ~ Li(S§V S5 ) V Lo (S5 v S5 ) v Li(E72V(0) v £73V(0)) .

Theorem 7.5.1|is proved exactly as in Theorem 5.11 of [GHM14], i.e. by exam-

ining the homotopy pull-back
LiLg(9)S° —— Li)Lg2)S°

l l

L()LK(Q)SO —_— LoLK(l)LK(Q)SO .
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For this, we need the following result which describes LoL K(Q)SO.

Theorem 7.5.2. There is an equivalence
LoLg(2)S° ~ Lo(S3V Syt v S53 v Sy 4.
Proof. By the spectral sequence
Ey' = H*(Ga, Ey) ® Q => m—sLoLk(2) S5

has Eo—term Eg,((2,¢e). It collapses with no extensions for degree reasons, and it
converges by [Lemma 2.3.2| and [Corollary 2.3.7

The homotopy classes detected by 1, (2, e, e(> combine to give a map
SIV StV Sy v Syt — LoLg(2)S°

which is a rational equivalence. (I

8. LIFTING TO L (2)S°

In we constructed a map
Vi E2V(0) VE TPV (0)— Lg(1)Li(2)S°

which became part of our K (1)-equivalence. The map = was not unique, but any
choice yielded the equivalence. In this section we show that there is a choice for
this map that factors through the localization map

LK(Q)SO — LK(l)LK(Q)SO.

This is important for the chromatic assembly process.
The map z is defined to be Spanier-Whitehead dual to the class

y € m_1Lg1)Lk2)V(0)

detected by x = x2 € vy " H' (G, E,V(0)). The key result of this section is
orem 8.2.1} which shows that there is a choice of y in the image of the map from
7T,1LK(2)V(0).

There are two main steps: we first show w,l(EhGé AV (0)) = Z/4 generated
by a class detected by x € H'(G}, Ey/2); this uses the topological duality spec-

tral sequence of We then show this generator actually comes from
T_1Lk(2)V (0) using entirely different information, ultimately going back to
rem G6.1.T1

8.1. Computing mEhGé, —3 <4 < 0. For this calculation we use the topological

duality spectral sequence of
Tgbp = Fq,thSé.

We will use Lemmas m and m to deduce information about W*EhGé. The
result is recorded in [Theorem 8.1.51 The homotopy of E"C: in the indicated range
Is given in

The first step is to record what we need about the homotopy groups of the fibers
&p. Since we will be trying to compute mEhS; for ¢ near 0, we will only need
information in a small range of dimensions.
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Remark 8.1.1. If p = 0, then &, = E'921; if p = 3, then &, = ¥ E"C21. Write
Gus = Go4 % Gal. Then the computation of m, E"¢4¢ can be mined from [Bau0g]
or [DFHHI4I; it is very elaborate, but the part we need is fairly simple. We then

have 7, E"G24 = W @ 1, EMG4s | See [Lemma 2.2.3
Recall from [Remark 2.4.7| that there are classes c4, cg, A, and j in H°(Gus, E.),

of degrees 8, 12, 24, and 0 respectively, and an isomorphism
Zo[[j])[es, co, AT]/T = H(Gus, )
where [ is the ideal generated by
s —ck=(12)°A and  jA =ci.

The class j is a permanent cycles. The class A™2 is not a permanent cycle, but
4A~2 and jA~2 are. This will explain the complicated form of 7_4g E"“24 in (8.1.1])

and the factor of 4 in part (1) of [Corollary 8.1.6| See also|Remark 5.5.3| Let 7 and

v be the Hopf classes in the homotopy groups of spheres.

We pause to explain some notation. All homotopy groups 7, E"?* are modules
over W[[j]] = mo E"2¢. For a quotient ring R of W[[j]] we write R{x} for the free
R-module generated by z. If J C R is an ideal, we write J{z} C R{x} for the
sub-R-module generated by J. The name of a generator, if given, is the label given
to the class in the cohomology H*(Ga4, E,) = W ®z, H*(G4s, E.) which detects
the element in question. In all the degrees we list, 7; E"“24 is a sub-W][[4]]-module
of a single cohomology group ES’t >~ H%(Ga4, Et), and we indicate that cohomology
group.

With this in mind we now record the homotopy groups we need.

W) = E3° =0
Fa[[j]}{n'} = E5™ =12
W/s{v} = B! i=3

0 i=-3,-2 1

(BL1) - mBY =0 A WA = O = a8

(){nA=2} CR[II{nA 2} = By i=—a7
(){PA=2} CF[[j]{n? A2} = B3 i = —46
W/8{vA—2) = gl P

The edge homomorphism h: m; E"CG24 — ElG 4 is an isomorphism when ¢ = 0 and
injective when ¢ = —48.

If p=1or 2, then F, = E"Cs_ The following computation is relatively simple
and can be read off of Section 4 of [MR09] or, more explicitly, from Section 2 of
[BGI8]. The notation is analogous to that in (8.1.1]), except that m3 E"Cs = E36 is
only a quotient of ES’G.

(8.1.2) phos o WL = EYY =0
Fal[ud]l{n'} = By i=1,2
Fa{v} i=3

The edge homomorphism h: moE"C — EOC ¢ of the homotopy fixed point spectral
sequence is an isomorphism.
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Finally, we will need the following result in our calculations below.

Lemma 8.1.2. Let G = Gay and G = Cg. Multiplication by n induces isomor-
phisms

n: HY(G, Eo/2) — H'(G, E2/2)
n?: HY(G, Ey/2) — H?(G,E4/2).

Furthermore, for i = 1,2 reduction modulo 2 induces an isomorphism
Hi(G, Ey;) —> H'(G, Ey;/2).

Proof. For these statements we will need some information about H*(G, E;) for low
values of s and t. There are many references for this; see [MRO09] for Cg, [DFHH14]
for Gay, or §2 of [BG18| for more references and a convenient chart for G = Gay.

From these references we see that there are isomorphisms
HY(G, Ey)/2 —— HY(G, Ey) —— H2(G, E).

We also have that H*(G, E;) = 0 for (s,t) = (1,0), (2,2), and (3,4). The result
follows from the long exact sequence in group cohomology induced by the short

exact sequence

0 E, 2 E, E,/2—=0. m

We now begin our calculation of the topological duality spectral sequence for
E"S2. The result is illustrated in The main calculations needed to pro-
duce the Es-term can be found in [Lemma 5.4.3| and [Theorem 8.1.5| There is an
explanatory remark for these charts immediately following.

B P nl [ la]
Do - <=t
oo i
0ot ol

-3 -1 1 -3 -1 1

FIGURE 6. The E; (left) and Ey (right) terms of the TDSS for m, (E"S2).

Remark 8.1.3. The two charts are respectively the Fi-term and Es-term of the
topological duality spectral sequence of [Remark 2.5.6| for F*(Ehsé). We use the
Adams grading with E7*? in [Remark 2.5.6/in the (¢ — p,p) box.

A O denotes a copy of W[[j]] if s = 0,3 and W[[u3]] if s = 1,2. Similarly, a o
denotes a copy of F4[[j]] or F4[[u3]]. A eis a copy of F4. A B is a copy of W. The
symbol @) denotes a copy of W/8.

Horizontal and curved lines indicate multiplication by 7 respectively v. The
dashed vertical line on the FEs-term is there to indicate the additive extension

on the Fo-term. See [Theorem 8.1.5] In the top row of the left chart, we have
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depicted the ideal (4,7){A™2} C m_4sE"“24 using the W-module structure as
W{4}dWI[j]]{7} € W[[j]]. The M represents W{4} and the O represents W[[5]]{}.

The upper right corners of both charts contribute to 771Eh§2. The elements in
these spots do not support differentials in the topological duality spectral sequence,
so don’t come into the calculations of my. As they don’t affect our answers, we don’t
include them in the discussion and leave these boxes marked with a question mark.

We now come to the calculation of W*Ehsé in the range we need. We compute
using the topological duality spectral sequence of

D,q _ hS,
BV =76 — qup(E2 ).

We will use information from [Remark 8.1.1} The Ej-term is displayed in
The notation Ay, by, by, and Ay was explained in [Remark 5.2.8

Theorem 8.1.4. There are isomorphisms

(1) m_ 3(E2 ) W with generator detected by 48, € E>° = mn48 ghGas,
(2) 7T,2( ) =~ T, detected by by € E7° = moE"Ce,

(8) m7_1(E QS ) & IF4 with generator detected by nby in E>" = m E"Cs,

(4) mo(E"S2) =2 W & W/4 & W/8.

1
Furthermore, for moE"Sz,

(i) a generator of the summand W is detected by the unit in E?’O = o E"G2
1) a generator of the summand W /4 is detected by nby € Ebt = g EMCs
1
(iii) a generator of the summand W /8 is detected by vy € E® = wan48 phGas,

If a class in Fthsé is detected by nby € Ell’1 then twice that class is detected by
0%y € E}? 22 myBhCo,

Proof. This requires a multi-part argument and we break it into steps.
Calculating d; with ¢ = 0. The fundamental calculation is with the sequence

di dy di

0,0 1,0 2,0 3,0
EY E} E? EX

Using the calculations of this can be fit into a diagram of chain
complexes

dq dy dy
ﬂ.OEhG24 - ﬂ_OEhCG - - > '/TOEhC6 - > 7T_48EhG24

I

H°(Ga4, Ep) _h HO(Cg, Ey) —— H°(Cg, Eg) — H°(Go4, Ep)

| | | T

HO(Ga4, W) —2 HO(Cy, W) — HO(Cy, W) — 2> HO(Gps, W) .
The vertical maps down from the top row are edge homomorphisms. All but the
last of these maps are isomorphisms. The last map is injective with image the ideal
(4,7) € W][4]]. The map from the bottom to the middle row is induced by the
unit map ¢: W — Fy; thus, by the bottom two rows have the same
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cohomology. It then follows that in the topological duality spectral sequence we

have
E9'=w  E’=0 E°=F, E’=W.

The generator for ES’O is by and the generator for Ej 0 is 4A,.
Calculating d; with ¢ = 1. The next calculation is with the sequence

0,1 d1 1,1 da 2,1 di 3,1
E; E; E; Eyh .
This can be fit into a diagram
hG d1 hG i hG a1 hG
mE? s B — > Y s o o fC24

o oy o C

H'(Ga4, E») L H'(Cg, E») L H'(Cg, E3) — H'(Ga4, E5)

o o o o

dy d dy
HI(G24,E2/2) *>H1(06,E2/2) *>H1(06,E2/2) *>H1(G24,E2/2)

n| n|= n|= n|

dy dy dy
HO(G24,E2/2) —_—> HO(CG,EQ/Q) I HO(C(;,EQ/2) I HO(G24,E2/2) .

Using the calculations of we have all vertical maps from the top row
are isomorphisms except the edge homomorphism on the right hand side. This is an
inclusion onto the submodule Fy[[j]]{jn} C F4[[j]]{n}. The maps from the second
row to the third row are reduction modulo 2 and the maps from the bottom row

to the third row are multiplication by 7. All are isomorphisms by It
follows that in the topological duality spectral sequence we have

Ey'~F, Ey'=F, Ey'~F, Ey o

The generator for Eg’l is nAg, that for E21’1 is mby and the generator for ES’I is
nbo.

Calculating d, with ¢ = 2. The exact same argument, with 7 replaced by 71?2,
shows that

EY*~F, EV=F, EF*~F, E3?*=0

and that the generator for Eg 2 s n?Ay, that for E; 2 g n?by and the generator for
E22 2 is n2by.

Calculating d; with ¢ = 3. Finally, we calculate with the sequence
dy

d; d;

0,3 1,3 2,3 3,3
E; E; E; E;° .

In this case we need a different style of argument. By we have
EY*=wW/8 E*=F, E}*=F, EP’=W/s

generated by vAg, vbg, vby, and vAq respectively. Then d; = 0 by the calculation

for ¢ = 0 and the v-linearity of d;.

Calculating d» and d;. We first turn to dz. By looking at we see
that in the range 0 < ¢ — p < 1, the only classes which could support a non-zero ds
are the unit, detected by Ay and the classes detected by nAq and n2bg in Eg 1 and
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E21 2 The unit and Ny are evidently permanent cycles and 1%by is an n-multiple
of nby, which is permanent cycle. Thus ds = 0.

This leaves only dz. But in the range 0 < g — p < 1, the only class which could
support a non-zero ds is 7 times the unit, so d3 = 0 as well and we have shown
ERI=ERI, —3<q-p<0.
Settling extensions. At this point we have a filtration of the W-module
7T'()E‘hG24

0——>F, Py P —S o BN

| | _—

E33>=W/8 E22=W/2 EL'=W/2 EWL=wW

N
N

Note that the Galois equivariant extension of the unit of E"S: splits off the torsion-
free summand. Thus we need only show that a generator of EL! detects an element

of order 4. This follows from [Remark 3.1.4| and, in particular, from (3.1.4). Specif-

ically, by € E%0 detects a unique Galois invariant homotopy class z of order 2 in
7_oEMS2. Since a generator E22 is detected by 12bg, we have 2(z,2,7) = 1%z # 0
and, in particular that (z,2,n) does not contain zero. Since (z,2,7) is Galois in-
variant, it can only be detected by nby. O

The next result describes how the generators of ’/T*Ehsé in our range are detected
in the homotopy fixed point spectral sequence. In reading the statement, a bit of
care is needed. The class e is not a permanent cycle, so the class ve of part (4) is
not a product; it is named by the class that detects it in the spectral sequence.

Theorem 8.1.5. In the homotopy fixed point spectral sequence
H*(SY, Ey) = my_ EMS:

1
(1) a generator of 7L3(E§S2) =W is detected by 4e in H3(S3, Ey);

(2) a generator of W,Q(Eggé) =~ T, is detected by X in H?(S3, Ey);
(3) a generator of 7r,1(E§S2) =~ T, is detected by nX in H3(S3, Ey);
(4) mo(E"S2) =W e W/4 & W/S.

Furthermore, for 71'0EhSé ,

(i) a generator of the summand W is detected by the unit in H°(S}, Ey);
(ii) a generator of the summand W/4 is detected by an element in the Massey
product

<>A<ia 27 77> € Hl(S%a El);
(iii) a generator of the summand W /8 is detected by ve € H*(S, E3).
If a class in WthS; is detected by (X,2,n) then twice that class is detected by

772% € H4(S%7E4)

Proof. This follows [Theorem 8.1.4] and [Lemma 5.2.9] For part (1) we know from
Lemma 5.2.9| that 4A, detects 4e in the algebraic duality spectral sequence. For
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part (2), the same result shows that by detects Y. Part (3) then follows. It remains
to discuss the generators of onhsé.

At the very end of the proof of [Theorem 8.1.4 we argued that if z € 7_yE"S:

and is the unique non-zero Galois invariant class, then the Toda bracket (z,2,7)
does not contain zero and is detected in the topological duality spectral sequence
by nbo. This forces the Massey product (X, 2,7) to be non-zero. Since z is detected
by X and n?z # 0, the exotic extension follows from the standard juggling formula

2(z,2,n) = n?z of (3.1.4). O
We next pass to Gi. The result is a corollary of [Theorem 8.1.5| obtained by

taking Galois fixed points.
Corollary 8.1.6. There are isomorphisms
(1) n_3EhC: > 7, generated by a class detected by 4e € H*(G3, Ep);
(2) T_p EhGs o Z/2 generated by a class detected by X € H?(G3, E);
(3) 7_1 ENC2 =~ Z)2 generated by a class detected by nY € H*(G}, Es);
(4) mE"S: =7, & Z/4 & 1/8.
Furthermore, the summands of 71'0EhGé are generated by the unit and classes

detected by (X,2,n) € H*(G}, E2) and ve € H*(GL, Ey). If a class is detected by
(X,2,m), then twice that class is detected by n¥X.

Remark 8.1.7. Using the fiber sequence of ([2.2.4)

LK(2)50 EhGE "L phGh
we can make analogous calculations for the sphere itself. For example
T_3Lg2)S° 2 Zy ®Z/2 C H*(Gs, Ey)
generated by the classes 4e and (o).
We now pass to an analysis of m, (E"C2 A V(0)). Recall from that ¢

and j are defined by the cofiber sequence

x2 J

EhC: EhG: EMC: AV(0) —L> S EMC:,

From we have 3 = jq. Let z: S72 — E"C2 be the class detected by
X- Since this class has order two, it factors through
q: STLEMG: AV (0)—s BN
and we get a map
(8.1.3) y1: S~ — EM%: A V(0).
such that ¢.(y1) = z. We now have the following result.
Proposition 8.1.8. There are isomorphisms

(a) T_1(E"> AV(0)) = Z/4 generated by the class yy. This class is detected by
X € Hl(G%aEO/2)
(b) 71'_2(EhGé AV(0)) = Z/2. The generator is detected by x*> € H*(G3, Ey/2).

Furthermore, the class 2y, is detected by nx* € H3(Gl, Fy/2).
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Proof. From it follows that
m_o (BN AV(0)) 2 Z/2
generated by j.(z). This class is detected by the image of X in H?(G3, Eq/2), which
is exactly x2. From the same result we have a short exact sequence
0—Z/2 = 7_1(E"®2 AV(0)) = Z/2 — 0.

Since j.(z) is detected by the Bockstein on x and j.(y1) = j«g«(2) = B(z), the Geo-

metric Boundary Theorem (see [Remark 3.2.1) implies that the class y; is detected
by x. The generator of the kernel is 1j.(z), detected by nx?. It remains to show

y1 has order 4; this follows from O

8.2. Producing the lifting. We now show that the class y; € m_1(E"®2 A V(0))
of order 4 constructed above in [Proposition 8.1.8|is in the image of the unit map
T LV (0) = m.(E"2 A V(0)). Recall from [Theorem 7.3.3 that the class y €
vy 'H'(Gy, E,V(0)) is a non-zero permanent cycle in the localized Adams-Novikov
Spectral Sequence computing . L (1)L (2)V (0).

Theorem 8.2.1. There is a class yo € m_1L(2)V(0) detected by x € H'(Gz, Ey/2).
Under the map

7 1LV (0)— m_1(E"®2 A V(0))
the class yo maps to y1 and under the map
T_1Lg@2)V(0)— m_1LgyLi@2)V(0)
the class yo is non-zero and detected by the class x € vy ' H*(Gy, E.V(0)).

Proof. There is a fiber sequence
(8.2.1) L)V (0) — E"®3 AV (0) === B A V(0)

where m € G is an element that generates Go/G} = Z,. Since 77_1(Eh(G’é AV(0))
is isomorphic to Z/4, we haveﬂ that m.y1 = =+y; so either (7 — 1),y; = 0 or
(m—1)wy1 = 2y1.

If the first case applies, then we can choose a class y2 € m_1Lg(2)V(0) which
maps to y;. By we have an isomorphism

HY(Gy, EgV(0)) 2 Z/2 x 7)2

with generators y and (2. The class (2 maps to zero in H'(G}, EqV(0)); hence, we
have that y- is detected by x + €(3 where e = 0 or 1. Since (, is a permanent cycle
by [Proposition 2.2.1| detecting a homotopy class also called (5, we set yg = y2 + €(s.

Then 1 is detected by . Finally, by the map
HY(Ga, EoV(0) — vy " H* (G, E.V(0))

is an injection in degree 1, so the final statement follows.

If the second case applies we would have that y; maps to a class of order 2 in
T_3Lk(2)V (0) under the boundary map in the long exact sequence in homotopy
obtained from the cofiber sequence of (8.2.1]). To rule this out, we use the following

result, O

6We use 7. for the action of a group element 7 € G, on the homotopy groups of EPG3 A V(0).

Our apologies. Here at the prime 2 there is a classical choice of m € Ga. See |Remark 2.4.5
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Theorem 8.2.2. Under the boundary homomorphism

9: w1 (E"2 AV(0)— m_sL()V(0)
the class x1 = O(y1) is a class of evact order 4 detected by (x € H?*(Gy, Ey/2). The
class 2x1 is detected by n{x* € H*(Gz, F2/2).

This is an application of the Geometric Boundary Theorem; see
The proof will be below, after we have given some background.

~

Since E,E®2 map,,(G2/G3, E.) we can apply E. to the cofiber sequence
(8-2.1) and obtain a short exact sequence of Morava modules

(822)  0— E.V(0)— E,(E" AV(0)) % B, (EMS AV(0) — 0

and hence a diagram of spectral sequences
(8.2.3) H*(GL, B, /2) =——=> m,_(E"®2 A V(0))
H TGy, By /2) == m—s_1Lg(2)V (0)
where § is the algebraic connecting map
H*(G}, E;/2) = H*(Ga, Ey(E"®: AV(0))) —2> H**(Go, E,/2)
in the long exact sequence induced by the short exact sequence .

Lemma 8.2.3. Suppose the class a € H*(G3, E,/2) is the image of an element
b € H*(Gy, E./2) under the restriction

H*(Go, E,/2) — H*(G}, E./2) .
Then §(a) = (2b.

Proof. The connecting homomorphism ¢ is a homomorphism of H*(Gs, E,/2)-

modules. By the definition of (s (see [Remark 5.1.1), we have §(1) = (3, and

the result follows. O

Proof of [Theorem 8.2.9. Using|Lemma 8.2.3|and the diagram of spectral sequences

(8.2.3) we have that d(y1) € m_2Lk(2V(0) is detected by (ax € H?(Gq, Eo/2).

Since 2y; is detected by nx2, we can again use [Lemma 8.2.3| and the diagram of

spectral sequences (8.2.3) to conclude that 9(2y1) € m_2Lg(2)V (0) is detected by
Conx? € H (G, E2/2).

This class is non-zero by Thus we need to check that this class

cannot be a boundary in the spectral sequence. Since F,/2 = 0 in odd degrees, the
only possible differential is

ds: H (Gy, Eo/2) — H*(Ga, Ey/2).
By [Remark 5.4.7| we have an isomorphism H'(Gy, Ey/2) = Z/2 x Z/2 with gener-

ators (o and x. We know by [Proposition 2.2.1|that (5 is a permanent cycle and we
know by [Theorem 6.1.1| that  is a dz-cycle. Thus d3 = 0 on H'(Gz, Ep/2) and the
result follows. O
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