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We introduce and study analogues of hypergeometric functions in the setting of
function fields over finite fields. We show analogues of the differential equations,
integral representations, transformation formulae, and continued fractions and
show how analogues of various special functions and orthogonal polynomials
occur as their specializations. There are two analogues: one with characteristic
zero domain and one with characteristic p domain. © 1995 Academic Press, Inc.

INTRODUCTION

In a series of original papers (e.g., {C1, C2, C3, C4, C5)) Carlitz intro-
duced analogues for F,[¢] of the classical exponential, logarithm, and
Bessel functions, factorial and zeta values, Bernoulli numbers and poly-
nomials, cyclotomic polynomials, some orthogonal polynomials, binomial
coefficients, and 27i.

Our aim in this paper is to introduce and study analogues of hypergeo-
metric functions for F[] and for general function fields over finite fields.
As there are multiple analogies between the number fields and function
fields, various naive candidates can be introduced using the ingredients
defined by Carlitz and they may satisfy some analogues of the properties
of the classical or the basic g-hypergeometric functions, but not others. In
fact, we define below two candidates, one with characteristic zero domain
and one with characteristic p domain. We will see that analogues of sev-
eral crucial properties are shared between them, giving us some confi-
dence that these are good analogues. Also, there are connections with
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tensor products (3.8) and solitons (5.4), concepts which have proved to be
very fruitful in the function field arithmetic. The appearance of two dis-
tinct analogues is very much in the same spirit as for the gamma functions
for the function fields (see [T4]). In fact, even those gamma functions
make their appearance here in quite unexpected fashion.

Out of the many equivalent ways to look at a particular classical con-
cept, the way which translates well in the function field case may be
thought of as a more fundamental one. Hence the analogues help to
sharpen our understanding of the classical concepts many times.

The plan of the paper is as follows: First, we introduce some notation
and some analogies, then we define an analogue of the hypergeometric
function and prove several properties for it. Next, we study another ana-
logue. For the most part, we restrict ourselves to the case of F[1], for
simplicity as well as for the fact that the analogies are the strongest in this
case. Finally, we indicate how the theory generalizes in the setting of the
general function fields. We hope to give a detailed treatment of this as well
as some other aspects such as more complete treatment of the special
functions in the near future. For the classical material, we refer to and use
the notation of [S1]. We use the same notation for the analogues defined
below, but the context will make clear what we are referring to.

1. THE INGREDIENTS

1.1. We will start by defining several objects and then proceed to ex-
plain their significance. Let F, be a finite field of characteristic p consist-
ing of g elements. Let A := F,[r], K := F (1), K. := F((+71)), and Q be the
completion of an algebraic closure of K.. Then A, K, K., Q are well-
known analogues of Z, Q, R, C, respectively. Next, we let

[n] ;=" — 1, neEZ (N
dy:=ly:= 1, d, := [nldi_,, = -, ,n=1 (2)
o g = g
e(z) 1= 2, % z) := D 5,— (3)
=0 Y =0 %
b4 N
1= 4
{q} ,;,dk,gjk @)
deg a
— al ,
Cul2) 2:,) {q} ¥, a€A 5)
edz):= [] z-a. (6)
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1.2. Carlitz [C1] defined these quantities (with different normalizations
of signs and slightly different notation and not necessarily in the same way
as we have defined them) and proved the following results. (See the
references for the details and justifications of analogies mentioned).

(1) d, (respectively (—1)7l,) is the product (respectively the least com-
mon multiple) of the monic polynomials of A of degree n. Note that if
n = 1, then [n] is the product of the monic irreducible polynomials of A of
degree dividing n. Also d;is a good analogue [T2, T4] of the factorial of ¢'.

(2) The functions (we ignore the information about the convergence,
etc. in this summary) e and / are good analogues [T2, T3] of the classical
exponential and logarithm functions, respectively. The quantities {5} and
C.(z) are analogues of the binomial coefficients [T0] and the cyclotomic
polynomials [C3] (1 + z)* — 1, respectively. This C, is the Carlitz module,
which is the simplest Drinfeld module. In the references, the reader can
find more on this subject.

(3) Carlitz then proved the following relations:

z| _ el
{q‘} T4 )
elaz) = Cyle(2)), al(z) = UC2)), Cup(2) = CACx2)), a, b, € A. (8)

1.3. Let us point out another connection between d;'s and [’s: Let
2z) =2 29d", () ;= Z 297117, and C(z) := Z{3}¢" z¢". Then it is
easy to see that

iaz) = CM(z)), ae(z) = &Cu2)), Culz) = CACh2)), a, b, EA. (9)

Remark. Drinfeld’s concept of Shtuka is flexible enough to accommo-
date gth root map as well as gth power map, hence the definitions and the
equations fit in its framework. See also 6.1. Also note that & appears in
[C5]. It turns out that &, [, and C, are the instances of the adjoints of Ore
[0] (see [G] also), for e, [, and C,. The equations above connecting the
exponential for the adjoint to the adjoint of the logarithm and showing the
multiplicative property of adjoints also follow from the basic formalism of
adjoints.

2. THE FIRST ANALOGUE

2.1. Let n be a nonnegative integer and let a € Z. We define (a), (which
should really be (a),.) as follows:

dist ifa=1

n+a-1
ifn<—-a=0 (10)

(a), := /I
0 ifn>-a=0.

—a—n
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We have (1), = d, as well as

(@ns1 = [n + a}" (a)f (11
@, =(@a+ )i, fora # 0 (12)
(a+ 1), =[n+ al (a), for a # 0. (13)

For a;, b; € Z, for which it makes sense (see 2.2), we define

C— . . = < (al)n T (ar)n
rFs- rFs(al’- .o . ,a,,b,,. .. ,bs,Z)- p:zﬂ](bl)n"'(b.s)ndn

7. (14)

2.2. When b; > 0, the terms are well-defined and when a; = 0 the series
terminates, just as in the classical case. When a;, b; > 0, the degree of
the coefficient of z7" is easily seen to be ng"(r — s — 1) + ¢"S(a; — 1) —
E(bj — 1)). So the series then converges for z = 0 only, for all z, or for z
with deg z < 2(b; — 1) — X(a; — 1) according to whetherr > s + 1, r <s +
1, or (the balanced case) r = s + 1, respectively. This division into the
three cases is parallel to the classical case. For example, Gauss series »F)
is balanced, and if, e.g., a + b = ¢ + 1, then it converges for deg z < 0.
Below, when we state some formulae, we will leave it to the reader to
figure out the domain of validity.

2.3. Now we explain some motivation, analogies, and the splicing at
a = 0 of (a), we have used. Classically, (@), =ala+ 1)---(a@a+n—-1=
(a + n — 1)Y(a — 1)! With the analogue of the factorial defined by Carlitz
{C2, T2], the right hand side should be replaced by d,+,-,/d,—, if we think
ofa + n — 1 and a — 1 taking the place of g°*"~! and ¢!, respectively.
Here, some extra twistings of g-powers come up in shifting the factorial
and also we do not divide to get linear term normalized to be z. This is
done for simplicity and to get good specializations (see 3.5). If we do
normalize the linear term to be z, we get the radius of convergence to be
one in the balanced case, parallel to the classical case. (This will be
explored more in a future paper.) This is related to the fact that in the
differential equation analogue given below dy defined below is linear only
with scalars in F,, unlike d/dz which is linear. The factorial function of
Carlitz mentioned above has been interpolated from N to Z, by Goss and
is a good analogue of the Euler factorial function (see [T2]), but it does not
have poles, unlike its classical counterpart.

For our purposes, it seems that an appropriate analogy is the following:
Think of d,, which is the Carlitz factorial at g*, as (some other) factorial at
n and try to use the functional equation (2) to extend the definition for
negative n. We immediately run into problems of dividing by zero, which
we interpret to be poles. Then, we do have poles at negative integers,
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analogous to the classical situation. The same problem is encountered in
extending (a), to nonpositive a’s. We then renormalize or reinterpret (a),
by picking ‘‘residue’’ or in other words specifying (0)y = 1 and then
continue using the relations (11)-(13) from that point onwards. This ex-
plains the exceptions in (11)-(13). The process is justified, a posteriori, by
the results in the next section proving analogues of various classical prop-
erties, and it also fits with the classical normalizations (1) = (@) = 1
coming from (a)_, = (—1)*/(1 — a),. Another option of just keeping the
poles is discussed in 3.5.

3. PROPERTIES OF THE FIRST ANALOGUE

3.1. Differential Equation. We want to show that .F; satisfies an ana-
logue of the Gauss differential equation. The convenient form for the
differential equation turns out to be the product form (see 1.2.5 of [S1]).
We begin by explaining analogues of d/dz and zd/dz in our case (see 1.2 of
[T2] for more on this).

For a € Z, consider the operations (A and A™ appear in [C5])

A,8(z) = g(tz) — 197 g(z), A:=0Ag, AW :=Ag--- A (15)
dp := AVe, 4 = (AM)Ve, (16)

Analogies are as follows: We consider series of the form 2 g;z7 instead
of Z a;z' in the classical case. Hence we consider the ‘‘qth power’” opera-
tor, which takes z7 to z7"', as analogous to the ‘‘multiplication by z”’
operator in the classical case. We consider A, to be an analogue of
zd/dz + a, dr as an analogue of d/dz, and d}.l‘” as an analogue of d*/dz*
because of the analogies explained in 1.2 of [T2] (e.g., A is a linear deriva-
tion on linear functions, multiplication operation being composition and
dre(z) = e(z) parallel to the classical d/dz(e?) = e?), as well as

(z z;-iz— + a) =+ a A =[h+alr® an

(8-

Also note that A,g(z) = (Ag(z)*)?° is an analogue of classical
(zd/dz + a)g(z) = 1/zzd!d7)(z%g(2)).
The analogue of the Gauss differential equation is

. i_ ')— w..d_.w_ W) — (AWNhe¥
(zdz w+ 1) =z dZW@A = (dy"y". (18)

[1ALF =de [ A F.  (ai by b — 1 # 0). (19)
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Proof of (19). By (2), (12}, and (15), if a;, b; # 0, we have

- (al)n T (ar)n -t "
ArFS = q

};) (bl)n T (bs)n dn z

a1y (a, + D (z""")"

TE G +Di (b + DE Ny

=,Fs(a|+ l,. .. ,a,+ 1;b|+ 1,. .. ,b~\-+ l;Z)q

Hence, by (16), we have

dFrFs({ai}; {bj}’ Z) = rFs({ai + ]}’ {bj + 1}’ Z)- (20)

On the other hand, if a; # 0, by (13) and (15), we have
AL F, = Fla,...,a+1,...,a;{b}2) 2D
and if b; # 1, by (13) and (15), we have
Ay, Fy = Fla}: by, . .. . bj— 1, ... ,b:2). (22)

Hence (19) follows. =

It is straightfoward to verify another solution Fia + 1 — ¢, b+ 1 — ¢;
2 — ¢; )9 parallel to the classical z'"Fi(a+ 1 —c, b+ 1—-¢;2 —¢;2)
in addition to »F,(a, b; c¢; 2) in the case of Gauss ,F, case. More extensive
treatment of the solutions from the differential equation point of view will
be given in another paper.

3.2. Ratios of Terms. The ratios c,+,/c, of consecutive terms of ,F;
are rational functions of n, ¢”, respectively, in the classical and g-ana-
logue cases, respectively. In our case, c,+/c? is a g-power power of a
rational function of " by (11).

3.3. Linear Relations between Contiguous Functions. We see another
interesting justification of the analogies we have described in the linear
relations between the contiguous (those with all parameters same, except
for one pair, which differs by one) hypergeometric functions. See [S1, pp.
13, 14] for the fifteen such relations given by Gauss. We choose the
following two for illustration: (b — a),F, = b,Fy(b + 1) — a,Fi(a + 1) and
(1 ~ z2hF) + (¢ — b)c™'2F (¢ + 1) — 2F(a — 1) = 0, which is linear in z.
An analogue, easy to verify term-wise, of the first one is

[b - a]‘f" 2F| = zFl(b + ]) - 2F|(a + 1) (23)
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An analogue, easy to verify term-wise, of the second one is
Fr— F+ [c— bl oF(c+ 1)+ [—a+ 1LFa—-1)=0. (24)

Recalling that multiplication by z corresponds to raising to the gth
power, we can write this more suggestively to show that it is ‘‘linear in Z*’
(the symbol Z denoting the raising to the gth power operator) as follows:

(1 = ZnF) + [c = b} "'Z:F\(c + 1) + [—a + 1,Fi(a — 1) = 0. (25)

3.4. Integral Representation. Our analogue is a formal reinterpreta-
tion of Barnes contour integral formula [S1, p. 24], rather than the Euler
formula and is in the spirit of the integral formula for the gamma function
given in 1.1 of [T2]. The proof of the Barnes formula consists of calculat-
ing the contour integral by the residue theorem. Since I'(—s) has poles at
s = n, for nonnegative integers n, with residues (—1)"*!/n!, the sum of
residues of I'(a + )I'(b + s)I(—s)(—1)z/T'(c + s) turns out to be —,F)
except for the scalar multiple normalization factor consisting of I'(a)’s
(which we avoid: see 2.3).

In our case, the role of I'(a + n)/T'(a) is played by (a), as described
before. We now show how to find an analogue of the I'(—s) occurring in
the Barnes formula having poles at s = n with residues (—1)"*!/d,. This
then implies, as in the classical case, that the sum of residues of
(@(b)(1) (= 1)z¥/(c) is —aF:

First, as explained in 2.3, in our case, the role of I'(—n) is played by
d_,_, = (1)_,-, for nonpositive n. We want to make sense of this even for
positive n.

In the classical case, we have similarly n! = (1), for nonnegative n and
we define (a)-, := (—1)*/(1 — a),, thus enabling us, for example, to de-
velop bilateral series. This would mean that (1)_,_, should be formally
considered as (—1)"*1/(0),+,, which can be thought of as having a pole
with residue (—1)"*1/n!, because (0),+; = 0.1.2. - - - n.

In our case, on the other hand, repeated application of (11) gives
(0),.: = 0.4%. Since d, is an analogue of the factorial, a comparison with
the classical case described above suggests that we consider (1)_,_, rather
as (—1)7*1/(0)4~1, which then can be thought of as having a pole with the
residue as claimed. (If we think of (a), as a replacement for I'(a + n)
instead, and take (0)., for I'(—n), the classical transformation
0)-, = (=1)*/(1), gives the same value (—1)*/d,, but it is not clear why
one should think of this as a residue.) Using ideas of 1.3, we have recently
defined analogues of (a)_, and of the bilateral series, which will be de-
scribed in another paper.

3.5. Specializations. Analogues of many classical special functions
defined by Carlitz [C5] are specializations of the hypergeometric func-
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tions defined above. (Here we note that there are many sign differences
with the references, because of the different normalizations.) We get the
Carlitz exponential by default:

e(z) = oFo(—; —; 2). (26)

We get the binomial coefficients as
{qzm} = F\(—=m, k; k; 2) = \Fo(—m; —; 2). (27)

The connection with the analogues of the Bessel functions of the first and
second kind is the following. For k = 1,

Jow-0@ = I @) = Y @) = oFi(—; k5 2). (28)

We note here that our J here is a Carlitz modified Bessel function / and
the reason is different normalization of signs: More precisely, isomor-
phism by conjugation of the (g — 1)th root of —1 (analogue of i, which
occurs classically connecting the two) switchesour C, =t + Ftot — F,
Jtol

The Jacobi, Legendre polynomials analogues come via

(PO (D) dm = JFi(n + k+ 1, —m; k + 1; 2) (29)
(MEX2)* " ldm = 2Fo(n + 1, —m; —; 2). (30)

Remark. We note that if we had defined the hypergeometric functions
without splicing and with (@), considered as a pole for negative aq, i.e.,
with 1/(a), = 0, then we could have avoided powers in some of the
expressions, but some other expressions would have been impossible.
Using coefficients of €(z) of 1.3 rather than e(z) one can consider varia-
tions of the hypergeometric functions, whose specialization would be the
analogue of Laguerre polynomials L®. In [CS5], Carlitz extends the defini-
tion of [n]'s to some fractional n’s, introducing another variant worth
studying and allowing many more interesting specializations. We hope to
come back to these issues in a future paper.

3.6. Continued Fraction. In|[T3], we obtained a continued fraction for
e(z), with a nice (but quite different from the classical analogue) pattern.
Here we just point out that by (11) and the remark (1) of p. 154 of [T3], we
get similar continued fractions for the hypergeometric analogues. These
are especially simpler for ¢ = 2, with the partial quotients involving the
products of (g-power powers of) [#]’s compared to the products of n’s
appearing in the classical result of Gauss {S1, p. 15].
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At the suggestion of the referee, we provide an example of ,F;, when
q=2.Putr:=(d%"; z7W(d"; d‘,f'__f) andfori =0, putr,:= [c + ]9/
([a + i) [b + i]9'"). Then we have the following simple continued frac-
tion with the doubling (see [T3]) pattern:

ZF](a9 b; c, Z) = [Or Fo1s Tos =15 F1s F—1s POy I'—y, 25 " ° ']'

We note here that usual transformations allow us to write a generalized
continued fraction and also that if there are any fractional powers of [n]’s
are involved, we can get rid of them by raising the hypergeometric func-
tion to a suitable g*th power.

3.7. Summation Formula. The usual trick [S1, p. 27] of putting z = 1
to cancel terms in the linear relations does not work. Instead, we proceed
as follows: Let us write

Z’fj(t)Tf = (T — ™) -« (T — 177,

Then using (2) and (4), we see that for m, k, u > 0 we have

Fil=m, k+ k1) = f{.f.k“‘—]

S0 dis -, dr

_§lrtktp -1t 4 K
r=0 [('l':_r dr

k

_ m (tqr _ Iq—ik+u—ly) . (tq, _ [q_)
B }2{) l?r:-r d’

- 3 sof i}

By (6) and (7), the terms are zero for j < m. In particular, this vanishes
when u < m, parallel to implication of Vandermonde’s evaluation [S1,
p. 2] (—w)m/ (k) of the left hand side in the classical case. When u = m,
we get the value 1. When u = m + 1, we get the value — 27—k — 2i]9.

3.8. Connection with Tensor Products. In [AT, p. 174}, the appear-
ance of the Carlitz analogue of the Bessel function Jy(z) in the formula for
the exponential for the second tensor power of the Carlitz module was
pointed out. We have seen in 3.5 that Jy(z) = oF(—; 1; 2). In fact, it can be
verified by a direct computation, using 2.2.3 of [AT], that the exponential
exp, of the mth tensor power of the Carlitz module evaluated at the



228 DINESH S. THAKUR

column vector (which has canonical meaning) with the top entry z and the
other entries zero is the column vector whose jth entry is oF,,—1(—5 1, - -,
1;2)ifj = tand oFp-y(—; 2, - - -, 2,1, - -, 1; 2)9 otherwise, where there
are j — 1 2’s. For example,

z of3(—; 1,1, 1; 2)

0 of3(— 2, 1, 1, 2)¢
€XP4 = .

0 0F3(_;2, 2, I;Z)q

0 oF3(—32,2,2; 204

4. THE SECOND ANALOGUE

4.1. Let n be a nonnegative integer and let a € (). We define (a), to be
en(@). Now, (t"), = d,. (Note that a and n now belong to the rings of
different characteristics.)

For a;, b; € Q for which it makes sense (see below} we define

- (@)n: - (ar)n a
.— Of . - = q"
rgs - rJPs(al s ooov o5 Oy b], I bb’ Z) ’; (bl)" . (bs)ndn Z

an

4.2. If b; & A, then the terms are well-defined and a; € A gives the
terminating case. Note that we do not need any sign condition in contrast
to the classical case and the first analogue. If a;, b; &€ A, it is easy to
calculate the radius of convergence from the degrees of ¢,(z). We then see
that the degree of the coefficient of z¢" is ng"(r — s — 1) — (r — s)q(q" — 1)/
(g — 1). So the series then converges for z = 0 only, for all z, or for z with
deg z < gq/(q — 1) according to whether r > s + 1, r < s + 1, or (the
balanced case) r = s + 1, respectively. This division into three cases is
parallel to the classical case. In paticular, we see that ;%, converges if deg
z < g/(g — 1), which is exactly the radius of convergence of the logarithm
and in that sense similar to the classical case.

4.3. Now we explain the motivation for the definition. Classically,
(a), = (—1D)"n'(5H, hence 1.2 (2) and (7) motivate our definition.

5. PROPERTIES OF THE SECOND ANALOGUE
5.1. Specializations. An analogue of the binomial series (1 + 2)* =

exp(n(log(1 + 2))) is e(al(z)). In particular, for a € A, we get C,(z). These
are specializations of ;%, in a manner parallel to the classical case. By (3),
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(4), and (7), we have
2F(a, b; b; ) = e(al(2)). (32)

This provides a formula for the exponential similar to the classical case:

lim 2@.(a, b; b; 5) = e(2). (33)
dega—x a
We have, of course, the ready-made specialization (Fo(—; —; 2) = e(2).

Similarly, we have expression for the Oth Bessel function as

lim 3@1((1, b, C, C, az_b> = JO(Z)- (34)

dega,b—x

The following expression for the logarithm seems different than the
usual classical expression: ,F (1, 1; 2; 2) = log(l — z).

fim ﬂ(“—’é’—;ﬂz—) = lim Y, "'(5_) =3 %Q #=1@. (5

a—0 a

5.2.  Euler and Kummer Transformations. Keeping in mind the ana-
logue of the binomial series explained above and the fact that we are
dealing with an additive rather than a multiplicative situation, an analogue
of the Euler transformation formula ,F(c — a,c — b;c;z) = (1 — ¢4~
»Fi(a, b; ¢; z) in our case is

WFic—a, c—b;c;2) =ellc —a— b)) + :Fa, b; ¢c; 2). (36)

Similarly for a closely related analogue of Kummer’s theorem for the
confluent hypergeometric function e~ |Fi(a; b; 2) = Fi(b — a; b; — 2) in
the classical case, we have the analogue

e(—z) +1Fila; b; 2 = Fi(b — a; b; 2). 37

5.3. Sum Formula. The fact that we get a sum instead of the product
as in the classical case of Euler transformation implies that we get the
following sum formulae as analogues of the product formulae [S1, p. 13]:
fu-x—-y=1+n+v+w-—m,then

Ty, )+ F (0l —n—v,l—n—-w, 1l —n—-m;2) (38)
=W —-x,u—y,u;z) +:Flo—mw—-—m1—n—mz).
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5.4. Ratios of Terms. Analogous with 3.2, if ¢, denotes the nth term in
the definition of ,%; and if a;, b € K — A, then c,.i/c} is an algebraic
function of " by (2) of this paper, (13) of [T5], and Theorem 2 of [A] (see
also [T7]). These algebraic functions are related to the solitons of Ander-
son [A].

At the suggestion of the referee, we give two simple examples (I and II
of Section 2 of [T7]): Write 7 := t¢"'. Then we have

-1-7 (39)
@
o,
(lz)q =1- (x(TX + X9 — X(tx + x990 (40)
1/ n

where X (x respectively) is a primitive 72 (£ respectively) torsion
of the Carlitz module. More explicitly, X satisfies the equation
X7 + (T + THX? + T* X= 0 and x satisfies the similar equation in lower
case jetters.

6. GENERAL CASE

6.1. Drinfeld and Hayes generalized some aspects of the Carlitz theory
from the rational function field to any function field. In particular, there
are generalizations of e(z), I(z), d;, and /; coming naturally from the theory
of Drinfeld modules and in particular from the sign-normalized Drinfeld
modules of Hayes (see [GHR]). We can hence proceed to define hyperge-
ometric functions in analogous fashion using these generalized ingredi-
ents. Many of the properties we have shown do generalize. For example,
all the results of the previous section work exactly the same if we use the
definition (4) in general, rather than (7), to define ,%;. For the first candi-
date, the place of [n]’s is assumed by the appropriate specializations of
Shtukas, see [{T6]. (In particular, 0.3.6-0.3.8, 5.8, and 5.9 reflect dual
nature of d; and /;, coming from Serre duality (in addition to connection
with adjoints as in 1.3)). In fact, [T4], [T5], and [T6] show that there are
two interesting generalizations of d;’s and the binomial coefficients. The
interested reader can refer to these references for some explicit examples
also. We hope to address these issues in full in another paper.

6.2. We take this opportunity to correct some errors. In [T1] p. 246, line
—14, x;-1 should be replaced by x;+;. In [T5] p. 196, line 2, F4 should be
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replaced by F, and in [T5] p. 188, line -7, g — 1 should be replaced by
2g ~ 1. In[T6] p. 559, line 3, the first X should be replaced by X and in 5.1
to 5.3 the additional hypothesis that § = 1 should be inserted. The second
to last statement in (5) of [T4] p. 85 should be deleted.
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