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Iwasawa theory and Cyclotomic Function Fields

DINESH S. THAKUR

ABSTRACT. We will describe and put in the perspective of Drinfeld’s theory,
some therorems and conjectures relating class numbers and zeta values at
positive and negative integers (as we will see, these are two distinct theories
in contrast to the classical case), analogues of results and conjectures of
Kummer and Vandiver, growth rates of class numbers, zeta measures and
other aspects of Iwasawa theory.

Iwasawa theory started as an attempt by Iwasawa to carry out analogue for
number fields of a well-developed theory for function fields, due to Andre Weil
and others. This theory related the zeta function of the function field to the
characteristic polynomial of Frobenius acting on p-power order torsion in the
Jacobian of the corresponding curve. Here p can be any prime unequal to the
characteristic. In this theory, to get good structural results, one needs to take
algebraic closure of the finite field of constants of the function field and hence
consideration of the tower of constant field extensions enters naturally. Since
the constant field extensions are just the extensions obtained by adjoining roots
of unity, to get a better analogy between p-power order torsion in the Jacobian
on the function field side and the p-Sylow subgroup of the class group on the
number field side, Iwasawa considered the tower of number fields obtained by
adjoining p-power roots of unity or more generally Z,-extensions for some fixed
prime p.

Over Q, the cyclotomic extensions (i.e. (subfields of) the extensions obtained
by adjoining the roots of unity) coincide with the abelian extensions by the
Kronecker-Weber theorem. Over a function field this is far from the case. Indeed,
the cyclotomic extensions are then just the constant field extensions and there
are, of course, many more abelian extensions, for example, various Kummer and
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Artin-Schreier extensions. Carlitz, Drinfeld and Hayes [C2, D, H1] developed
other families of abelian extensions of function fields, which also can be thought
of as ‘cyclotomic’ because of the strong analogies with the classical case. We will
now briefly describe this ‘cyclotomic’ theory. For more details see [H1,H2]. For
the corresponding classical cyclotomic theory, see the books by S. Lang and L.
Washington.

At the most basic level we have, as analogues of Q, the archimedean place oo,
Z, R, C respectively, their counterparts: a function field K with a finite field
F, (of characteristic p) of constants, any place co of K (we will assume it to be
rational for simplicity), the ring A of integers outside co, K, and the completion
Q of an algebraic closure of K, respectively. The simplest example, where the
analogies also turn out to be the strongest, is when K = F,(T') and A = F,[T].

Now the roots of unity can be interpreted as the torsion of the rank one object
‘Z inside the endomorphism ring of the multiplicative group’ (where n is viewed
as the n-th power map). In finite characteristic, we have a shorter supply of
multiplicative functions, (i.e., there is no nontrivial ‘exponential’ from additive
to multiplicative groups in characteristic p: we would have e(0) = e(px) =
e(z)P, for all z, for such an exponential e) but have a larger supply of additive
functions. The endomorphism ring of the additive group in characteristic p is
a huge non-commutative ring of polynomials in the Frobenius endomorphism.
Hence Drinfeld considered, as an analogue of roots of unity, the torsion of a rank
one object ‘A inside this ring’ (where a € A is viewed as the map u — pg(u) =
Z?ﬁ%a a;ud , with the normalizations ap = a and Adega = sgn(a)). Here deg
and sgn are the degree and a fixed sign function on A. The conditions on p,(u)
assure that the a-torsion A, := {u € Q : p(u) = 0} is an A/(a) module of rank
one. The simplest example is the ‘Carlitz module’ : A = F,[T], pr(u) = Tu+ul.
(Exercise: The T2-th cyclotomic equation is u¢” + (T + T9)u? + T?u = 0).

To the ‘Drinfeld module’ (we have restricted the terminology more than in
the original definition in [D]) p one associates the exponential function e: =
ep: © — Q defined to be an entire additive function e(z) = Y. e;27 satisfying
e(az) = pa(e(z)) (in analogy with e™* = (e*)") for all a € A and normalized
by ep = 1. The kernel of e, which can be thought of as an analogue of 2miZ,
can be written as 7A (if the class number of A is greater than one, it can be &I
for some ideal I of A and in fact there are class number many Drinfeld modules
corresponding to these rank one A-lattices). In terms of these analogues of the
exponential and 27i, the a-torsion can be written as e(7a’/a) for some o’ € A
and can be thought of as analogue of n-th root of unity ¢, or 1 — (,. (See the
next paragraph).

To illustrate these close analogies a little further, we note that if K is of class
number one, and p is a prime of A, then K (A,,) is an extension of K with Galois
group (A/p)*, in which p is totally ramified (so that the extension is geometric
in contrast to the constant field extension), all other finite primes are unramified,
and for A € A, —{0}, (\) is a prime above p. (Comparing this with the fact that
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1 —(, is a prime above p in Q((p), we see that A is an analogue of 1 — (,,. This
reflects the fact that we are now dealing with the additive group rather than the
multiplicative group.) The Galois action is given by Frob, (X) = p,(A). (For I an
ideal of A, p; is defined to be the monic generator of the ideal generated by p;,
i € I). If we denote the ‘maximal totally real (i.e., co splits completely) subfield’
by K(Ay)*, the Galois group over it is A* = F;. Compare to Z* = {+1} of the
classical case. The respective cardinalities, namely ¢ — 1 and 2 play an analogous
role and we call multiples of ¢ — 1 ‘even’.

We remark that the arbitrary choice of the infinite place oo, which made
possible this strong analogy also makes all the abelian extensions obtained by
adjoining the a-torsion tamely ramified at co by the above. To get the maximal
abelian extension of K one needs to play the whole game again by switching to
a different infinite place and by taking the compositum of all such extensions.

We now turn to some deeper aspects of the cyclotomic theory. Let L = K(A,)
and F = K(A,)", where a € A is nonconstant. The intersection of the subgroup
of L* generated by the elements of A, —{0} with Of is the group F of cyclotomic
units. We denote by h(R) the class number of R, for R a Dedekind domain or a
field. We then have the following analogue of Kummer’s theorem.

THEOREM 1. (GALOVICH-ROSEN [G-R]): Let A = Fy[T| and a = p", where
p is a prime of A. Then h(Of) = [Of : E].

Remark: This was later generalized to the case of any «a (i.e., an analogue of
Sinnott’s result). Shu has announced [S1] generalization to any A.

SKETCH OF THE PROOF. We have Of = O just as in the classical case. Let
S = {o0;} denote the set of the infinite primes of F. Let Div’(S) D P(S) D &
be the groups of divisors of degree zero supported on S, divisors of elements of
Oy and the divisors of cyclotomic units respectively. It is elementary to see that
the index in the theorem is equal to that of £ in Div®(S). The calculation of
the divisors of cyclotomic units using the basis co; — 0o of Div’(S) allows us to
express this index as determinant, which by the Dedekind determinant formula,
can be expressed as a product of certain character sums. Finally, the analytic
class number formula for the Artin-Weil zeta and L-functions for the function
fields identifies this product as the class number h(F') of F. The theorem follows
by noticing that [Div®(S) : P(S)] = h(F)/h(OF). O

Next we discuss Tate’s proof of the analogue of the Stickelberger theorem.
Let K’ be a geometric (i.e., with the same field of constants) extension over K,
with an abelian Galois group G. Let CI(K’) be the class group of K’ and let
0(T) = > ,cc Z(0',T)o where Z is the partial zeta function for 0. Then the
Stickelberger element is 6 = 0(1).

THEOREM 2. (TATE [TA]): (¢ — 1)0 € Z[G] kills CI(K).
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SKETCH OF THE PROOF. Class group is just the group of F,- rational points
of the Jacobian (of the corresponding curve), i.e., the part of the F,- points of the
Jacobian where the Frobenius acts as the identity. Now by fundamental results
of Weil, the L-function of a character of GG is the characteristic function of the
Frobenius on the corresponding component of the Jacobian or rather the Tate
module, and hence it kills the component when 7' = F' by the Cayley-Hamilton
theorem. Hence 6(T'), which is just a linear combination of L-functions with
projection to the components operators, kills the class group when T'=1. (One
needs (¢ — 1) factor to clear out the denominators to get polynomials, when one
makes this sketch precise.) O

The interpretation of the L-function as the characteristic polynomial in the
above is precisely the result on which Iwasawa’s main conjecture is based. Since
this is already known, the Gras conjecture giving the componentwise version of
Theorem 1, which follows classically from the main conjecture, is known here.
This was recognised in [G-S].

In contrast to the number field case, we have class groups of fields as well as
the ring of integers outside the infinite places above the chosen co. Let a = p
be a prime of A of degree d, so that L = K(Ay). Let C, C be the p-primary
components of the class groups of L and Oy, respectively. Let W be the Witt ring
of A/p. Then if w denotes the Teichmuller character, we have the decomposition
CQz, W=BC (w") into isotypical components according to the characters of

(A/p)*.

THEOREM 3. (GOss- SINNOTT [G-S]): For 0 < k < ¢ — 1, C(w™*) # 0 if
and only if p divides L(w", 1)

SKETCH OF THE PROOF. The duality between the Jacobian and the p-adic
Tate module T}, transforms the connection between the Jacobian and the class
group in the proof of Theorem II to T,(w=*)/(1 — F)T,(w™*) = C(w=F). On
the other hand, we have a Weil type result: det(1 — F : Tp,(w™F)) = L, (w*, 1).
Here L, is the unit root part of the L-function and hence has the same p-power
divisibility as the complete L-function. Hence ord,(L(w*, 1)) is the length of
C(w™*) as a Z,[G]-module and the theorem follows. [J

Comparison with the corresponding classical result shows that we are look-
ing at divisibilty by p, the characteristic, rather than the prime g relevant to
the cyclotomic field. To bring p in, we need to look at another zeta function
introduced by Carlitz and Goss:

Let ((s) := > n~*® € K, where the sum is over monic polynomials of A and
s is a positive integer. If s is any integer,

¢(s) ::Z Z n—*

=0 degn=t
n monic
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makes sense and in fact belongs to A for s a negative integer, since in that case
the second sum vanishes for large .

The identification W/pW = A/ provides us with the Teichmuller character
w: (A/p)* — W* satisfying w*(n mod p) = (n* mod p) mod p. Hence the
reduction of L value in the theorem 3 modulo p is {(—k) mod p. (This works
for k ‘odd’ (i.e. not a multiple of ¢ — 1), for ‘even’ k, we need to use ‘the leading
term’ when there are ‘trivial zeros’; but we will ignore this aspect below). Hence
we get

THEOREM 4. (GOsS-SINNOTT [G-S]): Fork ‘odd’, 0 < k < ¢?—1, C(w*) # 0
if and only if p divides {(—k).

For simplicity, we will now restrict to the case A = Fy[T]. Classically,
Bernoulli numbers occur in the special values of the Riemann zeta function at
both positive and negative integers and these values are connected by the func-
tional equation for the Riemann zeta function. In our case, there is no simple
functional equation known and in fact we get two distinct analogues of Bernoulli
numbers By, (or rather the more fundamental By/k) both connecting to class
groups: those coming from the positive values relate to class groups of rings
of integers (see Theorem 6 below) in contrast to class groups of fields (as in
Theorem 4).

Let us define the factorial function II(m) and Bernoulli numbers B,,, by anal-
ogy with the classical case: For a positive integer m, define II(m) := H@ P €
F,[T], where m, := ) _.,[m/Norm(p)°]. Define B,, € F,(T) by the for-
mula z/e(z) = 3 By /II(m)z™ (compare with the classical generating function
z/(e#*—1)). The connection with the special zeta values at the positive integers is
through the following analogue of the Euler’s result: ((m) = — By, (2mi)™/2(m!)
for even m.

THEOREM 5. (CARLITZ [C1]): For ‘even’ m, ((m) = —Bn7™ /(g — 1)II(m).

SKETCH OF THE PROOF. First note that ¢ — 1 = —1 in the formula. The
proof follows by taking the logarithmic derivative of e(z) (to get the Bernoulli
numbers through the generating function on one hand and to get zeta values
using the geometric sum expansion through the product formula for e(z) on the
other hand) and by comparing coefficients. O

Since ¢(—k) turns out to be a finite sum of n*’s, by Fermat’s little theorem, the
¢(—k)’s satisfy Kummer congruences enabling us to define a p-adic interpolation
Cp- On the other hand, the B,, satisfy analogues of the von-Staudt congruences
and the Sylvester-Lipschitz theorem. We have now two distinct analogues of
By/k: —((=k+1) for k—1 ‘odd’ on one hand and IT1(k—1)¢(k)/7*, with k ‘even’
on the other. It should be noticed that the shift by one does not transform ‘odd’
to ‘even’ unless ¢ = 3, and we do not know any reasonable functional equation
linking the two.
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THEOREM 6. (OKADA, Goss [O]): Let A = F,[T]. Then for 0 < k < q% —1,
k ‘even’, if C(wF) # 0, then ¢ divides By.

SKETCH OF THE PROOF. We define analogues of Kummer homomorphisms
i OfF = Afp (0 <i < q?—1) by 9i(u) = u;—1, where u; is defined as follows.
Let u(t) € A[[t]] be such that v = wu(\) and define u; to be II(:) times the
coefficient of 2 in the logarithmic derivative of u(e(z)). Using the definition of
the Bernoulli numbers, we calculate that the i-th Kummer homomorphism takes
the basic cyclotomic unit A%~ to (a’ — 1)B;/II(i). If C(w*) # 0, then by the
componentwise version of Theorem 1 (‘Gras conjecture’), 1 (A wfk(”)gfl) =0
and hence the calculation above implies that p divides B;. O

Using her generalization of Theorem 1, Shu has announced [S2] a generaliza-
tion of Theorem 6 to any A.

Now we describe some results by Anderson and myself [A-T] about the zeta
function for A = F4[T], defined above. Classical counterparts of these results
are not known. To avoid defining a lot more terminology, we describe the result
roughly as an expression of ¢(n) ({,(n) resp.) (where n can be ‘odd’ as well
as ‘even’) as a logarithm (p-adic logarithm resp.) of an explicit algebraic point
on the n-th tensor power of the Carlitz module. Using this result together with
his theorems on the transcendence properties of the exponential (analogues of
Hermite- Lindemann, Gelfond-Schneider and Mahler theorems), Jing Yu has
proved

THEOREM 7. (YU [Y]): For a positive integer n, {(n) is transcendental over
K and if further n is ‘odd’, then {(n)/7" and (,(n) are transcendental.

Now we mention some curious consequence of these results. K. Kato has
raised the question of whether, for a given n, p divides {,(n) for infinitely many
@’s or not. The expressions in [A-T] mentioned above show that whether o
divides ¢, (1) is equivalent to whether p* divides p,_1(1). This last statement is
clearly an analogue of the well-known Wieferich criterion in classical cyclotomic
theory: whether (1+1)?"1—1 =0 mod p? We can then also write down ‘higher
Wieferich criteria’ using higher zeta values. It might be interesting to understand
their classical counterparts and their significance. It should be stressed though
that classically the zeta function has a pole at n = 1, in contrast to the case
here.

Two important statements in the cyclotomic theory concerning the class
numbers are Kummer’s result that p divides 2(Q((,)") implies that p divides
h(Q(¢p)~) and the conjecture of Kummer and Vandiver that p does not divide
h(Q(¢p) ™). Ireland and Small [I-S] exhibited a simple example showing that an
analogue of both these statements is false. Namely, if A = Fy[T], withg=p =3
and p = 2+ T2 + T*, then p divides h(O;") but does not divide h(O; ). We
would like to point out that there are various possible analogues that might be
explored. First note that we have p and @ instead of just p as in the classical
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case. How about checking the divisibilty by the norm of p? Some examples show
that the analogue of the Kummer result still fails if we use the class numbers
of fields, but it is not known with the rings of integers. Another naive analogy
would be to note that p divides the order of a group if and only if Z/p sits in the
group and we may want to ask whether A/ sits in the group: a question a priori
different from whether the norm divides the order. Instead of the class group,
which is an abelian group or a Z- module we may need to get some A-module
to formulate an analogue. (See also [G3] pa. 391).

Let us now look at the class number growth in towers of fields. We can use the
class number formula for the zeta function which gives h = Hf‘q (1—a;), where «;
are the eigenvalues of Frobenius of absolute value /g, by Weil’s result. (Analogue
of the Riemann hypothesis). This implies that (,/g + 1)* > h > (/g — 1),
where ¢ is the genus of the field. For the constant field extensions, on which
the Iwasawa theory was based, we get for the n-th layer of a Z; -tower the
asymptotics hy, ~ ¢9", because [T = ¢9. Note that by class field theory, for
l # p, all Z;-extensions are essentially constant field extensions, whereas for [ = p,
the characteristic, there are many more Z,-extensions. Gold and Kisilevsky [G-
K] have shown that for geometric Z,-extensions, log h, > p?("~™)=1/3 and in
fact they could construct such towers with arbitrarily large growth.

Analogies we have been discussing suggest that we might look at Ag-towers
rather than Z,-towers. But note that A,’s are much too wild to arise as Galois
groups in a similar fashion. The cyclotomic tower K(Agn) corresponds to an
Af-extension (a general theory of such extensions or of extensions over ‘the first
level’ is not much developed yet; it is interesting to note that the dependence
of the group on g is just through its degree) and putting the ramification data
mentioned above in the Riemann-Hurwitz formula gives g, ~ d(q% — 1)ng®™~1).
This implies that log h, < n(Norm(p))".
classically. It is known for the minus part in the classical as well as our case.
How about the class numbers of the rings of integers?

We now come to the zeta measure associated to F,[T]. (See [T1], [G3] and
references there). Under the Iwasawa isomorphism, Z,-valued measures on Z,
can be identified with power series in such a way that the convolution of measures
corresponds to the multiplication of the corresponding power series. In fact, the
binomial coefficients () give basis of polynomials in = over Q, which map Z
to Z and the power series associated to the measure p is just > ux X* where
PR fzp(i)du. The analogue for A = F,[T] of (141)* —1= Y (})t" is pa(t) =

>4 14" and in fact {4} gives a basis of ‘additive’ polynomials over K which
map A into A. There is a way to extend this definition of binomial coefficients
to any {}} and if we associate to an Ag-valued measure p on A, a divided
power series > ur(X*/k!), with p defined analogously, then the convolution
corresponds to the multiplication of the divided power series.

Classically, the measure 1 whose moments fzp zFdp are (1 — a*+1)¢(—k) for

A similar asymptotic is not known
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some a > 2, (a,p) = 1 has the associated power series (1 + X)/(1 - (1+ X)) —
a(l4+X)*/(1 — (1 + X)*). We need a twisting factor in front of the zeta values
to compensate for the fact that the zeta values are rational rather than integral,
in contrast to our case. Comparison of this result with the following is not
well-understood.

THEOREM 8. (See[T1]): For A =F,[T], the divided power series correspond-
ing to the measure p whose i-th moment is ((—1) is given by > pur(X*/k!) with
g being (—1)™ when k =cq™ 4+ (¢" — 1), 0 <c < q—1, and pr = 0 otherwise.

The k’s for which g # 0 can be characterised as those ‘odd’ k’s for which any
smaller positive integer has each base ¢ digit no larger than the corresponding
base ¢ digit of k. For such k’s, all the binomial coeffecients (f) are nonzero
modulo q. When ¢ is a prime, this last property characterises such k’s among
the ‘odd” numbers. Some other properties of k’s are described in [T1, G3]. More
results on the interesting influence of the base ¢ digits on the zeta values and
their orders of vanishing will be described elsewhere.

Let us now look at an analogue of Fermat equation, which was, of course,
a motivation for the study of cyclotomic fields. The usual Fermat equation
is well understood. Writing the Fermat equation as 2P = y?((x/y)? — 1) to
bring in the analogies with the cyclotomic theory, Goss [G2] looked at the equa-
tion in the cyclotomic theory for A = F,[T] analogous to the one here, namely
21" = yqdpp(:t /y). He proved various analogous features of the theory and made
conjectures about its non-trivial solutions. (There are no non-trivial solutions
except for some small exceptions, just as in the classical case). These have been
recently settled in a very nice work [De] by Laurent Denis. The idea is to rewrite
the equation as (z/y)qd = Eai(x/y)qi, differentiate with respect to T' (note
g = 0 in characteristic p) and then clear out the denominators by multiplying by
yqd to see that y divides a power of z. But essentially by the usual reductions,
y could have been taken prime to x and hence apart from some low cases and
trivial solutions, there are no more!

We end this paper by just remarking that there are analogues of Gauss sums,
Gamma functions, Gross-Koblitz formula, etc. In fact there is a family of such
objects associated to each ‘cyclotomic family’: one for the constant field exten-
sions and one for the geometric extensions of Drinfeld. There is even more (see
[T2] and references there) to the story when K is not F,(T').
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