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We calculate the mod-.p; v1; v2/ homotopy V .2/�TC.BPh2i/ of the topological cyclic homology of the
truncated Brown–Peterson spectrum BPh2i, at all primes p� 7, and show that it is a finitely generated and
free Fp Œv3�-module on 12pC4 generators in explicit degrees within the range�1���2p3C2p2C2p�3.
At these primes BPh2i is a form of elliptic cohomology, and our result also determines the mod-.p; v1; v2/

homotopy of its algebraic K-theory. Our computation is the first that exhibits chromatic redshift from
pure v2-periodicity to pure v3-periodicity in a precise quantitative manner.
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1 Introduction

Let p be a prime, let V .n/ denote a Smith–Toda complex with BP�V .n/ D BP�=.p; : : : ; vn/, and let
BPhni with ��BPhni DZ.p/Œv1; : : : ; vn� denote a truncated Brown–Peterson spectrum equipped with the
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620 Gabriel Angelini-Knoll, Christian Ausoni, Dominic Leon Culver, Eva Höning and John Rognes

E3 BP-algebra structure of Hahn and Wilson [2022, Theorem A]. Let P .x/D Fp Œx� and E.x/ denote the
polynomial and exterior Fp-algebras on a generator x, and let Fpfxg denote the Fp-module generated by x.

We confirm the quantitative form of the chromatic redshift conjecture of [Rognes 2000, page 8] in the case
of BPh2i at p�7, showing that V .2/� TC.BPh2i/ is finitely generated and free as a P .v3/-module. Hence
the topological cyclic homology functor takes the “pure fp-type 2” ring spectrum BPh2i with V .1/�BPh2i
finitely generated and free as a P .v2/-module to a “pure fp-type 3” ring spectrum TC.BPh2i/ with
V .2/� TC.BPh2i/ finitely generated and free as a P .v3/-module, dilating the wavelength of periodicity1

from jv2j D 2p2� 2 to jv3j D 2p3� 2.

Theorem 1.1 Let p � 7. There is a preferred isomorphism

V .2/� TC.BPh2i/Š P .v3/˝E.@; �1; �2; �3/

˚P .v3/˝E.�2; �3/˝Fpf„1;d j 0< d < pg

˚P .v3/˝E.�1; �3/˝Fpf„2;d j 0< d < pg

˚P .v3/˝E.�1; �2/˝Fpf„3;d j 0< d < pg

of P .v3/˝E.�1; �2; �3/-modules. This is a finitely generated and free P .v3/-module on 12pC4 explicit
generators in degrees �1� � � 2p3C 2p2C 2p� 3.

The close relation between algebraic K-theory and topological cyclic homology for p-complete ring
spectra leads to the following application; cf Theorem 12.20.

Theorem 1.2 Let p � 7. There is an exact sequence of P .v3/˝E.�1; �2; �3/-modules

0!†�2FpfN�1; N�2; N�1 N�2g ! V .2/�K.BPh2ip/
trc���! V .2/� TC.BPh2i/!†�1Fpf1g ! 0

with j N�i j D 2pi � 1. The localization homomorphism

V .2/�K.BPh2ip/! v�1
3 V .2/�K.BPh2ip/

is an isomorphism in degrees �� 2p2C2p, and the target is a finitely generated and free P .v˙1
3
/-module

on 12pC 4 generators.

The proven Lichtenbaum–Quillen conjecture for K.Z.p// and K.Zp/ also lets us pass from the p-complete
version to the p-local version of BPh2i; cf Theorem 12.21.

Theorem 1.3 Let p � 7. The p-completion map induces a .2p2C2p�2/-coconnected homomorphism

V .2/�K.BPh2i/ ���! V .2/�K.BPh2ip/:

The localization homomorphism

V .2/�K.BPh2i/! v�1
3 V .2/�K.BPh2i/

1See also Remark 1.9 regarding the recent resolution by Burklund, Schlank and Yuan [Burklund et al. 2022] of the (weaker)
qualitative form of the redshift conjecture, in the case of E1 ring spectra.

Geometry & Topology, Volume 29 (2025)



Algebraic K-theory of elliptic cohomology 621

is an isomorphism in degrees �� 2p2C2p, and the target is a finitely generated and free P .v˙1
3
/-module

on 12pC 4 generators.

Remark 1.4 An alternative title for this paper could be Topological cyclic homology modulo p, v1

and v2 of the second truncated Brown–Peterson spectrum. In earlier work [Ausoni and Rognes 2002] we
referred to the calculation of V .1/� TC.BPh1i/ as (an essential step toward) a calculation of the “algebraic
K-theory of topological K-theory”. The relation between BPh1i and topological K-theory is analogous to
that between BPh2i and elliptic cohomology, so we hope the reader grants us the poetic license presumed
by our choice of title.

The v1- and v2-periodic families in ��V .0/ and ��V .1/, respectively, are related to the well-known
˛-family visible to topological K-theory and the fairly well understood ˇ-family visible to elliptic
cohomology. The v3-periodic families emerging from our calculation are related to the third family of
Greek letter elements, the 
 -family, which is less well understood, and for which there is currently no
known detecting cohomology theory with a geometric interpretation of the cohomology classes. Our result
suggests that algebraic K-theory of elliptic cohomology may be such a detecting cohomology theory.

We now explain Theorem 1.1 in more detail. For each E3 ring spectrum B we have maps of E2 ring spectra

S !K.B/ trc
�! TC.B/ ��! THH.B/hT

! THH.B/

from the sphere spectrum to the topological Hochschild homology THH.B/ of B, via its algebraic
K-theory K.B/, topological cyclic homology TC.B/ and the T -homotopy fixed points of THH.B/. For
p � 7, the Smith–Toda spectrum V .2/ exists as a homotopy commutative and associative ring spectrum,
with a periodic class v3 2 �2p3�2V .2/. In Section 3 we recall that

V .2/� THH.BPh2i/DE.�1; �2; �3/˝P .�/;

with j�i j D 2pi � 1 for i 2 f1; 2; 3g and j�j D 2p3. In Sections 5 and 6 we use E2 ring spectrum
power operations to show that the THH-classes �i lift to K-theory classes �K

i 2 V .2/�K.BPh2i/, with
tr.�K

i / D �i . We also write �i for their images in V .2/� TC.BPh2i/ and V .2/� THH.BPh2i/hT . In
Sections 8–11 we determine the structure of the T -homotopy fixed point spectral sequence

E2.T /DH��.T ;V .2/� THH.BPh2i//D P .t/˝E.�1; �2; �3/˝P .�/) V .2/� THH.BPh2i/hT :

The image of v3 in V .2/� THH.BPh2i/hT is detected by t�. The homotopy classes

„i;d 2 V .2/� TC.BPh2i/

for i 2 f1; 2; 3g and 0< d < p are constructed in Section 12 so that

�.„i;d /D

1X
nD0

�iC3n;d

in V .2/� THH.BPh2i/hT . In this convergent series, each �k;d is a specific V .2/-homotopy element
detected by a class

xk;d D t
d
p

r.k/�Œk��
d
p

r.k�3/
2E1.T /:

Geometry & Topology, Volume 29 (2025)



622 Gabriel Angelini-Knoll, Christian Ausoni, Dominic Leon Culver, Eva Höning and John Rognes

Here Œk�2f1; 2; 3g satisfies k� Œk� mod 3, and r.k/DpkCpk�3C� � �CpŒk� for k�1. In particular, both

�.„i;d / and �i;d 2 ft
dpi�1

�ig

are detected by tdpi�1

�i in E1.T /, for i 2f1; 2; 3g. Letting @ denote the generator of V .2/�1 TC.BPh2i/,
and noting that �i �„i;dD0 for each i and d , this concludes our specification of the notation in Theorem 1.1,
which appears as Theorem 12.17 in the body of the text. One way to summarize the grading of the module
generators is to say that the Poincaré series of V .3/� TC.BPh2i/ is

.1Cx�1/.1Cx2p�1/.1Cx2p2�1/.1Cx2p3�1/

C .1Cx2p2�1/.1Cx2p3�1/.xCx3
C � � �Cx2p�3/

C .1Cx2p�1/.1Cx2p3�1/.x2p�1
Cx4p�1

C � � �Cx2p2�2p�1/

C .1Cx2p�1/.1Cx2p2�1/.x2p2�1
Cx4p2�1

C � � �Cx2p3�2p2�1/:

Remark 1.5 The seminal calculation in this field was made by Bökstedt and Madsen [1994; 1995]. For
the Eilenberg–MacLane spectrum BPh0i DHZ.p/ at p � 3 they established an isomorphism

V .0/� TC.Z.p//Š P .v1/˝E.@; �1/

˚P .v1/˝Fpf„1;d j 0< d < pg

of free P .v1/-modules of rank pC3, where„1;d is detected by td�1. The (then unproven) Lichtenbaum–
Quillen conjecture for K.Qp/ could be deduced from this, showing that the natural homomorphism

V .0/�K.Qp/! V .0/�K.SQp/
hGQp

is 0-coconnected, where GQp
D Gal.SQp=Qp/ is the absolute Galois group. In particular, the P .v1/-

module generators of V .0/� TC.Z.p// correspond in a precise manner to a basis for the Galois cohomology
groups in the descent spectral sequence

E2
�s;t DH s

Gal.QpIFp.t=2//) V .0/�sCtK.SQp/
hGQp :

The fact that V .0/� TC.Z.p// is P .v1/-torsion free is thus a reflection of Suslin’s theorem [1984]
that V .0/�K.SQp/ Š V .0/�ku D Fp Œu� is P .v1/-torsion free, and the finite generation and grading of
V .0/� TC.Z.p// corresponds to precise information about the Galois (or motivic) cohomology of Qp.

For the Adams summand BPh1i D ` of ku.p/ at p � 5, Ausoni and Rognes [2002] thereafter obtained an
isomorphism

V .1/� TC.`/Š P .v2/˝E.@; �1; �2/

˚P .v2/˝E.�2/˝Fpf„1;d j 0< d < pg

˚P .v2/˝E.�1/˝Fpf„2;d j 0< d < pg

of free P .v2/-modules of rank 4pC 4, where „1;d is detected by td�1 and „2;d is detected by tdp�2.
Moreover, Ausoni [2010] proceeded to calculate V .1/� TC.ku/, and showed [Ausoni 2005] that

V .1/�K. p̀/! V .1/�K.kup/
h�

Geometry & Topology, Volume 29 (2025)



Algebraic K-theory of elliptic cohomology 623

is an isomorphism. Rognes [2014, Section 5] viewed this as computational evidence for the existence of
a descent spectral sequence, converging to V .1/�K. p̀/, from a form of motivic cohomology defined
for E1 ring spectra such as p̀. The fact that V .1/� TC.`/ is P .v2/-torsion free would then reflect an
analog of Suslin’s theorem, and the finite generation and grading of V .1/� TC.`/ would correspond to
specific information about this spectrally defined motivic cohomology.2

Our present conclusions about V .2/� TC.BPh2i/ and V .2/�K.BPh2ip/ as P .v3/-modules continue this
pattern, and further suggest the existence of a descent spectral sequence from a motivic cohomology
defined for less commutative ring spectra, such as the E3 ring spectrum BPh2ip. If so, Theorem 1.1
provides information about these (at the time of writing, hypothetical) motivic cohomology groups.

Remark 1.6 Our calculations in V .2/-homotopy involve the homotopy element v3 2 �2p3�2V .2/

and its v2-Bockstein image i2j2.v3/ 2 �2p3�2p2�1V .2/, closely related to the first element 
1 2

�2p3�2p2�2p�1S in the third Greek letter family. To make a similar computation of V .3/� TC.BPh3i/ as
a P .v4/-module would require knowing the existence of a homotopy element v4 2 �2p4�2V .3/, mapping
to the class with the same name in BP�V .3/D BP�=.p; : : : ; v3/. The existence of v4 is presently not
known for any prime p; cf [Ravenel 2004, Section 5.6 and (5.6.13)]. Conceivably, a calculation could be
made of V� TC.BPh3i/ as a P .w/-module for another type 4 finite ring spectrum V , with v4 self-map
w W†dV ! V . Something similar was carried out for the Eilenberg–MacLane spectrum BPh0i DHZ.2/
at p D 2 in [Rognes 1999], calculating .S=2/� TC.Z.2// and .S=4/� TC.Z.2// in tandem.

Remark 1.7 Let T .3/D v�1
3

V .2/ be the telescopic localization of the type 3 complex V .2/, and let
V .3/ be the mapping cone of v3 W†

2p2�2V .2/! V .2/. The three theorems above imply that

T .3/� TC.BPh2i/Š T .3/�K.BPh2ip/Š T .3/�K.BPh2i/

are all nontrivial P .v˙1
3
/-modules, so that the Bousfield T .3/-localizations

LT .3/ TC.BPh2i/'LT .3/K.BPh2ip/'LT .3/K.BPh2i/

are all nontrivial spectra. Moreover, the graded abelian groups

V .3/� TC.BPh2i/ V .3/�K.BPh2ip/ V .3/�K.BPh2i/

are all finite, so
TC.BPh2i/p K.BPh2ip/p K.BPh2i/p

are all of fp-type 3 in the sense of [Mahowald and Rezk 1999]. These qualitative statements confirm a
weaker form of the chromatic redshift conjecture for BPh2i, roughly as formulated in [Ausoni and Rognes
2008, Conjecture 1.3], but do not contain the information that V .2/� TC.BPh2i/ is free over P .v3/, ie

2See also Remark 1.9 regarding the recent discovery by Hahn, Raksit and Wilson [Hahn et al. 2022] of such a cohomology
theory, in the case of E1 ring spectra.
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624 Gabriel Angelini-Knoll, Christian Ausoni, Dominic Leon Culver, Eva Höning and John Rognes

that TC.BPh2i/ is of “pure fp-type 3” in the sense of [Rognes 2000], nor the quantitative information
about its precise rank and generating basis.

In groundbreaking work, Hahn and Wilson [2022, Theorem B] confirmed the qualitative form of the
chromatic redshift conjecture for all BPhni, at all primes p. However, as outlined in Remark 1.5, we take
the view that the precise P .w/-module structure of V� TC.BPhni/, where V is some type .nC1/ finite
complex with vnC1 self-map w W†dV ! V , will be an essential ingredient of an understanding of it and
V�K.BPhnip/ as being obtained by descent from a form of motivic cohomology for ring spectra.

Remark 1.8 Ausoni and Rognes [2002] had outlined a calculation of V .n/� TC.BPhni/ as a P .vnC1/-
module, under the strong hypotheses that V .n/ exists as a ring spectrum (with a homotopy element vnC1)
and that BPhni admits an E1 ring spectrum structure. As in the case nD 1, the sketched argument used
a homotopy Cartan formula for E1 power operations, and was carried out in the range of degrees where
the comparison homomorphism y�1� W V .n/� THH.BPhni/! V .n/� THH.BPhni/tCp is an isomorphism.
When nD 2 and p � 7, this homomorphism is .2p2C2p�3/-coconnected, as we show in Theorem 8.1,
so that the calculation would determine V .2/� TC.BPh2i/ for �> 2p2C 2p� 3.

There is a .2p2�2/-connected map BPh2i ! BPh1i inducing a .2p2�1/-connected map

V .2/� TC.BPh2i/! V .2/� TC.BPh1i/

(cf [Bökstedt and Madsen 1994, Proposition 10.9; Dundas 1997] and Proposition 12.19). Hence the
known calculation of V .1/� TC.BPh1i/ does account for V .2/� TC.BPh2i/ in degrees �< 2p2�1. This
leaves a gap in degrees 2p2� 1� � � 2p2C 2p� 3, where the traditional arguments do not determine
V .2/� TC.BPh2i/. (This is a new phenomenon for n� 2; there is no such gap for n 2 f0; 1g.)

Around the year 2000 it was only known that BPhni could be realized as an E1 ring spectrum [Baker
and Jeanneret 2002, Corollary 3.5], so the calculations were hypothetical, even for n D 2 and p � 7.
With the much more recent Hahn–Wilson construction of an E3 ring structure on BPhni, it has finally
become possible to carry out most of the original program, as we show in this paper. The lower order
of commutativity has, however, required us to also develop a homotopy Cartan formula for certain E2

power operations, which we do in Section 5.

The original Bökstedt–Hsiang–Madsen presentation [Bökstedt et al. 1993] of TC.B/ was given in terms
of fixed point spectra THH.B/C for finite subgroups C �T , using the language of genuinely equivariant
stable homotopy theory. However, almost all calculations were made using the naively equivariant
homotopy fixed points THH.B/hC and Tate constructions THH.B/tC , and were therefore only known to
be valid in the range of degrees where the comparison map y�1 induces an isomorphism.

The new Nikolaus–Scholze presentation [2018] of topological cyclic homology promoted the ingredients
that were previously used for calculations into definitions. Hence TC.B/ was redefined in terms of the
homotopy fixed points THH.B/hT and Tate construction THH.B/tT , and the key role of the (naively
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Algebraic K-theory of elliptic cohomology 625

T -equivariant) map y�1, now called the p-cyclotomic structure map 'p , was greatly clarified. Moreover,
Nikolaus and Scholze proved that the old and new definitions agree when THH.B/ is bounded below,
eg for connective B. This means that by carrying out the homotopy fixed point and Tate construction
calculations in all degrees, we can now fully calculate V .2/� TC.BPh2i/, eliminating the gap of degrees
discussed above. We compare the old and new terminologies in Section 4.

Remark 1.9 After the present paper was first posted in preprint form, Hahn, Raksit and Wilson [Hahn
et al. 2022] introduced a motivic filtration on TC.R/, for so-called chromatically quasisyntomic E1 ring
spectra R, whose associated graded realizes the form of motivic cohomology that was predicted to exist in
Remark 1.5. This new cohomology theory for E1 ring spectra generalizes the syntomic cohomology for
quasisyntomic commutative rings introduced by Bhatt, Morrow and Scholze [Bhatt et al. 2019, Section 7.4].

In the same year, Burklund, Schlank and Yuan [Burklund et al. 2022, Theorem E], building on [Yuan
2024, Theorem A], proved that if R is an E1 ring spectrum such that K.n/�R¤ 0 and K.nC1/�RD 0,
then K.nC 1/�K.R/¤ 0. Combined with previous work of Land, Meier, Mathew and Tamme [Land
et al. 2024, Corollary B] and Clausen, Mathew, Naumann and Noel [Clausen et al. 2024] on the vanishing
of K.m/�K.R/ for m� nC 2, this proves that algebraic K-theory of an E1 ring spectrum increments
chromatic complexity by precisely one, thus establishing a very general form of qualitative redshift.

Acknowledgments We all thank the referee for good advice. Ausoni acknowledges support from the
project ANR-16-CE40-0003 ChroK. Culver was supported by the Max Planck Institute for Mathematics
while this work was being carried out. He would like to thank the Institute for their hospitality. Höning
thanks the Radboud Excellence Initiative for funding her postdoc position. This project received funding
from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement 101034255.

2 Smith–Toda and truncated Brown–Peterson spectra

Let A� be the mod-p dual Steenrod algebra, and write H�X DH�.X IFp/ for the mod-p homology of a
spectrum X , viewed as an A�-comodule. Likewise, let H DHFp denote the mod-p Eilenberg–MacLane
(E1 ring) spectrum.

By a Smith–Toda complex V .n/we mean a finite and p-local spectrum with H�V .n/DE.�0; : : : ; �n/�A�.
The spectra V .0/D S [p e1, V .1/D S [p e1 [˛1

e2p�1 [p e2p and V .2/ exist for p � 2, p � 3 and
p � 5, respectively; see Smith [1970, Section 4] and Toda [1971, Theorem 1.1]. In the stable homotopy
category there are unital multiplications �0 W V .0/ ^ V .0/ ! V .0/, �1 W V .1/ ^ V .1/ ! V .1/ and
�2 W V .2/^V .2/! V .2/ for p � 3, p � 5 and p � 7, respectively; cf [Yanagida and Yosimura 1977,
Sections 1.4, 2.4 and 3.3]. These are unique, and therefore commutative. They are also associative, with the
exception of �0 at pD 3. Toda [1971, Theorem 4.4] showed that V .3/ exists for p� 7 and admits a unital
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multiplication for p � 11. The spectra V .n/ for n� 4 are not known to exist at any prime p; cf [Ravenel
2004, (5.6.13)]. We use the following notation for some of the resulting homotopy cofiber sequences:

S
p
�! S

i0
�! V .0/

j0
�!†S;(2-1)

†2p�2V .0/
v1
�! V .0/

i1
�! V .1/

j1
�!†2p�1V .0/;(2-2)

†2p2�2V .1/
v2
�! V .1/

i2
�! V .2/

j2
�!†2p2�1V .1/;(2-3)

†2p3�2V .2/
v3
�! V .2/

i3
�! V .3/

j3
�!†2p3�1V .2/:(2-4)

The unital multiplications on V .0/, V .1/ and V .2/ are also regular, in the sense that the respective
Bockstein operators i0j0 W V .0/!†V .0/, i1j1 W V .1/!†2p�1V .1/ and i2j2 W V .2/!†2p2�1V .2/ act
as derivations; see [Araki and Toda 1965, Theorem 5.9; Yosimura 1977, Propositions 1.1 and 1.2].

The complex cobordism spectrum MU is a prototypical E1 ring spectrum. Basterra and Mandell [2013,
Theorem 1.1] proved that the p-local Brown–Peterson spectrum BP is a retract up to homotopy of MU.p/
in the category of E4 ring spectra, and that the E4 ring structure on BP is unique up to equivalence. By
an nth truncated Brown–Peterson spectrum BPhni we mean a complex orientable p-local ring spectrum
such that the composite

Z.p/Œv1; : : : ; vn�� ��BP! ��MU.p/! ��BPhni

is an isomorphism, following [Lawson and Naumann 2014, Definition 4.1]. It follows, as in [Lawson and
Naumann 2014, Theorem 4.4], that H�BPhni D P . N�k j k � 1/˝E. N�k j k > n/ as a subalgebra of the
dual Steenrod algebra. According to recent work by Hahn and Wilson [2022], there exist towers

� � � ! BPhnC 1i ! BPhni ! � � � ! BPh0i DHZ.p/

of E3 BP-algebra spectra, for all p, where each BPhni is an nth truncated Brown–Peterson spectrum.
Hence THH.BP/ is an E3 ring spectrum with cyclotomic structure, in the sense to be recalled in Section 4,
and there are towers

� � � ! THH.BPhnC 1i/! THH.BPhni/! � � � ! THH.Z.p//

of E2 THH.BP/-algebra spectra with cyclotomic structure. The availability of these T -equivariant ring
spectrum structures is an essential prerequisite for our calculations.

Chadwick and Mandell [2015, Corollary 1.3] showed that the Quillen map MU.p/! BP is an E2 ring
map, and it follows from [Basterra and Mandell 2013] that it exhibits BP as a retract up to homotopy
of MU.p/ in the category of E2 ring spectra. It is not known whether the Basterra–Mandell and
Quillen/Chadwick–Mandell E2 ring spectrum splittings can be chosen to agree, but the induced splittings
of �� THH.BP/ off from �� THH.MU.p//, in the category of differential graded algebras, must agree,
modulo addition of decomposables and multiplication by p-local units. Hence the calculation in [Rognes
2020, Theorem 5.6] of the �-operator on �� THH.BP/, induced by the T -action on THH.BP/, is valid
also for the Basterra–Mandell splitting, up to decomposables and p-local units.
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Algebraic K-theory of elliptic cohomology 627

3 Topological Hochschild homology

Let p be an odd prime. We use the conjugate pair of presentations

A� D P .�k j k � 1/˝E.�k j k � 0/D P . N�k j k � 1/˝E. N�k j k � 0/DH�H

of the dual Steenrod algebra [Milnor 1958], with N�k D �.�k/ in degree 2.pk � 1/ and N�k D �.�k/ in
degree 2pk � 1. The Hopf algebra coproduct is given by

 . N�k/D
X

iCjDk

N�i ˝ N�
pi

j and  . N�k/D 1˝ N�k C

X
iCjDk

N�i ˝
N�
pi

j :

The mod-p homology Bockstein satisfies ˇ. N�k/D N�k . The same formulas give the A�-coaction � and
Bockstein operation on the subalgebras

H�BPD P . N�k j k � 1/ and H�BPhni D P . N�k j k � 1/˝E. N�k j k > n/

of A�. For each E1 ring spectrum (or S -algebra) B, the topological Hochschild homology THH.B/ has
a natural T -action, which induces � -operators

� WH� THH.B/!H�C1 THH.B/ and � W �� THH.B/! ��C1 THH.B/

in homology and homotopy. Since BP and the BPhni are (at least) E3 ring spectra, we can make the
following homology computations:

Proposition 3.1 [McClure and Staffeldt 1993, Remark 4.3; Angeltveit and Rognes 2005, Theorem 5.12]
There are A�-comodule algebra isomorphisms

H� THH.BP/ŠH�BP˝E.� N�k j k � 1/

and
H� THH.BPhni/ŠH�BPhni˝E.� N�1; : : : ; � N�nC1/˝P .� N�nC1/:

Each class � N�k is A�-comodule primitive , while �.� N�nC1/D 1˝ � N�nC1C N�0˝ � N�nC1.

Passing to homotopy, recall that ��BPD Z.p/Œvn j n� 1� with jvnj D 2pn� 2. To be definite, we take
the vn to be the Hazewinkel generators.

Proposition 3.2 [McClure and Staffeldt 1993, Remark 4.3; Rognes 2020, Proposition 4.6, Theorem 5.6]
There is an algebra isomorphism

�� THH.BP/Š ��BP˝E.�n j n� 1/;

where �n has degree j�nj D 2pn � 1 and (mod-p) Hurewicz image h.�n/ D � N�n. Here �.�n/ D 0 for
each n. The first few �.vn/ satisfy

�.v1/D p�1; �.v2/D p�2� .pC 1/v
p
1
�1;

�.v3/D p�3� .pv1v
p�1
2
C v

p2

1
/�2� .v

p
2
� .pC 1/v

pC1
1

v
p�1
2
Cp2v

p2�1
1

v2Cpv
p2Cp
1

/�1:
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The specific choice of �n 2 �2pn�1 THH.BP/ made in [Rognes 2020] is the unique class detected by
tn 2 �2pn�2.BP^BP/ in filtration degree 1 of the spectral sequence associated to the skeleton filtration
of THH.BP/. The claim that its Hurewicz image equals � N�n 2H2pn�1 THH.BP/ follows from the proof
of [Zahler 1972, Lemma 3.7].

If V .n/ exists as a finite spectrum with

H�V .n/DE.�0; : : : ; �n/;

then H�.V .n/ ^ BPhni/ Š A�, so that V .n/ ^ BPhni ' H . We write hn W V .n/�X ! H�X for the
(generalized) Hurewicz homomorphism induced by the map V .n/!H extending the unit S !H .

Proposition 3.3 [Ausoni and Rognes 2012, Lemma 4.1; Angelini-Knoll et al. 2024, Proposition 2.9]
Suppose that V .n/ exists as a ring spectrum. Then

V .n/� THH.BPhni/D ��.V .n/^THH.BPhni//DE.�1; : : : ; �nC1/˝P .�nC1/

maps isomorphically to the subalgebra of A�-comodule primitives in

H�.V .n/^THH.BPhni//ŠH�V .n/˝H� THH.BPhni/ŠA�˝E.� N�1; : : : ; � N�nC1/˝P .� N�nC1/:

Here each �k is the image of �k 2 �2pk�1 THH.BP/ under the natural map induced by S ! V .n/ and
BP! BPhni, with Hurewicz images

h.�k/D 1^ � N�k and hn.�k/D � N�k :

Moreover , �nC1 in degree j�nC1j D 2pnC1 is the class with Hurewicz images

h.�nC1/D 1^ � N�nC1C �0 ^ � N�nC1 and hn.�nC1/D � N�nC1:

Note that the A�-coaction sends h.�nC1/ to

1˝ .1^ � N�nC1/C N�0˝ .1^ � N�nC1/C 1˝ .�0 ^ � N�nC1/C �0˝ .1^ � N�nC1/D 1˝ h.�nC1/;

so that this class is A�-comodule primitive. We spell out these definitions a little more explicitly in the
case of main interest to us.

Definition 3.4 For p � 7 let

�1; �2; �3; �3 2 V .2/� THH.BPh2i/

denote the classes in degrees j�1jD 2p�1, j�2jD 2p2�1, j�3jD 2p3�1 and j�3jD 2p3 with Hurewicz
images h.�1/D 1^ � N�1, h.�2/D 1^ � N�2, h.�3/D 1^ � N�3 and h.�3/D 1^ � N�3C �0 ^ � N�3. Then

V .2/� THH.BPh2i/DE.�1; �2; �2/˝P .�3/;

which has at most one monomial generator in each degree. We generally abbreviate �3 to � when only
discussing BPh2i.

The V .n/-homotopy classes �nC1 should not be confused with the ring spectrum multiplications
�n W V .n/^V .n/! V .n/, which hereafter appear explicitly only in the proof of Proposition 5.10.
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4 Cyclotomic nomenclature

We review some notation in common use from 1994 to 2017, including [Hesselholt and Madsen 1997;
Rognes 1999; Ausoni and Rognes 2002; Hesselholt and Madsen 2003; Ausoni and Rognes 2012]. For
each T -spectrum X there is a natural map

r WX Cp !ˆCp X

of T=Cp-spectra from the categorical Cp-fixed points to the geometric Cp-fixed points. The latter were
introduced, as “spacewise Cp-fixed points”, in [Lewis et al. 1986, Definition II.9.7], essentially as a left
Kan extension. This definition agrees with what has later been called the monoidal geometric fixed points
[Mandell and May 2002]. Recall the T -equivariant homotopy cofiber sequence

ETC
c
�! S0 e

�!eET :

In the commutative square
X Cp

r
//

e

��

ˆCp .X /

'
��

.eET ^X /Cp
'
// ˆCp .eET ^X /

the right-hand and lower maps are T=Cp-equivariant equivalences. The expression .eET ^ X /Cp is
therefore sometimes [Hesselholt and Madsen 1997] taken as a definition of the geometric fixed points,
but this construction is not strictly monoidal. The commutative square

X Cp
r

//

c�

��

ˆCp .X /

c�

��

F.ETC;X /Cp
r
// ˆCp .F.ETC;X //

is T=Cp-equivariantly homotopy Cartesian. Note that ˆCp .F.ETC;X //' ŒeET ^F.ETC;X /�Cp D

X tCp defines the Cp-Tate T=Cp-spectrum. These T=Cp-spectra are hereafter viewed as T -spectra via
the pth root isomorphism � W T Š T=Cp, which we omit from the notation.

The T -spectra X DTHH.B/ are cyclotomic, in the sense that there are T -equivalencesˆCp .THH.B//'
THH.B/. Hence [Bökstedt and Madsen 1994, (6.1)] there are vertical maps of horizontal homotopy
cofiber sequences

THH.B/hCpn

N
// THH.B/Cpn R

//

�n

��

THH.B/Cpn�1

y�n

��

THH.B/hCpn

N h
// THH.B/hCpn Rh

// THH.B/tCpn

known as the norm–restriction sequences, for all n. Here the (Witt vector restriction) maps R are given by

r
C

pn�1 W THH.B/Cpn
!ˆCp .THH.B//Cpn�1 ' THH.B/Cpn�1 :
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The norm maps N are given by the Adams transfer equivalence THH.B/hCpn ' ŒETC ^THH.B/�Cpn ,
followed by the map induced by c W ETC ! S0. The right-hand homotopy Cartesian squares are
compatible with the (Witt vector Frobenius) maps F WX Cpn !X

C
pn�1 that forget some invariance. The

Witt vector terminology is motivated by the effects of these maps on �0 for connective B, in view of the
isomorphisms �0 THH.B/Cpn ŠWnC1.�0.B// of [Hesselholt and Madsen 1997, Theorem 3.3].

The homotopy restriction map Rh is induced by e W S0!eET , and induces a map of spectral sequences
from the Cpn-homotopy fixed point spectral sequence to the Cpn-Tate spectral sequence. The map �n is
the comparison map from fixed points to homotopy fixed points, and y�n denotes its Tate analog. Passing
to homotopy limits over the maps F , and implicitly p-completing, one obtains a map of homotopy
cofiber sequences

†THH.B/hT
N

// TF.B/ R
//

�
��

TF.B/

y�
��

†THH.B/hT
N h
// THH.B/hT Rh

// THH.B/tT .

Again, Rh is induced by e W S0!eET and induces a map of spectral sequences from the T -homotopy
fixed point spectral sequence to the T -Tate spectral sequence. The topological cyclic homology

TC.B/ ��! TF.B/
1
�!
R
�! TF.B/

was originally defined by Bökstedt, Hsiang and Madsen [Bökstedt et al. 1993] as the homotopy equalizer
of the identity 1 W TF.B/ ! TF.B/ and the restriction map R W TF.B/ ! TF.B/. We refer to the
preferred lifts trc W K.B/! TC.B/ and trT D � ı � ı trc W K.B/! THH.B/hT of the Bökstedt trace
map tr WK.B/! THH.B/ as the cyclotomic trace map and the circle trace map, respectively.

Some important recent papers give new emphasis to many of these objects. Hesselholt [2018] writes

TP.B/D THH.B/tT

for the circle Tate construction on THH.B/ and calls it the periodic topological cyclic homology of B.
(One might also say topological periodic homology.) Nikolaus and Scholze [2018] write

TC�.B/D THH.B/hT

for the circle homotopy fixed points of THH.B/ and call it the topological negative cyclic homology, write

'p D
y�1 W THH.B/! THH.B/tCp

for the comparison map and call it the p-cyclotomic structure map, and write

can W TC�.B/! TP.B/

for the homotopy restriction map

Rh
W THH.B/hT

! THH.B/tT
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and refer to it as the canonical map. The structure map

� WX ! .X^p/tCp DRC.X /

to the topological Singer construction, from [Bruner et al. 1986, Section II.5; Lunøe-Nielsen and Rognes
2012], is now called the Tate diagonal.

In the definition of TC.B/ as a homotopy equalizer, Nikolaus and Scholze replace TF.B/ in the source by
THH.B/hT via � , and replace TF.B/ in the target by THH.B/tT via y� . In view of the commutative square

TF.B/
y�

//

�
��

THH.B/tT

G '

��

THH.B/hT .y�1/
hT
// .THH.B/tCp /hT

from [Hesselholt and Madsen 1997, page 68; Ausoni and Rognes 2002, page 27] the identity map
1 W TF.B/! TF.B/ is then replaced with the circle homotopy fixed points .y�1/

hT D 'hT
p of the p-

cyclotomic structure map, suppressing the (still implicitly p-complete) equivalence

G W THH.B/tT
D .THH.B/tCp /T ! .THH.B/tCp /hT

from the notation. The fact that G is an equivalence for connective B was shown by computation in the first
instances considered, and then proved in [Bökstedt et al. 2014, Proposition 3.8] under the assumption that
H�B is of finite type. It reappears in the new terminology as the Tate orbit lemma [Nikolaus and Scholze
2018, Lemma I.2.1], since .THH.B/hCp

/tT ' � is equivalent to †THH.B/hT ! .THH.B/hCp
/hT

being an equivalence, which in turn is equivalent to G being an equivalence.

Likewise, the restriction map R WTF.B/!TF.B/ is replaced with the homotopy restriction map RhD can.
Combining these replacements,

TC.B/ ��! THH.B/hT G�1.y�1/
hT

��������!

Rh
��������! THH.B/tT

is redefined as the homotopy equalizer of G�1 ı .y�1/
hT and Rh D can, much as in [Ausoni and Rognes

2012, page 1072], or (in order not to need to invert G) as the homotopy equalizer

TC.B/ ��! THH.B/hT .y�1/
hT

�����!

GRh
�����! .THH.B/tCp /hT

of .y�1/
hT D'hT

p and GıRh. The old and new definitions of TC.B/ agree for connective B, by [Nikolaus
and Scholze 2018, Theorem II.3.8].

5 Homotopy power operations

Let B be an EnC1 ring spectrum. Using the Boardman–Vogt tensor product of operads [Dunn 1988], we
may view B as an En algebra in the category of E1 ring spectra (or S -algebras). There are then natural En
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algebra structures on the algebraic K-theory spectrum K.B/ and on the cyclotomic spectrum THH.B/,
and these are respected by the trace map K.B/! THH.B/, as well as its cyclotomic refinements.

For each E2 ring spectrum R, there is a natural “top” homology power operation

�1 WH2k�1R!H2pk�1R

introduced in [Cohen et al. 1976, Theorem III.1.3]. If R is an E3 ring spectrum, then �1 DQk is the
Araki–Kudo/Dyer–Lashof/Cohen operator, as defined in [Cohen et al. 1976, Theorem III.1.1]; we will
also use this notation in the E2 ring spectrum case, to emphasize the dependence on k (and to avoid
confusion with the element �1 in the dual Steenrod algebra). Let ˇ denote the mod-p homology Bockstein
operator. Ausoni and Rognes [2002, Section 1.5] discussed a homotopy power operation

Pk
W �2k�1R! V .0/2pk�1R

lifting Qk (see Lemma 5.5), in the context of E1 ring spectra. Here we will extend its definition to E2

ring spectra, and construct a homotopy power operation

Pk
W V .0/2k�1R! V .1/2pk�1R

also lifting Qk (see Lemma 5.6).

To define these operations for E2 ring spectra R, we make use of the little 2-cubes operad C2 encoding
E2 algebra structures. For a spectrum X let

Brp X DD2;pX D C2.p/Ë†p
X^p

denote the pth braided-extended power of X . Note that Brp †2X Š†2p Brp X by [Cohen et al. 1978,
Theorem 1]. In the case X D S2k�1, with H�X D Fpfx2k�1g,

(5-1) H� Brp S2k�1
D FpfˇQk.x2k�1/;Q

k.x2k�1/g

follows from [Cohen et al. 1976, Theorem III.5.3]; cf [Cohen 1981, Proposition II.1.2]. Hence there is an
(implicitly p-complete) equivalence N�0 W†

2pk�1DV.0/' Brp S2k�1, with right adjoint

�0 W S
2pk�1

! V .0/^Brp S2k�1:

Here DV.0/'†�1V .0/ denotes the Spanier–Whitehead dual of V .0/, and h0.�0/DQk.x2k�1/.

For typographical reasons we will often simply write g for the maps 1 ^ g W A ^ B ! A ^ C and
g^ 1 W B ^D! C ^D, for suitable A, g W B! C and D.

Definition 5.1 Let R be an E2 ring spectrum. The homotopy power operation

Pk
W �2k�1R! V .0/2pk�1R

sends each map f W S2k�1!R to the composite

Pk.f / W S2pk�1 �0
�! V .0/^Brp S2k�1 Brp f

���! V .0/^Brp R ��! V .0/^R;

where � W Brp R!R is part of the E2 ring structure.
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In the case X D †2k�1DV.0/, where H�X D Fpfx2k�2;x2k�1g with ˇ.x2k�1/D x2k�2, there is an
inclusion

Fpfx
p

2k�2
; ˇQk.x2k�1/;Q

k.x2k�1/g �H� Brp †2k�1DV.0/

of left A�-comodules, or of right A-modules. Of the dual Steenrod operations, only ˇ and P1
� act

nontrivially on the left-hand side, with

P1
�Q

k.x2k�1/D 0 and P1
�ˇQk.x2k�1/D�x

p

2k�2
;

according to the spectrum-level Nishida relations; see [Cohen et al. 1976, Theorems III.1.1(6) and III.1.3(3);
Bruner et al. 1986, Theorem III.1.1(8)]. As in [Toda 1971], let

V .1=2/D S [p e1
[˛1

e2p�1;

so that V .0/�V .1=2/�V .1/ and DV.1=2/'†1�2p.S[˛1
e2p�2[pe2p�1/. The following construction

refines a map discussed by Toda [1968, Lemma 3]:

Lemma 5.2 There exists a (p-complete) map

N�1=2 W†
2pk�1DV.1=2/! Brp †2k�1DV.0/

realizing the inclusion of Fpfx
p

2k�2
; ˇQk.x2k�1/;Q

k.x2k�1/g in homology.

Proof We can choose a minimal cell structure on Brp †2k�1DV.0/ with a .2pk�1/-cell representing
Qk.x2k�1/ that is attached by a degree-p map to a .2pk�2/-cell representing ˇQk.x2k�1/. The
.2pk�1/-cell is not attached to the .2pk�2pC1/-skeleton, since P1

�Q
k.x2k�1/D 0. We can orient the

.2pk�2p/-cell so that the .2pk�2/-cell is attached to it by ˛1, since P1
�ˇQk.x2k�1/D�x

p

2k�2
.

We fix a choice of N�1=2 for each integer k, but see Remark 5.4. This specifies a composite map

(5-2) N�1 W†
2pk�1DV.1/!†2pk�1DV.1=2/ N�1=2

���! Brp †2k�1DV.0/;

with homology image Fpfx
p

2k�2
; ˇQk.x2k�1/;Q

k.x2k�1/g, and we write

�1 W S
2pk�1 �1=2

���! V .1=2/^Brp †2k�1DV.0/! V .1/^Brp †2k�1DV.0/

for its right adjoint.

Definition 5.3 Let R be an E2 ring spectrum. The homotopy power operation

Pk
W V .0/2k�1R! V .1=2/2pk�1R! V .1/2pk�1R

sends each map f W S2k�1! V .0/^R, with left adjoint Nf W†2k�1DV.0/!R, to the composite

Pk.f / W S2pk�1 �1
�! V .1/^Brp †2k�1DV.0/ Brp Nf

���! V .1/^Brp R ��! V .1/^R:
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Remark 5.4 We discuss the nonuniqueness of N�1=2 and the resulting ambiguity in the operation Pk just
defined. For brevity, let U D Brp †2k�1DV.0/. By [Cohen et al. 1976, Theorem III.3.1] we have

H�U Š Fpfx
p

2k�2
;x

p�1

2k�2
x2k�1;x

p�2

2k�2
y4k�3;x

p�2

2k�2
y4k�2;x

p�3

2k�2
x2k�1y4k�3g

in degrees 2pk � 2p � � � 2pk � 2pC 2, plus classes in higher degrees, where

y4k�3 D Œx2k�2;x2k�2�1 and y4k�2 D Œx2k�2;x2k�1�1

are E2 ring spectrum Browder brackets. (We write Œx;y�1 in place of the traditional �1.x;y/ in order to
avoid confusion with the homotopy class �1.) The (additive) indeterminacies in N�1=2 and �1 are maps
†2pk�1DV.1=2/! U and m W S2pk�1! V .1/^U , respectively, that induce zero in homology. The
Atiyah–Hirzebruch spectral sequence for V .1/�U shows that mD˛1 �n for a class n2V .1/2pk�2pC2U Š

H2pk�2pC2U , generated by x
p�2

2k�2
y4k�2 and x

p�3

2k�2
x2k�1y4k�3. These generators map to zero in

V .1/�R if the E2 ring structure on R extends to an E3 ring structure. Hence any two different choices
of maps N�1=2 will give operations Pk that differ at most by a multiple of ˛1, and which strictly agree if
R is an E3 ring spectrum. This means that for all of the assertions we will make about these homotopy
power operations, the choice of N�1=2 makes no difference: in Lemma 5.6 the Hurewicz homomorphism
h1 annihilates ˛1-multiples, and in Proposition 5.10 we assume that R is an E1 ring spectrum.

Lemma 5.5 Let R be an E2 ring spectrum. The square

�2k�1R
Pk
//

h

��

V .0/2pk�1R

h0

��

H2k�1R
Qk

// H2pk�1R

commutes.

Proof Let t0 WH !H ^DV.0/ and b0 WH ^V .0/!H be H -module maps that split off the top and
bottom cells, respectively. Then b0hD h0 W V .0/!H , and the following diagram commutes.

S2pk�1 //

�0

!!

h

��

V .0/^DV.0/^S2pk�1 N�0 //

h

��

V .0/^Brp S2k�1 Brp f //

h

��

V .0/^Brp R
� //

h

��

V .0/^R

h

��

H^S2pk�1 //

t0
((

H^V .0/^DV.0/^S2pk�1 N�0 //

b0

��

H^V .0/^Brp S2k�1 Brp f //

b0

��

H^V .0/^Brp R
� //

b0

��

H^V .0/^R

b0

��

H^DV.0/^S2pk�1 N�0 //H^Brp S2k�1 Brp f //
OO

Š

��

H^Brp R
� //

OO

Š

��

H^R

BrH
p .H^S2k�1/

BrHp Ng
// BrH

p .H^R/
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Here Ng D 1^f WH ^S2k�1!H ^R denotes the H -module map that is left adjoint to the Hurewicz
image g D hf W S2k�1!H ^R, and BrH

p denotes the pth braided-extended power construction in the
category of H -modules. The upper composite S2pk�1!H ^R then represents h0Pk.f /, while the
lower composite represents

Qp�1.g/D ��.ep�1˝g˝p/;

up to a known unit in Fp , with notation as in [May 1970, Definition 2.2; Cohen et al. 1976, Section I.1].
This equals Qk.hf /.

Lemma 5.6 Let R be an E2 ring spectrum. The square

V .0/2k�1R
Pk
//

h0

��

V .1/2pk�1R

h1

��

H2k�1R
Qk

// H2pk�1R

commutes.

Proof Let t1 WH!H^DV.1/ and b1 WH^V .1/!H be H -module maps that split off the top and bottom
cells, respectively. Then b1hD h1 W V .1/!H and the following diagram commutes, up to units in Fp .

S2pk�1 //

�1

  

h

��

V .1/^DV.1/^S2pk�1
N�1
//

h

��

V .1/^Brp †
2k�1DV.0/

Brp Nf
//

h

��

V .1/^Brp R
�
//

h

��

V .1/^R

h

��

H^S2pk�1 //

t1
((

ep�1

((

H^V .1/^DV.1/^S2pk�1
N�1
//

b1

��

H^V .1/^Brp †
2k�1DV.0/

Brp Nf
//

b1

��

H^V .1/^Brp R
�
//

b1

��

H^V .1/^R

b1

��
H^DV.1/^S2pk�1

N�1
//H^Brp †

2k�1DV.0/
Brp Nf

//
OO

Š

��

H^Brp R
�

//
OO

Š

��

H^R

H^Brp S2k�1

Brp t0

44

OO

Š

��

BrH
p .H^†

2k�1DV.0//
BrHp Nf

//BrH
p .H^R/

BrH
p .H^S2k�1/

BrHp t0
44

BrHp Ng

??

Here Ng W H ^ S2k�1 ! H ^ R denotes the H -module map extending the V .0/-Hurewicz image
g D h0f W S

2k�1 ! H ^R. The two maps from H ^ S2pk�1 to H ^ Brp †2k�1DV.0/ agree, up
to a known unit in Fp, because the map N�1=2 in Lemma 5.2 sends the top cell to Qk.x2k�1/. The two
maps from BrH

p .H ^S2k�1/ to BrH
p .H ^R/ agree because Ng is homotopic through H -module maps

to Nf t0. The upper composite S2pk�1! H ^R in the diagram represents h1Pk.f /, while the lower
composite represents a known unit times Qp�1.g/, which equals Qk.h0f /.
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The following homotopy Cartan formula generalizes the one proved for E1 ring spectra in [Ausoni and
Rognes 2002, Lemma 1.6]:

Proposition 5.7 Let R be an E3 ring spectrum. For x 2 �2iR and y 2 �2j�1R, the relation

Pk.xy/D xpP j .y/

holds in V .0/2pk�1R, where k D i C j .

Proof We use the following nearly commutative diagram, where ıp is the operadic diagonal from [Bruner
et al. 1986, Section I.2],

Dn;pX D Cn.p/Ë†p
X^p

denotes the pth En-extended power, and �1 WX
^p'D1;pX!D2;pX DBrp X and �2 WBrp X!D3;pX

are stabilization maps.

†2pk�1DV.0/
N�0

//

Š

��

Brp S2k�1
Brp.f �g/

//

Š

��

Brp R
�

// R

S2pi^†2pj�1DV.0/

'

��

Brp.S
2i^S2j�1/

Brp.f^g/
//

ıp

��

Brp.R^R/

Brp �

OO

ıp

��

D1;pS2i^Brp S2j�1 �1^1
// Brp S2i^Brp S2j�1

Brp f^Brp g
//

�2^�2

��

Brp R^Brp R
�^�

//

�2^�2

��

R^R

�

OO

D3;pS2i^D3;pS2j�1
D3;pf^D3;pg

// D3;pR^D3;pR

�^�

88

We may view the E3 ring spectrum R as an E2 algebra in the category of E1 ring spectra. The ring
spectrum pairing � WR^R!R is then an E2 ring spectrum map, and therefore the right-hand rectangle
commutes. Moreover, the right-hand triangle commutes, because the E3 operad action extends the E2

action.

Let f W S2i!R and g W S2j�1!R be maps representing x and y. The composite

f �g W S2k�1
Š S2i

^S2j�1 f^g
���!R^R �

�!R

then represents xy, and the upper square commutes by functoriality of the braided-extended power. The
central and lower squares commute by naturality of ıp and �2.

We do not know whether the left-hand rectangle commutes. However, we do claim that the two composites
†2pk�1DV.0/! Brp S2i ^Brp S2j�1 become homotopic after composition with �2^ �2. This implies
that the composite along the upper edge, which is adjoint to the map representing Pk.xy/, is homotopic
to the composite along the left-hand, lower and right-hand edges, which in turn is homotopic to the central
composite via Brp f ^Brp g; this is adjoint to the map representing xpP j .y/.
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To justify the claim, we compute in homology. Recall the expression (5-1) for H� Brp S2k�1, which has
an evident analog for H� Brp S2j�1. In the case X D S2i , with H�X D Fpfx2ig,

(5-3) H� Brp S2i
D Fpfx

p
2i
; ˛2piC1g

follows from [Cohen et al. 1976, Theorem III.5.2]. Here ˛2piC1 D�x
p�2
2i

Œx2i ;x2i �1 is a class given in
terms of the E2 Browder bracket, and ˇ˛2piC1 D 0 according to [loc. cit., Theorem III.1.2(7)]. Note that
˛2piC1 maps to zero under �2.

Along one route, the right A-module generator x2pk�1 in H2pk�1†
2pk�1DV.0/ maps to x2pi˝x2pj�1

in the homology of S2pi ^ †2pj�1DV.0/, and thereafter to x
p
2i
˝Qj .x2j�1/ in the homologies of

D1;pS2i ^Brp S2j�1, Brp S2i ^Brp S2j�1 and D3;pS2i ^D3;pS2j�1.

Along the other route, x2pk�1 maps to Qk.x2k�1/ in the homology of Brp S2k�1, and to Qk.x2i˝x2j�1/

in the homologies of Brp.S2i^S2j�1/ and D3;p.S
2i^S2j�1/. By the E3 ring spectrum Cartan formula

[loc. cit., Theorem III.1.1(4)], it maps to

Qi.x2i/˝Qj .x2j�1/D x
p
2i
˝Qj .x2j�1/

in the homology of D3;pS2i ^D3;pS2j�1.

It follows that the two composites Ǹ1; Ǹ2 W †2pk�1DV.0/! D3;pS2i ^D3;pS2j�1 induce the same
homomorphism in homology. Hence their adjoints `1; `2 W S

2pk�1 ! V .0/^D3;pS2i ^D3;pS2j�1

also agree in homology. Since D3;pS2i ^D3;pS2j�1 is .2pk�3/-connected and h0 W V .0/! H is
.2p�3/-connected, it follows that `1 and `2 are homotopic. Therefore Ǹ1 and Ǹ2 are also homotopic.

Remark 5.8 This proof also shows that

ıp�Q
k.x2i ˝x2j�1/D x

p
2i
˝Qj .x2j�1/C c �˛2piC1˝ˇQj .x2j�1/

in the homology of Brp S2i ^Brp S2j�1, for some unknown coefficient c 2 Fp. If c ¤ 0 then the two
maps †2pk�1DV.0/! Brp S2i ^Brp S2j�1 induce different homomorphisms in homology, and the
left-hand rectangle does not commute.

Corollary 5.9 Let
R s�! T r�!R

be spectrum maps with rs homotopic to the identity. Assume that R is an E2 ring spectrum , that T is
an E3 ring spectrum and that s or r is an E2 ring map. Then Pk.xy/D xpP j .y/ in V .0/2pk�1R for
x 2 �2iR, y 2 �2j�1R and k D i C j .

Proof Replace Proposition 5.10 with Proposition 5.7 in the proof of Corollary 5.12.

We will also need a homotopy Cartan formula for the power operations from Definition 5.3:
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Proposition 5.10 Let R be an E1 ring spectrum. For x 2 V .0/2iR and y 2 V .0/2j�1R, the relation

Pk.xy/D xpP j .y/

holds in V .1/2pk�1R, where k D i C j .

Proof We use the following nearly commutative diagram, where

DpX D C1.p/Ë†p
X^p

denotes the pth (unqualified) extended power, and � 0
2
W Brp X !DpX is the infinite stabilization map.

We write �p
0
W V .0/^p ! V .0/ for the .p�1/-fold iterate of the ring spectrum multiplication, and let

mD �1.i1 ^ 1/ W V .0/^V .1/! V .1/ denote the left V .0/-module action on V .1/.

†2pk�1DV.1/
N�1

//

Dm
��

Brp †
2k�1DV.0/

Brp f �g
//

Brp D�0
��

Brp R
�

//R

†2piDV.0/^†2pj�1DV.1/

D�
p
0
^N�1

��

Brp.†
2iDV.0/^†2j�1DV.0//

Brp. Nf^ Ng/
//

ıp
��

Brp.R^R/

Brp �

OO

ıp
��

D1;p†
2iDV.0/^Brp †

2j�1DV.0/
�1^1
//Brp †

2iDV.0/^Brp †
2j�1DV.0/

Brp Nf^Brp Ng
//

� 0
2
^� 0

2
��

Brp R^Brp R
�^�
//

� 0
2
^� 0

2

��

R^R

�

OO

Dp†
2iDV.0/^Dp†

2j�1DV.0/
Dp
Nf^Dp Ng

//DpR^DpR

�^�

77

The right-hand rectangle and triangle commute as before, replacing E3 by E1.

Let f W S2i ! V .0/ ^ R and g W S2j�1 ! V .0/ ^ R be maps representing x and y, with adjoints
Nf W†2iDV.0/!R and Ng W†2j�1DV.0/!R. The composite

f �g W†2k�1DV.0/ D�0
���!†2iDV.0/^†2j�1DV.0/

Nf^ Ng
���!R^R

�
�!R

is then adjoint to the map f �g W S2k�1! V .0/^R that represents xy, and the upper square commutes
by functoriality of the braided-extended power. The central and lower squares commute by naturality
of ıp and � 0

2
.

As before we do not know whether the left-hand rectangle commutes. However, we claim that the two
composites

†2pk�1DV.1/! Brp †2iDV.0/^Brp †2j�1DV.0/

become homotopic after composition with � 0
2
^ � 0

2
to

W DDp†
2iDV.0/^Dp†

2j�1DV.0/:

This implies that the composite along the upper edge, which is adjoint to the map representing Pk.xy/, is
homotopic to the composite along the left-hand, lower and right-hand edges, which in turn is homotopic
to the central composite via Brp Nf ^Brp Ng; this is adjoint to the map representing xpP j .y/.

Geometry & Topology, Volume 29 (2025)



Algebraic K-theory of elliptic cohomology 639

To justify the claim, we first compute in homology, using [Cohen et al. 1976, Theorem I.4.1]. Writing
H�†

2iDV.0/ D Fpfx2i�1;x2ig and H�†
2j�1DV.0/ D Fpfx2j�2;x2j�1g, with ˇx2i D x2i�1 and

ˇx2j�1 D x2j�2, we have

H�Dp†
2iDV.0/D FpfˇQi.x2i�1/;Q

i.x2i�1/;x2i�1x
p�1
2i

;x
p
2i
; ˇQiC1.x2i�1/;Q

iC1.x2i�1/; : : : g

in degrees � � 2pi � 2, and

H�Dp†
2j�1DV.0/DFpfx

p
2j�2

;x
p�1
2j�2

x2j�1;ˇQj .x2j�2/;Q
j .x2j�2/;ˇQj .x2j�1/;Q

j .x2j�1/; : : :g

in degrees �� 2pj �2p. Their tensor product is H�W , which is concentrated in degrees 2pk�2p�2�

� � 2pk � 2pC 1 and � � 2pk � 4.

On one hand, the right A-module generator x2pk�1 in H2pk�1†
2pk�1DV.1/ maps to x2pi ˝ x2pj�1

in the homology of †2piDV.0/^†2pj�1DV.1/, and thereafter to x
p
2i
˝Qj .x2j�1/ in the homologies

of D1;p†
2iDV.0/^Brp †2j�1DV.0/, Brp †2iDV.0/^Brp †2j�1DV.0/ and W . On the other hand,

x2pk�1 maps to Qk.x2k�1/ in the homology of Brp †2k�1DV.0/, and to Qk.x2i ˝ x2j�1/ in the
homologies of Brp.†2iDV.0/ ^†2j�1DV.0// and Dp.†

2iDV.0/ ^†2j�1DV.0//. By the E1 ring
spectrum Cartan formula [loc. cit., Theorem I.1.1(6)] it maps to Qi.x2i/˝Qj .x2j�1/Dx

p
2i
˝Qj .x2j�1/

in H�W .

It follows that the two composites Nm1; Nm2 W †
2pk�1DV.1/ ! W induce the same homomorphism

in homology. Let Nm D Nm2 � Nm1 be their difference, inducing zero in homology. The homological
Atiyah–Hirzebruch spectral sequence for V .1/�W D ŒDV.1/;W �� shows that Nm is nullhomotopic, since
H2pk�2pC2.W I�2p�3V .1//DH2pk�2pC2W D 0. Hence Nm1 and Nm2 are homotopic, as claimed.

Remark 5.11 A similar proof goes through if R is an En ring spectrum with n� 6, replacing W with
WnDDn;p†

2iDV.0/^Dn;p†
2j�1DV.0/. For 3� n� 5 the group H2pk�2pC2Wn will be nonzero, due

to the presence of En Browder bracket terms in this degree, so Nm might map the top cell of †2pk�1DV.1/
via ˛1 to a .2pk�2pC2/-cell of Wn, and hence be essential. For simplicity we assume nD1, since
this will suffice for our application.

Corollary 5.12 Let
R s�! T r�!R

be spectrum maps with rs homotopic to the identity. Assume that R is an E2 ring spectrum , that T is
an E1 ring spectrum and that r or s is an E2 ring map. Then Pk.xy/D xpP j .y/ in V .1/2pk�1R for
x 2 V .0/2iR, y 2 V .0/2j�1R and k D i C j .

Proof Apply Proposition 5.10 for T to see that

r�.P
k.s�x � s�y//D r�..s�x/

p
�P j .s�y//
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in V .1/2k�1.R/. If r is an E2 ring map, then naturality of the products and homotopy power operations
with respect to r implies Pk.r�s�x � r�s�y/ D .r�s�x/

p � P j .r�s�y/. If s is an E2 ring map, then
naturality of the products and homotopy power operations with respect to s implies r�s�.P

k.x �y//D

r�s�.x
p �P j .y//. In either case the conclusion follows from r�s� D 1.

6 Some V.0/- and V.1/-homotopy classes

The homotopy power operations introduced in Definitions 5.1 and 5.3 apply for RD S with its E1 ring
structure. The E2-term of its mod-p Adams spectral sequence

E
s;t
2
.S/D Exts;tA�.Fp;Fp/) �t�s.S/

^
p

contains classes traditionally denoted by

a0 D Œ�0� and hi D Œ�
pi

1
�;

for i � 0, in bidegrees .s; t/D .1; 1/ and .1; 2pi.p�1//, respectively. Here �0 is dual to ˇ and a0 detects
p 2 �0.S/

^
p Š Zp , while �pi

1
is dual to Ppi

and h0 detects the generator ˛1 2 �2p�3.S/
^
p Š Z=p. The

classes hi for i � 1 support nonzero d2-differentials [Liulevicius 1962] in the Adams spectral sequence
for S , but some of these map to permanent cycles in the corresponding spectral sequences for V .0/

and V .1/, detecting interesting homotopy classes.

Definition 6.1 Let

ˇı1 D Pp�1.˛1/ 2 �2p2�2p�1V .0/ and 
 ı1 D Pp2�p.ˇı1/ 2 �2p3�2p2�1V .1/:

The ring/circle superscripts indicate that these classes are constructed using the E2 ring spectrum structure.

Lemma 6.2 The classes ˇı
1

and 
 ı
1

are detected by i0.h1/D Œ�
p
1
� and i1i0.h2/D Œ�

p2

1
� in the Adams

spectral sequences for V .0/ and V .1/, respectively.

Proof The case of ˇı
1

is due to Toda [1968, Lemma 4]. It suffices to prove that the dual Steenrod
operation Pp

� acts nontrivially in the homology of the mapping cone C Ň, where

Ň W†2p2�2p�1DV.0/' Brp S2p�3 Brp ˛1
����! Brp S ��! S

is left adjoint to ˇı
1
. There are natural maps

C Ň
Q� � C.Brp ˛1/

D˛1���! Brp.C˛1/

that are induced by � and the canonical nullhomotopy in a cone, respectively. By an analog of [Toda
1968, Theorem 2] for braided-extended powers we have

D˛1�..ep�1˝x˝p/^/D e0˝ .x
^/˝p;
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up to a unit in Fp, where x^ 2H2p�2C˛1 lifts the generator x 2H2p�3S2p�3 and .ep�1˝ x˝p/^ 2

H2p2�2pC.Brp ˛1/ lifts ep�1˝x˝p 2H2p2�2p�1 Brp S2p�3. Since P1
�.x
^/ generates H0C˛1, it fol-

lows from the homology Cartan formula that Pp
� .e0˝.x

^/˝p/De0˝P1
�.x
^/˝p generates H0 Brp.C˛1/.

By naturality with respect to Toda’s map D˛1
, it follows that Pp

� ..ep�1˝x˝p/^/ generates H0C.Brp ˛1/,
and by naturality with respect to Q� it follows that

Pp
� WH2p2�2pC Ň !H0C Ň

is nonzero.

The proof for 
 ı
1

is similar. It suffices to prove that the dual Steenrod operation Pp2

� acts nontrivially in
the homology of the mapping cone C N
 , where

N
 W†2p3�2p2�1DV.1/ N�1
�! Brp.†2p2�2p�1DV.0// Brp Ň

���! Brp S ��! S

is left adjoint to 
 ı
1

. Here N�1 was defined in (5-2). There are natural maps

C N
 Q�1�! C.� ıBrp Ň/
Q� � C.Brp Ň/

D Ň
��! Brp.C Ň/

induced by N�1, � and the canonical nullhomotopy, respectively. By [Toda 1968, Theorem 2] again, we have

D Ň�..ep�1˝y˝p/^/D e0˝ .y
^/˝p;

up to a unit in Fp, where y^ 2H2p2�2pC Ň lifts the generator

y 2H2p2�2p�1.†
2p2�2p�1DV.0//

and .ep�1˝y˝p/^ 2H2p3�2p2C.Brp Ň/ lifts

ep�1˝y˝p
2H2p3�2p2�1 Brp.†2p2�2p�1DV.0//:

Since Pp
� .y
^/ generates H0C Ň, it follows that Pp2

� .e0 ˝ .y
^/˝p/ D e0 ˝ Pp

� .y
^/˝p generates

H0 Brp.C Ň/. Naturality with respect to D Ň implies that

Pp2

� ..ep�1˝y˝p/^/

generates H0C.Brp Ň/, and naturality with respect to Q� and Q�1 implies that

Pp2

� WH2p3�2p2C N
 !H0C N


is nonzero.

The first Greek letter element ˛1 2 �2p�3S is the image under j0 W V .0/! S1 of a class v1 2 �2p�2V .0/

detected by the class of the cobar cocycle Œ�1�1C Œ�1��0 in bidegree .s; t/D .1; 2p � 1/ of the Adams
spectral sequence

E
s;t
2
.Y /D Exts;tA�.Fp;H�Y /) �t�s.Y

^
p /

for Y D V .0/. Similarly, ˇ1 2 �2p2�2p�2S is the image under j0j1 W V .1/ ! S2p of a class v2 2

�2p2�2V .1/, and 
1 2 �2p3�2p2�2p�1S is the image under j0j1j2 W V .2/ ! S2p2C2p�1 of a class
v3 2 �2p3�2V .2/.
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Lemma 6.3 The groups �2p�2V .0/ŠZ=p for p� 3, �2p2�2V .1/ŠZ=p for p� 3 and �2p3�2V .2/Š

Z=p for p � 5 are generated by classes v1, v2 and v3, respectively, each in Adams filtration 1.

Proof The claim for V .0/ is well known. The claim for V .1/ is contained in [Toda 1971, Theorem 5.2
and (5.7)]. The claim for V .2/ can be deduced from [Toda 1971, Section 3], as follows. Let P � A
be the sub-Hopf algebra of the mod-p Steenrod algebra generated by the Steenrod operations P i . Let
K D FpfQ3; ˇQ3; : : : g be the kernel of the surjection A˝P Fp!H�V .2/DE.ˇ;Q1;Q2/, where Qi

denotes the Milnor primitive, and consider the long exact sequence

� � � ! Exts�1;t
A .K;Fp/

ı�! Exts;tA .H
�V .2/;Fp/! Exts;tP .Fp;Fp/! � � � :

Using the May spectral sequence, Toda [1971, Section 3] calculated an upper bound for Exts;tP .Fp;Fp/

in the range t < 2.p2C 2pC 3/.p � 1/C 4, which shows that these groups are trivial in topological
degrees t � s D 2p3� 3 and 2p3� 2. Hence ı.Q�

3
/ in cohomological degree s D 1 is the only generator

of E2.V .2//D ExtA.H�V .2/;Fp/ in topological degree 2p3� 2. Moreover, there is no possible target
for an Adams differential on this class, which must therefore detect v3.

Lemma 6.4 For p� 3, the classes ˇı
1

and j1.v2/Dˇ
0
1

in �2p2�2p�1V .0/ agree modulo (a nonzero mul-
tiple of ) ˛1v

p�1
1

. Hence i1.ˇ
ı
1
/D i1.ˇ

0
1
/ in �2p2�2p�1V .1/, and j0.ˇ

ı
1
/Dˇ1D j0.ˇ

0
1
/ in �2p2�2p�2S

is the first element in the ˇ-family.

For p � 5, the classes 
 ı
1

and j2.v3/D 

00
1

in �2p3�2p2�1V .1/ agree modulo ˛1v
p�1
2

. Hence i2.

ı
1
/D

i2.

00
1
/ in �2p3�2p2�1V .2/.

Proof The cobar cocycle Œ�2�1 C Œ�2��0 C Œ�
p
1
��1 detects v2 2 �2p2�2V .1/. The A�-comodule ho-

momorphism j1� W H�V .1/ ! H��2pC1V .0/ sends 1 and �0 to zero, and maps �1 to 1. Hence
j1 W E

1;�
2
.V .1// ! E

1;��2pC1
2

.V .0// sends Œ�2�1 C Œ�2��0 C Œ�
p
1
��1 to Œ�p

1
�1 D i0.h1/. This is also

the class detecting ˇı
1
, by Lemma 6.2. Therefore j1.v2/D ˇ

0
1

and ˇı
1

agree modulo Adams filtration � 2,
ie modulo ˛1v

p�1
1

. (We will see in Remark 7.5 that v1ˇ
ı
1
¤ 0, while v1ˇ

0
1
D 0, so ˇı

1
�ˇ0

1
is a nonzero

multiple of ˛1v
p�1
1

.) Nonetheless, j0.ˇ
ı
1
/D j0.ˇ

0
1
/, since j0.˛1v

p�1
1

/
:
D ˛1 p̨�1 D 0.

The cobar cocycle Œ�3�1C Œ�3��0 C Œ�
p
2
��1 C Œ�

p2

1
��2 detects v3 2 �2p3�2V .2/. The A�-comodule ho-

momorphism j2� W H�V .2/! H��2p2C1V .1/ sends 1, �0 and �1 to zero, and maps �2 to 1. Hence
j2 WE

1;�
2
.V .2//!E

1;��2p2C1
2

.V .1// sends Œ�3�1C Œ�3��0C Œ�
p
2
��1C Œ�

p2

1
��2 to Œ�p2

1
�1D i1i0.h2/. This

is also the class detecting 
 ı
1

, by Lemma 6.2. Therefore j2.v3/ D 

00
1

and 
 ı
1

agree modulo Adams
filtration � 2, ie modulo ˛1v

p�1
2

.

Remark 6.5 One way to see that ˛1v
p�1
1

and ˛1v
p�1
2

generate Adams filtration � 2 in �2p2�2p�1V .0/

and �2p3�2p2�1V .1/, respectively, is to compare with the corresponding Adams–Novikov spectral
sequences. By the beginning calculations in [Ravenel 2004, Section 4.4] the classes h11 and h10v

p�1
1

generate the Adams–Novikov E2-term for V .0/ in topological degree 2p2�2p�1, while the classes h12
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and h10v
p�1
2

generate the Adams–Novikov E2-term for V .1/ in topological degree 2p3� 2p2� 1. The
formula �R.vnC1/D vnC1C vnt

pn

1
� v

p
n t1 in BP�BP=In from [Ravenel 2004, Corollary 4.3.21] shows

that jn.vnC1/ in ��V .n� 1/ is detected by h1n� h10v
p�1
n when vnC1 2 ��V .n/ exists, while ˛1v

p�1
n

is detected by h10v
p�1
n .

The homotopy power operations also apply to R D K.BP/ and R D THH.BP/, with their E3 ring
structures derived from the E4 ring structure on BP, and to RDK.BPhni/ and RD THH.BPhni/, with
their E2 ring structures derived from the E3 ring structure on BPhni. (For n � 1 these are E1 ring
structures.)

��K.BP/ //

tr
��

��K.BPhni/ //

tr
��

��K.Z.p//

tr
��

�� THH.BP/ // �� THH.BPhni/ // �� THH.Z.p//

According to [Bökstedt and Madsen 1994, Theorem 10.14; Rognes 1998, Theorem 1.1] we can find a
class �K

1
2 �2p�1K.Z/ with tr.�K

1
/ D �1 2 �2p�1 THH.Z/, having Hurewicz image h.�1/ D � N�1 2

H2p�1 THH.Z/. The same statements apply with Z replaced by BPh0i DHZ.p/. The E4 ring spectrum
map BP ! HZ.p/ is .2p�2/-connected, and induces a .2p�1/-connected map K.BP/ ! K.Z.p//

by [Bökstedt and Madsen 1994, Proposition 10.9]. Hence we can lift �K
1

to �2p�1K.BP/. Its trace
image tr.�K

1
/2�2p�1 THH.BP/DZ.p/f�1g then maps to the generator �1 2 �2p�1 THH.Z.p//ŠZ=p.

It follows that we can scale the choice of �K
1
2 �2p�1K.BP/ by a p-local unit so as to ensure that

tr.�K
1
/D �1 in �2p�1 THH.BP/.

Definition 6.6 We fix a choice of a class �K
1
2 �2p�1K.BP/ with tr.�K

1
/ D �1 in �2p�1 THH.BP/.

These map to classes with the same names in �2p�1K.BPhni/ and �2p�1 THH.BPhni/, respectively, for
each n� 0.

The choice of �K
1
2 �2p�1K.BP/ made here is equivalent to the selection of �K

1
2 �2p�1K.BPh1i/

discussed in [Ausoni and Rognes 2002, Section 1.2], since BP! BPh1i D ` is .2p2�2/-connected,
which ensures that K.BP/!K.BPh1i/ is .2p2�1/-connected.

Definition 6.7 Let �K
2
D Pp.�K

1
/ 2 V .0/2p2�1K.BP/, mapping to classes with the same name in

V .0/2p2�1K.BPhni/ for each n� 1.

By naturality of Pp for E2 ring spectrum maps, this definition agrees with the case nD 1 discussed in
[Ausoni and Rognes 2002, Section 1.7].

Lemma 6.8 The classes tr.�K
2
/ and i0.�2/ in V .0/2p2�1 THH.BP/ both have Hurewicz image � N�2 in

H2p2�1 THH.BP/. Hence they agree modulo vp
1
�1, and have the same image in V .1/2p2�1 THH.BP/.
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Proof We have tr.�K
2
/D tr.Pp.�K

1
//D Pp.tr.�K

1
//D Pp.�1/ by naturality of Pp with respect to tr,

and h0Pp.�1/ D Qph.�1/ D Qp.� N�1/ by Lemma 5.5. Moreover, Qp.� N�1/ D �Qp. N�1/ D � N�2 by
[Angeltveit and Rognes 2005, Proposition 5.9; Bruner et al. 1986, Theorem III.2.3].

Definition 6.9 Let �K
3
D Pp2

.�K
2
/ 2 V .1/2p3�1K.BP/, mapping to classes with the same name in

V .1/2p3�1K.BPhni/ for each n� 2.

Lemma 6.10 The classes
tr.�K

3 /; i1i0.�3/ and Pp2

.i0.�2//

in V .1/2p3�1 THH.BP/ all have Hurewicz image � N�3 in H2p3�1 THH.BP/. Hence they agree modulo
v

p
2
�1 and have the same image in V .2/2p3�1 THH.BP/.

Proof We have tr.�K
3
/ D tr.Pp2

.�K
2
// D Pp2

.tr.�K
2
// by naturality of Pp2

with respect to tr, and
h1Pp2

.tr.�K
2
//DQp2

h0.tr.�K
2
//DQp2

.� N�2/ by Lemmas 5.6 and 6.8. Likewise, h1Pp2

.i0.�2//D

Qp2

h0.i0.�2//DQp2

.� N�2/. Finally, Qp2

.� N�2/D �Qp2

. N�2/D � N�3 by the same two references as in
the previous lemma.

Let us summarize these results, for later reference:

Proposition 6.11 Let p � 7. The trace map tr WK.B/! THH.B/ induces ring homomorphisms

V .2/�K.BP/! V .2/� THH.BP/ and V .2/�K.BPh2i/! V .2/� THH.BPh2i/;

each mapping i2i1i0.�
K
1
/, i2i1.�

K
2
/ and i2.�

K
3
/ to �1, �2 and �3, respectively.

Proof The claims for BP follow from Definition 6.6 and Lemmas 6.8 and 6.10. The image classes
in V .2/� THH.BPh2i/ coincide with the classes from Definition 3.4 since their Hurewicz images in
H� THH.BPh2i/ agree.

7 Approximate homotopy fixed points

For C D Cpn or T we have multiplicative homotopy fixed point spectral sequences

E2.C /DH��.C IV .2/� THH.B//) V .2/� THH.B/hC

(cf [Hedenlund and Rognes 2024, Section 5]) and multiplicative Tate spectral sequences

yE2.C /D yH��.C IV .2/� THH.B//) V .2/� THH.B/tC

(see [loc. cit., Section 6]). Here H�.T / D P .t/ and yH�.T / D P .t˙1/ with t 2 H 2 Š yH 2, while
H�.Cpn/ D E.un/ ˝ P .t/ and yH�.Cpn/ D E.un/ ˝ P .t˙1/ with un 2 H 1 Š yH 1. Note that for
B D BPh2i, each bidegree of E2.C / and yE2.C / is either 0 or Fp . This section is devoted to the proof of
the following collection of detection results:
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Proposition 7.1 The unit map S !K.B/ and the circle trace map trT WK.B/! THH.B/hT induce
ring homomorphisms

V .2/�! V .2/�K.BP/! V .2/� THH.BP/hT
! V .2/� THH.BPh2i/hT

mapping i2i1i0.˛1/, i2i1.ˇ
ı
1
/, i2.


ı
1
/ and v3 to classes detected by t�1, tp�2, tp2

�3 and t�, respectively.

Proof By Proposition 7.3 the circle trace image of ˇı
1

is detected by tp�2 in the T -homotopy fixed
point spectral sequence for V .0/^THH.BP/, hence also for V .2/^THH.BPh2i/.

By Proposition 7.4 the image of 
 ı
1

is detected by tp2

�3 in the spectral sequence for V .1/^THH.BP/,
hence also for V .2/^THH.BPh2i/.

By Proposition 7.6 the image of v3 is detected by t� in the spectral sequence for V .2/^THH.BPh2i/.

A simpler case of this last argument shows that the image of ˛1 is detected by t�1 in the spectral sequence
for THH.BP/, hence also for V .2/^THH.BPh2i/, but this is also readily deduced from the previously
known case of THH.Z/.

Notation 7.2 For any spectral sequence E2
�;�)G� and nonzero element x 2E1�;� we write fxg for the

coset of elements � 2 G� that are detected by x. Sometimes we will write ŒŒx�� for a specific choice of
such an element � , so that ŒŒx�� 2 fxg. Similar conventions appear in [Barratt et al. 1970, Proposition 3.1.5;
Bruner and Rognes 2021, Theorem 11.61].

For each T -spectrum X and integer m� 0 we have an mth-order approximate T -homotopy fixed point
spectral sequence

E2
�;� D ZŒt �=.tmC1/˝��.X /) ��F.S

2mC1
C ;X /T ;

obtained by truncating the T -homotopy fixed point spectral sequence to (horizontal) filtration degrees
�2m� � � 0.

Proposition 7.3 Consider the pth-order approximate T -homotopy fixed point spectral sequence

E2
�;� D ZŒt �=.tpC1/˝�� THH.BP/) ��F.S

2pC1
C ;THH.BP//T

for THH.BP/, and its analog for V .0/^THH.BP/. The circle trace image of ˛1 2 �2p�3.S/ in

��F.S
2pC1
C ;THH.BP//T

factors as a product ŒŒt �� � ŒŒ�1��, with ŒŒt ��2 ftg and ŒŒ�1��2 f�1g detected by t and �1, respectively. Moreover ,
the image of ˇı

1
2 �2p2�2p�1V .0/ in

V .0/�F.S
2pC1
C ;THH.BP//T

is the unique class detected by tp�2.
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Proof The pth-order approximate T -homotopy fixed point spectral sequence is multiplicative, and has
E2-term

ZŒt �=.tpC1/˝Z.p/f1; v1; �1; v
2
1 ; v1�1; : : : g;

with generators as listed in vertical degrees � < 6p � 6. Here d2.v1/ D t � �.v1/ D t � p�1, as in
Proposition 3.2, and E3 D E1 in this range of degrees. Hence t , �1 and t�1 are all infinite cycles,
detecting homotopy classes with indeterminacies Z.p/ft

pv1g, Z=pftp�1v1�1g and Z=pftpv1�1g, re-
spectively. The unit map S ! F.S

2pC1
C ;THH.BP//T takes ˛1 to a class detected by t�1; cf [Rognes

1998, Theorem 1.4]. Since each element in the indeterminacy of ft�1g factors as an element in the
indeterminacy of ftg times �1 (and also factors as t times an element in the indeterminacy of f�1g), it
follows that the image of ˛1 can be factored as a product ŒŒt �� � ŒŒ�1�� in ftg � f�1g.

Let �ı
2
D tr.�K

2
/D Pp.�1/ in V .0/� THH.BP/. By the homotopy Cartan formula from Proposition 5.7,

applied for the E3 ring spectrum F.S
2pC1
C ;THH.BP//T , the circle trace image of ˇı

1
D Pp�1.˛1/ is

Pp�1.ŒŒt �� � ŒŒ�1��/D ŒŒt ��
p
�Pp.ŒŒ�1��/:

Here Pp.ŒŒ�1��/ 2 f�
ı
2
g is a class detected by �ı

2
, by naturality of Pp with respect to the edge homo-

morphism induced by F.S
2pC1
C ;THH.BP//T ! THH.BP/. It follows that ŒŒt ��p �Pp.ŒŒ�1��/ is detected

by tp�ı
2
, with zero indeterminacy since this class lives in the lowest filtration degree.

To complete the proof, note that tp�ı
2
D tp�2 at the V .0/-homotopy E3-term, since these classes differ

by a multiple of d2.tp�1v2/D�tpv
p
1
�1 by Proposition 3.2 and Lemma 6.8.

Proposition 7.4 Consider the .p2/th-order approximate T -homotopy fixed point spectral sequence

E2
�;� D ZŒt �=.tp2C1/˝V .0/� THH.BP/) V .0/�F.S

2p2C1
C ;THH.BP//T

for V .0/^THH.BP/ and its analog for V .1/^THH.BP/. The circle trace image of ˇı
1
2�2p2�2p�1V .0/ in

V .0/�F.S
2p2C1
C ;THH.BP//T

factors as a product ŒŒtp �� � ŒŒ�2��, with ŒŒtp �� 2 ftpg and ŒŒ�2�� 2 f�2g detected by tp and �2, respectively.
Moreover , the image of 
 ı

1
2 �2p3�2p2�1V .1/ in

V .1/�F.S
2p2C1
C ;THH.BP//T

is the unique class detected by tp2

�3.

Proof Our first goal will be to show that tp times the indeterminacy in f�2g and �2 times the indetermi-
nacy in ftpg, in combination, span the indeterminacy in ftp�2g in the .p2/th-order spectral sequence for
V .0/^THH.BP/. To do this, we compare the mth-order approximate T -homotopy fixed point spectral
sequences for the three T -spectra

V .1/^THH.BP/; V .0/^THH.BP/ and THH.BP/;

via the morphisms induced by i0 W S ! V .0/, i1 W V .0/! V .1/ and j1 W V .1/!†2p�1V .0/.
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We begin with the V .1/-homotopy spectral sequence, which is easiest to understand. The mth-order
spectral sequence for V .1/^THH.BP/ has E2-term

PmC1.t/˝P .v2; : : : /˝E.�1; �2; : : : /;

where the omitted generators have vertical degree � � 2p3� 2. Here v2, �1 and �2 are infinite cycles,
since multiplication by v2 is realized by a self-map of V .1/ and since �1 and �2 detect the circle trace
images of �K

1
and �K

2
, respectively. For m D p it follows that this spectral sequence collapses at the

E2-term, in vertical degrees �< 2p3� 2.

For m> p there are nonzero d2p-differentials generated by

d2p.t/
:
D tpC1�1;

where x
:
D y means that x is a unit (in Fp) times y. This differential is present already in the T -homotopy

fixed point spectral sequence for THH.BP/, and lifts that of [Bökstedt and Madsen 1994, Theorem 5.8(i)]
for THH.Z.p// over the morphism of spectral sequences induced by BP!HZ.p/. It follows that the
mth-order E2pC1-term equals

Fpft
i
j 0� i �m; p j ig˝P .v2/˝E.�1; �2/

in vertical degrees �< 2p3� 2, plus some extra classes in even filtrations �2m� �< �2mC 2p and
�2p < � � 0 that survive due to being close to the truncation limits. Moreover, for m < p2C p the
spectral sequence must collapse at this stage, for these vertical degrees, since there is no room for a
differential on tp.

For later use, note that when m D 3p � 2 no classes survive in total degree � D 2p2 � 2p � 2i for
2 � i < p, since the classes t iCp�1v2 support differentials and the classes t iC2p�1�1�2 are hit by
differentials. Hence V .1/�F.S

2mC1
C ;THH.BP//T is zero in these degrees. Moreover, for i D 1 only the

classes t2p�1�2 and tpv2 survive in total degree � D 2p2� 2p� 2, and here i1j1.t
pv2/ is detected by

t2p�2 ¤ 0, so only t2p�1�2 can be (and is) in the image of i1, since j1i1 D 0. Hence the image of i1 is
isomorphic to Z=p in this degree.

We now turn to the V .0/-homotopy spectral sequence. The .p2/th-order approximate T -homotopy fixed
point spectral sequence for V .0/^THH.BP/ has E2-term

Pp2C1.t/˝P .v1; v2; : : : /˝E.�1; �2; : : : /;

where the omitted generators have vertical degree � � 2p3 � 2. Here t , v1, �1 and �2 are d2-cycles,
while d2.v2/D�tv

p
1
�1 by Proposition 3.2. Hence the E3-term equals

Pp2C1.t/˝ .P .v1/f1g˚Pp.v1/f�1; v2�1; : : : ; v
p�1
2

�1g/˝E.�2/

in vertical degrees �< 2p3� 2p, except that there are some additional classes in filtration degrees 0 and
�2p2; see Figure 1, which is drawn for p D 3, and hence is not quite to scale for the primes p � 7 under
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Figure 1: E3) V .0/�F.S
2p2C1;THH.BP//T in vertical degrees � < 4p2C 2p � 5, with all

d2p-differentials (dashed) and selected d4p�2-differentials (solid).
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consideration. As above, we know that the classes v1, �1 and �2 are infinite cycles. The next nonzero
differentials are

d2p.t/
:
D tpC1�1 and d2p.v2�1/

:
D tpv1�1�2:

The d2p-differential on t for V .0/ ^ THH.BP/ follows, as above, from the one for THH.BP/. The
earlier differential d2p�2.v2�1/ 2 Fpft

p�1v
pC3
1
g must vanish by tv

p
1

-linearity, since tv
p
1
� v2�1 D 0 and

tv
p
1
� tp�1v

pC3
1
¤ 0. If d2p.v2�1/ were zero, v2�1 would detect a class in V .0/�F.S

2pC1
C ;THH.BP//T

that maps under i1 WV .0/!V .1/ to the class in V .1/�F.S
2pC1
C ;THH.BP//T detected by v2�1. However,

the latter class maps under i1j1 W V .1/! †2p�1V .1/ to the nonzero class i1j1.v2�1/ D i1.ˇ
0
1
/�1 D

i1.ˇ
ı
1
/�1 detected by tp�2 � �1 D �tp � �1�2, as follows from Lemma 6.4 and Proposition 7.3. This

contradicts j1i1 D 0, and proves that d2p.v2�1/ is nonzero in Fpft
pv1�1�2g.

It follows that the E2pC1-term equals

PpC1.t
p/˝ .P .v1/f1; �2g˚Pp.v1/f�1g˚Fpf�1�2; v

p�1
1

v2�1g/

˚Fpft
i
j 0< i < p2; p−ig˝ .P .v1/fv

p
1
; v1�2C cv2�1g˚Fpfv

p�1
1

v2�1g/

in vertical degrees �< 4p2C2p�5, plus some extra classes in even filtrations �2p2 � �<�2p2C2p

and �2p<�� 0. In the expression v1�2Ccv2�1, the coefficient c (which will vary with the t -exponent i )
is some unit in Fp.

The next differentials include

d4p�2.tv
p
1
/
:
D t2pv1�2 and d4p�2.t iv

p
1
/
:
D t iC2p�1.v1�2C cv2�1/

for 2 � i < p. To see that these are nonzero, we compare the mth-order spectral sequences for
V .0/^THH.BP/ and V .1/^THH.BP/, in the particular case mD3p�2. If d4p�2.t iv

p
1
/ were zero in the

former, then t iv
p
1

would survive to detect a class in degree 2p2�2p�2i of V .0/�F.S
2mC1
C ;THH.BP//T

that cannot be a v1-multiple, for filtration reasons, and which must therefore have nonzero image in
V .1/�F.S

2mC1
C ;THH.BP//T . However, for 2� i < p we checked above that this graded abelian group

is zero in these degrees. The assumption that d4p�2.t iv
p
1
/ is zero therefore leads to a contradiction,

which shows that this class is nonzero in Fpft
iC2p�1.v1�2C cv2�1/g, as claimed.

Furthermore, for i D 1 it is not possible that both t2p�1�2 and tv
p
1

survive to E1, since then the image
of i1 in degree 2p2 � 2p � 2 would have order p2, rather than the order p that we established above.
Hence d4p�2.tv

p
1
/ must be nonzero in Fpft

2pv1�2; t
2pv2�1g. Extending to the case mD 3p shows that

d4p�2.tv
p
1
/ must be nonzero in Fpft

2pv1�2g, as claimed.

We can now conclude that tp is an infinite cycle in the spectral sequence converging to

V .0/�F.S
2p2C1
C ;THH.BP//T ;

since there are no possible targets for later differentials, and the indeterminacy in ftpg is generated by
(classes detected by)

tp2�pC1v
p�1
1

and tp2

v
p
1
:
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The class tp�2 is also an infinite cycle, detecting the circle trace image of ˇı
1

by Proposition 7.3, and has
indeterminacy generated by (a subset of)

t2p�1.v1�2C cv2�1/; tp2�pC1v
p�1
1

�2 and tp2

v
p�1
1

v2�1:

Likewise, �2 is an infinite cycle, detecting the circle trace image of �K
2

plus some multiple of vp
1
�K

1

according to Lemma 6.8, with indeterminacy generated by (a subset of)

tp�1.v1�2C cv2�1/; t2p�2.v2
1�2C cv1v2�1/; tp2�pv

p�1
1

v2�1 and tp2�1v
pC1
1

�2:

Here tp�1.v1�2C cv2�1/ might support a nonzero dr -differential and not be an infinite cycle. However,
there are no possible targets in filtrations �2p2 � � < �2p2 C 2p of such a dr -differential, since
d4p�2.tp2�1v

2pC2
1

/ D tp2C2p�2v
pC3
1

�2 ¤ 0 in the full T -homotopy fixed point spectral sequence.
Hence in this case t2p�1.v1�2C cv2�1/ will also support a nonzero differential, of the same length, and
also not be an infinite cycle. Similarly, if tp2�pv

p�1
1

v2�1 is hit by a dr -differential, then tp2

v
p�1
1

v2�1

will be hit by a differential of the same length.

It follows that tp times the indeterminacy in f�2g, together with the class tp2�pC1v
p�1
1

�2, span the
indeterminacy in ftp�2g. That extra class lies in the indeterminacy of ftpg times �2. Hence we have
achieved our first goal, as formulated at the outset of the proof.

Now choose classes x and y in V .0/�F.S
2p2C1
C ;THH.BP//T , detected by tp and �2, respectively. Then

the difference between the circle trace image of ˇı
1

and the product xy lies in the indeterminacy of ftp�2g.
By modifying the choices of x and y, within the indeterminacies of ftpg and f�2g, respectively, we can
reduce the filtration of this difference until it becomes zero. Let ŒŒtp ��D x and ŒŒ�2��D y be the final values
of x 2 ftpg and y 2 f�2g, so that the circle trace image of ˇı

1
equals the product ŒŒtp �� � ŒŒ�2��.

Let �ı
3
D Pp2

.�2/ in V .1/� THH.BP/. We apply the Cartan formula from Corollary 5.12 in the case of
the E3 ring spectrum retract F.S

2p2C1
C ;THH.BP//T of F.S

2p2C1
C ;THH.MU.p///T , where the latter is

an E1 ring spectrum. It asserts that the circle trace image of 
 ı
1
D Pp2�p.ˇı

1
/ is

Pp2�p.ŒŒtp �� � ŒŒ�2��/D ŒŒt
p ��p �Pp2

.ŒŒ�2��/:

Here Pp2

.ŒŒ�2��/ 2 f�
ı
3
g is a class detected by �ı

3
, by naturality of Pp2

with respect to the edge homomor-
phism induced by F.S

2p2C1
C ;THH.BP//T ! THH.BP/. It follows that ŒŒtp ��p �Pp2

.ŒŒ�2��/ is detected
by tp2

�ı
3
, with zero indeterminacy since this class lives in the lowest filtration degree.

To complete the proof, note that tp2

�ı
3
D tp2

�3 at the V .1/-homotopy E3-term, since these classes
differ by a multiple of d2.tp2�1v3/D�tp2

v
p
2
�1 by Proposition 3.2 and Lemma 6.10.

Remark 7.5 In the course of the previous proof, we have seen that the circle trace image of ˇı
1
2 V .0/�

is detected by tp�2, and that tpv1�2 is not a boundary in the (approximate) T -homotopy fixed point
spectral sequence, which implies that v1 �ˇ

ı
1
¤ 0. This confirms a claim made in the proof of Lemma 6.4.
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Proposition 7.6 Consider the first-order (approximate T -homotopy fixed point) spectral sequence

E2
�;� D ZŒt �=.t2/˝V .2/� THH.BPh2i/) V .2/�F.S

3
C;THH.BPh2i//T

for V .2/^THH.BPh2i/. The circle trace image of v3 2 �2p3�2V .2/ in

V .2/�F.S
3
C;THH.BPh2i//T

is the unique class detected by t�.

Proof The line of argument is the same as for the case of v2 2 �2p2�2V .1/ in [Ausoni and Rognes 2002,
Proposition 4.8]. For brevity, let Y D F.S3

C;THH.BPh2i//T . We have a map of mod-p Adams spectral
sequences

E2.V .2//D ExtA�.Fp;H�V .2//! ExtA�.Fp;H�.V .2/^Y //DE2.V .2/^Y /;

where v3 is detected in the source in bidegree .s; t/D .1; 2p3� 1/ by the class of the cobar cocycle

x D Œ�3�1C Œ�3��0C Œ�
p
2
��1C Œ�

p2

1
��2

in E
1;�
1
.V .2//DA�˝H�V .2/. (As usual, A� denotes the cokernel of the unit Fp!A�.) We claim that

this cocycle does not become a coboundary when mapped to E
1;�
1
.V .2/^ Y /D A�˝H�.V .2/^ Y /.

This implies that the image of v3 is nonzero in V .2/�.Y /, and in view of Proposition 3.3 the only possible
detecting class in its total degree is t�.

To prove the claim we use the first-order spectral sequence for H ^V .2/^THH.BPh2i/, which reduces
to a long exact sequence, leading to an extension

0! cok.�/!H�.V .2/^Y /! ker.�/! 0

of A�-comodules. Here

� WH�.V .2/^THH.BPh2i//!H�C1.V .2/^THH.BPh2i//

acts on H�.V .2/ ^ THH.BPh2i// Š A� ˝ E.� N�1; � N�2; � N�3/˝ P .� N�3/, as per Proposition 3.1. The
cocycle x is a cobar coboundary only if there is a class y 2 E

0;�
1
.V .2/ ^ Y / D H�.V .2/ ^ Y / with

A�-comodule coaction �.y/ containing the term �3˝ 1.

There is no such class y 2 cok.�/, since this A�-subcomodule does not contain the algebra unit 1.
Moreover, since �. N�3/D � N�3 ¤ 0, the class N�3 is not in ker.�/. Hence ker.�/ in total degree 2p3� 1 is
generated by polynomials in N�0, N�1, N�2, N�1, N�2, N�3, � N�1, � N�2 and � N�3, none of which have A�-coaction
that involves �3. This proves that no such class y exists, and x is not a coboundary.

8 The Cp-Tate spectral sequence

We now establish an effective version of the Cp-equivariant Segal conjecture (or homotopy limit property)
for V .2/^THH.BPh2i/, by direct computation. The corresponding results for the groups Cpn and T then
follow from a theorem of Tsalidis. The analogous results for BPh0i DHZ.p/ and BPh1i D ` were proved
in [Bökstedt and Madsen 1994, Theorem 5.8(i)] and [Ausoni and Rognes 2002, Theorem 5.5], respectively.
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Theorem 8.1 The Cp-Tate spectral sequence

yE2.Cp/D yH
��.CpIV .2/� THH.BPh2i//) V .2/� THH.BPh2i/tCp

has E2-term
yE2.Cp/DE.u1/˝P .t˙1/˝P .t�/˝E.�1; �2; �3/:

There are differentials

d2p.t1�p/
:
D t�1; d2p2

.tp�p2

/
:
D tp�2; d2p3

.tp2�p3

/
:
D tp2

�3 and d2p3C1.u1t�p3

/
:
D t�;

and the classes �1, �2, �3 and t˙p3

are permanent cycles. The E1-term

yE1 D P .t˙p3

/˝E.�1; �2; �3/

is the associated graded of

V .2/� THH.BPh2i/tCp ŠE.�1; �2; �3/˝P .�˙1/:

The comparison map y�1 W THH.BPh2i/! THH.BPh2i/tCp induces the localization homomorphism

V .2/�y�1 WE.�1; �2; �3/˝P .�/!E.�1; �2; �3/˝P .�˙1/;

which is .2p2C2p�3/-coconnected.

Proof The circle trace map K.B/! THH.B/hT lifts the trace map, so by Proposition 6.11 the classes
�K

i for i 2 f1; 2; 3g map to classes in V .2/� THH.B/hT detected by the �i . Similarly, by Proposition 7.1
the class v3 in ��V .2/ maps to a class detected by t�. Hence these detecting classes are infinite cycles in
all of the C -homotopy fixed point and C -Tate spectral sequences. This means that in order to determine
the dr -differentials in one of these spectral sequences, it suffices to determine dr .x/ for x ranging through
a P .t�/˝E.�1; �2; �3/-module basis for the Er -term.

The unit map S ! THH.B/ factors through B, and V .2/�BPh2i D Fp, so the images of ˛1, ˇı
1
, 
 ı

1

and v3 in ��V .2/ map to zero in V .2/� THH.BPh2i/ and V .2/� THH.BPh2i/tCp . Hence the four classes
t�1, tp�2, tp2

�3 and t� must all be boundaries in the Cp-Tate spectral sequence.

The first possible (nonzero) dr -differentials on u1 and t˙1 in yE2.Cp/ have r D 2p. We know that t�1 is
a boundary, so

d2p.t1�p/
:
D t�1:

Also d2p.u1/ 2 Fpfu1tp�1g, so d2p.u1tm1/D 0 for some integer m1 defined mod p. Hence

yE2pC1.Cp/DE.u1tm1/˝P .t˙p/˝P .t�/˝E.�1; �2; �3/:

The next possible dr -differentials on u1tm1 and t˙p have r D 2p2. We know that tp�2 is a boundary, so

d2p2

.tp�p2

/
:
D tp�2:

Also d2p2

.u1tm1/ 2 Fpfu1tm1Cp2

�2g, so d2p2

.u1tm2/D 0 for some integer m2 defined mod p2, with
m2 �m1 mod p. Then

yE2p2C1.Cp/DE.u1tm2/˝P .t˙p2

/˝P .t�/˝E.�1; �2; �3/:
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If m2 � �p mod p2 then the first possible differential on u1tm2 is dr .u1tm2/ 2 Fpft
m2Cp2Cp�1�2g

with r D 2p2C 2p� 1. Otherwise, the first possible differential on u1tm2 has r D 2p3.

By naturality with respect to the group cohomology transfer (Verschiebung), with V .t i/ D 0 and
V .u1t i/ D u2t i , the first possible dr -differential on t˙p2

cannot take a value of the form u1x, and
hence has r D 2p3; cf [Ausoni and Rognes 2002, Lemma 5.2].

We know that tp2

�3 is a boundary, and the only possible sources in yE2.Cp/ of a dr -differential with this
target are t�p3C2p2Cp�1�1�2 with r D 2p3�2p2�2pC2, u1t�p3C2p2�1�2 with r D 2p3�2p2C1,
u1t�p3Cp2Cp�1�1 with r D 2p3 � 2p C 1 and t�p3Cp2

with r D 2p3. The first source is not
present in yE2p2C1.Cp/, and the second and third sources are present there only if m2 ��1 mod p2 or
m2 � p � 1 mod p2, respectively. In both of these cases m2 ¥ �p mod p2, so u1tm2 survives to the
E2p3

-term. In the second case

d2p3�2p2C1.u1t�p3C2p2�1�2/D d2p3�2p2C1.u1t�p3C2p2�1/�2 D 0;

while in the third case

d2p3�2pC1.u1t�p3Cp2Cp�1�1/D d2p3�2pC1.u1t�p3Cp2Cp�1/�1 D 0:

Hence the fourth option,
d2p3

.t�p3Cp2

/
:
D tp2

�3;

is the only possibility.

We also know that t� is a boundary, and the only possible sources of a dr -differential with this target are
u1t�p3Cp2Cp�1�1�2 with r D 2p3 � 2p2 � 2pC 3, t�p3Cp2

�2 with r D 2p3 � 2p2C 2, t�p3Cp�1

with r D 2p3� 2pC 2 and u1t�p3

with r D 2p3C 1. The first source is only present in yE2p2C1.Cp/ if
m2 � p� 1 mod p2, in which case u1tm2 survives to the E2p3

-term, and

d2p3�2p2�2pC3.u1t�p3Cp2Cp�1�1�2/D d2p3�2p2�2pC3.u1t�p3Cp2Cp�1/�1�2 D 0:

In the second case

d2p3�2p2C2.t�p3Cp2

�2/D d2p3�2p2C2..t�p2

/p�1/�2 D 0;

since t˙p2

survive to the E2p3

-term. The third source is not present in yE2p2C1.Cp/. This leaves the
fourth option,

d2p3C1.u1t�p3

/
:
D t�;

as the only possibility. It follows that d2p3

.u1t�p3

/ D 0. In particular, u1t�p3

must be present in
yE2p2C1.Cp/, and we may take m1 Dm2 D 0 in the formulas above. Then

yE2p3C1.Cp/DE.u1t�p3

/˝P .t˙p3

/˝P .t�/˝E.�1; �2; �3/:

Here d2p3C1.t�p3

/ lies in a trivial group, so

yE2p3C2.Cp/D P .t˙p3

/˝E.�1; �2; �3/:

This equals yE1.Cp/, since there are no further targets for differentials on t�p3

.
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We claim that y�1.�/ in V .2/� THH.BPh2i/tCp is detected by a unit times t�p3

. To see this, we can use
naturality with respect to the map BPh2i ! BPh1i, as in the commutative diagram below.

H� THH.BPh2i/

��

V .2/� THH.BPh2i/
h2
oo

y�1
//

��

V .2/� THH.BPh2i/tCp

��

H� THH.BPh1i/ V .2/� THH.BPh1i/
h2
oo

y�1
// V .2/� THH.BPh1i/tCp

H� THH.BPh1i/ V .1/� THH.BPh1i/
h1
oo

y�1
//

i2

OO

V .1/� THH.BPh1i/tCp

i2

OO

Recall from Proposition 3.3 that V .1/� THH.BPh1i/ D E.�1; �2/˝ P .�2/, where h1.�2/ D � N�2 in
H� THH.BPh1i/, and that y�1.�2/ in V .1/� THH.BPh1i/tCp is detected by a unit times t�p2

by the proof
of [Ausoni and Rognes 2002, Theorem 5.5]. It follows that � maps to i2.�

p
2
/ in V .2/� THH.BPh1i/,

since h2.�/D � N�3 maps to h1.�
p
2
/D .� N�2/

p D � N�3. By naturality, y�1.�/ maps to a class detected by a
unit times .t�p2

/p D t�p3

, which proves the claim.

The highest-degree class in E.�1; �2; �3/˝P .�˙1/ that is not in the image from E.�1; �2; �3/˝P .�/

is �1�2�3�
�1, in degree .2p�1/C .2p2�1/C .2p3�1/� .2p3/D 2p2C2p�3. Hence V .2/�y�1 is

injective in this degree, and an isomorphism in all higher degrees.

Corollary 8.2 [Tsalidis 1998, Theorem 2.4; Bökstedt et al. 2014, Theorem 2.8] The comparison maps

�n W V .2/^THH.BPh2i/Cpn
! V .2/^THH.BPh2i/hCpn ;

y�n W V .2/^THH.BPh2i/Cpn�1 ! V .2/^THH.BPh2i/tCpn ;

for n� 1, and their homotopy limits

� WV .2/^TF.BPh2i/!V .2/^THH.BPh2i/hT and y� WV .2/^TF.BPh2i/!V .2/^THH.BPh2i/tT ;

are all .2p2C2p�3/-coconnected.

9 The Cp2-Tate spectral sequence

Our next goal is to determine the differential structure of the Cpn-Tate spectral sequence converging to
V .2/� THH.BPh2i/tCpn , for each n� 2. There are some minor differences between the cases nD 2 and
n� 3, so we spell out the Cp2 case in this section, including some motivation, and leave the notationally
more elaborate cases n� 3 for the next section.

We first determine the structure of the Cp-homotopy fixed point spectral sequence from that of the Cp-Tate
spectral sequence, using the homotopy restriction morphism (also known as the canonical morphism)

Rh
WEr .Cp/! yE

r .Cp/:
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It is algebraically simpler to work with the localized spectral sequence ��1Er .Cp/, keeping in mind that

Er .Cp/! ��1Er .Cp/

is .2p2C2p�3/-coconnected. In view of Theorem 8.1, the �-localized Cp-homotopy fixed point spectral
sequence for V .2/^THH.BPh2i/ is isomorphic to the Cp-homotopy fixed point spectral sequence for
V .2/^THH.BPh2i/tCp .

Proposition 9.1 The �-localized Cp-homotopy fixed point spectral sequence

��1E2.Cp/DH��.CpI�
�1V .2/� THH.BPh2i//) ��1V .2/� THH.BPh2i/hCp

has E2-term
��1E2.Cp/DE.u1/˝P .t�/˝E.�1; �2; �3/˝P .�˙1/:

There are differentials

d2p.�/
:
D .t�/p�1�

1�p; d2p2

.�p/
:
D .t�/p

2

�2�
p�p2

;

d2p3

.�p2

/
:
D .t�/p

3

�3�
p2�p3

; d2p3C1.u1�
p3

/
:
D .t�/p

3C1;

and the classes t�, �1, �2, �3 and �˙p3

are permanent cycles.

Proof The composite relations

d2p.�/ ��p
D d2p.t� � t�1/ ��p :

D t� � tp�1�1 ��
p
D .t�/p�1�;

d2p2

.�p/ ��p2

D d2p2

..t�/p � t�p/ ��p2 :
D .t�/p � tp2�p�2 ��

p2

D .t�/p
2

�2�
p;

d2p3

.�p2

/ ��p3

D d2p3

..t�/p
2

� t�p2

/ ��p3 :
D .t�/p

2

� tp3�p2

�3 ��
p3

D .t�/p
3

�3�
p2

;

d2p3C1.u1�
p3

/D d2p3C1..t�/p
3

�u1t�p3

/
:
D .t�/p

3

� t�D .t�/p
3C1

lift to the Cp-homotopy fixed point spectral sequence and can be rewritten as claimed after inverting �.

The first differential leaves

��1E2pC1.Cp/DE.u1/˝P .t�/˝E.�1; �2; �3/˝P .�˙p/

˚E.u1/˝Pp.t�/˝E.�2; �3/˝Fpf�1�
j
j vp.j /D 0g:

The second leaves

��1E2p2C1.Cp/DE.u1/˝P .t�/˝E.�1; �2; �3/˝P .�˙p2

/

˚E.u1/˝Pp.t�/˝E.�2; �3/˝Fpf�1�
j
j vp.j /D 0g

˚E.u1/˝Pp2.t�/˝E.�1; �3/˝Fpf�2�
j
j vp.j /D 1g:

The third leaves

��1E2p3C1.Cp/DE.u1/˝P .t�/˝E.�1; �2; �3/˝P .�˙p3

/

˚E.u1/˝Pp.t�/˝E.�2; �3/˝Fpf�1�
j
j vp.j /D 0g

˚E.u1/˝Pp2.t�/˝E.�1; �3/˝Fpf�2�
j
j vp.j /D 1g

˚E.u1/˝Pp3.t�/˝E.�1; �2/˝Fpf�3�
j
j vp.j /D 2g:
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The final differential leaves

��1E2p3C2.Cp/D Pp3C1.t�/˝E.�1; �2; �3/˝P .�˙p3

/

˚E.u1/˝Pp.t�/˝E.�2; �3/˝Fpf�1�
j
j vp.j /D 0g

˚E.u1/˝Pp2.t�/˝E.�1; �3/˝Fpf�2�
j
j vp.j /D 1g

˚E.u1/˝Pp3.t�/˝E.�1; �2/˝Fpf�3�
j
j vp.j /D 2g;

which equals ��1E1.Cp/.

Next we use the commutative diagram

THH.BPh2i/hCp

F

��

THH.BPh2i/Cp

F

��

�1
oo

y�2
// THH.BPh2i/tC

p2

F
��

THH.BPh2i/ THH.BPh2i/
y�1

// THH.BPh2i/tCp

and what is known about V .2/� THH.BPh2i/hCp above degree 2p2C2p�3 to pin down the differential
pattern of the Cp2-Tate spectral sequence leading to V .2/� THH.BPh2i/tC

p2 :

Theorem 9.2 The Cp2-Tate spectral sequence

yE2.Cp2/D yH��.Cp2 IV .2/� THH.BPh2i//) V .2/� THH.BPh2i/tC
p2

has E2-term
yE2.Cp2/DE.u2/˝P .t˙1/˝P .t�/˝E.�1; �2; �3/:

There are differentials

d2p.t1�p/
:
D t�1; d2p2

.tp�p2

/
:
D tp�2; d2p3

.tp2�p3

/
:
D tp2

�3;

d2p4C2p.tp3�p4

/
:
D tp3

.t�/p�1; d2p5C2p2

.tp4�p5

/
:
D tp4

.t�/p
2

�2;

d2p6C2p3

.tp5�p6

/
:
D tp5

.t�/p
3

�3; d2p6C2p3C1.u2t�p6

/
:
D .t�/p

3C1;

and the classes t�, �1, �2, �3 and t˙p6

are permanent cycles.

Proof According to [Ausoni and Rognes 2002, Lemma 5.2], naturality with respect to Frobenius and
Verschiebung maps forces the first three differentials, showing that

yE2p3C1.Cp2/DE.u2/˝P .t˙p3

/˝P .t�/˝E.�1; �2; �3/:

To proceed, we shall make use of the summands

Pp.t�/˝Fpf�1�g; Pp2.t�/˝Fpf�2�
p
g; Pp3.t�/˝Fpf�3�

p2

g and Pp3C1.t�/˝Fpf�
p3

g

in E1.Cp/, which is equal to ��1E1.Cp/ in these degrees. There are almost no classes in the same
total degrees and of lower filtration than the vanishing products

.t�/p ��1�; .t�/p
2

��2�
p; .t�/p

3

��3�
p2

and .t�/p
3C1
��p3

:
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The only exception is the class .t�/p
2Cp�1�1�2�3 in the same total degree as .t�/p

2

��2�
p . However,

this class is itself a .t�/p
2

-multiple, so there is no room for a hidden vp2

3
-extension on �2�

p . Hence �1�

detects a vp
3

-torsion class x1, �2�
p detects a vp2

3
-torsion class x2, �3�

p2

detects a vp3

3
-torsion class x3,

�p3

detects a vp3C1
3

-torsion class x4 in V .2/� THH.BPh2i/hCp , and these v3-power torsion orders are
all exact.

By Corollary 8.2 the maps �1 and y�2 are .2p2C2p�3/-coconnected. Hence the classes xi lift uniquely
to classes yi in V .2/� THH.BPh2i/Cp with �1.yi/D xi , and we let zi D

y�2.yi/ denote their images in
V .2/� THH.BPh2i/tC

p2 . Since y�1.�/D t�p3

, up to a unit in Fp that we hereafter often omit to mention,
F.z1/ is detected by t�p3

�1, F.z2/ is detected by t�p4

�2, F.z3/ is detected by t�p5

�3 and F.z4/ is
detected by t�p6

in yE1.Cp/.

We claim that there are no classes in yE1.Cp2/ in the same total degrees and of higher filtrations than

t�p3

�1; t�p4

�2; t�p5

�3 and t�p6

:

This will imply that the zi are detected by precisely these classes. Already at the (known) E2p3C1-term
the only exception to the claim is u2t�p3�p5

in the same total degree as t�p5

�3, and we shall see below
that this class supports a nonzero d2p4C2p-differential, hence does not survive to the E1-term. It then
follows that the products

.t�/p � t�p3

�1; .t�/p
2

� t�p4

�2; .t�/p
3

� t�p5

�3 and .t�/p
3C1
� t�p6

must detect zero, and therefore be boundaries in the Cp2-Tate spectral sequence yEr .Cp2/. We shall prove
that these boundaries must be

d2p4C2p.t�p3�p4

/
:
D .t�/p � t�p3

�1; d2p5C2p2

.t�p4�p5

/
:
D .t�/p

2

� t�p4

�2;

d2p6C2p3

.t�p5�p6

/
:
D .t�/p

3

� t�p5

�3; d2p6C2p3C1.u2t�2p6

/
:
D .t�/p

3C1
� t�p6

;

and the asserted formulas follow readily.

We shall make use of the following lemma. Each cyclic P .t�/-module is either free or torsion, being
isomorphic to a suspension of P .t�/ or of its truncation Ph.t�/D P .t�/=..t�/h/ at some height h� 1,
according to the case. Here and below exponents � and �i are always assumed to lie in f0; 1g.

Lemma 9.3 For each r � 2p3 C 1 the Cp2-Tate Er -term yEr .Cp2/ is a direct sum of cyclic P .t�/-
modules , generated by classes of the form u�

2
t i � �

�1

1
�
�2

2
�
�3

3
with p3 j i . The dr -differential maps free

summands to free summands , and is zero on the torsion summands.

Proof We proceed by induction on r � 2p3 C 1, assuming that the P .t�/-module structure of the
Er -term is as stated.

Suppose that there is a dr -differential dr .a/ D b hitting a nonzero t�-torsion class. Then t� � b D

b0 D dr0.a0/ must have been hit by an earlier dr0-differential, where a0 is a generator of the form
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u�
2
t i ��

�1

1
�
�2

2
�
�3

3
with p3 j i . Hence a must lie in the same total degree as the formal product .t�/�1 � a0,

but in a higher filtration. At the E2-term, this could happen in three cases:

� if a0 D u�
2
t i � �1�2�3, with a in the bidegree of u�

2
t i�p � �2, u�

2
t i�p2

� �1, u2t i�p2�p � 1 or
t i�p2�pC1 � 1,

� if a0 D u�
2
t i ��2�3, with a in the bidegree of u2t i�p2Cp�1 ��1, t i�p2Cp ��1 or u�

2
t i�p2

� 1,

� if a0 D u�
2
t i ��1�3, with a in the bidegree of u�

2
t i�p � 1.

However, in none of these cases is the prescribed t -exponent (i �p, i �p2, etc) a multiple of p3. Hence
there are no nonzero classes in these bidegrees of yE2p3C1.Cp2/, and therefore also not in yEr .Cp2/ for
r � 2p3C 1.

It follows that no differentials hit the torsion summands, so each nonzero differential maps a free summand
to another free summand. Its kernel is then zero, while its cokernel creates a torsion summand in the
ErC1-term, which is still generated by a class of the required form. This proves the inductive statement
for r C 1.

The remainder of the proof of Theorem 9.2 can be separated into five steps:

(1) We start with z1, which we know is detected by t�p3

�1. Checking bidegrees in yE2p3C1.Cp2/, the
next possible differentials on u2 and t�p3

are

d2p4C2p�1.t�p3

/ 2 Fpfu2t�p3Cp4

.t�/p�1�1�3g;

d2p4C2p.t�p3

/ 2 Fpft
�p3Cp4

.t�/p�1g;

d2p4C2p.u2/ 2 Fpfu2tp4

.t�/p�1g:

Since t� and the �i are infinite cycles, we must have dr D 0 for 2p3C1� r < 2p4C2p�1. Moreover,
.t�/p � t�p3

�1
:
D dr1.a1/ in vertical degree 2p4C 2p � 1 must be a boundary, and the only possible

source of such a dr1-differential with r1 � 2p4C2p�1 is a1D t�p3�p4

with r1D 2p4C2p. It follows
that d2p4C2p�1.t�p3

/D 0 vanishes and furthermore that d2p4C2p.t�p3

/
:
D t�p3Cp4

.t�/p�1 is nonzero.

(2) We turn to z4, which we know is detected by t�p6

. Thus tp6

and its inverse are permanent cycles.
The nonzero product vp3

3
�z4 is detected by b4D .t�/

p3

� t�p6

or, if this product is a boundary, by another
class in the same total degree as b4 but of lower filtration. Let b0

4
denote the actual detecting class. Then

t� �b0
4

:
D dr4.a4/ in total degree 4p6�2 detects vp3C1

3
�z4D 0, and hence is a boundary. By Lemma 9.3,

the source of this differential is of the form a4 D u�
2
t i ��

�1

1
�
�2

2
�
�3

3
, with p3 j i . (If a4 were a t�-multiple

at the E2-term, then it would be a t�-multiple at the Er4-term, by the lemma. Then b0
4

would be a
dr4-boundary, which is impossible since it detects vp3

3
� z4 ¤ 0.) The total degree of a4 is 4p6� 1, so the

only possibilities are tp3�2p6

�3 with r4 � 2p6C 2, or u2t�2p6

with r4 � 2p6C 2p3C 1. However, we
showed in (1) that tp3�2p6

�3 supports a nonzero (shorter) d2p4C2p-differential. Hence a4 D u2t�2p6
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survives at least to the E2p6C2p3C1-term, and dr4.a4/¤ 0 for some r4 � 2p6C 2p3C 1. Since tp6

is
an infinite cycle it follows that u2 also survives to the E2p6C2p3C1-term. Hence

yE2p4C2pC1.Cp2/DE.u2/˝P .t˙p4

/˝P .t�/˝E.�1; �2; �3/

˚E.u2/˝Pp.t�/˝E.�2; �3/˝Fpft
i�1 j vp.i/D 3g:

In particular, u2t�p3�p5

is not an infinite cycle, and cannot detect z3, confirming our earlier claim.

(3) We continue with z2, which we know is detected by t�p4

�2. Checking bidegrees in yE2p4C2pC1.Cp2/,
the next possible differentials on t�p4

are

d2p5C2p2�1.t�p4

/2Fpfu2t�p4Cp5

.t�/p
2�1�2�3g and d2p5C2p2

.t�p4

/2Fpft
�p4Cp5

.t�/p
2

�2g;

while u2 survives at least to yE2p6C2p3C1.Cp2/ by (2). The differentials on t�, the �i and the torsion
summand are zero. Hence dr D 0 for 2p4C2pC1� r < 2p5C2p2�1. Moreover, .t�/p

2

� t�p4

�2 D

dr2.a2/ in vertical degree 2p5 C 2p2 � 1 must be a boundary, and the only possible source of such
a dr2-differential with r2 � 2p5 C 2p2 � 1 is a2

:
D t�p4�p5

with r2 D 2p5 C 2p2. It follows that
d2p5C2p2�1.t�p4

/D 0 vanishes and that d2p5C2p2

.t�p4

/
:
D t�p4Cp5

.t�/p
2

�2 is nonzero. Hence

yE2p5C2p2C1.Cp2/DE.u2/˝P .t˙p5

/˝P .t�/˝E.�1; �2; �3/

˚E.u2/˝Pp.t�/˝E.�2; �3/˝Fpft
i�1 j vp.i/D 3g

˚E.u2/˝Pp2.t�/˝E.�1; �3/˝Fpft
i�2 j vp.i/D 4g:

(4) We know from (2) that z3 is detected by t�p5

�3. Checking bidegrees in yE2p5C2p2C1.Cp2/, the next
possible differential on t�p5

is

d2p6C2p3

.t�p5

/ 2 Fpft
�p5Cp6

.t�/p
3

�3g;

while u2 survives to the E2p6C2p3C1-term by (2). The differentials on t�, the �i and the torsion summands
are zero. Hence dr D 0 for 2p5C 2p2C 1� r < 2p6C 2p3. Moreover, .t�/p

3

� t�p5

�3 D dr3.a3/ in
vertical degree 2p6C2p3�1 must be a boundary, and the only possible source of such a differential is a3

:
D

t�p5�p6

with r3 D 2p6C 2p3. It follows that d2p6C2p3

.t�p5

/
:
D t�p5Cp6

.t�/p
3

�3 is nonzero. Hence

yE2p6C2p3C1.Cp2/DE.u2/˝P .t˙p6

/˝P .t�/˝E.�1; �2; �3/

˚E.u2/˝Pp.t�/˝E.�2; �3/˝Fpft
i�1 j vp.i/D 3g

˚E.u2/˝Pp2.t�/˝E.�1; �3/˝Fpft
i�2 j vp.i/D 4g

˚E.u2/˝Pp3.t�/˝E.�1; �2/˝Fpft
i�3 j vp.i/D 5g:

(5) Finally, we return to z4. Since b4 D .t�/p
3

� t�p6

is nonzero, in vertical degree 2p6 of the
E2p6C2p3C1-term, it can no longer become a boundary. We can therefore strengthen the conclusions
in (2) to conclude that vp3

3
� z4 is detected by b0

4
D b4, and that t� � b4 D .t�/

p3C1 � t�p6

is a unit times
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dr4.a4/, with r4D 2p6C2p3C1 and a4D u2t�2p6

. It follows that d2p6C2p3C1.u2t�p6

/
:
D .t�/p

3C1,
since tp6

is an infinite cycle. Hence

yE2p6C2p3C2.Cp2/D P .t˙p6

/˝Pp3C1.t�/˝E.�1; �2; �3/

˚E.u2/˝Pp.t�/˝E.�2; �3/˝Fpft
i�1 j vp.i/D 3g

˚E.u2/˝Pp2.t�/˝E.�1; �3/˝Fpft
i�2 j vp.i/D 4g

˚E.u2/˝Pp3.t�/˝E.�1; �2/˝Fpft
i�3 j vp.i/D 5g:

No free summands remain, so by Lemma 9.3 there are no further differentials, and this Er -term
equals yE1.Cp2/.

10 The Cpn-Tate spectral sequences

The following notations will be convenient when we now determine the differential structure of the
Cpn-Tate spectral sequence.

Definition 10.1 [Ausoni and Rognes 2002, Definition 2.5; Angelini-Knoll et al. 2024, (5.8)] Let
r.k/D 0 for k 2 f0;�1;�2g and set r.k/D pkC r.k�3/ for k � 1. Thus r.3n�2/D p3n�2C� � �Cp,
r.3n� 1/D p3n�1C � � �Cp2 and r.3n/D p3nC � � �Cp3, with n terms in each sum.

Let Œk� 2 f1; 2; 3g be defined by k � Œk� mod 3, so that f�Œk�; �ŒkC1�; �ŒkC2�g D f�1; �2; �3g.

Theorem 10.2 The Cpn-Tate spectral sequence

yE2.Cpn/D yH��.Cpn IV .2/� THH.BPh2i//) V .2/� THH.BPh2i/tCpn

has E2-term
yE2.Cpn/DE.un/˝P .t˙1/˝P .t�/˝E.�1; �2; �3/:

There are differentials
d2r.k/.tpk�1�pk

/
:
D tpk�1

.t�/r.k�3/�Œk�

for each 1� k � 3n, and
d2r.3n/C1.unt�p3n

/
:
D .t�/r.3n�3/C1:

The classes t�, �1, �2, �3 and t˙p3n

are permanent cycles.

For nD 1, this is Theorem 8.1. We prove the statement for general n by induction, assuming the statement
for a value n� 2, and deducing that it also holds for nC 1. The case nD 2 is provided by Theorem 9.2.

The distinct terms of the Cpn-Tate spectral sequence are

yE2r.m/C1.Cpn/DE.un/˝P .t˙pm

/˝P .t�/˝E.�1; �2; �3/

˚

mM
kD4

E.un/˝Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
i�Œk� j vp.i/D k � 1g

Geometry & Topology, Volume 29 (2025)



Algebraic K-theory of elliptic cohomology 661

for 1�m� 3n. To see this, note that the differential d2r.k/ only affects the summand

E.un/˝Fpft
i
j vp.i/D k � 1g˝P .t�/˝E.�1; �2; �3/;

and here its homology is E.un/˝Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
i�Œk� jvp.i/Dk�1g. Thereafter,

yE2r.3n/C2.Cpn/D P .t˙p3n

/˝Pr.3n�3/C1.t�/˝E.�1; �2; �3/

˚

3nM
kD4

E.un/˝Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
i�Œk� j vp.i/D k � 1g:

To see this, note that d2r.3n/C1 only affects the summand E.un/˝P .t˙p3n

/˝P .t�/˝E.�1; �2; �3/,
and that its homology is P .t˙p3n

/˝Pr.3n�3/C1.t�/˝E.�1; �2; �3/. For bidegree reasons, the remaining
differentials are zero, so yE2r.3n/C2.Cpn/D yE1.Cpn/ and the classes t˙p3n

are permanent cycles.

We obtain the differential structure of the Cpn-homotopy fixed point spectral sequence Er .Cpn/ for
V .2/^THH.BPh2i/ from that of the Cpn-Tate spectral sequence yEr .Cpn/ by restricting to the second
quadrant, and write ��1Er .Cpn/ for its localization given by inverting (a power of) �. It follows from
Theorem 8.1 that ��1Er .Cpn/ is isomorphic to the Cpn-homotopy fixed point spectral sequence for
V .2/^THH.BPh2i/tCp .

Proposition 10.3 The �-localized Cpn-homotopy fixed point spectral sequence

��1E2.Cpn/DH��.Cpn I��1V .2/� THH.BPh2i//) ��1V .2/� THH.BPh2i/hCpn

has E2-term
��1E2.Cpn/DE.un/˝P .t�/˝E.�1; �2; �3/˝P .�˙1/:

There are differentials
d2r.k/.�pk�1

/
:
D .t�/r.k/�Œk��

pk�1�pk

for each 1� k � 3n, and
d2r.3n/C1.un�

p3n

/
:
D .t�/r.3n/C1:

The classes t�, �1, �2, �3 and �˙p3n

are permanent cycles.

Proof This follows from Theorem 10.2 by comparison along the morphism

Rh
WEr .Cpn/! yEr .Cpn/

of spectral sequences induced by the homotopy restriction map (also known as the canonical map), and
the .2p2C2p�3/-coconnected localization morphism

Er .Cpn/! ��1Er .Cpn/:

Algebraically, the translation is achieved through multiplication with appropriate powers of t�.
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The distinct terms of the �-localized Cpn-homotopy fixed point spectral sequence are

��1E2r.m/C1.Cpn/DE.un/˝P .t�/˝E.�1; �2; �3/˝P .�˙pm

/

˚

mM
kD1

E.un/˝Pr.k/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpf�Œk��
j
j vp.j /D k � 1g

for 1�m� 3n. To see this, note that the differential d2r.k/ only affects the summand

E.un/˝P .t�/˝E.�1; �2; �3/˝Fpf�
j
j vp.j /D k � 1g;

and here its homology is E.un/˝Pr.k/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpf�Œk��
j jvp.j /Dk�1g. Thereafter

��1E2r.3n/C2.Cpn/D Pr.3n/C1.t�/˝E.�1; �2; �3/˝P .�˙p3n

/

˚

3nM
kD1

E.un/˝Pr.k/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpf�Œk��
j
j vp.j /D k � 1g:

As before, d2r.3n/C1 only affects the summand E.un/˝P .t�/˝E.�1; �2; �3/˝P .�˙p3n

/, and its
homology is Pr.3n/C1.t�/˝E.�1; �2; �3/˝P .�˙p3n

/. For bidegree reasons the remaining differentials
are zero, so ��1E2r.3n/C2.Cpn/D ��1E1.Cpn/ and the classes �˙p3n

are permanent cycles.

To achieve the inductive step we use the commutative diagram

(10-1)

THH.BPh2i/hCpn

F n

��

THH.BPh2i/Cpn

F n

��

�n
oo

y�nC1
// THH.BPh2i/tC

pnC1

F n

��

THH.BPh2i/ THH.BPh2i/
y�1

// THH.BPh2i/tCp

and what is known about V .2/� THH.BPh2i/hCpn above degree 2p2C2p�3 to determine the differential
pattern of the CpnC1-Tate spectral sequence converging to V .2/� THH.BPh2i/tC

pnC1 .

Proof of Theorem 10.2 We must show that the CpnC1-Tate spectral sequence

yE2.CpnC1/D yH��.CpnC1 IV .2/� THH.BPh2i//) V .2/� THH.BPh2i/tC
pnC1

has the asserted differential pattern. By naturality with respect to (Tate spectrum) Frobenius and Ver-
schiebung morphisms,

F W yEr .CpnC1/� yEr .Cpn/ WV;

it follows as in [Ausoni and Rognes 2002, Lemma 5.2] that the left-hand spectral sequence has differentials

d2r.k/.tpk�1�pk

/
:
D tpk�1

.t�/r.k�3/�Œk�

for all 1� k � 3n, leading via the E2r.3/C1 DE2p3C1-term

yE2p3C1.CpnC1/DE.unC1/˝P .t˙p3

/˝P .t�/˝E.�1; �2; �3/
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to the E2r.3n/C1-term

yE2r.3n/C1.CpnC1/DE.unC1/˝P .t˙p3n

/˝P .t�/˝E.�1; �2; �3/

˚

3nM
kD4

E.unC1/˝Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
i�Œk� j vp.i/D k�1g:

We shall prove that this spectral sequence contains three more families of even-length differentials,
followed by one family of odd-length differentials, after which it collapses.

Note that the E2p3C1-term is free as a P .t�/-module. Replacing Cp2 with CpnC1 and u2 with unC1 in
the proof of Lemma 9.3, with no other changes, establishes the more general statement:

Lemma 10.4 For each r � 2p3 C 1 the CpnC1-Tate Er -term yEr .CpnC1/ is a direct sum of cyclic
P .t�/-modules , generated by classes of the form u�

nC1
t i � �

�1

1
�
�2

2
�
�3

3
with p3 j i . The dr -differential

maps free summands to free summands , and is zero on the torsion summands.

By our inductive hypothesis, the abutment E1.Cpn/, which is isomorphic to ��1E1.Cpn/ above degree
2p2C 2p� 3, contains summands

Pr.3n�2/.t�/˝Fpf�1�
p3n�3

g; Pr.3n�1/.t�/˝Fpf�2�
p3n�2

g;

Pr.3n/.t�/˝Fpf�3�
p3n�1

g; Pr.3n/C1.t�/˝Fpf�
p3n

g:

Moreover, ��1E1.Cpn/ is generated as a P .t�/-module by classes in filtrations �1 and 0. Hence any
class in E1.Cpn/ in the same total degree as, but of lower filtration than, one of the vanishing products

.t�/r.3n�2/
��1�

p3n�3

; .t�/r.3n�1/
��2�

p3n�2

;

.t�/r.3n/
��3�

p3n�1

; .t�/r.3n/C1
��p3n

;

must itself be divisible by (at least) the indicated power of t�. It follows that there are no hidden v3-
power extensions present, so that �1�

p3n�3

detects a vr.3n�2/
3

-torsion class x1 2V .2/� THH.BPh2i/hCpn ,
�2�

p3n�2

detects a vr.3n�1/
3

-torsion class x2, �3�
p3n�1

detects a vr.3n/
3

-torsion class x3 and �p3n

detects
a vr.3n/C1

3
-torsion class x4, and these v3-power torsion orders are exact.

By Corollary 8.2 there are unique classes yi 2V .2/� THH.BPh2i/Cpn and zi 2V .2/� THH.BPh2i/tC
pnC1

with �n.yi/D xi and y�nC1.yi/D zi for each i . Moreover, z1; : : : ; z4 are v3-power torsion classes of
orders precisely r.3n� 2/, r.3n� 1/, r.3n/ and r.3n/C 1, respectively.

Applying Frobenius maps Fn as in (10-1), and the fact from Theorem 8.1 that y�1 maps � to t�p3

(up
to the usual implicit unit) and preserves the �i , we deduce that Fn.z1/; : : : ;F

n.z4/ are detected by
the classes t�p3n

�1, t�p3nC1

�2, t�p3nC2

�3 and t�p3nC3

in yE1.Cp/. Hence z1; : : : ; z4 are detected in
yE1.CpnC1/ in the same total degrees as these classes, in equal or higher filtration. However, since n� 2,

there are no possible detecting classes of strictly higher filtration present in yE2r.3n/C1.CpnC1/. We can
therefore conclude that z1; : : : ; z4 are detected by

t�p3n

�1; t�p3nC1

�2; t�p3nC2

�3 and t�p3nC3

;
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respectively, in yE1.CpnC1/. (The only problematic class at the E2r.3/C1-term, unC1t�p3�p3nC2

in the
same total degree as t�p3nC2

�3, is now known to support a d2r.4/-differential, as in the Cp2 case.)

It follows that the products

.t�/r.3n�2/
� t�p3n

�1; .t�/r.3n�1/
� t�p3nC1

�2; .t�/r.3n/
� t�p3nC2

�3 and .t�/r.3n/C1
� t�p3nC3

must detect zero, and therefore be boundaries, in the CpnC1-Tate spectral sequence. We shall prove that
these boundaries must be

d2r.3nC1/.t�p3n�p3nC1

/
:
D .t�/r.3n�2/

� t�p3n

�1;

d2r.3nC2/.t�p3nC1�p3nC2

/
:
D .t�/r.3n�1/

� t�p3nC1

�2;

d2r.3nC3/.t�p3nC2�p3nC3

/
:
D .t�/r.3n/

� t�p3nC2

�3;

d2r.3nC3/C1.unC1t�2p3nC3

/
:
D .t�/r.3n/C1

� t�p3nC3

:

In view of the Leibniz rule, the first three can be rewritten as

d2r.k/.tpk�1�pk

/
:
D tpk�1

.t�/r.k�3/�Œk�

for 3nC 1� k � 3nC 3, while the fourth is equivalent to

d2r.3nC3/C1.unC1t�p3nC3

/
:
D .t�/r.3n/C1:

As for Theorem 9.2, the remainder of the proof of Theorem 10.2 will consist of five steps, but for n� 2

we can start with z4 in place of z1, and this simplifies the discussion of the class unC1.

(1) We know that z4 is detected by t�p3nC3

. Thus tp3nC3

and its inverse are permanent cycles. The
nonzero product vr.3n/

3
� z4 is detected by b4 D .t�/

r.3n/ � t�p3nC3

or, if this product is a boundary, by
another class in the same total degree as b4 but of lower filtration. Let b0

4
denote the actual detecting

class. Then t� � b0
4

in total degree 4p3nC3� 2 and vertical degree � 2r.3nC 3/ detects vr.3n/C1
3

� z4 D 0,
and hence is a boundary. We write t� �b0

4

:
D dr4.a4/. By Lemma 10.4, the source of this differential is of

the form a4 D u�
nC1

t i ��
�1

1
�
�2

2
�
�3

3
, with p3 j i . The total degree of a4 is 4p3nC3� 1, so the only possible

sources are tp3�2p3nC3

�3, with r4 � 2r.3nC3/�2p3C2, or unC1t�2p3nC3

. However, since n� 2, the
first of these possibilities is no longer present in yE2r.3n/C1.CpnC1/. Hence a4 D unC1t�2p3nC3

survives
at least to the E2r.3nC3/C1-term, and dr4.a4/ ¤ 0 for some r4 � 2r.3nC 3/C 1. Since tp3nC3

is an
infinite cycle it also follows that dr .unC1/D 0 for all r � 2r.3nC 3/.

(2) We continue with z1, which is detected by t�p3n

�1. The nonzero product vr.3n�2/�1
3

�z1 is detected by
b1D .t�/

r.3n�2/�1�t�p3n

�1 or, if this product is a boundary, by another class in the same total degree as b1

but of lower filtration. Let b0
1

denote the detecting class. Then t� � b0
1

in total degree 2p3nC1C 2p3n� 1

and vertical degree � 2r.3nC 1/ � 1 detects vr.3n�2/
3

� z1 D 0, and hence is a boundary. We write
t��b0

1

:
Ddr1.a1/. By Lemma 10.4 the source of this differential is of the form a1Du�

nC1
t i ��

�1

1
�
�2

2
�
�3

3
with

p3 j i . The only such class in the correct total degree is a1 D t�p3n�p3nC1

. Considering vertical degrees,
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it follows that r1� 2r.3nC1/. Since the torsion summands in yE2r.3n/C1.CpnC1/ are not affected by later
differentials, the �i and t� are infinite cycles and unC1 survives to the E2r.3nC3/C1-term by (1), it follows
that dr D 0 for 2r.3n/ < r < 2r.3nC 1/. After this, b1 is in too low a vertical degree to be a boundary.
Hence b0

1
D b1 and r1 D 2r.3nC 1/. It follows that d2r.3nC1/.t�p3n

/
:
D t�p3nCp3nC1

.t�/r.3n�2/�1.
This establishes the first new even-length differential, and leads to the E2r.3nC1/C1-term

yE2r.3nC1/C1.CpnC1/DE.unC1/˝P .t˙p3nC1

/˝P .t�/˝E.�1; �2; �3/

˚

3nC1M
kD4

E.unC1/˝Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
i�Œk� jvp.i/Dk�1g:

(3) Next3 we turn to z2, which is detected by t�p3nC1

�2. The nonzero product vr.3n�1/�1
3

� z2 is
detected by b2 D .t�/

r.3n�1/�1 � t�p3nC1

�2 or, if this product is a boundary, by another class in the
same total degree as b2 but of lower filtration. Let b0

2
denote the detecting class. Then t� � b0

2

:
D dr2.a2/

detects vr.3n�1/
3

� z2 D 0, and hence is a boundary. The source a2 of this differential is of total degree
2p3nC2C2p3nC1, and by Lemma 10.4 it has the usual form u�

nC1
t i ��

�1

1
�
�2

2
�
�3

3
, so a2D t�p3nC1�p3nC2

is the only possibility, with r2�2r.3nC2/. It follows as in (2) that dr D0 for 2r.3nC1/< r <2r.3nC2/.
After this, b2 lies too close to the horizontal axis to be a boundary, so b0

2
D b2 and r2 D 2r.3nC 2/. It

then follows that d2r.3nC2/.t�p3nC1

/
:
D t�p3nC1Cp3nC2

.t�/r.3n�1/�2. This establishes the second new
even-length differential, and gives the E2r.3nC2/C1-term

yE2r.3nC2/C1.CpnC1/DE.unC1/˝P .t˙p3nC2

/˝P .t�/˝E.�1; �2; �3/

˚

3nC2M
kD4

E.unC1/˝Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
i�Œk� jvp.i/Dk�1g:

(4) Carrying on, we consider z3, which is detected by t�p3nC2

�3. The nonzero product vr.3n/�1
3

� z3 is
detected by b3 D .t�/

r.3n/�1 � t�p3nC2

�3, unless this class is a boundary, in which case the product is
detected by another class in the same total degree as b3, but of lower filtration. Let b0

3
denote the detecting

class. Then t� �b0
3

:
D dr3.a3/ detects vr.3n/

3
�z3D 0, and must be a boundary. The source a3 of this differ-

ential is of total degree 2p3nC3C 2p3nC2, and by Lemma 10.4 it has the usual form u�
nC1

t i ��
�1

1
�
�2

2
�
�3

3

not involving �. The only possibility is a3 D t�p3nC2�p3nC3

, with r3 � 2r.3nC 3/. It follows as above
that dr D 0 for 2r.3nC 2/ < r < 2r.3nC 3/, after which b3 is in too low a vertical degree to become a
boundary, so b0

3
D b3 and r3 D 2r.3nC 3/. Hence d2r.3nC3/.t�p3nC2

/
:
D t�p3nC2Cp3nC3

.t�/r.3n/�3.
This establishes the third new even-length differential, and leaves the E2r.3nC3/C1-term

yE2r.3nC3/C1.CpnC1/DE.unC1/˝P .t˙p3nC3

/˝P .t�/˝E.�1; �2; �3/

˚

3nC3M
kD4

E.unC1/˝Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
i�Œk� jvp.i/Dk�1g:

3Steps (3) and (4) are very similar to (2), but we believe the arguments are easier to follow when written out separately.
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(5) Finally, we return to z4. Since b4D .t�/
r.3n/ �t�p3nC3

is nonzero, in vertical degree 2r.3nC3/�2p3

of the E2r.3nC3/C1-term, it cannot be a boundary, and hence is equal to the class b0
4

from step (1). Thus
t� �b0

4
D .t�/r.3n/C1 � t�p3nC3 :

D dr4.a4/ with a4 D unC1t�2p3nC3

and r4 D 2r.3nC3/C1. It follows
that d2r.3nC3/C1.unC1t�p3nC3

/
:
D .t�/r.3n/C1, since tp3nC3

is an infinite cycle. This establishes the
claimed new odd-length differential, and leaves

yE2r.3nC3/C2.CpnC1/DP .t˙p3nC3

/˝Pr.3n/C1.t�/˝E.�1; �2; �3/

˚

3nC3M
kD4

E.unC1/˝Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
i�Œk� jvp.i/Dk�1g:

No free summands remain, so by Lemma 10.4 the remaining differentials are all zero, and this Er -term
equals yE1.CpnC1/. This completes the nth inductive step.

11 The T -Tate spectral sequence

We can now make the differential structure of the spectral sequences

E2.T /DH��.T IV .2/� THH.BPh2i// )V .2/� THH.BPh2i/hT ;

��1E2.T /DH��.T IV .2/� THH.BPh2i/tCp /)V .2/�.THH.BPh2i/tCp /hT ;

yE2.T /D yH��.T IV .2/� THH.BPh2i// )V .2/� THH.BPh2i/tT

fully explicit.

Theorem 11.1 The T -Tate spectral sequence

yE2.T /D yH��.T IV .2/� THH.BPh2i//) V .2/� THH.BPh2i/tT

has E2-term
yE2.T /D P .t˙1/˝P .t�/˝E.�1; �2; �3/;

there are differentials
d2r.k/.tpk�1�pk

/
:
D tpk�1

.t�/r.k�3/�Œk�

for each k � 1, the classes t�, �1, �2 and �3 are permanent cycles , and the E1-term is

yE1.T /D P .t�/˝E.�1; �2; �3/

˚

M
k�4

Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
i�Œk� j vp.i/D k � 1g:

Proof This follows by passage to the limit over n from Theorem 10.2.

Remark 11.2 We saw in Propositions 9.1 and 10.3 that for each n � 1, some positive power of
� 2 V .2/� THH.BPh2i/ lifts to V .2/� THH.BPh2i/hCpn , so that the �-localized Cpn-homotopy fixed
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point spectral sequence converges to a localization ��1V .2/� THH.BPh2i/hCpn . However, no such power
of � lifts to V .2/� THH.BPh2i/hT , and we therefore instead express the abutment of the �-localized
T -homotopy fixed point spectral sequence in terms of THH.BPh2i/tCp , with ��1V .2/� THH.BPh2i/Š
V .2/� THH.BPh2i/tCp , as per Theorem 8.1.

Proposition 11.3 The �-localized T -homotopy fixed point spectral sequence

��1E2.T /DH��.T I��1V .2/� THH.BPh2i//) V .2/�.THH.BPh2i/tCp /hT

has E2-term
��1E2.T /D P .t�/˝E.�1; �2; �3/˝P .�˙1/;

there are differentials
d2r.k/.�pk�1

/
:
D .t�/r.k/�Œk��

pk�1�pk

for each k � 1, the classes t�, �1, �2 and �3 are permanent cycles , and the E1-term is

��1E1.T /D P .t�/˝E.�1; �2; �3/

˚

M
k�1

Pr.k/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpf�Œk��
j
j vp.j /D k � 1g:

Proof This follows by passage to the limit over n from Proposition 10.3.

Proposition 11.4 The T -homotopy fixed point spectral sequence

E2.T /DH��.T IV .2/� THH.BPh2i//) V .2/� THH.BPh2i/hT

has E2-term
E2.T /D P .t/˝E.�1; �2; �3/˝P .�/;

for each k � 1 there are differentials

d2r.k/.�dpk�1

/
:
D .t�/r.k/�Œk��

.d�p/pk�1

for d > p with p−d;

d2r.k/.�.p�d/pk�1

/
:
D tdpk�1

.t�/r.k/�dpk�1

�Œk� for 0< d < p;

d2r.k/.tdpk�1

/
:
D tdpk�1Cpk

.t�/r.k�3/�Œk� for d > 0 with p−d;

the classes t�, �1, �2 and �3 are permanent cycles , and the E1-term is

E1.T /D P .t�/˝E.�1; �2; �3/

˚

M
k�1

Pr.k/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpf�Œk��
dpk�1

j p−d > 0g

˚

M
k�1

Pr.k/�dpk�1.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
dpk�1

�Œk� j 0< d < pg

˚

M
k�4

Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
dpk�1

�Œk� j p−d > pg:
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Proof The differentials on tdpk�1

for p−d > 0 follow as in Theorem 11.1, while those on �dpk�1

for
p−d > p are as in Proposition 11.3. For 0< d < p,

d2r.k/.�dpk�1

/
:
D .t�/r.k/�Œk��

dpk�1�pk

D tpk�dpk�1

.t�/r.k/Cdpk�1�pk

�Œk�:

Replacing d by p� d we obtain the claimed formula.

For each k � 1 and p−d , the d2r.k/-differential maps the summand

E.�ŒkC1�; �ŒkC2�/˝Fpft
i�j
j i � j D dpk�1

�pk
g

of E2r.k/.T / injectively to the summand

E.�ŒkC1�; �ŒkC2�/˝Fpft
i�Œk��

j
j i � j D dpk�1

g;

with cokernel one of the displayed summands in E1.T /. Here i � 0 and j � 0 in each case.

Following the referee’s good advice, we decompose these E1-terms as in the next three definitions.

Definition 11.5 Let A D P .t�/˝E.�1; �2; �3/, viewed as a subalgebra of E1.T /. For k � 1 and
0< d < p let

C.k; d/D Pr.k/�dpk�1.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
dpk�1

�Œk�g

be the finite A-submodule of E1.T / generated by

ck;d D tdpk�1

�Œk�:

The class
xk;d D .t�/

d
p

r.k�3/
� ck;d D t

d
p

r.k/�Œk��
d
p

r.k�3/

is an element of C.k; d/, is nonzero since d
p

r.k � 3/ < r.k/� dpk�1, and has total degree jxk;d j D

2pŒk�� 2dpŒk��1� 1. In particular,

x1;d D c1;d D td�1; x2;d D c2;d D tdp�2 and x3;d D c3;d D tdp2

�3

for all 0< d < p. Let C D
L

k�1;0<d<p C.k; d/, and let

B D
M
k�1

Pr.k/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpf�Œk��
dpk�1

j p−d > 0g;

D D
M
k�4

Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
dpk�1

�Œk� j p−d > pg

be the indicated A-submodules of E1.T /, concentrated in positive and negative total degrees, respectively.
Then E1.T /DA˚B˚C ˚D.

It should be clear from the context whether B refers to this summand in E1.T / or a generic S -algebra.
The classes xk;d are the ones mentioned in Section 1. Their role, together with the classes zk;d defined
just below, will only become apparent starting with Corollaries 12.7 and 12.8.
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Definition 11.6 Let A0 D P .t�/ ˝ E.�1; �2; �3/ as a subalgebra of ��1E1.T /. For k � 1 and
0< d < p, let

C 0.k; d/D Pr.k/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpf�Œk��
�dpk�1

g

be the finite A0-submodule of ��1E1.T / generated by

c0k;d D �Œk��
�dpk�1

:

The class
zk;d D .t�/

d
p

r.k/
� c0k;d D t

d
p

r.k/�Œk��
d
p

r.k�3/

is an element of C 0.k; d/, is nonzero since d
p

r.k/< r.k/, and has total degree jzk;d jD2pŒk��2dpŒk��1�1.
Let C 0 D

L
k�1;0<d<p C 0.k; d/, and let

B0 D
M
k�1

Pr.k/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpf�Œk��
dpk�1

j p−d > 0g;

D0 D
M
k�1

Pr.k/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpf�Œk��
�dpk�1

j p−d > pg

be the indicated A0-submodules of ��1E1.T /, concentrated in positive and negative total degrees,
respectively. Then ��1E1.T /DA0˚B0˚C 0˚D0.

Definition 11.7 Let yAD P .t�/˝E.�1; �2; �3/,

yC .k; d/D Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
dpk�1

�Œk�g

for k � 1 and 0< d < p, and

yB D
M
k�4

Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
�dpk�1

�Œk� j p−d > 0g;

yC D
M

k�4;0<d<p

yC .k; d/;

yD D
M
k�4

Pr.k�3/.t�/˝E.�ŒkC1�; �ŒkC2�/˝Fpft
dpk�1

�Œk� j p−d > pg:

Then yE1.T /D yA˚ yB˚ yC ˚ yD. Note that yC .k; d/D 0 for k 2 f1; 2; 3g.

The T -equivariant comparison map

y�1 W THH.BPh2i/! THH.BPh2i/tC2

(renamed the p-cyclotomic structure map 'p in [Nikolaus and Scholze 2018]) induces a morphism of
T -homotopy fixed point spectral sequences, given at the E2-term by the homomorphism

E2.y�hT
1 / WE2.T /D P .t/˝E.�1; �2; �3/˝P .�/! P .t/˝E.�1; �2; �3/˝P .�˙1/D ��1E2.T /

that inverts �. At the E1-terms we have the following formulas:
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Lemma 11.8 The homomorphism

E1.y�hT
1 / WE1.T /! ��1E1.T /

maps

(1) A isomorphically to A0,

(2) B isomorphically to B0,

(3) C injectively to C 0, and

(4) D to zero.

Specifically, E1.y�hT
1
/ is injective in total degrees � � �2p3 C 2p2 and bijective in total degrees

� � 2p2C 2p� 2.

Proof Cases (1) and (2) are clear. In (3), the injection C.k; d/! C 0.k; d/ takes ck;d D tdpk�1

�Œk�

to .t�/dpk�1

� c0
k;d

, which is annihilated by the same t�-power as ck;d , namely .t�/r.k/�dpk�1

. In (4),
the image of D in D0 is zero since tdpk�1

�Œk� maps to .t�/dpk�1

��Œk��
�dpk�1

, which is zero because
dpk�1 � r.k/ for d > p.

The highest-degree element in the kernel of E1.y�hT
1
/ is t .pC1/p3

.t�/p�1�1�2�3 in D in total degree
�2p3C 2p2� 1, mapping to d2r.4/.tp3�1�2�3�

�1/. The highest-degree element not in the image of
E1.y�hT

1
/ is �1�2�3�

�1 in C 0.1; 1/, in total degree 2p2C 2p� 3.

Similarly, the homotopy restriction map

Rh
W THH.BPh2i/hT

! THH.BPh2i/tT

(renamed the canonical map in [Nikolaus and Scholze 2018]) induces a morphism of spectral sequences,
given at the E2-term by the homomorphism

E2.Rh/ WE2.T /D P .t/˝E.�1; �2; �3/˝P .�/! P .t˙1/˝E.�1; �2; �3/˝P .�/D yE2.T /

that inverts t . The following lemma is similar to [Ausoni and Rognes 2002, Proposition 7.2]:

Lemma 11.9 The homomorphism

E1.Rh/ WE1.T /! yE1.T /

maps

(1) A isomorphically to yA,

(2) B to zero ,

(3) C surjectively to yC , and

(4) D isomorphically to yD.

Specifically, E1.Rh/ is surjective in total degrees � � 2p3C 2p� 2 and bijective in total degrees � � 0.
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Proof Cases (1) and (4) are clear. In (2), the image of B in yB is zero since �Œk��dpk�1

maps to
.t�/dpk�1

� t�dpk�1

�Œk�, which is zero because dpk�1 � r.k � 3/ for d > 0. In (3), the surjection
C.k; d/! yC .k; d/ takes ck;d D tdpk�1

�Œk� to tdpk�1

�Œk�, which is annihilated by a lower t�-power
than ck;d since r.k � 3/ < r.k/� dpk�1 for 0< d < p.

The lowest-degree element not in the image of E1.Rh/ is t�p3

�1 in yB, in total degree 2p3C 2p� 1.
The lowest-degree element in the kernel of E1.Rh/ is tp�1�1 in C.1;p� 1/ in total degree 1, mapping
to d2p.t�1/.

12 Topological cyclic homology and algebraic K -theory

We now pursue the calculational strategy employed in [Bökstedt and Madsen 1994; 1995; Hesselholt and
Madsen 1997; Rognes 1999; Ausoni and Rognes 2002, 2012; Ausoni 2010] to identify TC.B/ with the
homotopy equalizer of the two maps GRh and y�hT

1
displayed below.

TC.B/ �
// THH.B/hT Rh

//

y�hT
1 ((

THH.B/tT

G'

��

.THH.B/tCp /hT

In these papers, this identification was only known to be valid in V -homotopy in a range of sufficiently
high degrees, for suitable finite spectra V . However, with the work of Nikolaus and Scholze [2018,
Remark 1.6], we now know that TC.B/ is given by the homotopy equalizer above in all degrees, whenever
THH.B/ is bounded below. (This certainly holds for all connective S -algebras B.) Let GRh

� D V�.GRh/

and y�hT
1�
D V�.y�

hT
1
/. The associated long exact sequence

� � � @�! V� TC.B/ ��! V� THH.B/hT GRh
��
y�hT

1�
�������! V�.THH.B/tCp /hT @�! � � �

leads to the short exact sequence

0!†�1 cok.GRh
��
y�hT

1� /
@�! V� TC.B/ ��! ker.GRh

��
y�hT

1� /! 0:

In our case, the task is to calculate the kernel and cokernel of GRh
��
y�hT

1�
for B D BPh2i and V D V .2/,

and thereby to determine V .2/� TC.BPh2i/. We studied the effect of y�hT
1

and Rh at the level of spectral
sequence E1-terms in Lemmas 11.8 and 11.9. In Proposition 12.1 we do something similar for G.
Thereafter we find lifts zA, zB, zC and zD in V .2/� THH.BPh2i/hT of the summands A, B, C and D of
E1.T / from Definition 11.5, and compute the effect of GRh

��
y�hT

1�
acting upon these lifts.

Proposition 12.1 The isomorphism

G� D V .2/�.G/ W V .2/� THH.BPh2i/tT Š
�! V .2/�.THH.BPh2i/tCp /hT

takes each class
� 2 ftp3i.t�/m�

�1

1
�
�2

2
�
�3

3
g
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detected by y D tp3i.t�/m�
�1

1
�
�2

2
�
�3

3
2 yE1.T / to a class

G�.�/ 2 f.t�/
m�

�1

1
�
�2

2
�
�3

3
��i
g

detected by z D .t�/m�
�1

1
�
�2

2
�
�3

3
��i 2 ��1E1.T / (up to a unit in Fp, which we suppress). Conversely,

its inverse G�1
� takes each class

� 2 f.t�/m�
�1

1
�
�2

2
�
�3

3
�j
g

to a class
G�1
� .�/ 2 ft�p3j .t�/m�

�1

1
�
�2

2
�
�3

3
g

(again , up to a unit in Fp, which we suppress).

Proof We first handle the case mD 0, using the commutative diagram

THH.B/tT F t
//

G '

��

THH.B/tC
pnC1

' Gn

��

.THH.B/tCp /hT F h
// .THH.B/tCp /hCpn

in the special case of B D BPh2i and nD 0. It is constructed by viewing the T=Cp-equivariant Cp-fixed
point spectrum

X D ŒeET ^F.ETC;THH.B//�Cp ' THH.B/tCp

as a T -spectrum via the pth root isomorphism � WT ŠT=Cp . The comparison map G WX T!X hT is then
compatible with the comparison map Gn WX

Cpn !X hCpn , via the group restriction maps along Cpn �T .

In the case nD 0, the group restriction map F t induces a morphism of spectral sequences given at the
E2-terms by the inclusion

E2.F t / W yE2.T /DP .t˙1/˝E.�1;�2;�3/˝P .�/!E.u1/˝P .t˙1/˝E.�1;�2;�3/˝P .�/D yE2.Cp/:

Hence each class � 2 V .2/� THH.BPh2i/tT detected by tp3i�
�1

1
�
�2

2
�
�3

3
¤ 0 in yE1.T / maps to a class

F t
�.�/ detected by tp3i�

�1

1
�
�2

2
�
�3

3
in yE1.Cp/DP .t˙p3

/˝E.�1; �2; �3/, which remains nonzero there.
It follows from Theorem 8.1 that .G0F t /�.�/ D �

�1

1
�
�2

2
�
�3

3
��i in V .2/� THH.BPh2i/tCp up to a unit

in Fp , which we suppress. This equals .FhG/�.�/, where the group restriction map Fh for nD 0 induces
the edge homomorphism

E1.Fh/ W ��1E1.T /!E.�1; �2; �3/˝P .�˙1/:

Hence G�.�/ must be detected in ��1E1.T / by a class z mapping to ��1

1
�
�2

2
�
�3

3
��i under the edge

homomorphism, and the only possibility is that z D �
�1

1
�
�2

2
�
�3

3
��i , in filtration degree zero.

For m� 1, each class � detected by y D tp3i.t�/m�
�1

1
�
�2

2
�
�3

3
¤ 0 in yE1.T / is of the form �D vm

3
� �0,

with �0 detected by y0 D tp3i�
�1

1
�
�2

2
�
�3

3
2 yE1.T /. To see this, note that each element of yE1.T / in the

same total degree as y, but of lower filtration, is a .t�/m-multiple. This follows from the case enumeration
in the proof of Lemma 9.3. By the first part of the proof, G�.�0/ is detected by z0 D �

�1

1
�
�2

2
�
�3

3
��i .

Hence G�.�/D v
m
3
�G�.�0/ is detected by .t�/m � z0 D z, since this product is nonzero.
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For the converse, consider any class � detected by z D .t�/m�
�1

1
�
�2

2
�
�3

3
�j ¤ 0 in ��1E1.T /. Then

�DG�1
� .�/ must be detected by some monomial y in E1.T /, and G�.�/D � is detected by z. By the

first part of the proposition, this monomial must be y D t�p3j .t�/m�
�1

1
�
�2

2
�
�3

3
.

Recall �K
1

, �K
2

and �K
3

from Definitions 6.6, 6.7 and 6.9.

Definition 12.2 Let

zAD P .v3/˝E.�1; �2; �3/� V .2/� THH.BPh2i/hT

be the subalgebra generated by the images of i2i1i0.�
K
1
/; i2i1.�

K
2
/; i2.�

K
3
/ 2 V .2/�K.BPh2i/ and

v3 2 ��V .2/ under the composites

S !K.BPh2i/ trc�! TC.BPh2i/ ��! THH.BPh2i/hT ;

where trc denotes the cyclotomic trace map [Bökstedt et al. 1993]. The homomorphisms GRh
� and y�hT

1�

agree on these classes, and we let

zA0 D P .v3/˝E.�1; �2; �3/� V .2/�.THH.BPh2i/tCp /hT

be the subalgebra generated by the images of v3, �1, �2 and �3, under either one of these homomorphisms.

The subalgebras zA and zA0 are lifts to V .2/-homotopy of the subalgebras A � E1.T / and A0 �

��1E1.T /, respectively. To choose good lifts zC .k; d/ and zC 0.k; d/ in V .2/-homotopy of the summands
C.k; d/ and C 0.k; d/ we make use of the norm–restriction homotopy cofiber sequence

†THH.BPh2i/hT
N h

��! THH.BPh2i/hT Rh

��! THH.BPh2i/tT @h

�!†2 THH.BPh2i/hT

and the associated long exact sequence. The T -Tate spectral sequence maps to a horizontally shifted
T -homotopy orbit spectral sequence

(12-1) E2
�;� DH��2.T IV .2/� THH.BPh2i//D Fpft

i
j i < 0g˝E.�1; �2; �3/˝P .�/

) V .2/�†
2 THH.BPh2i/hT ;

concentrated in filtrations s � 2 of the first quadrant.

The T -Tate differentials crossing the vertical line s D 1 are closely related to the homotopy norm
map N h

� D V .2/�.N
h/; cf [Bökstedt and Madsen 1994, Theorem 2.15]. Let Rh

� D V .2/�.R
h/, so

that im.N h
� / D ker.Rh

�/ by exactness. The following two lemmas spell out some upper bounds for
ker E1.Rh/:

Lemma 12.3 In the T -Tate spectral sequence . yEr .T /; dr /, the nonzero differentials from total degrees
�< 2p3 that cross the line s D 1 are of the form

d2p.td�p�
�2

2
/
:
D td�1�

�2

2
; d2p2

.tdp�p2

�
�1

1
/
:
D tdp�

�1

1
�2; d2p3

.tdp2�p3

�
�1

1
�
�2

2
/
:
D tdp2

�
�1

1
�
�2

2
�3;
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for suitable 0< d <p and �1; �2 2 f0; 1g. Hence in total degrees �� 2p3�2 the classes on the right-hand
side generate ker E1.Rh/. These lie in filtrations �2.p3�p2/� s � �2, and there is at most one class
in each total degree � � 2p3� 2.

Proof The restriction to total degrees � < 2p3 means we only have to consider differentials on the
classes t i for �p3 < i < 0, and their �1- and �2-multiples. The d2p-differentials only cross s D 1 for
�p < i < 0. The d2p2

-differentials are defined for p j i and only cross s D 1 when �p2 < i < 0. The
d2p3

-differentials are defined for p2 j i and cross s D 1 whenever �p3 < i < 0. An explicit enumeration
shows that each total degree in the range 1� � � 2p3� 2 occurs at most once.

Lemma 12.4 In the T -Tate spectral sequence , the nonzero dr -differentials from total degrees �<4p3�1

that cross the line s D 1 are of the form

d2p.td�p.t�/m�
�2

2
�
�3

3
/
:
D td .t�/m�1�

�2

2
�
�3

3
;

d2p2

.tdp�p2

.t�/m�
�1

1
�
�3

3
/
:
D tdp.t�/m�

�1

1
�2�

�3

3
;

d2p3

.tdp2�p3

.t�/m�
�1

1
�
�2

2
/
:
D tdp2

.t�/m�
�1

1
�
�2

2
�3;

d2p4C2p.t�p3

�
�2

2
/
:
D tp4�p3

.t�/p�1�
�2

2

for suitable m; �1; �2; �3 2 f0; 1g, with mC �3 � 1. In the d2p case with m D 1 we have d D �1 or
0 < d < p � 1, while in the remaining d2p, d2p2

and d2p3

cases we have 0 < d < p. Hence in total
degrees � � 4p3 � 3 the classes on the right-hand side generate ker E1.Rh/. These lie in filtrations
�2.p3 � p2 C 1/ � s � 0, except for the last two classes tp4�p3

.t�/p�1�
�2

2
, which lie in filtration

�2.p4�p3Cp/ and total degrees 2p3� 1C �2.2p2� 1/.

Proof The restriction to total degrees �< 4p3� 1 means that we only have to consider differentials on
the classes t i for �p3� i < 0, and some of their t�-, �1-, �2- and �3-multiples (without repeated factors).
The resulting right-hand classes have the form t iy in Tate filtration s D�2i , where 0� i � p3�p2C 1,
except in the last two cases.

Recall ck;d and c0
k;d

from Definitions 11.5 and 11.6.

Proposition 12.5 For each k 2 f1; 2; 3g and 0< d < p there is a unique element


k;d 2 fck;dg � V .2/� THH.BPh2i/hT

that satisfies
Rh
�.
k;d /D 0:

Moreover , �k � 
k;d D 0 and vpk�dpk�1

3
� 
k;d D 0.

Proof The tower of spectra inducing the T -homotopy fixed point spectral sequence is obtained by
restricting the tower inducing the T -Tate spectral sequence to filtrations s � 0. Hence each nonzero class
x 2 ker E1.Rh/�E1.T / can be represented by an element � 2 ker.Rh

�/� V .2/� THH.BPh2i/hT , in

Geometry & Topology, Volume 29 (2025)



Algebraic K-theory of elliptic cohomology 675

the sense that � 2 fxg; see [Bökstedt and Madsen 1994, page 75; Ausoni and Rognes 2002, Lemma 7.3].
Furthermore, for x in total degree �� 2p3�2, the element � is unique. To see this, suppose that � 0 2 fxg
is also in ker.Rh

�/. Then � 0� � in ker.Rh
�/ must be detected by a class x0 in ker E1.Rh/, in the same

total degree as x, but in lower filtration. As noted in Lemma 12.3, there are no nonzero such x0, so � 0D � .

In particular, for k 2 f1; 2; 3g and 0< d < p this applies to the classes ck;d D tdpk�1

�k in total degrees
1� 2pk � 2dpk�1� 1� 2p3� 2p2� 1, and uniquely defines the homotopy elements 
k;d .

By exactness, we can write 
k;d DN h
� .�k;d / with

�k;d 2 V .2/�†
2 THH.BPh2i/hT

in degree 2pk � 2dpk�1. In fact, �k;d 2 ft
dpk�1�pk

g, up to a unit multiple, but we only need to
know that �k;d must be detected in filtration s � 2pk � 2dpk�1 in the shifted T -homotopy orbit spectral
sequence (12-1). Hence vpk�dpk�1

3
��k;dD0, for filtration reasons, which implies that vpk�dpk�1

3
�
k;dD0

since N h
� is P .v3/-linear.

Finally, �k � �k;d D 0, because tdpk�1�pk

��k
:
D d2pk

.tdpk�1�2pk

/ is a boundary and by inspection of
bidegrees there are no other classes in the E1-term of (12-1) in the same total degree and of lower
filtration. Applying N h

� we can conclude that �k � 
k;d D 0.

Proposition 12.6 For each k � 1 and 0< d < p there are elements


 0k;d 2 fc
0
3;dg � V .2/�.THH.BPh2i/tCp /hT and 
kC3;d 2 fckC3;dg � V .2/� THH.BPh2i/hT

that satisfy

v
dpk�1

3
� 
 0k;d D

y�hT
1� .
k;d / and GRh

�.
kC3;d /D 

0
k;d :

Moreover , vr.k/
3
� 
 0

k;d
D 0 and vr.kC3/�dpkC2

3
� 
kC3;d D 0.

Proof We proceed by induction on k � 1, starting from Proposition 12.5. By Lemma 11.8 the image
y�hT

1�
.
k;d / 2 V .2/�.THH.BPh2i/tCp /hT of the previously constructed class 
k;d 2 fcd;kg is detected

by tdpk�1

�k D .t�/dpk�1

� c0
k;d

in ��1E1.T /, so any initial choice of 
 0
k;d
2 fc0

k;d
g will satisfy

v
dpk�1

3
� 
 0

k;d
� y�hT

1�
.
k;d /, modulo classes of lower filtration. Since ��1E1.T / is generated as a

P .t�/-module by classes in filtration s D 0, each nonzero class in lower filtration than ck;d , but of the
same total degree, is .t�/dpk�1

times a class in the same total degree as c0
k;d

and of lower filtration.
Hence the choice of 
 0

k;d
can be iteratively adjusted so as to make vdpk�1

3
� 
 0

k;d
D y�hT

1�
.
k;d /.

Therefore vr.k/
3
�
 0

k;d
Dv

r.k/�dpk�1

3
� y�hT

1�
.
k;d /D0, since y�hT

1�
is P .v3/-linear and vr.k/�dpk�1

3
�
k;d D0

by the inductive hypothesis.

The final choice of class 
 0
k;d

is still detected by c0
k;d
D �Œk��

�dpk�1

in C 0.k; d/� ��1E1.T /, so by
Proposition 12.1, G�1

� .
 0
k;d
/2V .2/� THH.BPh2i/tT is detected by tdpkC2

�Œk� in yC .kC3; d/� yE1.T /.
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This class lies in negative total degree, where E1.Rh/ is bijective by Lemma 11.9. It follows that
Rh
�.
kC3;d / D G�1

� .
 0
k;d
/ for a uniquely determined class 
kC3;d 2 V .2/� THH.BPh2i/hT , which is

detected by ckC3;d D tdpkC2

�Œk� in C.kC 3; d/�E1.T /.

From the relation vr.k/
3
�
 0

k;d
D 0 and P .v3/-linearity of G� and Rh

� we deduce that vr.k/
3
�G�1
� .
 0

k;d
/D 0

and Rh
�.v

r.k/
3
� 
kC3;d /D 0. Since ker.Rh

�/D im.N h
� /, we can write vr.k/

3
� 
kC3;d DN h

� .�kC3;d / for
some �kC3;d in degree 2pkC3� 2dpkC2. From the T -Tate differential

d2r.kC3/.tdpkC2�pkC3

/
:
D tdpkC2

.t�/r.k/�Œk� D .t�/
r.k/
� ckC3;d

we could prove that �kC3;d 2 ft
dpkC2�pkC3

g (up to a unit), but again we only need to know that �kC3;d

must be detected in filtration s � 2pkC3 � 2dpkC2 in (12-1). Hence vpkC3�dpkC2

3
� �kC3;d D 0 in

V .2/�†
2 THH.BPh2i/hT , which implies that

v
r.kC3/�dpkC2

3
� 
kC3;d D v

pkC3�dpkC2

3
�N h
� .�kC3;d /D 0

in V .2/� THH.BPh2i/hT , as asserted.

Recall the classes xk;d and zk;d from Definitions 11.5 and 11.6.

Corollary 12.7 For each k 2 f1; 2; 3g and 0< d < p there is a unique element

�k;d 2 fxk;dg � V .2/� THH.BPh2i/hT

that satisfies Rh
�.�k;d /D 0. Moreover , �k � �k;d D 0 and vpk�dpk�1

3
� �k;d D 0.

Proof Let �k;d D 
k;d as in Proposition 12.5, noting that xk;d D ck;d .

Corollary 12.8 For each k � 1 and 0< d < p there are unique elements

�kC3;d 2 fxkC3;dg � V .2/� THH.BPh2i/hT and �k;d 2 fzk;dg � V .2/�.THH.BPh2i/tCp /hT

that satisfy
GRh
�.�kC3;d /D y�

hT
1� .�k;d /D �k;d :

Moreover , �Œk� � �kC3;d D 0 and v
.1� d

p
/r.kC3/

3
� �kC3;d D 0.

Proof For k � 1, choose elements 
kC3;d and 
 0
k;d

as in Proposition 12.6. Recalling that xkC3;d D

.t�/
d
p

r.k/
� ckC3;d , we let

�kC3;d D v
d
p

r.k/

3
� 
kC3;d :

Then

GRh
�.�kC3;d /D v

d
p

r.k/

3
�GRh

�.
kC3;d /D v
d
p

r.k/�dpk�1

3
� v

dpk�1

3
� 
 0k;d D v

d
p

r.k�3/

3
� y�hT

1� .
k;d /

D y�hT
1� .�k;d /:
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To see that this uniquely determines �kC3;d 2 fxkC3;dg, note that any other choice of class � 2 fxkC3;dg

with GRh
�.�/D GRh

�.�kC3;d / would differ from �kC3;d by an element � 0 in ker.Rh
�/ that is detected by

an element x0 in ker E1.Rh/ of lower filtration than xkC3;d , and hence of filtration s < �2.p3C 1/.
By Lemma 12.3, no such element x0 exists in total degree j�kC3;d j D 2pŒk�� 2dpŒk��1� 1� 2p3� 2.

By induction, GRh
�.�Œk� � �kC3;d / D y�

hT
1�
.�Œk� � �k;d / D 0. Hence, if � 00 D �Œk� � �kC3;d were nonzero,

it would be a class in ker.Rh
�/, in total degree 4pŒk� � 2dpŒk��1 � 2 � 4p3 � 3, that is detected by

an element x00 in ker E1.Rh/ of lower filtration than that of xkC3;d . By Lemma 12.4, treating the
cases k C 3 D 4 and k C 3 � 5 separately, no such element x00 exists. This contradiction proves that
�Œk� � �kC3;d D 0. By Proposition 12.6,

v
.1� d

p
/r.kC3/

3
� �kC3;d D v

r.kC3/�dpkC2

3
� 
kC3;d D 0:

Finally, let �k;d D y�hT
1�
.�k;d /, which is then detected by E1.y�hT

1
/.xk;d /D zk;d .

We now fix compatible choices of classes 
k;d and 
 0
k;d

, as in Propositions 12.5 and 12.6:

Definition 12.9 For k � 1 and 0< d < p let

zC .k; d/Š Pr.k/�dpk�1.v3/˝E.�ŒkC1�; �ŒkC2�/˝Fpf
k;dg

be the P .v3/˝E.�ŒkC1�; �ŒkC2�/-submodule of V .2/� THH.BPh2i/hT generated by 
k;d , and let

zC 0.k; d/Š Pr.k/.v3/˝E.�ŒkC1�; �ŒkC2�/˝Fpf

0
k;dg

be the P .v3/˝E.�ŒkC1�; �ŒkC2�/-submodule of V .2/�.THH.BPh2i/tCp /hT generated by 
 0
k;d

. Let

zC D
Y
k�1

0<d<p

zC .k; d/ and zC 0 D
Y
k�1

0<d<p

zC 0.k; d/:

These are detected by the summands C �E1.T / and C 0 � ��1E1.T /, respectively.

Lemma 12.10 The P .v3/˝E.�ŒkC1�; �ŒkC2�/-submodules

h�k;d i � zC .k; d/ and h�k;d i � zC
0.k; d/

generated by �k;d D v
d
p

r.k�3/

3
� 
k;d and �k;d D v

d
p

r.k/

3
� 
 0

k;d
, respectively, are equal to the (uniquely

defined ) zA-submodules generated by �k;d and �k;d , with

h�k;d i Š P.1� d
p
/r.k/.v3/˝E.�ŒkC1�; �ŒkC2�/˝Fpf�k;dg;

h�k;d i Š P.1� d
p
/r.k/.v3/˝E.�ŒkC1�; �ŒkC2�/˝Fpf�k;dg:

Proof These P .v3/˝E.�ŒkC1�; �ŒkC2�/-submodules are zA-submodules, since we proved �Œk� � �k;d D 0

in Corollaries 12.7 and 12.8, which readily implies that �Œk� � �k;d D 0.
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Remark 12.11 With this notation, Proposition 12.6 shows that y�hT
1�

induces isomorphisms h�k;d i !
h�k;d i, and injections zC .k; d/! zC 0.k; d/ and zC .k; d/=h�k;d i ! zC 0.k; d/=h�k;d i. It also shows that
GRh
� induces isomorphisms zC .kC3; d/=h�kC3;d i!

zC 0.k; d/=h�k;d i, and surjections h�kC3;d i!h�k;d i

and zC .kC 3; d/! zC 0.k; d/, for all k � 1 and 0< d < p.

Choosing lifts of the B- and D-summands requires less precision:

Definition 12.12 For each k � 1 and p−d > 0 choose a class

ˇk;d 2 V .2/� THH.BPh2i/hT

detected by �Œk��dpk�1

2 B, and let

zB.k; d/Š Pr.k/.v3/˝E.�ŒkC1�; �ŒkC2�/˝Fpfˇk;dg

be the E.�ŒkC1�; �ŒkC2�/-submodule of V .2/� THH.BPh2i/hT generated by vm
3
�ˇk;d for 0�m< r.k/.

For each k � 4 and p−d > p choose a class

ık;d 2 V .2/� THH.BPh2i/hT

detected by tdpk�1

�Œk� 2D, and let

zD.k; d/Š Pr.k�3/.v3/˝E.�ŒkC1�; �ŒkC2�/˝Fpfık;dg

be the E.�ŒkC1�; �ŒkC2�/-submodule of V .2/� THH.BPh2i/hT generated by vm
3
�ık;d for 0�m< r.k�3/.

Let
zB D

Y
k�1

p−d>0

zB.k; d/ and zD D
Y
k�4

p−d>p

zD.k; d/:

These are detected by the summands B and D of E1.T /, respectively.

Lemma 12.13 For each k � 1 and p−d > 0 the difference

.GRh
��
y�hT

1� /.ˇk;d / 2 V .2/�.THH.BPh2i/tCp /hT

is detected by ��Œk��dpk�1

2 B0. For each k � 4 and p−d > p the difference

.GRh
��
y�hT

1� /.ık;d / 2 V .2/�.THH.BPh2i/tCp /hT

is detected by �Œk���dpk�4

2D0.

Proof On one hand, by Lemma 11.8 the image �y�hT
1�
.ˇk;d / is detected by ��Œk��dpk�1

in homotopy
fixed point filtration 0, while by Lemma 11.9 and Proposition 12.1 the image GRh

�.ˇk;d / lies in negative
filtration (or is zero). Hence .GRh

��
y�hT

1�
/.ˇk;d / is detected by the filtration 0 class.

On the other hand, by Lemma 11.9 and Proposition 12.1 the image GRh
�.ık;d / is detected by �Œk���dpk�4

in filtration 0, while by Lemma 11.8 the image �y�hT
1�
.ık;d / lies in negative filtration (or is zero). Hence

.GRh
��
y�hT

1�
/.ık;d / is detected by the filtration 0 class.
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Definition 12.14 As subgroups of V .2/�.THH.BPh2i/tCp /hT , let

zB0 D .GRh
��
y�hT

1� /.
zB/ and zD0 D .GRh

��
y�hT

1� /.
zD/:

These are detected by the summands B0 and D0 of ��1E1.T /, respectively.

Proposition 12.15 The inclusions induce isomorphisms

V .2/� THH.BPh2i/hT
Š zA˚ zB˚ zC ˚ zD and V .2/�.THH.BPh2i/tCp /hT

Š zA0˚ zB0˚ zC 0˚ zD0:

In these terms , GRh
� �
y�hT

1�
is the direct sum of the zero homomorphism zA 0�! zA0, two isomorphisms

zB Š�! zB0 and zD Š�! zD0, and the difference � W zC ! zC 0 between the restricted homomorphisms

GRh
� W

Y
k�1

0<d<p

zC .k; d/!
Y
k�1

0<d<p

zC 0.k; d/; . : : : ; 
k;d ; : : : / 7! . : : : ; 
 0k�3;d ; : : : /

and

y�hT
1� W

Y
k�1

0<d<p

zC .k; d/!
Y
k�1

0<d<p

zC 0.k; d/; . : : : ; 
k;d ; : : : / 7! . : : : ; v
dpk�1

3
� 
 0k;d ; : : : /:

Here 
 0
k�3;d

is to be interpreted as 0 for k 2 f1; 2; 3g.

Proof The submodules zA, zB, zC and zD are detected by the direct summands A, B, C and D spanning
E1.T /, so zA˚ zB ˚ zC ˚ zD ! V .2/� THH.BPh2i/hT is an isomorphism by strong convergence of
the T -homotopy fixed point spectral sequence. Likewise, zA0, zB0, zC 0 and zD0 are detected by the direct
summands A0, B0, C 0 and D0 spanning ��1E1.T /.

The homomorphisms GRh
� and y�hT

1�
agree on zA, since the classes v3, �1, �2 and �3 come from algebraic

K-theory, and hence also from topological cyclic homology. Their difference is therefore the zero
homomorphism. The restricted homomorphisms GRh

� �
y�hT

1�
W zB ! zB0 and GRh

� �
y�hT

1�
W zD! zD0 are

isomorphisms, by the construction of the target modules, which relies on Lemma 12.13. The restricted
homomorphism GRh

��
y�hT

1�
D� W zC ! zC 0 factors as asserted by Propositions 12.5 and 12.6.

Proposition 12.16 There are P .v3/˝E.�1; �2; �3/-module isomorphisms

ker.GRh
��
y�hT

1� /Š P .v3/˝E.�1; �2; �3/˚P .v3/˝E.�2; �3/˝Fpf„1;d j 0< d < pg

˚P .v3/˝E.�1; �3/˝Fpf„2;d j 0< d < pg

˚P .v3/˝E.�1; �2/˝Fpf„3;d j 0< d < pg;

cok.GRh
��
y�hT

1� /Š P .v3/˝E.�1; �2; �3/:

Here „i;d in degree 2pi � 2dpi�1 � 1 is detected by xi;d D tdpi�1

�i 2 E1.T /, for each i 2 f1; 2; 3g

and 0< d < p.
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Proof Let � W zC ! zC 0 be as in Proposition 12.15. Then

ker.GRh
��
y�hT

1� /D
zA˚ ker.�/ and cok.GRh

��
y�hT

1� /D
zA0˚ cok.�/:

Consider the associated map of vertical short exact sequencesQ
k�1;0<d<ph�k;d i

�0
//

��

��

Q
k�1;0<d<ph�k;d i

��

��Q
k�1;0<d<p

zC .k; d/
�

//

����

Q
k�1;0<d<p

zC 0.k; d/

����Q
k�1;0<d<p

zC .k; d/=h�k;d i
�00

Š
//
Q

k�1;0<d<p
zC 0.k; d/=h�k;d i.

In the upper row, the y�hT
1�
W h�k;d i! h�k;d i for k � 1 and 0< d <p are isomorphisms, so we can identify

ker.�0/ with the product over i 2 f1; 2; 3g and 0< d < p of the limit of the sequence

� � � ! h�kC3;d i
.y�hT

1�
/�1GRh

�
���������! h�k;d i ! � � � ! h�iC3;d i

.y�hT
1�
/�1GRh

�
���������! h�i;d i;

where k � i mod 3. Since
.y�hT

1� /
�1GRh

� W �kC3;d 7! �k;d ;

this limit is isomorphic, as an zA-module, to P .v3/˝E.�ŒiC1�; �ŒiC2�/˝Fpf„i;dg, with

„i;d D . : : : ; 0; �kC3;d ; 0; 0; �k;d ; 0; : : : /

detected by xi;d in E1.T /. Similarly, we can identify cok.�0/ with the (right) derived limit of this
sequence, which vanishes because each GRh

� W h�kC3;d i ! h�k;d i is surjective.

In the lower row, ker.�00/ D 0 and cok.�00/ D 0 because zC .i; d/=h�i;d i D 0 for i 2 f1; 2; 3g and the
GRh
� W
zC .kC 3; d/=h�kC3;d i !

zC 0.k; d/=h�k;d i are isomorphisms. Taken together, this proves that

ker.�/D ker.�0/Š
Y

i2f1;2;3g
0<d<p

P .v3/˝E.�ŒiC1�; �ŒiC2�/˝Fpf„i;dg

and cok.�/D 0.

Theorem 12.17 Let p � 7. There is a preferred P .v3/˝E.�1; �2; �3/-module isomorphism

V .2/� TC.BPh2i/Š P .v3/˝E.@; �1; �2; �3/˚P .v3/˝E.�2; �3/˝Fpf„1;d j 0< d < pg

˚P .v3/˝E.�1; �3/˝Fpf„2;d j 0< d < pg

˚P .v3/˝E.�1; �2/˝Fpf„3;d j 0< d < pg;

with „i;d detected by xi;d D tdpi�1

�i for i 2f1; 2; 3g and 0<d <p. Here jv3jD 2p3�2, j�i jD 2pi�1,
j@j D �1 and jt j D �2. This is a free P .v3/-module on the 16C 12.p� 1/D 12pC 4 generators

@��
�1

1
�
�2

2
�
�3

3
; �

�2

2
�
�3

3
„1;d ; �

�1

1
�
�3

3
„2;d and �

�1

1
�
�2

2
„3;d

in degrees �1� � � 2p3C 2p2C 2p� 3, where �; �i 2 f0; 1g and 0< d < p.
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Proof The definition of TC.BPh2i/ as the homotopy equalizer of y�hT
1

and GRh leads to the short exact
sequence

0!†�1 cok.GRh
��
y�hT

1� /
@�! V .2/� TC.BPh2i/ ��! ker.GRh

��
y�hT

1� /! 0:

It splits as an extension of P .v3/˝E.�1; �2; �3/-modules, since the image of @ is trivial in the (even)
degrees of the products �i �„i;d that vanish on the right-hand side. The splitting is unique, since the
left-hand side is trivial in the (zero or odd) degrees of the module generators 1 and „i;d .

Corollary 12.18 The classes ˛1, ˇ0
1

and 
 00
1
2 ��V .2/ map under the unit map S ! TC.BPh2i/ to the

classes „1;1, „2;1 and „3;1, respectively.

Proof These elements are detected, in pairs, by t�1, tp�2 and tp2

�3 in E1.T /, and in these (total)
degrees there are no other classes of lower filtration, nor in the image of @.

Thanks to the Nikolaus–Scholze model for TC.B/ we no longer need to recover V .2/� TC.BPh2i/ from
V .2/� TC.BPh1i/ in low degrees, but we nonetheless have the following consistency result:

Proposition 12.19 The E3 BP-algebra map BPh2i ! BPh1i induces a .2p2�1/-connected surjective
ring homomorphism

V .2/� TC.BPh2i/! V .2/� TC.BPh1i/ŠE.@; �1; �2/

˚E.�2/˝Fpf„1;d j 0< d < pg

˚E.�1/˝Fpf„2;d j 0< d < pg

mapping @, �1, �2, „1;d and „2;d to the classes with the same names , and mapping v3, �3 and „3;d

to zero.

Proof This is clear for @, �1 and �2. Moreover, „1;d and „2;d in V .2/� TC.BPh2i/ map to classes in
V .2/� THH.BPh1i/hT that are detected by td�1 and tdp�2, respectively, which characterizes their images
in V .2/� TC.BPh1i/. The classes v3, �3 and „3;d for 1� d �p�2 are mapped to trivial groups. Finally,
„3;p�1 in degree 2p2� 1 maps to zero in V .2/� THH.BPh2i/, and hence cannot be detected by �2.

We write BPh2ip for the p-completion of the p-local E3 ring spectrum BPh2i.

Theorem 12.20 Let p � 7. There is an exact sequence

0!†�2FpfN�1; N�2; N�1 N�2g ! V .2/�K.BPh2ip/
trc���! V .2/� TC.BPh2i/!†�1Fpf1g ! 0:

Hence V .2/�K.BPh2ip/ is the direct sum of a free P .v3/-module on 12p C 4 generators in degrees
0��� 2p3C2p2C2p�3, plus an Fp-module with trivial v3-action spanned by three classes in degrees
2p� 3, 2p2� 3 and 2p2C 2p� 4. In particular , the localization homomorphism

V .2/�K.BPh2ip/! v�1
3 V .2/�K.BPh2ip/

is an isomorphism in degrees � � 2p2C 2p.
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Proof By [Dundas 1997; Hesselholt and Madsen 1997, Theorem D] there is a homotopy cofiber sequence

K.BPh2ip/p trc�! TC.BPh2i/p $�!†�1HZp;

and hence also a long exact sequence

� � � ! V .2/�K.BPh2ip/
trc���! V .2/� TC.BPh2i/ $���! V .2/�.†

�1HZp/! � � � :

Here V .2/�.HZp/ŠE. N�1; N�2/ with j N�1j D 2p�1 and j N�2j D 2p2�1. The only P .v3/-module generator
of V .2/� TC.BPh2i/ that is mapped nontrivially by $� is @, with $�.@/

:
D†�11. The generators @�1,

@�2 and @�1�2 come from V .0/-homotopy, hence factor through V .0/�.†
�1HZp/, and therefore map

to zero. The generator �1„2;1 is the product of two classes in the image of trc�, hence also maps to zero
under $ . It follows that ker.$�/ is freely generated as a P .v3/-module by the same generators as for
V .2/� TC.BPh2i/, except that @ in degree �1 is replaced by v3@ in degree 2p3� 3.

Theorem 12.21 The p-completion map � W BPh2i ! BPh2ip induces a .2p2C2p�2/-coconnected
homomorphism

V .2/�K.BPh2i/ ���! V .2/�K.BPh2ip/:

Hence V .2/�K.BPh2i/ is the direct sum of a free P .v3/-module on 12p C 4 generators in degrees
0� � � 2p3C 2p2C 2p� 3, plus an Fp-module with trivial v3-action concentrated in degrees 1� � �

2p2C 2p� 3. In particular ,

V .2/�K.BPh2i/! v�1
3 V .2/�K.BPh2i/

is an isomorphism in degrees � � 2p2C 2p.

Proof By the proven Lichtenbaum–Quillen/Bloch–Kato conjectures [Voevodsky 2011] and the earlier
calculation of V .0/� TC.Z/ from [Bökstedt and Madsen 1994; 1995], V .1/�K.Q/ and V .1/�K.Qp/ are
concentrated in degrees 0� � � 2p� 2. Hence V .1/^K.Q/! V .1/^K.Qp/ is .2p�1/-coconnected.
It follows from the localization sequence in algebraic K-theory that V .1/^K.Z.p//! V .1/^K.Zp/ is
also .2p�1/-coconnected, so that V .2/^K.Z.p//! V .2/^K.Zp/ is .2p2C2p�2/-coconnected. By
the commutative cube

K.BPh2i/p
�

//

((

trc

��

K.BPh2ip/p

((trc

��

K.Z.p//p
�

//

trc

��

K.Zp/p

trc

��

TC.BPh2i/p
'

//

((

TC.BPh2ip/p

((

TC.Z.p//p
'

// TC.Zp/p

and [Dundas 1997] applied to the left-hand and right-hand faces, V .2/^K.BPh2i/! V .2/^K.BPh2ip/
is also .2p2C2p�2/-coconnected.
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