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Notation
Z = {integers}
Q@ = {rational numbers}
R = {real numbers}
C = {complex numbers}
Zy = { positive integers}
q = a power of a prime p
F, = A Finite field with ¢ elements
A = Ft]
Ay = {monicsin A}
K = Ft)
Ko = F,((1/t)) = completion of K at oo
Cx = completion of algebraic closure of K,
[n] = t" —t
dp = H?:_o1 (tqn - tqi)
by = H?:l(t - tqz)
deg = function assigning to a € A its degree in ¢

The purpose of this expository talk is to describe some fascinating
recent developments in the Function Field Arithmetic and hopefully
get some bright students working in this rapidly developing subject
area. Though this name ‘Function Field Arithmetic’ of the subject
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might be unfamiliar to some, in fact, we all know the subject at some
level.

Let us look a little closely (and perhaps a little simplistically) at
how the concept of numbers and arithmetic evolves in school. In
school, we first learn the concept of and manipulations with the
‘counting numbers’. Then we see that many simple day-to-day prob-
lems can be formulated into linear equations involving counting num-
bers and to solve these it is helpful to introduce zero, negative num-
bers and fractions (i.e. rational numbers). But once we introduce the
unknown or variable ‘x’, just as starting from zero, one and addition,
subtraction, multiplication leads us to ring of integers Z and with di-
vision, the field of rational numbers QQ, adding x to zero and one, we
are led to the polynomial ring and the field of rational functions (say
with Q-coefficients to start with). In addition to dealing with poly-
nomial equations with unknown etc., we also learn to manipulate
with polynomials and rational functions on equal footing with the
integers and rational functions: Arithmetic operations, multiplica-
tion and division algorithms, factorizations into primes or irreducible
polynomials respectively, greatest common divisors and so on. This
is the introduction everybody has to the Function Field Arithmetic
at its simplest level.

Soon, either through the geometric concept of length or the calcu-
lus concept of limits, we are introduced to real numbers and calculus
also leads to power series and Laurent series through Taylor series
developments.

Finally, we get the best analogies when we take the coefficient field
of polynomials, rational functions or Laurent series to be a finite field,
rather than say Q or R etc. for the simple reason that when we divide
an integer by another non-zero integer n say, there are finitely many
possibilities for the remainder, i.e. non-negative integers smaller than
|n|, but when you divide by a non-zero polynomial n, a remainder
can be any polynomial of smaller degree and hence there are infinitely
many possibilities, unless the coefficient field is finite.
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(While function fields with complex coefficients are also very useful
sources of analogies with connections to Riemann surfaces and com-
plex analysis techniques, for number theory, finite field coefficient are
better for the reason explained).

In summary, we have the basic analogies:

Z, Q, R, C <= A=EL]t], K=Ft), Ko =F((1/t)), Cx

where we have replaced x by more traditional choice ¢ in this subject.

For usual numbers, the notion of the size is the usual absolute value
while for rational functions it is the absolute value coming through
‘degree’, which is ‘non-archimedean’, in the sense that degree of the
addition is at most the maximum of the degrees of the terms added,
which is stronger than the usual ‘triangle inequality’. But the differ-
ence in the two cases is not so huge once we realize that, in fact, in
addition to these notions of ‘size at infinite prime’, there are notions
of sizes for numbers and functions for each prime and irreducible poly-
nomials respectively and all these so-called p-adic absolute values are
non-archimedean. There is moreover a ‘product formula’ []|k| = 1
where the product is over all the absolute values suitably normalized.

A famous theorem of Artin-Whaples says roughly that any field
with notions of sizes linked by the product formula is a finite exten-
sion of Q (i.e. a number field) or of k(z) (i.e., a function field) for some
field k. Thus (with & finite, as explained above) these fields, called
global fields, are studied together in number theory. A nice parallel
treatment of basic algebraic number theory and even the class field
theory (i.e. theory of abelian extensions) was given for both global
number and function fields in the first half of the last century.

Important success during that period is the proof, due to Hasse and
Weil, of the Riemann hypothesis for function fields (for its higher di-
mensional generalization, Deligne got the 1978 Fields medal), for the
zeta function defined by Artin by following an analogy with Riemann
and Dedekind zeta functions. Namely, we associate a zeta function
to a global field by the Euler product

¢(s) = [] (1 = Norm(p) %)%,
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where the product is over all ‘non-archimedean primes’ p and the
norm of a prime is number of residue (remainder) classes it has. This
zeta function converges in certain half plane and can be continued
to the whole complex plane. But it is a complex-valued (not Coo-
valued) simple rational function in ¢~* for function fields over F, and
thus looses rich transcendental nature of Riemann zeta and special
values involving 7 etc.

Work of Carlitz in 1930’s and work of Drinfeld in 1970’s brought
in a new type of analogies introducing Cs.-valued analogs of expo-
nential and zeta. We will give quick introduction, but refer to the
literature mentioned below for motivation and more properties and
analogies.

The Carlitz exponential is

e(z) =Y 27/ []" =) => 27 /d;
j=0

For a € A, define the polynomial C,(z) as follows: Put
Ci(z) =2z, Cz):=tz+21, Cim(z) = Cm-1(C(2))

and extend by F,-linearity in a. Then the exponential satisfies for
a € A, a functional equation e(az) = Cy(e(z)) analogous to classical
e"* = (e*)", for n € Z. This leads to analogous situation

a—z—C(2):A—-EndG, <= n—(z—2"):Z— EndGp,

where G, and G,, are the additive and multiplicative group respec-
tively.

Just as the usual exponential has a period lattice 2miZ, the Carlitz
exponential has period lattice: TA for some T € C,. With this
analogs of e and 27i, we have analogs of ‘a-th roots of unity’:

{e(7b/a) : b e A}

indexed by a € A. Adjoing these to K gives an abelian extension of
K with Galois group (A/(a))*. (Note that these are just the roots
of the ‘cyclotomic polynomials’ C,(z), by the functional equations
above).
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This cyclotomic theory was developed into an explicit class field
theory for K and general function fields by work of Drinfeld and
Hayes in 1970’s and 1980’s. In fact, generalizations (using similar ob-
jects with more general function fields and rank n period lattices) due
to Drinfeld and many others eventually established Langlands corre-
spondence between n-dimensional Galois representations and auto-
morphic representations of G, in the function field case. This led to
the Fields medal to Drinfeld in 1990 for n = 2 case and to Lafforgue
in 2002 for the general case.

In this talk, we focus instead on the arithmetic nature of special
values of functions that come up in these new analogies. We focus
on logarithms, Gamma (two of them) and Zeta. Let us introduce
them. (Look at the references below for more details, motivation and
properties).

The logarithm is the (multivalued) inverse function to the expo-
nential and a simple branch is concretely given as

o an

log(z) = N

n=0

Comparison of the Taylor series of the Carlitz exponential with

the usual one shows that d; should be analog of ¢’!. More generally,

Carlitz-Goss factorial is defined by (where we divide by appropriate

power of ¢’s to make infinite product convergent to make an interpo-
lation)

nl = H(di/tdeg(di))”" € Ko, where n = Zniqi €Zp, 0<n; <gq
Another Gamma function, with poles at —A; U {0}, is defined by

1
F(z):; H (1+§)_1€Coo, 2z € Cx

acA+
Both have nice functional equations in (different) analogies with
the classical case, analogs of (—1/2)! = /7 have interpolations at
finite primes with special values of these connecting with algebraic
Gauss sums analogs.
Finally the Carlitz Zeta values are defined by
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1
C(S): ZEGKOO, $€Z+.

acA4
Carlitz’ analog of Euler theorem is

((s)/7° € K for s ‘even’, i.e multiple of ¢ — 1

Finally we can state the recent strong transcendence and algebraic
independence results:

Theorem 1. The logarithms of algebraic quantities, if linearly inde-
pendent over K, are algebraically independent over K.

Theorem 2. All algebraic monomials in factorial values at fractions
are the known ones.

Theorem 3. Only algebraic relations for I'-values at proper fractions
are those explained by functional equations.

Theorem 4. Only algebraic relations among the zeta values together
with @ come from the Carlitz-Euler relation and ((ps) = ((s)P.

For complete statements and proofs we again refer to literature below.

Let us see comparison with what is known in the classical case as
well the underlying structures involved and techniques used.

In the number fields case, in place of Theorem 1, Baker’s famous
theorem, for which he got Fields medal in 1970, proved ‘linear’ inde-
pendence over Q of logarithms of algebraic numbers, given the linear
independence over Q.

Theorem 1 proved by Matt Papanikolas uses the strong motivic
machinery developed by Greg Anderson, which reduces algebraic de-
pendency which is linear dependency of monomials to linear depen-
dency questions by use of tensor powers of motives to make required
monomials. The linear dependency techniques of Baker, Wustholz
etc. were used and similar theorems were proved in the function field
case by Jing Yu earlier.

Theorem 3 proved was proved earlier by Anderson, Brownawell and
Papanikolas by similar techniques, using description of gamma values
at fractions in terms of ‘periods’ of Anderson t-motives, to which
Greg Anderson, his student Sinha and the author contributed. This
algebraic incarnation of transcendental gamma values was achieved
by method of ‘solitons’ and ‘Fermat motives’.
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For comparison with Theorem 2 and 3, it should be noted that
classically even transcendence of individual gamma values at proper
fractions (except for denominators 2, 3, 4, 6) is not known, let alone
the algebraic independence.

For the factorial function of Theorem 2, the techniques of peri-
ods led to results in close analogy with the classical case mentioned
above, so the Theorem 2 was proved by the author by a different
technique called ‘finite state automata’ using a theorem of Christol
that a power/Laurent series ) f,t™" in K is algebraic over K if
and only if there a finite state g-automata which on input n gives
output fj,.

For comparison with Theorem 4, note that classically we know
¢(3) is irrational, but not whether it is transcendental, and we do
not know what happens at other odd integers, neither do we know
whether ((3)/73 is rational or irrational /transcendental.

The Theorem 4 was proved by Chieh-Yu Chang and Jing Yu using
the techniques of Anderson-Brownawell-Papanikolas and Papanikolas
and using the earlier result due to Anderson and the author which
gave again algebraic incarnation of these transcendental zeta values in
terms of Anderson’s t-motives (which are higher dimensional gener-
alizations of Carlitz module we looked at, in the sense that we looked
at certain embeddings A — End G%).

Some of this may look too advanced, because it may be unfamiliar,
so we end with mentioning a remarkable continued fraction formula,
which can be proved by only high-school level mathematics, for e =
e(1).

Write [ag, a1, az, - - -] as a short-form for the continued fraction ag+
1/a1 + (1 ag +--+).

Let us start by remarking that continued fraction expansion is
unique and canonical, with no need for choice of a base. Its trun-
cations give best possible approximations for their complexity. We
understand them well for rational and quadratic irrationals, but we
do not know a pattern for a single higher degree algebraic number or
say for m.

On the other hand, Euler proved for Euler’s e the following exact
formula:

e=1[2,1,2,1,1,4,1,1,6,1,1,8,1,--].
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In our case, we have completely different pattern (and proof). For
simplicity, we specialize to A = Fa[t] example. Write [n] = 2" — t.
Then

€= [L [1]7 [2]’ [1]7 [3]3 [1]7 [2]a [1]7 [4]> o ']7

where the pattern of block duplication
(whole block [1].[2].[1], [3], [1], [2], [1] is repeated after [4], followed by
[5] and so on) continues.

Here is another descriptions of the same pattern:

an = [ position of first 1 in n base 2| = [orda(2n)].

References and (Guide to the literature: In our simplistic ver-
sion here, we have, of course, omitted to mention many important
contributions. Two books giving the background material are [6, 10],
where you will find references and history. (This particular subject
area started with [4]). Another nice book going at more relaxed
pace is [9]. In particular, [10, 2.1] gives quick motivated introduction
to many objects we are considering such as exponential, zeta and
gamma, which are then developed in detail later; and the chapter 10
there explains automata technique and the proof of Theorem 2.

For proofs of other main results, see the original articles listed be-
low and expository accounts in the books as well [8] and [11].

Note added in the galley proofs(14*™ July 2008): Chang, Papaniko-
las, Thakur and Yu proved that all the algebraic relations between
factorial values at proper functions together with zeta values are the
known ones.

Chang, Papanikolas, Yu proved similar statement for I'-values and
zeta values. The proofs again use the breakthrough criterion of [2]
and [7]. Pellarin gave a simpler proof of Theorem 1 using ideas of
Denis(together with those of Anderson and Papanikolas).
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