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Despite the failure of naive analogs of the sum shuffle or the integral shuffle relations,
we prove the existence of “shuffle” relations for the multizeta values (for a general A,
with a rational place at infinity) introduced by the author [9] in the function field context.
This makes the F-span of the multizeta values into an algebra. We effectively determine
and prove all the Fp-coefficient identities (but not the F()-coefficient identities).

1 Introduction

Multizeta values introduced and studied originally by Euler have been pursued recently
again with renewed interest because of their emergence in studies in mathematics and
mathematical physics connecting diverse viewpoints. See, for example, introduction to
[11] and references there. This paper is sequel to [11].

The author defined and studied two types of multizeta [9, Section 5.10] for func-
tion fields, one complex valued (generalizing the Artin—-Weil zeta function) and the other
with values in Laurent series ring over finite fields (generalizing the Carlitz zeta val-
ues). (For general background on function field arithmetic, we refer to [5, 9]. ) For the
Fq4[t] case, the first type was completely evaluated in [9] (see [8] for more detailed study
in the higher genus case). For the second type, the failure of sum and integral shuffle
identities was noted, but different combinatorially involved identities were established

or conjectured in [9, 11] as well as in the Master’s thesis work [6, 7] of Jose Alejandro
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Lara Rodriguez done at the University of Arizona. Also, period interpretation for these
multizeta values was given in [1] in terms of explicit iterated extensions of the Carlitz—
Tate t-motives.

In contrast to the classical division between the convergent versus the diver-
gent (normalized) values, all the values are convergent in our case. In place of the sum
or the integral shuffle relations, we have different kinds of relations: the shuffle type
relations with Fp-coefficients and the relations with I, (t)-coefficients. (Classically, of
course, there is no such distinction, the rational number field being the prime field in
that case).

In this paper, we show the existence of shuffle type relations proving that the
product of multizeta values can also be expressed as a sum of some multizeta values,
so that the Fy-span of all multizeta values is an algebra. While [6, 7, 11] conjectured
and proved many such interesting relations (in the special case A = Fy[t]), which are
combinatorially quite involved to describe unlike the classical case, here we prove the

existence directly (for general A, defined below) rather than proving those conjectures.

2 Multiple Zeta Values for Function Fields

2.1 Notation

Z = {integers}
Z+ = {positive integers}

q = a power of a prime p
g

K = afunction field of one variable with field of constants [Fg

a finite field of q elements

oo = a place of K of degree one
Ky =TFg((1/¢)) = the completion of K at co
Coo = the completion of an algebraic closure of K
A = the ring of elements of K with no poles outside co
A+ = monics in A4, for some fixed sign function
Ag = {elements of A of degree d}
A_g = {elements of A of degree less than d}

Aat = AgN A+
Agt = AgnN A+
n =1t2" —t

“even” = multiple of g — 1
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The simplest case is when A =TFy[t] and K = Fy(t), with the usual notions of
infinite place, degree and sign (in ?).
2.2 Definition of multiple zeta values

First, we define the power sums. Given s € Z+ and d > 0, put

1
Sa9)= ), < €K,

S
acAg+

and given integers s; € Z4 and d > 0 put

Si(st, -+, s)=Sals1) > Sa(s2)---Sa(s) € K.
d>dy>->d->0

For s; € Z+, we define multizeta value ¢(s1,---,s-) following [9, Section 5.10]
(where it was denoted by ¢4 to stress the role of the degree) by using the partial order on

A+ given by the degree, and grouping the terms according to it:

1
(ot = ), Sa(s)-Sale) =) 5 os € Koo

dy>-->d->0 1

where the second sum is over g; € Aq+ satisfying the conditions as in the first sum.

We say that this multizeta value (or rather the tuple (s1, - -, sr)) has depth r and
weight ) s;. Note, we do not need s; > 1 condition for convergence as in the classical
case. This definition generalizes, in one way, the r = 1 case corresponding to the Carlitz

zeta values [4, 5, 9]. For interpolations and analytic theory, we refer to [5, 9].

3 Relations Between Multizeta Values

First, we consider
Sa(@)Sa(b) — Sa(a+b) = Z fiSa(@, a+b— ), (%)
with f; € Fp.

Theorem 1. Let A= Fy[t]. Givena, b € Z+, there are f; € F and g; € Z+, so that (¥) holds
ford=1. O
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Proof. Since [1] = t? —t is the product of all the monic polynomials over F; of degree
one, we see that [1]9S;(a) is in A, in fact, in Fp[t]. Since it is invariant with respect to
the automorphisms t — t+6, 6 € F; of A, we see that, in fact, it is a polynomial (with
coefficients in Fg) in [1] of degree less than a. More directly, [1]%S1(a) = ) [[(t +60)%,
where the sum is over u € F,; and the product is over 6 # u. Hence, only the u = 0 term
in the sum is not divisible by ¢, and hence the constant term of the polynomial above is
(1% = (D™

In other words, S(a) = Y &, fi/[1]}, fi e Fpand f, = (-1)%

In fact, by specializing [11, 3.3] to d = 1, we see more explicitly that

(—Dyk & kK@= D\, ke

So, S1(a)S1(b) — Si(a+ D) is again a - linear combination of 1/[11"s withi < a+
b. Now we proceed by induction on the largest i in such sums. We can keep on lowering
such i (till the sum is vacuous) by subtracting f;S;(a;), with g; being the largest such i in

such a sum, for appropriate f € Fp. [ |

Example: An example should make this more transparent. Let g = 3, A = Fy[t],

a =4, and b = 5. Then by direct calculation (or by applying [11, 3.3.1]), we see that

S1(4)S;(5) Sg)_<L L)(L L) R
15O =5O) =\~ )\UnE o) e

[11°

=-5() — 0P

= —-5(5) + S:(3).
Theorem 2. Fix q. If (*) holds for some f; € F, and @; € Z+ for d =1 and A = Fy[t], then

(*) holds for all d > 0 and for all A (corresponding to the given g). In this case, we have
the shuffle relation

¢ (@¢(b) —¢(a+Db) —¢(a.b) — (b, a) :Zﬁg(ai,a+b—a,~). (sk)
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Proof. Fix a general A. Consider n,n' € Ag+, m,m € A_g+. Define
Spm={n+0mn+um) :0,u cFq, 0 # u},
Spmi={n+0mm):0eFg},
n~mn < n =n+6m for some 6 € Fy.

It then follows immediately that S, m equals Sy, if and only if S, ,, equals S, ,
if and only if m= m and n' ~,, n. Otherwise, the two sets S's, or two S''s, respectively,
are disjoint. Further, as n's run over ~y, equivalence classes, S,n's partition {(n;, np) :
n; € Aqg+, m # ng}, while S, ,.'s partition {(n;, my) : m € Ag+, ™y € Ag+}.

Fix d > 0. For such n and mwriting ¢t = n/m, we have

1 1
2 ek 2 (n+6me(n+ pm?

(m1,12)€Snm 0#uelFy

1 1
+b Z a b
m? 6 ek, E+0)*t+ )

1 1
mé+b Z ﬁ Z (t+ 77)ai
nelq

1
Z ﬁ Z (mt + nm)airna+b—ai

1
= Z ﬁ Z n+ nm)aim,aer*ai
1
=) 5 ) i yaha

(X, V)ES, m

(Here, the third equality results from the hypothesis and the rest follow from the
substitution, definitions and algebraic manipulations). Adding these equations over all
mand with all nin the ~;, equivalence class, we get the claimed result (¥*). Then, once we

note that for d = 0 it is trivially true, (**) follows by adding (*) over all d > 0. [ |

Remarks (1) Hence, we see that the product of two Carlitz zeta values can be
expressed as a sum of some multizeta values. The exact form of such expressions is

proved in many cases and conjectured fully for g = 2 in [11] by complicated recursive
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recipe. The recursion step conjecture part (but not the initial conditions part) of this
recipe has been generalized to a conjecture for g a prime in [7, 6] with a lot of evidence
proving many special instances, by a soliton method mentioned in [11]. Our theorem
makes it much simpler (and applies to much more general situation of any A's) to have
mechanical proofs: Now we just have to verify directly the d = 1, Fy4[t] case, which is a
finite direct computation, to get a proof of the corresponding multizeta identity.

(2) As explained in [11, Section 5], the identities conjectured (and proved in some
cases) were discovered by the heuristic passage, “motivic” implies “for all d’ implies
“for d = 1", whose calculation gave the guesses. We just reverse the logic to prove the
identities!

(3) The theorem shows that these Fy-shuffle identities are in some sense “univer-
sal” for a given q. Just for fun, we mention that ¢(1)¢(1) = ¢(2) + 2¢(1, 1) is even more
universal, even holding for all g. This was already noticed for Fy[t] case in [11, 2.1, 2.3]
and also follows in a different way, from what we proved above.

(4) For any A, such identities working for all d are unique, exactly given by the
theorem above, because if x is the smallest degree monic element of A, then identity
working in its degree is just the degree one identity for Fy[x]. Also, by [11, 5.4], there is
unique identity given (a, b).

(5) We refer to [7, 6] for the full description of the conjectural recipe giving f; and
a;, given (a, b), but only mention that for a fixed a it is recursive in b of recursion length
(@ — 1)p™, where mis the smallest integer such that a < p™, and at each recursive step
one adds t; = [[(p — /)*/ new multizeta terms, where y; is the number of j's in the base
p expansion of a — 1.

Now, we address the higher depth situation.

Theorem 3. (i) Sy(ai,---.ar)Sa(b1,--- . bx) can be expressed as ) fiSq(Gi, -, Cim),
with fi € Fp, cij's, and m;'s being independent of d, and with } a; + 3 b; =3 ;¢j and
m; <r+k

(ii) For any A, the product of multizeta values can be expressed as a sum of
some multizeta values, such an expression preserving total weight and keeping depth
filtration.

(iii) In particular, the Fp-span of all the multizeta values is an algebra. O

Proof. We prove (i) by induction on the depth D = r + k. By the previous theorem, it is
true for the smallest depth D = 2. Let D > 2. Interchanging r and k, if necessary, we can

assume that r > 1.
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Temporarily, for a vector denoted such as V, we write V = (v1, V’). Then, with

= (a1, ---,a)and B = (b1, ---, bx), we have

Sa(A)Sa(B) = Sa(a1)Sa(B) Z Sa (A)
dy<d

= (Zgisd(xi)> > Sa(A)

dy<d

(Zglsd(xm > Sa(X; )) > Sa(4)

dy<d dy<d

= Zg,sd(xu)( Y Sup(X, )+ Y Sa (A XD+ Y sd2<X§>Sd2(A/)>
dp<d di<d dp<d

= Zgzsd(le)<Z+Z+ZZh]Sdz(YJ )

= Zgi (Sd(Xil, X, A) + Sa(Xin, A, X)) + Z hjSa(Xi1, Yj)),
i J

where hj, g; € Fp, the second, and the fifth equalities follow by induction hypothesis,
whereas the first, third, and sixth follow from the definitions and the fourth follows by
shuffle on d's. This proves the claim, with straight-forward checking of the weight and
the depth claim (by tracing through the equalities and induction) being left to the reader.

(ii) follows from (i) by summing over d and (iii) follows from (ii). |

Remarks (1) We observe that our proofs give, for a product of multizeta values,
an effective procedure of expressing it as a sum of multizeta values, with a proof. It
would still be desirable to have a good description of all the identities at once.

(2) While in rational number field case, there is a good description of all the
identities we expect between multizeta values, we lack such a good description. Also,
we know that all the identities are “motivic” (with respect to Anderson’s t-motives, see
references and terminology in [11, 5.1]), while in the rational number field case, it is only
expected (e.g., from the Grothendieck period conjecture).

(3) We can generalize the identities between the quantity parts (without multi-
zeta applications) of our theorems even further from A we have considered to an infinite

dimensional vector space over F,, graded by “degree”, and included in a field.
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(4) For simplicity, we assumed that the degree of the infinite place is one, so that

signs are in Fg. When the degree is higher, the definition of multizeta should be modified

the same way as in the zeta case, as explained in [9, p. 156].
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