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Abstract. We construct many families of nonquadratic algebraic Laurent se-
ries with continued fractions having a bounded partial quotients sequence (the
diophantine approximation exponent for approximation by rationals is thus 2,
agreeing with the Roth value) and with the diophantine approximation expo-
nent for approximation by quadratics being arbitrarily large. In contrast, the
Schmidt value (analog of the Roth value for approximations by quadratics,
in the number field case) is 3. We calculate diophantine approximation ex-

ponents for approximations by rationals for function field analogs of π, e and
Hurwitz numbers (which are transcendental) and also give an interesting lower
bound (which may be the actual value) for the exponent for approximation by
quadratics for the latter two. We do this exploiting the situation when ‘fold-
ing’ or ‘negative reversal’ patterns of the relevant continued fractions become
‘repeating’ or ‘half-repeating’ in even or odd characteristic respectively.

1. Background

We recall [S80, Chapter 8] some basic definitions, facts and conjectures about the
diophantine approximation of real numbers by rationals or (real) algebraic numbers.
(See also [B04], [BG06] and [W] for a nice survey of recent developments.)

Definition 1 (Absolute and field height). For β a nonzero algebraic number, define
H(β) to be the maximum of the absolute values of the coefficients of a nontrivial
irreducible polynomial with co-prime integral coefficients that it satisfies. For β
lying in a number field L, define HL(β) similarly by replacing the irreducible poly-
nomial by c

∏
(x − β(i)), where the β(i) are its field conjugates and the multiple c

makes the coefficients co-prime integers.

Let L be a number field inside R and let d be a positive integer.

Definition 2 (Higher diophantine approximation exponents). For α an irrational
real number not algebraic of degree ≤ d, define Ed(α) (E≤d(α) respectively) as
lim sup(− log |α− β|/ logH(β)), where β varies through all algebraic real numbers
of degree d (≤ d respectively).
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For α ∈ R − L, define EL(α) by the same formula but with H replaced by HL

and with β varying through elements of L. Note that E1(α) = EQ(α) is the usual
exponent E(α) := lim sup(− log |α− P/Q|/ log |Q|).

Then for irrational α, we have E(α) ≥ 2 by Dirichlet’s theorem, whereas for
irrational algebraic α of degree d, we have E(α) ≤ d by Liouville’s theorem and
E(α) = 2 by Roth’s celebrated theorem improving Liouville, Thue, Siegel, and
Dyson bounds.

For real α not in L, we have EL(α) ≥ 2 and for real algebraic α not in L, we
have EL(α) = 2 by Leveque’s generalization of Roth’s theorem.

For real α not algebraic of degree ≤ d, Wirsing (generalizing Dirichlet’s result)
conjectured (see also [R03]) E≤d(α) ≥ d+1 and proved a slightly better lower bound
than (d + 3)/2, whereas Davenport and Schmidt proved his conjecture for d = 2.
On the other hand, for α of degree > d, we have Liouville’s bound E≤d(α) ≤ degα.
Schmidt (generalizing Roth’s result) proved that for real algebraic α of degree
greater than d, E≤d(α) ≤ d+ 1.

From now on unless stated otherwise, we only focus on the function field analogs
(see e.g. [T04] for a general background and [T04, Cha. 9], [T09] for the diophantine
approximation, continued fractions background and references), where the roles of
Z,Q,R are given by A = Fq[t],K = Fq(t),K∞ = Fq((1/t)) respectively, where Fq is
a finite field of characteristic p containing q elements. With the usual absolute value
coming from the degree in t of polynomials or rational functions, we have exactly
similar definitions of heights and exponents. Now by rationals, reals, algebraic, we
mean elements of K, K∞ and algebraic over K respectively.

Then analogs of Dirichlet’s and Liouville’s theorems hold, but the naive analog of
Roth’s theorem fails, as shown by Mahler [M49]. For other results, see [dM70, S00,
T04] and references there, for example, results [KTV00] in the Wirsing direction.

2. Continued fractions

Continued fractions are natural tools of the theory of diophantine approximation.
See [dM70, BS76, S00, T04] for the basics in the function field case.

Let us review some standard notation. We write α = a0 + 1/(a1 + 1/(a2 + · · · ))
in the short form [a0, a1, · · · ]. We write αn = [an, an+1, · · · ], so that α = α0. Let
us define pn and qn as usual in terms of the partial quotients ai, so that pn/qn is
the n-th convergent [a0, · · · , an] to α. Hence deg qn =

∑n
i=1 deg ai.

Following the basic analogies mentioned above, we use the absolute value coming
from the degree in t, and to generate the continued fraction in the function field
case, we use the ‘polynomial part’ in place of the ‘integral part’ of the ‘real’ number
α ∈ K∞. In the function field case, for i > 0, ai can be any nonconstant polynomial,
and so the degree of qi increases with i, but ai or qi need not be monic. As usual,
we have

(1) pnqn−1 − qnpn−1 = (−1)n−1, α =
αn+1pn + pn−1

αn+1qn + qn−1

implying the usual basic approximation formula

(2) α− pn/qn = (−1)n/((αn+1 + qn−1/qn)q
2
n),

which because of the non-Archimedean nature of the absolute value now implies

(3) |α− pn/qn| = 1/(|an+1||qn|2).
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If we know the continued fraction for α, the equation allows us to calculate the
exponent, using deg qn =

∑n
1 deg ai, as

(4) E(α) = 2 + lim sup
deg an+1∑n
i=1 deg ai

.

3. Exponents of analogs of e and Hurwitz numbers

First we calculate (see also [T96]) exponents of analogs of Hurwitz numbers
(ae2/n + b)/(ce2/n + d), using Carlitz-Drinfeld exponential e(z) [T04, T96, T97]. It
is enough to calculate (by invariance of exponent under integral Mobius transfor-
mation of nonzero determinant) the exponent of e(1/f). (We leave the case of the
analog of e2/n discussed in [T96, 4.7] and [T97] to the interested reader.) These
analogs of Hurwitz numbers are transcendental [T04, Chapter 10].

Theorem 1. Let e(z) be the Carlitz-Drinfeld exponential function for the Carlitz
A-module. Then for f ∈ A− 0, we have the E(e(1/f)) = q.

Proof. Define [n] = tq
n − t, D0 = 1 and Dn+1 = [n]Dq

n. Then by [T92], we have the
continued fraction expansion of e(1/f)− 1/f as lim[0, Xn] where X1 = [fq[1]] and
Xn+1 = [Xn,−fqn(q−2)Dn+1/D

2
n,−X−

n ]. Hence if we write dn for the degree of the
denominator of [0, Xn] and the degree of f as F , then we see that d1 = q(F + 1)
and dn+1 = 2dn + qn(q − 2)F + qnn(q − 2) + qn+1, so that dn = (n + F )qn and
the exponent formula above gives the exponent as limit of 2 + (qn(q − 2)F + (n+
1)qn+1 − 2nqn)/((n+ F )qn). �

4. Folding lemma

The continued fraction expansion for the exponential above and many calcula-
tions below are based on the following simple lemma, called the folding lemma, due
to Mendes France [MF73], which has been rediscovered many times.

Lemma 1. Let [a0, a1, · · · , an] = pn/qn, with the usual notation of continued frac-
tions. Then [a0, · · · , an, y,−an, · · · ,−a1] = pn/qn + (−1)n/yq2n.

This pattern is a signed block reversal/folding pattern with the new term y. We
will use the short form −X− for the tuple (−an, · · · ,−a1) where X is the tuple
X = (a1, · · · , an).

Consider the recurring folding type

(5) α = [0, X1, y1,−X−
1 , y2, X1,−y1,−X−

1 , y3, X1, · · · ] = lim[0, Xn],

Xn+1 = (Xn, yn,−X−
n ).

We have shown such patterns for analogs of Hurwitz numbers as well as vari-
ous algebraic quantities in our papers in the bibliography. Now we exploit these
symmetries to compute the quadratic exponents for them.

5. p = 2: ‘Repeat’ symmetry and quadratic exponents

5.1. General set-up. If p = 2 and X1 = X−
1 , then Xn = −X−

n and the folding
symmetry becomes a ‘repeat’ or ‘doubling’ symmetry, and thus they are approx-
imated well by periodic continued fractions [0, Xn, yn, Xn, yn, Xn, yn, · · · ], which
represent quadratic irrationalities.
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We use this simple observation to calculate E2(α) for some transcendental and
algebraic α’s of interest.

First consider for arbitrary q and a tuple X1 and sequence yn of partial quotients
the continued fraction

(6) α = [0, X1, y1, X1, y2, X2, · · · ] = lim[0, Xn], Xn+1 = [Xn, yn, Xn],

and periodic, thus quadratic, approximations for it:

(7) βn = [0, Xn, yn, Xn, yn, · · · ] = [0, Xn, yn + βn].

Let us write the i-th convergent of α as pi/qi with the usual conventions, so that
if [0, Xn] has length m+ 1, then

[0, Xn] =
pm
qm

, [0, Xn, yn] =
pm+1

qm+1
, [0, Xn, yn, Xn] =

p2m+1

q2m+1
,

so that deg q2m+1 = 2deg qm + deg yn.
Now [0, Xn, yn, Xn] is the portion common to the expansion of α and βn. Hence,

by (1), βn = ((yn + βn)pm + pm−1)/((yn + βn)qm + qm−1), or equivalently,

qmβ2
n + (ynqm − pm + qm−1)βn − (ynpm + pm−1) = 0,

so that

logq H(βn) = deg ynqm − deg gcd(qm, ynpm + pm−1, qm−1 − pm) ≤ deg ynqm.

The inequality becomes equality if qm, qm−1+pm, ynpm+pm−1 are relatively prime.
On the other hand, using two identities in (1), we see

α− βn =
(yn+1 + α−1

2m+3)p2m+1 + p2m

[(yn+1 + α−1
2m+3)q2m+1 + q2m]

− (yn + βn)p2m+1 + p2m
[(yn + βn)q2m+1 + q2m]

=
(yn+1 + α−1

2m+3)− (yn + βn)

[· · · ][· · · ] .

Hence the non-Archimedean nature of the absolute values implies that if deg yn+1 >
deg yn, then

|α− βn| =
1

|ynq22m+1|
.

Hence

(8) E2(α) ≥ lim
deg yn + 2deg q2m+1

deg yn + deg qm
= 3 + lim

deg qm
deg yn + deg qm

.

Often in our examples, E = E(α) = 2 + limdeg yn/ deg qm. Then the above
bound implies E2(α) ≥ 3 + 1/(E − 1).

We summarize these calculations as

Theorem 2. Let p = 2 and let α be as above with deg yn increasing and E :=
E(α) = 2 + limdeg yn/ deg qm. Then E2(α) ≥ 3 + 1/(E − 1).

5.2. Application to exponential. Let us apply this now, first to the transcen-
dental exponential values.

Theorem 3. Let p = 2. With the notation as in the previous theorem, we have
E2(e(1/f)) ≥ 3 + 1/(q − 1).

Proof. Put α = e(1/f) − 1/f and yn = −fqn(q−2)Dn+1/D
2
n. Then the hypothesis

of the theorem above is satisfied with E = q, by the formulas in the proof of
Theorem 1. �
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It is conceivable that the lower bound for E2 in the last theorem can often (for
example, say for q = 2) be an equality, since for the quadratic expansion β to give a
good approximation to α, several first partial quotients have to match and we have
to do calculation as above, so the maximum matching at the fastest approximation
spots that we have used probably leads to the exact value of E2. But we have not
been able to verify this rigorously. Let us first see that the approximating sequence
βn indeed approximates to the exponent claimed, at least for q = 2.

For p = 2, by [T92, p. 153], we have (with m = 2n − 1),

qm−1 = pm, qm = fqnDn, yn = fqn(q−2)Dn+1

D2
n

,

pm =
n∑

1

fqn−qi Dn

Di
, pm−1 = (pm + 1)2/qm.

Thus, we need to calculate the degree of the gcd of qm and ynpm + pm−1.

Claim. The gcd is G := [1]2
n−1, if q = 2 and f = 1.

Proof. We now have qm = Dn, yn = [n + 1], pm =
∑n

1 Dn/Di and pm−1 =∑n−1
1 Dn/D

2
i . We first recall (see, e.g., [T04, Sec. 2.5]) that [i] is the product of all

monic primes of degree dividing i and Di is the product of all monic polynomials of
degree i. Let w be the prime of degree d which divides the gcd, so that w divides Dn

and hence d ≤ n. But then w divides all terms in the sum above for ynpm + pm−1,
except possibly [n+ 1](Dn/Dn) +Dn/D

2
n−1 = [1]2

n

, so that d = 1. By symmetry,
gcd will be a power of [1]. Note that G is the largest power of [1] dividing Dn. On
the other hand, the same can be said by replacing Dn with

ynpm + pm−1 = Dn(
[n+ 1]

D1
+

n−1∑

i=1

(
[n+ 1]

Di+1
+

1

D2
i

)),

since the first term in the bracket is prime to [1] and

[n+ 1]D2
i +Di+1

Di+1D2
i

=
[n+ 1] + [i+ 1]

Di+1
=

[n− i]2
i+1

Di+1

is divisible by [1].
Hence, in this case deg logq H(βn) = 2n+1+n2n− (2n− 1) ∗ 2 = n2n+2, and we

see that the approximation exponent for the approximating sequence βn is indeed
equal to (rather than just ≥) the claimed value. It is easy to see that the same
works for q = 2 and e(1/f) − 1/f . In general, for any q = 2n and any nonzero f ,
the author expects (but has not checked the details) that the gcd similarly has a
degree of lower order of magnitude than the main term nqn, and hence the lower
bound is equality at least for the approximating sequence βn.

As Voloch pointed out to the author, a straight generalization of Voloch’s [V88,
Prop. 5] implies that if the ratio of the degrees of consecutive elements of the
approximating sequence ri of degree d elements approximating α tends to R and
they approximate to the exponent E, with E > d(

√
R + 1), then E is in fact the

exponent Ed(α).
The only change in the proof there given for d = 1 is the replacement of

H(r1 + r2) ≤ H(r1) + H(r2) there by ≤ d(H(r1) + H(r2)), where ri is the ap-
proximation of degree d.
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Unfortunately, deg logq H(βn+1)/ deg logq H(βn) tends to q as n tends to infinity
and 3 + 1/(q − 1) < 2(

√
q + 1), so we cannot get the exact value of the exponent

by a straight application of this result.

5.3. Application to algebraic quantities. Next, we apply it to algebraic α’s,
as in (5), (6), where we can get even better lower bounds by constructing examples
with many repetitions as follows.

Let p = 2. Choose some palindromic vector X1 = X−
1 of partial quotients and

yi polynomials of degree at least 1. Suppose [0, X1] = a/f . Then by the folding
lemma, we have

α =
a

f
+

1

y1f2
+

1

y2y21f
4
+

1

y3y22y
4
1f

8
+ · · · ,

as long as the hypothesis of the folding lemma holds at each stage, namely denomi-
nators claimed do not get reduced. This can often be arranged easily. For example,
choose X = f to be a singleton, so that a = 1. Choose all yi’s to be powers of the
same irreducible and f to be a power of the (same or another) irreducible.

We give some such family of examples and leave variations to the reader.
We fix integers m, r > 1 and let y be an irreducible and yj := y if m does not

divide j and yj := yr if m divides j. Let Bi := ym+iy
2
m+i−1 · · · y2

m−1

i+1 .
By looking at the positions at which yr occurs, we see that the continued fraction

is not eventually periodic and thus α is not quadratic. We decompose α as above,
with a = 1, as

∑
αi, where i runs through 0 and m − 1 and αi consists of the

subsum containing terms of the above series with index (starting with 0) i modulo

m. We thus see that α2m

i /Bi − αi = 1/(yi · · · y2
i−1

1 f2i). Thus degα ≤ 2m
2

.
We have a bounded partial quotient sequence, so that E1 = 2. On the other

hand, if we again approximate by βn, but now for n’s which are congruent to 1
modulo m, we see that there is a 2m−1-fold repetition match of Xn, so that the
same calculation as above now shows that E2 ≥ 2m. Note now that we need not
have deg yn+1 > deg yn, but we leave it to the reader to verify that it does not
matter for the calculation.

We summarize these calculations as

Theorem 4. When p = 2, given any m > 1, there are explicit families (described

above) of algebraic irrationals α of degree greater than 2 and less than 2m
2

, with a
bounded partial quotient sequence, so that E1(α) = 2, and with E2(α) ≥ 2m (thus
breaking the analog of the Schmidt bound of 3).

Remarks. (1) The calculation above implies that the doubling symmetry cannot
happen for any α of degree 3; otherwise the Liouville bound of 3 for the quadratic
exponent would be exceeded.

(2) It is quite possible that the Liouville bound for the quadratic exponent can
be reached for a properly constructed variant of the family above.

(3) We deal with rational and quadratic approximations above. The next cubic
case falls under the more general so-called class I elements, namely those α whose
qk-th power is an integral Mobius transformation of α. This is exactly the case,
where a lot is known about continued fractions and there are automata/transducer
tools generating them (starting from [BS76]; see references in [S00, T04]). So it is
conceivable that progress can be made in this way.
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6. p > 2: ‘Half-repeat’ symmetry and quadratic exponents

Again, as before, let α = [0, X1, y1,−X−
1 , y2, X1,−y1,−X−

1 , y3, X1, · · · ] and

βn = [0, Xn, yn, Xn, yn, · · · ] = [0, Xn, yn + βn].

This time there is a half-repeat: after Xn, yn only the Xn−1 part is repeated in
α and thus only that part matches with βn entries.

As before, let us write the i-th convergent of α as pi/qi with the usual conven-
tions, so that if [0, Xn] has length m+ 1, then

[0, Xn−1, yn−1,−X−
n−1] = [0, Xn] =

pm
qm

, [0, Xn, yn] =
pm+1

qm+1
,

and

[0, Xn−1, yn−1,−X−
n−1, yn, Xn−1] =

p∗
q∗

,

where ∗ = m+ 1 + (m− 1)/2. As before, logq H(βn) ≤ deg ynqm.
By calculation as before, using the two identities in (1), we see

α− βn =
(yn−1 + · · · )− (−yn−1 + · · · )

((yn−1 + · · · )q∗ + q∗−1)((−yn−1 + · · · )q∗ + q∗−1)
,

and thus

|α− βn| =
1

|yn−1q2∗|
.

Hence, as before, we get

(9) E2(α) ≥ lim
deg yn−1 + 2deg q∗
deg yn + deg qm

.

Let us write E for E(α) and Q for deg q(m−1)/2, so that in our examples (those
in [T04, p. 316] or e(1/f) above), limdeg yn/ deg qm = limdeg yn−1/Q = E − 2.
Also, deg qm = 2Q+ deg yn−1 and deg q∗ = 3Q+ deg yn + deg yn−1. Putting these
in the E2 bound above, we get

E2(α) ≥ 2 +
Q[(E − 2) + 2(3 + (2 + (E − 2))(E − 2) + (E − 2))]

Q[(2 + (E − 2))(E − 2) + (2 + (E − 2))]

= 2 +
1

E − 1
.

Theorem 5. If p > 2 and α is as above, with E = E(α) = 2 + limdeg yn/ deg qm,
then E2(α) ≥ 2 + 1/(E − 1).

As before, applied to the exponential case, this implies,

Theorem 6. If p > 2, then E2(e(1/f)) ≥ 2 + 1/(q − 1).

Remarks. For general p and q = pk, by choosing increasing yi, we can construct, by
the same method as in the last section, several algebraic explicit continued fractions,

say by groupings, for large enough n, yn+iy
2
n+i−1 · · · y2

k−1

n+i−k+1f
2n+i

= Aif
pn+i

, with
Ai depending on i mod k. We can also have longer initial segment variation. These
are just variations on examples in [T96]. These examples will not have bounded
partial quotients now, but the negative reversal symmetry and Theorem 5 above
apply.
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7. Exponent of analog of π

Consider π :=
∏∞

n=1(1 − t1−qn)−1 ∈ K∞. It can be considered (up to rational
multiple) as an analog of the usual real number π; see [T04, p. 47].

Theorem 7. For π as above, E(π) ≥ q − 1, with equality when q ≥ 5.

Proof. If we just use truncation approximations, for 1/π from the product formula
given above, we see they have denominator of degree (q−1)+· · ·+(qn−1) asymptotic
to qn+1/(q − 1) so that the exponent is at least q − 1. If we use the proposition of
Voloch [V88, Prop. 5] (see [T04, Lemma 9.3.3] or quote above), we get the equality,
for q ≥ 5, as q − 1 >

√
q + 1 then. �

Remarks. (1) We can get similar calculations for some zeta values and other quan-
tities of interest by the same method.

(2) What are the exponents and the higher exponents known/conjectured for the
usual e, π? It is known that E(e) = 2, as follows e.g. by Euler’s continued fraction.
We know [Sa08] that E(π) < 7.61. It seems that the best known lower bound is
the trivial bound 2 and that the exact higher exponents are not known for e or π.
The author does not know of references for the best known lower/upper bounds.

8. Exponent variation within a field

We close with a few simple remarks on the question of exponent variation within
a function field.

(I) We know of (e.g. [BS76]) a degree 3 algebraic element α with bounded partial
quotients, so that its exponent is 2. We claim that any irrational in the function
field generated by α over K has bounded partial quotients (and thus exponent 2):
We know that any such element is of the form β := k2α

2 + k1α+ k0, with ki ∈ K,
but then using the cubic equation satisfied by α, it is straightforward manipulation
to see that β can also be written as a Mobius transform of α with coefficients in K
(and nonzero determinant), and thus the claim follows from [BS76].

(II) We also know of (e.g. [BS76]) a degree 3 element with exponent greater
than 2, and thus it generates an extension of K all of whose irrational elements
have (the same) exponent greater than two by the argument above.

(III) Taking the compositum of fields containing different exponent elements, it
is of course much easier to get mixed exponent fields.
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