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DRINFELD MODULES AND ARITHMETIC
IN THE FUNCTION FIELDS

DINESH S. THAKUR

O. Background.

Notation"
q: a power of a prime p;
K" a function field of one variable over its field of constants F;
’a place of K;
A" the ring of elements of K integral outside
Koo" the completion of K at
f: the completion of an algebraic closure of

" the degree of the place
h" the class number of K;

" the genus of K.
Various partial analogies observed between the theory of number fields and the

theory of function fields have stimulated the development of both number theory
and geometry. At the simplest level, we have the well-known analogies KQ,
A- Z, Ko R, f C, and - the unique archimedean place of Q. We may
extend these analogies also to the imaginary quadratic fields and their rings of
integers in place of K and A, since they have a unique archimedean place too. (In
this case, C will be an analogue for both Ko and l).) The imaginary quadratic fields
and Q are precisely the number fields for which there is a well-developed explicit
class-field theory (i.e., theory of abelian extensions) using the torsion of the action
of integers on the corresponding complex multiplication elliptic curves or the
multiplicative group Gm respectively. Analogous theory was developed by Drinfeld
(see I-D] and also [C1, HI, H2]), by considering the additive group G (instead of
Gm and various elliptic curves) which admits various possible actions of any A. This
led to the concept of Drinfeld module introduced below.
From now on, we assume 6 1, though a few concepts and results below have

straightforward generalizations even when 6 > 1. A choice of uniformizer u at
allows us to express z K uniquely as z sgn(z) x x ud, where sn(z) F,

is a one unit at c and degz is an integer. We make a choice of such a s0n function
and call monic the elements of sgn 1. Let A/ be the set of monic elements of A
and let Z/ be the set of positive integers of Z. Let H be the maximal abelian
unramified extension ofK split completely at c and let B be the integral closure of
A in H. (H is an analogue of Hilbert class field; see [H2, R].)
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Let B{F} denote the noneommutative ring generated by elements of B and by a
symbol F, satisfying the commutation relation Fb baF for all b B. (Elements of
this ring can be considered as endomorphisms of the additive group, F being
identified with the Frobenius.)

Definition. By a Drinfeld A-module p (in fact, "sgn-normalized of rank one and
of generic characteristic over B", but we will drop these words), we will mean an
injective homomorphism p’A - B{F} (we write image of a by p,) such that, for
nonzero a A,

(1) the degree of Pa as a polynomial in F is dega,
(2) the coefficient of F in Pa is a, and
(3) the top-degree coefficient in pa is sgn(a).

Example. Let A Fq[T-I and choose sgn so that sgn(T)= 1. Then T being a
generator of A, Pr := T + F defines a p. One has, e.g., Pr,- T + (T + Tq)F + F2.

There are h such Drinfeld A-modules and can be obtained from one another by
Gal(H/K) conjugation. We assume that such a t9 is given and drop it from notation
when convenient.
The analogy with the classical case is

a e A- Pa End G n . Z (x xn) End G

A classical exponential function is just a normalized entire function satisfying
e"z (eZ)". Similarly, associated to p, we have the (Drinfeld) exponential e(z) defined
to be the entire function (i.e., the function from f to f given by an everywhere
convergent power series) with the linear term z and satisfying

e(az) p(e(z)), a A. (1)

Various analogies with the usual exponential are described in IT2, T3]. We define
(see 3.2 of IT4]) d by the expression

e(z) z’/d,. (2)
i=0

The kernel A of the exponential e(z) is an A-lattice (i.e., a discrete A module in
f) ofrank one. We can write A ffI for t f and some ideal I of A. For simplicity
(see the remarks at the end of the paper), we assume that p corresponds to the
principal ideal class (i.e., the equality above holds for some principal ideal); we put
r ra. Note that ff is then determined up to multiplication by a nonzero element
of F. It can be considered as an analogue of 2rri.

It is easy to see that

e(z)= z 1--[ (l-z/2). (3)
,--{o}
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Let 1o9 be the (multivalued) inverse function of e and let (see 5.8 of IT4])

l(z) zq’/li (4)
i=0

be the power series, representing the branch of 1o9 vanishing at zero, convergent in
some neighborhood of zero. We have

a lo9(z) lo9(pa(z)). (5)

We also define {, } by

e(tl(z))- z’’
i=o qi (6)

Then we have

} li-k. (7)qi k=O
tqk/dk qk

Let Ai+ := {a e A+" deg a i} and define

1 1
:= S,.= Z -, (8)

Ai+ a

e,(t) := qJ(t):= I-I (t a) A It], (9)
dega<i

D,:= I-I a, (10)
aAi+

THEOREM I (see [C1]). For A FqET] and p as in our example,

Note that there are many notation and normalization differences in the literature.
The first two quantities in the theorem are analogues of binomial coefficients and
factorials respectively. (See [C1, C3, TI-i.) In general, the equalities do not hold, but
D are good analogues of factorials. (see IT3]).
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As an analogue of Riemann zeta values

Riemann(n) E 1/z" R,
Z+

n= 2,3,...,

define

(n):- 1/anKo,
aA+

n 1,2,3,

Now A F Z { + 1}. The cardinalities of A and Z (i.e., choices of
signs) are q 1 and 2 respectively. Hence we call the multiples of q 1 "even".

THEOREM II (See [C1, G]). For n even, (n)/ H.

Proof. Multiplying the logarithmic derivative ofboth the sides of(3) by z, we get

e(z) A-{0 1 Z/2 1-yl =1+ X ((n---)zn
7n

since yv c= -1 or 0 according to whether n is even or not. By (1) and (2),
di H. This completes the proof.

In particular, by comparing the coefficients ofzq-1 in the equation above, we get

(12)

For more on analogies with Riemann zeta values and interpolations, see [C1, G,
T1]. Note that ((1) also makes sense. It is an analogue of Euler’s gamma constant
(see IT3]).

I. Interrelations. Note that di, li H, {,} H[_t] and Di, Li K, () K[t].
(In fact, D A.) We want to generalize Theorem I by relating d’s to D’s, l’s to Li’s,
and { )’s to )’s. Further motivation will be provided in Sections II and III. See
also [C1, AT-I.

If A has a monic element, say Pi, of degree (e.g. if > g 1), then e/(t)
I-Ic Fq e(t + cpi) e(t) D-ie(t) since ei(p) D. So

ei+i(t) ei(t) D-iei(t) (13)

if pi exists. If p, does not exist, e/l (t) e(t). Let

E ai,t, E Ai,tq (14)
k=O qi

By the Riemann-Roch theorem, if > 2g then Aik 0 if k > #, since there are
a Weierstrass gaps. For the same reason, as a straightforward counting of signs
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shows, we have for > 2g,

A,o (- 1)’-(DD D_I)q-1

D
(15)

On the other hand, (7) implies that, for any i,

aio 1/li, au lids, A(_) lIDs. (16)

Let

1
L,(n)-1 := S,(n) "=

a"
(17)

i+

Then for for which p exists (e.g., > g 1),

Taking the negative of the logarithmic derivative of both the sides, we get

A,o 1
S,(n+ l)t". (18)

1 ,=o Aiktq aeA,+ a =o

Remark. Hence S(n) is a homogeneous polynomial in Aik’S with coefficients in
Fp, of weight n, if Ak is given weight qk. In particular,

1
S(1) S- A,o. (19)

L

This quantity plays a crucial role in the arithmetic of gamma functions, periods,
and zeta functions. See [T3-1.

THEOREM III. For > 2g,

Cik
k=O

ik H,

o L D.q,"
Cik 1, ci dik=0 -i Cio

Proof. If e A, then by (1),

e(tl(z)) pt(e(l(z))= pt(z).
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Further, if deg < i, then the degree of the polynomial pt(z) is less than q so that,
by (6), {,} 0. Hence the F-linear polynomial {,} of degree q’ in has elements
of A of degree less than as its zeros. Now (,) has precisely these zeros. By the
Riemann-Roch theorem, this accounts for q-O zeros of { }. Since the zeros of a

F-linear polynomial form a vector space over F, choosing a basis and using the
fact that the top-degree coefficient of {, } is 1/d, we see that

qi c e rq
ei(t + clt +... + cgtg)= rikei(t)k

k=O

for suitable 0, r0’s. This implies the first statement of the theorem. By the conditions
(1) and (3) in the definition of p, it follows that {q} 1. Hence the second statement
of the theorem follows by putting p in the first statement. The rest follows by
comparison of the lowest- (resp. top-)degree coefficients in the first statement using
(14), (16), and (19). This completes the proof.

Hence one of our goals is to understand Cik’S.
Remark. Theorem III clearly implies Theorem I.

Let

f := di/dLi, gi := li/li_. (20)

THEOREM IV. When g 1, > 2g, we have

q, =(1-#,) q, +1, (21)

with

Proof.

1 1
D (1 #i) d, St L #l

(22)

(f+l -f +/’)#+
/, (23)

(f+l f)#i+l f+ l’
By (15) and (19) we have

D+ D (24)
Li+ Li

Let b be the coefficient of q’-2 in e(t). Comparing the coefficients of q’- in (13),
we get

b+l b D- (25)
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Let #i L/l; then by Theorem III, we get (21) and (22). We want to show (23). Now
comparing the coefficients of q’-’ in (21), using (7), (11), and (22), we get

di diLl
lq,_ bp + (26)

di- . Dill

Subtracting qth power of this equation from the same equation, but with
replaced by + 1, and using (25), we get

1 (d+x d.I O,a_x, + ( d.q, LI
I’ k, d, dLiJ \ l,+,Di+ l.q,D.q,]

which equals, by (24),

By (20), (21), and (22), the above equation reduces, after cancelling the common
factor d-, to

1
1- 1 i \ gi+l

Simple algebraic manipulation now leads to (23). This completes the proof.

Finally, we give an explicit formula for f and when 1. By the Riemann-
Roch theorem, we can find monic x, y A of degrees 2 and 3 respectively. Put
[iJx := xq’- x and [i]r := Yq’- Y" Let px x + xlF + F2 and py y + ylF +
Y2F2 + Fa. (In fact, Px determines p.)

THEOREM V. When 9 1, we have

f
[i]y (Y2 x)[i],

(27)
[i- 1] + Yl --(Y2 x)xx’

qi--Ei]v + (Y2 x
/i q-ty [i 1]x- (Y2 Xl)qt_2Xqi_

(28)

Proof. Comparing the coefficients ofzq’ in (1) with a x and with a y, we get

[i]x xl 1 [i]r Yl Y2 1

di Fd_l + q2
O= --++ "l-

di_2 di d.q,_q ,
di-2 di-3

Denote the right-hand sides of these equations by x[i] and y[i] respectively. Then
the equation y[i] x[i 1]q (Y2 x)x[i] 0 simplifies to (27).
A similar method, using (5) instead of (1), gives (28). This completes the proof.
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II. Examples. We now apply the results of the last section to special zeta values.
It was shown in [LMQ] that, apart from the rational function fields (one for each
q), there are only seven other function fields of class number one. A simple check of
the list given there shows that there are only three possibilities for A with 6 h
# 1. These possibilities, with the corresponding (unique) p’s, are listed in [H2] as
examples 11.3-11.5. We list them now.

Example A. A F3[x y]/y2 x3 x 1.

X y(x3 X), Y y(y3 y), Y2 y9 + y3 + y.

Example B.
1=0.

A F.I-x, y.]/y2 W y x3 -t- 0, where 0 e F is a root of 02 -- 0 +

Xt X8 + X2 Yl xl + X, Y2 x32 -" X8 -- x2"

Example C. A F2 I-x, y]/y2 + y x3

__
x -]- 1.

x x2 -- x, Yl y2 + y, Y2 x(Y2 + Y).

THEOREM VI. For Example A, we have

1

aAi+ a
+

1i_3
(29)

(1) yl + y6 y8 y-7 log(y- 1), (30)

e(((1)) y- 1. (31)

THEOREM VII. For Example A, ((3n) and (3n)/3’ are transcendental for all
nonnegative integers n.

THEOREM VIII. For Example B, we have

E 1 1 \x2j
+
\-j + x x\xa2J + \--f-j

aeA,+ Li- li li- "" 1i-2

(1) (1) (1((1) x21 - + - + xl -- + - + log(xa + x" + x2 + x),

e(((1)) xs + x + X2 -- X.
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THEOREM IX. For Example B, ((2n) and ((2n)/2" are transcendental for all
nonneoative integers n.

THEOREM X. For Example C, we have

1 1

a/ a L

4-
li-3

e(((1)) O.

Remark. For Example C, since q 2, by (12), ((1) /dl, with dl e K. Hence
Theorem 5.1 of Jing Yu [Y1] showing the transcendence of takes care of the
counterpart of Theorems VII and IX.

We will only prove Theorems VI and VII. The rest are proved similarly.

Proof of Theorem VI.
get

Substituting the data of Example A in (27) and (28), we

f [i]r- Y[i]x [i]y_
[i]x-- 1

9,=
[i+ 1Ix+ 1

Using the values of g, g_, and gi-2 thus obtained, we can express the right-hand
side of(29) as 1/vl where v is a rational function with coefficients in F3 of x, y, x3’-’,
and y3,-. (See more on this in Section III.) On the other hand, from (23), (27), and
(28), we see that # is also such a function. The direct comparison, the details of
which we omit, of the complicated expressions thus obtained for these rational
functions #, v shows that, in fact,/ v, thus proving (29). From the formula for

9 given above, we see that deg g -3. By induction, (20) then implies that
deg li -(3/2)(3 1). Hence the power series (4) converges when deg z < -3/2.
Summing (29) over running from 0 to oo, we get the first equality in (30). The
second equality of(30) follows by using (5) with a y and z 1/y. (31) follows from
(30) by exponentiating. This completes the proof.

Remark. (29) is not the "simplest" form of the relation between L’s and/’s. For
example, using the recursion relations for l’s obtained from (5) with a y, a x,
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and by evaluation of g above respectively, we get the three equalities

1 1 y3,-, 1 1 [i]x y3, y3,+1 1 [i]2 [i]x
L + +

li_ 2 l- l,_--- ([i + 1] +

Proof of Theorem VII. According to an analogue (Theorem 5.1 of i-Y1-1) of the
Hermite-Lindemann theorem, e(z) is transcendental if z is nonzero algebraic over
K. Hence (31) shows that ((1) is transcendental. Jing Yu has also proved an analogue
(Theorems 5.5 and 5.2 of [Y1]) of the Gelfand-Schneider theorem. Let ((1)/.
Then by (31), e(0) is algebraic; hence by Theorem 5.2 and Lemma 3.4 of [YI-I, to
prove that is transcendental, it is enough to show that is irrational (i.e., not in
K). In fact, we claim that is not in Koo: First, note that by the nonarchimedean
nature of Ko, ((1) Koo has degree 0. Hence (12) implies that 2 deg deg dl
3 deg x deg x 3. (The last equality follows by comparing the coefficients of
zq in (1) with a x and using (2).) Hence is not in K(R). This proves the claim. We
have shown that ((1) and ((1)/ are transcendental. On the other hand, it is easy to
see that (kpn) (k)p". Hence the proof is complete.

IlL Generalizations. We now consider the situation where the genus and the
class number can be arbitrary. From the list in [LMQ-I, it follows that apart from
rational function fields and the examples of the last section, the only other A with
h 1 is the following example.

Example D (Example 11.6 of [H2]). A F21-x, y-l/y2 + y xs + x3 + 1. This
has # 2. We refer to [H2-1 for values of y’s.

Xl (x2 + x)a.
Conjecture E. For Example D, we have

1 1EaA,+
a Li I + I_

li-2

1_._2’- (1 1 2’-’
li-3

We have verified this for < 7. Also, from (15), (16), and the recursion relations
for l’s obtained from (5), it is easy to see that the degrees of both the sides are same.
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Further, if we sum both the sides for from 0 to , we get

(1) (1 1
(1)=(x2+x)=log(O)=x3l - + x21 -3 + - +-H + xl - +

This can be directly verified as follows: The first equality follows by (12),
the second is clear. If we take a x and z 1Ix3 in (5), we get xl(1/xa) +
l(1/x4+ 1/x12) ag for some a A. Multiplying this equation by x2+ x, the
right-hand side of the equation to be verified is seen to be a times the left-hand side.
A simple count of degrees shows that deg a 0 and hence a 1.

Definition. Let x1,..., Xn be generators of H over Fq. We say that f(i) is an
F-function (of i) if there exists k Z+ and 9 Fq(X, X2.) such that f(i)=

4-k ’-k x,) for sufficiently large.g(Xl X. Xl

Hypothesis (H). For k 0 to 9, (Hk): Cik is a F-function of i.

By Theorems I and IV, (H) holds for 9 0 and 9 1, respectively.

THEOREM XI. Assume (H) holds. Then
(a) Dg/di and Li/l and Di+I/D are F-functions of i;
(b) for each k, Aikl is F-function of i;
(c) Si(n) u(i)/l’ v(i)S’, where u(i) and v(i) are F-functions of i.

Proof. By Theorem III, the first two claims of (a) are just (Ho) and (Ha). As in
Section II, we see that 9 is an F-function, and so the third claim follows from the
second by looking at Li+ li/(Lili+x) and using (15) and (19). By (7) and (14), compar-
ing the coefficients of (for k 0, 1, k > 9) in the first formula ofTheorem III,
we get

1 1 1 o
cirAi(k_r)

li
cioAio,

dll_l cioAil -- CilAo,... q
q" (k > g).

dkli_k r=0

Now 9 is an F-function, and also dk, being independent of i, is clearly an F-function.
Hence (b) easily follows by induction on k using the equations above. (Note that
(b) is, in fact, equivalent to (H) by the same reasoning.) By the remark following (18),
Si(n)l’ is a polynomial in Aikl’s with coefficients in Fp, and hence (c) follows from
(b), (a), and (8). This completes the proof.

Our conjecture (H) has since been proved (private communication) by Greg
Anderson.
Now we explain the motivation behind these investigations. If we guess the

"term-by-term" relations (assuming they exist) between the partial zeta sums and
logarithms, say as in Theorems VI, VII, X, and conjecture E, and if we know ck,
then we can prove the guessed relation, as in the proof of Theorem VI. Instead of
((1) and l(z), we can also consider ((n) and the "multilogarithm" l,(z) := zq’/l and
use (c) of Theorem XI.
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In fact, using the notion of tensor products of Drinfeld modules from [A], it was
shown in [AT] that, for A F[T], (n) is essentially the "last coordinate" of the
logarithm of nth tensor power of the Carlitz module (the example of section 0)
evaluated at an "algebraic point". ([Y2] contains the relevant transcendence
theory.) The "last coordinate" is in some sense a deformation of l,(z). Now it is
clear how to generalize t-motives and their tensor powers of [A] to A-motives and
their tensor powers, and so we may expect generalizations of these results. But
explicit equations of Ck’S and tensor powers are very complicated, and with an
explicit approach looking hopeless, we need a better understanding of the situation.

There is an additional problem when h > 1: For example, when q 2, by (12) we
have (1) /dl. When A has an element, say x, of degree 2, as before we can see
that dl [1],/x. But by [H2], x H K, so that by Theorem 5.2 of [Y1], e((1))
is transcendental. On the other hand, e(dx((1))= 0 is clearly algebraic. We may
expect, in general, that there exists 0 H such that e(0((1)) lies in A (or, at least, is
algebraic). There is no evidence in general. Greg Anderson has suggested the
following weaker conjecture: There exist finitely many h H, k e K for such that
((1) hil(ki).

Remarks. (I) We have not studied the case when di > 1. It may be worthwhile to
do so. Also, we may generalize by restricting to a in some congruence classes with
respect to some ideal I of A (this way, we may be able to handle partial zeta
functions) or study singular theory by looking at orders in A.

(II) The connections between zeta values and multilogarithms suggested by [AT]
and this paper are quite different in spirit from the relations between the relative
classical zeta functions and multilogarithms recently investigated by Zagier. For
example, we consider the absolute zeta functions for A, and our logarithms depend
on A.

Acknowledgements. I thank Greg Anderson for encouragement and helpful
conversations.
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