Chapter 9
Multizeta in function field arithmetic

Dinesh S. Thakur!

This is a brief report on recent work of the author (some joint with Greg Ander-
son) and his student on multizeta values for function fields. This includes defini-
tions, proofs and conjectures on the relations, period interpretation in terms of mixed
Carlitz-Tate z-motives and related motivic aspects. We also verify Taelman’s recent
conjectures in special cases.

9.1 Introduction

Euler’s multizeta values have been pursued recently again with renewed interest be-
cause of their emergence, for example in Grothendieck-Ihara program to study the
absolute Galois group through the fundamental group of projective line minus three
points and related studies of iterated extensions of Tate motives.

Two types of multizeta were defined [T04, Sec 5.10] for function fields, one com-
plex valued (generalizing Artin-Weil zeta function) and the other with values in Lau-
rent series over finite fields (generalizing Carlitz zeta values). For the F,[¢] case, the
first type was completely evaluated in [T04] (see [M06] for more detailed study in
the higher genus case). We focus on the second analog in this report.

In contrast to the classical division between the convergent versus the divergent
(normalized) values, all the values are convergent in our case. In place of the sum
or the integral shuffle relations, we have different kinds of relations: the shuffle type
relations with I ,-coefficients and the relations with IF, (¢)-coefficients. (Classically,
of course, there is no such distinction, the rational number field being the prime field
in that case). The first kind of relations have been understood (though not with a sat-
isfying structural description) and show that the product of multizeta values can also
be expressed as a sum of some multizeta values, so that the [F,-span of all multizeta
values is an algebra. While [T09, Lr09, Lr10] conjectured and proved, in the special
case A = F,[t], many such interesting relations, combinatorially quite involved to
describe unlike the classical case, the proofs [T10] give the existence directly (for
general A, defined below) rather than proving those conjectures. We only have exam-
ples of second kind of relations so far.

As for the analogs of interconnections mentioned in the first paragraph, we can
connect to absolute Galois group (through analog of Ihara power series [ATp]) and
fundamental group approach in the Grothendieck-Ihara program only through the
mixed motives [A86, AT09]. We describe some of these motivic aspects and relation
with recent work of V. Lafforgue and L. Taelman.
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9.2 Multizeta values for function fields: Definitions

9.2.1 Notation

y/ = {integers}

Z+ = {positive integers}

q = a power of a prime p

Fy, = a finite field of ¢ elements

K = a function field of one variable with field of constants I,
o0 = a place of K of degree one

Ko =T4((1/t)) = the completion of K at co

Coo = the completion of an algebraic closure of K

A = the ring of elements of K with no poles outside co
Ag+ = {monic elements of A of degree d}

n =4" —t

tn =Dl
‘even’ = multiple of ¢ — 1

The simplest case is when A = F,[t] and K = [F,(¢), with the usual notions of
infinite place, degree and sign (in 7).

9.2.2 Definition of multizeta values First we define the power sums. Givens € Z+
and d > 0, put

1
Sa(s)= Y — €K

acAg+

and given integers s; € Z4 and d > 0 put

Sa(s1.--+.57) =Salst) Y Sa(s2)-+-Sa,(sr) € K.

d>dr>>dy>0

For s; € Z+, we define multizeta value {(sq1,--- ,s,) following [T04, Sec. 5.10]
(where it was denoted by ¢, to stress the role of the degree) by using the partial order
on A+ given by the degree, and grouping the terms according to it:

1
C(st,eevs) = ) Sdl(Sl)-”Sdr(Sr)=ZWEKOO’
e a’

dy>->dy>0 1

where the second sum is over a; € Ay, + with d;’s satisfying the conditions as in the
first sum.
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We say that this multizeta value (or rather the tuple (s1,--- ,s,)) has depth r and
weight ) s;. Note we do not need s; > 1 condition for convergence as in the classical
case. This definition generalizes, in one way, the r = 1 case corresponding to the
Carlitz zeta values. For discussion, references, interpolations and analytic theory, we
refer to [G96, T04]. In [TO4], we discuss interpolations of multizeta at finite and
infinite primes.

9.3 First kind of relations between multizeta

Recall that Euler’s multizeta values ¢ (we will use this clashing same notation only
in this paragraph) are defined by {(s1,--+,s,) = Y. (n7' ---ny")~1, where the sum is
over positive integers n; > n, > .-+ > n, and s; are positive integers, with s; > 1.
We then have ‘sum shuffle relation’

(6026 = Y i Yy = Clss2) + EGszos0) + Csi o+ 52),
1 2

just because ny > np orny < np Or n; = ny.

Since there are many polynomials of given degree (or norm), this usual proof of
the sum shuffle relations fails. Theorem 9.3.3 below shows that in place of the three
multizeta on the right of the displayed equation, in out case there can be arbitrarily
large number of multizeta, depending on s;’s. In fact, it can be seen that naive analogs
of the sum or integral shuffle relations fail. The Euler identity (2, 1) = £(3) fails in
our case, for simple reason that degrees on both sides do not match.

9.3.1 Examples However, the multizeta values satisfy many interesting combinato-
rially involved new relations [TO9] which we now describe first.

Theorem 9.3.1. (1) {(psy,---, pSk) = C(s1,--+ ,Sk)?.

(2) (Carlitz) If ¢ — 1 divides s, {(s)/7° € K, where 7 is a fundamental period of
the Carlitz module,

(3) Any classical sum-shuffle relation with fixed s;’s works for q large enough.
For example, if s1 + 52 < ¢, we have £(s1)L(s2) = C(s1+52) + L (51.52) + (52, 51).

Now we describe simplest examples when the hypothesis of part (3) is violated.
Theorem 9.3.2. (1) Whena,b < q anda + b > q, we have
t@)tb)=¢a+>b)+<¢ab)y+¢b,a)+@+b)ia+b—qg+1,q—-1).
(2) When1 < b < gq, q # 2, we have
£(b)8(2q) = ¢(2q + b) +§(b,2q) + 82, D) + bE(qg +b + 1,4 = 1)

+ (b ;L 1);(19 12,29 —2).
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(3)8(g" — DE((g — Dg™) = L(g" T — 1) + L(g" — 1. (g — Dg™).

Note in the special cases, such as when a or b is ¢ — 1 or when p divides a + b,
three depth 2 multizetas in part (1) can mix or disappear giving difference appearance
to the identities.

Theorem 9.3.3. Let g = 2. We have (1) t(1)¢(a) = C(14a)+ Y 21 ¢(i.a+1—i),
(2)If b is 0dd, {(2)E(b) = {2+ D) + X1 i <psy/2 {20 + 1,1+ b —20),
and if b is even, £(2)§(b) = {2+ D) + D1 <j<pja—1 $(2i,b +2 = 2i).

9.3.2 Conjectural recursive recipe In [T09], for ¢ = 2 a full conjectural descrip-
tion of how the product of two zeta values can be described as the sum of multi-
zetas is given. Here we just give an example of the recursive recipe: In the nota-
tion of the first theorem of the next subsection, we let ¢ = 2, so that f; = 1.
Let a = 19. Then the a;’s for b replaced by b + 32 are given by those for b and
b+32,b+31,b+28,b+27,b+24,b+ 23, b+ 20,b + 19. In other words, at
each recursion step of 32, eight new multizeta values described get added.

In [Lr09, Lr10] these conjectures were partially generalized, giving full recursive
step (but not the initial values) when ¢ is a prime, and a partial description for any ¢
as follows. Again in the notation of the first theorem of the next subsection, we have
a recipe giving f; and a;, given (a, b). For a fixed a it is recursive in b of recursion
length (¢ — 1) p™, where m is the smallest integer such that a < p’, and at each
recursive step one adds t, = [[(p — j)*/ new multizeta terms, where p; is the
number of j’s in the base p expansionofa — 1.

David Goss has recently stressed the role of the ‘digit expansion permutation sym-
metries (px below)’ in the theory of Carlitz—Goss zeta function, with respect to its
zeros, orders of vanishing etc. If p denotes arbitrary permutation of the set of non-
negative integers, then we have resulting action p«(>_n;q?) := 3 n;q°® on digit
expansions base g. Note that, with ¢ = p, and given any p and a, the same recipe
works for both a — 1 and p,(a — 1) for the recursion length and for the number of mul-
tizetas to be added, if we do not insist on the smallest recursion length. Thus a strong
form of such symmetry shows up in the theory of multizeta values.

In [T09], it was also described how the ‘soliton’ technology allows us to prove any
such relation (for fixed s;’s). This is much simplified by the next theorem. It seems
plusible that the complicated combinatorial recipe above can be deudced from the
next theorem, but this has not been done yet.

9.3.3 General theorem In [T10], we proved all relations of the first kind, namely
with coefficients in the prime field, bypassing nice explicit or recursive relations con-
jectured above. This is done as follows.

First we consider

Sa(@)Sa(b) —Sala+b) =Y fiSalai,a+b—ay), *)

with f; € F,,.
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Theorem 9.3.4. (1) Let A = Fy[t]. Given a,b € Z+, there are f; € Fj, and a; €
74, such that (*) holds for d = 1.

(2) Fix q. If (*) holds for some f; € F, and a; € Z+ ford = 1and A = Fy[t],
then (*) holds for all d > 0 and for all A (corresponding to the given q). In this case,
we have the shuffle relation

@) (b) —(a+b)—tla,b)—¢(b,a) =) fit(ai,a+b—ap). (%)

(3) Sa(ar, -+ .ar)Sq(b1.--- ,br) can be expressed as ) fiSq(ci1, * .Cim;),
with f; € Fp, cij’s and m;’s being independent of d, and with ) a; + > b; =
chij andm; <r +k.

(4) For any A, the product of multizeta values can be expressed as a sum of some
multizeta values, such an expression preserving total weight and keeping depth filtra-
tion. In particular, the I ,-span of all the multizeta values is an algebra.

Note that this theorem gives an effective procedure for expressing a given prod-
uct of multizeta values as a sum of multizeta values. The resulting proof of such an
expression is much simpler than the process mentioned above.

9.4 Second kind of relations between multizeta
In place of the Euler identity, we have

Theorem 9.4.1. When ¢ = 3, we have £(1,2) = ¢(3)/4; = £(3)/(t — t3). More
generally, for any q, we have
E(m,m(qg —1)) = ¢mq) /LY, m =<q
(1, = 1) = L(g*)(1/Lz + 1/L1)
Remark 9.4.2. When ¢ = 3 (when ‘even’ agrees with even), in comparison with

the Euler identity we have an order switch. But, using the sum shuffle identity 2.3 for
£(1)¢(2), we can express £(2, 1) in terms of £(3) = ¢(1)3 and 7.

Here are some expressions involving logarithms of algebraic quantities.

Theorem 9.4.3. (1) We have

PN L L SRRLIL BENL S RTINS
g =) = £) (7 + 4 + 4 ) - g Qoo

(2) £(1,q"™ — 1) is (explicit) {(q") times a rational plus linear combination of
q-power powers of logarithms of q-power roots of polynomials.
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9.5 Period interpretation and motivic aspects
In [AT09], the following theorem was proved.

Theorem 9.5.1. Given multizeta value {(s1,--- , s;), we can construct explicitly iter-
ated extension of Carlitz—Tate t-motives over Fq|[t] which has as period matrix entry
this multizeta value (suitably normalized).

This generalizes result [AT90] connecting {(s) to the logarithm of and explicit
algebraic point on Carlitz—Tate ¢-motive C ®$, or equivalently to the period of one step
extensions of such #-motives. In [T92, A94, A96], these were generalized somewhat
to higher genus and L-function situation.

In [ATp] Thara power series theory is developed. (It is meta-abelian etale aspect
of the Grothendieck-Ihara program [I91], whereas the multizeta values should be
DeRham-Betti aspect at nilpotent level.) In studying the big Galois representation it
provides, complicated digit combinatorics [A07], just as what we encountered above
in describing the relations between multizeta, enters the picture. The extension giving
zeta values is also linked to [ATp] analog of Deligne-Soule cocycles, which have
connections with ‘cyclotomic unit module’ of [A96] in addition to zeta values (though
no K-theory link yet).

While all these connections with analogs of motives are exciting, and concrete,
and while the natural constructions here lead to much stronger transcendence results
than in the number field case, their larger perspective is not yet fully understood even
conjecturally, and we lack a good analogous description to that of Deligne (and oth-
ers) linking zeta and multizeta values to motivic extensions and K-theory.

Recent exciting works by (i) V. Lafforgue [L09] giving an analog of Bloch—Kato,
Fontaine—Perrin—Riou work relating p-adic L-values and motivic extensions; and (ii)
L. Taelman [Tal0] (which I learned about at this Banff workshop) defining a notion of
good extensions (and of class module that we were after [T94, p. 163] for long!) and
conjecturing a class number formula for the L-values at the infinite place; represent
excellent steps in this direction.

We end this short report by giving some calculations, inspired by these results,
verifying Taelman’s conjectures (as hinted in remark 1 of [TalO]) in the special
case of higher genus, class number one [T92] results mentioned above. In the no-
tation of [Tal0], we deal with R = A, where A (below) is the base generalizing
A = k[t] there and p (below) generalizing the Carlitz module E there in conjec-
ture 1.

We deal with examples A-D on pages 192-194 [T92] and recalled below. These
are known to be all the examples A having class number one, and positive genus.
The sign normalized rank one Drinfeld A-modules p’s for these A’s are given there
explicitly, for the sign function with the sign of x and y to be 1. Let log,(z) and

e(z) 1= exp,(z) = ) 27 /d; be the corresponding logarithm and exponential re-
spectively.



Multizeta in function field arithmetic 447

Theorem 9.5.2. With the notation as above, for the examples (A)-(C),
o0
1
Ca()i= ) ), — =logy(g),

d=0acAz;+
where g is the unique generator (with its exponential being one-unit at infinity) of
Taelman’s p(A) := e(Koo) N A, which is a rank one A-module under p. Further,
Taelman’s class module is trivial in each case, and thus the zeta value is class module
order times the regulator.

Proof. Example (A)is A = F3[x, y]/y? = x> —x —1.

We show [T92, Thm VI] that {(1) = log,(y — 1).

Now we claim that y — 1 generates p(A4) as A-module under p. From the result
quoted above, y — 1 € p(A). Using the functional equations given by explicit de-
scription of p, we calculate the d;’s and see that the degree of d; is (i — 2)3*, for
i > 0,andis O fori = 0. If z € Ky has degree d, then we thus see that de-
gree of e(z) is less than —1 for d < —1, 3%+! ford > 0, and 0 ford = —1. So
it is immediate, for example, that the degree two elements x, x = 1 do not belong
to p(A). Using the F,-linearity of e, it is enough to show that 1 does not belong
to p(A). If e(z) = 1, z is of the form +x/y+ terms of the lower degree. Using
dy = 1/y and degrees of d; given above, ignoring degrees less than —1, we see that
1=x/y+x3/y?2=x/y+x3/(x>—x —1) and thus we have an element of degree
—1 in e(K ) contradicting the estimates above. (Another way to show this is to use
the explicit p and degree estimates and show that y — 1 is not in the module, if it is
not a generator). Thus this rank one module is generated by y — 1, which is in fact
the unique generator whose exponential is a one-unit at infinity.

Example (B)is A = Fy[x, y]/y? +y = x3 + &3.

We show [T92, Thm. VIII] that e(¢ (1)) = x8 + x* + x2 + x.

The calculation as above, shows that degree of d; is now (i — 3)4' fori > 0
and 0 for i = 0, so that if degree of z € K is d, then degree of e(z) is < —3 for
d < —3,=49"2ford > —1, and 0 for d = —2. Thus without loss of generality,
by degree considerations, the generator has degree 0, 4 or 16. Again, a straight degree
(and py (1) = x® 4+ x2 4 x + 1) calculation shows that the first two possibilities make
it impossible for the module to contain x® 4+ x* 4+ x2 + x. Thus x8 + x* + x2 + x is
generator of p(A), again a unique generator whose exponential is one-unit at infinity.

Example (C)is A = Fa[x,y]/y*+y = x>+ x + L.

We show [T92, Thm. X] that e(¢(1)) = 0 and in fact that (1) is the fundamental
period (value of logarithm of zero), as d; = 1.

Thus p(A) is the torsion module generated by zero. (Compare [Tal0] with the
Carlitz module case, where it is generated by 1, as (1) = log(1), which was essen-
tially [AT90, p. 181] proved by Carlitz. In that case, when g = 2, it is torsion module
{0,1,1,¢ + 1} generated by 2 + ¢-torsion point 1).

This takes care of the first part of the theorem. As explained in [TalO] to show
that the class module is trivial, it is enough to show the

Claim: X :=e(Kw)+ A = Ko
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It is enough to show that Ko, C X. For example A (B respectively), by the cal-
culation of degree d;’s above (or using that log(z) converges for z of degree less than
—3/2 (—8/3 respectively)), we see that e(K ) contains all elements in K, of each
degree less than —1 (—2 respectively) and A contains elements of all non-negative
degrees except 1. Hence it remains to show that X contains elements of degree —1, 1
(—2,—1, I respectively). We take care of the remaining degrees as follows.

For example A: e(x/y) is x/y (of degree —1) plus y(x/y)3 (whichis 1 € 4
plus an element of degree —4, and thus in X) plus an element of degree —9 (and
thus in X)), so that degree —1 is also taken. Also, e(y/x) is y/x (of degree 1) plus
y(y/x)3 (whichis x3 4+ x + 1 € A plus an element of degree —2 and thus in X) plus
(7 4+ yB3(x3 = x))/(x°(x° — x)) (which is y3 + y plus element of degree —3 and
thus in X) plus (sum of) terms of degree non-positive (and thus in X'). This proves
the claim in example A.

For example B: Since e(1/x) is 1/x (of degree —2) plus (x* + x)/x* € X plus
terms of degree less than —15 (and thus in X'), we get degree —2. The expansions
of e(x/y) (e(y/x) respectively) consist of degree —1 (1 respectively) plus two (four
respectively) terms which are rational functions of x (and thus subtracting an appro-
priate polynomial in x contribute degree < —2 and thus in X) plus terms of degree
< —2 (and thus in X'). This proves the claim in example B.

For example C: Calculation is similar and even simpler. Now degree of d; is (i —
1)2%, for i > 1, and thus (alternately, logarithm converges for elements of degree less
than zero) all elements of degree less than O are in the image of exponential. Only
degree one is missing in elements of A, but as above we see that e(y/x) + x is of
degree one, proving the claim. O

Example (D) is A = Fa[x,y]/y?> + y = x> + x> + 1 of genus 2. Here ¢(1)
is x2 + x times the fundamental period. The only x? + x-torsion is zero, thus class
module should have order x2 + x, as we have verified directly.

9.6 Updates added on 23 August 2011

In his doctoral thesis work with the author, Alejandro Lara Rodriguez has now proved
[Lr10, Lr11] most of the conjectures mentioned in 3.2 and has also proved [Lrl1,
Thm. 7.1, Cor. 7.2] the following theorem by making the recipe of Theorem 9.3.4
explicit in the depth 2 special case.

Theorem 9.6.1. Let g be a power of prime p, a, b be positive integers and m be the
smallest integer such that a + b < p™. Then we have

£(@)t(b) — ¢a +b) —t(a.b) — {(b.a)
b—1 a—1

=Y filb—ia+i)+ ) gitla—j.b+)).
i=0 j=0
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where, if ¢ = 2, we have

i J

and more generally, for q arbitrary, with H, p(t) given by

1 m
Hap(t) = —( =P (¢ + )47 = 1) mod 147 |
VeFy

we have f(1) := fo+ fit + -+ fo—1t"7" = Hap(1), g(t) := go + 10 + - +
ga—119"1 = Hy 4(t), where Hyp , is obtained from H, p(t) by interchanging a and
b.

9.7 Updates added on S February 2013

Using similar, but better partial fraction decomposition formula, Huei Jeng Chen
[Ch15] has simplified the above recipe considerably to

§(a)¢(b) —l(a + b) —L(a.b) = ¢(b.a)

=y ((—1)“—1(2 ~ 1) + (—l)b‘l(i - i)) fla+b—j.Jj),

where the sum is over j which are multiplesof ¢ — 1 and0 < j <a + b.

[LTp] proved and conjectured which shuffle relations survive in Theorem 9.3.4, if
we drop the condition on A that the infinite place is of degree one.

Chang [C14] and Mishiba [Mipl, Mip2] have proved interesting general tran-
scendence theorems for the multizeta values, making use of Theorem 9.5.1 and the
transcendence criterion of Anderson, Brownawell and Papanikolas.

In a recent preprint, Kirti Joshi has constructed a neutral, tannakian, F-linear
category of mixed 7-motives, and also of mixed Carlitz—Tate 7-motives containing all
those mentioned in Theorem 9.5.1, thus providing a natural playground for multizeta
and setting the stage for exploring analogs of various recent motivic works related to
multizeta.

9.8 Updates added on 27 April 2015

The shuffle relations of Theorem 4 are thus special quadratic relations whose use
reduces the study of the algebraic relations between multizeta (at least in principle)
to the study of linear relations between them.
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Results, conjectures and algorithms to decide when the ratio of a multizeta value
with a zeta value is algebraic have appeared in [LT14, CPY, KL, Chp].

Good understanding of all the multizeta linear relations with [, (¢)-coefficients
is slowly emerging through the extensive numerical calculation based on the lattice
reduction method, parallel to the similar one performed by Zagier, by author’s current
doctoral student George Todd. Based on this, Todd has conjectured the following for-
mula for the dimension d,, of the span of multizetas of a given weight n: d,, should be
o=t on=1 1 ordy_1 +--++dy_q dependingon 1 <n < g,n = q,n > q respec-
tively. This has led the author to update his earlier speculation that {(sq, - - - , sx) with
s;i < q should be linearly independent, to the speculation that a basis for the linear
span for weight n could be obtained by exactly such multizetas for n < ¢, and for
n > g by adding s; = i in front to tuples in a basis for weights n — i, fori < g. This
is, so far, consistent with Todd’s data. Given a linear relation which works at the S;
level (called ‘fixed’, e.g. as in (*) before Theorem (4)) or at certain Sy ;-levels for
some i (e.g.i = 0,1, called ‘binary’, e.g. as in first relation in Theorem 5), one can
generate more relations by multiplying them on the left or right and using the shuffle
relations, obtained from Theorem 4, at S; or S—4 level by summing. Todd has proved
several families of linear relations using this, and his numerical evidence leads him to
conjecture that all the relations should come via this procedure, starting with just one
‘seed’ relation, namely the first relation of Theorem 5 for m = 1. He observes that
such binary relations typically are complicated but they ‘collapse’ often to give much
shorter relations at the multizeta level, which can also be shown by shorter relations
at Sgz4; levels, but typically involving many i’s then.
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