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Abstract. — In this expository article, we survey progress, and mention open ques-

tions, speculations and conjectures regarding the study of various degrees of irra-

tionality, algebraicity, and transcendence from various angles, for general as well as

special quantities in function field arithmetic. Though we often mention the num-

ber field case and characteristic zero function field case, we mostly concentrate on

function fields in finite characteristic, and often specialize to those over finite fields.
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1. Basic problems

Starting with the counting numbers, our concept of numbers evolved in various

directions: using the usual operations of addition, subtraction, multiplication, division

leading to rational numbers; using the notion of distances and length leading to real

* Supported in part by NSA grant H98230-08-1-0049.
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22 DINESH S. THAKUR

numbers; solving equations with unknowns formed by the operations above leading

to algebraic numbers. The basic questions of diophantine approximation study how

general or special real numbers are distributed distance-wise in relation to rational or

algebraic numbers with respect to their complexity. In other words, we compare the

error in approximation by a simpler quantity with the measure of its simplicity.

Modern algebra led to more abstract fields F , leading to more general number

systems such as those modulo a prime, finite fields, and function fields F (x) obtained

by introducing a variable x and applying the usual operations above, thus leading to

rational functions (over F ) versus rational numbers, algebraic functions versus alge-

braic numbers, and (finite tailed) laurent series (obtained by completions) versus real

numbers (obtained analogously). In other words, we consider F [x], F (x), F ((1/x)) as

analogs of Z, Q, R respectively. So depending on the context, by integers, rationals,

algebraics, real, we may mean corresponding analogs in the function field case. We

can ask the basic questions mentioned above in this function field setting also.

Despite the basic differences between the characteristics, non-archimedean abso-

lute versus archimedean absolute value, the lack of order or positivity, infinite versus

finite degree over the prime field, and despite different tools like differentiation, spe-

cialization, stronger properties of p-th power maps; amazingly, many results in the

number field and the function field situations are often parallel. There are some stark

contrasts also, and despite function fields being often simpler to deal with, we will

find situations where the number fields case is fully proved and the function field case

is not even conjecturally understood!

In this survey paper, we discuss the progress and open questions about some themes

of this study, focusing mainly in finite characteristic function fields F (x), sometimes

specializing to a finite F , which often gives best analogies to the number field sit-

uations. We often bring in the number fields or characteristic zero function field

situation for comparison of analogies and contrasts.

We restrict to real numbers and do not go into complex or p-adic directions, except

for a couple of remarks. First we deal with general numbers, with results for all, almost

all or algebraic numbers. In the last section, we deal with special values in function

field arithmetic [G96, T04], mostly dealing with Carlitz-Drinfeld theory. A quick

look at the headings of the sections and subsections should give a good idea about

the organization of the material.

We refer to [S80, B04, BG06, W?], which are some excellent references for

the basic material, as well as for surveys and detailed references on recent progress,

mostly in the number fields case. When there are no specific references given, the

results or references can be found in these basic references. Often, we give only

convenient rather than original references. In the last two sections, we will mention a

few excellent surveys written at different time periods on the related material. Since

JOURNÉES ANNUELLES



Ep
re

uv
e 

G
az

et
te

da
te

 : 
22

/5
/2

01
2

FROM RATIONALITY TO TRANSCENDENCE 23

there are hardly any proofs in this paper, reader looking for sketches or ideas of proofs

should look at these surveys.

I will appreciate any comments, suggestions and references to improve this survey.

I hope to incorporate them in an updated version on my homepage.

2. Complexity of algebraic quantities

2.1. Absolute values. — By |α|, we mean the usual absolute value or size for a

real number α, and cdeg(α), for some fixed c > 1 for a nonzero α ∈ F (x). In the case

of a finite field F with q elements, we choose c to be q, so that in an analogy with the

case of integers, the number of remainders (which is finite in this case) is |α|, when

you divide by a nonzero polynomial α.

2.2. Heights. — A crude complexity measure of an algebraic number or function

is its algebraic degree. The complexity of an algebraic number (of a given degree) is

traditionally measured by notion of height which roughly relates to the space it takes

to describe the number by the traditional method.

2.3. Definition of Absolute and Field height. — For β a nonzero algebraic

number, define H(β) to be the maximum of the absolute values of the coefficients of a

non-trivial irreducible polynomial with co-prime integral coefficients that it satisfies.

For β lying in a number field L, define HL(β) similarly by replacing the irreducible

polynomial by c
∏

(x− β(i)), where β(i) are its field conjugates and multiple c makes

the coefficients co-prime integers.

We get similar definition for algebraic functions β by replacing ‘integers’ by their

analogs ‘polynomials’.

Note that for p/q, a reduced rational number or function, the height is the max-

imum of |p|, |q| and it does not make any difference in the definition of exponents

below if we replace it with the more traditional choice of |q|.

For number fields and function fields over finite fields, it follows easily from defini-

tions that there are only finitely many elements of bounded height and degree.

See [S80, BG06] for other definitions of variants of heights and relations between

different variants.

3. Exponent of approximation

In comparison of errors and heights, we only focus on the simplest traditional

irrationality measure, namely that of the exponent, by relying only on the power

functions and ignoring logarithms or other lower growth functions.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012
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24 DINESH S. THAKUR

3.1. Definition of exponents. — Let L be a number field inside R and d be a

positive integer. For α an irrational real number not algebraic of degree ≤ d, define

Ed(α) as lim sup(− log |α − β|/ logH(β)), where β varies through all algebraic real

numbers of degree d, with height tending to infinity.

For α ∈ R−L, define EL(α) by the same formula, but with H replaced by HL and

with with β varying through elements of L.

Similar definitions are clear for the function field case, and for E≤d, E<d etc.

The usual exponentE(α) := lim sup(− log |α−P/Q|/ log |Q|) is justE1(α) = EQ(α).

Some other common measures such as w∗
d := E≤d − 1, and wd(α) defined to be

the supremum of w such that |P (α)| ≤ H(P )−w for infinitely many polynomials P of

degree at most d and with integral coefficients.

3.2. Bounds and values of exponents. — (1) For an irrational real number or

function α, we have E(α) ≥ 2. This is seen immediately by applying the definition to

the approximations provided by truncation of continued fractions. Another proof, in

number field or function field over finite field case when there are only finitely many

remainders, follows by applying the Dirichlet box principle to fractional parts of mα’s,

for integral m’s bounded in some range.

(2) For almost all (in terms of measure theory) real numbers α, we have Khinti-

chine’s theorem E(α) = 2 and for almost all real numbers, we have [Sp69] wd(α) =

w∗
d(α) = d, so that Ed(α) = d + 1. For function field over finite field case, wd state-

ment is proved [Sp69] and and w∗
d statement stated in [Gu96] follows from it and

inequalities stated in 3.7 below (answering the question of a possible gap raised in

[B04, Sec. 9.4], as I have confirmed with Bugeaud). See also [Kh64, dM70, B04]

for more metrical results.

(3) For algebraic real number or function α of degree > d, we have E≤d(α) ≤ degα.

For d = 1, this is Liouville’s theorem for real case, obtained by applying the mean

value theorem to the minimal polynomial of α between α and the approximation, and

adapted by Mahler [M49] to function field case. The general case [BG06] follows

similarly by resultants in general.

(4) For real algebraic number α, we have E(α) = 2 by Roth’s celebrated deep the-

orem improving Liouville, Thue, Siegel, Dyson bounds, using several variable polyno-

mials. For function fields of characteristic zero, the equality was proved by Fena and

Uchiyama.

(5) For real number α not in a number field L, we have EL(α) ≥ 2 and for real

algebraic number α not in L, we have EL(α) = 2 by Leveque’s generalization of Roth’s

theorem.

(6) For real α not algebraic of degree ≤ d, Wirsing [W60] (generalizing Dirichlet

result) conjectured (See also [R03] for different than then expected answer in the

approximation by algebraic integers case, raising questions on what should be the

correct conjecture) E≤d(α) ≥ d + 1 and proved slightly better lower bound (and K.
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FROM RATIONALITY TO TRANSCENDENCE 25

Tishchenko improved) than (d + 3)/2, whereas Davenport and Schmidt (see [S80])

proved his conjecture for d = 2. Sprindzuk 1963 ([Gu96] respectively) proved Wirs-

ing analog for function fields of zero (any respectively) characteristic zero. Analog

of the Davenport-Schmidt bound E≤2(α) ≥ 3 is proved for real functions of any

characteristic is also proved in [Gu96].

(7) As a corollary to Schmidt’s subspace theorem generalizing Roth’s result,

Schmidt (see [S80]) proved that for real algebraic numbers α of degree greater than

d, E≤d(α) ≤ d+ 1. The same inequality was proved in [R78] for the case of function

fields of characteristic zero. Combining Schmidt’s theorem with Wirsing’s results

(Section 3.7) we know [BM86] that for real algebraic numbers (or functions of

characteristic zero) of degree > d, we have E≤d(α) = d+ 1.

(8) In case, α is algebraic of degree d + 1, we can replace Schmidt’s subspace

theorem in (7) by much simpler Liouville’s inequality (in numbers or functions case)

[W60, BM86] to show E≤d(α) = d + 1 then. There is no ‘epsilon’ in this case, just

as E(α) = 2 follows easily from theory of continued fractions and their periodicity for

real quadratic without using Roth’s deeper theorem and there is no ‘epsilon’ then.

While (3) is ‘effective’, most of its improvements are not.

Interestingly, when d > 1, by comparing (6) and (7), we see that the Dirichlet

direction has turned out to be harder than Roth’s direction!

We will discuss omitted cases of finite characteristic below.

3.3. What is a small set or a rare event?— Liouville numbers are those numbers

(e.g.,
∑

10−n!) whose exponent is infinite. By (2), or directly from the definitions, we

see that the set L of Liouville numbers is of measure zero. It is uncountable, dense

(countable intersection of open dense sets, so Gδ) set, which is of Hausdorff measure

zero in all dimensions. But its complement is small in the sense that it is of first

category, countable union of nowhere dense sets. See [Ox80] and for more on its

Hausdorff dimension with more general measures than power functions, see [OR06].

On the other hand, the set of algebraic numbers is countable, thus of measure zero

and of first category. Baker-Schmidt [BS70] (Jarnik-Besicovitch for d = 1) theorem

shows that for λ > 1, the set of real number α with Ed(α) > (d+ 1)λ, which, by (2),

is of measure zero, has Hausdorff dimension 1/λ.

In the case of a function field over finite field, [K03] proves analog of d = 1 case.

3.4. Failure of naive analog of Roth’s theorem in finite characteristic. —

While (1)-(3) of Section 3.2 work in both function fields and number fields with

essentially the same proofs, the naive analog of Roth’s theorem fails as shown by the

following example of Mahler [M49].

Let F be of characteristic p > 0, and q be a power of p. Then, as Mahler observed,

E(α) = q for α =
∑
t−qi

, by a straight estimate of approximation by truncation of

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012
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26 DINESH S. THAKUR

this series. Now αq − α − t−1 = 0, so that α is algebraic of degree q over F (t), and

hence the Liouville upper bound is best possible in this case.

Mahler suggested (and it was claimed to have been proved in a published paper and

believed for a while) that such phenomena may be special to the degrees divisible by

the characteristic, but Osgood [Os75], and Baum and Sweet [BS76] gave examples

in each degree for which Liouville exponent is the best possible. A few more isolated

examples by Buck, Robbins, Mills (see [L09] for extensive references) were proved

after extensive computer searches. See below for more.

3.5. Good approximations and Computation of exponents. — Sequence of

good approximations, for example, those coming from truncation of series or product

expansions if they converge rapidly, usually leads to only to a lower bound on expo-

nents, and unlike Mahler’s example, where it coincided with Liouville’s upper bound,

we do not get exact exponent in general. But under certain conditions listed below,

we can [V88] (see also [T11, Pa. 15]) calculate the exact exponent.

If βn are algebraic of degree d, βn → α, satisfying

lim sup logH(βn+1)/ logH(βn) = b,− log |α− βn|/ logH(βn) → a, a > d(b1/2 + 1),

then Ed(α) = a, for α not algebraic of degree ≤ d.

If you know the continued fraction of α, you can usually get its exponent (see

below). See [T04, Thm. 9.3.4] and [V95] for another general useful application by

Voloch of his lemma above.

3.6. Mikowski’s successive minima theorem. — Mahler [M41] developed an

analog to Minkowski’s geometry of numbers, including his theorem on successive

minima, where the usual bounds of 2n/n! and 2n for the volume times product of

successive minima are replaced by 1 (hence equality), and similarly for inequalities

for the polar body. These results imply analogs of Minkowski’s theorems on sizes

of linear forms. On the other hand, naive analog of Schmidt’s subspace theorem

generalizing Roth’s theorem fails in the function field case.

3.7. Relations between wd and w∗
d. — Let α be real (number or function) not

algebraic of degree ≤ d, and write wd := wd(α), w∗
d := w∗

d(α), temporarily. Then in

the function field case, Mahler’s Minkowski result implies wd ≥ d, whereas [Gu96]

proved that w∗
d ≥ (d + 1)/2 and for d = 2, that w∗

2 ≥ 2. We have [Sp69, Pa. 150]

wd ≥ w∗
d, w∗

d ≥ wd/(wd −d+1), and if further, the characteristic is zero, we also have

w∗
d ≥ wd − d+1 and w∗

d ≥ (wd +1)/2. All these hold in real number case [W60] (see

also [BM86, B04] for much more).

Note that Schmidt’s subspace theorem (so for real numbers and functions in char-

acteristic zero) implies that for algebraic α, not of degree ≤ d, we have wd ≤ d.

JOURNÉES ANNUELLES
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FROM RATIONALITY TO TRANSCENDENCE 27

4. Differential exponents in function fields

In a function field F (t) of any characteristic, we can differentiate with respect

to t, in contrast to the number field situation. Maillet, Kolchin and Osgood [Os73,

Os75] used this to get better and/or effective bounds for diophantine approximation.

Kolchin’s idea [Kol59] was to use the Liouville argument replacing the minimal poly-

nomial of α with a ‘small’ differential polynomial that kills α. Frequently, this gives a

smaller exponent and we get good effective bounds by more refined work of Osgood.

See original references or surveys in [T04, Cha. 9] and [T09] for more.

4.1. Definition of denomination. — We denote the m-th derivative of y with

respect to t by y(m) and also write y′ for y(1) following the usual practice. For a

vector e = (e0, · · · , ek) of non-negative integers, let us write ye as a short-form for

the differential monomial ye0(y′)e1 · · · (y(k))ek .

Consider a differential polynomial P (y) =
∑
pey

e. Note that the j-th derivative

of a/b has the power bj+1 in the denominator. So define the denomination d(P ) to

be the maximum of
∑k

j=0(j + 1)ej corresponding to e such that pe 6= 0.

So, if P (a/b) 6= 0, then |P (a/b)| ≥ 1/|b|d(P ), hence d(P ) replaces the degree in the

Liouville argument. Define the differential exponent d(α) to be the smallest possible

d(P ) for P satisfying P (α) = 0.

Here α can be differentially algebraic. If, in fact, it is also algebraic, then d(α) ≤

max(deg(α) − 1, 2): Note that differentiating the minimal polynomial P (x) for α we

get the equation α′Px(α) + P ′(α) = 0. Simplifying, we get α′ =
∑w

j=0 aj(t)α
j , with

w < degα.

4.2. Kolchin’s analog of Liouville’s theorem. — Given an irrational α which

is differentially algebraic over a characteristic zero function field, there is a constant

c > 0 such that |α− a/b| > c/|b|d(α).

The proof is by the Liouville argument, except the catch is that the differential

minimal polynomial P has, in general, infinitely many zeros and a priori, some ap-

proximations a/b can be among those. Kolchin shows that this is impossible in char-

acteristic zero.

We get smallest denomination 2 for irrational α satisfying the Riccati equation

y′ = ay2 + by + c with rational functions as coefficients. So for such elements (for

example, any element of degree 3 or any irrational n-th root of a rational) we have

an (effective) Roth estimate (there is no ǫ even) in characteristic zero.

In contrast, in characteristic p, α which is (called element of Class I below) a

rational Möbius transformation of its pn-th power, satisfies the Riccati equation, and

we will see below that in this case the Riccati examples can have any rational exponent

within Dirichlet and Liouville bounds, at least for some degrees.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012
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28 DINESH S. THAKUR

4.3. Riccati equation-Thue bound connection. — Osgood proved [Os73, Os75]

the following very interesting theorem

In the situation of function fields of finite characteristic, the exponent bound can

be reduced from the Liouville bound to the Thue bound E(α) ≤ ⌊deg(α)/2⌋ + 1 for

all non-Riccati α’s.

4.4. Why Riccati?— The relevance of the Riccati equation to this question is

clearly brought out by the theorem of Osgood and Schmidt [S76]

If y′B(y) + A(y) = 0, where A and B are coprime polynomials with integral (i.e.,

polynomial in t) coefficients, then all its rational solutions have height bounded in

terms of those of A and B, as long as the equation is not Riccati (i.e., we do not have

deg(B) = 0 and deg(A) ≤ 2).

This theorem implies that the close enough rational approximations will not be

the roots and hence the Liouville-Thue type argument goes through when applied to

y′B(y) +A(y).

4.5. Separability. — Note that since differentiation of p-th powers is zero, it is

easy to see that algebraic Laurent series are in fact separable over rational function

field over finite field.

5. Continued fractions

Continued fractions are natural tools of the theory of diophantine approximation.

See [dM70, BS76, S00, BN00, T04] for their basics (and several references) in

the case of function field over a field. Artin introduced them and proved first few

theorems in this case.

5.1. Basic notation. — We write α = a0 +1/(a1 +1/(a2 + · · · )) in the short-form

[a0, a1, · · · ]. We write αn := [an, an+1, · · · ]. Let us define pn and qn as usual in terms

of the partial quotients ai’s, so that pn/qn is the n-th convergent [a0, · · · , an] to α.

Hence deg qn =
∑n

i=1 deg ai.

To generate the continued fraction in the function field case, we use the ‘polynomial

part’ in place of the ‘integral part’ of the ‘real’ number α ∈ K∞. In the function field

case, for i > 0, ai can be any non-constant polynomial and so the degree of qi increases

with i, but ai or qi need not be monic. (We refer to [BN00] for good discussion of

signs, and variants of the continued fraction algorithms with minus sign etc.).

5.2. Basic formulas. — We have

pnqn−1 − qnpn−1 = (−1)n−1, α =
αn+1pn + pn−1

αn+1qn + qn−1
(1)

implying the usual basic approximation formula

α− pn/qn = (−1)n/((αn+1 + qn−1/qn)q2n), (2)

JOURNÉES ANNUELLES
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which, in the function field case, because of non-archimedean nature of the absolute

value, simplifies to the fundamental formula giving the error

|α− pn/qn| = 1/(|an+1||qn|
2). (3)

If we know the continued fraction for α, the equation allows us to calculate the

exponent, using deg qn =
∑n

1 deg ai, as

E(α) = 2 + lim sup
deg an+1∑n
i=1 deg ai

. (4)

5.3. Statistical distribution of an and qn. — Since the diophantine approxima-

tion properties of α are closely related to sizes of corresponding an’s and qn’s, let us

record some theorems [Kh64] about these quantities in the real number case.

(1) For almost all real α, an > n logn (an > n(logn)2 respectively) has infinitely

(finitely respectively) many solutions n. There are also more refined results modeling

zero-one law (Borel-Cantelli lemma) of probability theory.

(2) For almost all real α, we have q
1/n
n → c, where ln c = π2/(12 ln 2).

(3) (Gauss-Kuzmin law) For x between 0 and 1, the measure of the set of numbers α

between 0 and 1, that satisfy αn > 1/x approaches log2(1 + x), as n tends to ∞.

Equivalently, the measure of the set of α between 0 and 1 that satisfy an = k, for a

fixed integer k > 1, approaches log2(1 + 1/(k(k + 2))). Note that this distribution

has mode at k = 1, median at k = 2, but the mean is infinite (as can also be seen

using (1)).

In the function field case (over finite fields), various metrical results are known.

For example, [H79] shows (see also [N88, BN00])

(1) For almost all α, we have lim sup deg an/(logn) = 1/(log q).

(2) For almost all α, we have lim(deg qn)/n = q/(q−1). In words, for almost all α,

the average degree of the first n partial quotients tends to q/(q − 1) as n tends to

infinity.

(3) If P ∈ Fq[t] is a polynomial of degree d > 0, then for almost all α, we have

lim sn/n = q−2d, where sn is the number of i between 1 and n for which ai = P .

5.4. Basic patterns. — It is immediate that finite continued fractions correspond

to rational numbers or functions and that eventually periodic sequence of an’s gives

real quadratic numbers or functions. The converse of the last statement is also true

for function fields over finite fields. Also, Artin proved that purely (starting from a1)

periodic continued fraction for quadratic real irrational α exactly corresponds to

degα < 0 and degα′ > 0, where α′ is the algebraic conjugate of α. (For real quadratic

irrational numbers, the corresponding conditions are α > 1 and −1 < α′ < 0,

(for period starting from a0). For this and the situation over general fields,

see [S00, BN00] and references there.

On the other hand, it is not known for a single (explicit or not) algebraic real num-

ber of degree more than two, whether the corresponding sequence of an’s is bounded

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012
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or unbounded. In the function field case, [BS76] produced first examples of both

kinds. See below for many more examples.

5.5. Connection with good approximations. — By (3) in the Section 5.2, we

see that convergents pn/qn always approximate by error < 1/q2n (i.e., ≤ 1/(|t|q2n)).

Conversely, any such good approximation is a convergent. (For real numbers one

needs < 1/(2q2).)

In fact, due to discreteness of absolute values, there are a priori many more variants

of notions of good approximations than in the real number case, and they are [T04,

Thm. 9.2.3] connected with convergents and intermediate convergents, generalizing

results of [dM70].

Discreteness of absolute values also makes analogs [T04, Remarks 9.2.1] of Markoff

spectrum and Lehmer problem easier and much less interesting.

5.6. Explicit Continued Fractions and Exponents. — We now present [S00,

T99] explicit continued fraction families of algebraic quantities in finite characteristic,

with exponents ranging through all Dirichlet-Liouville range.

Let F be a field of characteristic p, and q be a power of p. Let Ai(t) ∈ F [t] be of

degree di > 0. Then

α := [A1, · · · , Ak, A
q
1, · · · , A

q
k, A

q2

1 , · · · ] (5)

is algebraic over F (t) because it satisfies the algebraic equation

α = [A1, · · · , Ak, α
q] =

Aαq + b

Cαq +D
. (6)

We have [S00, T99]

E(α) = 2 + (q − 1)MAX1≤i≤k(di/((d1 + · · · + di−1)q + di + · · · + dk)), (7)

and given any rational µ between q1/k +1 (which tends to 2 as k tends to infinity) and

q + 1, we can construct a family of α’s as above with E(α) = µ and deg(α) ≤ q + 1.

5.7. Class I and Class IA. — Let F be a finite field of characteristic p and q be

a power of p. If α satisfies α = (Aαq + B)/(Cαq + D), for A,B,C,D ∈ F [t] with

determinantAD−BC nonzero, α is said to be of Class I, and if further AD−BC ∈ F ∗,

then it is said to be of Class IA. Since, for f ∈ F ∗, we have f [a0, a1, a2, · · · ] =

[fa0, f
−1a1, fa2, · · · ], the examples above take care of continued fractions of all α of

class IA.

The pattern of continued fractions for general α of class I is an interesting open

question, with interesting isolated examples and results given by e.g., Baum, Sweet,

Mills, Robbins, Buck, de Mathan, Lasjaunias, Ruch, Schmidt, Firicel. See [MR86,

L00, L09, S00, T08, T09, F10?] and references there for some interesting explicit

continued fractions of class I, but not of class IA.
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The exponent is known [dM92] to be rational for any element of class I. It is not

known whether for general algebraic function the exponent can ever be irrational.

All elements of Class I are easily seen to satisfy Riccati equation with rational

(function) coefficients which has a rational solution. The easiest way to show some-

thing is not of Class I is to show that it does not satisfy such an equation. But since

the converse is not true, and q in the definition of Class I is not fixed, it is hard to

show that something satisfying rational Riccati equation with rational solution is not

Class I.

5.7.1. Class I-Thue bound connection. — In [LdM96], generalizing Osgood’s theo-

rem 4.3, and establishing conjecture of [V88], it was shown that if algebraic α over

function field over field F of finite characteristic is not of Class I, then Liouville bound

can be improved to Thue bound: E(α) ≤ ⌈(degα)/2⌉ + 1. They also have [LdM99]

a slight refinement (of ‘epsilon’) and different proof when F is finite.

Is there an hierarchy of differential (or difference-Frobenius) equations and expo-

nent bounds, perhaps Riccati generalizing to Weierstrass and Painleve? How about

higher exponents? We will mention below deformation hierarchy in this spirit.

5.8. Statistical distribution of exponents in Class IA. — In her Ph. D. thesis

of 2011 from National Central University, Taiwan, Huei Jeng Chen used the exponent

formula (7) in Section 5.6 to get statistical distribution, in case when F is a finite

field so that we can count, as follows.

Let F be a finite field of characteristic p and fix q a power of p. For α as in Section

5.6 (or of Class IA which can be handled exactly similarly using multiplication by

constants as explained above), we put H(α) to be the maximum of the degrees of

A,B,C,D (in the reduced form). This is the usual height of α, if the equation there

is irreducible. (Chen also shows that in the result of Section 5.6, we can further

stipulate that the degree is q + 1).

Let 2 < m < q + 1. Let Nd be the number of such α’s of height at most d, and let

Nd,m be the cardinality of the subset where E(α) > m. Then Nd,m/N
1−(m−2)/(2(q−1))
d

is bounded between two positive numbers independent of d.

This shows a nice power law with the power going down from 1 to 1/2 as you move

the exponent bound from Roth value 2 to q + 1, which is the (maximal) degree here.

Does similar distribution work in Class I or more generally for all algebraic elements

of any given degree?

Here we only note that every element of degree 3 is of Class I and that if q = 2,

we can get Class I elements of all determinants (but not all Class I elements unfortu-

nately) by applying Mobius transformations, which do not change exponents, to class

IA elements.

5.9. Folding lemma of Mendes-France, Shallit. — Following nice lemma

[MF73, Sh79] have been rediscovered and used many times, including by the
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author in getting non-Riccati algebraic explicit continued fraction (Section 5.10),

getting algebraic continued fractions with bounded sequence of partial quotients

(Section 5.11), higher diophantine approximation exponents (Section 6), getting

explicit continued fractions for analogs of e and Hurwitz numbers (Section 10.5),

as well as by Lasjaunias in a nice different fashion in his Finite Fields and their

applications paper of 2006.

Let [a0, a1, · · · , an] = pn/qn, with the usual notation of continued fractions, then

[a0, · · · , an, y,−an, · · · ,−a1] = pn/qn + (−1)n/yq2n.

This pattern is a signed block reversal /folding pattern following the new term y.

5.10. Explicit algebraic continued fractions. — Consider function fields of fi-

nite characteristic. In addition to interesting variety of explicit algebraic continued

fractions in Class I mentioned above and surveyed in [L00, L09], [L09] also mentions

one example which is a square of an element in Class I, but not of Class I.

In [T03], we gave explicit continued fractions of non-Riccati family, by taking

appropriate linear combinations of Mahler type elements, and also showed that their

exponents cover all rationals in a large range:

Let

α =

k∑

i=1

fi

∞∑

j=0

t−miq
j+bi ,

where mi ≥ 0 and bi are rational numbers so that the exponents are integers. Let

mi+1 > 2mi for 1 ≤ i < k and qm1 > 2mk. Then

E(α) = MAX(m2/m1, · · · ,mk/mk−1, qm1/mk), (8)

and given any rational value µ between q/2k−1 and q1/k, α can be chosen with E(α) =

µ if further that q > 2k.

The algebraic equation for each term (corresponding to a fixed i) is immediate,

since it is just a multiple of Mahler’s example. The flexibility in the choice of mi’s

and bi’s can be used to produce many families of α’s not satisfying the rational Riccati

equation.

5.11. Algebraic elements with bounded partial quotients sequence. — Any

α as above with q = 2k, mi = 2i−1 and bi > bi+1/2, for i modulo k will produce an

explicit continued fraction with bounded sequence of partial quotients in characteristic

two. Most of these do not satisfy the rational Riccati equation (and so are of degree

more than 3). If α satisfying our general conditions has bounded sequence of partial

quotients, then [T03] the characteristic p is two.

In Class I, there are many examples known [L00, L09] with bounded partial quo-

tients sequence. Mills-Robbins show that if q is more than 1 plus degree of AD−BC,

then this sequence is unbounded, so it is natural that more examples have been found

with q = 2, or in characteristic two.
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Lasjaunias conjectures (private communication) that algebraic elements in odd

characteristic having continued fractions with bounded partial quotient sequences are

necessarily of Class I.

6. Distribution of higher degree exponents

Just like Roth’s upper bound for E(α) is broken for algebraic α in the finite char-

acteristic function field case, so is Schmidt’s upper bound for Ed(α) broken in this

case. In fact, we can have very bad rational approximations and simultaneously very

good higher degree ones, as was shown in the following results from [T11, T12].

(1) For p = 2, and any integer m > 1, we can construct infinitely many algebraic

elements α of degree at most 2m2

having continued fractions with folding pattern

symmetries, and bounded sequence of partial quotients, so that E(α) = 2, but with

E2(α) ≥ 2m > 3.

(2) Let p a prime, q a power of p and ǫ > 0 be given. Then we can construct

infinitely many algebraic α, with explicit equations and continued fractions, such

that

q ≤ deg(α) ≤ q + 1, E(α) < 2 + ǫ, E2(α) > q − ǫ,

with explicit sequence of quadratic approximations realizing the last bound.

(3) Let p a prime, q a power of p and m,n > 1 be given. Then we can construct

infinitely many algebraic αm,n, with explicit equations and continued fractions, such

that

deg(αm,n) ≤ qm + 1, lim
n→∞

E(αm,n) = 2, lim
n→∞

Eq+1(αm,n) ≥ qm−1 +
q − 1

(q + 1)q
,

with explicit sequence of degree q + 1-approximations realizing the last bound.

6.1. Questions. — (I) A natural question raised by these considerations is whether

there are algebraic α’s of each degree d, with E(α) = 2 (or even with bounded partial

quotients) and for which the Liouville bound for the lower degree approximations is

attained, or whether some of these requirements need to be relaxed.

(II) For real algebraic numbers α of degree more than d, by combining (i) Minkowski

implication wd(α) ≥ d, with (ii) Schmidt’s subspace theorem implication, for alge-

braic α, that wd(α) ≤ d, we get (iii) wd(α) = d which then by Wirsing’s inequalities

(Section 3.7) implies (iv) w∗
d(α) = d. But in finite characteristic function field case,

we have seen that analog of the upper bound (ii) fails, so conceivably the lower bound

w∗
d(α) ≥ d may also fail for algebraic α. Does it? Note that by (8) of Section 3.2,

such α would need to be of degree more than d+ 1.

(III) Similarly, is it possible that for approximation by algebraic integers of degree

at most d case, the lower bound d for the exponent (analog of w∗ + 1) is broken

for algebraic α in finite characteristic case, rather than (countably many) special

transcendental α’s in [R03] for real numbers?
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6.2. Remarks. — Applying a straight-forward function field analog of Lemma 6.1

of [B12?] shows that w2 ≥ q − ǫ. Hence, by the Liouville inequality, we can put

deg(α) = q + 1, in (2) of this section. It also shows that if wd(α) = w∗
d(α) (this

equality is true in number fields, for all d, for algebraic α of degree more than d, but

its status is unclear in function fields over finite fields) for d = 2, then the Liouville

bound is best possible (within ‘ǫ’) for these α’s. I thank Yann Bugeaud for these

remarks.

7. Deformation and Exponents hierarchies

In finite characteristic situation, Osgood’s theorem (Section 4.3) shows that for the

elements in the complement of differentially closed subset obtained by throwing away

solutions of rational Riccati equations, the Liouville exponent bound can be improved

to Thue bound. In [KTV00], this line of thought was pushed further by associating

certain curves over function fields to given algebraic power series and showing that

bounds on the rank of Kodaira-Spencer map of this curves imply bounds on the

diophantine approximation exponents of the power series, with more ‘generic’ curves

(in the deformation sense) giving lower exponents. Further, transporting Vojta’s

conjecture on height inequality to finite characteristic by modifying it by adding

suitable deformation theoretic condition, it was shown that the the exponents of the

numbers giving rise to ‘general’ curves approach Roth’s bound. This matches also

with quantitative behavior (Section 5.8) noticed in Class IA above.

In the higher exponent direction, unconditional hierarchy of exponent bounds

for approximation by algebraic quantities of bounded degree was given. We refer

to [KTV00] for the precise details.

8. Diophantine classification

8.1. Mahler-Koksma classification. — We have two standard measures of dio-

phantine approximations of α by algebraics β of degree at most d, namely how small

error can get in terms of height of β versus how small can P (α) be for a polynomial of

degree at most d in terms of height of P . For a complex α, we define w(d, h), w∗(d, h)

by |P (α)| = h−dw(d,h) and |α − β| = h−dw∗(d,h)−1 where P (x) is a polynomial (inte-

gral, non-zero) of degree at most d and height at most h for which |P (α)| takes the

smallest positive value, and β is algebraic of degree at most d and height at most h

such that |α− β| takes the smallest positive value.

Next we define, following Mahler, w(d) as lim supw(d, h) and w as lim supw(d)

and v as the least d for which w(d) is infinite, with v = ∞ if w(d) <∞ for all d.

Finally, we say that α is in class A,S, T, U respectively according as whether (w =

0, v = ∞), (0 < w < ∞,= ∞), (w = ∞, v = ∞) or (w = ∞, 0 < v < ∞). We

can also use sub-classification Sw and Uv and it is customary to call S number of
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type supw(d). Note that U1 corresponds to Liouville numbers. Another way to

characterize these classes in terms of wk is that A-numbers correspond to bounded

sequence of wk, S-numbers correspond to unbounded sequence, but with wk < ck,

T -numbers correspond to ‘not wk < ck’ for any c, but with wk finite, and U -numbers

are those having some wk infinite.

(i) A numbers are precisely the algebraic numbers.

(2) Algebraically dependent numbers belong to the same class.

(3) Almost all (full measure) numbers are S-numbers. Almost all real and complex

numbers are S-numbers of type 1 and 1/2 respectively.

(4) There exist T -numbers, Ud-numbers for each d and S-numbers of arbitrarily

large type.

(5) e is S-number of type 1 and π is S or T -number.

Similarly, we define, following Koksma, ∗ counterparts w∗(d), w∗, A∗, S∗ etc. The

classes turn out to be identical, with subclasses related, but more subtly because of

inequalities (Section 3.7 between w and w∗ quantities.

It is known that w∗(d) = 1 for almost all real α, whereas it is an open question

whether w∗(d) ≥ 1 for all real α.

For more details and references for all this, see books by Baker, Schneider, Schmidt.

8.2. Function field case of Mahler, Koksma classification. — Bund-

schuh [Bun78], Dubois considered the same definitions over function fields over any

field and in particular over finite fields, and proved some analogous results. Existence

of U2- numbers is shown for all F and for F finite, existence of S-numbers and Ud

numbers is proved. See [B04, Sec. 9.4-9.5] for references. The question of existence

of T -numbers is open.

9. Computational classification for function fields over a finite field

Now we look at computational classification of ‘naturally occurring’ numbers which

are computable. This has some useful algebraic properties and is based not just on

general computational complexity, but on a particular model inspired by automata-

algebraicity correspondence wwhich works over finite field base. We recall it now.

9.1. Automata and Algebraicity. — Christol [Chr79, CKMR80, All87,

AS03, T97a, T04, T12b] discovered nice combinatorial descriptions of algebraic

power series over finite fields in terms of finite automata, a very robust concept which

has been studied extensively from various angles by computer scientists, logicians

and formal linguists. We will see in the next section how various ways of thinking of

automata have helped giving transcendence proofs by completely different methods

when the usual methods do not apply.
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For a positive integer q, q-automata data consists of a finite set S (thought of as

the set of its ‘states’), s0 ∈ S (thought of as the initial state), action of digits base q

on S, i.e., a map {0, 1, · · · , q− 1}×S → S (thought of as the transition map showing

how input affects the state). Finally, there is an output map from S to another finite

set T . We can consider q-automata as input-output device, which on input an integer

i fed in by its digits base q one by one, starts changing its states, starting from the

initial, according to the actions of digits of i base q. At the end, you read the output

at the end state. (There are various equivalent variants of this model).

Christol’s theorem says that a power series
∑
fit

i, with fi ∈ Fq is algebraic over

Fq(t), if and only if there is a q-automata with T = Fq which on input i produces

output fi.

For each f ∈ Fq, consider the set Sf of i’s such that fi = f . It can be considered

as the language of exponents i which are thought of all grammatical sentences in

words being the base q digits of i. Grammars of different strengths and production

rules have been studied and classified. Another characterization of algebraicity is the

language of exponents is ‘regular’.

We refer to the references above and in particular, to the two surveys [T97a, T12b]

for more.

9.1.1. Exponents bounds using automata. — Firicel [F11?] gets an upper bound on

the exponent of algebraic α in terms of the data (such as number of states) of any

corresponding automata.

9.1.2. Characteristic dependence. — Cobham proved that if p and ℓ are distinct

primes, then a sequence which is not eventually periodic can not be both p-automatic

and ℓ-automatic. By the correspondence mentioned above, it means that algebraic

irrational
∑
tni in characteristic p has to be transcendental in all other finite charac-

teristic. There is no simple ‘algebraic’ proof known of this fact. Cobham conjectured

and Adamczewski, Bugeaud, Luca [ABL04] proved ℓ = 0 analogy, using Schmidt

subspace theorem. Namely, under the hypothesis above, the same series considered

over Q(t), real number
∑

10−ni , and ℓ-adic number
∑
ℓni (here ℓ can be p) are all

transcendental.

9.1.3. Complex functions. — In contrast to the simple degree two passage from R to

its algebraic closure C, the passage in characteristic zero function fields from laurent

series field to Puisseux series field, which is its algebraic closure, is of infinite degree.

In finite characteristic, Puisseux series (which could have been handled by just sub-

stitution t1/n for t to use automata still) do not give algebraic closure, but Kedlaya

[K01] in fact modified automata in this case to describe the algebraic closure. As

we do not know natural applications of generalized series to special values, we will

restrict to ‘real’ case.
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9.2. Computational classification with algebraic properties. — We now

briefly explain computational classification [BT98] with good algebraic properties,

giving applications to refined transcendence classification of some important Laurent

series in the next section. The usual numbers/Laurent series coming up in number

theory and geometry are computable (already a small countable subclass) and like

automata, computability has various incarnations studied by various viewpoints, such

as Turing machines, languages generated by unrestricted grammar, recursive function

theory, Post systems, Church’s lambda calculus etc. Computer scientists, logicians,

linguists have also studied intermediate strength classes. For example, linguists have

Chomsky hierarchy of regular, context-free, context-sensitive, generative languages

depending on strengths of grammar rules. Computer scientists classify input-output

devices depending on their workings, memory requirements etc. into q-automata (at

low end with zero or bounded memory), push down automata, linear space automata,

Turing machines (at high end with infinite memory) Many classes converged to

the same notions. So we examined these robust classes from computational, series

perspective as in the automata characterization above and found that many of these

have good algebraic properties, such as forming a field, a field algebraically closed

in Laurent series etc.; in addition to closure, logical properties, such as closure

under union, concatenation, complementation etc., explored before. The algebraic

properties allow you to move by algebraic operations the problem about one series to

another series which might be more convenient to deal by these generalized automata

tools. See [BT98] for details.

10. Nature of and relations between special values

In this section, we restrict to function fields over a finite field Fq. We will first

introduce analogs in function field arithmetic of well-known special functions. We

will only describe definitions, results, and identify methods, but leave the details of

proofs, motivations, analogies and properties satisfied by these functions to references

[G96, T04] and surveys, references identified in each subsection.

10.1. Special functions of function field arithmetic. — Basic analogs are

K := Fq(t) ↔ Q, A := Fq[t] ↔ Z, K∞ := Fq((1/t)) ↔ R, C∞ := K̂∞ ↔ C.

We think of A+, defined as the subset of A of polynomials monic in t, as an analog

of the set of positive integers. Comparing sizes of A∗ and Z∗, which are q − 1 and 2

respectively, in our situation, we call multiples of q− 1 ‘even’ and other integers in Z

‘odd’. Fundamental quantities related to function fields are

[i] = tq
i

− t, l0 = d0 = 1, li = −[i]li−1, di = [i]dq
i−1.
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Then Carlitz-Drinfeld exponential and logarithm are given respectively by

e(z) =

∞∑

i=0

zqi

/di, l(z) =

∞∑

i=0

zqi

/li.

The exponential is periodic with the period lattice π̃A, with

π̃ = (−t)q/(q−1)
∞∏

n=1

(1 − t1−qn

)−1 = (−[1])q/(q−1)
∏

(1 − (tq
j

− t)/(tq
j+1

− t)),

being analog of 2πi.

The Carlitz zeta value ζ(s), for s a positive integer is given by

ζ(s) =
∑

n∈A+

1

ns
∈ K∞.

Next we have geometric gamma function

Γ(x) :=
1

x

∏

a∈A+

(1 +
x

a
)−1 ∈ C∞ ∪ {∞}, x ∈ C∞,

and arithmetic gamma function defined by Γ(z + 1) = Π(z) and

Π : Zp → Fq((1/t)),
∑

niq
i →

∏
(di/t

deg di)ni .

Next we have two hypergeometric analogs. But first for a ∈ Z and integers n > 0,

we define (a)n by dq−(a−1)

n+a−1 , or l−qn

−a−n or 0 according to whether a ≥ 1, or n ≤ −a, a ≤ 0,

or n > −a ≥ 0 respectively.

We also define for a ∈ C∞ and integers n ≥ 0, (a)n :=
∏

(a − f), with f running

over all polynomials of degree less than n.

For all integers r, s > 0 and for all ai, bj ∈ Z (1 6 i 6 r, 1 6 j 6 s) with bj > 0,

consider the first hypergeometric function

rFs(a1, . . . , ar; b1, . . . , bs; z) :=
+∞∑

n=0

(a1)n · · · (ar)n

dn(b1)n · · · (bs)n
zqn

.

We denote it by rFs(z), when the parameters are well understood

The second hypergeometric function rFs is similarly defined, but with parameters

a ∈ C∞, and (a)n defined above for them.

As in the classical case, various specializations of the hypergeometric series lead to

interesting functions such as analogs of Bessel, Legendre, Jacobi, binomial functions.

We will concentrate on these and ignore results about (i) analogs of multizeta

values (due to the author), (ii) Drinfeld Modular forms (due to Yu, Chang), (iii)

higher rank or dimension objects in Drinfeld-Anderson theory (due to Yu, Chang and

Papanikolas), and (iv) higher genus generalizations from rational function fields (due

to Yu) and (v) classical algebraic geometry objects.
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10.2. Application of Wade’s approximation method. — We refer to surveys

in [T04, Chapter 10] and [W90, Y92, Br98] for details, references and only select

a few of the known results here.

10.2.1. e, π and zeta values. — Carlitz’s student Wade, by traditional approxima-

tion techniques, but using simplifications obtained by making things Fq-linear (the

Wade method), proved transcendence of e = e(1) and π̃, proved analogs of Hermite-

Lindemann and Gelfond-Schneider theorems and proved transcendence of some series

made up from [n]’s, dn’s and ln’s. The author in his Ph. D. thesis noted that slight

modifications prove transcendence of ζ(spn) for s ≤ q, and pushed such results to

irrationality results of more classes of values and for ratios ζ(s)/π̃s, when s is ‘odd’,

i.e., not divisible by q−1, by providing fast approximations which would have implied

transcendence if Roth’s analog were true in finite characteristic!

More results on irrationality measures of zeta values were obtained by de Mathan

and Cherif. Soon after Jing Yu’s proof [Y92] of transcendence for all s of ζ(s), for

all ‘odd’ s of ζ(s)/π̃s and v-adic interpolations ζv(s) mentioned below, Hellagouarch

and Dammame proved the first part of these results using Wade’s method.

10.2.2. Hypergeometric values. — Finally, we state [TWYZ11] result on transcen-

dence of hypergeometric values obtained via Yao’s generalization of Wade’s method.

Let r, s > 0 be integers such that r < s+ 1, and let

0 < a1 6 a2 6 · · · 6 ar and 0 < b1 6 b2 6 · · · 6 bs

be integers. (This make the function rFs entire, but not a polynomial). Then for all

γ ∈ C∞ \ {0} algebraic over Fq(t) and such that Fq(t)(γ) has less than q places above

the infinite place of Fq[t] (In particular, γ can be any nonzero rational or nonzero

algebraic of degree less than q), then rFs(a1, . . . , ar; b1, . . . , bs; γ) is transcendental

over Fq(t).

10.3. Applications of period methods. — We refer for details and references to

surveys in [Y92, Br98, T04, Pe07, T12c] and references there.

10.3.1. Foundations of general transcendence theory. — In a series of papers, Jing

Yu developed transcendence theory generalizing Wade’s basic results to contexts of

general Drinfeld modules over Fq[t], as well as more general rings in higher genus,

and their higher dimensional versions, namely t-motives of Greg Anderson. Among

many results, we will only mention here his analog of Baker’s theorem in linear forms

in logarithm, and analogs of Hermite-Lindemann, Wustholz’s subgroup theorems for

t-motives, all in the usual as well as v-adic contexts. See [Y91, Y92, Y97], [T04,

Chapter 10] and references there.

10.3.2. Zeta values. — We continue the story from subsection 10.2.1. Giving for-

mulas for ζ(s) in terms of s-th multilogarithm analog, [AT90] expressed it as the
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(canonical co-ordinate of) logarithm of s-th tensor power of the Carlitz module eval-

uated at an algebraic point, which is torsion point, if and only if s is ‘even’. This

combined with Yu’s Hermite-Lindemann result [Y92], implies Yu’s transcendence re-

sults on the zeta values and ratios with period power mentioned in subsection 10.2.1.

10.3.3. Recent algebraic independence results. — If g stands for classical or geometric

or arithmetic gamma function above, the monomial
∏
g(fi)

ni is known to be algebraic

(or more generally, an algebraic multiple of power of the period 2πi, or π̃ respectively)

(where fi are proper fractions relevant in each case), if certain easily checkable com-

binatorial condition called bracket relation, which can be uniformly expressed in all

3 cases, is satisfied. We refer to [T04, Sec. 4.12] for details on this.

We now state some recent strong independence results in chronological order and

then quickly explain some ideas behind the proofs.

(1) [ABP04] A set of Γ-monomials (i.e., subgroup of C∗
∞ generated by π̃ and Γ-

values at proper fractions in K) is K-linearly dependent exactly when some pair of Γ-

monomials is, and pairwiseK-linear dependence is entirely decided by bracket relation

on their ratio. In particular, for any f ∈ A+ of positive degree, the extension of K

generated by π̃ and Γ(x) with x ranging through proper fractions with denominator

(not necessarily reduced) f , is of transcendence degree 1 + (q − 2)|(A/f)∗|/(q − 1)

over K.

Next, generalizing Yu’s analog of Baker’s linear independence result, as well as De-

nis’ weaker result [D06] on algebraic independence of logarithms obtained by Mahler

method, we have

(2) [P08] If ℓ1, · · · , ℓn ∈ C∞ are linearly independent over K with e(ℓi) algebraic

over K, then ℓi are algebraically independent over K.

(1) [CY] Only algebraic relations between ζ(n)’s come from the Carlitz-Euler eval-

uation at ‘even’ n, implying for such n that ζ(n)/π̃n ∈ K, and ζ(pn) = ζ(n)p. In

particular, for n ‘odd’, ζ(n) and π̃ are algebraically independent and the transcendence

degree of the field K(π̃, ζ(1), · · · , ζ(n)) is n+1−⌊n/p⌋−⌊n/(q−1)⌋+ ⌊n/(p(q−1))⌋.

(2) [CPYa] Only algebraic relations between ζℓ(n)’s for all ℓ and n, where ζℓ
denotes Carlitz zeta over Fqℓ [t], are those as above coming from n ‘even’ or divisible

by p. The periods π̃ℓ of the Carlitz modules for Fqℓ [t] are all algebraically independent.

(3) [CPYb] Only algebraic relations between ζ(n)’s and geometric Γ(z)’s at proper

fractions are those between zeta above and bracket relations for gamma.

(4) [CPTY] Only algebraic relations between ζ(n)’s and arithmetic gamma values

at proper fractions are those for zeta mentioned above and those for gamma coming

from the bracket relations, and thus the transcendence degree of the field

K(π̃, ζ(1), · · · , ζ(s), (c/(1 − qℓ))!)1≤c≤qℓ−2

is s− ⌊s/p⌋ − ⌊s/(q − 1)⌋ + ⌊s/(p(q − 1))⌋ + ℓ.
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10.3.4. Underlying tools: ABP criterion. — The main transcendence tool used in all

these results is the following strong ‘ABP’ criterion [ABP04]:

Let C∞{T } be the ring of power series over C∞ convergent in closed unit disc.

Consider Φ = Φ(T ) ∈ Matr×r(K[T ]) such that det Φ is a polynomial in T vanishing

(if at all) only at T = t and ψ = ψ(T ) ∈ Matr×1(C∞{T }) satisfying ψ(−1) = Φψ,

where (−1)-twist means replacing the coefficients of entries of the matrix by their q-th

roots.

If ρψ(t) = 0 for ρ ∈ Mat1×r(K), then there is P = P (T ) ∈ Mat1×r(K[T ]) such

that P (t) = ρ and Pψ = 0.

10.3.5. Underlying tools: Anderson’s t-motives and special values as their periods.

— The main reason why this is useful is that in Anderson’s theory of t-motives

the periods arise exactly by specialization as in the criterion above. Thus K-linear

relations between the periods are explained by K[T ]-level linear relations (which in

the t-motives set-up are the motivic relations and thus ‘algebraic relations between

periods are motivic’, as analog of Grothendieck’s conjecture for motives [P08] of

Anderson). In terms of special functions of our interest, this makes the vague hope

that ‘there are no accidental relations and the relations between special values come

from the known functional equations’ precise and proves it.

Anderson’s t-motives are simple, concrete linear algebra objects (no cycle-theoretic

difficulties of classical motives!) and have tensor products via which algebraic relations

between periods i.e., linear relations between powers and monomials in them reduce

to linear relations between periods (of some other motives). In this sense, the ABP

criterion above is similar to Wüstholz type sub-t-module theorem proved by Jing Yu.

Soon afterwards, Beukers proved [Be06] similar criterion for dependence of values

of E-functions, but it does not have such strong applications to relations between

periods of classical motives, because of differences in period connections in this case.

The Tannakian formalism (based on linear algebra motivation) for t-motives developed

in [P08] then expresses the transcendence degrees of field extensions generated by

periods (appearing in the results above) as dimensions of ‘motivic Galois groups’

which allows their calculations using concrete difference Galois group descriptions

of [P08].

Thus the strong algebraic independence results then follow from expressing special

gamma, zeta values as periods (e.g., [AT90, ABP04]) of appropriate t-motives and

calculating their dimensions. We refer to the references above and survey [T12c] for

more details. Pellarin has shown how to derive some of these results more directly

from Anderson’s theory combined directly with Mahler method adapted to this case.

10.4. Applications of Automata methods. — We refer to [T97a, T12b] for

detailed survey of tools and applications, so we will be brief and just mention some

highlights.
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First applications [A90, B92] of automata to special values occurring in function

field arithmetic were applications to transcendence of π̃, some zeta values (known

earlier by period methods and other methods mentioned above).

10.4.1. Gamma values. — When period methods only could prove very weak tran-

scendence results (parallel to what is known for the usual gamma) on values of arith-

metic gamma at proper fractions, automata methods [T96, A96, MFY97, T97a]

proved very complete results settling transcendence of all values at proper fractions,

of all values at p-adic integers which are not positive integers, and of all monomials

in values at fractions which were not known to be algebraic. While the first and

third results mentioned have now been superceded by algebraic independence results

mentioned in Section 10.3.3, the second result above or the result on values of v-

adic interpolation on gamma proved in [T97a] are still provable only by automata

methods.

10.4.2. Refined transcendence of π by language tools. — Note π := t−q/(q−1)π̃ is a

Laurent series. It (or rather its reciprocal) is not [BT98] context-free (which gives, in

particular, a language theoretic proof of its transcendence), but is context-sensitive.

The tools here are language theoretic closure properties, moving to convenient series

by algebraic properties and getting contradiction by ‘pumping lemma’ for context-

free languages. In rough terms, ‘pumping lemma’ says that given sufficiently long

grammatical sentence, some part of it can be ‘pumped’ many times retaining the

grammatical structure. To give an example in natural language, in a sentence, ‘He is

a friend of mine’, ‘a friend of’ can be pumped many times, to get e.g., ‘He is a friend

of a friend of mine’. We use this in language of exponents of series we have and get

a contradiction.

10.4.3. Refined transcendence of e, θ. — Using computational and language tools, we

[BT98] show that Carlitz analog of e, (known to be transcendental so non-automatic

by Wade) is context-sensitive and theta series or set of squares is context-sensitive

(even in logarithmic space under GRH), but (for q = 2) not context-free.

10.4.4. Transcendence of modular forms and Tate period by density argument. —

In [AlT99] transcendence of some q-expansions of Eisenstein series (and also some

related series in ‘wrong’ weights so that they are not immediately accessible through

algebraic geometry techniques) is shown by showing that the asymptotics of coeffi-

cients (modulo p) does not match those classified by Cobham for sequences produced

by automata. There are applications to transcendence of the multiplicative period of

Tate elliptic curve. See [T97a, T12b] and [T04, Cha. 11] for details and references.

10.4.5. Hypergeometric functions. — Sharif-Woodcock and Harase generalized au-

tomata criterion somewhat from the case of finite base to more general bases. This

is used to prove the following result [TWYZ11] characterizing the parameters for

which the hypergeometric function is algebraic.
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Let r, s > 0 be integers such that r = s+ 1, and let

0 < a1 6 a2 6 · · · 6 ar and 0 < b1 6 b2 6 · · · 6 bs

be integers. Then the following properties are equivalent:

1. aj > bj−1, for all integers 1 6 j 6 r;

2. (rFs(z))
qℓ

∈ Fq[t][[z]], with ℓ = max(ar, bs);

3. rFs(z) is an algebraic function.

For the second hypergeometric analog, we do not have such complete results, but

only algebraicity and transcendence results [TWYZ11] for particular parameter val-

ues and some more results of the following flavour.

Any function s+1Fs(ai; bj ; z), with ai being any proper fractions and bj being

fractions with denominators of degree one, is algebraic.

10.5. Continued fraction for e and Hurwitz numbers. — Euler showed that

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, · · · ] and Hurwitz showed (without giving a ‘formula’) that

the continued fraction of (ae2/n+b)/(ce2/n+d) (the so called Hurwitz numbers), where

a, b, c, d are integers with ad− bc 6= 0, and n is a positive integer, consists eventually

of arithmetic progressions. For example, in the case of e, there are 3 arithmetic

progressions, two with common difference 0 and one with common difference 2.

The exact patterns of continued fractions, of quite different nature, for analogs of

e and Hurwitz numbers in Fq[t] case are given in [T97] and reference there. Here

we just recall the simplest case, when q = 2. Consider [n] := tq
n

− t, the building

blocks of Fqn . Then Carlitz-Drinfeld analog of e for F2[t] has continued fraction (with

repeating pattern as in folding lemma)

e = [1, [1]︸︷︷︸, [2], [1]︸︷︷︸︸ ︷︷ ︸
, [3], [1], [2], [1]︸ ︷︷ ︸

︸ ︷︷ ︸

, [4], [1], [2], [1], [3], [1], [2], [1]︸ ︷︷ ︸, [5], · · · ].

In fact, it can also be described by saying that for n > 0, an = [i], where i is the

position from the right of the first occurrence of digit one in the binary expansion

of n. Hence the continued fraction of the fundamental quantity e for F2[t] is given by

partial quotients [n] which are building blocks of F2n in a pattern simply explained

in terms of binary digits of n in this way!

10.6. Exponents for e and π. — Euler’s continued fraction shows that E(e) = 2,

also Salikhov in 2008 showed that E(π) < 7.61, but we do not know about their higher

exponents.

In Fq[t] case, we know that E(e) = q, and E2(e) ≥ 3+1/(q− 1) or ≥ 2+1/(q− 1),

depending on p = 2 or p > 2. For analog π :=
∏∞

n=1(1 − t1−qn

)−1, we know E(π) ≥

q−1, with equality when q ≥ 5. For another analog π1 :=
∏

(1− (tq
j

− t)/(tq
j+1

− t)),
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we haveE(π1) ≥ (q−1)2/q, with equality when q ≥ 5. For these, see [T99, T11, T12]

and references there.

10.7. Questions on special values. — We end by mentioning some interesting

open problems on the nature of special values.

(1) Are Carlitz-Drinfeld analogs of e and 2πi algebraically independent?

(2) We know that Artin-Hasse exponential series exp(
∑∞

0 xpn

/pn) has p-integral

coefficients. Is its reduction modulo p transcendental over Fp(x)?

(3) Higher genus A or even v-adic counterparts of most of the results above are

lacking.

(4) It would be of great interest to know the nature of Γ(0), mentioned in [T04,

Remark 8.3.11], in particular, its relation, if any, with π̃ for general A.

(5) What are all multizeta relations? For the period connection, see [AT09].

(6) What is the status of these special values in function field analog of Mahler-

Koksma classification? Analogs of e, π̃ log(1) and ζ(s) (or rather twisted values, for

p 6= 2) for s ≤ q were studied in [Bun78], and it was shown that some of these

numbers are not U -numbers. But the results obtained are not strong enough to

determine precise classes, so that there is no algebraic independence result from these

results yet, unlike the periods approach.

Acknowledgments I thank Yann Bugeaud for providing the references [BN00,

B12?], remarks in Section 6.2, Bernard de Mathan for providing the reference [H79],

and Jean-Paul Allouche for his patient help in correcting typos, even providing the

missing accents in the bibliography!
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