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RESUME. Dans [5], nous avons examiné deux analogues (‘mul-
tiplicatif’ et ‘additif de Carlitz-Drinfeld’) chacun, pour les con-
gruences de base bien connues de Fermat et Wilson, dans le cas
des polynomes sur des corps finis. Quand on les regarde modulo
puissances supérieures des nombres premiers, c’est-a-dire aux ‘su-
percongruences’, nous trouvons des relations intéressantes les re-
liant entre eux, ainsi que de les lier avec des dérivés arithmétiques
et des valeurs zéta. Dans le travail en cours, nous développons
plus systématiquement le premier analogue et les connexions avec
les dérivées arithmétiques, en donnant beaucoup plus de condi-
tions équivalentes reliant les deux, maintenant en utilisant ‘dérivés
mixtes’ aussi. Nous observons et prouvons également des factori-
sations premieres remarquables impliquant des conditions dérivées
pour certaines quantités fondamentales de ’arithmétique des corps
de fonctions.

ABSTRACT. In [5], we looked at two (‘multiplicative’ and ‘Carlitz-
Drinfeld additive’) analogs each, for the well-known basic congru-
ences of Fermat and Wilson, in the case of polynomials over finite
fields. When we look at them modulo higher powers of primes, i.e.
at ‘supercongruences’, we find interesting relations linking them
together, as well as linking them with arithmetic derivatives and
zeta values. In the current work, we expand on the first analog
and connections with arithmetic derivatives more systematically,
giving many more equivalent conditions linking the two, now us-
ing ‘mixed derivatives’ also. We also observe and prove remark-
able prime factorizations involving derivative conditions for some
fundamental quantities of the function field arithmetic.
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1. Introduction

In the well-known number field-function field analogy, the cyclic group
/multiplicative group of finite fields nature of (Z/pZ)* and (F[t]/pF,[t])*,
(where p is a prime in Z and g is an irreducible polynomial in F,[t]) gives
parallel statements and proofs for Fermat’s little theorem and the Wilson
theorem. But the different group theoretic nature of (Z/p*Z)* (cyclic for
odd prime p) from (F,[t]/o"F,[t])*, for higher k is partly responsible for
the fact that the question of infinitude of Wieferich or Wilson primes is
mysterious and still open for integers, while at least a naive (multiplicative)
analog has a nice complete answer [4, 5] for the polynomial case. Somewhat
surprisingly, it involves derivatives very intimately.

In this paper, we explore this further and prove more results by providing
equivalence between supercongruences and vanishing of various arithmetic
higher (pure (Theorem 4.1 and 5.1) or mixed (Theorem 5.2)) derivatives.

Next we show (Theorem 7.3) that while the fundamental ‘numbers’
Dy, Ly of the function field arithmetic (see the start of Section 7 for defini-
tions, factorizations) have beautiful regular symmetric prime factorizations
exactly involving all the primes of degree < d, with multiplicities simply
depending on just their degrees; simple perturbations Dy_1 —cor Ly 1 —c
(c € F;) have ‘derivative constant’ characterizations of the degree d primes
occurring in their factorizations, leading to very few ‘special Wilson primes’
as factors, and prime factors of larger degrees being mysterious. We also
note that Dy and Ly occur as (reciprocal) coefficients in Carlitz-Drinfeld
exponential and logarithm series for F,[t] respectively, and that Dy is the
Carlitz factorial of ¢?. For more, we refer to [2, Sec. 2.5, 4.13].

Interestingly, the Wilson primes (‘double derivative vanishing’ condition)
are exactly the primes involved in a strange hybrid version (Theorem 7.1) of
the famous Wolstenholme theorem that p? divides 1+1/2+---+1/(p—1),
for prime p > 3. See Section 7 for some numerical examples of Theorems
7.3 and 7.1 for more on these strangely beautiful factorizations.

2. Basic definitions and Fermat-Wilson analogs

Let A = F[t], where [, is a finite field of g elements, where ¢ is a power
of a prime p. Let p denote a monic prime of A of degree d (in t), so that
its residue field [F,, inside the completion A, of A at @, has cardinality
Norm p = ¢¢. Let 6 € F, be the Teichmiiller representative of ¢ modulo .
Note that p = [](t — ) is the minimal polynomial in A for §. * We have
the well-known Fermat theorem analog: aN°"™¢ =g mod p, for a € A.

Definition 2.1. Let a € A. We say that p is a Wieferich prime base a (or
a-Wieferich), if aN™¢ = a mod 2.
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Often, but not here, one excludes in the definition the trivial cases a =
0,1, —1 classically, and a € F, in the function field case, as these are exactly
the cases where a? = a and aN°"™% = g respectively. We also note here
that the notion depends on a (modulo g?) and not just on @ modulo g.

We have the well-known Wilson theorem analog: Fy = —1 mod g, where
F, is the product of all non-zero polynomials of degree less than d (which
represent ‘smallest’ representatives of all non-zero residue classes modulo
©). (For more analogies, using the Carlitz factorial, we refer to [5].)

Definition 2.2. We say that p is a Wilson prime, if F; = —1 mod p?.

3. Three arithmetic derivatives

We now give definitions and some basic comments on the three arith-
metic derivatives, in fact, a derivative, a Frobenius-difference quotient and
a difference quotient. Let a € AF, = F[t].

The usual derivative. Let a') := D(a) := da/dt and denote by a(?) :=
D(a) := d'a/dt".

Fermat quotient (i.e., Frobenius-difference quotient) derivative.
Let Qp(a) := (aN"™¥% — a)/p and denote its i-th iteration by Qf-

Teichmiiller difference quotient derivative. Define all = A’(a) by

alfl(t) = a(t) and a1 (t) = (al! () — al(0))/(t — 6).

Remarks. (I) All these derivatives give self-maps on AF, and the first
two restrict to self-maps on A also. They are all F-linear. They depend
on the choice ¢ of the generator of A only through its sign.

(II) They all evaluate to zero on constants a € F,. Evaluated on p-th
powers, the first one vanishes, the second one vanishes modulo p, and the
second and third one vanish when evaluated at ¢t = 6.

(ITI) Let us denote the degree in t by deg. When deg(a) > 0, (i)
deg(da/dt) < deg(a) — 1, with strict inequality, exactly when p divides
deg(a), (ii) deg(Qy(a)) = q% deg(a) — d, (iii) deg al'l = deg(a) — 1.

(IV) For f =3 fit' € F,[t], we have (i) da/dt = > ifit'™L, (ii) Qp(a) =
> fi(tie" — 1) /g, (iii) altl = 32 f; 32 #7909,

(V) Part (iii) of (IV) implies that al')|,—g = da/dt|;—g (formally, without
using definition of ¢) and similarly for higher derivatives. This also fol-
lows from the fact that these higher differences are polynomials which are
continuous, so the derivative-limit is the evaluation.

(VI) We will not give corresponding (twisted) derivatives properties for
each, as we do not need them. But see e.g., [1] for analogous set-ups in
characteristic zero.
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4. Fermat supercongruence and the first derivative of the base

By the definition, the condition that ‘p is a-Wieferich’ is equivalent to
‘Qp(a) =0 mod p’. The condition being equivalent to higher multiplicity
of the root 6, by the usual detection of such multiplicities by derivatives
in the polynomial case, we get more transparent (e.g, (i) below) equivalent
vanishing derivative conditions, as follows.

Theorem 4.1. The following conditions are equivalent.
(0) Prime @ is a- Wieferich,
(i) da/dt =0 mod p, (i’) (da/dt)|i=¢ = 0,
(i) Qu(a) =0 mod p, (it’) Qu(a)li—s =0,
(iii) aM),—g = 0.

Proof. The equivalence of (0) and (ii) follows from definitions. The equiva-
lence with (i) was also noted e.g., in [5, p.195]. The equivalence of (ii) with
(ii’), and of (i) with (i") follow, since p is minimal polynomial over A of 6.
The equivalence (i’) with (iii) was noted in Remark (V) of Section 3. O

As an immediate corollary, we get

Theorem 4.2. (i) If there are infinitely many a-Wieferich primes, then
a =P for some b € A, and then all the primes of A are a-Wieferich.

(i) There are no a-Wieferich primes, if and only if a = b + ct, with
be A and ceFy.

Remarks. We can also see this [5, p. 195] from the following. If a =
3" a;t!, we have, modulo p?, (without loss of generality o # t) that

o —a= at (141 1) = at G) ([d]/t)* = (da/dt)[d],

This suggests that while we do not have distinguished ‘¢’ in the rational
numbers case to compare da/dt, given p, a mod p analog of db/da may be
the ratio of Fermat quotients (b — b)/(a? — a).

If we take a = p and divide the displayed congruence by o we see that

dp/dt = —1/Qu(t) mod p.
Since dgp/dt has degree less than that of g, this allows us to extract dgp/dt
from @, (t) modulo p. In contrast to dp/dt and ol the Fermat quotient
Q,(t), which occurs analogously in our main theorems, feels more like the
derivative of ¢ rather than of o with respect to ¢. This explains the recip-
rocal relation.

5. Wilson supercongruence and the second derivatives of the
prime

We restrict to p > 2, for simplicity, leaving the p = 2 discussion to [5].
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Theorem 5.1. Let p > 2. The following are equivalent.
(0) Prime @ is a Wilson prime,
(i) dp/dt* =0, (i) d*p/dt* =0 mod p, (i”) (d*p/dt*)|i=g = 0,
(i) Q3(t) =0 mod p, (ii’) Q% (t)li=o = 0,
(iii) 91! 1—g = 0.

Proof. The equivalence of (0), (i), (ii) and (iii) was proved in the main
theorems [4, Thm. 2.5, Thm. 2.9]. The equivalence of (i) with (i’) and (ii)
with (ii") follows as before. O

Remarks. As a corollary, we got a simple characterization of Wilson
primes o = Y p;t* as irreducible polynomials with (from (i)) non-zero p;
occurring only when p divides ¢ or ¢ — 1. We deduced [4, Thm. 2.10] their
infinitude for any given A. It was also proved [4, Thm. 2.9] that if the
Wilson congruence holds modulo g?, it automatically holds modulo @P~*.

To these three ‘pure’ double derivatives conditions, we now add six more
‘mixed’ double derivatives equivalent conditions.

Theorem 5.2. The following are equivalent to the conditions of the previ-
ous theorems.

(i) dQu(t) /dt = 0 mod p, (i-i7) (dQu(t)/dt)]1—g = O,

(ii-i) Qu(dgp/dt) =0 mod p, (ii-i’) (Qu(dgp/dt))|—g = 0,

(i-iii) (dp! /dt)]1—g = 0,

(iii-i) (dgp/dt)")]i— = 0,

ﬂm(QM@)W@—O,

iii-ii) (Qu(t)M)]1=o =
Proof. The equivalence of (i-ii) with the ‘primed’ version (i-ii’) and of (ii-i)
with (ii-i") follows since g is the minimal polynomial over A for §. We now
use freely the Remarks of Section 3 in the proof, and show the equivalences,
one by one, to some previously established ones.

The equivalence of (i-ii) ([5, Thm. 2.6]) follows from the first congruence
in Remarks of Section 4 specialized at a = Q(t) = [d]/ g, where [d] = e’ —t,
since @ divides [d] with multiplicity 1.

(i) implies that dp/dt = aP for some a € A, so that its Fermat quotient is
divisible by ©P~!, so it implies (ii-i). Conversely, (ii-i) implies that (' )qd -
o = fp?, for some f € A. Taking derivative with respect to ¢, we get f/p?+
2fpp’ = —¢", so that p divides ", which by the degree considerations
immediately implies (i).

By the quotient rule, (i-iii) implies that (t — 6)3 divides @'(t)(t — 6) —
(p(t)—p(9)), so that (t—0) divides ¢ (t)(t—0)+¢'(t) — ¢/ (t) = o" (1) (t—0),
which implies (i”). Conversely, since ¢'(t) = ©'(0) by Remark (V) of Section
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3, we have

4o P't) o) —p0) _¢'t) ')  pMt) —p'(6)

dt t—0 (t —6)2 t—0 t—0 '
Now the second quantity vanishes at ¢ = 6 by (iii), and by (ii) the numerator
of the first quantity is divisible by (¢ — #)P. This implies (i-iii).

(iii-i) implies that (¢t — 0)? divides ¢'(t) — ¢'(6), so that t — 6 divides
¢’ (t) implying (i”). Conversely, (i) implies ¢’ is p-th power, so that (p’)[!
is divisible by (t — )P~ implying (iii-i).

(ii-iii) implies (t —6)gp, and so also (t — )2, divides (p[l])qd — !, Taking
the derivative with respect to ¢, we see that t — 6 divides d/dt(p!!l) implying
(i-iii). Conversely, (iii) implies that (t — #)? divides := pl!(t) — p1(8), so

(iii-ii) is equivalent to the divisibility of Q,(t) — Q4 (%)=, Which is equiv-
alent to the divisibility if d/dt(Qy(t)) by t — 6, which is (i-ii’). O

Remarks. The condition (ii-i) can be restated in a more striking form
saying that p is Wilson if and only if g is base dgp/dt-Wieferich.

6. Examples

Let us verify, by direct calculations, the nine equivalent conditions of
the two main theorems (Theorems 5.1, 5.2) for the family of Artin-Schreier
primes p = t? —t —m for A =Fp[t], me Fy, and p > 2. That these primes
are Wilson primes was noted and proved already in [3, Thm 7.1].

Since Dp = —1, D?p = 0, we get (i).

Since pltl = (t — )P—1 — 1, pl& = (t — P2, we get (iii).

The calculation Q,(t) = (" —t)/(tP —t —m) = P T
©P~1 + 1 shows that P2 divides Qé(t) verifying (ii).

This calculation also implies (i-ii) immediately.

We have Q,(¢'(t)) = Qp(—1) = 0 implying (ii-i).

We have d/dt(p!") = (p — 1)(t — 0)P~2 implying (i-iii).

Since @' = —1, we have (¢')l! = 0 implying (iii-i).

We see that Q(pl1) = Qu((t — )P — 1) = [(t— 0P~ — 1P — ((¢ -

7. Derivative conditions on primes occurring in some natural
factorizations

Let us recall some basic quantities/notation from Carlitz associated to
the arithmetic of A. For a non-negative integer n, we put [n] = t9" —t. We
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put Lo = Dy = 1 and for a positive integer n, we put L, = [n|L,—1, D, =
(] D5y

Recall (see e.g., [2, Sec. 2.5]) the nice factorizations of these fundamental
quantities: The quantity [d] is the product of all (monic) primes of degree
dividing d, Dy is the product of all monic polynomials of degree d, and Ly
is the (monic) least common multiple of all polynomials of degree d. So
Lq =[] p'*, and D4 = [] ¢"*, where both the products run over (monic)
primes g of degree k < d and ng = > ¢®=°*: the sum over 1 < e < |d/k].

Second derivative condition: Wilson primes.

Theorem 7.1. Let p > 2. The degree d primes dividing (the numerator
of ) 1/I1] +1/12] + --- +1/[d — 1] € Fy(t) (or equivalently, dividing the
polynomial —L!;, | = Lq_1/[1] + -+ Lq—1/[d — 1]) are ezactly the Wilson
primes, i.e., the primes of degree d with the vanishing second derivative.
These exist only if p divides d or d — 1. They occur with multiplicity (at
least) p — 2.

Proof. The Wilson primes of degree d are, by definition, those o which occur
with multiplicity at least 2 in the factorization Fy + 1, and we have [4, p.
1842] Fy = (—1)?Dy/Lq. Hence exactly these p’s divide the derivative
DyLa~ DaLy  —Dj yLa—[d]Dg L Lo+ L
L L [dILE
Now, by the product rule of derivatives, we have
L+ La—y=—[d([d—2]--[1] +[d=1][d=3]---[1] +--)
1 1 1
= —[d]La—( + ot )
[d—1] " [d—2] [1]
so that the derivative above is D:Ll /L4—1 times the first expression in the
theorem. The first claim follows, since by the above factorization results,
Dy 1 or Lg 1 factorization does not involve any prime of degree d. The
second claim follows from the characterization [4, Thm. 2.9] of Wilson
primes, which implies that d or d — 1 has to be divisible by p. The final
claim follows from the result [4, Thm. 2.9] that for Wilson primes p, the
Wilson supercongruence hold mod pP~!. O

— N4
_Dd—l

In [3, Thm.7.1], we showed that in addition to Wilson congruence, there
is also ‘naive Wilson congruence’ [1]---[p — 1] = —1 mod EP~!, where p
is Artin-Schreier prime p = t? —t — ¢ of F,[t], where ¢ = p. We had
conjectured [3, Pa. 281] with some evidence, that the existence of non-
trivial ged between Ly + 1 = [1]---[d — 1] + 1 and [d] implies p divides
d. This was proved (communication with the author, 15 October 2015) by
Alexander Borisov. The statement and the proof immediately generalizes
to
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Theorem 7.2. Letd > 1. If Ly_1 + ¢ and [d] have a non-trivial gcd, where
c € Fy, then p divides d.

Proof. (Borisov) Non-trivial ged implies existence of a root w € Fa for
Lyg_1+c. Put z; = w?. rI{‘hen the root means H?;%(xo—a:j) = (=14 (—¢) =
(—1)c, and raising to ¢’ powers gives (@i — z5) = (—1)%c. Now La-
grange interpolation at the d points of the constant polynomial in x gives
c= Z?;ol c[lzi(z —=z;)/1(2i — ;). Comparing coefficients of 291 gives
0=Sc/((—1)%c) = (—1)* %} 1 = d(—1)*, thus p divides d. O

Our conjecture [5, 2.2.5(i)] in connection with ‘additive Wieferich-Wilson
primes’ saying that ‘if p > 2 and ged between [d] and 1 — [d — 1] + [d —
1[d—2] — -+ (=1)41L4_; is non-trivial, then p divides d’ is still open.

First derivative condition: Special Wilson primes. Recall the nice
regular factorizations of fundamental quantities [d], Lg, Dy given above,
where for a given degree, all the primes of that degree occur with the
same (non-negative) multiplicity. In contrast, we have:

Theorem 7.3. Let d > 1. Forc € [y, the degree d primes dividing Lq—1—c
(are also those dividing Dy_i + (—1)%c) are exactly the degree d primes o
with dp/dt = (—=1)%1¢, i.e., the monic primes p = a? + (=1)% et for
some a € A. These thus exist only when p divides d. When they exist they
occur with multiplicity at least p—1 (which seems to be even exact in ‘small
degree and q’ data, except when p =2, d = 3, when it is 2.) for the L-case,
and with multiplicity one for the D case.

Proof. First note the following simple calculation (in fact, equivalent to the
Wilson congruence, since F; = (—1)DY | /L;_1) modulo [d]:

d—2
D = — ey =Tle - e =] - = ()" Lo,

=0

Next note that, for p a prime of degree d, we have ([d]/p)D5_| = Da/p,
which is the product of all monic polynomials of degree d not divisible by
p, so modulo g it is just Fy = —1 by the Wilson congruence. In fact,
Dy/p = F; mod g1, though we will not need this. This is seen by the
mod ¢! calculation

R VR 1 (CR R | (i)

P a€A 4 dega<d OEFy

=[[(-a*") = (-1)"Dy/La = Fy.



Fermat- Wilson Supercongruences 9

Combining these two observations with the connection between the Fer-
mat quotient and the derivative observed in Remarks of Section 4, we see
that modulo a prime @ of degree d, we have

Li1=c+ D} | = (-1)4 e

& Qu(t) = ld)/p = (-1)"/c
& dp/dt = (1) e

Since Dg_1+c¢ = [d—1]D}_,+c has derivative —DJ_,, we see that degree
d primes in its factorization can occur with multiplicity at most one.

Let p > 2. Assume that for prime g of degree d divides Ly_1—c. Then by
above, dp/dt is constant and thus, @ is a Wilson prime and so by Theorem
7.1, we know that @P~2 divides L/, ,. Hence, P~ divides Ly_; — c. O

Remarks. (i) By Theorem 4.2 above, these special Wilson primes can
be also described as the prime basis a of degree d for which there are no
Wieferich primes, and that these exist only if p divides d, or d = 1.

(ii) It is clear from the above factorizations that the primes of degree
less than d do not divide these quantities. As mentioned in the examples
below, many very large degree (than d) primes can occur, and we do not
know their characterization. Since the quantities [i], L;, D; are invariant
for translations t — t 4 ¢, ¢ € [y, the prime factorization has orbits under
these. This explains multiplicities or number of some large given degree
primes which occur in the factorization.

(iii) While the number of primes of degree d is of the order ¢?/d, this
exponent d becomes 2d/p and d/p respectively (under naive randomness
assumptions) for Wilson and special Wilson primes, when p > 2.

(iv) For completeness, we record the easy case (probably already in the
literature, but the author could not find a reference) of the factorization of
[d] —c, for ¢ € Fy. Claim: If p divides [d] —c, then degree of p is a divisor of
pd, but not of d . In particular, p divides degree . This is seen as follows.
Modulo g, we have 1’ = ¢+ ¢, and thus 1 =4 rc, by induction on the
natural number r, proved by raising to ¢%-th powers. In particular, 1" = ¢
modulo g. This implies the claim, given the factorization of [n]’s recalled
above. As an example, we see that if d = p¥, [d] — ¢ is a product of ¢ /pF+?
distinct (since the derivative of [d] — ¢ is —1, it is always square-free) primes
of degree p"t1 each.

Examples. (0) If d = 1, ng — 1 =0, and all the degree 1 primes are
of the required form having constant derivatives. In the next case, d = p,
it follows from [3, Thm. 7.1] and we know even that all these are Artin-
Schreier primes, thus have derivatives —1 and already divide L,_1 + 1. In
higher degrees, we thus get generalizations of these primes and they can
occur for any ¢ in general, but for some (low) degrees there are none for
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some or for all ¢’s. (e.g., for ¢ = 2,d = 8 or ¢ = 3,d = 9,¢ = —1 or
q=4,d=4,c=1 there are none)

(1) If ¢ = 3,d = 6, there are total 116 primes of degree d, out of which
6 have constant derivative, and 15 have vanishing second derivative. Then
the degree 363 quantity Ls + 1 (Ls — 1 respectively) is the product of the
three degree 6 primes with derivative 1 (derivative —1 respectively) each
with multiplicity 2, three degree 14 primes and three degree 95 primes (all
with multiplicity 1). The polynomial in the Theorem 7.1 has degree 360
and is a product of the 15 degree 6 primes with vanishing second derivative,
three primes each of degrees 28,24, 20, two of degree 18, three of degree 2,
and the three primes of degree 1 each with multiplicity 4. If g =3, d =9,
there are six primes of degree 9 dividing L2 — 1 they all divide Lg — 1. If

= 3,d = 12, there are no primes of degree 12 with constant derivative.

(2) If ¢ = 2, d = 14, there are total 1161 primes of degree 14, out of
which 12 have constant derivative. The factorization of the degree 16382
polynomial Li3 + 1 is the product of exactly the 12 primes above, one
prime each of degree 22, 128, and 9260, and two primes each of degree
1156, 2246. (Here I assume that the SAGE factor command indeed factored
into primes.)

Questions. Here are some of the natural questions that arise:

(1) We proved that for Wilson primes, the Wilson congruence holds
modulo EP~!. Does it ever (or infinitely often) hold modulo even higher
power, if d > 1,p > 27 Often we have only proved lower bounds for the
multiplicities, what are the exact multiplicities?

(2) Are there nice generalizations of these phenomena for other function
field situations, say even in class number one?

(3) What are the distributions in the congruence classes when we do not
have supercongruence? (i.e., when do not have the zero class modulo p?2.)

(4) Interestingly, the three derivatives appear in parallel fashion in the
theorems, though the Fermat quotient is more like (negative) reciprocal of
derivative of p.
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