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ABSTRACT. We prove and conjecture several relations between multizeta values for
Fq[t], focusing on the zeta-like values, namely those whose ratio with the zeta value of
the same weight is rational (or equivalently algebraic). In particular, we describe them
conjecturally fully for ¢ = 2, or more generally for any ¢ for ‘even’ weight (‘eulerian’

tuples). We provide some data in support of the guesses.
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1. INTRODUCTION

Relations between multizeta values defined by Euler have been investigated extensively for the
last two decades, and the conjectural forms of these relations have many structural connections
with several interesting areas (see [Ct2001, Z2012] and references there) of mathematics. In
some sense, the relations have been at least conjecturally understood, though much remains to
be proved and relating the general framework to specific instances is often hard.

We will look at the function field analog [T2004, AT2009, T2009, Thanff, 12011, 1L.2012],
where the relations are still not conjecturally understood, though in contrast, there are also some
very strong transcendence and linear/algebraic independence results [CY2007, Ch2012, CPY]

proved.

LThe authors supported in part by PROMEP grant F-PROMEP-36/Rev-03 SEP-23-006 and by NSA grant
H98230-13-1-0244 respectively.
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While for the Euler multizeta values, the relations come via comparing the two families of
shuffle relations, in our function field setting, there is only one shuffle family [T2010]. While
the rational number field is the prime field in characteristic zero giving coefficients for the
relations, in the function field case the prime field is not the analogous rational function field,
but just the finite field, which does not see all the relations. Some such relations were proved
in [T2009, L2011].

While second author’s student George Todd is doing extensive numerical study of general
relations using an analog of the ‘LLL method’, in this paper we focus on the two term relations
of special type, namely zeta-like multizeta, i.e., those whose ratio with the (Carlitz) zeta value
of the same weight is rational (or equivalently algebraic). We provide several results, and
conjectures, with full conjectural description for ¢ = 2, or more generally for any ¢ with ‘even’
weight (‘eulerian’ tuples).

We first fix the notation and give the basic definitions. Next we summarize the known and
the new results on zeta-like values, and state the conjectures. Then we give the proof of the
results. Finally we discuss the numerical data, calculated by the first author, giving some
evidence for the conjectures made from it.

2. NOTATION AND BASIC DEFINITIONS

Z {integers},

Zy {positive integers},

q a power of a prime p,

F, a finite field of ¢ elements,

A the polynomial ring F,[t], ¢ a variable
Ay monics in A,

K the function field Fy(t),
Ko  TF,((1/t)) = the completion of K at oo,
Agr {elements of A, of degree d},
[n] t" —t,
ln [T, (t =) = (=1)"Ly, = (=1)"[n][n — 1] - [1],
‘even’ multiple of ¢ — 1,
We first recall definitions of power sums, iterated power sums, zeta and multizeta values

[T2004, T2009).
For s € Z and d > 0, write

(This is S4(—s) in the notation of [T2004].)
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Given integers s; € Z4 and d > 0 put
Sa(s1,.-v80) = Sa(s1) D Sa(s2)--Sa,(s,) € K.
d>dy>-->d.>0
For s; € Z+, we define multizeta values
1
ST S dpélrzosdl(sl) Sa,(sr) = o € Koo,

where the second sum is over all a; € A, of degree d; such that d; > --- > d,, > 0. We say that
this multizeta value (or rather the tuple (s1,...,s,)) has depth r and weight > s;. In depth
one, we recover the Carlitz zeta.

We refer to [C1935, G1996, T2004] for background on this and general function field analogies.
Carlitz proved analog of Euler’s result that for ‘even’ s, ((s) is a non-zero rational multiple of
7 (Le., ((s)/7* € K), where the Carlitz period 7 is analog of 2mi. In 1970’s, in the context
of the development of Drinfeld modules and their periods, David Goss independently proved
such analogs of Euler’s result in more general context and developed theory of the Goss zeta
functions.

A multizeta value ((s1,...,s,) of depth r (or the r-tuple (s1,...,s,)) is zeta-like if the ratio

C(s1y-vy8:)/C(s1 4+ s)

is rational. (We always use depth r > 1 below, sometimes without mention, because in the
r = 1 case everything is zeta-like by definition). A multizeta value of weight w is called eulerian,
if it is a rational multiple of 7. So eulerian is a special case of zeta-like for ‘even’ weight, by
Carlitz result (mentioned above) which says that in depth one, all the zeta values of ‘even’
weight are eulerian.

A strong transcendence result [Ch2012] proved in the function field case shows that if the
ratio in the definition of the zeta-like value is not in K, then it is not even algebraic over K, and
in fact, the multizeta in the numerator and the corresponding zeta value in the denominator
are then algebraically independent. Another strong transcendence result [CY2007] shows that
the Carlitz zeta value of not ‘even’ weight and 7 are algebraically independent.

Since ((ps1,-..,psr) = ((s1,..., )P, in all the discussion we can restrict to tuples where

not all s;’s are divisible by p. We call such tuples primitive.

3. OLD AND NEW RESULTS ON ZETA-LIKE VALUES

For the Euler multizeta in the number field case, the classical sum shuffle relation specialized,
namely ((k)? — ((2k) = 2¢(k, k), immediately implies that ((2n,2n) are eulerian. Combined
with the usual transcendence conjectures, it also implies that ((2n+1,2n+1) are not zeta-like.
In the function field case, this classical sum shuffle relation does not hold in general, but it
does hold [T2004, Thm. 5.10.6] if 2k < ¢, so that when p # 2, ((kp™, kp™) = (k, k)" is not
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zeta-like if 2k < q, since ((2k)/¢(k)? is then transcendental by [CY2007]. Another instance of
different shuffle [L2012, Thm. 6.3] similarly shows that ¢(¢™ — 1,¢™) is not zeta-like, for ¢ > 2.
In [T2004, T2009, L2011], more examples of zeta-like and non-zeta-like values of ‘even’ and
‘odd” weights were proved. Combining with general shuffle relations [T2010], some more such
results can be proved. But we have now proved much stronger results, which we will recall
below.

In [CPY], using the interpretation [AT2009] of multizeta values as periods of iterated ex-
tensions of tensor powers of Carlitz-Anderson t-motives, it was proved that if ((s1,...,s,) is
zeta-like (eulerian in the first version), then ((so,...,s,) is eulerian, so that all {(sg, -, $r)
are eulerian and s; are ‘even’, for ¢ > 2. (See [T2009, 5.3]).

Remark. This implies some, but not all, of the non-zeta-like special results mentioned
above. Many can be proved by direct appeal to [CY2007] and shuffle and other results proved,
a few (such as {(2,1) is not zeta-like for ¢ = 2) were proved [T2004, Thm. 5.10.12] without
using [CY2007].

While [CPY] was being proved for the eulerian case, we had conjectured this (and a few more
implications) for zeta-like case, but only in depth 2 and were starting calculations in general
depth, which give many interesting conjectural restrictions recalled below.

We now state some families of zeta-like (so eulerian, if the weight is ‘even’) multizeta values

of depth two. Proofs will be given in the fifth section.

Theorem 3.1. For any (prime power) q, we have

) a" =D d" (g —1)g") = (2335 [T = &l ca™t = > g™,
i=1 1 =1 ‘

wheren > 0,1 <s<q, 0<k; <n.
Letn > 0,0 <k <n+1,1<s <gq, 0< s <qg—s1. Then for a = s1q" and
b=s1(q""" —q") + 302, (¢" T — ¢*), we have

2) 0) = melatb).

®) (@ - (a- 1. (- D@+ 1) = ),
1y,

(1) (20— 1, (g - V(@ +q- 1)) = 2 (gP).

q+1pg—1
]

(5) C(1,q* = 1) = C(¢®)(1/ty + 1/0).

Forqg>2,n>0and -1<j5<n,
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(g™ —q" 7 —1).

(6) Cllg—1)¢" —1,(q— 1)qn+1 +q" - qn—j) _ [n + 1]

[1](q—l q"
Next we state a theorem (proved in section 5) giving zeta-like family of arbitrary depth.

Theorem 3.2. For any q,

B (_1)n+1
TR ]

(La-1.(¢-1Dg.....(¢—1)g") (@,

4. OBSERVATIONS, GUESSES AND CONJECTURES

Now we state some conjectures (based on the numerical data and on consistency with the

theorems and the proof methods) with varying degrees of confidence and evidence!

Conjecture 4.1. Tuple restrictions If (s1,...,s,) is zeta-like, then
(1) 8; < sip1,i=1,...,7 — 1. Furthermore, (¢ —1)s; < ;11 < (¢ — 1)s;.

(2) (s2,...,8y) is eulerian and (s1,...,Sr—1) is zeta-like

Note that part 2 can be iterated by reducing the length of the tuple and thus reducing to
the zeta case of Carlitz and thus implying that s; are ‘even’ for i > 2 (already proved together
with the first part of (2), in [CPY], as mentioned before).

Conjecture 4.2. Splicing of tuples
(1) Let g =2. If (s1,...,s) and (Sk,...,s,) are zeta like and the total weight > ._, s; is

a power of 2 or a power of 2 minus one, then (s1,...,s,) is zeta-like, except when the
two tuples to be spliced are (1,1) and (1,1).
(2) Let q be arbitrary prime power. If (s1,...,s5) and (Sk,...,s,) are eulerian and the

total weight >\, s; is ¢" — 1 or q(q — 1), then (s1,...,s,) is eulerian.

Remarks. For general ¢, splicing conditions for zeta-like tuples seem to be much more
restrictive and seem to depend (in the limited data we have) on the combinatorics of digit

expansions.

Conjecture 4.3. Weight restrictions

(1) Eulerian multizeta value (in depth r > 1) can occur only in weights p™(¢* — 1), with
primitive ones only in weights g(q — 1) or ¢" — 1 for ¢ > 2 and in weights 2™ — 1 and
2" if g = 2.

(2) When q = p, depth r > 1, the weight of zeta-like but non-eulerian tuple is p™ times a
number with no zero digit and at most one 1 digit in base p expansion.

(3) In depth r, the smallest weight of zeta-like value is q"~*.
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(4) When q > 2, the smallest weight of eulerian value is ¢" —1, (q—1)q, and q—1 according
to depth r > 2, r =2 and r = 1 respectively.

(5) Weight q* is not a zeta-like weight of a primitive tuple, if k > r > 3, and also when
k>3 ifr =3, or2, where r is the depth.

Remarks. (0) Let us recall the known results for the Euler multizeta. (We use the standard
short-form { X}, standing for the tuple X repeated k times.) Euler proved that ((3,1) = ((4)/4
and ((2,1) = ¢(3), which generalizes to zeta-like ((2,{1};) = ((k+2) (special case of Hoffman-
Zagier duality relation) and ¢({3,1}x) = C({2}2r)/(2k + 1) (Broadhurst’s result, conjectured
by Zagier) which is known to be eulerian as (({2}) = 7*/(2k +1)! (see e.g., [Z2012]). In fact,
¢({2n}y) is also eulerian. (Proof: Let the induction hypothesis P(k) be that Ay := ¢({2n};) and
By =Y. C(X(4)) are eulerian for all n,m, where the sum runs over all tuples X (7) of length
k with k—1 entries 2n and one entry 2nm. The sum shuffle gives ((2n)Ar = (k+1)Agy1+ Br.2
and ¢(2mn) Ay, = B41,m+ Bk m+1 proving the result by induction. For a proof using generating
functions, see [BBB1997]. The same reference conjectures that ¢({{2}m, 1, {2}m,3}n, {2}m) is
eulerian. We thank J. Zhao for the reference). In our very limited numerical search (weight < 50
for depth 2, and even lower for depths 3, 4), as well as limited search of the vast literature, we
did not find any other zeta-like tuples. We do not know whether there are any more examples,
or conjectures based on theoretical or numerical evidence.

Considering our conjectures in the function field case, note that the last eulerian family
mentioned starts only in depth 5, and that we never looked numerically seriously beyond depth
3 or 4 in the function field case!

For Euler’s multizeta, each even weight > 2 is eulerian, in the sense that it occurs as a weight
of eulerian multizeta of some depth more than one, e.g., as (({2}) is eulerian. In our case, for
q = 3, even ((2,2) is not eulerian by [T2004, Thm. 5.10.12], and this conjecture predicts much
stringent weight conditions. It is conjectured for the Euler multizeta that the eulerian case
occurs only in even weights. In our case, we know by [Ch2012] that the eulerian case occurs
only in ‘even’ weights. For the Euler’s multizeta, ((2n, 2n) are eulerian of weight 4n and depth
2, though weight 4n + 2 does not seem to be eulerian weight in depth 2.

(1) The weight p™(¢* — 1), with m > 0 for eulerian value can occur with primitive tuples,
e.g.,qg=2and (1,1),(1,3),(3,5) or ¢ =3 and (2,4).

(2) The parts 3 and 4 are known for depth 1, and the occurrence in predicted weights is
either proved in our main theorem or also follows from the higher depth families conjectures
below. So the ‘smallest’ is the real conjectural part. More data may allow to conjecture the

depth dependence of possible m and k in the first part.

Conjecture 4.4. Depth 2, weight at most ¢> All zeta-like primitive tuples of weight at most
¢ and depth 2 are exactly (i,7(q—1)),i=1,...,q, 5 =i,..., [ (¢*=i)/(q=1)] ([(¢*—1)/(g—1)]
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equals ¢+ 1 or q, depending if i =1 or i > 1):

(Lg=1) (1,2(¢—1) (1,3(¢—1)) (L4(g-1) ... (L, (¢+1(¢—1))
(2,2(¢-1)) (2,3(¢—-1)) (24(¢—-1) ... (2,9(q — 1))
(3,3(¢—1)) (3,4(¢—-1) ... (3,q(g—1))
(g,9(q = 1))

Note that our theorems imply that those tuples are zeta-like. The converse is the conjectural

part.

Conjecture 4.5. Depth 2 For ¢ > 2, in depth 2 primitive eulerian tuples are exactly (¢ —
L(g—1)?), (¢" —1,(g—1)g") and (¢"(q —1),¢""* =1 —¢"(¢ — 1)).

For ¢ = 2, the zeta-like (eulerian equivalently) primitive tuples of depth two are exactly
(1,1),(1,3),(3,5) and (2" — 1,2"), (2, 27+1 -2 1),

The first and the last two in the case ¢ = 2 are specialization of the ¢ > 2 conjecture for
q = 2. Again, Theorem 3.1 implies that all of these are eulerian, the converse is conjectural.
(This seems to be true up to weight 128 from the numerical data). Note that 4.1, 4.2, 4.3 part
(1) and 4.5 conjecturally completely describe all the eulerian tuples, by splicing from the depth
two and by using the p-th power map.

Conjecture 4.6. Conjectural zeta-like families of arbitrary depth
(1) For any q, n > 1 and r > 2, we have
[n+r—2]n+7r—3]---[n]

("= 1,(g—Dq",....(¢—1)g""" ) = e e [ 1] Clg"T Tt =1).
(2) For any q, n >0,
(L 1 (g— D (g~ gy = T2 L (™).

ln+2] g(lq—l)tI"qu—l)q”—l B 'E;q__f)q%%z
(3) Forq>2,n>0andr>2,

C(g—1)g" = 1,(g—1)g"*,... (g—1)g"t 1)
equals

(=) n+r—1n+r—2]---[n+1]

n+r _ on _
@ e R =07 - [p — [ja—Da o @ =D

It seems quite likely that these families can be proved by a proof similar to that of The-
orem 3.2 below, but this has not been carried out yet. Note also that in the depth 2 case,
all of these are proved in Theorem 3.1. (Here the part (2) reduces for n = 0 to part (5) of

Theorem 3.1 by the usual conventions on empty products, sums, patterns and indexing).
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5. PROOFS

The following formulas, which are consequence of Theorems 1 and 3 in [LT], will be used in

the proof of the main theorem.

(1) For 1 <s<gand 0 <k; < k with 1 <i <s, we have
™) Suld® — 34 = 58y — g - Sule” — ).
i=1
(2) For 1 <s<gq, and any 0 < k; < k, we have
(8) S<d(i(q’“ —q") = f[ S<a(d" —¢").
i=1 i=1

We also recall Carlitz’ evaluations (see e.g., [T2009, 3.3.1, 3.3.2])

9) Sa(a) =1/tg, (a<q)
(10) Salg’ —1) = fd+j—1/€j—1€§j
(11) Seald’ = 1) = Lay; 1 /645,

Proof of Theorem 3.1. Let a = ¢" — >_i_, ¢" and b = (¢ — 1)¢". By definition, we have

((a,b) = Z Sa(a,b) = Sa(a)S<a(b).
d=1

d=1
Using (7), (8), (10) and (11), by straight calculations we get

%(H[n — k") Sa1(a+b).

=1

Sd(a)S<d(b) =

By summing over d the claim (1) follows. The proofs of claims (2) and (6) are similar, once we

note that for (2) we have
52
atb=q"—(g—s1—s2)"" =D ",
i=1

and for (6), the requirement ¢ > 2 guarantees that formula (7) can be applied for S;(a) and
S4-1(a+b). In order to apply (8), note that b = (¢ — 1)(¢" ! — ¢") + ¢" ™1 — ¢ 7.
Now, let a = ¢> — (¢ — 1) and b = (¢ — 1)(¢*> — q) + (¢* — 1). Using formulas (7) and (8)
again, a straight calculations yields
1 e —a"”

Pt q>
Gl Ly

Sa(a,b)
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Recall that the inverse around origin of the Carlitz exponential ec(z) is the Carlitz logarithm
log(z) = 21" /0, and it satisfies t log(z) = log(tz)+log(z9). Therefore, tlog(1) = log(t)+log(1)
or equivalently log(¢) = (¢ — 1) log(1). Since ¢(1) = log(1) and C(l)q3 = ((¢?®), by summing over
d we get

o] d+2 [e's) fe’e] d+3
19—t 1 td
S ey oS
im1 tay i—ota o= ta
= t7log(1)? —log(t)q3
3
=t¢(¢°) — (¢ — 1)¢(¢”)

and claim (3) follows.
Now, for (4), let a =2¢ — 1 and b= ¢® — ¢+ (¢ — 1)(¢*> — 1). We have
_ 1 (~[d+1]9)
ettt

Sd(a, b)

By summing over d > 1, we obtain

o0 d+2

14— a . 5
S — @),
= la
and the result follows.
Finally, (5) is proved in [T2009, Thm. 5] O

Proof of Theorem 3.2. We claim that

Sd(]-aq_lfq(q_]-)a"’ qn(q_l)) = n+1)‘

1 g (
— — n—1(q_ d—(n+1)\q
€n+1£;11, 162(31 1) . g‘{ (¢—1)

Summing the claimed equality over d proves the Theorem.

For n = 0 and all d, this is proved in [T2009, 3.4.6]. We prove it by induction by assuming
it for n replaced by n — 1, and considering it for n as claimed.

For d < n+1 both sides are zero, and for d = n+1, it follows using (9) for a = 1, ¢—1 together
with the obvious Sq(q"j) = S4(j)7". We write s,,(d) := >3} Si(g—1,9(¢g—1),---,¢"(g—1))

j=0
and f,(d) := Lq/(£p 10971 - -E({’L 1(q—1)€g’:;+1)). It is enough to show that s, (d) = f.(d) for
alld>n+1. Now s,(d+ 1) — s,(d) is

¥
L

Salg—1,---,4"(¢=1)) =Salg—1) ) Sjlalg—1),---,q"(¢—1)) = Sa(g — V)sp_1(d)".

<
Il
o

Now s,—1(d) = fn—1(d) by induction, and a simple manipulation shows that f,,(d+1)— f,(d) =
Sa(q — 1) fn_1(d)? thus completing the proof of the claim and the theorem by induction. O
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Remarks. It might be worthwhile to point out a very special low weight case of (2) of
Theorem 3.1 that (n,m(q — 1)) is zeta-like, if 1 <n < gand n <m <gq.

6. DATA

Theory of continued fractions for function fields was first developed by Emil Artin in his
thesis. (See [T2004, Chap. 9] for a survey). We use them to find the zeta-like values as follows.
We calculate the multizeta divided by zeta of the same weight numerically (i.e., approximation
where we use first few degrees rather than all), and calculate its continued fraction. If the
ratio of actual values is rational, the continued fraction thus calculated will be the same as
the continued fraction of this rational for the first few partial quotients and then there will be
very large partial quotient indicating small error in approximation. We detect this and then
we double check by increasing the precision that we do get the stabilized part, followed by
increasing partial quotient (corresponding to reducing error), followed by non-stabilized part.

We provide two examples at the suggestion of the referee.

Example 6.1. Let ¢ = 3. We approximate ¢(1,2,6)/¢(9) by

d d
fa="_5a(1,2,6)/ Y Sa(9)
j=0 j=0

for d = 2,...,5. The degrees of the numerator and denominator of the rational function fy are
in the last two columns of Table 6.1.1. Once we detect very large partial quotients we double

check by increasing the precision. Thus we guess (1,2, 6) is zeta-like.

TABLE 6.1.1. Degrees of partial quotients of approximations to {(1,2,6)/¢(9)

d Degree of the partial quotients (degree of zero = —1) D. num D. den
2 [-1,18,9,3,3,60,3,3,9] 90 108
3 [-1,18,90,153,9,3,3,6,3,3,9,6,33,3,3,9] 333 351
4 [-1,18,333,3,3,384,3,3,9,3,3,6,3,3,9,3,3,6,3, 3] 927 945
5 [-1,18,1062,1125,9,3,3,6,3,3,9,6,33,3,3,9,6,6,6,9] 3249 3267

Example 6.2. As before, let ¢ = 3. We guess ((1,1,1)/¢(3) is not zeta like as there are no

large partial quotients as we can see from Table 6.2.1.

The calculation was done (in stages, with guesses verified with more data) over several

months by programing in SAGE and using laptops and mainframes. In lower depths, and small
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TABLE 6.2.1. Degrees of partial quotients of approximations to {(1,1,1)/{(1)

d Degree of the partial quotients (degree of zero = —1) D. num D. den

2 [1,18,3,12, 3,6, 3, 3,6, 3, 3] 42 60

3 [1,18,3,3,3,3,3,3,6,3,3,9,12,6,6, 9, 3, 3,9, 3] 177 195

4 [-1,18,3,3,3,3,3,3,6,3,3,9, 15,6, 3, 3, 6, 3, 3, 3] 579 597
[_

ot

1,18,3,3,3,3,3,3,6, 3, 3,9, 15, 6, 3, 3, 6, 3, 3, 3] 1797 1815

weights, small ¢’s the calculation was exhaustive (i.e., going through all tuples looking for zeta-
like values), and sometimes guesses of higher depth, weight, ¢’s were checked separately to some
extent. For ¢ = 2, depth 2 and 3 and weight up to 128 and 32, respectively, and for ¢ = 3,
depth 2 and 3 and weight up to 81, calculation was exhaustive. For ¢ = 4,5, depths 2 and 3,
we went through all weights up to ¢, but assuming that s; is ‘even’ (called restrictive search)
for i > 2, and s; < s;41. However, we checked to some extent that the tuples not satisfying
the increasing condition are not zeta-like. Also, often we decreased the precision, otherwise the
calculation would have taken much more time.

We only list primitive tuples. The tuples marked with * are covered by the theorems.

6.1. Data for g = 2. Zecta like tuples of depth 2 and weight at most 128.

(L, n* (1,2)*  (1,3)* (2, 5)* B, 49*  (3,5)% (4, 1D)*
(7,8)% (8,23)% (15,16)% (31,32)* (16,47)* (32,95)% (63, 64)*

q = 2. Zeta like tuples of depth 3, weight at most ¢°> = 32, and more.
(1,1, 2)* (1,2, 4) (1,2,5) (1,3,4) (3,4,8) (7,8,16)
(15, 16, 32) (31, 32, 64)

q = 2. Some zeta like tuples of depth 4.
(17 1, 2, 4)* (17 2,4, 8) (17 3,4, 8) (37 4, 8, 16) (77 8, 16, 32)
(15, 16, 32, 64) (31, 32, 64, 128)

q = 2. Some zeta-like tuples of depth 5.
(1,1, 2, 4, 8)* (1, 2, 4, 8, 16) (1, 3, 4, 8, 16) (3, 4, 8, 16, 32)
(7, 8, 16, 32, 64) (15, 16, 32, 64, 128) (31, 32, 64, 128, 256)

q = 2. Some zeta-like tuples of depth 6.
(1,1, 2, 4, 8, 16)* (1, 2, 4, 8, 16, 32) (1, 3, 4, 8, 16, 32)
(3, 4, 8, 16, 32, 64) (7, 8, 16, 32, 64, 128) (15, 16, 32, 64, 128, 256)
(31, 32, 64, 128, 256, 512)
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6.2. Data for g = 3. Zeta-like tuples of depth 2 and weight up to ¢* = 81:

(1,2)*  (LY* (L, (1,8 (249"  (2,6)*
(3, 14)*  (3,200%  (3,22)% (5,12)* (5, 18)% (5, 20)*
(5,22)*  (6,20)% (7,18)% (7,20)% (8, 18)% (9, 44)*
(9, 62)*  (9,68)% (9, 70)% (15,62) (17, 36)* (17, 54)*
(17, 60)* (17, 62)* (18, 62)* (23,54)* (25, 54)* (26, 54)*

Zeta-like tuples of depth 3, weight < ¢* = 81 and more:
(1,2, 6)* (1, 6, 18) (2,6,18) (1,6, 20)
(1, 8, 18) (5, 18,54) (7,18,54) (8,18, 54)

(17, 54, 162) (23, 54, 162)

Some zeta-like tuples of depth 4.

(1,2,6,18)* (1,6, 18,54) (2,6, 18, 54) (1, 8, 18, 54)
(5,18, 54, 162) (7, 18, 54, 162) (8, 18, 54, 162) (17, 54, 162, 486)

6.3. Data for q = 4. Zeta-like tuples (restricted) of depth 2, weight < ¢° = 64:

(1,3 (L, 6)*  (1,9* (1,12)* (1,15)* (2, 9)*

(2,21)  (2,27) (3,9)% (3,12)* (4,27)% (4, 39)*
(4, 51)*  (4,57)%  (5,18)  (5,24)  (5,27)  (7.24)

(7,36)  (7,39) (7,48)% (7,51)  (7,54) (7, 57)*
(8,39)* (8, 51)* (10,51) (11,36)* (11,48)* (11,51)*
(12, 51)% (13, 48)% (13, 51)% (15, 48)*

Zeta-like tuples (restricted search) of depth 3 up to weight ¢3 = 64:
(1,3, 12)* (1,6,24) (1,12,48) (3,12, 48)
(1,12, 51) (1, 15, 48)
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6.4. Data for ¢ = 5. Zeta-like tuples (restricted) of depth 2, weights < 125:

(1, 4)* (1, 8)* (1, 12)* (1, 16)* (1, 20)* (1, 24)*
(2, 8)* (2, 12)* (2, 16)* (2, 20)* (3, 12)* (3,16)*
(3, 20)* (4, 16)* (4, 20)* (5, 44)* (5, 64)* (5, 68)*
(5, 84)* (5, 88)* (5,92)*  (5,104)* (5,108)* (5, 112)*
(5, 116)* (9, 40) (9, 60) (9, 64) (9, 80) (9, 84)
(9, 88) (9, 100)* (9, 104) (9, 108) (9, 112) (9, 116)*
(10, 64)* (10, 84)* (10, 88)* (10, 104)* (10, 108)* (10, 112)*
(13, 60) (13, 80) (13, 84) (13,100)* (13,104) (13, 108)
(13, 112) (14, 60) (14, 80) (14, 84) (14, 100)* (14, 104)
(14, 108) (15, 84)* (15, 104)* (15, 108)* (17, 80) (17, 100)*
(17,104)  (17,108)  (18,80) (18,100)* (18,104) (19, 80)*
(19, 100)* (19, 104)* (20, 104)* (21 100)* (21, 104)* (22, 100)*
(23, 100)* (24, 100)*
q = 5. Some zeta-like tuples.
(1, 4, 20)* (1, 20, 104) (1, 24, 100) (2, 20, 100)
(4, 20, 100) (3, 20, 100) (3, 20, 100, 500) (19, 100, 500)

(19, 100, 500, 2500)

Summary of depth

and weights classified by eulerian and zeta-like.

799

q depth FEulerian weights Zeta-like weights
2 2 2,3,4,7,8, 15, 31, 63
2 3 4,7,8,15, 31, 63, 127
2 4 8, 15, 16, 31, 63, 127, 255
2 5 16, 31, 32, 63, 127, 255, 511
2 6 32, 63, 64, 127, 255, 511, 1023
3 2 6, 8, 26, 80 3,5,7,9,17, 23, 25, 27, 53, 71, 77, 79
3 3 26, 80 9, 25, 27, 77, 79, 233, 239
3 4 80, 242 27, 79, 81, 239, 241, 719
4 2 12, 15, 63 4, 7,10, 11, 13, 16, 23, 29, 31, 32, 43,
46, 47, 55, 58, 59, 61, 62, 64
4 3 63 16, 31, 61, 64
2 20,24, 124 5,9, 10, 13, 14, 15, 17, 18, 19, 21, 22,
23, 25, 49, 69, 73, 74, 89, 93, 94, 97, 98,
99, 109, 113, 114, 117, 118, 119, 121,
122, 123, 125
3 124 25, 122, 123, 125, 619

623, 3119
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