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Iwasawa theory and Cyclotomic Function Fields

DINESH S. THAKUR

Abstract. We will describe and put in the perspective of Drinfeld’s theory,
some therorems and conjectures relating class numbers and zeta values at
positive and negative integers (as we will see, these are two distinct theories
in contrast to the classical case), analogues of results and conjectures of
Kummer and Vandiver, growth rates of class numbers, zeta measures and
other aspects of Iwasawa theory.

Iwasawa theory started as an attempt by Iwasawa to carry out analogue for

number fields of a well-developed theory for function fields, due to Andre Weil

and others. This theory related the zeta function of the function field to the

characteristic polynomial of Frobenius acting on p-power order torsion in the

Jacobian of the corresponding curve. Here p can be any prime unequal to the

characteristic. In this theory, to get good structural results, one needs to take

algebraic closure of the finite field of constants of the function field and hence

consideration of the tower of constant field extensions enters naturally. Since

the constant field extensions are just the extensions obtained by adjoining roots

of unity, to get a better analogy between p-power order torsion in the Jacobian

on the function field side and the p-Sylow subgroup of the class group on the

number field side, Iwasawa considered the tower of number fields obtained by

adjoining p-power roots of unity or more generally Zp-extensions for some fixed

prime p.

Over Q, the cyclotomic extensions (i.e. (subfields of) the extensions obtained

by adjoining the roots of unity) coincide with the abelian extensions by the

Kronecker-Weber theorem. Over a function field this is far from the case. Indeed,

the cyclotomic extensions are then just the constant field extensions and there

are, of course, many more abelian extensions, for example, various Kummer and
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Artin-Schreier extensions. Carlitz, Drinfeld and Hayes [C2, D, H1] developed

other families of abelian extensions of function fields, which also can be thought

of as ‘cyclotomic’ because of the strong analogies with the classical case. We will

now briefly describe this ‘cyclotomic’ theory. For more details see [H1,H2]. For

the corresponding classical cyclotomic theory, see the books by S. Lang and L.

Washington.

At the most basic level we have, as analogues of Q, the archimedean place ∞,

Z, R, C respectively, their counterparts: a function field K with a finite field

Fq (of characteristic p) of constants, any place ∞ of K (we will assume it to be

rational for simplicity), the ring A of integers outside ∞, K∞ and the completion

Ω of an algebraic closure of K∞ respectively. The simplest example, where the

analogies also turn out to be the strongest, is when K = Fq(T ) and A = Fq[T ].

Now the roots of unity can be interpreted as the torsion of the rank one object

‘Z inside the endomorphism ring of the multiplicative group’ (where n is viewed

as the n-th power map). In finite characteristic, we have a shorter supply of

multiplicative functions, (i.e., there is no nontrivial ‘exponential’ from additive

to multiplicative groups in characteristic p: we would have e(0) = e(px) =

e(x)p, for all x, for such an exponential e) but have a larger supply of additive

functions. The endomorphism ring of the additive group in characteristic p is

a huge non-commutative ring of polynomials in the Frobenius endomorphism.

Hence Drinfeld considered, as an analogue of roots of unity, the torsion of a rank

one object ‘A inside this ring’ (where a ∈ A is viewed as the map u 7→ ρa(u) =
∑deg a

i=0 aiu
qi , with the normalizations a0 = a and adeg a = sgn(a)). Here deg

and sgn are the degree and a fixed sign function on A. The conditions on ρa(u)

assure that the a-torsion Λa := {u ∈ Ω : ρa(u) = 0} is an A/(a) module of rank

one. The simplest example is the ‘Carlitz module’ : A = Fq[T ], ρT (u) = Tu+uq.

(Exercise: The T 2-th cyclotomic equation is uq
2

+ (T + T q)uq + T 2u = 0).

To the ‘Drinfeld module’ (we have restricted the terminology more than in

the original definition in [D]) ρ one associates the exponential function e : =

eρ : Ω → Ω defined to be an entire additive function e(z) =
∑∞

i=0 eiz
qi satisfying

e(az) = ρa(e(z)) (in analogy with enz = (ez)n) for all a ∈ A and normalized

by e0 = 1. The kernel of e, which can be thought of as an analogue of 2πiZ,

can be written as π̃A (if the class number of A is greater than one, it can be π̃I

for some ideal I of A and in fact there are class number many Drinfeld modules

corresponding to these rank one A-lattices). In terms of these analogues of the

exponential and 2πi, the a-torsion can be written as e(π̃a′/a) for some a′ ∈ A

and can be thought of as analogue of n-th root of unity ζn or 1 − ζn. (See the

next paragraph).

To illustrate these close analogies a little further, we note that if K is of class

number one, and ℘ is a prime of A, then K(Λ℘) is an extension of K with Galois

group (A/℘)∗, in which ℘ is totally ramified (so that the extension is geometric

in contrast to the constant field extension), all other finite primes are unramified,

and for λ ∈ Λ℘−{0}, (λ) is a prime above ℘. (Comparing this with the fact that



IWASAWA THEORY AND CYCLOTOMIC FUNCTION FIELDS 3

1− ζp is a prime above p in Q(ζp), we see that λ is an analogue of 1− ζp. This

reflects the fact that we are now dealing with the additive group rather than the

multiplicative group.) The Galois action is given by Frobv(λ) = ρv(λ). (For I an

ideal of A, ρI is defined to be the monic generator of the ideal generated by ρi,

i ∈ I). If we denote the ‘maximal totally real (i.e., ∞ splits completely) subfield’

by K(Λ℘)
+, the Galois group over it is A∗ = F∗

q . Compare to Z∗ = {±1} of the

classical case. The respective cardinalities, namely q−1 and 2 play an analogous

role and we call multiples of q − 1 ‘even’.

We remark that the arbitrary choice of the infinite place ∞, which made

possible this strong analogy also makes all the abelian extensions obtained by

adjoining the a-torsion tamely ramified at ∞ by the above. To get the maximal

abelian extension of K one needs to play the whole game again by switching to

a different infinite place and by taking the compositum of all such extensions.

We now turn to some deeper aspects of the cyclotomic theory. Let L = K(Λa)

and F = K(Λa)
+, where a ∈ A is nonconstant. The intersection of the subgroup

of L∗ generated by the elements of Λa−{0} with O∗
L is the group E of cyclotomic

units. We denote by h(R) the class number of R, for R a Dedekind domain or a

field. We then have the following analogue of Kummer’s theorem.

Theorem 1. (Galovich-Rosen [G-R]): Let A = Fq[T ] and a = ℘n, where

℘ is a prime of A. Then h(OF ) = [O∗
L : E].

Remark: This was later generalized to the case of any a (i.e., an analogue of

Sinnott’s result). Shu has announced [S1] generalization to any A.

Sketch of the proof. We have O∗
L = O∗

F just as in the classical case. Let

S = {∞i} denote the set of the infinite primes of F . Let Div0(S) ⊃ P (S) ⊃ E
be the groups of divisors of degree zero supported on S, divisors of elements of

O∗
F and the divisors of cyclotomic units respectively. It is elementary to see that

the index in the theorem is equal to that of E in Div0(S). The calculation of

the divisors of cyclotomic units using the basis ∞i −∞0 of Div0(S) allows us to

express this index as determinant, which by the Dedekind determinant formula,

can be expressed as a product of certain character sums. Finally, the analytic

class number formula for the Artin-Weil zeta and L-functions for the function

fields identifies this product as the class number h(F ) of F . The theorem follows

by noticing that [Div0(S) : P (S)] = h(F )/h(OF ).

Next we discuss Tate’s proof of the analogue of the Stickelberger theorem.

Let K ′ be a geometric (i.e., with the same field of constants) extension over K,

with an abelian Galois group G. Let Cl(K ′) be the class group of K ′ and let

θ(T ) =
∑

σ∈G Z(σ
−1, T )σ where Z is the partial zeta function for σ. Then the

Stickelberger element is θ = θ(1).

Theorem 2. (Tate [Ta]): (q − 1)θ ∈ Z[G] kills Cl(K ′).
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Sketch of the proof. Class group is just the group of Fq- rational points

of the Jacobian (of the corresponding curve), i.e., the part of the Fq- points of the

Jacobian where the Frobenius acts as the identity. Now by fundamental results

of Weil, the L-function of a character of G is the characteristic function of the

Frobenius on the corresponding component of the Jacobian or rather the Tate

module, and hence it kills the component when T = F by the Cayley-Hamilton

theorem. Hence θ(T ), which is just a linear combination of L-functions with

projection to the components operators, kills the class group when T = 1. (One

needs (q− 1) factor to clear out the denominators to get polynomials, when one

makes this sketch precise.)

The interpretation of the L-function as the characteristic polynomial in the

above is precisely the result on which Iwasawa’s main conjecture is based. Since

this is already known, the Gras conjecture giving the componentwise version of

Theorem 1, which follows classically from the main conjecture, is known here.

This was recognised in [G-S].

In contrast to the number field case, we have class groups of fields as well as

the ring of integers outside the infinite places above the chosen ∞. Let a = ℘

be a prime of A of degree d, so that L = K(Λ℘). Let C, C̃ be the p-primary

components of the class groups of L and OL respectively. LetW be the Witt ring

of A/℘. Then if w denotes the Teichmuller character, we have the decomposition

C
⊗

Zp
W =

⊕

C(wk) into isotypical components according to the characters of

(A/℘)∗.

Theorem 3. (Goss- Sinnott [G-S]): For 0 < k < qd − 1, C(w−k) 6= 0 if

and only if p divides L(wk, 1)

Sketch of the proof. The duality between the Jacobian and the p-adic

Tate module Tp transforms the connection between the Jacobian and the class

group in the proof of Theorem II to Tp(w
−k)/(1 − F )Tp(w

−k) ∼= C(w−k). On

the other hand, we have a Weil type result: det(1 − F : Tp(w
−k)) = Lu(w

k, 1).

Here Lu is the unit root part of the L-function and hence has the same p-power

divisibility as the complete L-function. Hence ordp(L(w
k, 1)) is the length of

C(w−k) as a Zp[G]-module and the theorem follows.

Comparison with the corresponding classical result shows that we are look-

ing at divisibilty by p, the characteristic, rather than the prime ℘ relevant to

the cyclotomic field. To bring ℘ in, we need to look at another zeta function

introduced by Carlitz and Goss:

Let ζ(s) :=
∑

n−s ∈ K∞, where the sum is over monic polynomials of A and

s is a positive integer. If s is any integer,

ζ(s) :=
∞
∑

i=0

∑

degn=i
n monic

n−s
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makes sense and in fact belongs to A for s a negative integer, since in that case

the second sum vanishes for large i.

The identification W/pW ∼= A/℘ provides us with the Teichmuller character

w : (A/℘)∗ → W ∗ satisfying wk(n mod ℘) = (nk mod ℘) mod p. Hence the

reduction of L value in the theorem 3 modulo p is ζ(−k) mod ℘. (This works

for k ‘odd’ (i.e. not a multiple of q− 1), for ‘even’ k, we need to use ‘the leading

term’ when there are ‘trivial zeros’; but we will ignore this aspect below). Hence

we get

Theorem 4. (Goss-Sinnott [G-S]): For k ‘odd’, 0 < k < qd−1, C(wk) 6= 0

if and only if ℘ divides ζ(−k).

For simplicity, we will now restrict to the case A = Fq[T ]. Classically,

Bernoulli numbers occur in the special values of the Riemann zeta function at

both positive and negative integers and these values are connected by the func-

tional equation for the Riemann zeta function. In our case, there is no simple

functional equation known and in fact we get two distinct analogues of Bernoulli

numbers Bk (or rather the more fundamental Bk/k) both connecting to class

groups: those coming from the positive values relate to class groups of rings

of integers (see Theorem 6 below) in contrast to class groups of fields (as in

Theorem 4).

Let us define the factorial function Π(m) and Bernoulli numbers Bm by anal-

ogy with the classical case: For a positive integer m, define Π(m) :=
∏

℘ ℘
m℘ ∈

Fq[T ], where m℘ :=
∑

e≥1[m/Norm(℘)e]. Define Bm ∈ Fq(T ) by the for-

mula z/e(z) =
∑

Bm/Π(m)zm (compare with the classical generating function

z/(ez−1)). The connection with the special zeta values at the positive integers is

through the following analogue of the Euler’s result: ζ(m) = −Bm(2πi)m/2(m!)

for even m.

Theorem 5. (Carlitz [C1]): For ‘even’ m, ζ(m) = −Bmπ̃
m/(q− 1)Π(m).

Sketch of the proof. First note that q − 1 = −1 in the formula. The

proof follows by taking the logarithmic derivative of e(z) (to get the Bernoulli

numbers through the generating function on one hand and to get zeta values

using the geometric sum expansion through the product formula for e(z) on the

other hand) and by comparing coefficients.

Since ζ(−k) turns out to be a finite sum of nk’s, by Fermat’s little theorem, the

ζ(−k)’s satisfy Kummer congruences enabling us to define a ℘-adic interpolation

ζ℘. On the other hand, the Bm satisfy analogues of the von-Staudt congruences

and the Sylvester-Lipschitz theorem. We have now two distinct analogues of

Bk/k: −ζ(−k+1) for k−1 ‘odd’ on one hand and Π(k−1)ζ(k)/π̃k, with k ‘even’

on the other. It should be noticed that the shift by one does not transform ‘odd’

to ‘even’ unless q = 3, and we do not know any reasonable functional equation

linking the two.
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Theorem 6. (Okada, Goss [O]): Let A = Fq[T ]. Then for 0 < k < qd − 1,

k ‘even’, if C̃(wk) 6= 0, then ℘ divides Bk.

Sketch of the proof. We define analogues of Kummer homomorphisms

ψi : O∗
F → A/℘ (0 < i < qd − 1) by ψi(u) = ui−1, where ui is defined as follows.

Let u(t) ∈ A[[t]] be such that u = u(λ) and define ui to be Π(i) times the

coefficient of zi in the logarithmic derivative of u(e(z)). Using the definition of

the Bernoulli numbers, we calculate that the i-th Kummer homomorphism takes

the basic cyclotomic unit λσa−1 to (ai − 1)Bi/Π(i). If C̃(wk) 6= 0, then by the

componentwise version of Theorem 1 (‘Gras conjecture’), ψk(λ
∑

w−k(σ)σ−1

) = 0

and hence the calculation above implies that ℘ divides Bk.

Using her generalization of Theorem 1, Shu has announced [S2] a generaliza-

tion of Theorem 6 to any A.

Now we describe some results by Anderson and myself [A-T] about the zeta

function for A = Fq[T ], defined above. Classical counterparts of these results

are not known. To avoid defining a lot more terminology, we describe the result

roughly as an expression of ζ(n) (ζ℘(n) resp.) (where n can be ‘odd’ as well

as ‘even’) as a logarithm (℘-adic logarithm resp.) of an explicit algebraic point

on the n-th tensor power of the Carlitz module. Using this result together with

his theorems on the transcendence properties of the exponential (analogues of

Hermite- Lindemann, Gelfond-Schneider and Mahler theorems), Jing Yu has

proved

Theorem 7. (Yu [Y]): For a positive integer n, ζ(n) is transcendental over

K and if further n is ‘odd’, then ζ(n)/π̃n and ζ℘(n) are transcendental.

Now we mention some curious consequence of these results. K. Kato has

raised the question of whether, for a given n, ℘ divides ζ℘(n) for infinitely many

℘’s or not. The expressions in [A-T] mentioned above show that whether ℘

divides ζ℘(1) is equivalent to whether ℘2 divides ρ℘−1(1). This last statement is

clearly an analogue of the well-known Wieferich criterion in classical cyclotomic

theory: whether (1+1)p−1−1 ≡ 0 mod p2. We can then also write down ‘higher

Wieferich criteria’ using higher zeta values. It might be interesting to understand

their classical counterparts and their significance. It should be stressed though

that classically the zeta function has a pole at n = 1, in contrast to the case

here.

Two important statements in the cyclotomic theory concerning the class

numbers are Kummer’s result that p divides h(Q(ζp)
+) implies that p divides

h(Q(ζp)
−) and the conjecture of Kummer and Vandiver that p does not divide

h(Q(ζp)
+). Ireland and Small [I-S] exhibited a simple example showing that an

analogue of both these statements is false. Namely, if A = Fq[T ], with q = p = 3

and ℘ = 2 + T 2 + T 4, then p divides h(O+
L ) but does not divide h(O−

L ). We

would like to point out that there are various possible analogues that might be

explored. First note that we have p and ℘ instead of just p as in the classical
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case. How about checking the divisibilty by the norm of ℘? Some examples show

that the analogue of the Kummer result still fails if we use the class numbers

of fields, but it is not known with the rings of integers. Another naive analogy

would be to note that p divides the order of a group if and only if Z/p sits in the

group and we may want to ask whether A/℘ sits in the group: a question a priori

different from whether the norm divides the order. Instead of the class group,

which is an abelian group or a Z- module we may need to get some A-module

to formulate an analogue. (See also [G3] pa. 391).

Let us now look at the class number growth in towers of fields. We can use the

class number formula for the zeta function which gives h =
∏2g

1 (1−αi), where αi

are the eigenvalues of Frobenius of absolute value
√
q, by Weil’s result. (Analogue

of the Riemann hypothesis). This implies that (
√
q + 1)2g ≥ h ≥ (

√
q − 1)2g,

where g is the genus of the field. For the constant field extensions, on which

the Iwasawa theory was based, we get for the n-th layer of a Zl -tower the

asymptotics hn ∼ qgl
n

, because
∏

αi = qg. Note that by class field theory, for

l 6= p, all Zl-extensions are essentially constant field extensions, whereas for l = p,

the characteristic, there are many more Zp-extensions. Gold and Kisilevsky [G-

K] have shown that for geometric Zp-extensions, log hn ≥ p2(n−n1)−1/3 and in

fact they could construct such towers with arbitrarily large growth.

Analogies we have been discussing suggest that we might look at A℘-towers

rather than Zp-towers. But note that A℘’s are much too wild to arise as Galois

groups in a similar fashion. The cyclotomic tower K(Λ℘n) corresponds to an

A∗
℘-extension (a general theory of such extensions or of extensions over ‘the first

level’ is not much developed yet; it is interesting to note that the dependence

of the group on ℘ is just through its degree) and putting the ramification data

mentioned above in the Riemann-Hurwitz formula gives gn ∼ d(qd − 1)nqd(n−1).

This implies that log hn ≍ n(Norm(℘))n. A similar asymptotic is not known

classically. It is known for the minus part in the classical as well as our case.

How about the class numbers of the rings of integers?

We now come to the zeta measure associated to Fq[T ]. (See [T1], [G3] and

references there). Under the Iwasawa isomorphism, Zp-valued measures on Zp

can be identified with power series in such a way that the convolution of measures

corresponds to the multiplication of the corresponding power series. In fact, the

binomial coefficients (x
k
) give basis of polynomials in x over Q, which map Z

to Z and the power series associated to the measure µ is just
∑

µkX
k where

µk :=
∫

Zp
(x
k
)dµ. The analogue for A = Fq[T ] of (1+ t)

x−1 =
∑

(x
k
)tk is ρx(t) =

∑{ x
qk
}tqk and in fact { x

qk
} gives a basis of ‘additive’ polynomials over K which

map A into A. There is a way to extend this definition of binomial coefficients

to any {x
k
} and if we associate to an A℘-valued measure µ on A℘ a divided

power series
∑

µk(X
k/k!), with µk defined analogously, then the convolution

corresponds to the multiplication of the divided power series.

Classically, the measure µ whose moments
∫

Zp
xkdµ are (1 − ak+1)ζ(−k) for



8 DINESH S. THAKUR

some a ≥ 2, (a, p) = 1 has the associated power series (1 +X)/(1− (1 +X))−
a(1 +X)a/(1− (1 +X)a). We need a twisting factor in front of the zeta values

to compensate for the fact that the zeta values are rational rather than integral,

in contrast to our case. Comparison of this result with the following is not

well-understood.

Theorem 8. (See[T1]): For A = Fq[T ], the divided power series correspond-

ing to the measure µ whose i-th moment is ζ(−i) is given by
∑

µk(X
k/k!) with

µk being (−1)n when k = cqn + (qn − 1), 0 < c < q − 1, and µk = 0 otherwise.

The k’s for which µk 6= 0 can be characterised as those ‘odd’ k’s for which any

smaller positive integer has each base q digit no larger than the corresponding

base q digit of k. For such k’s, all the binomial coeffecients
(

k
i

)

are nonzero

modulo q. When q is a prime, this last property characterises such k’s among

the ‘odd’ numbers. Some other properties of k’s are described in [T1, G3]. More

results on the interesting influence of the base q digits on the zeta values and

their orders of vanishing will be described elsewhere.

Let us now look at an analogue of Fermat equation, which was, of course,

a motivation for the study of cyclotomic fields. The usual Fermat equation

is well understood. Writing the Fermat equation as zp = yp((x/y)p − 1) to

bring in the analogies with the cyclotomic theory, Goss [G2] looked at the equa-

tion in the cyclotomic theory for A = Fq[T ] analogous to the one here, namely

zq
d

= yq
d

ρ℘(x/y). He proved various analogous features of the theory and made

conjectures about its non-trivial solutions. (There are no non-trivial solutions

except for some small exceptions, just as in the classical case). These have been

recently settled in a very nice work [De] by Laurent Denis. The idea is to rewrite

the equation as (z/y)q
d

=
∑

ai(x/y)
qi , differentiate with respect to T (note

q = 0 in characteristic p) and then clear out the denominators by multiplying by

yq
d

to see that y divides a power of x. But essentially by the usual reductions,

y could have been taken prime to x and hence apart from some low cases and

trivial solutions, there are no more!

We end this paper by just remarking that there are analogues of Gauss sums,

Gamma functions, Gross-Koblitz formula, etc. In fact there is a family of such

objects associated to each ‘cyclotomic family’: one for the constant field exten-

sions and one for the geometric extensions of Drinfeld. There is even more (see

[T2] and references there) to the story when K is not Fq(T ).
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