
ON THE BEILINSON FIBER SQUARE

BENJAMIN ANTIEAU, AKHIL MATHEW,
MATTHEW MORROW, and THOMAS NIKOLAUS

Abstract
Using topological cyclic homology, we give a refinement of Beilinson’s p-adic
Goodwillie isomorphism between relative continuous K-theory and cyclic homology.
As a result, we generalize results of Bloch–Esnault–Kerz and Beilinson on the p-
adic deformations of K-theory classes. Furthermore, we prove structural results for
the Bhatt–Morrow–Scholze filtration on TC and identify the graded pieces with the
syntomic cohomology of Fontaine–Messing.
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1. Introduction

1.1. Fiber squares
For any ring R, one has its connective algebraic K-theory K.R/ and its negative
cyclic homology HC�.R/; they are related via the Goodwillie–Jones trace map
trGJ W K.R/ ! HC�.R/, often interpreted and referred to as a Chern character
(see [60, Chapter 8]). Moreover, when R is a Q-algebra, the map trGJ induces an
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isomorphism on relative theories for nilimmersions, via the following theorem of
Goodwillie.

THEOREM 1.1 (Goodwillie [38])
If I � R is a nilpotent ideal in an associative Q-algebra R, then the commutative
square

K.R/

trGJ

K.R=I /

trGJ

HC�.R/ HC�.R=I /

is Cartesian; that is, the Goodwillie–Jones trace map induces an equivalence
trGJ W K.R; I /'HC�.R; I / on relative theories.

Here, for a pair .R; I / with I � R an ideal, we write K.R; I / for the fiber of
K.R/!K.R=I /, and similarly for other functors such as HC� and so on.

In order to extend Goodwillie’s theorem to more general rings, one uses topo-
logical cyclic homology TC.R/, introduced in [19] in the p-complete case and
in [25] integrally, and the cyclotomic trace tr W K.R/! TC.R/, which refines the
Goodwillie–Jones trace map.

THEOREM 1.2 (Dundas–Goodwillie–McCarthy [25])
If I �R is a nilpotent ideal in an associative ring R, then the commutative square

K.R/

tr

K.R=I /

tr

TC.R/ TC.R=I /

is Cartesian; that is, the cyclotomic trace induces an equivalence tr W K.R; I / '
TC.R; I / on relative theories.

Topological cyclic homology is thus the primary tool in calculations of relative K-
theory (see, e.g., [47], [48], [66]), but it is a significantly more complicated invariant
than cyclic homology. However, recently Beilinson [8] gave a version of Goodwillie’s
original result in a p-adic setting, when the ideal in question is .p/ and R is assumed
to be complete along .p/. The first goal of this paper is to construct a variant of the
Chern character and prove a strengthening of Beilinson’s theorem.
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Throughout this paper, we fix a prime number p. We use the convention that the
modifier “Zp” refers to p-adic completion of an object, and “Qp” to the rationaliza-
tion of the p-completion; for example, K.RIZp/ denotes the p-complete K-theory of
R, and K.RIQp/ denotes the rationalization of K.RIZp/. Similarly, the modifier “Q”
refers to rationalization. We denote by HP (resp., HC) periodic cyclic (resp., cyclic)
homology.

THEOREM A
For an associative ring R, there is a natural p-adic Chern character map

trcrys W K.R=pIQp/!HP.RIQp/ (1)

which fits into a natural commutative square

K.RIQp/

trGJ

K.R=pIQp/

trcrys

HC�.RIQp/ HP.RIQp/:

(2)

If R is commutative and Henselian along .p/ then this square is Cartesian, thereby
giving an equivalence K.R; .p/IQp/'†HC.RIQp/.

In [8], Beilinson constructs a natural equivalence1 Kcts.R; .p/IQp/' †HC.RI
Qp/ under the assumption that R is p-complete with bounded p-power torsion, R=p
has finite stable range,2 and the relative K-theory term K.R; .p// is replaced by the
“continuous” relative K-theory Kcts.R; .p// D lim

 �
K.R=pn; .p//; this replacement

does not affect the conclusion if R is commutative thanks to [23, Theorem 5.23].
Beilinson’s arguments rely on some p-adic Lie theory.

In this paper, we will construct the map (1) using the description of topological
cyclic homology from Nikolaus–Scholze [73], as a consequence of Bökstedt’s calcu-
lation of THH.Fp/. Together with the rigidity results of Clausen–Mathew–Morrow
[23], we explain a short, homotopy-theoretic proof of Theorem A. In fact, Theorem A
and all the corollaries listed below hold for any (possibly noncommutative) ring R
if we replace K-theory by TC (see Theorem 2.12 and Corollary 3.9); the Henselian
condition is only needed to translate between K-theory and TC.

Next, we observe some consequences of and complements to Theorem A. In [8],
slightly more than an equivalence of rational spectra K.R; .p/IQp/'†HC.RIQp/

1Since the methods are different, we do not know if our identification on fiber terms is the same as Beilinson’s.
2The stable range of a ring R was defined in [4] (see also [5, V.3]) and is sometimes, as in [8], called the stable

rank.
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is proved: there is a natural zigzag of “quasi-isogenies” of spectra before inverting
p. By definition, a quasi-isogeny is a map which is an equivalence up to uniformly
bounded denominators in any finite range of degrees. We also obtain the same con-
clusion in our setting and can keep track of the denominators at least in some range.

COROLLARY B
Let R be a commutative ring which is Henselian along .p/. Then there is a nat-
ural zigzag of quasi-isogenies between K.R; .p/IZp/ and †HC.R; .p/IZp/. If
R is, moreover, p-torsion-free, then there are isomorphisms �iK.R; .p/IZp/ '
�i†HC.R; .p/IZp/ for i � 2p � 5.

A similar result for an arbitrary nilpotent ideal, albeit in a smaller range of degrees
(depending on the exponent of nilpotence of the ideal), is proved in [21]. The argu-
ment we use here seems to be special to the ideal .p/.

As explained above, one could formulate Theorem A entirely in the language of
topological cyclic homology, completely avoiding the mention of K-theory. At some
point in the proof, however, we translate back into K-theory and use a homology
argument. Therefore, we also offer an alternative, purely cyclotomic proof of this
step. This relies on a study of quasi-isogenies in the homotopy theory of cyclotomic
spectra, based on the t -structure introduced by Antieau–Nikolaus [3]. The key step is
an extension of a theorem of Geisser–Hesselholt [36] and Land–Tamme [61].

THEOREM C
Let f W A!A0 be a map of connective associative ring spectra. Suppose that:
(1) f is a quasi-isogeny of spectra;
(2) the map �0.f / W �0.A/! �0.A

0/ is surjective with nilpotent kernel.
Then THH.AIZp/! THH.A0IZp/ is a quasi-isogeny in cyclotomic spectra, and, in
particular, the induced map TC.AIZp/! TC.A0IZp/ is a quasi-isogeny.

1.2. p-adic deformations of K-theory classes
In our first main application of Theorem A, we generalize work of Bloch–Esnault–
Kerz [17] and Beilinson [8] on the formal p-adic deformation of rational K-theory
classes. Let us first recall the motivation for their work.

Fix a complete discretely valued field K of mixed characteristic .0;p/ with ring
of integers OK and perfect residue field k, as well as a proper smooth scheme X !
Spec.OK/ with special fiber Xk and generic fiber XK . Given X , we can consider
the algebraic de Rham cohomology H�dR.XK=K/ of the generic fiber, together with
its Hodge filtration Fil�?H�dR.XK=K/; these are finite-dimensional K-vector spaces,
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and arise as the cohomology groups of objects Fil�?R�dR.XK=K/ in the derived
category of K .

As usual, we have a Chern character

ch W K0.X IQ/� K0.XK IQ/!H even
dR .XK=K/: (3)

A foundational motivating question is to determine the image of this map: in other
words, to determine which cohomology classes come from algebraic cycles on XK
(or, equivalently, on X ). A conjecture of Fontaine–Messing, a p-adic analogue of the
variational Hodge conjecture of Grothendieck [41, p. 103, note 13], predicts that this
question can essentially be reduced from mixed to equal characteristic.

To formulate the conjecture, we consider also the (absolute) crystalline coho-
mology H�crys.Xk/ of the special fiber, a family of finitely generated W.k/-modules.
By the de Rham–to–crystalline comparison (see [9]), we have an isomorphism
H�crys.Xk/˝W.k/K ŠH

�
dR.XK=K/. Finally, we have the crystalline Chern character

map (see [43]),

chcrys W K0.Xk/!
M
i�0

H 2i
crys.XkIQp/; (4)

leading to a commutative diagram

K0.X IQ/

ch

K0.XkIQ/

chcrys

H even
dR .XK=K/

'
H even

crys .Xk/˝W.k/ K:

(5)

Conjecture 1.3 (p-adic variational Hodge conjecture)
Let ˛ 2 H even

dR .XK=K/. Then ˛ belongs to the image of the Chern character from
K0.X IQ/ if and only if:
(1) the image of ˛ under the de Rham–to–crystalline isomorphism in

H even
crys .Xk/˝W.k/ K belongs to the image of the crystalline Chern character

from K0.XkIQ/;
(2) the class ˛ belongs to

L
i Fil�iH 2i

dR.XK=K/�H
even
dR .XK=K/.

For further details and arithmetic applications of the p-adic variational Hodge
conjecture, we refer to [27].

Motivated by Conjecture 1.3, Bloch–Esnault–Kerz [17] considered the following
p-adic deformation question, which starts with a K0-class on the special fiber (rather
than a cohomology class) and asks when it lifts infinitesimally.
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Question 1.4 (The p-adic deformation problem)
Given the data as above, define the “continuous” K-theory

Kcts.X/
def
D lim
 �

K.X=�n/;

where � is a uniformizer of OK . Given a class x 2 K0.XkIQ/, when does it belong
to the image of the reduction map from the continuous K-theory Kcts

0 .X IQ/ D

�0.Kcts.X//Q?

Since the map K.X/!Kcts.X/ is generally not an equivalence, the p-adic defor-
mation problem does not imply Conjecture 1.3. However, the p-adic deformation
problem is a (pro-)infinitesimal one, so it can be studied using methods of topological
cyclic homology. Using the Beilinson fiber square, we answer the p-adic deformation
problem as follows; in [17], this result is proved for a smooth projective scheme of
dimension d < pC 6 when K is unramified.

THEOREM D
Let X be a proper smooth scheme over OK . A class x 2 K0.XkIQ/ lifts to
Kcts
0 .X IQ/ if and only if chcrys.x/ 2

L
i�0H

2i
crys.XkIQp/ is carried by the de Rham–

to–crystalline comparison isomorphism to a class in
L
i�0 Fil�iH 2i

dR.XK=K/ �L
i�0H

2i
dR.XK=K/.

Our main observation is that Theorem A together with Hochschild–Kostant–
Rosenberg comparisons between cyclic and de Rham cohomology yield a fiber square

Kcts.X IQ/ K.XkIQ/

Q
i2Z Fil�iR�dR.XK=K/Œ2i �

Q
i2ZR�dR.XK=K/Œ2i �:

(6)

Moreover, on K0, one checks that the vertical map on the right-hand side induces
the crystalline Chern character (4), at least up to scalars, implying the result. For this
argument, it is crucial that one has the fiber square (6), rather than a fiber sequence
alone.

One can also generalize the above questions to higher K-theory. In [8], the Beilin-
son fiber sequence is used to prove that if x 2 Kj .XkIQ/, then there exists a natural
obstruction class in

L
i�0H

2i�j
dR .XK/=Fil�iH 2i�j

dR .XK/ which vanishes if and only
if x lifts to the continuous K-theory Kcts

i .X IQ/; however, [8] does not identify the
class with the crystalline Chern character for i D 0. Here we also extend this result to
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an arbitrary quasicompact and quasiseparated (qcqs) scheme with bounded p-power
torsion, using p-adic derived de Rham cohomology [10] and results of [1].

THEOREM E
Let X be a qcqs scheme with bounded p-power torsion. For each n we write Xn for

X �SpecZ Z=pn, and put Kcts.X/
def
D lim
 �

K.Xn/. Given a class x 2 Kj .X1IQ/, there
is a natural class

c.x/ 2
M
i�0

H 2i�j .L�X=L�
�i
X /Qp ;

where L�X is the p-adic derived de Rham cohomology of X with the derived Hodge
filtration L��?X . The class x lifts to Kcts

i .X IQ/ if and only if c.x/D 0.

1.3. The motivic filtration on TC
In [12], Bhatt–Morrow–Scholze discovered a fundamental additional structure on
the p-adic topological cyclic homology TC.�IZp/ of p-adic commutative rings:
a “motivic filtration” Fil�?TC.�IZp/ on TC.�IZp/ with associated graded terms
denoted Zp.i/Œ2i �. The objects Zp.i/ thus obtained are related to integral p-adic
Hodge theory and can be defined (independently of topological cyclic homology) as
a type of filtered Frobenius invariants on the prismatic cohomology (see [15]). They
are known explicitly in some cases: in characteristic p > 0 they can be identified with
logarithmic de Rham–Witt sheaves (up to a shift), and, for formally smooth algebras
over OC (for C a complete algebraically closed nonarchimedean field), they can be
identified with truncated p-adic nearby cycles.

Recall also that for p-adic (commutative) rings, TC.�IZp/ is p-adic étale K-
theory in nonnegative degrees (see [22], [23], [34]). Therefore, it is expected (but
not known in mixed characteristic) that the filtration Fil�?TC.�IZp/ is the étale
sheafified motivic filtration on algebraic K-theory, and that the Zp.i/ are p-adic étale
motivic cohomology, at least where all of these objects are defined. One also has con-
structions of Schneider and Sato [80] of “p-adic étale Tate twists,” which satisfy a
type of arithmetic duality. In general, one expects that the Zp.i/ should be related
to important foundational questions in arithmetic geometry and K-theory. An advan-
tage of the construction of Fil�?TC.�IZp/ and the Zp.i/ as in [12] is that it works
in a much more general setting (for the quasisyntomic rings; see Section 5.1 below
for a review) than existing approaches to motivic cohomology. Moreover, its defini-
tion is extremely direct: it is simply a sheafified Postnikov tower (albeit for a “large”
topology).

Using Theorem A, we will give a description of the Zp.i/ for i � p�2 and of the
Qp.i/ for all i in terms of syntomic cohomology as considered by Fontaine–Messing
[31] and Kato [54]. In particular, this construction gives a description of the Zp.i/
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(with the above restrictions) that relies only on derived de Rham theory, rather than
prismatic theory. Our result is an analogue of a result of Geisser [33] for étale motivic
cohomology for smooth schemes over Dedekind rings.

To formulate the result, we write L�R for the p-adic derived de Rham cohomol-
ogy for a commutative ring R equipped with its derived Hodge filtration L��?R (see
[10]). The object L�R carries a crystalline Frobenius ' W L�R! L�R. For i < p,
one has a “divided” Frobenius '=pi W L��iR ! L�R. Using the techniques of [12]
(in particular, quasisyntomic sheafification) applied to the Beilinson fiber square, we
deduce our next theorem.

THEOREM F
Let R be a quasisyntomic ring.
(1) For each i � 0, there is an identification

Qp.i/.R/' fib.' � pi W L��iR !L�R/Qp :

(2) For i � p � 2, there is an identification

Zp.i/.R/' fib.'=pi � id W L��iR !L�R/:

We explicitly analyze Theorem F in three cases in which one has alternate
descriptions of the Zp.i/: rings of integers in p-adic fields, perfectoid rings, and
formally smooth OC -algebras where C is an algebraically closed, complete non-
Archimedean field of mixed characteristic. The first case recovers classical calcu-
lations of the rational p-adic K-theory of p-adic fields; the second case recovers
the fundamental exact sequence in p-adic Hodge theory; and the last case recovers
results of Colmez–Nizioł [24] on p-adic vanishing cycles, albeit only in the formally
smooth case.

Finally, Theorem F provides a complete computation of low-degree or rational-
ized TC in terms of syntomic cohomology. This computation relies on the following
connectivity estimate about the Zp.i/ and about the filtration on TC.�IZp/. The esti-
mate for algebras over a perfectoid ring is stated in [12, Construction 7.4]; the argu-
ment for all quasisyntomic rings relies on the use of relative topological Hochschild
homology and the spectral sequence of Krause–Nikolaus [55].

THEOREM G
If R is a quasisyntomic ring, then Zp.i/.R/ 2 D�iC1.Zp/. If R is w-strictly
local (e.g., strictly Henselian local), then Zp.i/.R/ 2 D�i .Zp/. Consequently,
Fil�iTC.RIZp/ is concentrated in homological degrees � i � 1 (and pro-étale
locally � i ).
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COROLLARY H
If R is any commutative ring, then there is a natural equivalence

TC.RIQp/'
M
i�0

fib.' � pi W L��iR !L�R/Qp :

Notation
Throughout, we write Sp for the 1-category of spectra. Given a ring R, we write
D.R/ for the derived1-category of R.

We will use homological indexing conventions indicated with a subscript when
referring to spectra and cohomological indexing conventions indicated with a super-
script when referring to objects of the derived category. For instance, given n, we
write Sp�n (resp., Sp�n) for spectra with homotopy groups concentrated in degrees
� n (resp., � n); and we write D.R/�n (resp., D.R/�n/ for objects of D.R/ with
cohomology groups concentrated in degrees � n (resp., � n).

We write HH.R/ for the Hochschild homology of R, always relative to Z and
always computed in a derived sense (also known as Shukla homology), and we let
THH.R/ denote the topological Hochschild homology of R. We write HC�.R/ D
HH.R/hS

1
for negative cyclic homology and HP.R/DHH.R/tS

1
for periodic cyclic

homology. For a scheme X , we let L�X denote its p-completed derived de Rham
cohomology (relative to Z) and L��iX for the i th stage of the (derived) Hodge filtra-

tion. We denote the Hodge-completed variants by dL�X and dL��iX , respectively.

2. The Beilinson fiber square

2.1. Background
We review some background on the theory of cyclotomic spectra and topological
cyclic homology as in [73], of which we will use the p-typical variant. This theory
uses the 1-category Fun.BS1;Sp/ of spectra equipped with S1-actions. Given a
spectrum X equipped with an S1-action, we can form the homotopy S1-orbits XhS1 ,
the homotopy S1-fixed points XhS

1
, and the S1-Tate construction X tS

1
. These are

related by a natural fiber sequence †XhS1!XhS
1
!X tS

1
, which we will use con-

stantly and without further comment. See, for example, [73, Corollary I.4.3].

Definition 2.1 (Nikolaus–Scholze [73])
We let CycSp denote the symmetric monoidal, stable1-category of cyclotomic spec-
tra.3 An object of CycSp consists of a spectrum X equipped with an S1-action and
an S1-equivariant map 'p W X!X tCp called the cyclotomic Frobenius.

3Our conventions are slightly different from those of [73], which requires a Frobenius map for each prime
number q and not only the fixed prime p. What we call a cyclotomic spectrum is called a p-typical cyclotomic
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Given X 2 CycSp, we write

TC�.X/DXhS
1

and TP.X/DX tS
1

:

We will define only p-complete TC forX 2 CycSp and will assume thatX is bounded
below. We have two maps can W TC�.X IZp/! TP.X IZp/ and ' W TC�.X IZp/!
TP.X IZp/. By definition, can is the canonical map from S1-invariants to the Tate
construction, and ' is induced from the Frobenius 'p . The p-complete topological
cyclic homology TC.X IZp/, for X 2 CycSp bounded below, can be computed as the
fiber of the difference of the two maps; that is,

TC.X IZp/D fib
�
can� ' W TC�.X IZp/! TP.X IZp/

�
: (7)

Remark 2.2
We will use throughout the basic fact that if X 2 CycSp has underlying n-connective
spectrum, then TC.X IZp/ is .n � 1/-connective (see, e.g., [23, Lemma 2.5 and
Remark 2.14]).

Example 2.3

(1) Given a ring R, we can form the topological Hochschild homology THH.R/
as a cyclotomic spectrum.

(2) Given a spectrum Y , we let Y triv be the cyclotomic spectrum, where we view
Y as a spectrum with trivial S1-action and with cyclotomic Frobenius given
by the natural map Y ! Y hCp ! Y tCp .

(3) For a spectrum X with S1-action, we get a cyclotomic spectrum by letting
'p W X!X tCp be zero (as an S1-equivariant map).

Remark 2.4
Let Y be a bounded below spectrum of finite type, meaning that each �iY is a finitely
generated abelian group. If X 2 CycSp is p-complete and bounded below, then there
is a natural equivalence

TC.X ˝S Y
trivIZp/' TC.X IZp/˝S Y: (8)

This is a consequence of the fact that the functor TC.�IZp/ commutes with geo-
metric realizations of connective cyclotomic spectra, since it is exact and carries
n-connective objects into .n � 1/-connective objects. This even holds if Y is only

spectrum in [3], and what we write as CycSp is written as CycSpp in [3]. For p-complete objects (the primary
case of interest), there is no difference between a cyclotomic spectrum in the sense of [73] and the definition
used here.
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assumed to be bounded below, as long as the right-hand side of (8) is p-adically com-
pleted, by [23, Theorem 2.7].

As a simple exercise with the above definitions, we prove the following result for
use below. This has been used in other references as well (see, e.g., [49, Section 1.4]).

PROPOSITION 2.5
If X 2 CycSp is bounded below and TP.X IZp/D 0, then we have natural equiva-
lences TC.X IZp/' .†XhS1/

^
p ' TC�.X IZp/.

Proof
In fact, the formula (7) shows that TC.X IZp/ D TC�.X IZp/. Now TP.X IZp/ is
the cofiber of the norm map .†XhS1/

^
p ! TC�.X IZp/. Since we have assumed

TP.X IZp/D 0, we have .†XhS1/
^
p ' TC�.X IZp/. Combining the two identifica-

tions, we conclude.

Next, we apply this to a specific crucial example.

Construction 2.6 (The cyclotomic spectrum ZhCp )
Recall first that the cyclotomic trace (or a direct construction) gives a map

Ztriv! THH.Fp/ (9)

in CycSp, and that as objects of Fun.BS1;Sp/ we have THH.Fp/ ' ��0.ZtCp /

by [73, Sec. IV-4]; here we obtain the S1-action on ZtCp via the sequence Cp !

S1
z 7!zp

����! S1. This is a refinement of (and deduced from) Bökstedt’s calculation of
THH.Fp/. Consequently, there is a cofiber sequence in CycSp,

ZhCp ! Ztriv! THH.Fp/; (10)

where ZhCp is a cyclotomic spectrum with underlying spectrum with S1-action
ZhCp 2 Fun.BS1;Sp/.

Note that .ZhCp /
tCp ' 0 by the Tate orbit lemma (see [73, Lemma I.2.1]). In

particular, the map Ztriv ! THH.Fp/ induces an equivalence on TP.�IZp/, i.e.,
ZtS

1

p ' THH.Fp/tS
1
D TP.Fp/. We obtain by Proposition 2.5 that TC.ZhCp IZp/'

†.Zp/hS1 . Our next observation is that this remains true after tensoring with any
bounded below cyclotomic spectrum.

LEMMA 2.7
If X 2 Fun.BS1;Sp/, then .X ˝S ZhCp /

tS1 is p-adically zero (here we use the diag-
onal S1-action).
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Proof
The spectrum .X ˝S ZhCp /

tS1 is a module over .ZhCp /tS
1
. Since .ZhCp /tS

1
van-

ishes p-adically by the Tate fixed point lemma (see [73, Lemmas I.2.2 and II.4.2], the
lemma follows. Alternatively, one can easily verify that .Fp/hCp 2 Fun.BS1;Sp/ is
induced from the trivial subgroup, which forces the p-adic Tate vanishing.

Combining Proposition 2.5 and Lemma 2.7, we conclude that ifX is any bounded
below cyclotomic spectrum, then there are equivalences

TC.X ˝S ZhCp IZp/'†
�
.X ˝S ZhCp /hS1

�^
p
' TC�.X ˝S ZhCp IZp/: (11)

2.2. Pullback squares
Next, we establish some pullback squares involving cyclotomic spectra and give a
proof of Theorem A.

PROPOSITION 2.8
Let X 2 CycSp be a bounded below cyclotomic spectrum. Then the commutative
square

TC.X ˝S ZtrivIZp/ TC.X ˝S THH.Fp/IZp/

TC�.X ˝S ZtrivIZp/ TC�.X ˝S THH.Fp/IZp/

(12)

is Cartesian, where the horizontal maps arise from the map Ztriv ! THH.Fp/
in CycSp of Construction 2.6 and the vertical maps are the canonical maps
TC.�IZp/! TC�.�IZp/ arising from the definition of TC.�IZp/.

Moreover, there is a natural fiber sequence�
†.X ˝S ZhCp /hS1

�^
p
! TC.X ˝S Z

trivIZp/! TC
�
X ˝S THH.Fp/IZp

�
: (13)

Proof
Since TC.ZIZp/ for a bounded-below cyclotomic spectrum Z is an equalizer of two
maps TC�.ZIZp/⇒ TP.ZIZp/, the statement that (12) is Cartesian follows from
the fact that X ˝S Ztriv ! X ˝S THH.Fp/ induces an equivalence on TP.�IZp/,
via Lemma 2.7. Moreover, the fiber sequence (13) then follows from (12) via taking
fibers, and using Lemma 2.7 again to replace homotopy fixed points by homotopy
orbits. Alternatively, to prove that (12) is Cartesian, one observes that the fibers of the
horizontal arrows are TC.X ˝S ZhCp IZp/ and TC�.X ˝S ZhCp IZp/ and these are
naturally equivalent as in (11).
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COROLLARY 2.9
For every connective ring spectrumR we have a natural fiber sequence of p-complete
spectra

†
�
THH.RIZp/˝S ZhCp

�
hS1
! TC.RIZp/˝S Z! TC.R˝S FpIZp/:

Proof
We apply Proposition 2.8 to X D THH.RIZp/. We have that THH.R/ ˝S

THH.Fp/ ' THH.R ˝S Fp/, which gives the identification of the third term. For
the identification of the term in the middle, we observe that TC.X ˝S ZtrivIZp/ '

TC.X IZp/˝S Z by (8). Note finally that for bounded-below spectra, tensoring with
Z preserves p-completeness as Z is of finite type.

Next, we study what happens in (12) after rationalization.

COROLLARY 2.10
Let X 2 CycSp be a bounded-below, p-complete cyclotomic spectrum. Then there
exists a natural map TC.X ˝S THH.Fp/IZp/! .X ˝S Ztriv/tS

1
which fits into a

natural commutative square

TC.X ˝S ZtrivIZp/ TC.X ˝S THH.Fp/IZp/

.X ˝S Ztriv/hS
1

.X ˝S Ztriv/tS
1
:

(14)

Moreover, this square becomes Cartesian after inverting p.

Proof
We can vertically extend the Cartesian square (12) via the canonical maps .�/hS

1
!

.�/tS
1
. In this case, as we saw earlier, the map .X˝SZtriv/tS

1
! .X˝STHH.Fp//tS

1

is an equivalence. Using this identification, we obtain the commutative square (14).
The fact that (14) is Cartesian after inverting p follows from the facts that (12) is
Cartesian and that .X ˝S THH.Fp//hS

1
! .X ˝S THH.Fp//tS

1
' .X ˝S Ztriv/tS

1

becomes an equivalence after inverting p.

Remark 2.11 (Effective bounds for the denominators in Corollary 2.10)
For future reference, it will be helpful to give a more effective version of Corol-
lary 2.10. Consider the total cofiber (cofiber of horizontal cofibers) of the square (14).
This is given by †2.X ˝S THH.Fp//hS1 because (12) is homotopy Cartesian. If
X is connective, then it follows that the ��2i of the total cofiber is annihilated by
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pi , since ��2i�2THH.Fp/ is S1-equivariantly annihilated by pi : indeed, this follows
by the (S1-equivariant) Postnikov filtration, since each nonzero homotopy group of
THH.Fp/ is in even degree and is an Fp-vector space.

Consequently, we can deduce the following fiber square, which is the basic TC-
theoretic result from which the Beilinson fiber square is a consequence.

THEOREM 2.12
Let R be a ring (or, more generally, a connective associative HZ-algebra spectrum).
Then there is a natural commutative square of spectra

TC.RIZp/ TC.R˝S Fp/

HC�.RIZp/ HP.RIZp/

(15)

which becomes Cartesian after inverting p. Aside from the right vertical arrow, all
the maps are the canonical ones.

Proof
Via (14) for X D THH.RIZp/, we obtain a natural commutative diagram

TC.RIZp/

TC.THH.R/˝S ZtrivIZp/ TC.R˝S Fp/

.THH.RIZp/˝S Ztriv/hS
1

.THH.RIZp/˝S Z/tS
1

HC�.RIZp/ HP.RIZp/

where we use the natural cyclotomic map THH.RIZp/ ! THH.RIZp/ ˝S Ztriv

and the natural S1-equivariant map THH.RIZp/ ˝S Z! HH.RIZp/. The upper
square is Cartesian after inverting p by Corollary 2.10. The map TC.RIZp/ !
TC.THH.RIZp/ ˝S Ztriv/ ' TC.RIZp/ ˝S Z is an equivalence after inverting p.
The induced map on the bottom horizontal fibers is †.THH.RIZp/ ˝S Z/hS1 !
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†HH.RIZp/hS1 , which is an equivalence after inverting p since THH.RIZp/ ˝S

Z!HH.RIZp/ is an equivalence after inverting p and this property is preserved by
taking S1-homotopy orbits. Thus, the bottom square is Cartesian after inverting p.
Using these identifications, the theorem follows.

Remark 2.13 (Effective bounds II)
Again, one can make effective the statement that (15) is Cartesian after inverting
p, at least in the range � 2p � 4. In this case, we find (via Remark 2.11) that for
i � p � 1, ��2i of the total cofiber of (15) is annihilated by pi . Indeed, the map on
cofibers of the bottom rows of (14) and (15) is given by †2.THH.R/˝S Ztriv/hS1!

†2HH.RIZp/hS1 . This map is an equivalence in degrees � 2p � 2.

Definition 2.14 (The p-adic Chern character)
Let R be a ring. Consider the map TC.R ˝S Fp/! HP.RIZp/ from above. After
inverting p, in view of Theorem 3.4 below, we have an equivalence TC.R ˝S

FpIQp/ ' TC.R=pIQp/. We therefore obtain a map ˇ W TC.R=pIQp/! HP.RI
Qp/, and precomposing with the trace we obtain

trcrys D tr ı ˇ W K.R=pIQp/!HP.RIQp/:

We call trcrys the p-adic Chern character and record that it fits into a natural commu-
tative diagram

K.RIQp/

tr

K.R=pIQp/

tr

trcrysTC.RIQp/ TC.R=pIQp/

ˇ

HC�.RIQp/ HP.RIQp/

(16)

in which the bottom square is a pullback.

Remark 2.15
In recent work, Petrov–Vologodsky [76] have shown that if p > 2 and R is p-
torsion-free, then there is a natural equivalence HP.RIZp/ ' TP.R=pIZp/. Thus,
one could attempt to compare the p-adic Chern character trcrys with the usual trace
K.R=pIZp/! TP.R=pIZp/. We have not considered this question.
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We can now give a quick proof of Theorem A by combining the above results
with the following theorem.

THEOREM 2.16 (Clausen–Mathew–Morrow [23])
If R is commutative and Henselian along .p/, then the trace induces an equivalence
K.R; .p/IZp/' TC.R; .p/IZp/.

Remark 2.17
IfR is only associative, but p-complete and has bounded p-power torsion,4 then there
is an equivalence lim

 �
K.R=pn; .p//' TC.R; .p/IZp/. This follows by the Dundas–

Goodwillie–McCarthy theorem [25] and the p-adic continuity of TC (see [23, Theo-
rem 5.19]).

Proof of Theorem A
As we have already noted, the square (15) from Theorem 2.12 is a pullback after
inverting p; that is, the bottom square in (16) is a pullback. But the top square in
(16) is a pullback by Theorem 2.16; assembling these Cartesian squares completes
the proof of the theorem.

2.3. Fiber sequences up to quasi-isogeny
Next, we review some definitions and terminology as in [8], identify more carefully
the fiber terms in the above squares, and prove Corollary B from the introduction.

Definition 2.18 (Isogenies and quasi-isogenies)
Given an additive category (or 1-category) C , we say that a map f W X ! Y is an
isogeny if there exists g W Y !X and an integer N > 0 such that g ı f DN idX and
f ı g D N idY . Let C be a stable 1-category equipped with a t -structure which is
left-complete.5 We say that a map f W X ! Y of bounded below objects is a quasi-
isogeny if the following equivalent conditions are satisfied:
(1) for each n, the map ��nf W ��nX! ��nY is an isogeny in C ;
(2) for each n, the map �nX! �nY in the heart C~ is an isogeny.

We will need some elementary observations about quasi-isogenies. A map
f W X ! Y of bounded below objects in C is a quasi-isogeny if and only if the fiber
fib.f / is quasi-isogenous to zero. If one restricts to C�0 (i.e., connective objects),
then quasi-isogenies are preserved under finite colimits and geometric realizations

4If R is noncommutative and p-complete, then it is natural to ask whether there is still an equivalence
K.R; .p/IZp/' TC.R; .p/IZp/. We do not know the answer to this question.
5Recall that C said to be left-complete (with respect to the given t -structure) if the natural map C! lim

 �n
C�n

is an equivalence. This is a technical condition satisfied by many stable1-categories such as Sp and D.Z/.
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(but generally not under filtered colimits). Next, let C , D be stable 1-categories
with left-complete t -structures. Given a right t -exact functor F W C !D (or just a
right bounded exact functor), it is easy to see that F preserves quasi-isogenies.6

Given an 1-category I, we will say that a natural transformation f ! g of
functors f;g W I! C is a quasi-isogeny if it is a quasi-isogeny in Fun.I;C/ with the
pointwise t -structure. We will say that two functors are naturally quasi-isogenous if
they are are related by a zigzag of quasi-isogenies of functors.

Example 2.19
For C D Sp, the map S! Z is a quasi-isogeny but of course not an isogeny (as
there is no nontrivial map back). In fact, in Sp one has the following formality result
of Beilinson [8]: every bounded-below spectrum X is quasi-isogenous to the spec-
trum

L
nH�n.X/Œn�. In particular, two bounded-below spectra X and Y are quasi-

isogenous precisely if for each n separately the abelian groups �nX and �nY are
isogenous. To see that every spectrum is formal in the above sense, it suffices to
observe that every k-invariant of a connective spectrum X is bounded torsion (where
the torsion degree only depends on the degree of the k-invariant and not on the spe-
cific homotopy groups). For explicit bounds, see [67].

This formality result of course does depend on choices and thus does not give
similar results in functor categories C D Fun.I;Sp/.

The fiber sequence of Corollary 2.9 is the key to obtain our version of Beilinson’s
theorem [8], as follows.

THEOREM 2.20
For any associative ring R, the following spectra are naturally quasi-isogenous to
each other (i.e., related via a natural zigzag of quasi-isogenies):

TC
�
R; .p/IZp

�
†HC

�
R; .p/IZp

�
†HC.RIZp/:

Moreover:
(a) if R is p-torsion-free, then the first two are equivalent after .2p � 5/-

truncation;
(b) if R is p-torsion-free and7 ��1.TC.RIZp//D 0, then the first two are equiv-

alent after .2p � 4/-truncation.

6A functor C !D is right t -exact with respect to fixed t -structures on C and D if it restricts to a functor
C�0!D�0 . It is right bounded if it restricts to a functor C�0!D�n for some n 2 Z.
7This is true pro-étale locally if R is commutative, thanks to [47, Theorem F].
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Proof
For every associative ring R, we have the following commutative diagram of fiber
sequences

†.THH.RIZp/˝S ZhCp /hS1 TC.RIZp/˝S Z TC.R˝S FpIZp/

F TC.RIZp/

id

TC.R˝S FpIZp/

id

TC.R; .p/IZp/ TC.RIZp/ TC.R=pIZp/:

(17)

To form the above diagram, we use the map TC.RIZp/! TC.RIZp/˝S Z induced
from the map S! Z, as well as the map on TC.�IZp/ induced by the Postnikov
section R˝S Fp!R=p. All horizontal sequences in (17) are fiber sequences, either
by Corollary 2.9 or by definition; that is, F is defined as the fiber of TC.RIZp/!
TC.R˝S FpIZp/.

We claim now that all the vertical maps in diagram (17) are quasi-isogenies.

LEMMA 2.21
The map TC.RIZp/! TC.RIZp/ ˝S Z in the diagram (17) is a natural quasi-
isogeny of spectra. Moreover, its fiber is .2p�4/-connective. If ��1.TC.RIZp//D 0,
then the fiber is .2p � 3/-connective.

Proof
The first part follows from the observation that tensoring a quasi-isogeny (in this case
S! Z) with a bounded below spectrum (here TC.RIZp/) is again a quasi-isogeny.
Moreover, the fiber of TC.RIZp/! TC.RIZp/˝S Z is .2p � 4/-connective since
TC.RIZp/ is .�1/-connective and the fiber of S.p/! Z.p/ is .2p � 3/-connective.
The last assertion follows similarly.

The right horizontal map TC.R˝S FpIZp/! TC.R=pIZp/ in diagram (17) is
also a quasi-isogeny. This follows from Theorem 3.4 that we will discuss and prove in
Section 3 and which is purely internal to cyclotomic spectra. But we also want to give
a direct proof here using K-theory and the Dundas–Goodwillie–McCarthy theorem.
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PROPOSITION 2.22
The natural map TC.R ˝S FpIZp/! TC.R=pIZp/ is a quasi-isogeny. If R is p-
torsion-free, then the fiber is .2p � 1/-connective.

Proof
The map of connective ring spectra R˝S Fp!R=p is an isomorphism on �0. Thus
the Dundas–Goodwillie–McCarthy theorem (for ring spectra) implies that its fiber is
equivalent to the fiber of the map

K.R˝S FpIZp/!K.R=pIZp/:

But the map R ˝S Fp ! R=p of ring spectra is a quasi-isogeny and, if R is p-
torsion-free, has fiber which is .2p � 2/-connective. Thus, the map on K-theory is a
quasi-isogeny and has fiber which is .2p � 1/-connective (cf. [61, Proposition 2.19],
the proof of which shows that the map is truly a quasi-isogeny of functors).

Now we know that the vertical maps in diagram (17) are quasi-isogenies, so we
conclude that†.THH.R;Zp/˝SZhCp /hS1 and TC.R; .p/IZp/ are quasi-isogenous
to one another. Moreover, if R is p-torsion-free, then the vertical maps from F have
.2p � 4/-connective fibers by the above discussion (which upgrades to .2p � 3/-
connective fibers if ��1TC.RIZp/D 0). Thus, we conclude that †.THH.R;Zp/˝S

ZhCp /hS1 and TC.R; .p/IZp/ are equivalent in degrees � .2p � 5/, and in degrees
� 2p�4 if ��1TC.RIZp/D 0. Theorem 2.20 now follows from the arguments above
and the following lemma.

LEMMA 2.23
The following spectra are naturally quasi-isogenous to each other,�

THH.RIZp/˝S ZhCp
�
hS1

HC
�
R; .p/IZp

�
HC.RIZp/;

and the first two are equivalent after .2p � 4/-truncation if R is p-torsion-free.

Proof
We have that THH.RIZp/˝S ZhCp is equivalent to the fiber of

THH.RIZp/˝S Z! THH.R˝S FpIZp/;

and this map sits in a commutative square
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THH.RIZp/˝S Z THH.R˝S FpIZp/

HH.RIZp/ HH.R=pIZp/

of spectra with S1-action. Both vertical maps are quasi-isogenies, so that we get the
desired quasi-isogeny between the first two terms of the statement by taking S1-
orbits. The term HH.R=p/ is quasi-isogenous to 0, so that we get the last quasi-
isogeny, too. If R is p-torsion-free, then the fibers of the left and right vertical maps
are in degrees � 2p � 3 and � 2p � 2, respectively, so the last assertion follows,
too.

Corollary B follows by combining Theorem 2.16 with Theorem 2.20. In particu-
lar, we have an isomorphism K�.R; .p/IZp/Š HC��1.R; .p/IZp/ for � � 2p � 5,
for R commutative, p-torsion-free, and Henselian along .p/. Note also that, with the
same proof, we can deduce the following variant of Theorem 2.20 for arbitrary con-
nective Z-algebra ring spectra (also known as Z-linear differential graded algebras).

PROPOSITION 2.24
If R is a connective Z-algebra spectrum, then the fiber of TC.RIZp/! TC.R ˝Z

FpIZp/ is quasi-isogenous to †HC.RIZp/ and, after .2p � 5/-truncation, is equiv-
alent to the fiber of

†HC.RIZp/!†HC.R˝Z FpIZp/:

Remark 2.25
In all of the above, the denominators involved in the above quasi-isogenies are uni-
form: they do not depend on the choice of R. More formally, one could state all of the
above quasi-isogenies via the 1-category of functors from rings R to spectra. The
denominators in the next result are not independent in the same fashion.

THEOREM 2.26
Let .R; I / be a pair consisting of an associative ring R and a nilpotent ideal I . Then
there is a natural zigzag of quasi-isogenies between K.R; I IZp/ and†HC.R; I IZp/.

Proof
By the Dundas–Goodwillie–McCarthy theorem, we can replace K-theory with TC.
We have a natural map

TC.R; I IZp/! fib
�
TC
�
R; .p/IZp

�
! TC

�
R=I; .p/IZp

��
: (18)
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Now TC.R=pIZp/! TC.R=.I;p/IZp/ is a quasi-isogeny in view of Theorem 3.4
below, so that (18) is a quasi-isogeny. Combining with the quasi-isogenies of Theo-
rem 2.20 now completes the proof.

3. Quasi-isogenies of cyclotomic spectra
In this section, we systematically study quasi-isogenies in cyclotomic spectra, give
another proof of Theorem A and Corollary B, and prove Theorem C, sharpening some
results of Geisser–Hesselholt [36].

3.1. Preliminaries
We will apply the notion of quasi-isogeny (Definition 2.18) to the1-category CycSp
of cyclotomic spectra using the t -structure of [3];8 this t -structure is defined so that
the connective objects of CycSp are those whose underlying spectrum is connective,
and it is checked in [3, Theorem 2.1] that the t -structure is left-complete. Note that
a quasi-isogeny of bounded-below cyclotomic spectra f W X ! Y is a quasi-isogeny
of underlying spectra, and TC.f IZp/ W TC.X IZp/! TC.Y IZp/ is also a quasi-
isogeny. However, THH.Fp/ 2 CycSp has underlying spectrum quasi-isogenous
to zero but is not itself quasi-isogenous to zero because TC.Fp/ ' TC.FpIZp/ is
torsion-free and nonzero: �0TC.FpIZp/Š ��1TC.FpIZp/Š Zp .

In the next result, we use the notion of TR of a cyclotomic spectrum, which plays
an important role in the work [3]. See [18] for an account of TR in the approach to
cyclotomic spectra via genuine equivariant homotopy theory. Implicitly, TR is com-
puted with respect to our fixed prime p, but it will not generally be p-complete unless
we p-complete it forming TR.X IZp/ for a cyclotomic spectrum X .

PROPOSITION 3.1
A map f W X! Y of bounded-below cyclotomic spectra is a quasi-isogeny in CycSp
if and only if the map of spectra TR.f / W TR.X/! TR.Y / is a quasi-isogeny of
spectra.

Proof
This follows from the description of the cyclotomic t -structure of [3]. In particular,
the cyclotomic homotopy groups of X 2 CycSp are precisely the homotopy groups of
the spectrum TR.X/, together with the Frobenius and Verschiebung maps. These are
p-typical Cartier modules, which is to say abelian groups M with endomorphisms F
and V satisfying FV D p, and the heart CycSp~ is equivalent to a full subcategory
of the category of p-typical Cartier modules. Now, it suffices to check that a map
h W W ! Z between p-typical Cartier modules is an isogeny precisely if the under-

8Recall that what we denote by CycSp is denoted CycSpp in [3].
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lying map of abelian groups is an isogeny. One implication is immediate, and for the
other suppose that g W Z!W is a map of abelian groups such that g ı hD N idW
and h ı g D N idZ . The map g might not respect the F and V maps. However, for
z 2Z, F.g.z//� g.F.z// and V.g.z//� g.F.z// are both in the kernel of h, which
consists of N -torsion elements of W . Therefore, Ng is a map of p-typical Cartier
modules, Ng ı hDN 2idW , and h ıNgDN 2idZ .

PROPOSITION 3.2
Let X 2 CycSp be a cyclotomic spectrum such that X is bounded below, such that
the Frobenius ' W X ! X tCp is null-homotopic in Fun.BS1;Sp/, and such that X
is quasi-isogenous to zero as a spectrum. Then X is quasi-isogenous to zero as a
cyclotomic spectrum.

Proof
The assumption that the Frobenius is null-homotopic implies that TR.X/ is a productQ
n�0XhCpn , using the description of TR as an iterated pullback (see [3, Remark

2.5] and [73, Corollary II.4.7]). The assumption that X is quasi-isogenous to zero
now implies that the above product is also quasi-isogenous to zero, so we conclude
by Proposition 3.1.

We observe that the theory of cyclotomic spectra admits a natural graded vari-
ant. A graded spectrum is an object of the functor category Fun.Zds

�0;Sp/, where
Zds
�0 denotes the discrete category of nonnegative integers with no nonidentity mor-

phisms; given a graded spectrum X , we let Xi 2 Sp, i � 0 denote the i th graded
piece. We let GrSp denote the 1-category of graded spectra, which we consider as
a symmetric monoidal 1-category under Day convolution using the multiplication
symmetric monoidal structure on Zds

�0. A graded cyclotomic spectrum X consists
of a graded spectrum X D ¹Xiº equipped with an S1-action together with a family
of S1-equivariant maps 'i W Xi ! X

tCp
pi for i � 0. We let GrCycSp denote the 1-

category of graded cyclotomic spectra. Any graded cyclotomic spectrum X D ¹Xiº

has an underlying cyclotomic spectrum
L
i�0Xi , and this defines a forgetful functor

GrCycSp! CycSp.
More formally, the1-category GrCycSp is defined as follows. We consider the

1-category Fun.BS1;GrSp/ of graded spectra equipped with an S1-action. This
admits a natural endofunctor F which sends ¹Xi ; i � 0º to ¹X tCppi º, where we regard

X
tCp
pi as a spectrum with an S1=Cp ' S1-action. Then GrCycSp is defined as the
1-category of F -coalgebras, as in [73, Section II.5].

Given a graded ring spectrum R, there is a graded cyclotomic spectrum THH.R/
obtained by applying the cyclic bar construction in the category of graded spec-
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tra. This refines the usual THH and admits an S1-action in graded spectra. See
Appendix A for the details of this construction. Compare also [21] for a treatment of
filtered cyclotomic spectra and filtered TC using more classical methods.

PROPOSITION 3.3
Let X be a graded cyclotomic spectrum. If
(1) the underlying spectrum of X is quasi-isogenous to zero,
(2) the graded piece X0 is contractible, and
(3) the connectivity of the pieces Xi tends to infinity in i ,
then X is quasi-isogenous to zero as an object of CycSp.

Proof
Given a graded cyclotomic spectrum X , for each i , we can construct a graded cyclo-
tomic spectrumX�i 2GrCycSp such that .X�i /j D 0 for j > i and .X�i /j DXi for
j � i and a tower of maps X ! � � � !X�n!X�n�1! � � � !X�1. This is a tower
in GrCycSp, and we can consider it as a tower of underlying objects in CycSp, too.

We need to show that for each j , �j .TR.X// is isogenous to zero. Our assump-
tions imply that �j .TR.X//! �jTR.X�n/ is an isomorphism for n	 0. How-
ever, the object fib.X�i ! X�i�1/ defines a cyclotomic spectrum with Frobenius
homotopic to zero, in view of the grading. It follows from Proposition 3.2 that
TR.fib.X�i ! X�i�1// is quasi-isogenous to zero, and by induction TR.X�n/ is
quasi-isogenous to zero. Putting these observations together with Proposition 3.1
completes the proof.

3.2. Quasi-isogenies on THH
Our main result here is the following, which restates Theorem C. On TC and for
discrete rings in which p is nilpotent, it is due to Geisser–Hesselholt [36], and the
main arguments are based on theirs.

THEOREM 3.4
Let f W A!A0 be a map of connective associative ring spectra. If
(i) f is a quasi-isogeny of spectra, and
(ii) the map �0.f / W �0.A/! �0.A

0/ is surjective with nilpotent kernel,
then THH.A/! THH.A0/ is a quasi-isogeny in CycSp.

We will first verify some special cases.

PROPOSITION 3.5
Let R be a connective associative graded ring spectrum. If
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(a) each Ri ; i > 0, is isogenous to zero as a spectrum, and
(b) the connectivity of the Ri tends to1 as i!1,
then the map THH.R/! THH.R0/ is a quasi-isogeny in CycSp.

Proof
Since R is a graded ring spectrum, THH.R/ admits the structure of a graded cyclo-
tomic spectrum (refining the usual cyclotomic structure on THH.R/), and in degree
0 one has THH.R0/. For this, compare Appendix A, or the work of Brun [21], who
uses the more classical approach to cyclotomic spectra.

Now we wish to apply Proposition 3.3. Consider the subcategory C � GrSp�0
of connective graded spectra spanned by graded spectra Z such that Zi is quasi-
isogenous to zero for i > 0 and such that the connectivity of Zi grows without bound
as i !1. Then C is closed under tensor products and geometric realizations. The
assumptions on R imply that R 2 C , and consequently THH.R/ 2 C as well. That
is, THH.R/i is quasi-isogenous to zero for i > 0 and the connectivity of THH.R/i
grows without bound as i!1. Thus, we can apply Proposition 3.3.

PROPOSITION 3.6
Let A be a connective associative ring spectrum. Let M be a connective .A;A/-
bimodule which is quasi-isogenous to zero. Suppose that eA is a square-zero extension
of A by M , in the sense that one has a map f W A! A ˚MŒ1� in Alg=A and a
pullback diagram

eA A

0

A
f

A˚MŒ1�:

Then the map THH.eA/! THH.A/ is a quasi-isogeny in CycSp.

Proof
We can form the Čech nerve of the map eA!A, that is, the simplicial object : : : eA�AeA⇒ eA. This yields a simplicial object X� of Alg which resolves A. It follows that
jTHH.X�/j ' THH.A/ in CycSp.

Now eA �A eA is a trivial square-zero extension of eA by M . It follows that
THH.eA �A eA/ is quasi-isogenous to THH.eA/ by Proposition 3.5, since a trivial
square-zero extension can be given a grading. Continuing in this way, it follows
that all the maps in the simplicial object THH.X�/ are quasi-isogenies. Taking
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geometric realizations now, it follows that THH.eA/! jTHH.X�/j ' THH.A/ is a
quasi-isogeny in CycSp.

PROPOSITION 3.7
Let B be a connective associative ring spectrum, and let B 0 be an object of
AlgB==B . Suppose that the augmentation map B 0 ! B is a quasi-isogeny and
the map �0.B 0/! �0.B/ has nilpotent kernel. Then THH.B/! THH.B 0/ is a
quasi-isogeny.

Proof
Recall first that AlgB==B is equivalent to the 1-category of nonunital associative
algebra objects in .B;B/-bimodules. In particular, I D fib.B 0!B/ has such a struc-
ture. We can work up the Postnikov tower ��?I ; since TR behaves well with respect
to Postnikov towers, it suffices to prove the result for each ��nI . General results as in
[64, Section 7.4.1] (which go back at least to [6]) now show that ��nI can be obtained
in finitely many steps via square-zero extensions from B , by bimodules which are
quasi-isogenous to zero. Now we conclude via Proposition 3.6.

Proof of Theorem 3.4
We consider the Čech nerve of A! A0. We obtain a simplicial object X� in Alg�0
such that jX�j ' A0 and such that each Xi is an iterated fiber product of copies of A
over A0. Each Xi can be given the structure of an object of AlgA==A (via appropriate
face and degeneracy maps), whence we conclude by Proposition 3.7 that all the maps
in the simplicial object THH.X�/ are quasi-isogenies in CycSp. Finally, the result
now follows by taking geometric realizations.

One important corollary of Theorem 3.4 is the following result of Geisser and
Hesselholt (see [61] for generalizations).

COROLLARY 3.8 (Geisser–Hesselholt [36])
If p is nilpotent in A and I � A is a two-sided nilpotent ideal, then K.A; I / '
TC.A; I / is quasi-isogenous to zero.

Proof
In this case, A!A=I is a quasi-isogeny (they are both quasi-isogenous to zero) and
hence Theorem 3.4 applies to prove that THH.A/! THH.A=I / is a quasi-isogeny
of cyclotomic spectra. This implies in particular that TC.A; I / is quasi-isogenous to
zero.
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3.3. Quasi-isogenies and the Beilinson fiber sequence
Recall that Proposition 2.22, which was key in proving Theorem A, asserts that for
every ring R the induced map TC.R˝S FpIZp/! TC.R=pIZp/ is a quasi-isogeny.
Our proof in Section 2 relied on K-theory. Alternatively, we can now also deduce this
fact directly from Theorem 3.4, which implies that THH.R ˝S Fp/! THH.R=p/
is a quasi-isogeny of cyclotomic spectra, and therefore TC.R ˝S FpIZp/ !

TC.R=pIZp/ is a quasi-isogeny of spectra. This immediately implies also the
following variant of Theorem A.

COROLLARY 3.9
Let R be a ring. Then there is a natural pullback square

TC.RIQp/ TC.R=pIQp/

HC�.RIQp/ HP.RIQp/:

(19)

In this section, we want to take this a step further and prove a cyclotomic version
of Theorem A.

THEOREM 3.10
For every ring R, the following cyclotomic spectra are quasi-isogenous to each other,

THH
�
R; .p/IZp

�
HH.RIZp/ HH

�
R; .p/IZp

�
;

where HH.RIZp/ and HH.R; .p/IZp/ are equipped with the canonical S1-actions
and the zero Frobenius (see Example 2.3). Moreover, if R is p-torsion-free, then we
have an equivalence of cyclotomic spectra

�
cyc
�.2p�4/

THH
�
R; .p/IZp

�
' �

cyc
�.2p�4/

HH
�
R; .p/IZp

�
:

We note that the last theorem immediately implies Theorem A by passing to
TC.�IZp/ since TC.�IZp/ of a cyclotomic spectrum with zero Frobenius is just
given by the p-completion of the shifted S1-orbits. But Theorem 3.10 is strictly
stronger than Theorem A since quasi-isogenies cannot be detected on TC. The
remainder of this section is devoted to proving Theorem 3.10.

LEMMA 3.11
Suppose that X ! Y is a quasi-isogeny of cyclotomic spectra and that M is any
bounded-below cyclotomic spectrum. Then, X ˝SM ! Y ˝SM is a quasi-isogeny
of cyclotomic spectra.
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Proof
We can assume that M is connective, in which case the functor � ˝S M is a right
t -exact endofunctor of CycSp and hence preserves quasi-isogenies.

We now want to apply a similar proof strategy as in Section 2 and consider the
diagram

THH.RIZp/˝S ZhCp THH.RIZp/˝S Z
triv THH.R˝S FpIZp/

THH.R; .p/IZp/ THH.RIZp/ THH.R=pIZp/

of cyclotomic spectra in which the horizontal rows are fiber sequences. Both ver-
tical maps are quasi-isogenies in cyclotomic spectra: the first by Lemma 3.11 and
because Striv! Ztriv is a quasi-isogeny (since .�/triv is right t -exact), and the second
by Theorem 3.4. The right vertical map has homotopy fiber in degrees � 2p � 2,
while the middle vertical map has homotopy fiber in degrees � 2p� 3. It follows that
THH.R; .p/IZp/ is quasi-isogenous in cyclotomic spectra to THH.RIZp/˝S ZhCp ,
and their cyclotomic .2p� 4/-truncations � cyc

�2p�4 are equivalent. Note that the cyclo-
tomic Frobenius on THH.RIZp/˝SZhCp is null-homotopic by the Tate orbit lemma.

Now the next lemma finishes the proof of Theorem 3.10.

LEMMA 3.12
The following cyclotomic spectra are quasi-isogenous to each other:

THH.RIZp/˝S ZhCp HH.RIZp/ HH
�
R; .p/IZp

�
:

Moreover, the cyclotomic truncations � cyc
�2p�4 of the first and the third are naturally

equivalent.

Proof
We consider the square

THH.RIZp/˝S Z THH.R˝S FpIZp/

HH.RIZp/ HH.R=pIZp/

of spectra with S1-action, in which the vertical maps are quasi-isogenies and the
terms on the right-hand side are quasi-isogenous to zero. We consider it as a square of
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cyclotomic spectra by equipping all spectra with the zero Frobenius map. It follows
from Proposition 3.2 that the vertical maps are quasi-isogenies of cyclotomic spectra.
The horizontal fibers are equivalent to THH.RIZp/˝S ZhCp and HH.R; .p/IZp/,
which shows that they are quasi-isogenous to each other.

Finally, the induced map of cyclotomic spectra (with zero Frobenii) THH.RI
Zp/˝S ZhCp ! HH.R; .p/IZp/ has the property that it is an equivalence of under-
lying spectra in degrees � 2p � 4 (as in Lemma 2.23) and consequently induces an
equivalence on cyclotomic homotopy groups in degrees � 2p� 4, for example, using
the description of TR as in the proof of Proposition 3.2.

4. Application to p-adic deformations
In this section, we prove Theorems D and E. Throughout this section, let X be a
quasi-compact and quasi-separated (qcqs) p-adic formal scheme with bounded p-
power torsion, and write Xn DX�SpecZp SpecZ=pn. We are interested in the follow-
ing invariants of X, and, in particular, the p-adic deformation problem (Question 4.5
below).

Definition 4.1 (Continuous invariants of formal schemes)
Let F be an invariant of schemes (such as K, THH, HH, HC�, HP, TC). Given the
formal scheme X, we define F cts.X/ via

F cts.X/D lim
 �
n

F.Xn/: (20)

If the p-adic formal scheme X arises as the p-adic completion of a scheme X ,
we have a natural comparison map

F.X/! F cts.X/: (21)

PROPOSITION 4.2
Suppose that X is the p-adic completion of a qcqs scheme X with bounded p-power
torsion. Then the maps (21) for F D HH;THH;HC�;HP;TC are p-adic equiva-
lences.

Proof
Using Zariski descent on X , we may assume that X D Spec.R/, where R is a ring of
bounded p-power torsion, and then XD Spf. ORp/. Using the cyclic bar construction,
it is not difficult to show that THHcts.XIZp/D THH.RIZp/, that is, that (21) is a p-
adic equivalence for F D THH (cf. the proof of [23, Theorem 5.19]). Tensoring over
THH.Z/ with Z, one deduces the result for HH, and then taking S1-invariants and
coinvariants, we find that (21) is a p-adic equivalence for F D HC�;HP. Running
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the above argument with THH instead of HH, one concludes that (21) is a p-adic
equivalence for F D TC (see [23, Theorem 5.19]). See also [26, Corollary 4.8] for
these results, when R is assumed to be Noetherian and F -finite.

By contrast, it is much more difficult to control (21) when F D K. We mention
the two following cases.

Example 4.3 (Formal affine schemes)
Suppose that X is affine, that is, XD Spf.R/, for R a p-adically complete ring with
bounded p-power torsion. We can then write X as the p-adic completion (as a formal
scheme) of X D Spec.R/. In this case, the comparison map (21) is a p-adic equiva-
lence for F DK as well (cf. [23, Theorem 5.23] and [35, Theorem C]).

Example 4.4 (Proper schemes)
Suppose thatR is p-complete. Suppose that X is the p-completion of a proper scheme
X ! Spec.R/. The map K.X IZp/! Kcts.XIZp/ is probably not an equivalence;
compare [16, Appendix B] for a related counterexample in equal characteristic zero.
In this case, Kcts.XIZp/ is generally much more tractable than K.X IZp/ via compar-
isons with topological cyclic homology.

Question 4.5 (The p-adic deformation problem)
Let X be a p-adic formal scheme with special fiber X1 as above. For i � 0, what is
the image9 of the map

Kcts
i .XIQ/!Ki .X1IQ/‹ (22)

We first observe that Question 4.5 is essentially a p-adic question in TC. For each
n� 1, let K.Xn;X1/ be the fiber of K.Xn/! K.X1/. Since Xn is a p-adic nilpotent
thickening of X1, the relative K-theory K.Xn;X1/ has homotopy groups which are
bounded p-power torsion (cf. Corollary 3.8, due to [36]), and the spectrum is there-
fore p-complete. Using the Dundas–Goodwillie–McCarthy theorem from [25], and
taking limits, we obtain a Cartesian square

Kcts.X/ K.X1/

TCcts.XIZp/ TC.X1IZp/:

(23)

9By the Milnor exact sequence, this is equivalent to describing the image of the map .lim
 �n

Ki .Xn///Q !
Ki .X1IQ/.
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Since the Xn; n � 1 are p-power torsion schemes, their TC are already p-adically
complete. Using this diagram, we see that it suffices to determine the image of the
map TCcts

i .XIQp/! TCi .X1IQp/.
In this section, we will describe an explicit obstruction class for Question 4.5 in

case i D 0 (sharpening results of [17]) in certain geometric situations and construct
general obstruction classes in all cases (after [8]).

4.1. The Bloch–Esnault–Kerz theorem
In [17], Bloch–Esnault–Kerz consider Question 4.5 in the case i D 0 and where X

has the following form. Let K be a complete discretely valued field of characteristic
zero with ring of integers OK , whose residue field k is perfect of characteristic p > 0.
We let � 2OK be a uniformizer and denote by K0 the ring of fractions W.k/Œ 1

p
�. We

take X! Spf.OK/ to be a smooth p-adic formal scheme, with special fiber Xk !
Spec.k/ and rigid analytic generic fiber XK over K . The goal is to understand the
image of the map Kcts

0 .XIQp/!K0.Xk IQp/.
We refer to [17] and [27] for more detailed motivation for the above question,

as well as [16], [68], and [71] for discussions of the analogous question in equal
characteristic. Note that when X arises from a smooth proper scheme X! Spf.OK/,
the above question says nothing about the image of the map K0.X IQ/!K0.XkIQ/;
this (at least up to homological equivalence) is the subject of the far more difficult p-
adic variational Hodge conjecture of Fontaine–Messing (Conjecture 1.3).

Here we will unwind the Beilinson fiber square to answer Question 4.5 in this
case in terms of the crystalline Chern character. To begin with, we need to review the
crystalline Chern character and the crystalline to de Rham comparison.

Construction 4.6 (de Rham cohomology)
Given a smooth p-adic formal scheme X! Spf.OK/, we will consider the (p-adic)
de Rham cohomology R�dR.X=OK/ 2D.OK/, equipped with the descending, mul-
tiplicative Hodge filtration Fil�?R�dR.X=OK/. When X is also assumed proper, all
of these are perfect complexes in D.OK/. Furthermore, after inverting p, we write
R�dR.XK=K/ 2D.K/ and Fil�?R�dR.XK=K/ for the induced objects.

A basic fact we will use is that when X is proper, the induced spectral sequence
from the Hodge filtration on R�dR.XK=K/ degenerates after rationalization; this is
the degeneration of the Hodge–to–de Rham spectral sequence for proper smooth rigid
analytic varieties, proved by Scholze [82].

Construction 4.7 (Comparison between crystalline and de Rham cohomology)
Given X! Spf.OK/ a smooth p-adic formal scheme, we can consider the crystalline
cohomology R�crys.Xk/ of the special fiber as well. In the absolutely unramified case
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(when OK DW.k/), the usual de Rham to crystalline comparison theorem yields an
equivalence R�crys.Xk/'R�dR.X=OK/. In general, by [9, Theorem 2.4], we have a
natural equivalence after rationalization

R�dR.XK=K/'R�crys.XkIQp/˝K0 K: (24)

Construction 4.8 (The crystalline Chern character)
Let Y be a regular scheme of characteristic p. Given a vector bundle V on Y , we can
define Chern classes ci .V/ 2 H 2i

crys.Y / for i � 0 satisfying the usual axioms (e.g.,
using the classical method of [40]; cf. [43]). The usual formula then yields a crys-
talline Chern character, that is, a natural ring homomorphism into the rationalized
crystalline cohomology

chcrys W K0.Y /!
M
i�0

H 2i
crys.Y IQp/;

which carries the class of a line bundle L to 1C c1.L/.

Our main result is the following theorem, which extends results of Bloch–
Esnault–Kerz [17]. In [17], this result is proved in the case where K D K0 is abso-
lutely unramified, X arises from a smooth projective scheme, and p > dim.X/C 6.
In [8], it is shown that there is an obstruction in

L
i�0H

2i
dR.XK/=Fil�iH 2i

dR.XK/, but
the obstruction is not identified with the Chern character (see Section 4.2 below for
more discussion).

THEOREM 4.9
Let K be a complete discretely valued field of characteristic zero with ring of
integers OK , whose residue field k is perfect of characteristic p > 0. Let X !

Spf.OK/ be a proper smooth p-adic formal scheme with special fiber Xk . A class
x 2 K0.Xk IQp/ lifts to Kcts

0 .XIQp/ if and only if the crystalline Chern charac-
ter chcrys.x/ 2

L
i�0H

2i
crys.XkIQp/ maps (via the comparison map of (24)) toL

i�0 Fil�iH 2i
dR.XK=K/�

L
i�0H

2i
dR.XK=K/.

The proof of Theorem 4.9 will be carried out as follows. First, we give an anal-
ogous form of the Beilinson fiber square when we work relative to OK (Propo-
sition 4.10). Next, we will show that the p-adic Chern character can be defined
entirely in terms of the special fiber (which will use some Kan extension techniques
from Appendix B), and then identify it with the crystalline Chern character (Proposi-
tion 4.12). Theorem 4.9 will then follow directly.

In the next result, we will use the continuous Hochschild (resp., negative cyclic,
periodic cyclic) homology of a formal scheme over OK , defined as in Definition 4.1;
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note that Proposition 4.2 applies to these relative theories, too, since they can be
recovered from THH.

PROPOSITION 4.10 (The fiber square relative to OK )
Let X be a smooth formal OK -scheme. Then there are natural fiber squares

Kcts.XIQp/ K.XkIQp/

TCcts.XIQp/ TC.XkIQp/

HC�;cts.X=OK IQp/ HPcts.X=OK IQp/:

(25)

Proof
This will follow from the Beilinson fiber square. By Zariski descent of all terms
in the formal scheme X, we can assume that X D Spf.R/ for R a formally
smooth, p-complete OK -algebra. First, HH.OK IZp/ ' HH.OK=W.k/IZp/. Since
LOK=W.k/ is quasi-isogenous to zero, we find that the map HH.OK IQp/ ! K

given by truncation is an equivalence. We thus conclude (via Hochschild–Kostant–
Rosenberg) that HHcts.RIQp/ ! HHcts.R=OK IQp/ is an equivalence, whence
HC.RIQp/! HC.R=OK IQp/ is an equivalence, too, by taking S1-coinvariants.
Here we use that p-adic completion commutes with taking S1-coinvariants on con-
nective spectra, since taking S1-coinvariants behaves as a finite colimit in any ranges
of degrees. Therefore, the diagram

HC�.RIQp/ HP.RIQp/

HC�.R=OK IQp/ HP.R=OK IQp/

is homotopy Cartesian. Combining with the Beilinson fiber square, the result now
follows.

Construction 4.11 (The p-adic Chern character map)
Since X=OK is smooth, we obtain from Hochschild–Kostant–Rosenberg-type filtra-
tions (as in [1], using Adams operations as in [12, Section 9.4] to split the filtration)
natural decompositions
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HPcts.X=OK IQp/'
Y
i2Z

R�dR.XK=K/Œ2i �

and

HC�;cts.X=OK IQp/'
Y
i2Z

Fil�iR�dR.XK=K/Œ2i �:

It follows that we obtain from (25) a natural map

K.XkIQp/! TC.XkIQp/!
Y
i2Z

R�dR.XK=K/Œ2i � (26)

for every smooth p-adic formal scheme X! Spf.OK/. We observe that both the
source and target actually depend only on the special fiber Xk of X, thanks to Con-
struction 4.7. Furthermore, to construct (26), it suffices to work with affine formal
schemes over OK , by Zariski descent of the target, so we can assume that XD Spf.R/
for R a formally smooth OK -algebra. That is, we have a natural map TC.R ˝OK

kIQp/!
Q
i2Z.R�crys.Spec.R˝OK k/IQp/˝K0 K/Œ2i �.

Consider the functors on smooth k-algebras

A 7! TC.AIQp/ and A 7!
Y
i2Z

�
R�crys

�
Spec.A/IQp

�
˝K0 K

�
Œ2i �: (27)

The left Kan extension of TC.�IQp/ to almost finitely presented objects of SCRk (as
in Definition B.5) is TC.�IQp/ again, since this functor commutes with geometric
realizations in SCRk . By Theorem 3.4, TC.�IQp/D TC.�0.�/IQp/ on SCRk , so
hypotheses (1) and (2) of Corollary B.6 are satisfied when applied to the left Kan
extensions of the functors (27) on smooth k-algebras (and Zariski sheafifying again).
It follows that (26) actually upgrades to a natural transformation of functors in the
special fiber alone. That is, for every smooth k-scheme Z, we obtain a natural map

K.ZIQp/
tr
�! TC.ZIQp/!

Y
i2Z

�
R�crys.ZIQp/˝K0 K

�
Œ2i �; (28)

such that (26) is obtained by taking Z DXk .

Next, we identify (up to scaling factors) the map (28) on �0 with the crystalline
Chern character.

PROPOSITION 4.12
There exists a scalar � 2 K� such that for every smooth separated k-scheme Z,
the map K0.ZIQp/!

Q
i�0H

2i
crys.ZIQp/˝K0 K of (28) is given by the crystalline

Chern character composed with the automorphism that multiplies the i th factor by
�i .
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Proof
It suffices (by the resolution property) to evaluate (28) on the class of a vector bundle
on Z, and for this we will reduce to the universal case. For this it will be convenient
to extend to stacks over k as well. Given a smooth scheme or stack Z over k, let
Vectn.Z/ denote the groupoid of n-dimensional vector bundles on Z. It follows that
we obtain from (28) a natural transformation (of spaces) for all smooth k-schemes Z,

fn W Vectn.Z/!�1
�Y
i2Z

�
R�crys.ZIQp/˝K0 K

�
Œ2i �

�
;

such that the ¹fnº are additive and multiplicative.
Both the source and target of the fn are sheaves of spaces for the smooth or étale

topology on smooth k-schemes. Sheafifying for the smooth topology, we obtain such
a natural transformation for any smooth Artin stack, which still satisfies the additivity
and multiplicativity properties. By naturality, it suffices to show that for Z D BGLn
and for E the tautological n-dimensional vector bundle, fn.E/ is given by (up to
scalars) the crystalline Chern character of E . It follows that for each n, fn.E/ is given
by a power series (with K coefficients) in the crystalline Chern classes of E , since
R�crys.BGLnIQp/ (defined via sheafification) is the polynomial ring K0Œc1; : : : ; cn�,
for example, as in the calculations of de Rham and Hodge cohomology of BGLn in
[86]. By additivity, multiplicativity, and the splitting principle to reduce to the case of
line bundles, we find easily that fn must be the Chern character up to normalization
by powers of some constant �. Moreover, � ¤ 0 by comparison with the left-hand
side of (25).

Proof of Theorem 4.9
We use the fiber square of (25). As before, we have identifications HPcts.X=OK I

Qp/ '
Q
i2ZR�dR.XK=K/Œ2i � and HC�;cts.X=OK IQp/ '

Q
i2Z Fil�iR�dR.XK=

K/Œ2i �. Using the crystalline–to–de Rham comparison (Construction 4.7) and Propo-
sition 4.12, we see that the map

K0.XkIQp/!
Y
i2Z

H 2i
dR.XK=K/'

Y
i2Z

H 2i
crys.Xk IQp/˝K0 K

is given up to scalar factors by the crystalline Chern character. The result now follows
from Proposition 4.10.

4.2. Generalization of Beilinson’s obstruction and proof of Theorem E
Let K , OK , k be as in the preceding subsection. Consider a proper scheme X !
Spec.OK/ with smooth generic fiber XK and possibly singular special fiber Xk . In
[8], Beilinson considers more generally the deformation problem for classes in higher
K-theory, and proves the following.
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THEOREM 4.13 (Beilinson [8])
Given x 2 Ki .Xk/Q, there is a natural obstruction class in

L
r�0H

2r�i
dR .XK=K/=

FilrH 2r�i
dR .XK=K/ which vanishes if and only if x lifts to .lim

 �
Ki .X=�n//Q. More

precisely, there is a natural equivalence of spectra

cofib
�
Kcts.X IQp/!K.XkIQp/

�
'
M
r�0

R�dR.XK=K/=Fil�rR�dR.XK=K/Œ2r�:

In particular, Theorem 4.13 applies for i D 0 and overlaps with the results of [17],
although it does not identify the obstruction class with the crystalline Chern charac-
ter. In this subsection, we observe that Theorem 4.13 can be extended to essentially
arbitrary formal schemes, using comparisons between cyclic and de Rham cohomol-
ogy as in [1]. This argument will not essentially rely on having a fiber square as in
Theorem A (versus a fiber sequence), and could be deduced from the results of [8].

THEOREM 4.14
Let X be a qcqs p-adic formal scheme with bounded p-power torsion. Given i 2 Z
and a class x 2Ki .X1IQ/ there is a natural class

c.x/ 2
M
r�0

H 2r�i .L�X=L�
�r
X
/Qp

with the property that x lifts to Kcts
i .XIQ/ if and only if c.x/ D 0. More precisely,

there is a natural equivalence of spectra

cofib
�
Kcts.XIQ/!K.X1IQ/

�
'
M
r�0

�
L�X=L�

�r
X
Œ2r�

�
Qp
: (29)

Proof of Theorem 4.14
It clearly suffices to exhibit the natural equivalence (29), and for this we may assume
that X D Spf.R/ is affine, since all terms satisfy Zariski descent. Now we have
seen that the cofiber in (29) can be identified with the cofiber of TC.RIQp/!
TC.R=pIQp/ or, equivalently, with HC.RIQp/Œ2� by Theorem 2.20. We invoke the
result of [1] which constructs on HC.RIZp/Œ2� a natural exhaustive decreasing filtra-
tion Fil�?HC.RIZp/Œ2� with graded pieces

grnHC.RIZp/Œ2�'L�R=L�
�n
R Œ2n�;

where, as before, L�R is the p-adic derived de Rham cohomology of R and L��?R
is the Hodge filtration on the derived de Rham cohomology (see specifically the proof
of [1, Corollary 4.11]).10 It follows that on HC.RIQp/Œ2� there is a natural exhaustive

10The work of [1] was essentially motivated by that of [12], which, among many other things, established such
filtrations for quasisyntomic rings by descent.
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decreasing filtration Fil�?HC.RIQp/Œ2� with graded pieces

grnHC.RIQp/Œ2�' .L�R=L�
�n
R /Qp Œ2n�:

An argument as in [12, Section 9.4] can be used to show that there is an action of
Adams operations on HC.RIZp/Œ2� where � 2 Z�p acts via �n on grnHC.RIZp/. In
particular, these split HC.RIQp/Œ2� into eigenspaces so that there is a natural decom-
position

HC.RIQp/Œ2�'
M
n

.L�R=L�
�n
R /Qp Œ2n�:

The result now follows from the Beilinson fiber sequence.

Remark 4.15 (Changing the base ring)
In the above work, Zp was used as the base for cyclic and de Rham cohomology, but

often this is not essential. Suppose now that A is a commutative Z-algebra with L̂A=Z
quasi-isogenous to zero. Then it is not difficult to see that, for formal schemes over A,
we can replace all occurrences of derived de Rham cohomology relative to Zp with
such occurrences relative to A.

5. The motivic filtration on TC
In this section (which will not use the Beilinson fiber square), we prove some gen-
eral structural results on topological cyclic homology TC (in particular, Theorem G
from the introduction) and on the “motivic” filtration constructed by Bhatt–Morrow–
Scholze [12].

Recall that, according to [12], for R a quasisyntomic ring (see Definition 5.4
below for a review), TC.RIZp/ admits a complete descending Z�0-indexed fil-
tration Fil�?TC.RIZp/ with associated graded terms given as griTC.RIZp/ '
Zp.i/.R/Œ2i �. In this section, we will prove some structural properties of this filtra-
tion. Our main results are as follows.

THEOREM 5.1 (Connectivity properties)

(1) Let R 2 QSyn be a quasisyntomic ring. Then Zp.i/.R/ 2D�iC1.Zp/. Con-
sequently, we have Fil�iTC.RIZp/ 2 Sp�i�1.

(2) The functors R 7! Zp.i/.R/ and R 7! Fil�iTC.RIZp/ are left Kan extended
from finitely generated p-complete polynomial Zp-algebras.

Part (2) was indicated to us by Scholze. In view of it, we can extend the construc-
tion of the Zp.i/ to all (p-complete) rings.
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THEOREM 5.2 (Rigidity)
Let .R; I / be a Henselian pair, where R and R=I are p-complete. Then

fib
�
Zp.i/.R/! Zp.i/.R=I /

�
2D�i .Zp/:

In particular, using the known description in characteristic p, we obtain that for
any R there is a complete description of the top cohomology H iC1.Fp.i/.R// and
that this vanishes étale locally.

5.1. Review of [12]
Here we recall some of the major results and techniques of [12]. We recall first
the quasisyntomic site QSyn (a non-Noetherian version of the syntomic site used
by Fontaine–Messing [31]) and the subcategory QRSPerfd 
 QSyn of quasiregular
semiperfectoid rings.

Definition 5.3 (p-complete (faithful) flatness and Tor-amplitude; [12, Definition 4.1])
Let R be a commutative ring. An R-module M is called p-completely flat (resp., p-
completely faithfully flat) if M ˝L

R .R=p/ 2 D.R=p/ is a flat (resp., faithfully
flat) R=p-module concentrated in degree 0. Similarly, an object N 2 D.R/ has
p-complete Tor-amplitude in Œa; b� if N ˝L

R R=p 2 D.R=p/ has Tor-amplitude in
Œa; b�.

Definition 5.4 (The quasisyntomic site; cf. [12, Section 4])

(1) A commutative ringR is called quasisyntomic if it is p-complete, has bounded
p-power torsion, and LR=Zp has p-complete Tor-amplitude in Œ�1; 0� (index-
ing conventions for the derived category are cohomological). We let QSyn be
the category of quasisyntomic rings, with all ring homomorphisms.

(2) The category QSyn (or, more precisely, its opposite) acquires the structure of
a site as follows: a map A!B in QSyn is a cover if A!B is p-completely
faithfully flat and if LB=A 2D.B/ has p-complete Tor-amplitude in Œ�1; 0�.
We call a map with all of the above properties, except that A! B only
assumed p-completely flat (rather than p-completely faithfully flat), a qua-
sisyntomic map.

(3) An object R 2 QSyn is quasiregular semiperfectoid if R admits a map from
a perfectoid ring and the Frobenius on R=p is surjective. We let QRSPerfd

QSyn be the full subcategory spanned by quasiregular semiperfectoid rings. If
R is additionally an Fp-algebra, then R is called quasiregular semiperfect.
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For future reference, we will also need the relative versions qSynA and QSynA
of the quasisyntomic sites (of which the first is considered in [12]).

Definition 5.5 (Relative quasisyntomic sites; cf. [12, Section 4.5])
Fix a quasisyntomic ring A 2 QSyn. We define the sites qSynA and QSynA as fol-
lows.
(1) We let QSynA denote the category of A-algebras B which are quasisyn-

tomic as underlying rings and such that LB=A 2D.B/ has p-complete Tor-
amplitude in Œ�1; 0�. We let qSynA 
QSynA be the full subcategory spanned
by the quasisyntomic A-algebras (i.e., those B such that B is additionally p-
completely flat over A).

(2) We make QSynA and qSynA into sites by declaring a cover to be a map which
is a cover in QSyn.

(3) We let QRSPerfdA (resp., qrsPerfdA) denote the subcategory of QSynA
(resp., qSynA) spanned by A-algebras whose underlying ring is quasiregu-
lar semiperfectoid. Note that if B 2 QRSPerfdA, then the p-completion of
LB=AŒ�1� is a p-completely flat, discrete B-module by [12, Lemma 4.7(1)].

Note that in the case A D Zp , qSynZp
is the category of p-torsion-free qua-

sisyntomic rings and QSynZp
D QSyn. For AD Fp , QSynFp

and qSynFp are both
simply the subcategory of QSyn spanned by those quasisyntomic rings which are
Fp-algebras (see [12, Lemma 4.34]); more generally, QSynA is the category of A-
algebras which are quasisyntomic for any perfectoid ring A.

The site QSyn has a basis given by QRSPerfd, and similarly in the relative cases.
All the functors below will be sheaves on QSyn; to describe them, it therefore suffices
to describe them as sheaves on QRSPerfd (see [12, Proposition 4.31]).

We now review the prismatic sheaves on QSyn, constructed via topological
Hochschild and cyclic homology. A purely algebraic construction via the prismatic
cohomology of Bhatt–Scholze is given in [15] (at least for algebras over a base
perfectoid ring), which also produces objects before Nygaard completion.

Definition 5.6 (Prismatic sheaves on QSyn; [12, Section 7])
The objects b�R¹iº and N �nb�R define sheaves on QSyn with values in D.Zp/�0.
Each of these sheaves is constructed via descent (see [12, Proposition 4.31]) from
QRSPerfd 
 QSyn, on which they take discrete values defined via topological
Hochschild homology.
(1) For R 2 QRSPerfd, THH.RIZp/ is concentrated in even degrees, so the

homotopy fixed point and Tate spectral sequences for TC�.RIZp/ and
TP.RIZp/ degenerate and TP.RIZp/ is 2-periodic. For R 2 QRSPerfd, we
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have

b�R D �0�TC�.RIZp/
�
D �0

�
TP.RIZp/

�
: (30)

(2) For R 2 QRSPerfd and n 2 Z, the ideal N �nb�R 
 b�R is the one defined by
the homotopy fixed point spectral sequence; that is,

N �nb�R D im
�
�0
��
��2nTHH.RIZp/

�hS1�
! �0

�
THH.RIZp/

hS1
��
: (31)

(3) For i 2 Z we further have the invertible b�-modules (as sheaves on QSyn)b�¹iº, called Breuil–Kisin twists. For R 2QRSPerfd,

b�R¹iº D �2i�TP.RIZp/
�
; (32)

and by 2-periodicity b�R¹iº D b�R¹1º˝i . We have a natural isomorphism

N �ib�R¹iº ' �2i�TC�.RIZp/
�
: (33)

More generally, N �nCib�R¹iº is the image of the injection

�2i
��
��2nC2iTHH.RIZp/

�hS1�
! �2i

��
THH.RIZp/

�hS1�
for n 2 Z:

(4) There are two maps of sheaves on QSyn,

can; 'i W N
�ib�R¹iº⇒ b�R¹iº (34)

arising from the canonical and Frobenius maps TC�.RIZp/⇒ TP.RIZp/; in
particular, we obtain an endomorphism ' D '0 W b�R! b�R.

(5) Finally, the map TC�.RIZp/! R yields a projection map aR W b�R ! R,
a surjection with kernel N �1b�R 
 b�R.

Example 5.7 (Perfectoid rings; [12, Section 6])
Let R0 be a perfectoid ring. In this case, we have Fontaine’s ring Ainf.R0/DW.R

[
0/

and the surjective map � W Ainf.R0/! R0, whose kernel is a principal ideal gener-
ated by a non-zero-divisor 	 2Ainf.R0/; � is the universal pro-nilpotent, p-complete
thickening of R0. We have a canonical isomorphism b�R0 ' Ainf.R0/ such that the
projection map aR W b�R0 ! R0 is � . There are also noncanonical isomorphismsb�R0¹iº ' Ainf.R0/ for each i . The map ' D '0 W b�R0 ! b�R0 is given by the Witt
vector Frobenius on Ainf.R0/. The Nygaard filtration on b�R D Ainf.R0/ is the 	-
adic filtration. The map 'i is injective (and '0-semilinear), and its image is given by
.e	�min.i;0// fore	 D '.	/.
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Definition 5.8 (The sheaves Zp.i/)
For i � 0, the sheaf Zp.i/ is defined as the homotopy equalizer of can, 'i , that is, via

Zp.i/' fib
�
N �ib�R¹iº can�'i

����! b�R¹iº�:
Consequently, since TC is itself a homotopy equalizer, we also have for R 2
QRSPerfd,

Zp.i/.R/D
�
�Œ2i�1;2i�TC.RIZp/

�
Œ�2i�: (35)

We also define quasisyntomic sheaves Fp.i/ and Qp.i/ by reducing Zp.i/ modulo p
or inverting p on Zp.i/, respectively.

Using the result [12, Section 3] that TC defines a sheaf for the fpqc topology on
rings, one sheafifies the Postnikov filtration and obtains the following fundamental
result.

THEOREM 5.9 (“Motivic filtrations”; [12, Theorem 1.12])
Let R 2 QSyn. Then THH.RIZp/, TC�.RIZp/, TP.RIZp/, and TC.RIZp/ nat-
urally upgrade to filtered spectra with complete, multiplicative descending filtra-
tions Fil�?THH.RIZp/, Fil�?TC�.RIZp/, Fil�?TP.RIZp/, and Fil�?TC.RIZp/,
indexed by Z�0, Z, Z, and Z�0, respectively, such that the associated graded pieces
are given by:

(1) griTHH.RIZp/ ' N ib�R¹iºŒ2i � def
D .N �ib�R¹iº=N �iC1b�R¹iº/Œ2i � for all

i � 0; moreover, in this case the Breuil–Kisin twists can be trivialized, so also
griTHH.RIZp/'N ib�RŒ2i �.

(2) griTC�.RIZp/DN �ib�R¹iºŒ2i � for all i 2 Z.
(3) griTP.RIZp/D b�R¹iºŒ2i � for all i 2 Z.
(4) griTC.RIZp/D Zp.i/.R/Œ2i � for all i � 0.

Remark 5.10 (Comparison with K-theory)
Recall that for p-adic rings, TC and p-adic étale K-theory agree in nonnegative
degrees. Compare [34] for smooth algebras in characteristic p, and [23] and [22]
for smooth algebras in general. One may thus expect the filtration of Theorem 5.9
to be the étale sheafification of the filtration on algebraic K-theory with associated
graded motivic cohomology (cf. [32], [58] for smooth schemes over fields). In par-
ticular, one expects the Zp.i/ to be some form of p-adic étale motivic cohomology.
This is essentially understood in equal characteristic (already by [12]), as we review
below, but has not yet appeared in mixed characteristic. In mixed characteristic and
under finiteness assumptions (e.g., smooth schemes over a discrete valuation ring),
many authors have studied étale motivic cohomology [33] and similar “p-adic étale
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Tate twists” (e.g., those of [31], [80], [81]), though the construction is very different
from that of [12]; one ultimately hopes to compare all of them, and we will at least
offer some information in this and the next section.

We review the discreteness property of the Zp.i/. By construction, the objects
N �ib�R¹iº are sheaves on QSyn with values in D.Zp/�0 (recall from [65, Corol-
lary 2.1.2.3] that such sheaves form the coconnective part of the derived1-category
of the category of abelian sheaves on QSyn); as objects of this category, they are in
fact discrete, since they take discrete values on the basis QRSPerfd. A deep result of
Bhatt–Scholze (conjectured in [12] and proved in the characteristic p case there) is
that this discreteness also holds for the Zp.i/, although they in general take values in
cohomological degrees Œ0; 1� for rings in QRSPerfd.

THEOREM 5.11 (Bhatt–Scholze [15, Theorem 14.1])
The D.Zp/�0-valued sheaf Zp.i/ on QSyn is discrete and torsion-free. More pre-
cisely, given R 2 QSyn, there is a cover R! R0 in QSyn such that Zp.i/.R0/ is
discrete and torsion-free.

Finally, we review the prism structure on b�R, for R quasiregular semiperfectoid.
For simplicity, we will assume R to be p-torsion-free.

PROPOSITION 5.12
Let R 2 qrsPerfdZp . Suppose that R is an algebra over the perfectoid ring R0, with

notation as in Example 5.7. Then TP.RIZp/=e	 ' THH.RIZp/tCp , and this is con-
centrated in even degrees and p-torsion-free.

Proof
We have that

TP.RIZp/=	 'HP.R=R0IZp/

by [12, Theorem 6.7]. Since R is p-torsion-free and quasiregular semiperfectoid,
we find that HP.R=R0IZp/ is concentrated in even degrees and is p-torsion-free,
where it is given by Hodge-complete p-adic derived de Rham cohomology by [12,
Proposition 5.15]. In particular, it follows that .	;p/ defines a regular sequence onb�R. Since b�R is complete with respect to this ideal, it follows that .p; 	/ is a regular
sequence; since 	p �e	.mod p/, we get that .p;e	/ is a regular sequence, and hence so
is .e	;p/. Now, the equivalence TP.RIZp/=e	 ' THH.RIZp/tCp is [12, Proposition
6.4], from which the remainder now follows.
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Construction 5.13 (The prismatic structure on b�R; cf. [15, Section 13])
Let R 2 qrsPerfdZp . Suppose that R is an algebra over the perfectoid ring R0. Then

the ring b�R D �0.TP.RIZp// has the structure of a prism (in the sense of [15]).
(1) We have the endomorphism ' D '0, which is congruent to the Frobenius mod-

ulo p, by [15, Section 13], and thus defines a ı-structure on b�R by p-torsion-
freeness.

(2) We have the ideal I 
 b�R given by I D .e	/; I is the kernel of �0.TP.RI
Zp//! �0.THH.RIZp/tCp / and therefore does not depend on the choice of
R0.

Finally, there is a natural map


R W R! b�R=I;
given via the cyclotomic Frobenius THH.RIZp/! THH.RIZp/tCp D TP.RIZp/=e	
upon applying �0.

Remark 5.14
In fact, by [15, Theorem 13.1], b�R is the Nygaard completion of the absolute pris-
matic cohomology of R, although we will not need this fact.

5.2. Relative THH and its filtration
In this subsection and the next, we will prove connectivity bounds for the motivic
filtration on THH. We will prove that for anyR 2QSyn, we have Fil�nTHH.RIZp/ 2
Sp�n and N nb�R 2D�n.Z/. It is not difficult to deduce the above connectivity bound
in the case where R is an algebra over a fixed perfectoid ring, using methods as in
[12, Sections 6–7] (see, in particular, [12, Construction 7.4]. To verify the connectivity
bound in the general case, we will use additionally a fiber sequence which arises from
the work of Krause–Nikolaus [55], which gives a comparison between relative and
absolute THH.

Let OK denote a complete discrete valuation ring of mixed characteristic .0;p/
with perfect residue field k, and let � 2 OK be a uniformizer. The primary case of
interest is OK D Zp and � D p.

Construction 5.15 (Relative topological Hochschild homology)
Let R 2 QSynOK . We consider the E1-ring SŒz� and we consider R as an SŒz�-
algebra via z 7! � . Using this, we can form the relative topological Hochschild
homology (with p-adic coefficients) THH.R=SŒz�IZp/. The construction R 7!

THH.R=SŒz�IZp/ defines a sheaf of spectra on QSynOK , thanks to [12, Section 3]
(which gives that R 7! HH.R=OK IZp/ is a sheaf) and (37) below. We observe the
following two comparisons for relative THH.
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(1) When we base-change along the map SŒz�! S where z 7! 0, we find that

THH
�
R=SŒz�IZp

�
˝OK k ' THH.R˝LOK kIZp/: (36)

(2) We have an equivalence

THH
�
R=SŒz�IZp

�
˝THH.OK=SŒz�IZp/ OK 'HH.R=OK IZp/: (37)

Thus, THH.R=SŒz�IZp/ is a deformation of Hochschild homology relative to
OK .

Next, we need an analogue of the Hochschild–Kostant–Rosenberg theorem for
relative THH (in the absolute case for algebras over a perfectoid ring; this is [44,
Theorem B] and [12, Corollary 6.9]).

PROPOSITION 5.16
Let R be a formally smooth OK -algebra. Then we have a natural isomorphism of
graded rings

THH�
�
R=SŒz�IZp

�
' �̂�

R=OK
Œ��; j� j D 2;

where �̂�
R=OK

denotes the p-completion of the de Rham complex of R over OK .

Proof
In the case R D OK , this follows from Bökstedt’s calculation of THH.Fp/ (cf. [12,
Proposition 11.10], [2, Theorem 3.5], or [55, Theorem 3.1]). Now (37) shows that
THH.R=SŒz�IZp/=� ' HH.R=OK IZp/, and the Hochschild–Kostant–Rosenberg

theorem yields HH�.R=OK IZp/ ' �̂�
R=OK

. It remains to show that the induced
Bockstein spectral sequence for THH.R=SŒz�IZp/ (with respect to taking the
cofiber of � ) degenerates, or, equivalently, that the map of the HKR isomorphism
lifts to a map �̂�

R=OK
! THH�.R=SŒz�IZp/. Indeed, since THH.R=SŒz�IZp/

is an E1-algebra with an S1-action receiving a map from THH.OK=SŒz�IZp/,
we obtain the structure of a commutative differential graded algebra (CDGA) on
THH�.R=SŒz�IZp/, and it receives a map (of CDGAs) from OK Œ�� with trivial dif-
ferential. The universal property of the de Rham complex now produces the desired
map �̂�

R=OK
! THH.R=SŒz�IZp/.

Left-Kan-extending from finitely generated p-complete polynomial OK -alge-
bras, we obtain the following result, which is proved exactly as in [12, Proposi-
tion 7.5]; the key point is that any R 2 QRSPerfdOK has the property that the p-
completion of LR=OK is the shift of a p-completely flat R-module.
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COROLLARY 5.17
If R 2 QRSPerfdOK , then THH.R=SŒz�IZp/ is concentrated in even degrees, and
each �2nTHH.R=SŒz�IZp/ is a p-completely flat R-module. Furthermore, the R-
module �2nTHH.R=SŒz�IZp/ admits a natural finite increasing filtration with graded

pieces the (discrete and p-completely flat) R-modules ̂
.
Vj

LR=OK /Œ�j � for j � n,

where ̂Vj
LR=OK denotes the p-completion of

Vj
LR=OK .

Construction 5.18 (The filtration on relative THH)
Let R 2 QSynOK . In [12, Section 11], a multiplicative, convergent Z�0-indexed
filtration Fil�?THH.R=SŒz�IZp/ on THH.R=SŒz�IZp/ in sheaves of spectra on
QSynOK is defined.11 This filtration is defined such that it restricts to the double-
speed Postnikov filtration for R 2QRSPerfdOK ; that is, Fil�nTHH.R=SŒz�IZp/D
��2nTHH.R=SŒz�IZp/ for such R. By Corollary 5.17 and [12, Theorem 3.1],
the associated graded pieces of the Postnikov filtration on THH.�=SŒz�IZp/ on
QRSPerfdOK are sheaves; thus, one unfolds and obtains the filtration for all
R 2QSynOK .

COROLLARY 5.19
Let R 2QSynOK . Then grnTHH.R=SŒz�IZp/ admits a natural finite increasing fil-

tration with associated graded . ̂Vj
LR=OK /Œ2n � j � for j � n. In particular, we

find that grnTHH.R=SŒz�IZp/ 2 Sp�n and Fil�nTHH.R=SŒz�IZp/ 2 Sp�n. Further-
more, the constructions

R 7! grnTHH
�
R=SŒz�IZp

�
and R 7! Fil�nTHH

�
R=SŒz�IZp

�
(as functors on QSynOK to p-complete spectra) are left Kan extended from finitely
generated p-complete polynomial OK -algebras.

Proof
The first assertion follows from Corollary 5.17 by unfolding; the connectivity asser-
tions then follow in turn. Since the cotangent complex and its wedge powers are left
Kan extended from finitely generated polynomial algebras, the last assertion follows,
too.

5.3. Preliminary connectivity bounds
We use the spectral sequence of Krause–Nikolaus [55] to obtain a relationship
between the relative and absolute THH.

11Actually, in [12, Section 11], the filtration is defined only on those objects which are flat over OK , but the
arguments do not require this.
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PROPOSITION 5.20 (Relative versus absolute THH)
If R 2QRSPerfdOK , then there exist natural surjective maps fn W �2nTHH.R=SŒz�I
Zp/ ! �2n�2THH.R=SŒz�IZp/ and natural isomorphisms �2nTHH.RIZp/ '
ker.fn/.

Proof
Recall that both THH.RIZp/ and THH.R=SŒz�IZp/ are concentrated in even degrees
since R 2QRSPerfdOK (see [12, Theorem 7.1] and Corollary 5.17). Therefore, the
result follows directly from [55, Proposition 4.1]; the spectral sequence of [55, Propo-
sition 4.1] must degenerate after the first differential, and the maps of the first differ-
ential must be surjective or one would have odd degree contributions to THH.RIZp/.

The following fiber sequence (38) will be the basic tool in obtaining connectivity
bounds on the filtration on THH and its variants.

COROLLARY 5.21 (Connectivity of the filtration on THH)
If R 2QSynOK , then for each n there is a natural fiber sequence

grnTHH.RIZp/! grnTHH
�
R=SŒz�IZp

�
! grn�1THH

�
R=SŒz�IZp

�
Œ2�: (38)

In particular, we have grnTHH.RIZp/, Fil�nTHH.RIZp/ 2 Sp�n for any R 2
QSynOK . Finally, the functors R 7! grnTHH.RIZp/ and R 7! Fil�nTHH.RIZp/
on QSyn are left Kan extended from finitely generated p-complete polynomial Zp-
algebras, as functors to p-complete spectra.

Proof
The fiber sequence follows from Proposition 5.20 by unfolding in R. The connectiv-
ity assertion for grnTHH.RIZp/ then follows from Corollary 5.19; the assertion for
Fil�nTHH.RIZp/ then follows since the filtration is complete. The Kan extension
assertion for Fil�nTHH.RIZp/ also follows from the one for Fil�nTHH.R=SŒz�IZp/
as in Corollary 5.19 (taking OK D Zp).

COROLLARY 5.22 (Connectivity bounds for N ib�R)

(1) If R 2QSyn, then N nb�R 2D�n.Zp/.
(2) If R ! R0 is a surjective map in QSyn, then fib.N nb�R ! N nb�R0/ 2

D�n.Zp/.

Proof
Part (1) is a special case of Corollary 5.21 (take OK D Zp and � D p).
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For part (2), note that the hypothesis implies that R! R0 induces a surjection
on H 0 of p-completed cotangent complexes over Zp , and similarly on any wedge
power. It then follows from Corollary 5.19 that fib.grnTHH.R=SŒz�IZp/Œ�2n�!
grnTHH.R0=SŒz�IZp/Œ�2n�/ 2D�n.Zp/, whence we conclude by (38).

Our main general connectivity bound is Proposition 5.25 below. To formulate
it, we need to be able to twist the ideal I 
 b�R from Construction 5.13. First, we
observe that this ideal is also trivialized after a base change along aR.

LEMMA 5.23
Let R 2 qrsPerfdZp , and let I 
 b�R denote the ideal defining the prism structure.
Then there is a natural isomorphism I ˝b�R R ' R; that is, the ideal is naturally

trivialized after a base change along aR W b�R!R.

Proof
Observe that the base change I ˝b�R R defines a functorial choice of invertible
R-module, for any R 2 qrsPerfdZp . By faithfully flat descent, we obtain for any
R 2 qSynZp a choice of invertible R-module, which is functorial in R. Choosing
a trivialization over RD Zp , we obtain a functorial trivialization everywhere.

Definition 5.24 (Twisting by I )
For s; i; n � 0, we let R 7! I sN �nb�R¹iº denote the D.Zp/�0-valued sheaf
on qSynZp

defined by unfolding the discrete sheaf on qrsPerfdZp defined by

the aforementioned formula, for I 
 b�R the ideal defining the prismatic struc-
ture. For R 2 qrsPerfdZp , since I defines a Cartier divisor in b�R, we have

I sN �nb�R¹iº ' I s ˝b�R N �nb�R¹iº.
PROPOSITION 5.25 (Connectivity of Nygaard quotients)
Let R 2 qSynZp

and i; n; s � 0. Then the cofiber I sb�R¹iº=I sN �nb�R¹iº belongs
to D�n�1.Zp/. Moreover, this cofiber is left Kan extended from finitely generated
p-complete polynomial Zp-algebras.

Proof
By dévissage it suffices to show that I sN nb�R¹iº 2D�n.R/ for each n� 0 and that
this is left Kan extended from finitely generated p-complete polynomial Zp-algebras.
Here we write I sN nb�R¹iº for the unfolding from qrsPerfdZp of I s˝b�R N nb�R¹iº.
However, the twists here are trivialized by Lemma 5.23 since N nb�R is anR-module,
so that I sN nb�R¹iº 'N nb�R. Thus, the result follows from Corollary 5.22 as well
as Corollary 5.21 (for the left Kan extension assertion).
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We finish this subsection by recording a connectivity bound that depends on the
number of generators of the cotangent complex (we will not use this result in the
paper, but we note that it implies in particular that b�OK 2D

�1.Zp/).

LEMMA 5.26
Let R be a commutative ring, and let M 2D�0.R/. Suppose that H 0.M/ is gener-
ated by d elements. Then for all j , .

Vj
M/Œ�j � 2D�d .R/.

Proof
The result is clear if M DRd itself. In general, we have a map Rd !M inducing a
surjection on H 0, so the cofiber F of the map satisfies F 2D.R/��1. It follows thatVj 0

F Œ�j 0� 2 D.R/�0 for all j 0 by standard connectivity estimates (see [65, Sec-
tion 25.2.4] for an account). Using the natural filtration on

Vj
MŒ�j �with associated

graded terms
Vj 0

F Œ�j 0�˝R
Vj�j 0

Rd Œ�.j � j 0/�, the result easily follows.

PROPOSITION 5.27
Let R 2 QSynOK , let n; i � 0, and suppose that H 0.L̂R=OK / is generated by d

elements. Then N nb�R and N �nb�R¹iº lie in D�dC1.R/.

Proof
By Corollary 5.19, grnTHH.R=SŒz�IZp/ has a finite filtration with graded pieces

̂Vj
LR=OK Œ2n � j � for 0 � j � n. By Lemma 5.26, we find that grnTHH.R=SŒz�I

Zp/ 2D�d�2n.R/. Using the fiber sequence (38), we find now that grnTHH.RIZp/ 2
D�d�2nC1.R/. Shifting by 2n the result now follows for N nb�R. The same con-
nectivity bound then follows for each N �nb�R¹iº=N �nCrb�R¹iº by dévissage, and
then for N �nb�R¹iº by passing to the limit.

5.4. Frobenius nilpotence on b�R=p and proof of Theorem 5.1(2)
In this subsection, we record some results about the contracting property of Frobenius
on b�R=p and use it to prove part of Theorem 5.1. If R 2 qrsPerfdZp is a p-torsion-

free quasiregular semiperfectoid ring, then both b�R and all graded steps N nb�R of
the Nygaard filtration are p-torsion-free (e.g., because THH�.RIZp/ is p-torsion-
free and concentrated in even degrees). For i; r � 0, we will consider the maps

can; 'i W N
�iCrb�R¹iº=p! b�R¹iº=p: (39)

and show that both maps respect the I -adic filtration from Definition 5.24, with
'i inducing the zero map on associated graded pieces in positive degrees (Propo-
sition 5.30). We will show in addition that can � 'i induces an automorphism of
N �iCrb�R¹iº=p for r	 0 (Corollary 5.31).
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PROPOSITION 5.28
Let R 2 qrsPerfdZp and i; r � 0. Then the map 'i W N �ib�R¹iº ! b�R¹iº carries

N �iCrb�R¹iº into I rb�R¹iº.
Proof
Let R0 be a perfectoid ring mapping to R, and fix 	;e	 2 Ainf.R0/ as usual. Then by
[12, Section 6] we have an isomorphism TC�� .R0IZp/'Ainf.R0/Œu; v�=.uv� 	/ for
juj D 2, jvj D �2. In this case, the filtration on N �ib�R¹nº ' �2i .TC�.RIZp// is
the filtration by powers of v:

N �iCrb�R¹iº D vr�2iC2rTC�.RIZp/
 �2iTC�.RIZp/:

But (as in [12, Section 6]) the cyclotomic Frobenius carries v to a multiple of '.	/De	
in ��2TP.R0IZp/; recalling that I D . Q	/, the result follows.

Construction 5.29 (The I -adic filtrations modulo p)
Let R 2 qrsPerfdZp . For each i; s; r � 0, the map 'i W N �iCrb�R¹iº=p! b�R¹iº=p
is Frobenius semilinear by Construction 5.13(1), and so carries I s.N �iCrb�R¹iº=p/
to IpsCr.b�R¹iº=p/ by Proposition 5.28. But, we have seen in Proposition 5.12 that
.p; Q	/ and . Q	;p/ are regular sequences on b�R, whence the canonical maps are iso-
morphisms I ˝b�R b�R=p' I.b�R=p/' I=p, and similarly for any power of I and

Breuil–Kisin twist of b�R. We thus get maps

can; 'i W I
s ˝b�R N �iCrb�R¹iº=p! I s ˝b�R b�R¹iº=p: (40)

For convenience, we record what we have proved about the interaction of the
Frobenius and the I -adic filtration, as it will be used to prove Proposition 5.35.

PROPOSITION 5.30 (The canonical and Frobenius map are I -adically filtered modulo
p)
LetR 2 qrsPerfdZp , and let i; r � 0. The maps (39) upgrade to the structure of filtered
maps with respect to the I -adic filtrations on both sides; that is, there are compatible
maps for each s � 0,

can; 'i W I
s ˝b�R N �iCrb�R¹iº=p! I s ˝b�R b�R¹iº=p:

Furthermore, the map 'i induces the zero map on associated graded pieces unless
s D r D 0.

Proof
In Construction 5.29 we constructed the maps and showed that in fact 'i has image
in IpsCr ˝b�R b�R¹iº=p.
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For the moment, we need the following consequence of our arguments.

COROLLARY 5.31 (The Nygaard filtrations modulo p)
Let R 2 qrsPerfdZp and i � 0. For r 	 0 (independent of R), the map can �

'i W N �ib�R¹iº=p! b�R¹iº=p carries N �iCrb�R¹iº=p isomorphically onto itself.
Consequently, for such r , one has a natural isomorphism

Fp.i/.R/

' fib
�
can� 'i W�

N �ib�R¹iº=N �iCrb�R¹iº�=p! �b�R¹iº=N �iCrb�R¹iº�=p�: (41)

Proof
This is [12, Lemma 7.22]. By Proposition 5.28 above (and choosing as usual a perfec-
toid ring R0 mapping to R), we find that 'i carries N �iCrb�R¹iº=p (equivalently,
vrN �iCrb�R¹iC rº=p) into multiples ofe	rb�R¹iº=p. Since we are working modulo
p, we have e	rb�R¹iº=p D 	rpb�R¹iº=p 
 N �rpb�R¹iº=p. For r 	 0, this is con-
tained in N �iCrC1b�R¹iº=p, whence we have shown that 'i carries N �iCrb�R¹iº=p
to N �iCrC1b�R¹iº=p.

It follows that can�'i carries N �iCrb�R¹iº=p into itself, and it differs from the
identity by a topologically nilpotent endomorphism of N �iCrb�R¹iº=p with respect
to the Nygaard filtration. Therefore, it is an isomorphism and the result follows.

PROPOSITION 5.32 (A criterion for being left Kan extended)
Let F;G W QSyn!D.Zp/ be p-complete quasisyntomic sheaves equipped with com-
plete descending Z�0-indexed filtrations Fil�?F and Fil�?G. Let F !G be a map
of functors (not necessarily filtration-preserving). If
(1) for R 2 qrsPerfdZp , the objects grrF.R/ and grrG.R/ are discrete, p-

complete, and p-torsion-free (and therefore so are F.R/, G.R/),
(2) each of the associated graded terms grrF and grrG is left Kan extended

from finitely generated p-complete polynomial Zp-algebras to the p-complete
derived category, and

(3) there exists N such that for r � N and for R 2 qrsPerfdZp , the map
F.R/=p ! G.R/=p carries the submodule Fil�rF.R/=p isomorphically
to Fil�rG.R/=p (so that Fil�NF.R/=p! Fil�NG.R/=p is an equivalence
of filtered abelian groups),

then fib.F ! G/ is p-completely left Kan extended from finitely generated p-
complete polynomial Zp-algebras.
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Proof
It suffices to check that fib.F ! G/=p is left Kan extended from finitely generated
p-complete polynomial algebras. Let F 0, G0 denote the functors on QSyn obtained
by restricting F , G to finitely generated p-complete polynomial algebras and then
left Kan extending to QSyn, with their left Kan extended filtrations. Our assump-
tions imply that F , G are the respective completions of F 0, G0 with respect to their
filtrations.

It suffices to check that the natural map induces an equivalence fib.F 0 !
G0/=p' fib.F !G/=p. We claim that for any R 2QSyn, there are natural commu-
tative diagrams, compatible in r �N ,

Fil�rF 0.R/=p
'

Fil�rG0.R/=p

F 0.R/=p G0.R/=p:

(42)

In fact, it suffices to prove this by left Kan extension for R a finitely generated p-
complete polynomial over Zp , and then we can replace F 0, G0 by F , G. By descent
for F , G, we can then reduce to R 2 qrsPerfdZp , whence we have the desired dia-
grams by hypothesis.

Using the diagrams (42), we find that there is a natural commutative diagram

F 0.R/=p G0.R/=p

F.R/=p G.R/=p

which is homotopy Cartesian (taking the inverse limit over r ). We finally find that
fib.F ! G/D fib.F 0! G0/, which is left Kan extended from finitely generated p-
complete polynomial algebras, as desired.

Proof of Theorem 5.1(2)
We show that R 7! Zp.i/.R/, as a functor on QSyn, is left Kan extended from
finitely generated p-complete polynomial Zp-algebras. Since Zp.i/.R/D fib.can�
'i W N �ib�R¹iº ! b�R¹iº/, we will apply Proposition 5.32 with F D N �ib�¹iº,
G D b�¹iº using the Nygaard filtrations R 7! N �iCrb�R¹iº on QSyn. Indeed, the
associated graded terms for the Nygaard filtration are left Kan extended from finitely
generated p-complete polynomial algebras (Proposition 5.25), and they are torsion-
free onR 2 qrsPerfdZp . The last hypothesis follows from Corollary 5.31. Then Propo-



ON THE BEILINSON FIBER SQUARE 3757

sition 5.32 gives that the Zp.i/ are left Kan extended from finitely generated p-
complete polynomial algebras, as desired. SinceR 7! TC.RIZp/ is left Kan extended
from finitely generated p-complete polynomial rings (by [23, Theorem G] and since
TC.�IZp/ commutes with geometric realizations on simplicial commutative rings),
it follows inductively that the constructions R 7! Fil�iTC.RIZp/ are also left Kan
extended from finitely generated p-complete Zp-algebras.

For future reference, we observe that we can obtain a motivic filtration on TC
for any simplicial commutative ring, by left Kan extension. We let SCR denote the
1-category of simplicial commutative rings.

Construction 5.33 (Left-Kan-extending to SCR)
We have seen that the functor which sendsR 2QSyn to the filtration Fil�?TC.RIZp/
is left Kan extended from finitely generated p-complete polynomial algebras. Thus,
we can left Kan extend to all p-complete simplicial commutative rings to obtain
a functor R 7! Fil�?TC.RIZp/, from SCR to p-complete filtered spectra, which
commutes with sifted colimits. We define functors Zp.i/ on SCR as Zp.i/.R/ D

griTC.RIZp/Œ�2i�, or in other words by left Kan extending Zp.i/ from finitely gen-
erated p-complete polynomial algebras.

Once we complete the proof of Theorem 5.1 in the next subsection, it will follow
that Fil�iTC.RIZp/ (resp., Zp.i/) belongs to Sp�i�1 (resp.,D�iC1.Zp/) for each i ,
by left Kan extending the connectivity estimate from the quasisyntomic case.

We also emphasize that the above proof of Theorem 5.1(2) shows the following.
Given i � 0, there is r 	 0 such that for all p-complete rings R there is a natural
expression

Fp.i/.R/

' fib
�
can� 'i W

�
N �ib�R¹iº=N �iCrb�R¹iº�˝LZ Fp

!
�b�R¹iº=N �iCrb�R¹iº�˝LZ Fp

�
; (43)

where the two Nygaard quotients on the right-hand side are defined by left Kan exten-
sion from finitely generated p-complete polynomial algebras.

5.5. Proofs of the connectivity bounds (Theorem 5.1(1)) for the Zp.i/

In this subsection, we complete the proof of Theorem 5.1.

LEMMA 5.34 (Connectivity lemma)
Let can; ' W Fil�?M ! Fil�?N be maps of filtered objects in D.Z/ (with underlying
objects M , N ). Suppose that:
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(1) both filtrations are complete;
(2) ' induces the zero map on associated graded pieces;
(3) there is a fixed r such that, for each s, the induced map can W Fil�sM !

Fil�sN has fiber in D.Z/�r .
Then can� ' W M !N has fiber in D.Z/�r .

Proof
The fiber fib.can� ' W M !N/ acquires the natural structure of a filtered spectrum,
since can, ' are filtered maps. On graded pieces, we find grsfib.can�' W M !N/'

grsfib.can W M !N/ since ' vanishes on associated graded terms. In particular, the
associated graded terms belong to D.Z/�r . Since the filtration on fib.can � '/ is
complete, the connectivity assertion on the fiber now follows from the analogous
assertion on associated graded terms.

PROPOSITION 5.35 (The Zp.i/ connectivity bound for qSynZp )
Let R 2 qSynZp

. Then Zp.i/.R/ 2D�iC1.Zp/ for each i � 0.

Proof
First, we recall from the proof of Proposition 5.25 that the inclusion N �iC1b�R¹iº!
N �ib�R¹iº has cofiber in D�i .Zp/. Using the resulting cofiber sequence, it thus
suffices to show that the fiber of can � 'i W N �iC1b�R¹iº ! b�R¹iº belongs to
D�iC1.Zp/. Since everything is p-complete, it suffices to check this with mod p
coefficients.

We consider the two maps

can; 'i W N
�iC1b�R¹iº=p! b�R¹iº=p:

Unfolding Proposition 5.30 shows that these upgrade to maps can; 'i W I s �
N �iC1b�R¹iº=p ! I sb�R¹iº=p for all s � 0 (i.e., of I -adically filtered objects),
and that the map 'i acts trivially on associated graded pieces. Furthermore, for each
s � 0, the fiber of can W I sN �iC1b�R¹iº=p! I sb�R¹iº=p belongs to D�iC1.Zp/
by Proposition 5.25. Lemma 5.34 (whose hypothesis (1) is satisfied by Q	-adic com-
pleteness in the case of R 2 qrsPerfdZp ) now shows that can� 'i W N �iC1b�R¹iº!b�R¹iº belongs to D�iC1.Zp/, as desired.

Proof of Theorem 5.1(1)
We wish to show that Zp.i/ 2D�iC1.Zp/. But we have already proved part (2) of
Theorem 5.1, so the problem reduces to the case of finitely generated p-completely
polynomial rings over Zp , which is covered by Proposition 5.35.
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5.6. Rigidity and proof of Theorem 5.2
In this subsection, we give a proof of Theorem 5.2. Our strategy is to first prove a
continuity statement, after which Néron–Popescu and left Kan extension arguments
reduce the general case to that of a square-zero extension. In that case, we use the
automatic gradings that exist and argue with the pro-nilpotence of Frobenius. Recall
that a ring R is said to be F-finite if R=p is finitely generated over its subring of
pth-powers. The next result is an analogue on graded pieces of [26, Theorem 4.5].

PROPOSITION 5.36 (Continuity)
Let R be a Noetherian, F-finite, p-complete ring, and let I �R be an ideal such that
R is I -adically complete. Then the natural map Zp.i/.R/! lim

 �s
Zp.i/.R=I s/ is an

equivalence for any i � 0.

Proof
From Definition 5.8 and completeness of the Nygaard filtration, it is enough to prove
the analogous continuity for each N nb�¹iº ' grnTHH.�IZp/Œ�2n�. Then Corol-
lary 5.21 reduces us further to continuity for each grnTHH.�=SŒz�IZp/, and finally

the filtration of Corollary 5.19 reduces the problem to continuity for each ̂Vn
L�=Zp .

A cell attachment lemma of André and Quillen (see [69, Theorem 4.4(i)] for a
presentation in this context) shows that all cohomology groups of all wedge pow-
ers of L.R=I s/=R are pro zero in s (except H 0 of

V0
L). So the transitivity fiber

sequence shows that
Vn

LR=Zp ˝
L
R R=I

s !
Vn

L.R=I s/=Zp is a pro isomorphism
on all cohomology groups. This reduces the problem to showing that

Vn
LR=Zp !

lim
 �s

Vn
LR=Zp ˝

L
R R=I

s is an equivalence after p-adic completion. Since R has
bounded p-power torsion, this derived p-adic completion may be equivalently com-
puted as lim

 �r
.�˝LR R=p

r/. Exchanging the limits, it is enough to show that M '

lim
 �s

M ˝LR R=I
s , where M D

Vn
LR=Zp ˝

L
R R=p

r for any n � 0, r � 1. But this
follows from the facts that R is Noetherian, that M is bounded above (cohomolog-
ically), and that its cohomology groups are finitely generated R-modules (cf. [26,
Theorem 3.6], which uses F -finiteness).

Remark 5.37
As usual, one can prove stronger continuity statements when I D .p/. For exam-
ple, given a p-complete ring R with bounded p-power torsion, we claim that
Zp.i/.R/=pr ! ¹Zp.i/.R=ps/=prºs induces an isomorphism of pro groups on
all cohomology groups for any fixed r � 1. To prove this we reduce to the case
r D 1 and appeal to (43) (instead of the completeness of the Nygaard filtration
used at beginning of the proof of Proposition 5.36) to again reduce to the anal-
ogous assertion for graded pieces of the Nygaard filtration. Then argue as in the
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proof of Proposition 5.36 (the assumption that R has bounded p-power torsion
implies that the ideal .p/ is pro Tor-unital in the sense of [69], which is needed to
verify pro vanishing of

Vn
L.R=ps/=R) to reduce to the analogous statement about

.
Vn

LR=Zp /=p ! ¹.
Vn

LR=Zp /=p ˝
L
R R=p

sºs , which follows from boundedness
of the p-power torsion in R.

PROPOSITION 5.38
Theorem 5.2 holds in the special case of Henselian pairs of the form R D A˚ N ,
I DN , where A is the p-completion of a finitely generated Zp-polynomial algebra,
N is a finitely generated A-module, and R is the trivial square-zero extension of A
by N .

The proof of Proposition 5.38 will be given below. Using Proposition 5.38, we
explain how to deduce Theorem 5.2.

Proof of Theorem 5.2
First, note that it is equivalent to prove that the homotopy fiber of Theorem 5.2 mod
p belongs to D�i .Zp/; that is, we may replace Zp.i/ by Fp.i/D Zp.i/=p.

We consider the functor on Z-algebras, R 7! F.R/
def
D Fp.i/.bRp/ (where ORp

denotes the derived p-completion of R). By Theorem 5.1, the functor F commutes
with filtered colimits in R. It suffices to show that if .R; I / is a Henselian pair, then

fib
�
F.R/! F.R=I /

�
2D�i .Fp/: (44)

First, we prove (44) in case I 
 R is a nilpotent ideal. By transitivity and an
easy induction, it suffices to assume that I 2 D 0. Next we apply a standard trick to
reduce to the case that R! R=I is split: choose a simplicial resolution P�! R=I

by polynomial Z-algebras (possibly in infinitely many variables), and let Q� be the
fiber product along R! R=I . Then each Qj ! Pj has kernel I and admits a sec-
tion, since Pj is a polynomial algebra. Taking the geometric realization using The-
orem 5.1(2), we thus reduce to proving (44) for each pair .Qj D Pj ˚ I; I /. But
we can write Pj as a filtered colimit of polynomial Z-algebras on finitely many vari-
ables and I as a filtered colimit of finitely generated modules. Using Theorem 5.1(2)
again (which shows that F commutes with filtered colimits), and Proposition 5.38,
we conclude (44) for I 
R nilpotent.

Second, we prove (44) in the case where R is Noetherian and F -finite, and R is
I -adically complete. In this case, Proposition 5.36 shows that F.R/' lim

 �
F.R=I n/.

We consider the tower (in n), Tn D fib.F.R=I n/! F.R=I //; the fiber of each
successive map Tn ! Tn�1 belongs to D�i .Fp/, and thus we get that lim

 �n
Tn D

fib.F.R/! F.R=I // 2D�i .Fp/, as desired.
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Finally, suppose that .R; I / is a general Henselian pair; we prove (44). Since
F commutes with filtered colimits, it suffices to assume that the pair .R; I / is the
Henselization of a finitely generated Z-algebra R0 along an ideal I0 
 R0. By the
previous paragraph, we have fib.F. ORI /! F.R=I // 2 D�i .Fp/, since ORI is an
F -finite, Noetherian ring. Now R0 is an excellent ring as a finitely generated Z-
algebra; since R0 ! R is ind-étale, R is also excellent (see [39]). It follows that
R! bRI is geometrically regular (see [42, 7.8.4(v)]) and is therefore a filtered col-
imit of smooth maps by Néron–Popescu desingularization (see [77], [78] [84, Tag
07BW]); each of these maps necessarily admits a section. In particular, the map
fib.F.R/! F.R=I //! fib.F.bRI /! F.R=I // is a filtered colimit of maps, each
of which admits a section. Since we have just seen that the target of this map belongs
to D�i .Fp/, the source does as well.

To complete the proof of Theorem 5.2 by treating the pairs in the statement of
Proposition 5.38, we will exploit the presence of the grading induced by the variables.

Remark 5.39 (THH for graded rings)
In the remainder of this subsection, we will systematically use graded objects indexed
over a commutative monoid M (which will be ZŒ1=p��0 or Z�0): an M -graded
object in a (1-)category C is by definition a functor R? W M ! C . When C is sym-
metric monoidal, then so is the resulting category Fun.M;C/ of M -graded objects,
under the Day convolution product, and an M -graded ring is then a (E1-, etc.)
monoid object in M -graded objects.

The underlying object R of a graded object R? is by definition
L
m2M Rm,

when it exists. When all direct sums exist, the functor R? 7! R is conservative (and
faithful when C is an ordinary category). We will be particularly interested in p-
complete graded rings, by which we mean a graded ring R? in the category of p-
complete abelian groups; the underlying object R is then the p-completed direct
sum cL

m2MRm, which is itself a p-complete ring. We sometimes abusively iden-

tify cLm2MRm with R? itself; this is a mild abuse of notation given that the functor

R? 7!cL
m2MRm is conservative and faithful.

An M -graded commutative ring R? may of course be viewed as an M -graded
E1-ring in spectra, that is, an E1-monoid in the symmetric monoidal stable 1-
category Fun.M;Sp/. By Appendix A, we may then form the S1-equivariant object
THH.R?/ 2 Fun.M;Sp/BS

1
and the associated homotopy fixed points TC�.R?/,

homotopy orbits THH.R?/hS1 , and Tate construction TP.R?/, all of which are M -
graded spectra. Note that the underlying spectrum of THH.R?/ is the THH of the
underlying ring spectrum of R? because the underlying spectrum functor preserves
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tensor products and colimits; this is not true for TC�, TP because the underlying
spectrum functor need not preserve limits (e.g., S1-homotopy fixed points).

Construction 5.40 ([12] for graded rings)
Assume that the monoidM is uniquely p-divisible, such as ZŒ1=p��0. Then the main
constructions and results of [12] extend to M -graded rings.

We will say that a p-complete M -graded ring R? is quasisyntomic (resp., quasi-
regular semiperfectoid) if the underlying ring R D cL

m2MRm is quasisyntomic
(resp., quasiregular semiperfectoid). One has a natural graded analogue of the qua-
sisyntomic site, and similarly quasiregular semiperfectoids form a basis (e.g., by
extracting p-power roots of homogeneous elements as in [12, Lemma 4.27]; this is
why p-divisibility of M is required); one obtains an analogue of unfolding in this
context.

For such R?, we have seen in Remark 5.39 that we have natural M -graded spec-
tra, THH.R?IZp/, TC�.R?IZp/, THH.R?IZp/hS1 , and TP.R?IZp/. Moreover,
the latter are naturally filtered objects in M -graded p-complete spectra, by carrying
over the construction of the motivic filtration of [12] to the graded context. It fol-
lows that we get M -graded p-complete objects b�R?¹iº, N �ib�R?¹iº, and so on. In
general, the underlying (p-complete) objects of b�R?¹iº, N �ib�R?¹iº do not agree
with those of b�R¹iº, N �ib�R¹iº, because the underlying object of TC�.R?IZp/
is not TC�.RIZp/. However, for each j � i , the underlying p-complete object of
N �ib�R?¹iº=N �jb�R?¹iº is N �ib�R¹iº=N �jb�R¹iº. This follows because the
underlying object of THH.R?IZp/ is THH.RIZp/ and the forgetful functor from
M -graded spectra to spectra commutes with finite homotopy limits.

Throughout [12], a basic tool is the cotangent complex and its wedge powers;
here we implicitly use that ifR? is a p-completeM -graded ring, then we have natural
p-complete graded objects

Vi
LR?=Zp (defined in the usual manner as a left derived

functor of differential forms). The Hochschild–Kostant–Rosenberg theorem remains
valid in the graded context, and from there the results of Section 5.2 carry over to this
context as well.

We now turn to the interaction of the Frobenius with the grading, in the case
which interests us.

PROPOSITION 5.41 (Frobenius multiplies grading by p)
Let R? be a quasisyntomic ZŒ1=p��0-graded (resp., Z�0-graded) ring (with underly-
ing quasisyntomic ring R). Then we claim that:
(1) b�R¹iº=N �nb�R¹iº naturally upgrades to have the structure of a ZŒ1=p��0-

(resp., Z�0-) graded object in the p-complete derived1-category D̂.Zp/;
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(2) the Frobenius map modulo p, as in (43)

'i W N
�ib�R¹iº=N iCrb�R¹iº ˝LZ Fp! b�R¹iº=N �iCrb�R¹iº ˝LZ Fp

multiplies degrees by p.

Proof
In the case in which R? is ZŒ1=p��0-graded, part (1) is covered by the general Con-
struction 5.40: arguing locally on the graded version of the quasisyntomic site, we
require a natural graded version of Definition 5.6 for any graded quasiregular semiper-
fectoid ring. But this follows from THH of a graded ring being a graded spectrum with
S1-action, as explained in Remark 5.39.

When R is actually Z�0-graded, we claim that the same is true of b�R¹iº=
N �nb�R¹iº. By dévissage, it suffices to prove this for each N tb�R, which in turn
follows from the filtrations of Corollaries 5.19 and 5.21. Here we use that the p-
completed cotangent complex L̂R=Zp and its wedge powers are naturally Z�0-graded,
and the filtrations of the aforementioned corollaries respect these gradings.

For part (2) we apply a left Kan extension argument to assume thatR is p-torsion-
free, and then argue locally as above to reduce to the case that R is a p-torsion-free,
graded, quasiregular semiperfectoid. Then both sides of 'i are discrete, and so the
problem reduces to verifying the property that it multiplies degrees by p. But this
follows from the treatment of graded cyclotomic spectra in Appendix A.

Proof of Proposition 5.38
Let RD A˚N and I DN be a Henselian pair of the form of Proposition 5.38. We
view R as being Z�0-graded, with A in degree 0 and N in degree 1. We must prove
that fib.Fp.i/.R/! Fp.i/.A// 2D�i .Fp/. Choose r	 0 so that expression (43) is
valid.

The degree 0 part of ̂Vi
LR=Zp identifies with ̂Vi

LA=Zp , so by dévissage using
Corollary 5.19 and Corollary 5.21, we see that the same is true of the Z�0-graded
object b�R¹iº=N �iCrb�R¹iº. Namely, its degree 0 part is b�A¹iº=N �iCrb�A¹iº. The
same is true modulo p, and so fib.Fp.i/.R/! Fp.i/.A// identifies with the fiber of

can� 'i W
�
N �ib�R¹iº=N �iCrb�R¹iº�>0˝LZ Fp

!
�b�R¹iº=N �iCrb�R¹iº�>0˝LZ Fp;

where the subscript > 0 denotes the Z>0-subobject of a Z�0-graded object.
To complete the proof, we must verify the conditions of Lemma 5.42 below. First,

the Frobenius multiplies degrees by p by Proposition 5.41(2). Next, the fiber of can
is .b�R¹iº=N �ib�R¹iº/>0Œ�1�, which lies in D�i .Zp/ by Proposition 5.25. Finally,
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to verify condition (2), observe that each cohomology group of ̂Vi
LR=Zp is a Z�0-

graded, finitely generated R-module, and so necessarily zero, except in finitely many
degrees of the grading. The same then holds for b�R¹iº=N �iCrb�R¹iº by another
dévissage through Corollaries 5.19 and 5.21.

LEMMA 5.42
Let M , N be Z>0-graded objects of D.Fp/, and let i � 0. Let can W M ! N be a
map of graded objects, and let ' W M !N be a map which multiplies degrees by p.
Suppose that:
(1) the fiber of can belongs to D.Fp/�i ;
(2) for any fixed n, the cohomologies Hn.M/, Hn.N / vanish except in finitely

many degrees of the grading.
Then fib.can� ' W M !N/ belongs to D.Fp/�i .

Proof
By (2), we can replace the direct sums

L
Mi and

L
Ni with the corresponding infi-

nite products. Therefore, the result follows from Lemma 5.34.

Finally, we use the rigidity theorem to give a description of the top cohomology
of the Fp.i/. For B an Fp-algebra, let �iB be the (underived) module of i -forms on
B (relative to Zp , or Fp), and let

C�1 W �iB !�iB=d�
i�1
B

be the inverse Cartier operator.

COROLLARY 5.43 (Top cohomology of Fp.i/)
Let R be a p-complete ring. Then there is a natural isomorphism

H iC1
�
Fp.i/.R/

�
' coker.1�C�1 W �iR=p!�iR=p=d�

i�1
R=p/: (45)

In particular, if R is w-strictly local, thenH iC1.Fp.i/.R//DH iC1.Zp.i/.R//D 0.

Proof
Without loss of generality, we can assume that R is an Fp-algebra via Theorem 5.2.
We now use a standard argument (cf., e.g., [50]) to reduce to the case where R
is ind-smooth over Fp . Choose a polynomial Fp-algebra P surjecting onto R and
Henselize P along the kernel of P �R, forming a P -algebra P 0 augmented over R;
another use of Theorem 5.2 gives H iC1.Fp.i/.R//DH iC1.Fp.i/.P 0//. Moreover,
[23, Proposition 4.31] gives that the right-hand-side of equation (45) is also invariant
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under passage from P 0 to R. Replacing R by P 0, we thus reduce the case that R is
ind-smooth over Fp . But then

Fp.i/.R/' fib.�iR
1�C�1

�����!�iR=d�
i�1
R /Œ�i �: (46)

This follows because of the expression of Fp.i/ as the shifted étale cohomology of
logarithmic forms �ilog (cf. [12, Corollary 8.21] and reduction modulo p; we also
review this in the next section) and the short exact sequence of étale sheaves (cf. [53,
Section 2.4] and [70, Corollary 4.2])

0!�ilog!�i
1�C�1

�����!�i=d�i�1! 0:

Expression (46) implies the claim. Note that this short exact sequence (in the étale
topology) implies also that, for any ind-smooth Fp-algebra which has no nonsplit
étale covers (e.g., R could be w-strictly local), H iC1.Fp.i/.R//D 0.

Theorem 5.1, Theorem 5.2, and Corollary 5.43 imply Theorem G from the intro-
duction.

6. The comparison with syntomic cohomology
In this section, we show that the Zp.i/ for i � p � 2 and the Qp.i/ for all i can
be described purely in terms of derived de Rham (instead of prismatic) cohomology,
using a form of syntomic cohomology (see [31], [54]). The strategy is to use the
description of the Zp.i/ in equal characteristic p from [12] together with the Beilin-
son fiber square to relate the Zp.i/ in mixed and equal characteristic. In particular,
we prove Theorem F.

6.1. Syntomic cohomology
To begin, we define another form of syntomic cohomology via the quasisyntomic site,
by descent from quasiregular semiperfectoids.

Definition 6.1 (p-adic derived de Rham cohomology)
For a map of rings A! R, we let L�R=A 2 D.A/ denote the p-adic derived de
Rham cohomology of R relative to A (see [10]). By definition, when R is a finitely
generated polynomial A-algebra, L�R=A is given by the p-completed relative de
Rham complex ��

R=A
, and, in general, L�R=A is defined via p-complete left Kan

extension. One can show [10, Corollary 3.10] that L�R=A more generally agrees
with the p-completed (underived) relative de Rham complex when R is smooth over
A. When AD Z, we omit A from the notation.
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The p-adic derived de Rham cohomology L�R=A is equipped with the derived
Hodge filtration L��?

R=A
, obtained by left Kan extending the naive filtration in the

polynomial (or more generally smooth) case.

Example 6.2 (Derived de Rham cohomology and divided powers)
We recall the following basic calculation: for the map ZŒx� ! Z, we have that
L�Z=ZŒx� ' �̂.x/ is the p-complete divided power algebra on the class x, and the
derived Hodge filtration is the divided power filtration. This is a special case of [10,
Corollary 3.40]. See also [85, Proposition 3.16] for an account.

Definition 6.3 (Derived de Rham–Witt cohomology)
For an Fp-algebra S , we let LW�S 2D.Zp/ denote the p-adic derived de Rham–
Witt cohomology or derived crystalline cohomology of S (defined via p-complete
left Kan extension from finitely generated polynomial Fp-algebras; see [12, Sec-
tion 8]); for ind-smooth Fp-algebras S , this agrees with Illusie’s usual W�S . It
comes equipped with the derived Nygaard filtration N �?LW�S obtained via left
Kan extension of the usual Nygaard filtration in the finitely generated polynomial case
(see [11, Section 8] for an account); we write L̂W �S for the completion of LW�S
with respect to the Nygaard filtration. We have by [12, Lemma 8.2] an identification of
the associated graded terms of the Nygaard filtration N �iLW�S=N

�iC1LW�S '

L.��i�S=Fp / with the derived functor of S 7! ��i�S=Fp . The Frobenius ' W S! S

induces an endomorphism of LW�S ; on N �iLW�S , it becomes divisible by pi ,
and indeed we have divided Frobenius maps

'i WN
�iLW�S !LW�S : (47)

Finally, using the de Rham–to–crystalline comparison, we find that ifR is a p-torsion-
free ring, then there is a natural equivalence

L�R 'LW�R=pI (48)

in particular, L�R naturally carries a Frobenius operator '.

Remark 6.4 (Sheaf properties)
The functors S 7!LW�S and S 7! L̂W �S are sheaves on qSynFp . For LW�S , it
suffices to work modulo p, and then use the conjugate filtration on derived de Rham
cohomology (see [10]) and the flat descent for the wedge powers of the cotangent
complex (see [12, Section 3]). For the Nygaard-completed L̂W �S , this follows since
the associated graded terms have this property, by a similar argument. Similarly, the
filtration pieces S 7!N �iLW�S and S 7!N �i L̂W �S are sheaves on qSynFp .
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Construction 6.5 (Derived de Rham–Witt cohomology of quasiregular semiperfect
rings; cf. [12, Section 8.2])
Let S 2 qrsPerfdFp be a quasiregular semiperfect Fp-algebra. In this case, one forms
the ring Acrys.S/ (defined by Fontaine [30]), which is the universal p-adically com-
plete divided power thickening of S , with divided powers compatible with those on
.p/ 
 Zp ; quasiregularity ensures that it is p-torsion-free. Then, one has a natural
identification

LW�S DAcrys.S/;

and the Nygaard filtration becomes the filtration

N �iAcrys.S/D
®
x 2Acrys.S/ W '.x/ 2 p

iAcrys.S/
¯
:

Here ' W Acrys.S/! Acrys.S/ denotes the endomorphism induced by the Frobenius
on S ; it has the further property that '.x/� xp .mod p/ for x 2Acrys.S/; that is, '
defines the structure of a ı-ring on the p-torsion-free ring Acrys.S/.

Construction 6.6 (Derived de Rham and de Rham–Witt cohomology of quasiregular
semiperfect rings)
Let R 2 qrsPerfdZp . We consider the following rings.
(1) The derived de Rham–Witt cohomology LW�R=p of R=p. Since the ring

R=p is a quasiregular semiperfect Fp-algebra, it follows from Construction
6.5 that there is an isomorphism

LW�R=p 'Acrys.R=p/:

(2) The (p-adic) derived de Rham cohomology L�R. Here L�R is a discrete, p-
complete and p-torsion-free ring, as follows from the previous point and (48).
The ring L�R is also equipped with the multiplicative, descending Hodge
filtration L��?R .

Via the de Rham–to–crystalline comparison, we have equivalences L�R '

LW�R=p ' Acrys.R=p/. In particular, we find via (1) and (2) above that the p-
complete, p-torsion-free ring L�R is equipped with both a Frobenius operator and a
Hodge filtration.

LEMMA 6.7
Let r � 0 be an integer.
(1) The p-adic valuation of .pr/Š

rŠ
is equal to r .

(2) The p-adic valuation of p
r

rŠ
is at least min.r;p � 1/.
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Proof
Both assertions follow from Legendre’s formula, vp.nŠ/D

P
j>0bn=p

j c for vp the
p-adic valuation.

PROPOSITION 6.8 (Divisibility of Frobenius; cf. also [87, Lemma A1.4])
Let R 2 qrsPerfdZp . Then for i � p � 1, the Frobenius ' W L�R ! L�R carries

L�
�i
R into piL�R, or, in other words, the de Rham–to–crystalline comparison car-

ries L��iR into N �iAcrys.R=p/.

Proof
For any R 2 qrsPerfdZp , we can write RDW.A/=I , where A is a perfect Fp-algebra
and I 
 W.A/ is an ideal. We have an identification of the p-complete cotangent

complex, L̂R=Zp ' Î=I
2Œ1�.

We first verify the assertion when the ideal I as above can be written as I D .f /,
for f a non-zero-divisor, so R D W.A/=.f /. In this case, in view of Example 6.2
and base change, we find that L�R DL�R=W.A/ is the p-completion of the divided
power envelope of the regular ideal .f /, that is, the ring W.A/Œf n=nŠ�n�1; fur-
thermore, for each i , the Hodge filtered piece L��iR identifies with the correspond-
ing divided power filtration, that is, the ideal .f j =j Š/j�i . Now the Frobenius ' on
L�R 'LW�R=p 'Acrys.R=p/ is a Frobenius lift coming from a ı-structure, so

'
�f j
j Š

�
D
.f p C pı.f //j

j Š
D

P
0�l�j

�
j
l

�
f plpj�lı.f /j�l

j Š
: (49)

The l th term in the sum above is divisible (in the ring L�R) by f plpj�l

lŠ.j�l/Š
D

f pl

.pl/Š
.pl/Špj�l

lŠ.j�l/Š
, where we use the divided powers on .f / to see f pl

.pl/Š
2L�R. Now the

p-adic valuation of .pl/Šp
j�l

lŠ.j�l/Š
is at least l Cmin.j � l; p � 1/ thanks to Lemma 6.7.

So if i � p � 1, then it follows that ' carries L��iR into piL�R.
Now suppose that R is a p-complete tensor product over ˛ 2A of rings of the

form W.A˛/=.f˛/, for A˛ perfect Fp-algebras and f˛ 2 W.A˛/ regular elements.
In this case, we have an isomorphism (after p-completion) of filtered rings L��?R 'N
˛2AL�

�?
W.A˛/=f˛

by the Künneth formula, which is compatible with the Frobenius

operators. The assertion '.L��iR / 
 p
iL�R for i � p � 1 for such R thus follows

by taking tensor products.
Finally, let R 2 qrsPerfdZp be arbitrary, and write RDW.A/=I for A a perfect

Fp-algebra. To prove the claim '.L�
�i
R / 
 p

iL�R for i � p � 1, we will reduce
to the previous cases, following the strategy of [12, Theorem 8.14]. Let ¹xtºt2T be a
system of generators for the ideal I and for each t , we write xt D

P
i�0p

i Œyt;i � for
some yt;i 2A. For each t 2 T , we have a map
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W
�
FpŒu1; u2; : : : ; �perf

�
=
�
Œu1�C pŒu2�C � � �

�
!W.A/=I DR (50)

sending Œui � 7! Œyt;i �; note that the source belongs to qrsPerfdZp , and its cotangent
complex is the shift of a free module of rank 1. The map (50) has image on p-
completed cotangent complexes given by the class of xt .

We consider the p-completed tensor product

R0
def
DW.A/ Ő

O
t2T

�
W
�
FpŒu1; u2; : : : ; �perf

�
=Œu1�C pŒu2�C � � �

�
;

which maps surjectively to R (via the above maps) and induces a surjection on
H 0.L̂�=Zp Œ�1�/. Comparing with the reduction mod p and using the Hodge and

conjugate filtrations on derived de Rham cohomology, we find that L��iR0 !L�
�i
R is

a surjection for each i . Since the previous discussion shows that '.L��iR0 /
 p
iL�R0

for i � p � 1, we can now conclude the claim for R by naturality, as desired.

Using the divisibility property of Frobenius, we can define, for R 2 qrsPerfdZp
and i � p � 1, a divided Frobenius '=pi W L��iR !L�R (of discrete, p-torsion-free
abelian groups). Using the divided Frobenius, we now define syntomic cohomology;
this definition is based on the ideas of [31] and [54] (and can be compared with it
using the comparison between derived de Rham and crystalline cohomology in the
local complete intersection case; cf. [10, Section 3]).

Definition 6.9 (Syntomic cohomology)
We define sheaves Zp.i/FM for 0� i � p � 2, and Qp.i/FM for i � 0, on qrsPerfdZp
via

Zp.i/
FM.R/D fib.'=pi � 1 W L��iR !L�R/; (51)

Qp.i/
FM.R/D fib.' � pi W L��iR !L�R/Qp : (52)

These are sheaves on qrsPerfdZp becauseR 7!L�
�i
R is a sheaf. Unfolding, we obtain

sheaves Zp.i/FM for 0� i � p � 2 and Qp.i/FM for all i � 0 on qSynZp .

Remark 6.10
While one could define Zp.p � 1/FM.R/ via the same formula, this does not give the
correct integral theory in weight .p � 1/.
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6.2. The Zp.i/ in equal characteristic p
In equal characteristic p, the Zp.i/ can be determined via the theory of the de Rham–
Witt complex and its derived versions (cf. [52, Section VIII.2], [10], and, in particular,
[12, Section 8]).12 We review this next.

THEOREM 6.11 (Zp.i/ in equal characteristic p; cf. [12, Section 8])
Suppose that S is a quasisyntomic Fp-algebra. Then, for each i :

(1) b�S¹iº is the Nygaard-completed derived de Rham–Witt cohomology L̂W �S
of S ;

(2) the Nygaard filtration N �ib�S¹iº identifies with the de Rham–Witt Nygaard
filtration N �i L̂W �S , and the prismatic Frobenius 'i identifies with the
divided Frobenius (47).

Consequently,

Zp.i/.S/D fib.'i � can W N �i L̂W �S ! L̂W �S /; (53)

where 'i WN �i L̂W �S ! L̂W �S is the divided Frobenius operator, so that pi'i is
the Frobenius.

Remark 6.12
The Nygaard completion is redundant in the formula (53) for Zp.i/.S/. This follows

easily from the fact that 'i acts by zero on N �iC1L̂W �S=p. In particular, we can
write

Fp.i/.S/D fib
�
'i � can W

.N �iLW�S=N
�iC1LW�S /˝

L
Zp

Fp

! .LW�S=N
�iC1LW�S /˝

L
Zp

Fp
�
:

Example 6.13
If S is a quasiregular semiperfect Fp-algebra, then, for i > 0, Zp.i/.S/ is discrete
and p-torsion-free, and there is a natural isomorphism of abelian groups

Zp.i/.S/' ker
�
' � pi W Acrys.S/!Acrys.S/

�
; (54)

where ' is induced by the Frobenius. For i D 0, we should instead take the homotopy
fiber of ' � 1 on Acrys.S/, so it may have terms in cohomological degree 1.

In the ind-smooth case, one has an identification with logarithmic de Rham–Witt
forms.

12See also [34], [37] for the identification with with p-adic étale motivic cohomology.



ON THE BEILINSON FIBER SQUARE 3771

Definition 6.14 (Logarithmic de Rham–Witt forms)
For S an ind-smooth Fp-algebra, we let W��S;log denote the graded subring of the
de Rham–Witt complex W��S consisting of fixed points for F . When S is local, one
knows thatW��S;log is generated, modulo any power of p, in degree 1 by elements of
the form dŒx�=Œx�, for x 2 S� and Œx� 2W.S/ the Teichmüller representative (cf. [53,
Theorem 5.7.2], which proves this étale locally, and [70, Theorem 0.10] for a very
general Zariski local result). Note that for each i , W�i�;log defines a pro-étale sheaf
on Spec.S/.

THEOREM 6.15 (Cf. [12, Cor. 8.21])
Let S be an ind-smooth Fp-algebra. Then there are natural identifications

Zp.i/.S/'R�proet
�
Spec.S/;W �i�;log

�
Œ�i �:

6.3. The Beilinson fiber square on graded pieces
Our goal is to relate the Zp.i/ in mixed and in equal characteristic. We use the Beilin-
son fiber sequence to prove a basic fiber square which gives a version of Theorem A
on associated graded terms for the motivic filtrations.

Construction 6.16 (The trace on graded pieces)
Let R be any commutative ring. Then we have the trace maps

K.RIZp/! TC.RIZp/!HC�.RIZp/:

When R 2 qrsPerfdZp , we have that HC�.RIZp/ is concentrated in even degrees and

�2i is given by dL��iR (cf. [12, Section 5] and [1]). Unfolding, we conclude that, on

graded pieces, we obtain a natural map Zp.i/.R/!dL��iR for R 2 qSynZp . This

naturally factors through L��iR since R 7! Zp.i/.R/ is left Kan extended from p-
complete polynomial algebras (Theorem 5.1).

THEOREM 6.17 (The Beilinson fiber square on graded terms)
LetR 2 qSynZp . Then, for each i � 0, there exists a natural map �i W Qp.i/.R=p/!
.L�R/Qp and a functorial pullback square

Qp.i/.R/ Qp.i/.R=p/

�i

.L�
�i
R /Qp .L�R/Qp

(55)
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in the derived1-category D.Qp/. The map �i arises from a natural map Zp.i/.R=

p/! p�NL�R for some N 	 0 (depending only on i ), fitting into an analogous
commutative diagram.

Furthermore, the associated fiber sequence holds up to isogeny:
cofib.Zp.i/.R/! Zp.i/.R=p// and L�R=L�

�i
R are naturally isogenous to each

other. Finally, for i � p � 2, we have natural equivalences for qSynZp ,

fib
�
Zp.i/.R/! Zp.i/.R=p/

�
' fib.L�R=L�

�i
R !L�R=p=L�

�i
R=p

/Œ�1�: (56)

Proof
Note that the hypothesis that R 2 qSynZp ensures that R=p 2QSyn. The square (55)
will be constructed in the 1-category of D.Qp/�0-valued sheaves on qSynZp . It
suffices to construct the above pullback square for R 2 qrsPerfdZp , by unfolding. For
R 2 qrsPerfdZp , we have a pullback square by Corollary 3.9:

TC.RIQp/ TC.R=pIQp/

HC�.RIQp/ HP.RIQp/:

(57)

Note since R 2 qrsPerfdZp , the terms in the bottom row of the above fiber square
are concentrated in even degrees (see [12, Lemma 5.14]). Consequently, for each i ,
we can apply �Œ2i�1;2i� and still obtain a fiber square. By definition of the Qp.i/

and by the corresponding description of derived de Rham cohomology, as in [12,
Theorem 1.17] (or using the filtration of [1]), we obtain (55) for R (after a shift),
albeit with a Hodge completion. In particular, instead of �i , we obtain a completed
version

O�i W Qp.i/.R=p/! .dL�R/Qp ;
as well as a Hodge-completed version of the fiber square (55).

We can refine O�i to �i (and obtain (55)) as follows. First, by construction of these
maps via the Beilinson fiber square, a multiple of O�i lifts to a map Zp.i/.R=p/!dL�R. Since the source is left Kan extended (as a functor to the p-complete derived
1-category) from finitely generated p-complete polynomial algebras, we can restrict
and left Kan extend to obtain that a multiple of O�i lifts to Zp.i/.R=p/! L�R.
Inverting p, we obtain that O�i factors through a map �i W Qp.i/.R=p/! .L�R/Qp .

From the quasi-isogeny between TC.R; .p/IZp/ and †HC.R; .p/IZp/ as in
Theorem 2.20, we obtain the isogeny claim.

Finally, we verify (56); again, we can assume that R 2 qrsPerfdZp by unfolding.
Since everything is a pro-étale sheaf, we can even assume that R is w-strictly local in



ON THE BEILINSON FIBER SQUARE 3773

the sense of [13], so that ��1TC.RIZp/D coker.F � 1 W W.R/!W.R// (by [47,
Theorem F]) vanishes. Recall that we have an equivalence ��2p�4TC.R; .p/IZp/'
��2p�4†HC.R; .p/IZp/ by Theorem 2.20. It follows that, for i � p� 2, we have an
equivalence

�Œ2i�1;2i�TC
�
R; .p/IZp

�
' �Œ2i�1;2i�†HC

�
R; .p/IZp

�
:

Now TC.R=pIZp/, HC.RIZp/, and HC.R=pIZp/ are concentrated in even degrees
since R 2 qrsPerfdZp . For the first claim, see [12, Proposition 8.20]. The second and
third follow from the filtrations constructed in [1] and [12, Section 5].

It follows from the above definitions that

�Œ2i�1;2i�TC
�
R; .p/IZp

�
' fib

�
Zp.i/.R/! Zp.i/.R=p/

�
Œ2i �;

and from [12, Section 5] and [1] that

�Œ2i�1;2i�†HC
�
R; .p/IZp

�
' fib.L�R=L�

�i
R !L�R=p=L�

�i
R=p

/Œ2i � 1�:

Using these identifications, we deduce (56).

We next identify the p-adic Chern character �i W Qp.i/.R=p/! .L�R/Qp on
graded pieces (from Theorem 6.17) more explicitly. To this end, we prove the follow-
ing basic result.

PROPOSITION 6.18 (The image of �i )
Let R 2 qrsPerfdZp . Then for each i > 0, the map (of Qp-vector spaces) �i W
Qp.i/.R=p/! .L�R/Qp D Acrys.R=p/Qp is injective and has image given by the
' D pi eigenspace.

The main issue is the following: both the source and target of �i are functors of
R=p, thanks to de Rham–Witt theory. We have seen that the p-adic Chern character
�i induces a natural map Zp.i/.R=p/! p�NL�R for R 2 qSynZp

for some N .
However, it is not a priori obvious that the map �i arises from a natural transforma-
tion of functors on Fp-algebras (which would force it to commute with Frobenius
operators, for example). Our first goal is to verify this.

LEMMA 6.19 (The Frobenius action on Zp.i/.R/)
For any R 2 qSynFp , the Frobenius on R acts as multiplication by pi on Zp.i/.R/.

Proof
This reduces to the case of a quasiregular semiperfect Fp-algebra by descent. But, in
this case, the identification of Example 6.13 clearly proves the claim.
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COROLLARY 6.20
The natural map �i W Zp.i/.R=p/! p�N .L�R/! .L�R/Qp , for R 2 qSynZp

arises (by precomposition with reduction mod p) from a unique natural transfor-
mation �i W Zp.i/! p�N

0

LW�.�/ on qSynFp for some N 0 �N .

Proof
This follows from Corollary B.4 and Lemma 6.19 (the latter shows that the hypotheses
of the former are satisfied), and then left Kan extension from finitely generated p-
complete polynomial rings. Uniqueness follows since these sheaves are torsion-free.

Next, we consider the sheaf of graded E1-rings
L1
iD0Zp.i/ on qSynFp

. For

each N � 0, we can also truncate to obtain a sheaf of graded E1-rings
LN
iD0Zp.i/.

PROPOSITION 6.21
Let f W

LN
iD0Zp.i/!

LN
iD0Zp.i/ be a natural map of sheaves of graded E1 rings

on qSynFp . Then there exists � 2 Zp such that in degree i , f is given by multiplica-
tion by �i .

Proof
We first observe that the only endomorphisms of Zp.1/ (as a functor on qSynFp ) are
given by scalars. It suffices to verify this on quasiregular semiperfect algebras, and
there Zp.1/ is corepresentable (cf. [12, Propositions 7.17, 8.20]) by FpŒx1=p

1

�=.x�

1/, on which Zp.1/.FpŒx1=p
1

�=.x � 1//' Zp . So the endomorphism f is given by
a scalar action at least on Zp.1/.

Note that all these functors are left Kan extended from smooth algebras (to the
p-complete category), so f is determined by the values on smooth Fp-algebras. Fur-
thermore, the map f is determined by its values modulo pn for each n. However,
classes in H i .Z=pn.i// are étale locally written as sums of products of classes in
H 1.Z=pn.1// (thanks to Theorem 6.15), so the value of f on Zp.1/ determines the
value of f in general. The result now follows because, on smooth algebras, Z=pn.i/
is concentrated in cohomological degree i étale locally.

Proof of Proposition 6.18
Recall that the map�i is actually a special case of a mapZp.i/.R0/! p�N

0

.LW�R0/

defined on R0 2 qSynFp
, by Corollary 6.20. For R0 quasiregular semiperfect, we

know that the Frobenius acts as pi on Zp.i/.R0/, so we obtain a natural, multi-
plicative map Qp.i/.R0/! .Acrys.R0/

'Dpi /Qp . We wish to see that these maps are
isomorphisms.
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Now we know independently that Qp.i/.R0/ is identified (for i > 0) with

Acrys.R0/
'Dpi

Qp
via the theory of topological cyclic homology (Theorem 6.11, fol-

lowing [12, Section 8]). Thus, we actually obtain natural, multiplicative (in i ) maps
Qp.i/.R0/! Qp.i/.R0/ for R0 2 qSynFp , and we wish to see that these are iso-
morphisms. Up to rescaling by a power of p, furthermore, they carry Zp.i/.R0/ into
Zp.i/.R0/. As we saw in Proposition 6.21, these maps are necessarily all given by
scalar multiplication by some �i in degree i , for some � 2 Zp ; we know that �¤ 0
(by comparing with i D 1, say), so the result now follows.

6.4. Comparison of the Zp.i/FM and Zp.i/

Our main result is the following comparison, which establishes Theorem F.

THEOREM 6.22
For R 2 qSynZp , there are natural, multiplicative identifications Zp.i/FM.R/ '

Zp.i/.R/ for i � p � 2 and Qp.i/FM.R/'Qp.i/.R/ for all i � 0.

By [33, Theorem 1.3], for i � p � 2 and for formally smooth schemes over dis-
crete valuation rings, syntomic cohomology in the above form (see also [54], [57]) is
p-adic étale motivic cohomology.

Proof of the rational case of Theorem 6.22
Fix i � 0. It is enough to prove the equivalences for all R 2 qrsPerfdZp . Thanks to the
odd vanishing conjecture proved in [15, Section 14], we may, moreover, assume that
R 2 qrsPerfdZp

is such that Zp.i/.R/ is concentrated in degree 0. In the homotopy

Cartesian square of Theorem 6.17, the terms Qp.i/.R/, .L�
�i
R /Qp , and .L�R/Qp

are all concentrated in degree 0, whence the same is true of the remaining term
Qp.i/.R=p/ (i.e., ' �pi W .L�R/Qp ! .L�R/Qp is surjective) and the fiber square
is simply a Cartesian and co-Cartesian square of abelian groups:

Qp.i/.R/ Qp.i/.R=p/

.L�
�i
R /Qp .L�R/Qp :

Note that all the arrows are injections: the bottom since it is the inclusion of the Hodge
filtration, the right by Proposition 6.18, and the others since the diagram is Cartesian.

We claim that the map ' � pi W .L��iR /Qp ! .L�R/Qp is surjective. Indeed,
given x 2 .L�R/Qp , we can write x D .' � pi /.x0/ for some x0 2 .L�R/Qp ; as we
noted above, '�pi W .L�R/Qp ! .L�R/Qp is surjective. Using Proposition 6.18 to
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identify the image of the vertical map, the diagram being co-Cartesian means that

.L�R/
'Dpi

Qp
˚ .L��iR /Qp ! .L�R/Qp D Acrys.R=p/Qp is surjective. So we can

write x0 D y0 C z0 for y0 2 ker.' � pi / and z0 2 .L�R/
�i
Qp

. Applying ' � pi , we

get that x D .' � pi /.z0/, proving the claim as desired.
Combining these observations, we have established a natural identification

Qp.i/.R/D .L�R/
'Dpi

Qp
\ .L��iR /Qp ' fib

�
' � pi W .L��iR /Qp ! .L�R/Qp

�
;

as desired.

COROLLARY 6.23 (A description of TC.RIQp/)
Let R be any simplicial commutative ring. Then there is a natural equivalence

TC.RIQp/'
M
i�0

fib.' � pi W L��iR !L�R/Qp :

Proof
The map from R to its derived p-adic completion induces an equivalence on all the
terms appearing in the statement: for derived de Rham cohomology and its Hodge
filtration, this follows from base change, while it holds for THH.�IZp/ (and hence
TC.�IQp/) by [23, Lemma 5.2]. We may therefore assumeR is p-complete, at which
point we know from Construction 5.33 that TC.RIQp/ admits a complete descending
filtration with associated graded given by Qp.i/.R/Œ2i �, for i � 0. Using Adams oper-
ations on TC as in [12, Section 9.4], we can split the filtration functorially. Combining
with the rational part of Theorem 6.22 (or, more precisely, its left Kan extension to
p-complete simplicial commutative rings), the claim follows.

Next, we will prove the integral case of Theorem 6.22. The main step is to show
that the Zp.i/FM.�/ for i � p � 2 are discrete, as sheaves on qSynZp

; this is the
analogue of Theorem 5.11, that is, of the odd vanishing conjecture. To see this, we
will use the odd vanishing conjecture itself and some cases of the results of Li–Liu
[59].

PROPOSITION 6.24
As D.Zp/�0-valued sheaves on qSynZp :
(1) Zp.i/FM.�/ is discrete and torsion-free for 0� i � p � 2;
(2) Qp.i/FM.�/ is discrete.

Proof
Item (2) has already been proved above (in light of the odd vanishing conjecture [15,
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Theorem 14.1]), so here we prove (1). It suffices to show that Zp.i/FM.�/ is discrete
and torsion-free as a D.Zp/�0-valued sheaf on qSynOC , for OC the ring of integers
in C D Cp . In particular, we will show that, for any R 2 qSynOC , there exists a
quasisyntomic cover R! R0 such that R0 is quasiregular semiperfectoid and such
that '=pi � 1 W L��iR0 !L�R0 is surjective for all i � p � 2.

To this end, on qrsPerfdOC , we consider the (non-Nygaard-complete) sheaf R 7!
�R (cf. [15, Section 7]) together with its Nygaard filtration N �?�R and divided
Frobenius maps 'e�i W N �i�R!�R, fore	 a generator of the ideal defining the prism
structure on �OC . For any R 2 qrsPerfdOC , we use [59, Theorem 3.5, Remark 3.6]
(applied to the perfect prism .Ainf.OC /;e	/) or the crystalline comparison (see [15,
Theorem 5.2]) to obtain a natural map of ı-rings

�R!Acrys.R=p/'L�R: (58)

This map of ı-rings carriese	 to an element of the form p'.u/, for u 2 .L�R/� and
' W L�R ! L�R the crystalline Frobenius. By [59, Theorem 4.13], the map (58)
canonically refines to a filtered map N �?�R! L�

�?
R . Moreover, the filtered map

N �?�R ! L�
�?
R induces an isomorphism on associated graded terms in degrees

� p � 1 (see [59, Theorem 4.13]).
By the odd vanishing conjecture (see [15, Section 14]), there exists a basis of

objects R 2 qrsPerfdOC for which the map '=e	 i � 1 W N �i�R!�R is surjective.
Choose any such R. Consider now the evident commutative diagram

N �i�R
'=e�i�1

�R

L�
�i
R

'=e�i�1
L�R:

(59)

For i � p � 2, it follows from the surjectivity of the top horizontal arrow in (59) (and
thate	 maps to p'.u/ in L�R, for u 2 .L�R/�) that the composite

L�
�i
R

'=pi�1
�����!L�R!L�R=L�

�iC1
R '�R=N

�iC1�R (60)

is surjective. Now the map

L�
�iC1
R 
L��iR

'=pi�1
�����!L�R!L�R=p

is simply the inclusion composed with reduction mod p, since '=pi is divisible
by p on L��iC1R . This observation combined with the surjectivity of (60) and p-

completeness now gives the surjectivity of L��iR
'=pi�1
�����!L�R, as desired.
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Proof of Theorem 6.22 for i � p � 2
Fix i � p � 2 and R 2 qrsPerfdZp such that Zp.i/.R/ and Zp.i/FM.R/ are con-
centrated in degree 0 for all i � p � 2; we can do this by the odd vanishing
conjecture and Proposition 6.24. In this case, the map of discrete abelian groups
Zp.i/.R/ ! Zp.i/.R=p/ is injective and has torsion-free cokernel, thanks to
the equivalence (56). So from the Beilinson fiber square on graded pieces (Theo-
rem 6.17) and the description of the image of �i (Proposition 6.18), we find that
Zp.i/.R/ 
 Zp.i/.R=p/ D .L�R/'Dp

i
is the submodule consisting of those ele-

ments such that the image in L�R belongs to L��iR . In particular, it is precisely the
kernel of '=pi � 1 W L��iR ! L�R. Since this map is surjective, we get the natural
equivalence Zp.i/.R/' Zp.i/.R/FM as desired.

7. Examples

7.1. K-theory of p-adic fields
Let F be a complete discretely valued field of characteristic 0 with ring of integers
OF 
 F and perfect residue field k of characteristic p. In this subsection, we will use
the Beilinson fiber sequence to recover various calculations of the p-adic K-theory of
F . All these results are previously known, at least in the case of F local (see [90,
Theorem 61] for a detailed survey).

THEOREM 7.1
The homotopy groups of K.F IQp/ are given (as Qp-vector spaces) as follows:
(1) K2s.F IQp/D 0 for s > 0;
(2) there is a natural isomorphism K2s�1.F IQp/' F for each s > 1;
(3) there is a natural short exact sequence 0! F !K1.F IQp/!Qp! 0.

Proof
Since k is perfect, we have that Ki .kIZp/D Zp for i D 0 and 0 otherwise (cf. [45,
Theorem 5.4] and [56, Corollary 5.5]). Taking the dévissage cofiber sequence K.k/!
K.OF /!K.F / with Zp-coefficients shows that Ki .OF IZp/ŠKi .F IZp/ for i ¤ 1
and that there is an exact sequence

0!K1.OF IZp/!K1.F IZp/! Zp! 0;

where the map K1.F IZp/Š F �˝Z Zp! Zp is induced by the p-adic valuation.
Next, since K.OF =pIQp/' K.kIQp/'Qp , the Beilinson fiber square (Theo-

rem A) for OF yields a fiber sequence

†HC.OF IQp/!K.OF IQp/!Qp:
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But note that the cyclic homology term may be equivalently written as †HC.F=F0/,
where F0 WD W.k/Œ 1

p
�; indeed, the vanishing of the p-adic completion of the

cotangent complex LW.k/=Z implies that HC.OF IZp/ ' HC.OF =OF0 IZp/, but
HC.OF =OF0/ is already derived p-adically complete since its homology groups are
all finitely generated OF -modules. The Beilinson fiber sequence therefore implies
that

��2†HC.F=F0/' ��2K.F IQp/

and

HC0.F=F0/'K1.OF IQp/:

The proof is completed by noting that, since F is an étale F0-algebra, its cyclic
homology is given by HCi .F=F0/D F for i � 0 even and is 0 otherwise.

Example 7.2 (Local fields)
If F is a finite extension of Qp , of degree d , then the theorem shows that

dimQp K2s�1.F IQp/D

´
d C 1 if s D 1,

d otherwise.
(61)

This dimension calculation is a classical result, arising from Wagoner’s [89] calcula-
tion of the ranks of the continuous K-groups and Panin’s [75] proof of an early case
of the p-adic continuity of K-theory.

In addition, the dimension calculation (61) is in accordance with the Beilinson–
Lichtenbaum conjecture for F . Recall that the Beilinson–Lichtenbaum conjec-
ture, prior to its general proof by Rost–Voevodsky for all fields, was proved by
Hesselholt–Madsen [48] in this case when p > 2 using TC-theoretic methods. Since
F has cohomological dimension 2, the Beilinson–Lichtenbaum conjecture predicts
K2s�1.F IQp/ ' H 1

Ket.F;Qp.s// and K2s�2.F IQp/ ' H 2
Ket.F;Qp.s// for s > 0.

Then the dimensions in (61) agree with the dimensions of the Qp-cohomology of F ,
as computed via Tate’s local duality and Euler characteristic formula (see [74, VII.3]
for an account).

Example 7.3 (Integral calculation, unramified case)
Assume in this example that p > 3 so that the results hold in a nonempty range. We
will show that, in the range 1� i � 2p � 5, the p-adic K-groups of W.k/ are given
by

Ki
�
W.k/IZp

�
'

´
W.k/ if i D 2s � 1;

0 if i is even.
(62)
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Note that for k finite, the calculation of the entire homotopy type of K.W.k/IZp/ is
carried out by Bökstedt–Madsen [20] at odd primes and Rognes [79] at p D 2 (for
k D F2); again, see [90, Theorem 61] for a survey for all of these results.

The integral form of the Beilinson fiber sequence (Corollary B) takes the form of
a natural fiber sequence

��2p�5†HC
�
W.k/; .p/IZp

�
! ��2p�5K

�
W.k/IZp

�
! Zp:

As in the proof of Theorem 7.1, the cyclic homology term may be replaced by the
cyclic homology ��2p�5†HC.W.k/; .p/=W.k// over W.k/.

A standard calculation of derived de Rham cohomology with divided powers (as
in [85, Proposition 3.16]) gives L�k=L�

�s
k
'W.k/=ps for s � p � 1; in general,

L�k=L�
�s
k

is discrete for all s. Using the filtrations of [1], we conclude for i �
2p � 1,

�iHC
�
k=W.k/

�
'

´
W.k/=psC1 if i D 2s � 0,

0 otherwise.
(63)

See also [21, Proposition 7.2] for this calculation. Also, HCi .W.k/IZp/ Š
HCi .W.k/=W.k// Š W.k/ for i � 0 even and is zero otherwise. Thus, in the
range 0� i � 2p � 2, we deduce that

�iHC.
�
W.k/; .p/=W.k/

�
'

´
psC1W.k/ if i D 2s;

0 if i is odd.

This completes the proof.

Remark 7.4 (Integral calculation, ramified case)
Assume now that F is ramified so that OF =p Š kŒx�=.x

e/, where e is the absolute
ramification degree of F . Corollary B implies, by rewriting the p-adic cyclic homol-
ogy as noncompleted cyclic homology with respect to W.k/, that ��2p�5†HC.OF ;
.p/=W.k//' ��2p�5K.OF ; .p/IZp/.

We now appeal to the fact that the algebraic K-theory of truncated polynomial
rings over fields is known (see [46], [83]). The positive even p-adic K-groups of
kŒx�=.xe/ vanish so that we get five-term exact sequences

0! �2s�1†HC
�
OF ; .p/=W.k/

�
!K2s�1.OF IZp/

!Wse.k/=VeWs.k/! �2s�2†HC
�
OF ; .p/=W.k/

�
!K2s�2.OF IZp/! 0

for 2� s � p � 2. In low degrees, this gives a computation of the integral p-adic K-
groups of OF which is independent of [48]; on the other hand, using this calculation
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and [48], we can view the computation as giving information about the low-degree
étale cohomology of F .

We can also carry out previous types of calculations for the syntomic complexes
Zp.i/ rather than K-theory.

THEOREM 7.5 (Syntomic cohomology of discrete valuation rings)
Let OF be a complete discrete valuation ring of mixed characteristic .0;p/ with
perfect residue field k.
(1) We have natural identifications

Qp.i/.OF /'

´
R�proet.Spec.k/;Qp/ if i D 0;

F Œ�1� if i > 0:
(64)

(2) In the unramified case OF DW.k/,

Zp.i/
�
W.k/

�
'

´
R�proet.Spec.k/;Zp/ if i D 0;

W.k/Œ�1� if 0 < i � p � 2:
(65)

Proof
For (1), we have (where the first equivalence follows from Lemma 6.19 and taking
powers of Frobenius)

Qp.i/.OF =p/'Qp.i/.k/'

´
R�proet.Spec.k/;Qp/ if i D 0,

0 otherwise.

Therefore, the fiber sequence from Theorem 6.17 yields equivalences

Qp.i/.OF /'

´
R�proet.Spec.k/;Qp/ if i D 0;

.L�OF =L�
�i
OF
/Qp Œ�1� if i > 0:

As in the proof of Theorem 7.1, the latter truncated p-adic derived de Rham coho-
mologies may be computed as the analogous uncompleted derived de Rham coho-
mologies for F0! F ; since LF=F0 ' 0, we conclude that Qp.i/.OF /' F Œ�1� for
i > 0.

The integral claim follows from Theorem 6.22. Indeed, we find that
Zp.0/.W.k// D fib.' � 1 W W.k/ ! W.k// ' R�proet.Spec.k/;Zp/. For i > 0,
we get Zp.i/.W.k//D fib.'=pi � 1 W 0!W.k//, so the claim follows.
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7.2. Perfectoid rings
In this section, we apply the Beilinson fiber square to a perfectoid ring. The main
result (which was indicated to us by Scholze) is that it recovers the fundamental exact
sequence in p-adic Hodge theory.

Let R be a perfectoid ring. We review the period rings associated to R and their
interpretation via derived de Rham theory (cf. [7], [10]).

Construction 7.6 (Period rings)
Let R be a perfectoid ring.
(1) As before, we have Fontaine’s ring Ainf.R/ equipped with the canonical map

� W Ainf.R/!R with kernel .	/. Here Ainf.R/ is also the prismatic cohomol-
ogy b�R; the Nygaard filtration is the 	-adic filtration.

(2) We have Acrys.R/DAcrys.R=p/, the p-adic completion of the divided power
envelope of .	/ 
 Ainf.R/; we have that Acrys.R/ ' L�R is the derived de
Rham cohomology of R. The Hodge filtration is given by the divided power
filtration. We let BCcrys.R/ D Acrys.R/Œ1=p� D .L�R/Qp ; the ring BCcrys.R/

also inherits a Frobenius operator '.
(3) We have BCdR.R/ D lim

 �
.Ainf.R/=	

nŒ1=p�/. The ring BCdR.R/ can also be
obtained as the Hodge completion of .L�R/Qp . The Hodge filtration yields a
filtration (the 	-adic filtration) on BCdR.R/.

Our goal is now to recover the following result in p-adic Hodge theory (cf. [30,
Theorem 5.3.7] and [28, Theorem 6.4.1]).

THEOREM 7.7 (The fundamental exact sequence)
For any R 2 Perfd and i > 0, there is a natural pullback square in D.Qp/,

R�proet.Spec.RŒ1=p�/;Qp.i// BCcrys.R/
'Dpi

Fil�iBCdR.R/ BCdR.R/:

(66)

Example 7.8
When RDOC , where C is a complete algebraically closed non-Archimedean field,
the fundamental exact sequence is often written as the exact sequence

0!Qp.i/! BCcrys.OC /
'Dpi ! BCdR.OC /=Fil�iBCdR.OC /! 0

of abelian groups.



ON THE BEILINSON FIBER SQUARE 3783

Proof of Theorem 7.7
We apply Theorem 6.17 to the perfectoid ring R and obtain a fiber square

Qp.i/.R/ Qp.i/.R=p/

.L�
�i
R /Qp .L�R/Qp :

(67)

By [15, Theorem 9.4], the first term is identified with R�proet.Spec.RŒ1=p�/;Qp.i//.

The ring R=p is quasiregular semiperfect, so we have Qp.i/.R=p/' BCcrys.R/
'Dpi

(see [12, Section 8]).
Note that we can replace the square (67) by Hodge completing the bottom row

and it will still remain Cartesian, since the homotopy fibers do not change. This
yields a new homotopy Cartesian square where one identifies the rings as in Con-
struction 7.6, and then the result follows.

Remark 7.9 (Identifying the maps)
Unfortunately, in general we do not know a good way of identifying the map
K.OC=pIQp/!HP.OC IQp/with the usual map in the fundamental exact sequence.
However, we can argue that it has to match with the usual map, at least for C D Cp ,
by appealing to some general results. For simplicity, in this example, we drop the
argument of the perfectoid ring; that is, we write BCdR for BCdR.OCp /, and so on.

Our first goal is to identify the map obtained from �2 in (66),

.BCcrys/
'Dp! BCdRI (68)

by construction, it is Gal.Qp/-equivariant. Now we have a (Galois-equivariant) short
exact sequence

0!Qp.1/! .BCcrys/
'Dp!Cp! 0;

as above. Furthermore, the map (68) when restricted to the submodule Qp.1/ 


.BCcrys/
'Dp is essentially determined: it is given by the dlog map to derived de

Rham cohomology as it comes from the usual Chern character K.OC IQp/ !
HC�.OC IQp/, for OC . As is proved in [29, Proposition 2.17], the image of a
generator of Qp.1/ gives a uniformizer of BCdR (which is a discrete valuation ring).

Recall that BCdR has a complete, exhaustive filtration (via powers of the aug-
mentation ideal) with associated graded given by Cp;Cp.1/;Cp.2/; : : : . Moreover,
there are no Gal.Qp/-equivariant maps Cp ! BCdR (see [30, Remark 1.5.8]). Thus
there is at most one (and hence exactly one, by construction) Galois-equivariant map
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.BCcrys/
'Dp! BCdR which extends the dlog map. This shows that the map (68) is actu-

ally completely determined by its behavior on Qp.1/.
Now by a deep result of Fargues–Fontaine, the graded ring

L
i�0BCcrys.OC /

'Dpi

is generated in degree 1 (see [28, Theorem 6.2.1]), so the maps for higher i are deter-
mined by their behavior for i D 1 by multiplicativity. In particular, these observations
show that the maps in the fundamental exact sequence, although here they are pro-
duced by topological means, are entirely determined by their value on Qp.1/, as long
as they are Galois-equivariant.

7.3. Application to p-adic nearby cycles
Let C be an algebraically closed, complete non-Archimedean field of mixed char-
acteristic .0;p/. In [12, Section 10], an explicit description of the Zp.i/ sheaves is
given for smooth formal schemes over OC . Using this, we can recover some cases of
comparison results of Colmez–Nizioł [24] and Tsuji [88] (cf. also Kato [54]).

Definition 7.10 (p-adic nearby cycles)
Let X be a formal scheme over OC . We consider the pro-étale site Xproet of X (equiv-
alently, of its special fiber; cf. [13]).

For each i , we consider13 the sheaf of p-adic nearby cycles R �.Zp.i//, which
is a D.Zp/�0-valued sheaf on Xproet. Explicitly, given an affine pro-étale open
SpfA!X, we have that R�.SpfA;R �.Zp.i///'R�proet.SpecAŒ1=p�;Zp.i// is
the pro-étale cohomology of AŒ1=p� with values in the (usual) sheaf Zp.i/.14

THEOREM 7.11 (Bhatt–Morrow–Scholze [12])
Let R be a formally smooth OC -algebra, and let XD Spf.R/. Then, as sheaves on
Xproet, we have a natural equivalence Zp.i/' ��iR �.Zp.i//. In particular, it fol-
lows that

Zp.i/.R/'R�
�
Xproet; �

�iR �
�
Zp.i/

��
:

To apply this, let K be a discretely valued field with perfect residue field k, ring
of integers OK 
K , and uniformizer � 2 OK ; suppose that K 
 C (e.g., we could

take C D bK). Let X0 be a smooth proper formal scheme over OK with generic fiber
X0, a smooth proper rigid space over K .

Construction 7.12 (de Rham cohomology of formal schemes and rigid spaces)
We let L�X0=OK denote the (p-adic) derived de Rham cohomology of X0 over

13The functor here should refer to the generic fiber functor, but we do not define it here to avoid technicalities.
14Here we can consider either the scheme Spec.AŒ1=p�/ or the rigid analytic generic fiber by the affinoid
comparison theorem (see [51, Corollary 3.2.2]).
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OK equipped with its Hodge filtration. In fact, L�X0=OK is also the p-complete
usual de Rham complex since X0 is formally smooth over OK (cf. [10]), and the
Hodge filtration is a finite filtration. We let (by a slight abuse of notation) �X0=K D
.L�X0=OK /Qp denote the rationalization, which we can interpret as the de Rham
cohomology of the rigid generic fiber X0. Note that L�X0=OK is a perfect OK -
module and �X0=K is a perfect K-module.

We also consider the ring BCdR D BCdR.OC / with its 	-adic filtration. Together,
it follows that �X0=K ˝K BCdR admits a filtration in the derived 1-category D.K/.
Then one has the following result, a special case of results of [24] and [88] in the
case of good reduction; note that [24] and [88] treat the more general semistable case,
which we do not consider here. In the following, all references to Acrys, BCdR, and so
on will implicitly be with respect to the perfectoid ring OC .

THEOREM 7.13 (cf. Colmez–Nizioł [24], Tsuji [88])
Let X0=OK be a smooth proper formal scheme. Let X denote the base change of X0 to
OC , and let X0 be its reduction modulo � . For each i � 0, we have a natural pullback
square in D.Qp/:

R�.Xproet; �
�iR �.Qp.i/// .Acrys˝W.k/R�crys.X0=W.k///

'Dpi Œ1=p�

Fil�i .�X0=K˝KBCdR/ .�X0=K ˝K BCdR/:

Proof
We claim that this follows from Theorem 6.17, applied to X. Note that (55) gives a
fiber square

Qp.i/.X/ Qp.i/.X=�/

.L�
�i
X=OK

/Qp .L�X=OK /Qp :

(69)

In fact, Qp.i/.X=p/!Qp.i/.X=�/ is an isomorphism thanks to Lemma 6.19.
The top left term in (69) is identified via Theorem 7.11. For the top right, we

observe that there is a natural equivalence

X˝OC OC=� 'X0˝k OC=�:
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For Fp-algebras, the construction LW�.�/ satisfies a Künneth formula, so we get

LW�X=� 'LW�X0
˝W.k/Acrys:

Note that we do not need to p-complete again, since X0 is smooth and proper. Taking
Frobenius fixed points, we identify the top right term now rationally, thanks to (54).

We can replace the bottom row of (69) with its completion with respect to the
(rationalized) Hodge filtration. Recall that p-adic derived de Rham cohomology
together with its Hodge filtration (so as a filtered E1-algebra) satisfies a Künneth
formula. Therefore, we have

L�X=OK 'L�X0=OK˝OKL�OC =OK ;

since the filtration on L�X0=OK is finite, and it is by perfect OK -modules. It follows
that the Hodge completion of the rationalization of L�X=OK is equivalent, in the
filtered derived1-category of K , to

�X0=K ˝K BCdR;

where we use Construction 7.6 for the identification with BCdR.

Appendix A. Twisted Tate diagonals
In this section, we investigate under which conditions Hochschild homology in a gen-
eral symmetric monoidal 1-category admits a (twisted) cyclotomic structure. The
main result is Corollary A.9, and the fact that it applies to graded and filtered THH is
recorded in Examples A.10 and A.11.

As usual, we fix a prime p. Let C be a presentably symmetric monoidal 1-
category, and let L W C! C be a symmetric monoidal, left adjoint functor.

Definition A.1
An L-twisted diagonal on C is a symmetric monoidal natural transformation


 W L.C/! .C ˝ � � � ˝C/hCp

of lax symmetric monoidal functors C ! C . Assume that C is additionally stable;15

then an L-twisted Tate diagonal is a symmetric monoidal natural transformation


 W L.C/! Tp.C / WD .C ˝ � � � ˝C/
tCp :

15In fact, semiadditive (so that the Tate construction is defined) suffices.
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Example A.2

(1) The1-category of spaces admits a (unique) id-twisted diagonal, and the1-
category of spectra admits a (unique) id-twisted Tate diagonal (see [73, Sec-
tion III.1]).

(2) More generally, if C admits the Cartesian symmetric monoidal structure, then
it admits a canonical id-twisted diagonal induced by the actual diagonal.

Example A.3
Suppose that R is an E1-ring and C DModR, considered as a symmetric monoidal
1-category with the R-linear tensor product. Then every left adjoint, symmetric
monoidal functor L is given by an induction along an E1-map l W R! R, and we
will prove below that the datum of an L-twisted Tate diagonal on C is equivalent to
an E1-homotopy between the composition

R
l
�!R

triv
��!RtCp

and the Tate-valued Frobenius ' W R!RtCp of R (see [73, IV.1]). We shall refer to
an E1-ring R with such a datum as a cyclotomic base. An example is RD SŒz� (see
Example A.12 below).

Proof
To see that the datum of a twisted Tate diagonal is equivalent to such an equivalence,
we first note that a symmetric monoidal natural transformation L! Tp of func-
tors ModR!ModR is determined by its restriction to the perfect modules Mod!R 

ModR since L preserves filtered colimits. Since Tp is lax symmetric monoidal, we
get a factorization

ModR
Tp
��!ModTp.R/

restriv
���!ModR

as lax symmetric monoidal functors. Upon restriction to Mod!R, the first functor is
given by base change along the Tate-valued Frobenius ' W R!RtCp such that we get
a factorization Tp jMod!

R
D restriv ı ind' . Now a symmetric monoidal transformation

L jMod!
R
D indl ! restriv ı ind'

is by adjunction equivalent to a natural transformation

indtrivıl D indtrivindl ! ind' :

But every object in Mod!R is dualizable, and both functors indtrivıl and ind' are sym-
metric monoidal. Thus every such symmetric monoidal transformation is necessarily
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an equivalence and thus induced by an equivalence of maps of E1-rings R!RtCp .
This shows the claim.

Remark A.4
Note that a general symmetric monoidal, stable 1-category C does not admit L-
twisted Tate diagonals for arbitrary L. For example, if we consider C D D.Z/ '

ModHZ, then by Example A.3 above a twisted Tate diagonal would be the same as a
factorization of the Tate-valued Frobenius

HZ! .HZ/tCp

through the triv-map HZ!HZtCp . These two maps, however, differ by Steenrod
operations, as shown in [73, IV.1]. But any twist would be the identity.

In the following, we use the notation HHA to denote the Hochschild homology
object of an algebra object A 2 Alg.C/ internal to C ; for example, if C D Sp, then
this recovers THH.

PROPOSITION A.5
Assume that C is equipped with an L-twisted diagonal (resp., Tate diagonal). Then
we get for each algebra object A 2Alg.C/ an induced S1-equivariant map

L.HHA/! .HHA/hCp resp. L.HHA/! .HHA/tCp

which is functorial and symmetric monoidal in A.

Proof
We closely follow the construction of the cyclotomic structure on THH given in [73,
Section III.2]. We will mostly indicate the necessary changes and thus recommend
that the reader take a look at the construction there first. We treat the case of the Tate
diagonal, which is the only case that we will need in this paper, although the case of
the diagonal works exactly the same.

We first recall that HHA is the geometric realization of the cyclic object in C

informally written as

� � � A˝A˝A

C3

A˝A

C2

A :

Thus L.HHA/ is the geometric realization of the cyclic object
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� � � L.A˝A˝A/

C3

L.A˝A/

C2

L.A/ :

For a given L-twisted Tate diagonal


 W L.C/! .C ˝ � � � ˝C/tCp D Tp.C /

we want to construct a natural map of cyclic objects

� � � L.A˝3/

�

C3

L.A˝2/

�

C2

LA

�

� � � .A˝3p/tCp

C3

.A˝2p/tCp

C2

.A˝p/tCp

and obtain the desired mapL.HHA/! .HHA/tCp as the geometric realization of this
map of cyclic objects followed by the canonical interchange map from the realization
of the Tate constructions to the Tate construction of the realization.

In order to construct such a natural transformation of cyclic objects, we proceed
as in [73]: we eventually need to show that we can extend the symmetric monoidal
natural transformation 
 W L! Tp of functors C ! C to a BCp-equivariant sym-
metric monoidal natural transformation of functors from the functor

QL W N.FreeCp /�N.Fin/ C˝act

pr
�! C˝act

˝
�! C

L
�! C

given by �
S; .Xs2SDS=Cp /

�
7!L

�O
s2S

Xs

�
to the functor

QTp W N.FreeCp /�N.Fin/ Sp˝act! .C˝act/
BCp

˝
�! CBCp

�tCp

���! C

given by �
S; .Xs2SDS=Cp /

�
7!
�O
s2S

Xs

�tCp
:
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Here FreeCp is the category of finite free Cp-sets equipped with the co-Cartesian
symmetric monoidal structure. The group object BCp-acts on this category in the
obvious way and acts trivially on C . For a precise construction of these functors, we
refer to [73, Section III.3], specifically Proposition III.3.6 and the construction around
that.

The inclusion

Fun˝
�
N.FreeCp /�N.Fin/ C˝act;C

�
� Funlax

�
N.FreeCp /�N.Fin/ C˝act;C

�
admits a right adjoint by Lemma III.3.3 (resp., Remark III.3.5) in [73]. Using the
same construction and argument as in the proof of [73, Lemma III.3], we see that
the 1-category Fun˝.N.FreeCp / �N.Fin/ C˝act;C/ is equivalent to the 1-category
Fun.NTorCp ;Funlax.C ;C//, where TorCp denotes the category of Cp-torsors. Under
this equivalence, the right adjoint to the inclusion is given by restricting a functor
in Funlax.N.FreeCp / �N.Fin/ C˝act;C/ to NTorCp � C � N.FreeCp / �N.Fin/ C˝act and
forming the adjunct.

Now the functor QL is symmetric monoidal rather than lax symmetric monoidal.
Thus to construct a map from QL to QTp is by adjunction equivalent to constructing
a transformation in Fun.NTorCp ;Funlax.C ;C// between the respective restrictions.
Moreover, BCp-acts on all those categories; that is, constructing a BCp-equivariant
transformation between QL and QTp is equivalent to constructing a transformation in

FunBCp
�
NTorCp ;Funlax.C ;C/

�
:

Now the category TorCp is in fact equivalent to BCp . Since the BCp-action on
Funlax.C ;C/ is trivial, it follows that the above1-category of BCp-equivariant func-
tors is equivalent to Funlax.C ;C/.

Taking everything together, we see that there is a unique symmetric monoidal
transformation QL! QTp extending the transformation 
 W L! Tp . Together with the
constructions above, this finishes the proof.

We shall refer to the map L.HHA/! .HHA/tCp as a twisted cyclotomic struc-
ture on HHA. Thus the last result shows that, for 1-categories with a twisted Tate
diagonal, we find that Hochschild homology admits a twisted cyclotomic structure.

LEMMA A.6
For a given L-twisted diagonal on C , the stabilization Sp.C/ admits a canonical
induced Sp.L/-twisted Tate diagonal.

Proof
We would like to construct a symmetric monoidal natural transformation
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Sp.L/.C /! .C ˝ � � � ˝C/tCp D Tp.C /:

Such a transformation is by adjunction the same as a symmetric monoidal transfor-
mation

id!R0Tp;

where R0 W Sp.C/! Sp.C/ is the right adjoint to Sp.L/. We now use that the functor
�1 induces an equivalence

FunEx
lax

�
Sp.C/;Sp.C/

�
! FunEx

lax

�
Sp.C/;C

�
by [72]. It follows that it suffices to construct a symmetric monoidal transformation

�1!�1R0Tp

of functors Sp.C/! C . We denote by R W C ! C the right adjoint to the functor
L W C! C . Then we have an equivalence�1R0 'R�1 of lax symmetric monoidal
functors which follows from the fact that the left adjoint diagram

C
L

†1

C

†1

Sp.C/
Sp.L/

Sp.C/

commutes (up to symmetric monoidal equivalence). As a result, we need to construct
a symmetric monoidal natural transformation

�1!R�1Tp: (70)

Now we use that we have canonical symmetric monoidal transformations

� W .�1C ˝� � �˝�1C/hCp !�1
�
.C ˝� � �˝C/hCp

�
!�1

�
.C ˝� � �˝C/tCp

�
;

where the first one is induced by the lax symmetric monoidal structure of�1 together
with the fact that it commutes with limits and the second by the canonical map from
homotopy fixed points to the Tate construction.

Now we use the unstable diagonal on C to get as the adjoint a symmetric
monoidal natural transformation

�1C !R.�1C ˝ � � � ˝�1C/hCp

and compose it with the map R.�/ above to get a symmetric monoidal natural trans-
formation as in (70).
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For every symmetric monoidal 1-category I , we consider the symmetric
monoidal functor lp W I ! I given by sending i to i˝p . We let

Lp W Fun.I;S/! Fun.I;S/

be a left Kan extension along lp . We equip the category Fun.I;S/ with the Day
convolution symmetric monoidal structure. Then the left Kan extension Lp becomes
symmetric monoidal.

LEMMA A.7
Assume that the 1-category I has the following property: for every pair of objects
i; j 2 I we have that the canonical forgetful map

MapI .i
˝p; j /hCp !MapI .i

˝p; j / (71)

is an equivalence of spaces.16 Then the inverse of the map (71) induces a canonical
Lp-twisted diagonal on Fun.I;S/.

Proof
We consider the symmetric monoidal (co)Yoneda embedding

I op! Fun.I;S/:

Then symmetric monoidal transformations

Lp.C /! .C ˝ � � � ˝C/hCp

as functors Fun.I;S/! Fun.I;S/ are the same as symmetric monoidal transfor-
mations between the restrictions of the functors along the Yoneda embedding. The
restricted functors I op! Fun.I;S/ are given by the lax symmetric monoidal assign-
ments

i 7!
�
j 7!MapI .i

˝p; j /
�

and i 7!
�
j 7!MapI .i

˝p; j /hCp
�
:

The canonical map MapI .i
˝p; j /hCp !MapI .i

˝p; j / is a symmetric monoidal nat-
ural transformation. By assumption, it is an equivalence so that the inverse induces
the required transformation.

Remark A.8
For a general symmetric monoidal 1-category I , the category Fun.I;S/ does not

16Note that an equivalent way of stating this condition is to say that the homotopy orbits .i˝p/hCp exist in I
and the map i˝p! .i˝p/hCp is an equivalence.
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admit an Lp-twisted diagonal. As an example, consider any co-Cartesian symmetric
monoidal1-category I . Then the Day convolution structure on Fun.I;Sp/ is Carte-
sian.17 Thus an Lp-twisted diagonal would amount to a natural symmetric monoidal
transformation

F �p! .F �p/hCp ;

which does not exist.
But note that this category admits an id-twisted diagonal. This raises the question

if for every symmetric monoidal 1-category I there is a twist on Fun.I;S/ and a
twisted diagonal. The answer to this question is also “no” in general, but we will not
go into the intricacies of concrete counterexamples here.

COROLLARY A.9
If I is a symmetric monoidal1-category satisfying the condition of Lemma A.7, then
we have for every algebra A in Fun.I;Sp/ a twisted cyclotomic structure on HHA,
that is, an S1-equivariant map

Lp.HHA/! .HHA/tCp :

This map is natural and symmetric monoidal in A.

Proof
Combine Proposition A.5 with Lemmas A.6 and A.7.

Example A.10
We consider the category I D Zds

�0. Then Fun.I;Sp/ is the 1-category of graded
spectra. The category I obviously satisfies the condition of Lemma A.7. Thus we get
that for a graded ring R�, graded THH admits an Lp-twisted cyclotomic structure or,
equivalently, a sequence of S1-equivariant maps

THH.R/i ! THH.R/tCppi :

The same logic applies to spectra graded over any discrete monoid in place of Zds
�0.

Example A.11
Consider the1-category I D Z

op
�0 associated to the poset of positive integers. Then

this also satisfies the condition of Lemma A.7. The category of functors Fun.I;Sp/ is
given by filtered spectra, and thus filtered THH of a filtered ring spectrum R admits a

17This follows from the fact that, generally, Day convolution for a co-Cartesian source is given by the pointwise
tensor product, which, in our case, happens to agree with the Cartesian product.
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filtered cyclotomic structure, that is, S1-equivariant maps

Fil�iTHH.R/!
�
Fil�piTHH.R/

�tCp
:

Example A.12
Consider the category I DBZ�0. This category also obviously satisfies the condition
of Lemma A.7. Thus the category

Fun.I;Sp/'ModSŒz�

admits a twisted Tate diagonal, and thus relative THH admits a (twisted) cyclo-
tomic structure, as is used in [12, Section 11]. The twist Lp corresponds to the map
l W SŒz�! SŒz� sending z to zp .

We want to end this section by noting some functorialities of the twisted cyclo-
tomic structures.

Definition A.13
A symmetric monoidal category with (Tate) diagonals consists of a triple .C ;L;
/
as in Definition A.1. A map of symmetric monoidal categories with (Tate) diagonals

.C ;L;
/! .C 0;L0;
0/

is given by a left adjoint symmetric monoidal functor F W C ! C 0 together with a
symmetric monoidal equivalence L0 ı F ' F ıL and a natural symmetric monoidal
equivalence between the two maps

L0.FX/! .FX ˝ � � � ˝FX/tCp

induced from 
 and 
0 (both sides considered as lax symmetric monoidal functors
C! C 0).

Form the construction of the twisted cyclotomic structure in Proposition A.5, we
see immediately that for such a map of symmetric monoidal1-categories with Tate
diagonals we get an equivalence of twisted cyclotomic objects

F.HHA/'HH.FA/

for every algebra A in C . Here the first object F.HHA/ is twisted cyclotomic by the
composition

LF.HHA/
'
�! FL.HHA/

F'
��! F.HHAtCp /! F.HHA/tCp :
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We also have a relative analogue of Lemma A.6: every map of symmetric monoidal
1-categories with diagonals induces upon stabilization a map of symmetric monoidal
1-categories with Tate diagonals. This is straightforward to prove. Finally, there is
also an analogue of Lemma A.7, which we will state and prove now.

LEMMA A.14
Assume that f W I ! I 0 is a symmetric monoidal functor such that I and I 0 satisfy the
condition of Lemma A.7. Then left Kan extension along f induces a map of symmetric
monoidal1-categories with diagonals�

Fun.I;S/;Lp;

�
!
�
Fun.I 0;S/;L0p;


0
�
;

where Lp , L0p , 
 and 
0 are as in Lemma A.7.

Proof
We have a commutative square

I
f

lp

I 0

l 0p

I
f

I 0

for the functors lp.i/D i˝p and l 0p.j /D j
˝p . Thus we get an induced square of the

left Kan extensions

Fun.I;S/
F

Lp

Fun.I 0;S/

L0p

Fun.I;S/
F

Fun.I 0;S/:

This provides the first part of the datum of a map of symmetric monoidal 1-
categories with Tate diagonals. We now also have to provide an equivalence of two
different natural transformations between two functors

Fun.I;S/! Fun.I 0;S/:

Such a transformation is determined by its restriction to I op � Fun.I;S/, and there
the functors are given by

i 7!
�
j 7!MapI 0

�
f .i/˝p; j

��
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and

i 7!
�
j 7!MapI 0

�
f .i/˝p; j

�hCp�
:

Unravelling the constructions, we see that both of the two transformations are given
by the inverse of the canonical forgetful map

MapI 0
�
f .i/˝p; j

�hCp
!MapI 0

�
f .i/˝p; j

�
and thus are canonically equivalent.

From these statements together we can deduce the following corollary.

COROLLARY A.15
Assume that f W I ! I 0 is a symmetric monoidal functor such that I and I 0 satisfy
the condition of Lemma A.7. Then, for every algebra A 2 Fun.I;Sp/, we have an
equivalence of L0p twisted cyclotomic objects

F.HHA/'HH.FA/;

where F is left Kan extension along f .

Example A.16
For a graded ring spectrum R� we have that the direct sumM

i

THH.R�/i

is equivalent to THH.
L
i R/ as cyclotomic spectra. Similarly, for a filtered ring spec-

trum R, we have that the filtered cyclotomic structure refines the cyclotomic structure
on THH.R/.

Example A.17
We finally note that one can also look at the functor

ev0 W Fun.Zds
�0;Sp/! Sp

given by restriction to the 0th component. We claim that this also refines to a map of
symmetric monoidal1-categories with Tate diagonals. This can be seen by verifying
the corresponding unstable statement, which is straightforward using an argument
similar to the one in the proof of Corollary A.15. This then shows that the cyclotomic
structure on the 0th graded component THH.R�/0 agrees with the one on THH.R0/
for every graded ring spectrum R�.
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Appendix B. Categorical lemmas

Construction B.1 (Left Kan extensions)
Let R be a ring, and let PolyR be the category of finitely generated polynomial R-
algebras. Given a presentable1-category C and an accessible functor f W PolyR!
C , we can left Kan extend to obtain a functor Lf W SCRR ! C which commutes
with geometric realizations, for SCRR the1-category of simplicial commutative R-
algebras (cf. [62, Section 5.5.8] and [63, Section 4.2]).

Let .L;R/ W C � D be an adjunction of 1-categories. Then, for any 1-
category E , we obtain an adjunction

.R�;L�/D .f 7! f ıR; f 0 7! f ıL/ W Fun.C ;E/� Fun.D ;E/: (72)

Remark B.2
Let f1; f2 W D ! E be functors. Suppose that, for any x 2 D , the natural map
f1.LRx/! f1.x/ is an equivalence. Then we find

HomFun.D;E/.f1; f2/'HomFun.C ;E/.f1 ıL; f2 ıL/: (73)

This follows from the adjunction (72).

Now we specialize to the case where C D SCR is the 1-category of simplicial
commutative rings and D D SCRFp is the 1-category of simplicial commutative
Fp-algebras. We have an adjunction .L;R/ W SCR � SCRFp , where the left adjoint
is R 7!R˝LZ Fp and the right adjoint is simply the forgetful functor.

For any R 2 SCRFp , we have a canonical endomorphism ' W R!R, the Frobe-
nius.

LEMMA B.3
Let R 2 SCRFp . There is a natural map f W R! R˝LZ Fp in SCRFp such that the

composites R
f
! R˝LZ Fp! R and R˝LZ Fp! R! R˝LZ Fp are the respective

Frobenius endomorphisms.

Proof
It suffices to assume that R is discrete (even a finitely generated polynomial ring) via
left Kan extension. In this case,R˝LZ Fp is concentrated in homological degrees 0 and
1 (with �0 DR itself), and one knows that the Frobenius endomorphism annihilates
�1 (cf. [14, Proposition 11.6]). Thus, the Frobenius mapR˝LZ Fp!R˝LZ Fp factors
canonically through the truncation map R˝LZ Fp! �0.R˝

L
Z Fp/Š R. This gives

the map f as desired.
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COROLLARY B.4
Let F1;F2 W SCRFp !D.Z/ be two functors. Suppose that F1 has the property that
the natural map F1.R/! F1.R/ given by Frobenius is multiplication by pi . Then for
any natural transformation u W F1.�˝LZ Fp/! F2.�˝

L
Z Fp/ of functors SCRZ!

D.Z/, we have that piu arises from a natural transformation F1! F2. In fact, we
have

HomFun.SCRZ;D.Z//

�
F1.�˝

L
Zp

Fp/;F2.�˝
L
Zp

Fp/
�
Œ1=p�

'HomFun.SCRFp ;D.Z//
.F1;F2/Œ1=p�:

Proof
This follows from (72) in the case of the adjunction .L;R/ W SCRZ � SCRFp . By
construction, we are given a map L�F1! L�F2 of functors SCRFp ! D.Z/, or,
equivalently, by adjointness a map R�L�F1! F2 of functors SCRZ!D.Z/. Now
we have a natural map F1!R�L�F1 given by the natural map f W R! R ˝LZp
Fp of Lemma B.3; it has the property that the composites in either order with the
adjunction map R�L�F1! F1 are given by multiplication by pi . The composition
F1!R�L�F1! F2 defines the desired map F1! F2. This argument also proves
the displayed equation.

Let K be a complete discretely valued field with ring of integers OK 
 K and
residue field k; let � 2 OK be a uniformizer. Let FSmoothOK denote the category
of topologically finitely generated, formally smooth OK -algebras, and let Smoothk
denote the category of smooth k-algebras.

We now give a similar result for functors defined on a restricted class of simpli-
cial commutative k-algebras. For the next result, we will argue similarly, but with a
smaller set of1-categories. For these finiteness conditions, see [64, Section 7.2] (in
the slightly more complicated E1-case).

Definition B.5

(1) Let SCRafp
k

denote the 1-category of simplicial commutative k-algebras R
which are almost finitely presented: equivalently, �0.R/ is finitely generated
as a k-algebra and each �i .R/ is a finitely generated �0.R/-module. Equiva-
lently, R belongs to SCRafp

k
if and only if R can be written as the geomet-

ric realization of a simplicial diagram of finitely generated polynomial k-
algebras.

(2) Similarly, we define dSCR
afp

OK
to be the 1-category of �-complete simplicial

commutative OK -algebras R such that �0.R/ is topologically finitely gener-
ated over OK (i.e., a quotient of a �-completed polynomial ring) and each
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�i .R/ is finitely generated over R. Equivalently, R belongs to dSCR
afp

OK
if and

only if R can be written as the geometric realization of a simplicial diagram of
�-completed finitely generated polynomial OK -algebras. Yet another charac-
terization is that R should be almost finitely presented over the �-completion
of a finitely generated polynomial algebra over OK with a structure map that
is surjective on �0.

COROLLARY B.6
Let E be an1-category admitting sifted colimits. Let F1;F2 W SCRafp

k
! E be func-

tors. If
(1) F1 commutes with geometric realizations, and
(2) F1.R/' F1.�0R/ for R 2 SCRafp

k
,

then

HomFun.Smoothk ;E/.F1;F2/'HomFun.FSmoothOK ;E/

�
F1.�˝OK k/;F2.�˝OK k/

�
:

Proof
Since F1 is left Kan extended from smooth (even finite-type polynomial) k-algebras
as it commutes with geometric realizations, we have

HomFun.Smoothk ;E/.F1;F2/'Hom
Fun.SCR

afp
k
;E/
.F1;F2/:

Similarly,

HomFun.FSmoothOK ;E/

�
F1.�˝OK k/;F2.�˝OK k/

�
'Hom

Fun.dSCR
afp
OK

;E/

�
F1.�˝OK k/;F2.�˝OK k/

�
;

because F1.�˝OK k/ W
dSCR

afp

OK
! E is left Kan extended from FSmoothOK . Now

we have an adjunction dSCR
afp

OK
� SCRafp

k
given by base change and restriction of

scalars. Thus, the result follows as in Remark B.2.
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