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Differential characterization
of Wilson primes for Fg[t]

Dinesh S. Thakur

Dedicated to Barry Mazur on his 75th birthday

We consider an analog, when Z is replaced by [, [¢], of Wilson primes, namely the
primes satisfying Wilson’s congruence (p — 1)! = —1 to modulus p? rather than
the usual prime modulus p. We fully characterize these primes by connecting
these or higher power congruences to other fundamental quantities such as higher
derivatives and higher difference quotients as well as higher Fermat quotients.
For example, in characteristic p > 2, we show that a prime g of [F,[#] is a Wilson
prime if and only if its second derivative with respect to ¢ is 0 and in this case,
further, that the congruence holds automatically modulo g?~!. For p = 2, the
power p —1 is replaced by 4 — 1 = 3. For every ¢, we show that there are infinitely
many such primes.

1. Introduction

For a prime p, the well-known Wilson congruence says that (p — 1)! = —1 mod p.
A prime p is called a Wilson prime if the congruence above holds modulo p2. Only
three such primes are known, and we refer to [Ribenboim 1996, pp. 346 and 350]
for history and [Sauerberg et al. 2013] for more references.

Many strong analogies [Goss 1996; Rosen 2002; Thakur 2004] between number
fields and function fields over finite fields have been used to benefit the study of
both. These analogies are even stronger in the base case Q, Z <> F(t), F[t], where
F is a finite field. We will study the concept of Wilson prime in this function field
context and find interesting differential characterizations for them with the usual
and arithmetic derivatives. In [Sauerberg et al. 2013], we exhibited infinitely many
of them, at least for many F. Our characterization gives easier alternate proof
generalizing to all F.
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2. Wilson primes

Let us fix some basic notation. We use the standard conventions that empty sums
are zero and empty products are one. Further,

q 1is a power of a prime p,

A =Flr,
Ay = {elements of A of degree d},
[n] =19" —1,

D, =[TZ (" —14) =T]ln - 17,

L, =TT, ¢" —0) =TI,

F; is the product of all (nonzero) elements of A of degree less than i,
Na = qd fora € Ay, i.e., the norm of ¢ and

g 1s a monic irreducible polynomial in A of degree d.

If we interpret the factorial of n — 1 as the product of nonzero “remainders”
when we divide by n, we get F; as a naive analog of factorial of a € A;. Note
that it just depends on the degree of a. By the usual group theory argument with
pairing of elements with their inverses, we get an analog of Wilson’s theorem that
F;=—1 mod g for o a prime of degree d. Though not strictly necessary for this
paper, we now introduce a more refined notion of factorial due to Carlitz. For n € Z
and n > 0, we define its factorial by

n!:=l_[D;’ieA forn=2niqi,05ni<q.

See [Thakur 2004, 4.5-4.8, 4.12 and 4.13; 2012] for its properties such as prime
factorization, divisibilities, functional equations, interpolations and arithmetic of
special values and congruences, which are analogous to those of the classical
factorial. See also [Bhargava 2000], which gives many interesting divisibility
properties in great generality.

Carlitz proved D, is the product of monics of degree n. This gives the connection
between the two notions above, that for a € A;, (Na — 1)! = (—1)' F;. (See [Thakur
2012, Theorem 4.1, Section 6] for more on these analogies and some refinements
of analogs of Wilson’s theorem.) This also implies

d—1

Fy= (D[ ]td~j1”"~" = (1) Dy/La. (1)
j=1

So let us restate the above well-known analog of Wilson’s theorem.

Theorem 2.1. If p is a prime of A of degree d, then

(=D¥Np —1!'=F;=—1 mod p.
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This naturally leads to:
Definition 2.2. A prime g € A, is a Wilson prime if F; = —1 mod p?.
Remarks 2.3. If d =1, then F; = —1. So the primes of degree 1 are Wilson primes.

If o (¢) is Wilson prime, then so are g (f +60) and g (ut) for 6 € F, and u € [F; as
follows immediately from the formula for Fj.

We introduce some differential, difference and arithmetic differential operators.
Definition 2.4. (1) For g as above and a € A, let Qp(a) (a‘fd —a)/g be the
Fermat quotient. We denote its i-th iteration by Q o -
(2) Fora =a(t) € A, we denote by D@ (a) = a'? its i-th derivative with respect
to . We also use the usual short forms ¢’ = aV and a” = a®.

(3) We define the higher difference quotients AD(a) =all of a € A (with respect
to ¢ and 6 to be fixed later) by

ad%y=a@) and ") = @) - a1 ®))/( —0).
Theorem 2.5. Letd :=degp. If d = 1, then Fy = —1 and the valuation of Q,(t)
at g is q —2.
Letd > 1 andk <gq. Then F; = —1 mod p* if and only zfQ(z)(t) =0 mod p*!
if and only if Q% (t) = 0 mod g for2 <r <k.
Proof. The d = 1 case follows immediately from the definitions. Let d > 1. We

recall (see, e.g., [Thakur 2004, pp. 7 and 103; 2012, proof of Theorem 7.2]) some
facts, which we use below.

(i) The product of elements of (A/pX)* is —1 unless g =2,d =1, and k =2 or 3,
as seen by pairing elements with their inverses and counting order-2 elements.

(i) The product of all monic elements prime to g and of degree i is D; /(" Di—4),
where r is uniquely determined by the condition that the quantity is prime to .

(iii) Since the valuation of [m] at p is 1 or 0 according to whether d divides m,
we have [i + kd] =[i] mod goq and thus [kd]/g = [d]/g mod goq '~ forka
positive integer. In particular, these congruences hold modulo 9.

Hence, by (1), we have modulo p* (with s appropriate to make the second

quantity below a unit at g)
DyaLg—

1= (1)l kd L (k—1)d

LkaDk-1ya

= ((=1)Tkd = 197"+ [k = Dd + 117" ) [k — Dar"~!
x ([(k = )d — 19" . )k — 2d 1y

= Fd([d]/p)(q"—l)-i-(qzd—qd)-i-m(Dg_l)qd—l (DZ‘:] )qd_l e

= Fa(ld)/p)*" "7,
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where we used that, for a prime to g, we have ad'-1 =1 mod g and thus
a9~ = 1 mod [0k

Hence, if Qggz) (¢) is 0 modulo p*~!, then ([d]/ggo)‘/d_1 = 1 mod e, and thus,
F;=—1 mod gok. Conversely, writing ([d]/ga)‘ld_1 =14 agp for some a € A, we
see that if F; = —1 mod p*, then modulo p*, we have

1 _ (1 +a6/))1+qd+“.+q(1€72)d _ 1 +a6/3

so that ag = 0 as desired. The other implications are immediate. ]

This generalizes the k = 2 case [Sauerberg et al. 2013, Theorem 2.6] with a
different manipulation of the quantities even in that case.

Next, we use this to give another criterion for Wilson prime now using the
derivative of the Fermat quotient instead of iterated Fermat quotient! For a general
study of differential operators in the arithmetic context, their classification and
applications, we refer to [Buium 2005] and references there. See also [lhara 1992].

Theorem 2.6. Assume q > 2 ord > 1. The prime g is a Wilson prime if and only
if g divides the derivative of [d]/g with respect to t.

Proof. Leta=[d]/p =) _a; t'. Then by the binomial theorem, modulo [d 12, we have

a —a=Y ar (@ 141~ 1) = Zaiti<i>([d]/t)l =d'[d].

(In words, the Frobenius difference quotient (aqd —a) /(tqd —1) of a = Q(¢) with
respect to ¢ is congruent to the derivative of a with respect to t modulo any prime
of degree dividing the degree of g¢.) Now since a is square-free and, in particular,
not a p-th power, a’ is nonzero, and since the valuation of [d] at g is 1, the claim
follows from Theorem 2.5. O

This reduces computations from dg“-degree polynomials occurring in F,; to just
g“-degree or from iterates of Fermat quotients to the first one. Also, the derivative
kills 1/ p of the coefficients on average. In fact, we will improve further.

Now we consider g-adic expansion of ¢ using Teichmiiller representatives. Let
A, be the completion of A at g, and let [, be its residue field. Let 6 € [, be the
Teichmiiller representative of t modulo .

Lemma 2.7. Lett =60 + Y ;' be the p-adic expansion of t with Teichmiiller
representatives (; € F,. Then
PO oM ©) pt0)3

More generally, if (t —0)" divides 50[2], then w; = p[i](G) =0for2<i<r,and
for2 <i <r,we have

n

R
p[l](g)i+l'

i =
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Proof. For d =1, we have t = 6 + g, whereas for d > 1 the expansion is an infinite
sum. Noting that o = [](r — «9"i), where i runs from 0 to d — 1, the claim follows
inductively on i by starting with the unknown g-adic expansion and by dividing by
t — 6 and then putting ¢t = 0 in each step. '

In more detail, in the first step, we have 1= [],_;-o( —69) plus terms
divisible by t — 6 so that u; = 1/]](@ —69) =1/ (). In the next step, we
have —p?!/ (1 0) (p")?) = o + 3t — ) ! + - - -, proving the claim for 5.
Under the hypothesis of divisibility, the claims are clear inductively on i. (]

Remarks 2.8. We record in passing that without any hypothesis as in the second
part of Lemma 2.7, a similar manipulation leads to

O R Ok
Pl “plll©)>
Note that the second term vanishes if 2 (0) = 0 (or if p = 2).

13 =

We now use Theorem 2.5 and Lemma 2.7 to get our main theorem, a criterion for
Wilson prime in terms of vanishing at 6 of the second difference quotient value as
well as in terms of the total vanishing of the second derivative of g with respect to ¢:

Theorem 2.9. (i) A prime g is a Wilson prime if and only if p!?1(9) = 0.

(i) When p > 2, o is a Wilson prime if and only if " = d*p/dt> is identically
zero. In other words, the Wilson primes are exactly the primes of the form
3" pit® with p; nonzero implying i =0, 1 mod p.

(iii)) When p > 2, if © is a Wilson prime, then the Wilson congruence holds modulo
P~ 1. Also, pl1(0) =0 for 1 <i < p.

(iv) When p =2, the Wilson primes are exactly the primes of the form Y p;t with
pi nonzero implying i =0, 1 mod 4. For such g, the Wilson congruence holds
modulo 3, and (@) =0 for 1 <i < 4.

2

Proof. We have Qo () = — ) — oo — -+ - — qu_lpqd— mod '~ and

Qp(0p() = o+ 39+ + pga_ 1%

Hence, (i) follows by Lemma 2.7.

Let o :=pM(©@) and f(t) = p (t) —a(t —0). Then p?1(9) =0 is equivalent to
(t —6)? dividing f(¢). This condition implies f”(8) = " (6) = 0, but g being an
irreducible polynomial with 6 as a root, this implies that the lower degree second
derivative is identically zero. Conversely, f () = f'(6) = O implies, if d > 1,
f(t) = (t —0)*h(1r), and () = 0 then implies that 24(9) = 0 so that if p > 2,
h is divisible by ¢ — 6, implying (ii).

Once the second derivative is identically zero, the higher derivatives are also
zero. (Note the (d 4 1)-th derivative or p-th derivative is identically zero anyway

3 2

mod gﬂd’ .
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for any g.) The vanishing of first i derivatives implies at least i + 1 multiplicity
for i < p, which implies vanishing of higher difference quotients (which decrease
in degree by 1 in each step). This implies (iii) by Lemma 2.7 and Theorem 2.5.
Here is an another way to see the last part. If we write o (t) = Y p;t’, then
P(+0)=> ot witha; =Y pi (,’;)«9"*" . Our condition translates to 13 dividing
f(t+6) so that s = 0. By Lucas’ theorem or directly, if p =2, (5) = 0 implies
(;) = 0 so that a3 = 0. Similarly, for general p, (’2) = 0 implies (;) = 0 for
2 <r < p—1, implying o, = O for those r. This also proves (iv). (]

Theorem 2.10. There are infinitely many Wilson primes for F,[t].

Proof. First let g be odd. It is enough to produce infinitely many irreducible
elements in A that have powers of ¢ occurring only with exponents that are 0 or 1
modulo p. Let n be a positive integer. Then by consideration of factorization of
the cyclotomic polynomial, we see that there are ¢(¢" — 1)/n primitive monic
polynomials of degree n, where (as usual) we mean by a primitive polynomial
of degree n a minimal polynomial over [, of a generator of ;.. For each such
irreducible polynomial P(t) = p;t', the polynomial Y p;#@ ~D/@=1 ig of the
form we want and is irreducible by a theorem of Ore [1934, Chapter 3, Theorem 1].

The same method works for ¢ = 2° with s > 1 since the exponents are then 0, 1
mod 4 as we require. The remaining case ¢ = 2 can not be handled by this method.
In this case, applying Serret’s theorem [Lidl and Niederreiter 1996, Theorem 3.3.5]
(or the special case recalled in [Sauerberg et al. 2013, Theorem 2.8]) to the (Wilson)
prime f(t) =t*41+1 and s = 5", we get infinitely many primes f(#>"), which
are Wilson primes by Theorem 2.9(iv). ([

Remarks 2.11 (Heuristic counts and exact multiplicity). In the Z case, the number
of Wilson primes less than x grows like ) p<x 1/ P ~loglog(x) under the naive
heuristics of ((p — 1)!+1)/p being randomly distributed modulo p, and we expect
at most finitely many primes giving the congruence to power p3. In [Sauerberg et al.
2013] for some g, we produced families of Wilson primes for A with loglog(x)
growth of the size, but now with Theorem 2.9(ii), we can show that there are many
more. In fact, if we let w; and w, denote the number of primes and Wilson primes,
respectively, of A of degree d, then under the naive heuristics of randomness of p; in
Theorem 2.9(ii) for primes, we see that as d tends to infinity and (log wy)/(log 7r4)
approaches 2/p if p is odd and 1/2 if p = 2. It should be possible to prove these
asymptotics using Theorem 2.9(ii). In our case, the congruence holds to power g7~
for the Wilson primes (to power g3 if p = 2). It is unclear whether this power can
be increased for some primes. Though the correspondence of Theorem 2.5 goes
up to power 7!, the small amount of numerical data calculated by the author’s
masters student George Todd (for which the author thanks him) showed exactness
of the power p”~! even for g not prime.
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Remarks 2.12. We finish by giving quick sketches of alternate and simplified
proofs of earlier results.

(1) We know that for a € [, p =1P —t —a is a prime of A if and only if trace of a
to [, is nonzero. Assume g is a prime and ¢ = p™. Then
19 =" " a T = =P o ot

so that Q, (1) = (14" — 1)/ = P 14+ 4+ P L+ 1. If Q% (1) denotes the
r-th iteration of Q,, we see immediately by induction that for p > r > 1, the
valuation at g of Qg) (t) is p — r. Similarly, it is easy to check that ¢ = 2
and p = t* 41 + 1 satisfies the Wilson congruence modulo g3 but not p*, and
similarly, a calculation as above shows that in this case QS)(I) vanishes modulo g
but not QS)(t).

This gives another proof of [Thakur 2012, Theorem 7.1], which says that such
g’s are Wilson primes (even to the exact (p — 1)-th power congruence) if p > 2.

(2) Theorem 2.6 allows us to give a simple alternate proof of [Sauerberg et al. 2013,
Theorem 2.9]. By the theorem above, g (¢)? divides 1+ (t‘fd — D' () /o () so
that modulo g (°)?,

0= 1+ (D =)' ")/ () = 1+ (17" = )i/ ()" [p (1),

exactly as in the middle part of the proof of [Sauerberg et al. 2013, Theorem 2.9].
This implies by Theorem 2.5 that g (¢#*) is Wilson prime as desired.

(3) Theorem 2.6 also provides another proof for the reciprocal prime theorem
[Sauerberg et al. 2013, Theorem 3.3] when p is odd. If f () = tdga(l/t) and g
is a Wilson prime, then g” =0 and d(d — 1) = 0 mod p so that taking derivatives
with the product and chain rules simplifies to f” = —2(d — 1)t?3/(1/t), which
is 0 if and only if d =1 mod p.

Using Theorem 2.9(ii) and (iv), instead of Theorem 2.6, gives even simpler
proofs of results in (2) and (3) (and also (1) except for the exactness of the exponent
p — 1 in the modulus). We leave it as a straightforward exercise.
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