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Abstract. — In this expository article, we survey progress, and mention open ques-
tions, speculations and conjectures regarding the study of various degrees of irra-
tionality, algebraicity, and transcendence from various angles, for general as well as
special quantities in function field arithmetic. Though we often mention the num-
ber field case and characteristic zero function field case, we mostly concentrate on
function fields in finite characteristic, and often specialize to those over finite fields.
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1. Basic problems

Starting with the counting numbers, our concept of numbers evolved in various
directions: using the usual operations of addition, subtraction, multiplication, division
leading to rational numbers; using the notion of distances and length leading to real
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22 DINESH S. THAKUR

numbers; solving equations with unknowns formed by the operations above leading
to algebraic numbers. The basic questions of diophantine approximation study how
general or special real numbers are distributed distance-wise in relation to rational or
algebraic numbers with respect to their complexity. In other words, we compare the
error in approximation by a simpler quantity with the measure of its simplicity.

Modern algebra led to more abstract fields F', leading to more general number
systems such as those modulo a prime, finite fields, and function fields F(z) obtained
by introducing a variable x and applying the usual operations above, thus leading to
rational functions (over F') versus rational numbers, algebraic functions versus alge-
braic numbers, and (finite tailed) laurent series (obtained by completions) versus real
numbers (obtained analogously). In other words, we consider Fz], F(z), F((1/z)) as
analogs of Z, Q, R respectively. So depending on the context, by integers, rationals,
algebraics, real, we may mean corresponding analogs in the function field case. We
can ask the basic questions mentioned above in this function field setting also.

Despite the basic differences between the characteristics, non-archimedean abso-
lute versus archimedean absolute value, the lack of order or positivity, infinite versus
finite degree over the prime field, and despite different tools like differentiation, spe-
cialization, stronger properties of p-th power maps; amazingly, many results in the
number field and the function field situations are often parallel. There are some stark
contrasts also, and despite function fields being often simpler to deal with, we will
find situations where the number fields case is fully proved and the function field case
is not even conjecturally understood!

In this survey paper, we discuss the progress and open questions about some themes
of this study, focusing mainly in finite characteristic function fields F'(x), sometimes
specializing to a finite F', which often gives best analogies to the number field sit-
uations. We often bring in the number fields or characteristic zero function field
situation for comparison of analogies and contrasts.

We restrict to real numbers and do not go into complex or p-adic directions, except
for a couple of remarks. First we deal with general numbers, with results for all, almost
all or algebraic numbers. In the last section, we deal with special values in function
field arithmetic [G96, T04], mostly dealing with Carlitz-Drinfeld theory. A quick
look at the headings of the sections and subsections should give a good idea about
the organization of the material.

We refer to [S80, B04, BG06, W?|, which are some excellent references for
the basic material, as well as for surveys and detailed references on recent progress,
mostly in the number fields case. When there are no specific references given, the
results or references can be found in these basic references. Often, we give only
convenient rather than original references. In the last two sections, we will mention a
few excellent surveys written at different time periods on the related material. Since
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FROM RATIONALITY TO TRANSCENDENCE 23

there are hardly any proofs in this paper, reader looking for sketches or ideas of proofs
should look at these surveys.

I will appreciate any comments, suggestions and references to improve this survey.
I hope to incorporate them in an updated version on my homepage.

2. Complexity of algebraic quantities

2.1. Absolute values. — By |a|, we mean the usual absolute value or size for a

des(@) for some fixed ¢ > 1 for a nonzero a € F(x). In the case

real number «, and ¢
of a finite field F' with ¢ elements, we choose ¢ to be ¢, so that in an analogy with the
case of integers, the number of remainders (which is finite in this case) is |a|, when

you divide by a nonzero polynomial a.

2.2. Heights. — A crude complexity measure of an algebraic number or function
is its algebraic degree. The complexity of an algebraic number (of a given degree) is
traditionally measured by notion of height which roughly relates to the space it takes
to describe the number by the traditional method.

2.3. Definition of Absolute and Field height. — For § a nonzero algebraic
number, define H (/) to be the maximum of the absolute values of the coefficients of a
non-trivial irreducible polynomial with co-prime integral coefficients that it satisfies.
For 8 lying in a number field L, define Hy (8) similarly by replacing the irreducible
polynomial by ¢[](z — 3), where ) are its field conjugates and multiple ¢ makes
the coefficients co-prime integers.

We get similar definition for algebraic functions 8 by replacing ‘integers’ by their
analogs ‘polynomials’.

Note that for p/q, a reduced rational number or function, the height is the max-
imum of |p|, |q| and it does not make any difference in the definition of exponents
below if we replace it with the more traditional choice of |g].

For number fields and function fields over finite fields, it follows easily from defini-
tions that there are only finitely many elements of bounded height and degree.

See [S80, BGO0G6] for other definitions of variants of heights and relations between
different variants.

3. Exponent of approximation

In comparison of errors and heights, we only focus on the simplest traditional
irrationality measure, namely that of the exponent, by relying only on the power
functions and ignoring logarithms or other lower growth functions.
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3.1. Definition of exponents. — Let L be a number field inside R and d be a
positive integer. For « an irrational real number not algebraic of degree < d, define
E4(a) as limsup(—log|a — G|/ log H(B)), where [ varies through all algebraic real
numbers of degree d, with height tending to infinity.

For o € R— L, define Fr,(«) by the same formula, but with H replaced by Hy, and
with with 8 varying through elements of L.

Similar definitions are clear for the function field case, and for F<,4, E<4 etc.

The usual exponent E(«) := limsup(— log |a—P/Q|/log|Q|) is just E;(a) = Eg(a).

Some other common measures such as w} := E<q — 1, and wg(c) defined to be
the supremum of w such that |P(a)| < H(P)~™" for infinitely many polynomials P of
degree at most d and with integral coefficients.

3.2. Bounds and values of exponents. — (1) For an irrational real number or
function «, we have E(«) > 2. This is seen immediately by applying the definition to
the approximations provided by truncation of continued fractions. Another proof, in
number field or function field over finite field case when there are only finitely many
remainders, follows by applying the Dirichlet box principle to fractional parts of ma’s,
for integral m’s bounded in some range.

(2) For almost all (in terms of measure theory) real numbers «, we have Khinti-
chine’s theorem F(«) = 2 and for almost all real numbers, we have [Sp69] wg(«a) =
w}(a) = d, so that E4(a) = d+ 1. For function field over finite field case, wq state-
ment is proved [Sp69] and and w} statement stated in [Gu96] follows from it and
inequalities stated in 3.7 below (answering the question of a possible gap raised in
[BO4, Sec. 9.4], as I have confirmed with Bugeaud). See also [Kh64, dM70, B04]
for more metrical results.

(3) For algebraic real number or function « of degree > d, we have E<g(a) < dega.
For d = 1, this is Liouville’s theorem for real case, obtained by applying the mean
value theorem to the minimal polynomial of o between « and the approximation, and
adapted by Mahler [M49] to function field case. The general case [BGO6] follows
similarly by resultants in general.

(4) For real algebraic number a, we have F(a) = 2 by Roth’s celebrated deep the-
orem improving Liouville, Thue, Siegel, Dyson bounds, using several variable polyno-
mials. For function fields of characteristic zero, the equality was proved by Fena and
Uchiyama.

(5) For real number a not in a number field L, we have EL(«) > 2 and for real
algebraic number « not in L, we have E () = 2 by Leveque’s generalization of Roth’s
theorem.

(6) For real o not algebraic of degree < d, Wirsing [W60] (generalizing Dirichlet
result) conjectured (See also [RO3] for different than then expected answer in the
approximation by algebraic integers case, raising questions on what should be the
correct conjecture) E<q4(a) > d+1 and proved slightly better lower bound (and K.
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Tishchenko improved) than (d + 3)/2, whereas Davenport and Schmidt (see [S80])
proved his conjecture for d = 2. Sprindzuk 1963 ([Gu96] respectively) proved Wirs-
ing analog for function fields of zero (any respectively) characteristic zero. Analog
of the Davenport-Schmidt bound E<s(a) > 3 is proved for real functions of any
characteristic is also proved in [Gu96].

(7) As a corollary to Schmidt’s subspace theorem generalizing Roth’s result,
Schmidt (see [S80]) proved that for real algebraic numbers « of degree greater than
d, E<q(a) < d+ 1. The same inequality was proved in [R78] for the case of function
fields of characteristic zero. Combining Schmidt’s theorem with Wirsing’s results
(Section 3.7) we know [BMS86] that for real algebraic numbers (or functions of
characteristic zero) of degree > d, we have E<4(a) = d + 1.

(8) In case, « is algebraic of degree d + 1, we can replace Schmidt’s subspace
theorem in (7) by much simpler Liouville’s inequality (in numbers or functions case)
[W60, BM86] to show E<4(a) = d + 1 then. There is no ‘epsilon’ in this case, just
as E(«) = 2 follows easily from theory of continued fractions and their periodicity for
real quadratic without using Roth’s deeper theorem and there is no ‘epsilon’ then.

While (3) is ‘effective’, most of its improvements are not.

Interestingly, when d > 1, by comparing (6) and (7), we see that the Dirichlet
direction has turned out to be harder than Roth’s direction!

We will discuss omitted cases of finite characteristic below.

3.3. What is a small set or a rare event?— Liouville numbers are those numbers
(e.g., >°10™™") whose exponent is infinite. By (2), or directly from the definitions, we
see that the set L of Liouville numbers is of measure zero. It is uncountable, dense
(countable intersection of open dense sets, so Gs) set, which is of Hausdorff measure
zero in all dimensions. But its complement is small in the sense that it is of first
category, countable union of nowhere dense sets. See [Ox80] and for more on its
Hausdorff dimension with more general measures than power functions, see [ORO06].

On the other hand, the set of algebraic numbers is countable, thus of measure zero
and of first category. Baker-Schmidt [BS70] (Jarnik-Besicovitch for d = 1) theorem
shows that for A > 1, the set of real number a with E4(a) > (d + 1)\, which, by (2),
is of measure zero, has Hausdorff dimension 1/\.

In the case of a function field over finite field, [K03] proves analog of d =1 case.

3.4. Failure of naive analog of Roth’s theorem in finite characteristic. —
While (1)-(3) of Section 3.2 work in both function fields and number fields with
essentially the same proofs, the naive analog of Roth’s theorem fails as shown by the
following example of Mahler [M49].

Let F' be of characteristic p >0, and g be a power of p. Then, as Mahler observed,
E(a) = q for a = Zt‘qi, by a straight estimate of approximation by truncation of
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this series. Now a? —a —t~! = 0, so that « is algebraic of degree ¢ over F(t), and
hence the Liouville upper bound is best possible in this case.

Mabhler suggested (and it was claimed to have been proved in a published paper and
believed for a while) that such phenomena may be special to the degrees divisible by
the characteristic, but Osgood [Os75], and Baum and Sweet [BS76] gave examples
in each degree for which Liouville exponent is the best possible. A few more isolated
examples by Buck, Robbins, Mills (see [L09] for extensive references) were proved
after extensive computer searches. See below for more.

3.5. Good approximations and Computation of exponents. — Sequence of
good approximations, for example, those coming from truncation of series or product
expansions if they converge rapidly, usually leads to only to a lower bound on expo-
nents, and unlike Mahler’s example, where it coincided with Liouville’s upper bound,
we do not get exact exponent in general. But under certain conditions listed below,
we can [V88] (see also [T11, Pa. 15]) calculate the exact exponent.

If 3, are algebraic of degree d, (3, — «, satisfying

limsup log H (Bp41)/log H(8,) = b, = log|a — B,|/log H(B,) — a,a > d(b"/* + 1),

then E4(a) = a, for a not algebraic of degree < d.

If you know the continued fraction of «, you can usually get its exponent (see
below). See [T04, Thm. 9.3.4] and [V95] for another general useful application by
Voloch of his lemma above.

3.6. Mikowski’s successive minima theorem. — Mahler [M41] developed an
analog to Minkowski’s geometry of numbers, including his theorem on successive
minima, where the usual bounds of 2" /n! and 2" for the volume times product of
successive minima are replaced by 1 (hence equality), and similarly for inequalities
for the polar body. These results imply analogs of Minkowski’s theorems on sizes
of linear forms. On the other hand, naive analog of Schmidt’s subspace theorem
generalizing Roth’s theorem fails in the function field case.

3.7. Relations between wy and wj. — Let a be real (number or function) not
algebraic of degree < d, and write wq := wq(a), w} := wj(a), temporarily. Then in
the function field case, Mahler’s Minkowski result implies wq > d, whereas [Gu96]
proved that w} > (d + 1)/2 and for d = 2, that wj > 2. We have [Sp69, Pa. 150]
wq > wh, wh > we/(wg —d+1), and if further, the characteristic is zero, we also have
wh > wg—d+1 and w) > (wg+1)/2. All these hold in real number case [W60] (see
also [BM86, B04] for much more).

Note that Schmidt’s subspace theorem (so for real numbers and functions in char-
acteristic zero) implies that for algebraic a, not of degree < d, we have wy < d.
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4. Differential exponents in function fields

In a function field F(¢) of any characteristic, we can differentiate with respect
to t, in contrast to the number field situation. Maillet, Kolchin and Osgood [Os73,
Os75] used this to get better and/or effective bounds for diophantine approximation.
Kolchin’s idea [Kol59] was to use the Liouville argument replacing the minimal poly-
nomial of o with a ‘small’ differential polynomial that kills . Frequently, this gives a
smaller exponent and we get good effective bounds by more refined work of Osgood.
See original references or surveys in [T04, Cha. 9] and [T09] for more.

4.1. Definition of denomination. — We denote the m-th derivative of y with
respect to ¢ by y™ and also write y’ for y(!) following the usual practice. For a
vector € = (eg, -+ ,ex) of non-negative integers, let us write y® as a short-form for
the differential monomial y© (y') - - - (y(F))x.

Consider a differential polynomial P(y) = > pey®. Note that the j-th derivative
of a/b has the power »"*! in the denominator. So define the denomination d(P) to
be the maximum of Z?:Q(j + 1)e; corresponding to € such that pz # 0.

So, if P(a/b) # 0, then |P(a/b)| > 1/[b|“P), hence d(P) replaces the degree in the
Liouville argument. Define the differential exponent d(a) to be the smallest possible
d(P) for P satisfying P(a) = 0.

Here o can be differentially algebraic. If, in fact, it is also algebraic, then d(a) <
max(deg(a) — 1,2): Note that differentiating the minimal polynomial P(x) for a we
get the equation o/ Py(a) + P'(a) = 0. Simplifying, we get o' = >°7  a; (t)ad, with
w < deg a.

4.2. Kolchin’s analog of Liouville’s theorem. — Given an irrational « which
is differentially algebraic over a characteristic zero function field, there is a constant
¢ > 0 such that |a — a/b| > ¢/|b]%().

The proof is by the Liouville argument, except the catch is that the differential
minimal polynomial P has, in general, infinitely many zeros and a priori, some ap-
proximations a/b can be among those. Kolchin shows that this is impossible in char-
acteristic zero.

We get smallest denomination 2 for irrational « satisfying the Riccati equation
y' = ay® + by + ¢ with rational functions as coefficients. So for such elements (for
example, any element of degree 3 or any irrational n-th root of a rational) we have
an (effective) Roth estimate (there is no e even) in characteristic zero.

In contrast, in characteristic p, @ which is (called element of Class I below) a
rational Mobius transformation of its p™-th power, satisfies the Riccati equation, and
we will see below that in this case the Riccati examples can have any rational exponent
within Dirichlet and Liouville bounds, at least for some degrees.
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4.3. Riccati equation-Thue bound connection. — Osgood proved [Os73, Os75]
the following very interesting theorem

In the situation of function fields of finite characteristic, the exponent bound can
be reduced from the Liouville bound to the Thue bound E(a) < |deg(a)/2| + 1 for
all non-Riccati a’s.

4.4. Why Riccati?— The relevance of the Riccati equation to this question is
clearly brought out by the theorem of Osgood and Schmidt [S76]

If ' B(y) + A(y) = 0, where A and B are coprime polynomials with integral (i.e.,
polynomial in ¢) coefficients, then all its rational solutions have height bounded in
terms of those of A and B, as long as the equation is not Riccati (i.e., we do not have
deg(B) = 0 and deg(A) < 2).

This theorem implies that the close enough rational approximations will not be
the roots and hence the Liouville-Thue type argument goes through when applied to

y'B(y) + A(y).

4.5. Separability. — Note that since differentiation of p-th powers is zero, it is
easy to see that algebraic Laurent series are in fact separable over rational function
field over finite field.

5. Continued fractions

Continued fractions are natural tools of the theory of diophantine approximation.
See [dM70, BS76, S00, BN0O, T04] for their basics (and several references) in
the case of function field over a field. Artin introduced them and proved first few
theorems in this case.

5.1. Basic notation. — We write @ = ag+1/(a1 +1/(az+---)) in the short-form
[ag, a1, --]. We write oy, := [an, any1,- - ]. Let us define p, and g, as usual in terms
of the partial quotients a;’s, so that p, /g, is the n-th convergent [ag, - - ,ay] to a.
Hence deg g, = > ; dega;.

To generate the continued fraction in the function field case, we use the ‘polynomial
part’ in place of the ‘integral part’ of the ‘real’ number a € K. In the function field
case, for ¢ > 0, a; can be any non-constant polynomial and so the degree of ¢; increases
with ¢, but a; or ¢; need not be monic. (We refer to [BN0O] for good discussion of
signs, and variants of the continued fraction algorithms with minus sign etc.).

5.2. Basic formulas. — We have
QU 1Pn + Pn—-1 (1)

-1
Pnln—1 — @nPn—1 = (—1)" 7, a=
e nen ( ) an+lQn+Qn—1

implying the usual basic approximation formula

@ =pn/tn=(=1)"/((an+1 + qn—l/qn)qu)v (2)
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which, in the function field case, because of non-archimedean nature of the absolute
value, simplifies to the fundamental formula giving the error

| = pn/dn] = 1/ (|an+1]lan]*)- 3)
If we know the continued fraction for a, the equation allows us to calculate the
exponent, using degg,, = >, dega;, as

. deg ap11
Ela)=2+1 —_— . 4
(@) + lim sup S degar (4)
5.3. Statistical distribution of a,, and ¢,. — Since the diophantine approxima-

tion properties of « are closely related to sizes of corresponding a,,’s and ¢, ’s, let us
record some theorems [Kh64] about these quantities in the real number case.

(1) For almost all real a, a, > nlogn (a, > n(logn)? respectively) has infinitely
(finitely respectively) many solutions n. There are also more refined results modeling
zero-one law (Borel-Cantelli lemma) of probability theory.

(2) For almost all real «, we have @™ = ¢, where Inc = 72/(12In2).

(3) (Gauss-Kuzmin law) For = between 0 and 1, the measure of the set of numbers «
between 0 and 1, that satisfy «, > 1/x approaches log,(1 + x), as n tends to oo.
Equivalently, the measure of the set of o between 0 and 1 that satisfy a, = k, for a
fixed integer k > 1, approaches log,(1 + 1/(k(k + 2))). Note that this distribution
has mode at k = 1, median at £ = 2, but the mean is infinite (as can also be seen
using (1)).

In the function field case (over finite fields), various metrical results are known.
For example, [H79] shows (see also [N88, BNO00])

(1) For almost all a, we have limsup deg a,,/(logn) = 1/(logq).

(2) For almost all o, we have lim(deg ¢,)/n = q/(¢—1). In words, for almost all «,
the average degree of the first n partial quotients tends to ¢/(q¢ — 1) as n tends to
infinity.

(3) If P € Fy[t] is a polynomial of degree d > 0, then for almost all o, we have
lim s, /n = q_2d, where s,, is the number of 7 between 1 and n for which a; = P.

5.4. Basic patterns. — It is immediate that finite continued fractions correspond
to rational numbers or functions and that eventually periodic sequence of a,’s gives
real quadratic numbers or functions. The converse of the last statement is also true
for function fields over finite fields. Also, Artin proved that purely (starting from a)
periodic continued fraction for quadratic real irrational a exactly corresponds to
dega < 0 and deg o’ > 0, where o is the algebraic conjugate of «. (For real quadratic
irrational numbers, the corresponding conditions are @ > 1 and —1< o’ <0,
(for period starting from ag). For this and the situation over general fields,
see [S00, BNOO] and references there.

On the other hand, it is not known for a single (explicit or not) algebraic real num-
ber of degree more than two, whether the corresponding sequence of a,,’s is bounded
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or unbounded. In the function field case, [BS76] produced first examples of both
kinds. See below for many more examples.

5.5. Connection with good approximations. — By (3) in the Section 5.2, we
see that convergents p,/q, always approximate by error < 1/¢2 (i.e., < 1/(|t|¢?2)).
Conversely, any such good approximation is a convergent. (For real numbers one
needs < 1/(2¢%).)

In fact, due to discreteness of absolute values, there are a priori many more variants
of notions of good approximations than in the real number case, and they are [T04,
Thm. 9.2.3] connected with convergents and intermediate convergents, generalizing
results of [dM70].

Discreteness of absolute values also makes analogs [T04, Remarks 9.2.1] of Markoff
spectrum and Lehmer problem easier and much less interesting.

5.6. Explicit Continued Fractions and Exponents. — We now present [S00,
T99] explicit continued fraction families of algebraic quantities in finite characteristic,
with exponents ranging through all Dirichlet-Liouville range.

Let F be a field of characteristic p, and g be a power of p. Let A;(t) € F[t] be of
degree d; > 0. Then

ai=[Ar, e Ap AL AT AT (5)
is algebraic over F'(t) because it satisfies the algebraic equation
Aa?+b

a:[Al,"',Ak,aq]:m. (6)

We have [S00, T99]
E(a) =2+ (q — 1)MAX1§1§k(dl/((d1 + -+ di,l)q + dz + -+ dk)), (7)

and given any rational y between ¢'/*F 41 (which tends to 2 as k tends to infinity) and
q + 1, we can construct a family of ’s as above with E(a) = p and deg(a) < g+ 1.

5.7. Class I and Class IA. — Let F be a finite field of characteristic p and ¢ be
a power of p. If a satisfies &« = (Aa? + B)/(Ca? + D), for A,B,C,D € F|[t] with
determinant AD— BC nonzero, « is said to be of Class I, and if further AD— BC € F*,
then it is said to be of Class IA. Since, for f € F*, we have flag,a1,a9, -] =
[fao, f~ta1, fas,- -], the examples above take care of continued fractions of all a of
class TA.

The pattern of continued fractions for general « of class I is an interesting open
question, with interesting isolated examples and results given by e.g., Baum, Sweet,
Mills, Robbins, Buck, de Mathan, Lasjaunias, Ruch, Schmidt, Firicel. See [MR86,
L00, L09, S00, T08, T09, F10?] and references there for some interesting explicit
continued fractions of class I, but not of class TA.
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The exponent is known [dM92] to be rational for any element of class I. It is not
known whether for general algebraic function the exponent can ever be irrational.

All elements of Class I are easily seen to satisfy Riccati equation with rational
(function) coefficients which has a rational solution. The easiest way to show some-
thing is not of Class I is to show that it does not satisfy such an equation. But since
the converse is not true, and ¢ in the definition of Class I is not fixed, it is hard to
show that something satisfying rational Riccati equation with rational solution is not
Class I.

5.7.1. Class I-Thue bound connection. — In [LAM96], generalizing Osgood’s theo-
rem 4.3, and establishing conjecture of [V88], it was shown that if algebraic o over
function field over field F of finite characteristic is not of Class I, then Liouville bound
can be improved to Thue bound: E(a) < [(dega)/2] 4+ 1. They also have [LAM99]
a slight refinement (of ‘epsilon’) and different proof when F is finite.

Is there an hierarchy of differential (or difference-Frobenius) equations and expo-
nent bounds, perhaps Riccati generalizing to Weierstrass and Painleve? How about
higher exponents? We will mention below deformation hierarchy in this spirit.

5.8. Statistical distribution of exponents in Class IA. — In her Ph. D. thesis
of 2011 from National Central University, Taiwan, Huei Jeng Chen used the exponent
formula (7) in Section 5.6 to get statistical distribution, in case when F is a finite
field so that we can count, as follows.

Let F be a finite field of characteristic p and fix ¢ a power of p. For « as in Section
5.6 (or of Class IA which can be handled exactly similarly using multiplication by
constants as explained above), we put H(«) to be the maximum of the degrees of
A, B,C, D (in the reduced form). This is the usual height of «, if the equation there
is irreducible. (Chen also shows that in the result of Section 5.6, we can further
stipulate that the degree is ¢ + 1).

Let 2 < m < g+ 1. Let N4 be the number of such a’s of height at most d, and let
Ng,m be the cardinality of the subset where E(«) > m. Then Ndﬂn/N;_(m_m/(Q(q_l))
is bounded between two positive numbers independent of d.

This shows a nice power law with the power going down from 1 to 1/2 as you move
the exponent bound from Roth value 2 to ¢ + 1, which is the (maximal) degree here.

Does similar distribution work in Class I or more generally for all algebraic elements
of any given degree?

Here we only note that every element of degree 3 is of Class I and that if ¢ = 2,
we can get Class I elements of all determinants (but not all Class I elements unfortu-
nately) by applying Mobius transformations, which do not change exponents, to class
IA elements.

5.9. Folding lemma of Mendes-France, Shallit. — Following nice lemma
[MF73, Sh79] have been rediscovered and used many times, including by the
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author in getting non-Riccati algebraic explicit continued fraction (Section 5.10),
getting algebraic continued fractions with bounded sequence of partial quotients
(Section 5.11), higher diophantine approximation exponents (Section 6), getting
explicit continued fractions for analogs of e and Hurwitz numbers (Section 10.5),
as well as by Lasjaunias in a nice different fashion in his Finite Fields and their
applications paper of 2006.

Let [ag, a1, ,an] = Dn/Gn, with the usual notation of continued fractions, then
[ao, s Qs Y —ny -+, —a1] = pu/an + (—1)"/yq2.

This pattern is a signed block reversal /folding pattern following the new term y.

5.10. Explicit algebraic continued fractions. — Consider function fields of fi-
nite characteristic. In addition to interesting variety of explicit algebraic continued
fractions in Class I mentioned above and surveyed in [L00, L09], [L09] also mentions
one example which is a square of an element in Class I, but not of Class I.

In [T03], we gave explicit continued fractions of non-Riccati family, by taking
appropriate linear combinations of Mahler type elements, and also showed that their
exponents cover all rationals in a large range:

Let
k ) ]
MM
i=1  j=0

where m; > 0 and b; are rational numbers so that the exponents are integers. Let
miy1 > 2m,; for 1 < i < k and gmy > 2my,. Then

E(a) = MAX(ma/mq, -+ ,myp/mg—1,gmq/mg), (8)

ok—1 1/k

and given any rational value u between ¢/ and ¢'/”, a can be chosen with E(a) =
w if further that g > 2.

The algebraic equation for each term (corresponding to a fixed ) is immediate,
since it is just a multiple of Mahler’s example. The flexibility in the choice of m;’s
and b;’s can be used to produce many families of a’s not satisfying the rational Riccati

equation.

5.11. Algebraic elements with bounded partial quotients sequence. — Any
a as above with ¢ = 2%, m; = 271 and b; > b;,1/2, for i modulo k will produce an
explicit continued fraction with bounded sequence of partial quotients in characteristic
two. Most of these do not satisfy the rational Riccati equation (and so are of degree
more than 3). If « satisfying our general conditions has bounded sequence of partial
quotients, then [T03] the characteristic p is two.

In Class I, there are many examples known [L00, L09] with bounded partial quo-
tients sequence. Mills-Robbins show that if ¢ is more than 1 plus degree of AD — BC,
then this sequence is unbounded, so it is natural that more examples have been found
with ¢ = 2, or in characteristic two.
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Lasjaunias conjectures (private communication) that algebraic elements in odd
characteristic having continued fractions with bounded partial quotient sequences are
necessarily of Class I.

6. Distribution of higher degree exponents

Just like Roth’s upper bound for E(«) is broken for algebraic « in the finite char-
acteristic function field case, so is Schmidt’s upper bound for E;(«) broken in this
case. In fact, we can have very bad rational approximations and simultaneously very
good higher degree ones, as was shown in the following results from [T11, T12].

(1) For p = 2, and any integer m > 1, we can construct infinitely many algebraic
elements « of degree at most om’ having continued fractions with folding pattern
symmetries, and bounded sequence of partial quotients, so that F(a) = 2, but with
Es(a) > 2™ > 3.

(2) Let p a prime, g a power of p and € > 0 be given. Then we can construct
infinitely many algebraic «, with explicit equations and continued fractions, such
that

g<deg(a) <g+1, E(a)<2+e¢ E(a)>qg—rc¢,
with explicit sequence of quadratic approximations realizing the last bound.

(3) Let p a prime, ¢ a power of p and m,n > 1 be given. Then we can construct
infinitely many algebraic o, ,, with explicit equations and continued fractions, such
that

deg(am,n) < ™+ 1, HILII;OE(am-,n) =2, nlggo Equl(am,n) > qul + ﬁa

with explicit sequence of degree g + 1-approximations realizing the last bound.

6.1. Questions. — (I) A natural question raised by these considerations is whether
there are algebraic a’s of each degree d, with E(a) = 2 (or even with bounded partial
quotients) and for which the Liouville bound for the lower degree approximations is
attained, or whether some of these requirements need to be relaxed.

(IT) For real algebraic numbers « of degree more than d, by combining (i) Minkowski
implication wg(a) > d, with (ii) Schmidt’s subspace theorem implication, for alge-
braic a, that wq(a) < d, we get (iii) wq(e) = d which then by Wirsing’s inequalities
(Section 3.7) implies (iv) w}(a) = d. But in finite characteristic function field case,
we have seen that analog of the upper bound (ii) fails, so conceivably the lower bound
wh(a) > d may also fail for algebraic a. Does it? Note that by (8) of Section 3.2,
such a would need to be of degree more than d + 1.

(IIT) Similarly, is it possible that for approximation by algebraic integers of degree
at most d case, the lower bound d for the exponent (analog of w* + 1) is broken
for algebraic « in finite characteristic case, rather than (countably many) special
transcendental o’s in [RO3] for real numbers?
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6.2. Remarks. — Applying a straight-forward function field analog of Lemma 6.1
of [B127?] shows that ws > g — e. Hence, by the Liouville inequality, we can put
deg(a) = ¢+ 1, in (2) of this section. It also shows that if wq(e) = w}(c) (this
equality is true in number fields, for all d, for algebraic « of degree more than d, but
its status is unclear in function fields over finite fields) for d = 2, then the Liouville
bound is best possible (within ‘€’) for these a’s. I thank Yann Bugeaud for these
remarks.

7. Deformation and Exponents hierarchies

In finite characteristic situation, Osgood’s theorem (Section 4.3) shows that for the
elements in the complement of differentially closed subset obtained by throwing away
solutions of rational Riccati equations, the Liouville exponent bound can be improved
to Thue bound. In [KTV00], this line of thought was pushed further by associating
certain curves over function fields to given algebraic power series and showing that
bounds on the rank of Kodaira-Spencer map of this curves imply bounds on the
diophantine approximation exponents of the power series, with more ‘generic’ curves
(in the deformation sense) giving lower exponents. Further, transporting Vojta’s
conjecture on height inequality to finite characteristic by modifying it by adding
suitable deformation theoretic condition, it was shown that the the exponents of the
numbers giving rise to ‘general’ curves approach Roth’s bound. This matches also
with quantitative behavior (Section 5.8) noticed in Class TA above.

In the higher exponent direction, unconditional hierarchy of exponent bounds
for approximation by algebraic quantities of bounded degree was given. We refer
to [KTVO00] for the precise details.

8. Diophantine classification

8.1. Mahler-Koksma classification. — We have two standard measures of dio-
phantine approximations of « by algebraics 3 of degree at most d, namely how small
error can get in terms of height of 3 versus how small can P(«a) be for a polynomial of
degree at most d in terms of height of P. For a complex «, we define w(d, h), w*(d, h)
by |P(a)| = h=®(@R) and |a — ] = h~%" (&)1 where P(z) is a polynomial (inte-
gral, non-zero) of degree at most d and height at most h for which |P(«)| takes the
smallest positive value, and ( is algebraic of degree at most d and height at most h
such that |a — 3] takes the smallest positive value.

Next we define, following Mahler, w(d) as limsup w(d, h) and w as limsup w(d)
and v as the least d for which w(d) is infinite, with v = oo if w(d) < oo for all d.

Finally, we say that « is in class A, S, T, U respectively according as whether (w =
0,v = ), (0 < w < 00,=00), (W = 00,v =00) or (w=00,0<v < 0). We
can also use sub-classification .S,, and U, and it is customary to call S number of
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type supw(d). Note that U; corresponds to Liouville numbers. Another way to
characterize these classes in terms of wy is that A-numbers correspond to bounded
sequence of wyg, S-numbers correspond to unbounded sequence, but with wy < ck,
T-numbers correspond to ‘not wy < ck’ for any ¢, but with wy, finite, and U-numbers
are those having some wy, infinite.

(i) A numbers are precisely the algebraic numbers.

(2) Algebraically dependent numbers belong to the same class.

(3) Almost all (full measure) numbers are S-numbers. Almost all real and complex
numbers are S-numbers of type 1 and 1/2 respectively.

(4) There exist T-numbers, Ug-numbers for each d and S-numbers of arbitrarily
large type.

(5) e is S-number of type 1 and 7 is S or T-number.

Similarly, we define, following Koksma, * counterparts w*(d), w*, A*, S* etc. The
classes turn out to be identical, with subclasses related, but more subtly because of
inequalities (Section 3.7 between w and w* quantities.

It is known that w*(d) = 1 for almost all real «, whereas it is an open question
whether w*(d) > 1 for all real a.

For more details and references for all this, see books by Baker, Schneider, Schmidt.

8.2. Function field case of Mahler, Koksma classification. — Bund-
schuh [BunT78], Dubois considered the same definitions over function fields over any
field and in particular over finite fields, and proved some analogous results. Existence
of Us- numbers is shown for all F' and for F finite, existence of S-numbers and Uy
numbers is proved. See [B04, Sec. 9.4-9.5] for references. The question of existence
of T-numbers is open.

9. Computational classification for function fields over a finite field

Now we look at computational classification of ‘naturally occurring’ numbers which
are computable. This has some useful algebraic properties and is based not just on
general computational complexity, but on a particular model inspired by automata-
algebraicity correspondence wwhich works over finite field base. We recall it now.

9.1. Automata and Algebraicity. — Christol [Chr79, CKMRS80, All87,
AS03, T97a, T04, T12b] discovered nice combinatorial descriptions of algebraic
power series over finite fields in terms of finite automata, a very robust concept which
has been studied extensively from various angles by computer scientists, logicians
and formal linguists. We will see in the next section how various ways of thinking of
automata have helped giving transcendence proofs by completely different methods
when the usual methods do not apply.
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For a positive integer g, g-automata data consists of a finite set S (thought of as
the set of its ‘states’), so € S (thought of as the initial state), action of digits base ¢
on S,ie.,amap {0,1,---,g—1} xS — S (thought of as the transition map showing
how input affects the state). Finally, there is an output map from S to another finite
set T. We can consider g-automata as input-output device, which on input an integer
1 fed in by its digits base ¢ one by one, starts changing its states, starting from the
initial, according to the actions of digits of i base q. At the end, you read the output
at the end state. (There are various equivalent variants of this model).

Christol’s theorem says that a power series Y f;t’, with f; € F, is algebraic over
F,(t), if and only if there is a g-automata with T = F, which on input ¢ produces
output f;.

For each f € F,, consider the set Sy of i’s such that f; = f. It can be considered
as the language of exponents ¢ which are thought of all grammatical sentences in
words being the base ¢ digits of <. Grammars of different strengths and production
rules have been studied and classified. Another characterization of algebraicity is the
language of exponents is ‘regular’.

We refer to the references above and in particular, to the two surveys [T97a, T12b]
for more.

9.1.1. FEzponents bounds using automata. — Firicel [F117?] gets an upper bound on
the exponent of algebraic a in terms of the data (such as number of states) of any
corresponding automata.

9.1.2. Characteristic dependence. — Cobham proved that if p and ¢ are distinct
primes, then a sequence which is not eventually periodic can not be both p-automatic
and f-automatic. By the correspondence mentioned above, it means that algebraic
irrational Y ¢™ in characteristic p has to be transcendental in all other finite charac-
teristic. There is no simple ‘algebraic’ proof known of this fact. Cobham conjectured
and Adamczewski, Bugeaud, Luca [ABLO4] proved ¢ = 0 analogy, using Schmidt
subspace theorem. Namely, under the hypothesis above, the same series considered
over Q(¢), real number > 107" and ¢-adic number Y £™ (here £ can be p) are all
transcendental.

9.1.8. Complex functions. — In contrast to the simple degree two passage from R to
its algebraic closure C, the passage in characteristic zero function fields from laurent
series field to Puisseux series field, which is its algebraic closure, is of infinite degree.
In finite characteristic, Puisseux series (which could have been handled by just sub-
stitution t'/™ for ¢ to use automata still) do not give algebraic closure, but Kedlaya
[KO01] in fact modified automata in this case to describe the algebraic closure. As
we do not know natural applications of generalized series to special values, we will
restrict to ‘real’ case.
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9.2. Computational classification with algebraic properties. — We now
briefly explain computational classification [BT98] with good algebraic properties,
giving applications to refined transcendence classification of some important Laurent
series in the next section. The usual numbers/Laurent series coming up in number
theory and geometry are computable (already a small countable subclass) and like
automata, computability has various incarnations studied by various viewpoints, such
as Turing machines, languages generated by unrestricted grammar, recursive function
theory, Post systems, Church’s lambda calculus etc. Computer scientists, logicians,
linguists have also studied intermediate strength classes. For example, linguists have
Chomsky hierarchy of regular, context-free, context-sensitive, generative languages
depending on strengths of grammar rules. Computer scientists classify input-output
devices depending on their workings, memory requirements etc. into g-automata (at
low end with zero or bounded memory), push down automata, linear space automata,
Turing machines (at high end with infinite memory) Many classes converged to
the same notions. So we examined these robust classes from computational, series
perspective as in the automata characterization above and found that many of these
have good algebraic properties, such as forming a field, a field algebraically closed
in Laurent series etc.; in addition to closure, logical properties, such as closure
under union, concatenation, complementation etc., explored before. The algebraic
properties allow you to move by algebraic operations the problem about one series to
another series which might be more convenient to deal by these generalized automata
tools. See [BT98] for details.

10. Nature of and relations between special values

In this section, we restrict to function fields over a finite field F,. We will first
introduce analogs in function field arithmetic of well-known special functions. We
will only describe definitions, results, and identify methods, but leave the details of
proofs, motivations, analogies and properties satisfied by these functions to references
[G96, T04] and surveys, references identified in each subsection.

10.1. Special functions of function field arithmetic. — Basic analogs are
K:=F,t) = Q, A=F,t<Z Kx:=F/(1/t) <R, Cx:=Ky < C.

We think of A+, defined as the subset of A of polynomials monic in ¢, as an analog
of the set of positive integers. Comparing sizes of A* and Z*, which are ¢ — 1 and 2
respectively, in our situation, we call multiples of ¢ — 1 ‘even’ and other integers in Z
‘odd’. Fundamental quantities related to function fields are

[i] = ' t, lo=do=1, li=—[illi-x, di=[i]d]_;.
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Then Carlitz-Drinfeld exponential and logarithm are given respectively by
e(z) = qui/di, I(z) = qui/li.
i=0 i=0

The exponential is periodic with the period lattice 7 A, with

J+1

= (0D [T =17 = (D T[a - @ — /0™ ),
n=1

being analog of 2.
The Carlitz zeta value ((s), for s a positive integer is given by

1
()= > — € K.
necA+
Next we have geometric gamma function
1
I(z) == H 1+ E)_1 € Coo U{0}, z € Cx,
acA+ a

and arithmetic gamma function defined by I'(z + 1) = II(z) and

:Z, — By ((1/1), > mig' — [ (di/t5 %)™

Next we have two hypergeometric analogs. But first for a € Z and integers n > 0,
we define (a),, by df;r(::ll), or1-7"  or 0 according to whether a > 1, orn < —a,a < 0,
or n > —a > 0 respectively.

We also define for a € C and integers n > 0, (a)y, := [[(a — f), with f running
over all polynomials of degree less than n.

For all integers r,s > 0 and for all a;,b; € Z (1 <i<r, 1 <j <s) with b; >0,
consider the first hypergeometric function

. N > (@1)n - (ar)n q"
PFs(ar, .. am501,...,bs;2) = 7;) 2o (o) PARS

We denote it by ,Fy(z), when the parameters are well understood

The second hypergeometric function ,.Fy is similarly defined, but with parameters
a € Cw, and (a), defined above for them.

As in the classical case, various specializations of the hypergeometric series lead to
interesting functions such as analogs of Bessel, Legendre, Jacobi, binomial functions.

We will concentrate on these and ignore results about (i) analogs of multizeta
values (due to the author), (ii) Drinfeld Modular forms (due to Yu, Chang), (iii)
higher rank or dimension objects in Drinfeld-Anderson theory (due to Yu, Chang and
Papanikolas), and (iv) higher genus generalizations from rational function fields (due
to Yu) and (v) classical algebraic geometry objects.
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10.2. Application of Wade’s approximation method. — We refer to surveys
in [T04, Chapter 10] and [W90, Y92, Br98| for details, references and only select
a few of the known results here.

10.2.1. e, ™ and zeta values. — Carlitz’s student Wade, by traditional approxima-
tion techniques, but using simplifications obtained by making things Fg-linear (the
Wade method), proved transcendence of e = e(1) and 7, proved analogs of Hermite-
Lindemann and Gelfond-Schneider theorems and proved transcendence of some series
made up from [n]’s, d,,’s and [,,’s. The author in his Ph. D. thesis noted that slight
modifications prove transcendence of ((sp™) for s < ¢, and pushed such results to
irrationality results of more classes of values and for ratios ((s)/7*, when s is ‘odd’,
i.e., not divisible by ¢ —1, by providing fast approximations which would have implied
transcendence if Roth’s analog were true in finite characteristic!

More results on irrationality measures of zeta values were obtained by de Mathan
and Cherif. Soon after Jing Yu’s proof [Y92] of transcendence for all s of ((s), for
all ‘odd’ s of {(s)/7* and v-adic interpolations (,(s) mentioned below, Hellagouarch
and Dammame proved the first part of these results using Wade’s method.

10.2.2. Hypergeometric values. — Finally, we state [TWYZ11] result on transcen-
dence of hypergeometric values obtained via Yao’s generalization of Wade’s method.
Let r, s > 0 be integers such that r < s+ 1, and let

O<ar<ar<---<ar,and 0< by <by <--- < by

be integers. (This make the function , Fs entire, but not a polynomial). Then for all
v € Coo \ {0} algebraic over Fy(t) and such that Fy(t)(y) has less than ¢ places above
the infinite place of F,[t] (In particular, v can be any nonzero rational or nonzero

algebraic of degree less than ¢), then ,.Fy(a1,...,a,;b1,...,bs;7y) is transcendental
over F,(%).
10.3. Applications of period methods. — We refer for details and references to

surveys in [Y92, Br98, T04, Pe07, T12c] and references there.

10.3.1. Foundations of general transcendence theory. — In a series of papers, Jing
Yu developed transcendence theory generalizing Wade’s basic results to contexts of
general Drinfeld modules over Fy[t], as well as more general rings in higher genus,
and their higher dimensional versions, namely t-motives of Greg Anderson. Among
many results, we will only mention here his analog of Baker’s theorem in linear forms
in logarithm, and analogs of Hermite-Lindemann, Wustholz’s subgroup theorems for
t-motives, all in the usual as well as v-adic contexts. See [Y91, Y92, Y97], [T04,
Chapter 10] and references there.

10.3.2. Zeta values. — We continue the story from subsection 10.2.1. Giving for-
mulas for ¢(s) in terms of s-th multilogarithm analog, [AT90] expressed it as the
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(canonical co-ordinate of) logarithm of s-th tensor power of the Carlitz module eval-
uated at an algebraic point, which is torsion point, if and only if s is ‘even’. This
combined with Yu’s Hermite-Lindemann result [Y92], implies Yu’s transcendence re-
sults on the zeta values and ratios with period power mentioned in subsection 10.2.1.

10.3.3. Recent algebraic independence results. — 1If g stands for classical or geometric
or arithmetic gamma function above, the monomial [] g(f;)™ is known to be algebraic
(or more generally, an algebraic multiple of power of the period 27é, or 7 respectively)
(where f; are proper fractions relevant in each case), if certain easily checkable com-
binatorial condition called bracket relation, which can be uniformly expressed in all
3 cases, is satisfied. We refer to [T04, Sec. 4.12] for details on this.

We now state some recent strong independence results in chronological order and
then quickly explain some ideas behind the proofs.

(1) [ABPO04] A set of I'-monomials (i.e., subgroup of C% generated by 7 and T'-
values at proper fractions in K) is K-linearly dependent exactly when some pair of I'-
monomials is, and pairwise K-linear dependence is entirely decided by bracket relation
on their ratio. In particular, for any f € A, of positive degree, the extension of K
generated by 7 and I'(z) with z ranging through proper fractions with denominator
(not necessarily reduced) f, is of transcendence degree 1+ (¢ — 2)|(A/f)*|/(¢ — 1)
over K.

Next, generalizing Yu’s analog of Baker’s linear independence result, as well as De-
nis’ weaker result [D06] on algebraic independence of logarithms obtained by Mahler
method, we have

(2) [PO8] If ¢4, -- , ¢, € Cx are linearly independent over K with e(¢;) algebraic
over K, then ¢; are algebraically independent over K.

(1) [CY] Only algebraic relations between ((n)’s come from the Carlitz-Euler eval-
uation at ‘even’ n, implying for such n that {(n)/7" € K, and ((pn) = {(n)?. In
particular, for n ‘odd’, {(n) and 7 are algebraically independent and the transcendence
degree of the field K (7,¢(1),---,¢{(n)) isn+1—|n/p]—[n/(¢—1)]+[n/(p(¢g—1))].

(2) [CPYa] Only algebraic relations between (;(n)’s for all ¢ and n, where (,
denotes Carlitz zeta over F[t], are those as above coming from n ‘even’ or divisible
by p. The periods 7, of the Carlitz modules for IF ¢ [t] are all algebraically independent.

(3) [CPYDb] Ounly algebraic relations between ((n)’s and geometric I'(z)’s at proper
fractions are those between zeta above and bracket relations for gamma.

(4) [CPTY] Only algebraic relations between ¢(n)’s and arithmetic gamma values
at proper fractions are those for zeta mentioned above and those for gamma coming
from the bracket relations, and thus the transcendence degree of the field

K(7,¢(1),--+ (), (c/(1 = 4°))Dicesqr—

is s — [s/p] — |s/(g— 1)) +|s/(p(qg—1))| +¢.
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10.3.4. Underlying tools: ABP criterion. — The main transcendence tool used in all
these results is the following strong ‘ABP’ criterion [ABP04]:

Let Coo{T'} be the ring of power series over Co convergent in closed unit disc.
Consider ® = ®(T) € Mat,,.(K[T]) such that det ® is a polynomial in T vanishing
(if at all) only at T = t and ¢ = (T) € Mat,x;(Coo{T}) satisfying (-1 = &1,
where (—1)-twist means replacing the coefficients of entries of the matrix by their g-th
roots.

If pi(t) = 0 for p € Matyy,(K), then there is P = P(T) € Matyy,(K[T]) such
that P(t) = p and Py = 0.

10.3.5. Underlying tools: Anderson’s t-motives and special values as their periods.
— The main reason why this is useful is that in Anderson’s theory of ¢-motives
the periods arise exactly by specialization as in the criterion above. Thus K-linear
relations between the periods are explained by K|[T]-level linear relations (which in
the t-motives set-up are the motivic relations and thus ‘algebraic relations between
periods are motivic’, as analog of Grothendieck’s conjecture for motives [PO08] of
Anderson). In terms of special functions of our interest, this makes the vague hope
that ‘there are no accidental relations and the relations between special values come
from the known functional equations’ precise and proves it.

Anderson’s t-motives are simple, concrete linear algebra objects (no cycle-theoretic
difficulties of classical motives!) and have tensor products via which algebraic relations
between periods i.e., linear relations between powers and monomials in them reduce
to linear relations between periods (of some other motives). In this sense, the ABP
criterion above is similar to Wiistholz type sub-t-module theorem proved by Jing Yu.

Soon afterwards, Beukers proved [Be06] similar criterion for dependence of values
of E-functions, but it does not have such strong applications to relations between
periods of classical motives, because of differences in period connections in this case.
The Tannakian formalism (based on linear algebra motivation) for t-motives developed
in [PO8] then expresses the transcendence degrees of field extensions generated by
periods (appearing in the results above) as dimensions of ‘motivic Galois groups’
which allows their calculations using concrete difference Galois group descriptions
of [P08].

Thus the strong algebraic independence results then follow from expressing special
gamma, zeta values as periods (e.g., [AT90, ABP04]) of appropriate t-motives and
calculating their dimensions. We refer to the references above and survey [T12c] for
more details. Pellarin has shown how to derive some of these results more directly
from Anderson’s theory combined directly with Mahler method adapted to this case.

10.4. Applications of Automata methods. — We refer to [T97a, T12b] for
detailed survey of tools and applications, so we will be brief and just mention some
highlights.
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First applications [A90, B92] of automata to special values occurring in function
field arithmetic were applications to transcendence of 7, some zeta values (known
earlier by period methods and other methods mentioned above).

10.4.1. Gamma values. — When period methods only could prove very weak tran-
scendence results (parallel to what is known for the usual gamma) on values of arith-
metic gamma at proper fractions, automata methods [T96, A96, MFY97, T97a]
proved very complete results settling transcendence of all values at proper fractions,
of all values at p-adic integers which are not positive integers, and of all monomials
in values at fractions which were not known to be algebraic. While the first and
third results mentioned have now been superceded by algebraic independence results
mentioned in Section 10.3.3, the second result above or the result on values of -
adic interpolation on gamma proved in [T97a] are still provable only by automata
methods.

10.4.2. Refined transcendence of T by language tools. — Note 7 := t~9/(4= D7 is a
Laurent series. It (or rather its reciprocal) is not [BT98] context-free (which gives, in
particular, a language theoretic proof of its transcendence), but is context-sensitive.
The tools here are language theoretic closure properties, moving to convenient series
by algebraic properties and getting contradiction by ‘pumping lemma’ for context-
free languages. In rough terms, ‘pumping lemma’ says that given sufficiently long
grammatical sentence, some part of it can be ‘pumped’ many times retaining the
grammatical structure. To give an example in natural language, in a sentence, ‘He is
a friend of mine’, ‘a friend of’ can be pumped many times, to get e.g., ‘He is a friend
of a friend of mine’. We use this in language of exponents of series we have and get
a contradiction.

10.4.3. Refined transcendence of e, . — Using computational and language tools, we
[BT98] show that Carlitz analog of e, (known to be transcendental so non-automatic
by Wade) is context-sensitive and theta series or set of squares is context-sensitive
(even in logarithmic space under GRH), but (for ¢ = 2) not context-free.

10.4.4. Transcendence of modular forms and Tate period by density argument. —

In [A1T99] transcendence of some g-expansions of Eisenstein series (and also some
related series in ‘wrong’ weights so that they are not immediately accessible through
algebraic geometry techniques) is shown by showing that the asymptotics of coeffi-
cients (modulo p) does not match those classified by Cobham for sequences produced
by automata. There are applications to transcendence of the multiplicative period of
Tate elliptic curve. See [T97a, T12b] and [T04, Cha. 11] for details and references.

10.4.5. Hypergeometric functions. — Sharif-Woodcock and Harase generalized au-
tomata criterion somewhat from the case of finite base to more general bases. This
is used to prove the following result [TWYZ11] characterizing the parameters for
which the hypergeometric function is algebraic.
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Let r,s > 0 be integers such that r = s+ 1, and let
O<ar<ar<---<arand 0< by <by <--- < by

be integers. Then the following properties are equivalent:
1. a; > bj_1, for all integers 1 < j <
2. (+Fu(2)? € Fy[t][[2]], with £ = max(a,, by);
3. .Fs(z) is an algebraic function.

For the second hypergeometric analog, we do not have such complete results, but
only algebraicity and transcendence results [TWYZ11] for particular parameter val-
ues and some more results of the following flavour.

Any function s11Fs(ai;b;;2), with a; being any proper fractions and b; being
fractions with denominators of degree one, is algebraic.

10.5. Continued fraction for e and Hurwitz numbers. — Euler showed that
e=102,1,2,1,1,4,1,1,6,1,-- -] and Hurwitz showed (without giving a ‘formula’) that
the continued fraction of (ae?/"+b)/(ce?/™+d) (the so called Hurwitz numbers), where
a, b, c,d are integers with ad — bc # 0, and n is a positive integer, consists eventually
of arithmetic progressions. For example, in the case of e, there are 3 arithmetic
progressions, two with common difference 0 and one with common difference 2.

The exact patterns of continued fractions, of quite different nature, for analogs of
e and Hurwitz numbers in F,[t] case are given in [T97] and reference there. Here
we just recall the simplest case, when ¢ = 2. Consider [n] := t4" —t, the building
blocks of Fyn. Then Carlitz-Drinfeld analog of e for F5[¢] has continued fraction (with
repeating pattern as in folding lemma)

In fact, it can also be described by saying that for n > 0, a,, = [i], where i is the
position from the right of the first occurrence of digit one in the binary expansion
of n. Hence the continued fraction of the fundamental quantity e for Fa[¢] is given by
partial quotients [n] which are building blocks of Fa» in a pattern simply explained
in terms of binary digits of n in this way!

10.6. Exponents for e and 7. — Euler’s continued fraction shows that E(e) = 2,
also Salikhov in 2008 showed that E(m) < 7.61, but we do not know about their higher
exponents.
In F,[t] case, we know that E(e) = ¢, and Ea(e) > 3+1/(g—1) or > 2+1/(q—1),
depending on p = 2 or p > 2. For analog 7 := [[°~,(1 — t!77")~1, we know E(7) >
j J+1

q— 1, with equality when ¢ > 5. For another analog m := [[(1— (t" —t)/(t9" —1t)),
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we have (1) > (¢g—1)?/q, with equality when ¢ > 5. For these, see [T99, T11, T12]
and references there.

10.7. Questions on special values. — We end by mentioning some interesting
open problems on the nature of special values.

(1) Are Carlitz-Drinfeld analogs of e and 27i algebraically independent?

(2) We know that Artin-Hasse exponential series ezp(> o P" /p") has p-integral
coefficients. Is its reduction modulo p transcendental over F(z)?

(3) Higher genus A or even v-adic counterparts of most of the results above are
lacking.

(4) Tt would be of great interest to know the nature of I'(0), mentioned in [T04,
Remark 8.3.11], in particular, its relation, if any, with 7 for general A.

(5) What are all multizeta relations? For the period connection, see [AT09].

(6) What is the status of these special values in function field analog of Mahler-
Koksma classification? Analogs of e, 7 log(1) and ((s) (or rather twisted values, for
p # 2) for s < ¢q were studied in [Bun78]|, and it was shown that some of these
numbers are not U-numbers. But the results obtained are not strong enough to
determine precise classes, so that there is no algebraic independence result from these
results yet, unlike the periods approach.

Acknowledgments I thank Yann Bugeaud for providing the references [BNOO,
B127?], remarks in Section 6.2, Bernard de Mathan for providing the reference [H79],
and Jean-Paul Allouche for his patient help in correcting typos, even providing the
missing accents in the bibliography!
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