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Despite the failure of naive analogs of the sum shuffle or the integral shuffle relations,

we prove the existence of “shuffle” relations for the multizeta values (for a general A,

with a rational place at infinity) introduced by the author [9] in the function field context.

This makes the Fp-span of the multizeta values into an algebra. We effectively determine

and prove all the Fp-coefficient identities (but not the Fp(t)-coefficient identities).

1 Introduction

Multizeta values introduced and studied originally by Euler have been pursued recently

again with renewed interest because of their emergence in studies in mathematics and

mathematical physics connecting diverse viewpoints. See, for example, introduction to

[11] and references there. This paper is sequel to [11].

The author defined and studied two types of multizeta [9, Section 5.10] for func-

tion fields, one complex valued (generalizing the Artin–Weil zeta function) and the other

with values in Laurent series ring over finite fields (generalizing the Carlitz zeta val-

ues). (For general background on function field arithmetic, we refer to [5, 9]. ) For the

Fq[t] case, the first type was completely evaluated in [9] (see [8] for more detailed study

in the higher genus case). For the second type, the failure of sum and integral shuffle

identities was noted, but different combinatorially involved identities were established

or conjectured in [9, 11] as well as in the Master’s thesis work [6, 7] of Jose Alejandro
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Lara Rodriguez done at the University of Arizona. Also, period interpretation for these

multizeta values was given in [1] in terms of explicit iterated extensions of the Carlitz–

Tate t-motives.

In contrast to the classical division between the convergent versus the diver-

gent (normalized) values, all the values are convergent in our case. In place of the sum

or the integral shuffle relations, we have different kinds of relations: the shuffle type

relations with Fp-coefficients and the relations with Fp(t)-coefficients. (Classically, of

course, there is no such distinction, the rational number field being the prime field in

that case).

In this paper, we show the existence of shuffle type relations proving that the

product of multizeta values can also be expressed as a sum of some multizeta values,

so that the Fp-span of all multizeta values is an algebra. While [6, 7, 11] conjectured

and proved many such interesting relations (in the special case A = Fq[t]), which are

combinatorially quite involved to describe unlike the classical case, here we prove the

existence directly (for general A, defined below) rather than proving those conjectures.

2 Multiple Zeta Values for Function Fields

2.1 Notation

Z = {integers}
Z+ = {positive integers}

q = a power of a prime p

Fq = a finite field of q elements

K = a function field of one variable with field of constants Fq

∞ = a place of K of degree one

K∞ = Fq((1/t)) = the completion of K at ∞
C∞ = the completion of an algebraic closure of K∞

A = the ring of elements of K with no poles outside ∞
A+ = monics in A, for some fixed sign function

Ad = {elements of A of degree d}
A<d = {elements of A of degree less than d}
Ad+ = Ad ∩ A+

A<d+ = A<d ∩ A+
[n] = tqn − t

“even” = multiple of q − 1
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Relations for Function Field Multizeta Values 1975

The simplest case is when A = Fq[t] and K = Fq(t), with the usual notions of

infinite place, degree and sign (in t).

2.2 Definition of multiple zeta values

First, we define the power sums. Given s ∈ Z+ and d ≥ 0, put

Sd(s) =
∑

a∈Ad+

1

as ∈ K,

and given integers si ∈ Z+ and d ≥ 0 put

Sd(s1, · · · , sr) = Sd(s1)
∑

d>d2>···>dr≥0

Sd2(s2) · · · Sdr (sr) ∈ K.

For si ∈ Z+, we define multizeta value ζ(s1, · · · , sr) following [9, Section 5.10]

(where it was denoted by ζd to stress the role of the degree) by using the partial order on

A+ given by the degree, and grouping the terms according to it:

ζ(s1, · · · , sr) =
∑

d1>···>dr≥0

Sd1(s1) · · · Sdr (sr) =
∑ 1

as1
1 · · · asr

r
∈ K∞,

where the second sum is over ai ∈ Adi + satisfying the conditions as in the first sum.

We say that this multizeta value (or rather the tuple (s1, · · · , sr)) has depth r and

weight
∑

si. Note, we do not need s1 > 1 condition for convergence as in the classical

case. This definition generalizes, in one way, the r = 1 case corresponding to the Carlitz

zeta values [4, 5, 9]. For interpolations and analytic theory, we refer to [5, 9].

3 Relations Between Multizeta Values

First, we consider

Sd(a)Sd(b) − Sd(a + b) =
∑

fi Sd(ai, a + b − ai), (∗)

with fi ∈ Fp.

Theorem 1. Let A = Fq[t]. Given a, b ∈ Z+, there are fi ∈ Fp and ai ∈ Z+, so that (*) holds

for d = 1. �
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Proof. Since [1] = tq − t is the product of all the monic polynomials over Fq of degree

one, we see that [1]aS1(a) is in A, in fact, in Fp[t]. Since it is invariant with respect to

the automorphisms t → t + θ , θ ∈ Fq of A, we see that, in fact, it is a polynomial (with

coefficients in Fq) in [1] of degree less than a. More directly, [1]aS1(a) = ∑∏
(t + θ)a,

where the sum is over μ ∈ Fq and the product is over θ 	= μ. Hence, only the μ = 0 term

in the sum is not divisible by t, and hence the constant term of the polynomial above is

(
∏

θ)a = (−1)a.

In other words, S1(a) = ∑a
i=1 fi/[1]i, fi ∈ Fp and fa = (−1)a.

In fact, by specializing [11, 3.3] to d = 1, we see more explicitly that

S1(k + 1) = (−1)k+1

[1]k+1

⎛
⎝1 +


k/q�∑
k1=1

(
k − k1(q − 1)

k1

)
(−1)k1 [1]k1(q−1)

⎞
⎠ .

So, S1(a)S1(b) − S1(a + b) is again a Fp- linear combination of 1/[1]i’s with i < a +
b. Now we proceed by induction on the largest i in such sums. We can keep on lowering

such i (till the sum is vacuous) by subtracting fi S1(ai), with ai being the largest such i in

such a sum, for appropriate fi ∈ Fp. �

Example: An example should make this more transparent. Let q = 3, A = Fq[t],
a = 4, and b = 5. Then by direct calculation (or by applying [11, 3.3.1]), we see that

S1(4)S1(5) − S1(9) =
(

1

[1]4 − 1

[1]2
)(

− 1

[1]5 − 1

[1]3
)

− 1

[1]9

= 1

[1]5

= −S1(5) − 1

[1]3
= −S1(5) + S1(3).

Theorem 2. Fix q. If (*) holds for some fi ∈ Fp and ai ∈ Z+ for d = 1 and A = Fq[t], then

(*) holds for all d ≥ 0 and for all A (corresponding to the given q). In this case, we have

the shuffle relation

ζ(a)ζ(b) − ζ(a + b) − ζ(a, b) − ζ(b, a) =
∑

fiζ(ai, a + b − ai). (∗∗)

�
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Proof. Fix a general A. Consider n, n′ ∈ Ad+, m, m′ ∈ A<d+. Define

Sn,m := {(n+ θm, n+ μm) : θ, μ ∈ Fq, θ 	= μ},

S′
n,m := {n+ θm, m) : θ ∈ Fq},

n ∼m n′ ↔ n′ = n+ θm, for some θ ∈ Fq.

It then follows immediately that Sn,m equals Sn′,m′ if and only if S′
n,m equals S′

n′,m′

if and only if m= m′ and n′ ∼m n. Otherwise, the two sets S’s, or two S′’s, respectively,

are disjoint. Further, as n’s run over ∼m equivalence classes, Sn.m’s partition {(n1, n2) :
ni ∈ Ad+, n1 	= n2}, while S′

n.m’s partition {(n1, m1) : n1 ∈ Ad+, m1 ∈ A<d+}.
Fix d > 0. For such n and mwriting t = n/m, we have

∑
(n1,n2)∈Sn,m

1

na
1nb

2

=
∑

θ 	=μ∈Fq

1

(n+ θm)a(n+ μm)b

= 1

ma+b

∑
θ 	=μ∈Fq

1

(t + θ)a(t + μ)b

= 1

ma+b

∑
fi

∑
η∈Fq

1

(t + η)ai

=
∑

fi
∑ 1

(mt + ηm)ai ma+b−ai

=
∑

fi
∑ 1

(n+ ηm)ai ma+b−ai

=
∑

fi
∑

(x,y)∈S′
n,m

1

xai ya+b−ai
.

(Here, the third equality results from the hypothesis and the rest follow from the

substitution, definitions and algebraic manipulations). Adding these equations over all

mand with all n in the ∼m equivalence class, we get the claimed result (*). Then, once we

note that for d = 0 it is trivially true, (**) follows by adding (*) over all d ≥ 0. �

Remarks (1) Hence, we see that the product of two Carlitz zeta values can be

expressed as a sum of some multizeta values. The exact form of such expressions is

proved in many cases and conjectured fully for q = 2 in [11] by complicated recursive
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recipe. The recursion step conjecture part (but not the initial conditions part) of this

recipe has been generalized to a conjecture for q a prime in [7, 6] with a lot of evidence

proving many special instances, by a soliton method mentioned in [11]. Our theorem

makes it much simpler (and applies to much more general situation of any A’s) to have

mechanical proofs: Now we just have to verify directly the d = 1, Fq[t] case, which is a

finite direct computation, to get a proof of the corresponding multizeta identity.

(2) As explained in [11, Section 5], the identities conjectured (and proved in some

cases) were discovered by the heuristic passage, “motivic” implies “for all d” implies

“for d = 1”, whose calculation gave the guesses. We just reverse the logic to prove the

identities!

(3) The theorem shows that these Fp-shuffle identities are in some sense “univer-

sal” for a given q. Just for fun, we mention that ζ(1)ζ(1) = ζ(2) + 2ζ(1, 1) is even more

universal, even holding for all q. This was already noticed for Fq[t] case in [11, 2.1, 2.3]

and also follows in a different way, from what we proved above.

(4) For any A, such identities working for all d are unique, exactly given by the

theorem above, because if x is the smallest degree monic element of A, then identity

working in its degree is just the degree one identity for Fq[x]. Also, by [11, 5.4], there is

unique identity given (a, b).

(5) We refer to [7, 6] for the full description of the conjectural recipe giving fi and

ai, given (a, b), but only mention that for a fixed a it is recursive in b of recursion length

(q − 1)pm, where m is the smallest integer such that a ≤ pm, and at each recursive step

one adds ta = ∏
(p− j)μ j new multizeta terms, where μ j is the number of j’s in the base

p expansion of a − 1.

Now, we address the higher depth situation.

Theorem 3. (i) Sd(a1, · · · , ar)Sd(b1, · · · , bk) can be expressed as
∑

fi Sd(ci1, · · · , cimi ),

with fi ∈ Fp, cij ’s, and mi’s being independent of d, and with
∑

ai + ∑
bj = ∑

j cij and

mi ≤ r + k.

(ii) For any A, the product of multizeta values can be expressed as a sum of

some multizeta values, such an expression preserving total weight and keeping depth

filtration.

(iii) In particular, the Fp-span of all the multizeta values is an algebra. �

Proof. We prove (i) by induction on the depth D = r + k. By the previous theorem, it is

true for the smallest depth D = 2. Let D > 2. Interchanging r and k, if necessary, we can

assume that r > 1.
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Temporarily, for a vector denoted such as V , we write V = (v1, V ′). Then, with

A = (a1, · · · , ar) and B = (b1, · · · , bk), we have

Sd(A)Sd(B) = Sd(a1)Sd(B)
∑
d1<d

Sd1(A′)

=
( ∑

i

gi Sd(Xi)

) ∑
d1<d

Sd1(A′)

=
( ∑

i

gi Sd(Xi1)
∑
d2<d

Sd2(X′
i)

) ∑
d1<d

Sd1(A′)

=
∑

i

gi Sd(Xi1)

( ∑
d2<d

Sd2(X′
i, A′) +

∑
d1<d

Sd1(A′, X′
i) +

∑
d2<d

Sd2(X′
i)Sd2(A′)

)

=
∑

i

gi Sd(Xi1)

(∑
d2

+
∑
d1

+
∑
d2

∑
j

hj Sd2(Yj)

)

=
∑

i

gi

(
Sd(Xi1, X′

i, A′) + Sd(Xi1, A′, X′
i) +

∑
j

hj Sd(Xi1, Yj)

)
,

where hj, gi ∈ Fp, the second, and the fifth equalities follow by induction hypothesis,

whereas the first, third, and sixth follow from the definitions and the fourth follows by

shuffle on d’s. This proves the claim, with straight-forward checking of the weight and

the depth claim (by tracing through the equalities and induction) being left to the reader.

(ii) follows from (i) by summing over d and (iii) follows from (ii). �

Remarks (1) We observe that our proofs give, for a product of multizeta values,

an effective procedure of expressing it as a sum of multizeta values, with a proof. It

would still be desirable to have a good description of all the identities at once.

(2) While in rational number field case, there is a good description of all the

identities we expect between multizeta values, we lack such a good description. Also,

we know that all the identities are “motivic” (with respect to Anderson’s t-motives, see

references and terminology in [11, 5.1]), while in the rational number field case, it is only

expected (e.g., from the Grothendieck period conjecture).

(3) We can generalize the identities between the quantity parts (without multi-

zeta applications) of our theorems even further from A we have considered to an infinite

dimensional vector space over Fq, graded by “degree”, and included in a field.
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(4) For simplicity, we assumed that the degree of the infinite place is one, so that

signs are in F
∗
q. When the degree is higher, the definition of multizeta should be modified

the same way as in the zeta case, as explained in [9, p. 156].
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