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Abstract

The purpose of this paper is to give an overview of applications of the concepts and techniques of the theory of integrable
systems to number theory in finite characteristic. The applications include explicit class field theory and Langlands conjectures
for function fields, effect of the geometry of the theta divisor on factorization of analogs of Gauss sums, special values of
function field Gamma, zeta and L-functions, analogs of theorems of Weil and Stickelberger, control of the intersection of
the Jacobian torsion with the theta divisor. The techniques are the Krichever—Drinfeld dictionaries and the theory of solitons,
Akhiezer—Baker and tau functions developed in this context of arithmetic geometry by Anderson. © 2001 Elsevier Science

B.V. All rights reserved.

Keywords: Drinfeld modules; Soliton; Gamma; Zeta; Theta; Shtuka

1. Introduction

This paper is an overview of some relatively recent
work in number theory finding some of its inspira-
tion in integrable systems theory. In the early 19th
century, Abel and Jacobi, in their work on differen-
tial equations, used special theta function solutions to
linearize flows of completely integrable Hamiltonian
systems. Thus, for several classical systems, one gets
linear flows on a real sub-torus inside the Jacobian
(a complex torus) associated to a Riemann surface.
In the early 20th century, Burchnall, Chaundy and
Baker studied commuting pairs of ordinary differ-
ential operators using transcendental function theory
(Akhiezer—-Baker functions) associated to the Jaco-
bians to give explicit constructions of the additive
structure on these tori— what is more generally re-
ferred to nowadays as Bécklund transformations. This
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was rediscovered and extended in 1970s by Krichever
to apply to the so-called integrable partial differen-
tial equations or soliton equations. He explored in-
finitesimal deformations of such pairs of commuting
operators and used them to give algebro-geometric
solutions in terms of theta functions to partial differ-
ential equations such as KdV (see [17]).

Around the same time, Drinfeld had introduced el-
liptic modules, called Drinfeld modules now (studied
in the special case by Carlitz in 1930s). He saw the
analogy with the Krichever ideas and formulated a pre-
cise version of this correspondence between geometric
data and operator data. This is commonly referred to
as the Krichever—Drinfeld dictionary. Drinfeld’s moti-
vation was to attack an analog of conjectures of Lang-
lands in number theory. More recently, Anderson has
used this dictionary to great effect to develop geo-
metric tools for studying objects in number theory
such as values of gamma and zeta functions, which
occur in the context of Drinfeld module theory. We
would like to give a succinct overview of these exciting
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developments. For more details, references are pro-
vided, e.g. [11,16].

We will start with a very brief mention of what
number theory in finite characteristic is about, just to
give some perspective and to fix some notation (more
will come in the discussion of applications). Then, we
will describe the Krichever and Drinfeld dictionaries
and some of their applications. This will be followed
by a discussion of Anderson’s ideas and their applica-
tions. Finally, we will provide a little more detail on
the connections with techniques and concepts of inte-
grable systems theory, such as Akhiezer—Baker func-
tions and solitons. This paper is primarily addressed
to those who know the theory of integrable systems,
but we also explain some key points informally and
give some basic references for those with only number
theory background.

2. Number theory in finite characteristic

Number theory in finite characteristic is also called
arithmetic of function fields or arithmetic of curves
over finite fields depending on what aspects we want
to emphasize. Here, as analogs to the basic objects of
number theory:

Q: the field of rational numbers;

e oo: the infinite place corresponding to the usual
absolute value;

Z: the ring of integers;

R: the field of real numbers;

C: the field of complex numbers;

we look at:

o [, (7): the field of rational functions in a variable ¢
over a finite field Fy;

oo: the ‘infinite’ place corresponding to the degree;
I, [z]: the ring of polynomials in t over [Fy;
F,((1/1)): the field of Laurent series in 1/¢;

Coo: the completion of an algebraic closure of

Fy ((1/1)).

Number fields are the finite extensions of @,
whereas the function fields are the finite extensions
K of F,(¢). We can choose an arbitrary place oo
of K. (Here the infinite place should be thought of

as the place where we allow poles or denominators.
In general, ‘place’ in number theory corresponds to
a notion of size or absolute value and in addition
to the usual notion of absolute value, there are also
p-adic absolute values for each prime p.) Let A be
the ring of functions with poles only at oo, let Ko
be the completion and let C, be the completion of
an algebraic closure of K. These number fields and
function fields are collectively called global fields and
are usually studied together, because, e.g. the prop-
erty of having all of the absolute values (sizes) linked
through a product formula and having only finitely
many remainders (finite residue fields), when you
divide, characterize these fields. (The last property
is the reason for restricting consideration to function
fields defined over finite fields rather than over C.)
The ring A is a Dedekind domain (which essentially
means that factorization theory works in a fashion
analogous to the number field situation) which sits
discretely in Ko with a compact quotient, similar to
the number field situation, Z sitting in R, for exam-
ple. In fact, the basic algebraic number theory and
class field theory for both go in parallel. Multiple,
imperfect but close analogies exist at various levels:
tools are different, but many theorems are parallel, so
in addition to the intrinsic interest, it is also a very
good testing ground for conjectures in the number
field situation. For example, the strongest evidence
for the Riemann hypothesis is the analog proved by
Weil (and Deligne, etc.) whose techniques in turn
help develop the Iwasawa theory. A similar situation
exists (or existed) for the conjectures of Mordell,
Stark, Birch and Swinnerton-Dyer (and Langlands as
we will see next) (see references in [12]).

3. The Krichever and Drinfeld dictionaries

Now we will recall (in the simplest case of ‘rank’
and ‘dimension’ one) what in Mumford’s words [16]
is ‘A remarkable dictionary discovered by Krichever
based on suggestions in the work of Zakharov and
Shabat, where they attempted to find a common for-
malism for the inverse scattering method of integrat-
ing certain nonlinear partial differential equations’.
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Krichever dictionary. Let k be a field of characteris-
tic 0. Then there is a natural bijection between the sets
of data ‘X a complete (possibly singular) curve over
k, P a smooth point on it, a fixed isomorphism of the
tangent space at P with k and a torsion-free, rank one
sheaf F (i.e. a line bundle in the non-singular case) on
X with A% = h' = 0’ and the data ‘commutative sub-
ring R (containing k) of k[[¢]][d/d¢] having two op-
erators of relatively prime orders, and with R; and R»
identified if there is u € k[[t]]* with Ry = uRou~"".

(For those unfamiliar with the language of sheaves,
bundles or cohomology, the phrase ‘torsion-free ...
h° = h' = 0’ may be replaced, at least in the
non-singular case, by ‘a non-special divisor on X of
degree g — 1, where g is the genus of X’.) Inspired by
these ideas Drinfeld [11,16] explained the following.

Drinfeld dictionary. Let k be a field (of finite char-
acteristic) on which F(x) = x? is an automorphism
of infinite order (with fixed field ko = IF;). Then there
is a natural bijection between the sets of data ‘X a
complete curve over kg, Py a smooth kg-rational point
on it, F a torsion-free rank one sheaf (called a Shtuka)
on X := Xq xy, k with h0 = h! = 0and isomorphism
(1x, x F)*F = F(Pp — P1) for some smooth point
Py (distinct from Py) on X’ and the data ‘commutative
subring R of k{F} (the non-commutative polynomial
ring in ‘Frobenius’ F') containing ko, having two oper-
ators of relatively prime degree (in F') and with Ry and
R; identified, if there is u € k* with Ry = uRu~"".

(Note that when we are in characteristic p, we have
(x +y)? = x9 4+ y4, when g is a power of p. So the
gth power operator is then a linear operator. Just as
the solution space for the usual differential equations
is a vector space over C, the solution space for poly-
nomial equations in F is a vector space over IF,. Of
course, this analogy does not work too literally and the
point of the dictionary is to make precise the points of
contact.)

Now we sketch very briefly (see [9,11,16,17,20]
for more details) some ideas behind (a) the Krichever
dictionary and (b) how we express the coefficients of
commuting operators in terms of the Akhiezer—Baker
function v and theta functions. (We do this now, so
that a reader familiar with these techniques, but pos-
sibly in a different setting, can make connections to

the setting here. We do not need (b) until the section
on techniques and concepts.)

(a) From R we recover X — P as Spec(R) (de-
fined to be the set of prime ideals of R —the classi-
cal points are the maximal ideals of R) and the map
taking the operator r € R to its degree is the map giv-
ing the valuation corresponding to P (i.e. the order
of the operator is the order of pole at P). Finally, the
joint eigenspaces of the operators glue to give F. To
go back, we construct a (most trivial isospectral) de-
formation F* over X xy k[[¢]] of F, by gluing F to
itself on a small punctured disc around P by exp(t/z),
where z is a local coordinate at P, and also a differ-
ential operator V : F* — F*(P) by using d/df on
the restriction to X — P. Then, we use a trivialization
outside a small neighborhood of P to get a section of
F*(P) which will be the joint eigenfunction ¥ (z, x)
and then the desired embedding of R = HO(X —
P, Oyx) into k[[¢]][d/d¢]. In fact, for any r € R, ri is
then seen to be of the form »_a j VY ¥ and r maps
to ) a; (1)(d/dr)/. (The full isospectral deformation
is obtained by replacing k[[t]] by k[[#1, #2, ...]] and
exp(t/z) by exp(d_ tj/zj) in the above.)

(b) The joint spectrum S of the commuting opera-
tors Dy, D is a curve (with the same function field
as X, if the operators have relatively prime degrees)
in C? given by the equation det(D, : V}; — uld) =
0, where V1, is the A-eigenspace of D;. We can de-
scribe poles and the essential singularity behavior near
oo of the joint eigenfunction ¥ (z, x)(z € S, x € C),
which allows us to express it in terms of theta func-
tions. We can also go in the opposite direction and re-
construct the differential operators of which  is the
joint eigenfunction. Writing down the eigen-equation
for this known function then allows us to express the
coefficients of the operators in terms of theta or tau.

4. Applications

(D) Explicit class field theory and Langlands conjec-
tures. Such an embedding (possibly of higher rank in
more generality) A C k{F} (say a — p,) is basically
a Drinfeld A-module [10] (A acts on the additive group
of k via non-trivial action via p). For example, the sim-
plest (Carlitz) F,[¢]-module is given by o, =1 + F.
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For p defined over C,, we can define the ‘exponential’
function e = e, to be the entire function defined on
Cx and given by a power series e(z) =z + Y eiz?
satisfying e(az) = p,(e(z)), a defining property anal-
ogous to e = (e?)" for the usual exponential. (Using
e(tz) = (t+F)o(e(z)) = te(z) +e(z)?, we find recur-
sively that ei_l = (7 —1)--- (7 —19").) The expo-
nential is periodic with period lattice of (analytic) rank
r over A, where r is also the ‘algebraic’ rank obtained
via F-degrees of p,’s and is also the ‘geometric’ rank
of F. This coming together of algebra, analysis, geo-
metry and arithmetic is the strength of the subject. For
example, the Carlitz module is rank one and so its pe-
riod lattice can be written as 7 A for some 7 C. This
lattice can be thought of as analog of 27iZ. (The ana-
log 7 of 2wi we thus get is well known to be transcen-
dental over K just as 27i is transcendental over Q.)
In this case (and much more generally in the rank one
case, after suitable normalizations), adjoining the tor-
sion {z € C : py(z) = 0} (expressed analytically as
{e(am/u) : a € A} in analogy with exp(2wik/n)) to
K gives abelian extensions which are analogs of cy-
clotomic fields. (Recall that the cyclotomic fields are
fields gotten by adjoining roots of unity to Q.) This is
the explicit class field theory (see [12] and references
therein) of Carlitz—Drinfeld—Hayes.

For example, the Hilbert class field for A, i.e. the
maximal abelian unramified extension of K split at
00, is just the smallest field of definition of p. (The
Hilbert class field of Q is Q itself. For an imaginary
quadratic field, its Hilbert class field can be obtained
by adjoining appropriate values of modular j-function.
In general, there is no such simple recipe for number
fields.) Also, if using the division algorithm in k{F'}
we define p;, for I an ideal of I, then its first coeffi-
cient is a generator of I in the Hilbert class field. Thus,
we see explicitly how all the ideals become princi-
pal (i.e. generated by one element) when extended to
the Hilbert class field. The maximal abelian extension
is obtained by taking the compositum of these cyclo-
tomic ones (where we have to use all (or at least two
distinct) places at infinity).

Krichever and Drinfeld dictionaries generalize
[16] to all ranks and the arithmetic of rank n ob-
jects is linked with Gl,. (Rank 2 objects are close to

elliptic curves, modular forms, etc.) Drinfeld looked
at the moduli of these objects (first of Drinfeld mod-
ules and then of more general Shtukas motivated by
these dictionaries) and showed that on their etale co-
homologies we get Galois and automorphic represen-
tations connected via the Langlands correspondence.
Thus, in the 1970s, Drinfeld proved the Langlands
conjectures for Gl, (where the moduli is a curve, so
the geometry is easier) over function fields and out-
lined the general approach. Deligne and Drinfeld also
proved local Langlands for Gl,. This was generalized
to Gl, by Laumon, Rappoport, Stuhler in the early
1990s. After a lot of work (see [14,15] for references)
spread over the last 25 years by Drinfeld, Deligne,
Kazdhan, Flicker, Pink, Laumon, etc. on compactifi-
cation and the trace formula in finite characteristic,
finally the proof of global Langlands for Gl, over
function fields has been announced by Lafforgue in
the summer of 1999.

(I) Factorizations of Gauss sums for function
fields. Mixing the cyclotomic theory above with the
traditional cyclotomic theory of roots of unity (con-
stant field extensions), I had defined Gauss sums and
proved analogs of classical factorization (known as
the Stickelberger theorem) and many other results. In
the function field theory of Artin—Weil as well as for
Drinfeld’s theory mentioned above, all function fields
are basically on an equal footing in analogy with Q.
But for the factorization problem, the higher genus K
turned out to be very different in that the Gauss sums
made up from g torsion had primes not above g in
their factorizations. These non-classical factorizations
were mysterious, at first. Then using the Drinfeld dic-
tionary it was proved [23] that the function f (arising
in the isomorphism of the dictionary, on X (k) with
divisor VF —v + & — o0, where V is an effective divi-
sor of degree equal to genus of X and corresponds to
F and &, i.e. Py, is a generic point of X) specializes
at a geometric point above g to the corresponding
Jacobi sum. So the prime factorization gets related to
V or F. For such Shtukas F, Drinfeld had proved
that the Euler characteristic being zero already im-
plies 1% = h' = 0, but the cohomology jumps are
codified in the theta divisor. So the upshot was that
the geometry of the theta divisor explained the prime
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factorization for general X. As an application, an
analog of the Gross—Koblitz formula (whose proof
classically used crystalline techniques) connecting the
Gauss sums to values at fractions of g-adic gamma
was also proved.

These two applications so far used objects moti-
vated by the theory of integrable systems, but not
much of the techniques of this theory. Anderson’s
idea [2-5] was to borrow the deformation techniques,
the Jacobian flow techniques used in integrable sys-
tems theory for solving soliton equations to number
theory in finite characteristic. Anderson developed
amazing machinery generalizing the dictionaries to
higher dimensions and making systematic use of
generic points for deformations.

(D) Special values of Gamma functions and the
Brumer—Stark conjectures. For the Cyo-valued gamma
function I'(z) := z 7' [[(1 +z/n)~! on Co (Where n
runs through monic polynomials in IF,[¢]), we know
[21] functional equations, interpolations, special cases
of Chowla—Selberg relations (expressing the periods
of elliptic curves admitting complex multiplications in
terms of gamma values at fractions) analogs and tran-
scendence of some values at fractions (by connecting
them to the periods of Drinfeld modules). Anderson
realized the potential of soliton theory and developed
it. By efforts of Anderson, his student Sinha [2,18,19]
and by more recent work of Brownawell and Pa-
panikolas [7], we know that all the gamma values at
proper fractions occur as periods or quasi-periods of
certain ¢-motives (analogs of Jacobians of quotients
of Fermat curves), which are higher-dimensional
generalizations of Drinfeld modules developed by
Anderson [1]. It follows by transcendence theory (see
[25] and references therein) of Jing Yu, that all these
values are transcendental and in fact, all the linear
relations between them over K are known. (For the
usual gamma function, on the other hand, only the
fractions with denominators dividing 4 or 6 have been
handled. Chudnovsky [8, p. 8], in his ICM survey,
called the generalization the most important and dif-
ficult problem in transcendence theory.) At the same
stroke, using his soliton tools, Anderson [2] proved
a two-dimensional version of the Stickelberger the-
orem giving ideal class annihilators and showed that

the resulting Stark units align into a Hecke character.
(This was also proved independently by Hayes [13].)

(V) Special values of zeta-and L-functions.
Carlitz had proved an analog of Euler’s result on
the Riemann zeta function ¢r, which states that
trR(2m)/(2ri)>™ € Q, by showing that for £(s) :=
Y n™* € Fy((1/1)), s € Z-o (where the sum is
over the monic polynomials n in IF4[t]), we have
s(s)/7* € Fy(t), for s even (meaning in this context
that s is a multiple of ¢ — 1). (See [12] for more on
arithmetic and analytic properties of this ¢ and gener-
alizations.) In [6], it was proved that for any positive
integer s, ¢(s) is essentially a logarithm (associated
to the sth tensor power of the Carlitz module, an ana-
log of the sth tensor power Z(s) of the Tate motive)
evaluated at an explicit algebraic quantity which is
torsion exactly when s is even. Hence, by an analog
(see [25] and references therein), due to Jing Yu, of
Hermite-Lindemann theorems on transcendence of
the logarithm, we see that ¢ (s), ¢(s)/7°® and also the
interpolated values ¢, (s) are all transcendental for
odd s. (Here, for a prime g (an irreducible polyno-
mial), ¢, denotes the function of a gp-adic variable
obtained from interpolating suitable values of ¢.) For
the Riemann zeta function only the irrationality of
¢r(3) is known. Again, Anderson [3,5] realized the
applicability of the soliton techniques and general-
ized to zeta- and L-functions for general A (the class
number one situation was handled in [22] by more
ad hoc methods). The development has given rise to
new analogs of cyclotomic units, Kummer—Vandiver
conjecture with many consequences.

(V) Torsion points on theta divisors. Anderson
[4] also developed p-adic soliton theory, in addition
to the finite characteristic theory mentioned above
(Drinfeld’s dictionary [11,16] generalizes to any
characteristic) and proved a quantitative result on the
question of the torsion points of the Jacobian (of a
quotient of Fermat curve) that lie on the theta divisor.
The finiteness (in much more generality) was con-
jectured by Lang, proved by Raynaud and the later
quantitative results of Coleman, etc. used quite differ-
ent techniques. The connection of this technique with
[20] is explained in the introduction of [4]: Calcula-
tion of order of contact (modeled on [20]) between
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the theta divisor and a one-parameter subgroup P
obtained by exponentiating the tangent space to the
curve at the base-point has a p-adic analog, where
P basically becomes the torsion point (and Dwork’s
exponential exp((—p)/P~D( — tP)) figures as a
one-parameter family of loops).

5. Techniques and concepts

Techniques used in the applications (Ill) and (IV).
The key point in (III) is to interpolate using the soli-
ton theory the partial gamma products (from the prod-
uct for I'(a/f))P; := [](1 + a/(fn)), where n runs
through monic polynomials of degree i. Arithmetic of
I'(a/f) is closely linked with that of the cyclotomic
cover X y of conductor f of X, which can be obtained
by pullback under isogenies of embedding of Xp in
generalized Jacobians. Identifying closed points of X
with k-valued points of X, we can make use of generic
points, e.g. function field of X¢-valued points of X,
etc. if k is chosen large enough. So, e.g. the functions
on the product of X with itself can be viewed as func-
tions on X. Anderson’s soliton ¢ = ¢ (x, y) is a func-
tion on X ¢ x X ¢ such that restriction of ¢ to graph of
F' (ith power of Frobenius) is P;. Description of the
soliton ¢ in terms of 6 (or Sato’s t function) allows
calculation of its divisor (i.e. the local multiplicities),
which shows that there is a related multi-dimensional
Shtuka with period essentially [] P; as required. (For
details on this part, see [18,19] or the informal de-
scription in the appendix of [24]). About (IV), we
only note that it uses similar interpolation technique
for partial zeta sums S; := Y n~*
through monic polynomials of degree i. This interpo-
lation problem is connected in some sense to that of P;
by logarithmic derivatives turning products into sums
(Newton identities relating power sums to symmetric
functions of roots).

Let us see why the basics of the theory of integrable
systems makes existence of such a ¢ plausible. I will
try to explain it in two (necessarily oversimplified)
ways. (But, I should stress that Anderson’s work is
highly non-trivial and not a matter of just following
a simple dictionary as I will make it appear to be.)

, where now n runs

The first way is for those familiar with Krichever’s
original approach (see [16] or introduction to [17] or
the brief sketch below) and the second one for those
more familiar with Sato’s approach (see [9,20]).

1. In Krichever’s approach, we express coefficients of
commuting operators (and their flows or deforma-
tions) in terms of the Akhiezer-Baker function or
the Riemann theta function. The coefficients of F'
in Drinfeld’s commuting operators p, are special-
izations at x = a of the Carlitz binomial coeffi-
cients

i)

whereas P; are their specializations [21,22] at x =
a/f and hence can be expressed in terms of theta
functions by same technology once we introduce
generic points to take care of deformations alge-
braically. Here if we denote the logarithm func-
tion, namely the (normalized) inverse function to
the Carlitz exponential, by /(z), then the Carlitz bi-
nomial coefficients can be defined by

exl@) =Y. { ;‘,- }sz

in analogy with

x
log(1 = = "
exp(xlog(l +2) = (1+2)" =) (n>z
2. The products [[,, P can be handled by Moore’s
determinant identity [2,21]:

n m—1
|x,'qj l|n><n = 1_[ 1_[ (xm + Zaixi) .
m=1a;eF, i=1
Such determinants fit in the 7 function framework
(theta has a determinantal formula), giving P; as a
ratio of t’s. (There are analogs of the Jacobi—Trudi
identity, Schur functions, etc. Basically, classical
n is replaced by ¢" in g-analogs, whereas it is
replaced by 4" in IF,[#] symmetric function the-
ory.) If you consider the product as a ratio of a
product over a coset {a + fn} by a product over
{fn}, then the soliton ¢ = ¢,,4+w is thus realized as
Tw+w/Tw. Here W are IF;-subspaces of F, ((1/1))
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which are discrete and co-compact (i.e. projection
to F,((1/1))/F4[[1/¢]] having finite kernel and
co-kernel (i.e. Fredholm)). The Akhiezer—Baker
function ¢y € W((x, y))~ (which is some kind
of a completion that we will not specify) is defined
as the unique element such that ("X =1 gy, ¢
1+ (1/0Fg[[1/:11(Cx, y))~, where E(x,y, 1) =
[15°(1 — x4 6)~'(1 — y9't). Such a condition is
equivalent to an infinite linear system (only cer-
tain powers of ¢ are allowed, so the rest are zero),
whose determinant is 7. The fact that a soliton
occurs as a residue at t = oo of ¢ is Cramer’s
rule in this setting. (It is hoped that this incom-
plete description is still helpful to those familiar
with [20] approach to give some indication of the
connection of the ideas.)

Why is ¢ a soliton? We do not understand any anal-
ogy with waves having the soliton property (solitary
waves asymptotically preserving shapes and velocity
under collisions). But ¢ does arise via ‘soliton theory’
as the term is widely used. Also, as explained in [16],
the Jacobian flows of Krichever data on singular forms
of P! with n ordinary double points lead to n-solitons.
Here we are looking at singular forms of P! with mod-
ulus f: points in the support of f occur with multiplic-
ities dictated by f and (generalized Jacobians are con-
nected with X s) a deformation calculation is giving
rise to ¢. The partial Frobenius equations (37), Sec-
tion 6.1.6 of Ref. [2] and equations on pages 306-308,
and 313 of Ref. [24] are in some sense analogs of
partial differential equations and theta descriptions of
solitons, but there is no perfect analog of KdV that I
know of.

Finally, in view of connections of the Painlevé
theory with integrable systems, I will just mention the
recent work of Katz and Sarnak where they connected
the distribution of eigenvalue spacings of random
matrices to that of spacings of zeros of (characteristic
zero-valued) zeta functions attached to function fields
of finite characteristic. Painlevé theory also seems rel-
evant in some diophantine geometry and diophantine
approximation results for function fields.

Explicit Jacobian of a genus one curve. We fin-
ish by mentioning another recent application of these

ideas. Given a genus one curve X defined over an al-
gebraically closed field (e.g. C), X can be provided
with a group law, turning it into an elliptic curve, by
decreeing a suitable point on X as the identity. This el-
liptic curve is the Jacobian abelian variety of X. Given
a genus one curve X over an arbitrary field K, the
problem of explicitly describing its Jacobian variety
(which is an elliptic curve having a point over K) be-
comes much more subtle. This was recently solved by
Anderson (unpublished), by adapting the tau-function
recipe for the Weierstrass g function, which arises as
a solution to KdV equation in a genus one setting, by
using its determinantal formula and paying close at-
tention to the rationality issues (which are absent over
C). Anderson also provides an explicit map from X
to its Jacobian. At present, this has been worked out
for characteristic more than three.
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