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Abstract. We explain work on the arithmetic of Gamma and Zeta values

for function fields. We will explore analogs of the gamma and zeta functions,
their properties, functional equations, interpolations, their special values, their

connections with periods of Drinfeld modules and t-motives, algebraic relations

they satisfy and various methods showing that there are no more relations
between them. We also briefly describe work on multizeta and many open

problems in the area.

In the advanced course given at Centre de Recerca Matemática (CRM), Barcelona
consisting of twelve hour lectures during 22 February-5 March 2010, we described
the results and discussed some open problems regarding the gamma and zeta func-
tions in the function field context. The first four sections, dealing with gamma,
roughly correspond to the first four lectures of one and half hour each, and the last
three sections, dealing with zeta, cover the last three two hour lectures. Typically,
in each part, we first discuss elementary techniques, then easier motivating exam-
ples with Drinfeld modules in detail, and then outline general results with higher
dimensional t-motives. The section 4 is independent of section 3, whereas the last
part (last three sections) is mostly independent of the first part, except that the
last two sections depend on section 3. At the end, we include a guide to the relevant
literature.

We will assume that the reader has basic familiarity with the language of function
fields, cyclotomic fields and Drinfeld modules and t-motives, though we will give
quick reviews at the appropriate points. We will usually just sketch the main points
of the proofs, leaving the details to references.

We will use the following setting and notation, sometimes it will be specialized.

Fq: a finite field of characteristic p having q elements
X: a smooth, complete, geometrically irreducible curve over Fq
K: the function field of X
∞: a closed point of X, i.e., a place of K
d∞: the degree of the point ∞
A: the ring of elements of K with no pole outside ∞
K∞: the completion of K at ∞
C∞: the completion of an algebraic (‘separable’, equivalently ) closure of K∞
K, K∞: the algebraic closures of K, K∞ in C∞
F∞: the residue field at ∞
Av: the completion of A at a place v 6=∞
g: the genus of X
h: the class number of K

* Supported in part by NSA grants H98230-08-1-0049, H98230-10-1-0200.
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hA: the class number of A (= hd∞)
We will consider ∞ to be the distinguished place at infinity and call any other

place v a finite place. It can be given by a (non-zero) prime ideal ℘ of A. As we
have not fixed ∞ above, we have already defined Kv, K℘, F℘, Cv, dv etc.

Since F∗∞ has qd∞ − 1 elements, when d∞ > 1, in defining zeta and gamma, sign
conditions giving analogs of positivity have to be handled more carefully by choosing
sign representatives in F∗∞/F∗q rather than just saying monic. Having said that, for
simplicity, we will assume d∞ = 1 throughout, leaving the technicalities of the
more general case to the references.

Basic analogs are

K ↔ Q, A↔ Z, K∞ ↔ R, C∞ ↔ C.

Instead of Q we can also have an imaginary quadratic field with its unique infinite
place and the corresponding data.

The Dedekind domain A sits discretely in K∞ with compact quotient, in analogy
with Z inside R or the ring of integers of an imaginary quadratic field inside C.

We will see that analogies are even stronger when X is the projective line over
Fq and ∞ is of degree 1, so that K = Fq(t), A = Fq[t], K∞ = Fq((1/t)).

Comparing sizes of A∗ and Z∗, which are q−1 and 2 respectively, in our situation,
we call multiples of q − 1 ‘even’ and other integers in Z ‘odd’.

It should be kept in mind that, unlike in number field theory, there is neither
a canonical base like the prime field Q, nor a canonical (archimedean) place at
infinity. Unlike Q, K has many automorphisms. Another crucial difference, a big
plus point as we will see, is that we can combine (even isomorphic copies of our)
function fields by using independent variables.

In many respects, in classical function field theory one works over Fq, which is
the maximal ‘cyclotomic’ extension of Fq, and uses Frobenius to descend. Classi-
cal study of function fields, their zeta functions, geometric class field theory goes
smoothly (once we understand genus well with Riemann-Roch) for all function
fields, any q, and treats all places similarly, while we do distinguish a place at in-
finity. Some aspects, such as zeta zero distributions, show much more complexity
in our case, when q is not a prime.

We denote by H the Hilbert class field for A, i.e., the maximal abelian, unram-
ified extension of K in which ∞ splits completely. There are h sign-normalized,
non-isomorphic, rank one Drinfeld A-modules, they are Galois conjugates and are
defined over H, which is a degree h extension of K. We use e and ` for the expo-
nential and the logarithm for a Drinfeld module ρ. Recall that e(az) = ρa(e(z)),
`(ρa(z)) = a`(z). We write Λa for the corresponding a-torsion. We denote by Λ
the lattice corresponding to ρ, namely the kernel of the exponential of ρ. Recall
that e(z) = z

∏′
(1− z/λ), where the λ runs over the non-zero elements of Λ. If ρ

corresponds to the principal ideal class (eg. for the Carlitz module for A = Fq[t] or
for class number one A’s), then we write Λ = π̃A and think of π̃ as analog of 2πi.
The Carlitz module C is given by Ct(z) = tz + zq.

Warning on the notation: We use the same notation for the same concepts,
for example, for various gamma in function fields, or the complex gamma. It will
be always made clear, sometimes at the start of section or the subsection, which
concept we would talk about.
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1. Gamma: Definitions, properties and functional equations

Once we fix a place at infinity, we have two kinds of families of cyclotomic ex-
tensions. The first family, the one mentioned above, is the family of constant field
extensions. These are cyclotomic abelian (everywhere unramified) extensions ob-
tained by solving xn − 1 = 0, for (non-zero) integers n. (The classical Iwasawa
theory exploits these analogies). The second cyclotomic family is obtained by ad-
joining a-torsion of appropriate rank one Drinfeld A-module (rather than n-torsion
of the multiplicative group as above) for (non-zero) integers a ∈ A.

We will see two kinds of gamma functions closely connected to these two theories.
The second one is often called geometric as (or when) there is no constant field
extension involved. The first one is then called arithmetic.

1.1. Arithmetic Gamma for Fq[t]: Definitions and analogies. The easiest
way to introduce the Carlitz factorial Π associated to A = Fq[t] is to define it, for
n ∈ Z≥0, by

Π(n) := n! :=
∏

℘ monic prime

℘n℘ ∈ Fq[t], n℘ :=
∑
e≥1

b n

Norm℘e
c

in analogy with the well-known prime factorization of the usual factorial. We define
Γ(n) = Π(n− 1) as usual.

The following formula, which is the key to everything that follows, also gives a
much faster way to compute it.

Π(n) =
∏

Dni
i , for n =

∑
niq

i, with 0 ≤ ni < q,

where

Di = (tq
i

− t)(tq
i

− tq) · · · (tq
i

− tq
i−1

).

Here is a quick sketch of how you see the equivalence. The case n = qi immedi-
ately follows from the

claim: Di is the product of monic polynomials of degree i.
The τ -version (i.e., q-linearized version) of the more familiar Vandermonde de-

terminant |xi−1
j | =

∏
i>j(xi − xj) is the Moore determinant (a very useful tool)

M(xi) := |τ i−1(xj)| = |xq
i−1

j | =
∏
i

∏
fj∈Fq

(xi + fi−1xi−1 + · · ·+ f1x1).

(The proof of the last equality is similar to that of the Vandermonde identity.) Now
M(1, t, · · · , td) is determinant of Moore as well as Vandermonde, so that the two
evaluations give us the claim (after taking the ratio of terms for d and d− 1).

The general case follows from
∑
bn/Norm(℘)ec =

∑
nibqi/Norm(℘)ec, where

n =
∑
niq

i is the base q expansion of n, i.e., 0 ≤ ni < q.

Examples 1.1. For q = 3, for i = 0, 1, 2 we have Π(i) = 1, Π(3 + i) = t3 − t,
Π(6 + i) = (t3 − t)2 and Π(9 + i) = (t9 − t)(t9 − t3).

Note that Di = (qi)! fits in with the analogy:

ez =
∑

zn/n!, e(z) =
∑

zq
n

/Dn,

where we compare the usual exponential ez with the Carlitz exponential e(z). This

can be seen by substituting e(z) =
∑
eiz

qi in e(tz) = te(z) + e(z)q coming from
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functional equation from Carlitz module action and solving for ei = 1/Di, with

initial value e0 = 1 to get Di = (tq
i − t)Dq

i−1.
The general factorial is obtained then by these basic building blocks by digit

expansion, a phenomenon which we will see again and again in various contexts. It
can be motivated in this case by the desire to have integral binomial coefficients:

For example, qn+1!/qn! = Dn+1/Dn = (tq
n+1 − t)Dq−1

n = (tq
n+1 − t)qn!q−1, which

suggests that the factorial of qn+1−qn = (q−1)qn should be (as it is for the Carlitz
factorial) Dq−1

n .
Here are some naive analogies.
The defining polynomial [n] = tq

n − t of Fqn , which can also be described as the
product of monic irreducible polynomials of degree dividing n, does sometimes play
some role analogous to the usual n, or rather qn.

We have qn! = Dn = ([n]− [0])([n]− [1]) · · · ([n]− [n− 1]) in this context looking
like a factorial of [n]. One has twisted recursions

Π(qn+1) = [n+ 1]Π(qn)q, [n+ 1] = [n]q + [1]

in place of the usual (n+ 1)! = (n+ 1)n! and (n+ 1) = n+ 1 respectively.
In this vein, note that [n][n − 1] · · · [1] =: Ln, and ([k + 1] − [k])([k + 2] −

[k]) · · · ([n]− [k]) = Lq
k

n−k also play fundamental roles, as we will see.
These vague analogies are made much more precise by a definition, due to Manjul

Bhargava [Bha97, Bha00], of a factorial in a very general context.
Let X be an arbitrary nonempty subset of a Dedekind ring (i.e., noetherian,

locally principal and with all non-zero primes maximal) R. Special cases would be
Dedekind domains OS coming from global fields or their quotients. Bhargava asso-
ciates to a natural number k, an ideal k!X :=

∏
℘vk(X,℘) of R, with the exponents

vk of the primes ℘ of R defined as follows: Let a0 be any element of X. Choose
ak to be an element of X which minimizes the exponent of the highest power of a
prime ℘ dividing (ak − a0)(ak − a1) · · · (ak − ak−1) and vk(X,℘) be this exponent.
It can be proved that it is well-defined, independent of the choices involved.

The sequence ai is called a ℘-ordering. If ai is ℘-ordering for all ℘, then the
ideal is the principal ideal generated by k! = (ak − a0) · · · (ak − ak−1).

Examples 1.2. (1) The sequence 0, 1, 2, · · · in X = R = Z gives simultaneous
p-ordering, for all p and leads to the usual factorial, once we choose the positive
generator of the corresponding factorial ideal. For X consisting of q-powers for
integer q > 1 in R = Z, we have k!X = (qk − 1) · · · (qk − qk−1). For the set of
(qj − 1)/(q − 1)’s, we get the q-factorial.

(2) For X = R = Fq[t], we have the following simultaneous ℘-ordering: Let
0 = a0, a1, · · · , aq−1 be the elements in Fq and put an =

∑
anit

i where n =
∑
niq

i

is the base q expansion of n. Hence the monic generator of the factorial ideal

is n! = (an − a0) · · · (an − an−1) =
∏

[i]ni+ni+1q+···+nhqh−i , which is the Carlitz
factorial of n.

If q is a prime, then as a nice mnemonic we can think of associating to base
q expansion n = n(q) =

∑
niq

i a polynomial an = n(t) =
∑
nit

i and with this
ordering the Carlitz factorial can be described by the usual formula n! = (n−0)(n−
1) · · · (n − (n − 1)). (But keep in mind that addition of n’s is like integers, with
carry-overs and not like polynomials!) The same works for general q, except we
have to identify ni between 0 and q − 1 with elements of Fq by force then.
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(3) Let R = Fq[t]. We saw that if X = R, then Di = (qi)!X . We also have

Di = i!X , for X = {tqj : j ≥ 0} or for X = {[j] : j ≥ 0} justifying the naive
analogies mentioned above.

Bhargava shows that the generalized factorial, though its values are ideals which
may not be principal even for R = A, retains the most important divisibility prop-
erties of the usual factorial, such as the integrality of binomial coefficients.

On the other hand, the Carlitz factorial (but not its generalizations below for
general A) even satisfies the following analog of the well-known theorem of Lucas.

Theorem 1.1. Let A = Fq[t], let
(
m
n

)
denote the binomial coefficient for the Carlitz

factorial, and let ℘ be a prime of A of degree d. Then we have(
m

n

)
≡
∏(

mi(d)

ni(d)

)
mod ℘,

where m =
∑
mi(d)qdi and n =

∑
ni(d)qdi are the base qd-expansions of m and n

respectively, so that 0 ≤ mi(d), ni(d) < qd.
In particular, if m > n, the left side is zero modulo ℘ if and only if there is a

carry over of qd-digits in the sum n+ (m− n).

Proof. First observe that if there is no carry over of base q-digits, then all the
binomial coefficients above are equal to one, because of the digit expansion definition
of Carlitz factorial. Now suppose there is a carry over at (base q) exponents i, i+
1, · · · , j − 1, but not at i− 1 or j. Let

∑
mkq

k,
∑
nkq

k and
∑
`kq

k be the base q
expansions of m,n,m−n respectively. Then nk + `k is mi+ q, mk + q−1 or mj−1
according as whether k is i, i + 1 ≤ k ≤ j − 1 or k = j. Thus the contribution of
this block of digits to the binomial coefficient expression using the digit expansion
is

Dj

Dq−1
j−1 · · ·D

q−1
i+1D

q
i

= [j] · · · [i].

On the other hand, the congruence class of [k] modulo ℘ depends on the congruence
class of k modulo d, and both are zero if d divides k. �

1.2. Arithmetic Gamma for Fq[t]: Interpolations. Goss made interpolations
of the factorial at all places of Fq[t] as follows:

Since Di = tiq
i − t(i−1)qi+qi−1

+ lower degree terms, the unit part

Di := Di/t
degDi = 1− 1/t(q−1)qi−1

+ · · ·
tends to 1 in Fq((1/t)) as i tends to ∞. So the unit part of Π(n) interpolates to a

continuous function called ∞-adic factorial, Π(n):

Π : Zp → Fq((1/t)),
∑

niq
i →

∏
Di

ni
.

Let v (sometimes we use symbol ℘) be a prime of A of degree d. Since Di is the
product of all monic elements of degree i, we have a Morita-style v-adic factorial
Πv : Zp → Fq[t]v for finite primes v of Fq[t] given by

Πv(n) =
∏

(−Di,v)
ni

where Di,v is the product of all monic elements of degree i, which are relatively
prime to v, and ni are the digits in the q-adic expansion of n. This makes sense
since −Di,v → 1, v-adically, as i → ∞. This is because, if m = bi/dc − `, for
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sufficiently large fixed `, then Di,v is a q-power power of the product of all elements
in (A/vmA)∗ and hence is −1 mod vm, for large i, by analog of the usual group-
theoretic proof of Wilson’s theorem (p− 1)! ≡ −1 mod p.

Here is a direct proof, in the case where v is of degree one. Using the automor-
phism sending t to t + α, α ∈ Fq, we can assume without loss of generality that
v = t. Now, for a general monic prime v of degree d, we have Di,v = Di/v

wDi−d,
where w is such that Di,v is a unit at v. So in our case,

−Dn,t = (

n−1∏
i=0

(1− tq
n−qi))/(

n−2∏
i=0

(1− tq
n−1−qi))→ 1, as n→∞.

In fact, it is easy to evaluate the t-adic gamma value:

Πt(
1

1− q
) = lim

N∏
i=0

−Di,t = − lim

N−1∏
j=0

(1− tq
N−qj ) = −1

because the product telescopes after the first term −D0,t = −1

1.3. Arithmetic Gamma for general A: Definitions and interpolations.
The different analogies that we have discussed for Fq[t] diverge for general A, giving
different possible generalizations and we have to choose the ones with best proper-
ties. It turns out that the factorial coming from the prime factorization analogy,
which is the same as the Bhargava factorial, though excellent for divisibility and
combinatorial properties, is local in nature and in general there is no simultaneous
p-ordering. No good interpolation for this ideal valued factorial is known. To get
good global properties connecting with Drinfeld modules and cyclotomic theory, we
proceed as follows. (We will deal with the exponential analogy in section 4).

The arithmetic of gamma is closely connected with cyclotomic theory, thus
with rank one Drinfeld A-modules, thus with A-lattices, or projective rank one
A-modules, and thus with ideals.

Let A be an ideal of A, and Di be the product of all monic elements a of A of
degree i. (Note that even for hA = 1 cases, now Di need not divide Di+1, unlike
the Fq[t] case.) So Di ∈ A ⊂ A. Also let di be the number of these elements. We

choose a uniformizer u = u∞ at∞. The one-unit part Di with respect to u satisfies
Di → 1 as i→∞. We then define Π and Γ similarly.

By Riemann-Roch theorem, di = qi+c, which tends to zero, q-adically as i tends
to infinity. Thus (following a suggestion by Gekeler), we can recover the degree of
the Gamma as follows:

The map N → Z given by z → deg Π(z) interpolates to a continuous function
deg Π : Zp → Zp given by

∑
ziq

i →
∑
izidi.

Hence we p-adically complete K×∞, i.e. define K̂×∞ := lim
←−

K×∞/K
×p

n

∞ . Since finite

fields are perfect, signs in K×∞ project to 1 in K̂×∞.

Then we define the ∞-adic interpolation Π = Π∞ : Zp → K̂×∞ with

Π(z) = Π(z)u− deg Π(z).

We use the symbol Π again, as we have recovered the degree part.
Let v be a finite place of A relatively prime to A, and of degree d. We form

D̃i = Di,v as usual by removing the factors divisible by v.

Definition 1.1. Let D̃i be the product of monic elements a of degree i and v(a) = 0.
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Again, generalized Wilson theorem type argument, which we omit, shows that
−D̃i → 1, so we put

Definition 1.2.
Πv(

∑
ziq

i) :=
∏

(−D̃i)
zi

so that Πv : Zp → Kv.

1.4. Functional equations for arithmetic gamma. We will now see how the
structure of the functional equations for the factorial functions, for all places and
all A’s follows just from manipulation of p-adic digits of the arguments. So the
proofs of functional equations reduce to this plus calculation of one single value:
the value of gamma at 0, which we take up later.

After the more familiar reflection and multiplication formula, we will prove a
general functional equation directly. We will see later how the cyclotomy and the
Galois groups play a role in this structure.

Recall that the classical gamma function Γ satisfies (1) Reflection formula:
Γ(z)Γ(1− z) = π/sinπz and (2) Multiplication formula:

Γ(z)Γ(z +
1

n
) · · ·Γ(z +

n− 1

n
)/Γ(nz) = (2π)(n−1)/2n1/2−nz.

We will prove analogs of these and also their p-adic counterparts in the function
field case, by first proving relations in the abstract setting below.

Consider a function f defined on Zp via base q expansions by

f(
∑

njq
j) :=

∏
f
nj
j

for some fj ’s. You can think of fj ’s as independent variables with the evident
manipulation rules. Put g(z) = f(z − 1). The various factorial functions (‘f ’) and
gamma functions (‘g’) introduced above, and below in Section 4, are all of this
form.

We want to get formal relations satisfied by f . In particular, we would like to
know when

∏
f(xi)

ni = 1 formally, i.e., independently of fi’s.
First we have a reflection formula:

Theorem 1.2. g(z)g(1 − z) = g(0) or equivalently (after a suitable change of
variables) f(z)f(−1− z) = f(−1).

Proof. Let the digit expansion of z be z =
∑
zjq

j . Since −1 =
∑

(q − 1)qj , and
0 ≤ q − 1 − zj < q, −1 − z =

∑
(q − 1− zj)qj is a digit expansion. Hence the

relation with f ’s follows. �

Next we have multiplication formula:

Theorem 1.3. For z ∈ Zp and (n, q) = 1,

g(z)g(z +
1

n
) · · · g(z +

n− 1

n
)/g(nz) = g(0)(n−1)/2

(here, if n is even, so that q is odd, then we mean by g(0)1/2 the element
∏∞
j=0 fj

(q−1)/2

whose square is g(0)).

Proof. If (n, q) = 1, −1/n has a purely recurring q base expansion of r recurring
digits where r is minimal such that n divides qr−1. The recurring digits for −a/n’s
are related in such a way that the sum of the i-th digits of all of them is constant
independent of i. (This can be seen by considering orbits under multiplication by
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q, but we omit the details.) This constant is easily seen to be (q − 1)(n− 1)/2, as
−1/n+ · · ·+−(n− 1)/n = −(n− 1)/2 = ((n− 1)/2)

∑
(q − 1)qj . �

We now give a more general functional equation, explained in an uniform frame-
work in the next section.

Let N be a positive integer prime to p. For x ∈ Q, define 〈x〉 by x ≡ 〈x〉 modulo
Z, 0 ≤ 〈x〉 < 1. If a =

∑
mi[ai] (mi ∈ Z, ai ∈ 1

NZ− {0}) is an element of the free

abelian group with basis 1
NZ−{0}, put n(a) :=

∑
mi〈ai〉. Also, for u ∈ (Z/NZ)×,

let a(u) :=
∑
mi[uai].

Theorem 1.4. If

n(a(qj)) is an integer independent of j, (∗∗)
then ∏

f(−〈ai〉)mi = f(−1)n(a).

We skip the proof involving digit manipulations [T04, Sec. 4.6] or [T91a]. We
will discuss the interesting value f(−1) = g(0) in the next section, by relating it to
periods.

Remarks 1.1. (1) By integer translation any proper fraction in Zp can be brought

strictly between −1 and 0 and thus can be written as
∑n−1
i=0 aiq

i/(1 − qn), with
0 ≤ ai < q. The proof of the above theorem reduces ultimately, after these reduction
steps and some combinatorics, to

(

∑
aiq

i

1− qn
)! =

∏
(

qi

1− qn
)!ai .

This in turn is a simple consequence of (z1 + z2)! = z1!z2!, if there is no carry over
base p of digits of z1 and z2. There are uncountably many pairs satisfying these
conditions, which would have implied a limit point and thus functional identity in
the real or complex case, but does not imply in our case because of the differences
in the function theory.

(2) We will see (discussion after Theorem 6.4) that the ‘basis elements’ (qi/(1−
qn))!, with 0 ≤ i < n, are algebraically independent, for a fixed n.

1.5. Geometric Gamma: Definitions and interpolations. The Gamma func-
tion we studied so far has domain in characteristic zero, even though the values are
in characteristic p. With all its nice analogies, it has one feature strikingly different
than classical gamma function: It has no poles. The usual gamma function has no
zeros and has simple poles exactly at 0 and negative integers, which we interpret as
negative of the positive integers and replace ‘positive’ by ‘monic’. (The monicity is
an analog of positivity, but the positivity is closed under both addition and multi-
plication, while the monicity only under multiplication. Also, for p = 2, positive is
the same as negative and for q = 2 all integers are negative!) Having thus decided
upon the location of the poles, note that in our non-archimedean case, the divisor
determines the function up to a multiplicative constant. (This follows easily from
Weierstrass preparation theorem associating a distinguished polynomial to a power
series, or from the Newton polygon method). The simplest constant that we choose
below also seems to be the best for the analogies we describe later.

We denote by A+ (Ad+ respectively) the set of monic elements (monic of degree
d respectively) in A. Similarly, we define A<d etc.
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Hence we define geometric gamma function as a meromorphic function on C∞
by

Definition 1.3.

Γ(x) :=
1

x

∏
a∈A+

(1 +
x

a
)−1 ∈ C∞ ∪ {∞}, x ∈ C∞.

From this point of view of divisors, the factorial Π should be defined as Π(x) :=
xΓ(x).

Remarks 1.2. (1) Classically, we have xΓ(x) = Π(x) = Γ(x + 1), whereas in our
situation, the first equality is natural for the gamma and factorial defined here and
the second equality is natural for the ones considered previously. Consequently, the
geometric gamma and factorial now differ by more than just a harmless change of
variable. Also, in characteristic p, addition of p brings you back, so giving value at
x+ 1 in terms of that at x will not cover all integers by recursion anyway.

(2) Unlike the arithmetic gamma case, where we started with the values at
positive integers and interpolated them, in the geometric gamma case, the values
at integers do not even exist for q = 2. For general q, in the A = Fq[t] case, the
reciprocals of the values at integers are integral. In general, even this property is
lost! At least, the values at integers (when they exist) are rational, as the gamma
product then is finite, and the terms for a given degree contribute 1 to the product,
when the degree is large enough.

This rationality of values at integers gives hope for interpolation a la Morita.

Definition 1.4. For a ∈ Av, let a := a or 1 according as whether v(a) = 0 or
v(a) > 0 respectively, and when x ∈ A, put

Πv(x) :=

∞∏
j=0

(
∏

n∈Aj+

n

x+ n
).

Note that the terms are 1 for large j. Hence Πv(a) ∈ K for a ∈ A.

Lemma 1.1. Πv interpolates to Πv : Av → A∗v and is given by the same formula,
as in the definition, even if x ∈ Av. Similarly, Γv(x) := Πv(x)/x interpolates to a
function on Av.

Proof. It is easy to see that if x ≡ y mod vl, then Πv(x) ≡ Πv(y) mod vl. �

1.6. Functional equations for geometric gamma. Reflection formula:
For q = 2, all nonzero elements are monic, so

Γ(x) =
1

eA(x)
=

π̃

e(π̃x)

where eA is the exponential corresponding to the lattice A and e is the exponential
corresponding to the sgn-normalized Drinfeld module with the period lattice π̃A.
Hence, for x ∈ K − A, Γ(x) has algebraic (even ‘cyclotomic’) ratio with π̃ and so,
as we will see, Γ(x) is transcendental.

From the point of view of their divisors, e(π̃x) being analogous to sin(πx) (i.e.
both have simple zeros at integers and no poles), this observation suggests relation
between Γ and sine. We reformulate the reflection relation as follows to make the
analogy more visible.
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The classical reflection formula can be stated as
∏
θ∈Z× Π(θx) = πx

sin(πx) , and

here, for general q, we clearly have

Theorem 1.5. ∏
θ∈A×

Π(θx) =
π̃x

e(π̃x)
.

Multiplication formula for geometric Π:

Theorem 1.6. Let g ∈ A be monic of degree d and let α run through a full system
of representatives modulo g. Then∏

α

Π(
x+ α

g
) = Π(x)π̃(qd−1)/(q−1)((−1)dg)q

d/(1−q)R(x)

where

R(x) =

∏
β∈A≤m+ β + x∏

α

∏
a∈A≤m+d+ ga+ α+ x

,

with m being any integer larger than max(deg α, 2gK) + d.

Here R(x) takes care of irregularity in Riemann-Roch at the low degrees. For
example, R(x) =

∏
α monic(x + α), when A = Fq[t] and {α} is the set of all

polynomials of degree not more than d.
Multiplication and reflection formula for Πv:

Theorem 1.7. (1) Let α, g be as in the previous Theorem and with (g, v) = 1.
Then ∏

α

Πv(
x+ α

g
)/Πv(x) ∈ K(x)×.

(2) For a ∈ Av, ∏
θ∈F×q

Πv(θa)/a ∈ F∗q

and can be prescribed by congruence conditions. For example, it is −sgn(av)
−1 or

1 respectively, according as whether av, the mod v representative of a of degree less
than deg(v) (if it exists, as it always does when A = Fq[t]), is zero or not.

We have omitted proofs, which follow by manipulating cancellations in the prod-
uct expansions.
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2. Special Γ-values, relations with Drinfeld modules and uniform
framework

2.1. Arithmetic gamma: Fq[t] case. First we deal with the case A = Fq[t] and

relate the special values of Γ to the period π̃ of the Carlitz module. Later, we will
describe how to derive more general results in a different fashion.

For 0 6= f ∈ Fq((1/t)), f/tdeg f will be denoted by f .
The most well-known gamma value at a fraction is Γ(1/2) =

√
π. In our case,

when p 6= 2, so that 1/2 ∈ Zp, we have Γ(1/2) = Π(−1/2) = Π(−1)1/2, where
the last equality follows directly by the digit expansion consideration. We will
now prove an analog of this fundamental evaluation, which will also complete our
functional equation in this case of the arithmetic gamma for Fq[t].

Carlitz [Car35] (see also [T04, Sec. 2.5] proved that

π̃ = (−1)1/(q−1) lim [1]q
k/(q−1)/[1] · · · [k]

so π̃q−1 ∈ Fq((1/t)) and π̃q−1 makes sense. By π̃ we will denote its unique (q−1)-th
root which is a one unit in Fq((1/t)).

Theorem 2.1. Let A = Fq[t]. For 0 ≤ a ≤ q − 1, we have

Γ(1− a
q−1 ) = (π̃)a/(q−1).

In particular, we have Γ(0) = π̃, and if q 6= 2n, then

Γ(1/2) =
√
π̃.

Proof. Since −1 =
∑

(q − 1)qi, we have

Γ(0) = Π(−1) = lim (D0 · · ·Dn)q−1.

Now
(D0 · · ·Dn)q−1 = Dn+1/[1] · · · [n+ 1].

Hence

Γ(0)q−1/π̃q−1 = limDq−1
n+1/[1]qn+1 = 1

since we have already seen that Di → 1, and since [1]
qn

→ 1, because any one unit
raised to the qn-th power tends to 1 as n→∞. Hence Γ(0) = π̃.

(We will not prove here the Carlitz formula above, but will see in 3.3 another
formula, which also leads to the same calculation. Also, our proof below, for general
A, gives another approach. The reason for giving this incomplete proof here is that
the same idea generalizes in the next Chowla-Selberg analog).

Since a/(1− q) =
∑
aqi for 0 ≤ a ≤ q − 1, we get the theorem. �

Corollary 2.1. For A = Fq[t], we have Γ(0)q−1 = −π̃q−1.

Proof. Both sides have degree q/(q−1) and π̃q−1 ∈ Fq((1/t)) has sign −1 as we see
from any of the formulas for it, whereas any Γ(z) has sign one by construction. �

To investigate the nature of gamma values at all fractions (with denominator
not divisible by p), it is sufficient to look at all Π(qj/(1 − qk)) for 0 ≤ j < k,
since a general value is (up to a harmless translation of the argument by an integer
resulting in rational modification in the value) a monomial in these basic ones.
They can be related to the periods π̃k of the Carlitz module for Fqk [t], a rank k
A-module with complex multiplication by this cyclotomic ring. For example,
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Theorem 2.2. Let A = Fq[t]. We have π̃k = Π(qk−1/(1−qk))q

Π(1/(1−qk))
.

Proof. We have

Π(1/(1− qk))

Π(qk−1/(1− qk))q
= lim

DknDk(n−1) · · ·D0

Dkn−1
q · · ·Dk−1

q

= lim [kn][k(n− 1)] · · · [k]

= (π̃k)−1.

�

This is the Chowla-Selberg formula for constant field extensions, as will be ex-
plained in 2.5. Similarly, it can be shown, for example, that

Π(1/(1− q2))q
2−1 = π̃qπ̃2

−(q−1)

Π(q/(1− q2))q
2−1 = π̃π̃2

q−1.

2.2. Arithmetic gamma: General A case. Next, we relate for general A, Γ(0)
with a period π̃, defined up to multiplication from F∗q , of sign-normalized rank one
Drinfeld A-module ρ, with corresponding rank one lattice Λ = π̃A, with A an ideal
of A, and exponential eρ = eΛ.

Let x be an element of A of degree > 0, say of degree d and with sgn(x) = 1.
The coefficient of the linear term of ρx is x, and ρ is sgn-normalized. Hence x is
the product of the nonzero roots of the polynomial ρx:

x =
∏

a∈A/Ax

′π̃eA(a/x) = π̃q
d−1

∏
′eA(a/x).

So

π̃1−qd =
1

x

∏
a∈A/Ax

′eA(a/x).

By using the product expansion of the exponential, careful grouping and manip-
ulation of signs, degrees, limits etc. one can prove the following theorem (though
we omit the details).

Theorem 2.3.

Γ(0) = µπ̃,

where µ is (q − 1)-th root of −1.

We note that all rank 1 normalized Drinfeld A-modules are isogenous, so periods
for different choices of A are algebraic multiples of each other.

2.3. Special values of arithmetic Γv. We first prove strong results for the Fq[t]
case, but only weak results for general A. We will show, in Section 6, how compa-
rable strong results follow after developing more machinery.

The Gross-Koblitz formula, based on crucial earlier work by Honda, Dwork and
Katz, expresses Gauss sums lying above a rational prime p in terms of values of
Morita’s p-adic gamma function at appropriate fractions.

Honda conjectured and Katz proved a formula for Gauss sums made up from
p-th roots of unity in terms of p-adic limits involving factorials, combining two
different calculations of Frobenius eigenvalues on p-adic cohomology (Crystalline
or Washnitzer-Monsky) of Fermat and Artin-Schreier curves. Gross and Koblitz
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interpreted this as a special value of Morita’s then recently developed p-adic inter-
polation of the classical factorial.

For a prime ℘ ∈ A of degree d, and 0 ≤ j < d an analog gj of Gauss sums was
defined in author’s thesis (see section 4 for details) as ‘a character sum’ with mul-
tiplicative character coming from theory of cyclotomic extensions of constant field
extension type and analog of additive character coming from the Carlitz-Drinfeld
cyclotomic theory. It was shown that for a prime ℘ of degree d the correspond-
ing Gauss sum satisfies gj ∈ K(Λ℘)(ζqd−1) and the corresponding Jacobi sum

gq
d−1
j ∈ K(ζqd−1) (so that, in particular, the cyclotomic extension K(Λ℘) is a

Kummer extension of K(ζqd−1) given by a root of the Gauss sum), and also analog
of Stickelberger factorization and congruence was proved for these Gauss sums.

Theorem 2.4. (‘Analog of the Gross-Koblitz formula’): Let A = Fq[t] and ℘ be a
monic prime of A of degree d. Then for 0 ≤ j < d, we have

gj = −λq
j

/Π℘(
qj

1− qd
),

where λ is a qd − 1-th root of −℘ (fixed by a congruence condition we omit). In
particular, these values are algebraic (cyclotomic, in fact).

Proof. We have D̃a = Da/Da−d℘
l, where l is such that D̃a is a unit at ℘. Hence,

using the base q expansion qj/(1− qd) =
∑
qj+id we get,

Π℘(
qj

1− qd
) = lim(−1)m+1D̃j · · · D̃j+md = lim(−1)m+1Dj+md/℘

wm

where wm = ord℘Dj+md. Moreover, the recursion formula for Di gives

Dj+md = [j +md][j − 1 +md]q · · · [j + 1 + (m− 1)d]q
d−1

Dqd

j+(m−1)d.

Without loss of generality, we can assume that ℘ 6= t. Thus t is a unit in K℘

and we can write in form t = au, as the product of its ‘Teichmüler representative’

a = lim tq
md

and its one unit part u. As aq
md

= a and uq
n → 1 as n → ∞, we

have, as m → ∞, [l + md] = ((au)q
md+l − t) → (aq

l − t), which is just −℘1−l, the
negative of one of the monic primes ℘j ’s above ℘. Using this in the limit above and
counting powers of ℘, using the description of [i] given above, we see that

Π℘(
qj

1− qd
)1−qd = (−℘1−j)(−℘2−j)

q · · · (−℘−j)q
d−1

/℘q
j

.

Comparing with the Stickelberger factorization (note naive analogy with
∑
aσa

where a ∈ (Z/nZ)∗, when the cyclotomic Galois group (Z/nZ)∗ is replaced by
qZ/nZ) we see that factorizations are the same and we fix the root of unity by
comparing the congruences. We omit the details. �

This proof is quite direct and does not need a lot of machinery, unlike the proof
in the classical case.

For general A, we evaluate below only a few simple values.

Theorem 2.5. Γv(0) = (−1)deg v−1 for all v prime to A. For 0 ≤ a ≤ q − 1
Γv(1− a

q−1 ) are roots of unity and Γv(
b

q−1 ) is algebraic for b ∈ Z.
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Proof. The first statement of the theorem implies the first part of the second state-
ment just using the definitions in terms of relevant digit expansions. This implies
the last claim immediately from definitions, by considering the effect of integral
translations of the arguments.

Let d = deg v. The first statement will follow, if we show that

(
∏

m)q−1 ≡ (−1)d−1 mod vli

where m runs through monic polynomials prime to v and of degree not more than
ti and with li, ti → ∞ as i → ∞. Given li, choose ti so that {am : a ∈ F×q } spans

the reduced residue class system mod vli (for example, in Fq[t] case, ti = dli − 1
works). Then it is easy to see that {am} covers each reduced residue class equal
number (which is a power of q) of times. Hence, again by the usual Wilson theorem
argument, we have

−1 ≡ (
∏

a)#{m}(
∏

m)q−1 mod vli .

But
∏
a = −1, so we are done if p = 2. Assume p is not two, then we have to show

that #{m} ≡ d mod 2. But for some c we have

#{m} = (qti−c − qti−c−d)/(q − 1) ≡ (qd − 1)/(q − 1) ≡ d mod 2.

�

2.4. Geometric gamma values. Functional equations (see 1.6) express many
monomials at fractions as period times cyclotomic numbers. In particular, for
q = 2, all geometric gamma values at proper fraction are algebraic multiples of π̃
and all v-adic gamma values are algebraic.

Now we look at special value results in the simplest case, that of A = Fq[t], q any
prime power, and v a prime of degree one, to give a flavor of what can be done. It
can be shown by Moore determinant calculations as before that

Lemma 2.1. Let Dr,η,t denote the product of monic polynomials of degree r, which
are congruent to η ∈ F∗q modulo t. Then

Dr+1,η,t = Drt
qr (1− η/(−t)(qr+1−1)/(q−1)).

Now notice that we are dealing with denominator t, and t-th torsion of Carlitz
module is λt = (−t)1/q−1. So the formula in the lemma can be rewritten as∏

n∈Ad+

(1 + η/nt) = 1− ηλt/λq
d+1

t .

Consider the Carlitz module over B = Fq[λt], the integral closure of A = Fq[t]
in the t-th cyclotomic field. This is a Drinfeld module of rank q − 1 over A and
of rank one over B. Hence this can be considered as t-th Fermat motive, having
complex multiplications by t-th cyclotomic field. Denote its period by πB .

Theorem 2.6. With this notation, we have πB = λ
q/(q−1)
t Π(1/t).

Proof. The displayed formula after the lemma shows that

Π(1/t) =

∞∏
d=1

(1− λt/λq
d

t )−1.
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On the other hand using the Carlitz period formula (see 2.1) in the case of base B,
we see that

πB/Π(1/t) = lim(λqt − λt)q
n/(q−1)/(λqt )

(qn−1)/(q−1) = λ
q/(q−1)
t ,

as lim(1− λ1−q
t )q

n/(q−1) = 1. �

We remark that Π(−1/t) turns out to be a ‘quasi-period’.
Now let us look at the v-adic values. First we set up some preliminary notation.

The Galois group of K(λt) over K can be identified with F∗q , with η ∈ F∗q acting
as ση(λt) = ηλt. If v is a prime of degree d, then the Galois group of KFv over K

can be identified with Z/dZ, with j ∈ Z/dZ acting as τj(ζqd−1) = ζq
j

qd−1
. Let λ be

the Teichmüller representative of λt, so that λq
di

t → λ ∈ Fv ⊂ Kv as i→∞. Write
℘ = λt − λ. Then ℘η’s are the primes of K(λt)Fv above v.

Theorem 2.7. Let A = Fq[t], v be a monic prime of degree d of A which is
congruent to 1 modulo t and η ∈ F∗q . Then

Πv(η/t) = (−λ)(qd−1)/(q−1)(℘ση )−
∑
τj , for η 6= 1, Πv(1/t) =

v

t
(℘)−

∑
τj .

In particular, Πv(a/t) is algebraic, for any a ∈ A.

Proof. Write wj :=
∏
n∈Aj+ n/n+ η/t and xj :=

∏
n∈Aj+ n/(n + η/t). Since v is

monic congruent to 1 modulo t, for j ≥ d, we have wj = xj/xj−dv
rj , where rj is

such that the right side is a unit at v.
For 0 ≤ j < d, wj = xj , unless j = d− 1 and η = 1, in which case, they differ in

n = (v−1)/t term giving wd−1t/v = xd−1. Hence, for η 6= 1, the product telescopes
and we get

Πv(η/t) =
∏

wj = lim

d−1∏
i=0

(1− ηλt/λq
nd+i

t )−1 =

d−1∏
i=0

(1− ηλt/λ
qi

).

Similarly, we calculate η = 1 case, where the answer is a unit at v. �

2.5. Uniform framework. Now we compare and explain analogies by giving uni-
fied treatment for the gamma functions in the three cases: classical, arithmetic and
geometric.

Classical Arithmetic Geometric
Γ(Z+) ⊂ Z+ Γ(Z+) ⊂ A>0 Γ(A−A≤0) ⊂ K∗
Γ : C− Z≤0 → C∗ Γ : Zp → K̂∗∞ Γ : C∞ −A≤0 → C∗∞
Γp : Zp → Z∗p Γv : Zp → K∗v Γv : Av → A∗v

We look at the questions of algebraicity, transcendence, relations to the peri-
ods of the special values of gamma functions at fractional arguments. First note
how special value combinations occurring in the reflection and multiplication for-
mulas, for z a fraction, introduce cyclotomic (‘sin πa/b’) and Kummer (‘n1/2−nz’)
extensions and keep in mind the vague connection Γ(1/a)↔ e(π̃/a)↔ a-torsion of
ρ.

A unified treatment requires some unified notation and identification of similar
objects:
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Classical Arithmetic Geometric
I: integers
in domain Z Z A
F : fractions {a/b ∈ Q :
in domain Q (p, b) = 1} K

= {a/(qm − 1)}
A: algebraic
nos. in range Q K K
underlying Gm, CM Gm, CM ρ’s CM ρ’s
objects elliptic curves
exponential classical classical for
e e domain, eρ eρ

for range
2πi for

period θ 2πi domain, π̃ π̃
for range

B: base field Q K K
O: base ring Z A A
extension usual constant Drinfeld
B(e(θf)) cyclotomic field cyclotomic
Galois group G Gal(Q(µN )/Q) Gal(K(µN )/K) Gal(K(ΛN )/K)
identified with = (Z/NZ)∗ = q(Z/rZ) = (A/NA)∗

In this table, f = a/N , with a,N ∈ I and r was defined by Fqr = Fq(µN ) and
in the geometric case we restricted to h = d∞ = 1 or even to A = Fq[t] first for
simplicity. See below (and [T04, 4.12.5]) for comments on more general situation.

We restrict our attention to gamma values at proper fractions. In all the three
cases, if f ∈ F − I, i ∈ I, then Γ(f + i)/Γ(f) ∈ B ⊂ A. So for our question of
algebraicity, it is enough to look at f ∈ (F − I)/I. To extract this information, we
define for f ∈ F − I, a rational number 〈f〉 ∈ Q such that 〈f〉 depends only on f
mod I:

Definition 2.1. (1) For classical and arithmetic gamma: For unique n ∈ Z, 0 <
f − n < 1. Put 〈f〉 := f − n.

(2) For geometric gamma: Let A = Fq[t]. For unique a ∈ A, f − a = −a1/a2,
where a1, a2 ∈ A, deg a1 < deg a2, a2 monic. Put 〈f〉 := 1 or 0, according as a1 is
monic or not.

Definition 2.2. Consider a finite formal sum f = ⊕mi[fi], mi ∈ Z, fi ∈ F − I.
This is nothing but an integral linear combination of symbols [fi], i.e. a divisor.
Let N be a common denominator for the fi’s. Put Γ(f) :=

∏
Γ(fi)

mi and make
similar definitions for Π,Γv,Πv etc. Also put m(f) :=

∑
mi〈−fi〉 ∈ Q.

For σ ∈ G, let f (σ) := ⊕mi[f
(σ)
i ], where f

(σ)
i is just multiplication of fi by σ as

an element of the identification of the Galois group given in the table.

For example, in the case of arithmetic gamma, if σ corresponds to qj , then

f
(σ)
i = qjfi.

For a finite place v, let Frobv ∈ G be the Frobenius, so that it makes sense to
talk of Frobv-orbits of fi or of f .

Consider the hypothesis/recipe/conjecture:
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(H1): If m(f (σ)) is independent of σ ∈ G, then Γ(f)/θm(f) and Γv(f) belong to

A.

(H2): If f is a linear combination of Frobv-orbits, then Γv(f) ∈ A (or rather
algebraic in appropriate v-adic context).

Examples 2.1. With f = 〈f〉+ 〈1− f〉, m(f) = 1 and with f = ⊕n−1
j=0 〈z + j/n〉 −

〈nz〉, m(f) = (n−1)/2 the hypothesis of H1 is satisfied in the first two cases. These
correspond to the reflection and multiplication formulas. In case II, the theorems
above show that Γ(−f)/π̃n(f) ∈ A. This implies that Γ(f)/π̃

∑
mi−n(f) ∈ A, but in

case of reflection and multiplication,
∑
mi = 2n(f). Hence Γ(f)/π̃

∑
mi〈−fi〉 works

in both cases under the independence hypothesis.

What is known about H1 and H2 and are they best possible?
H1 is true in all the three cases, but still we have written it as a hypothesis,

because we will consider more situations later, which fit in this framework: For
gamma of the fourth section, it is true with θ = Γ(0), but we do not understand
yet the nature, or connection with the period, of this value.

In the classical case, f satisfying the condition in H1 is a linear combination,
with rational coefficients, of the examples above (i.e. the conclusion follows from the
known reflection and the multiplication formulas) by a result of Koblitz and Ogus.
With a proof analogous to that of Koblitz and Ogus, the same can be proved for the
geometric case. (We do need rational coefficients, so that we get some non-trivial
χa’s for a’s which are not integral linear combinations of our functional equations.
See [Sin97a] for analysis of rational versus integral linear combinations of functional
equations and Anderson’s ‘ε-generalization’ of Kronecker-Weber theorem [A02] in
the classical case, inspired by this analysis.) But, since the independence condition
in arithmetic case is much weaker than the one in the classical case, the general
functional equations above which prove H1 in this case directly are more general
than those generated by multiplication and reflection formulas.

H2 follows from the Gross-Koblitz theorem in classical case, and its analog above
for the arithmetic case with A = Fq[t]. We will see a full proof for geometric case,
when A = Fq[t]. There is some evidence in other cases.

In the complex multiplication situation, we also have a Chowla-Selberg type
formula (up to multiplication by element of A) for the period, in terms of the
gamma values at appropriate fractions. This formula is predicted via a simple
calculation involving the ‘brackets’ introduced above. It works as follows:

Let E be a Drinfeld A-module (or elliptic curve for the case I) over Bsep with
complex multiplication by the integral closure of O in the appropriate abelian ex-
tension L of B as in the table, eg., a constant field extension for arithmetic and
Drinfeld cyclotomic extension for geometric case etc. (In fact, we can get much
more flexibility using higher dimensional A-motives of Anderson, eg., the solitons
give rise to higher dimensional A-motives with Drinfeld cyclotomic CM whose pe-
riods are values of Γ(z), for z ∈ K, in the geometric case with A = Fq[t]. But here
we will be content with this simple case.)

For f ∈ F − I, let h(f) : Gal(Bsep/B) → Q be defined by h(f)(σ) := 〈−f ′〉,
where e(θf)σ = e(θf ′). (Note that in arithmetic case, the exponential used here is
the classical exponential according to the table.)
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Let χL/B be the characteristic function of Gal(L/B). In other words, χL/B :
Gal(Bsep/B)→ Z is such that χL/B(σ) is 1, if σ is identity on L and is 0 otherwise.

We then have the hypothesis/recipe/conjecture:

(H3): If χL/B =
∑
mfh(f), mf ∈ Z, then PeriodE/

∏
Γ(f)mf ∈ A.

This is known in classical case. In function fields, there is only some evidence.

Examples 2.2. O = A = Fq[t], K = B = Fq(t), L = Fqk(t). Then the rank k

Drinfeld A-module: u 7→ tu+uq
k

is the rank one Carlitz module over Fqk [t]. Hence
we want to express its period π̃k in terms of the gamma values at fractions with
the gamma function built up from the base. If τ is the q-power Frobenius, then
χL/B(τn) is 1, if k divides n and is 0 otherwise. The same is true for

[qh(
qk−1

1− qk
)− h(

1

1− qk
)](τn) = q〈q

k+n−1

qk − 1
〉 − 〈 qn

qk − 1
〉.

Hence H3 predicts that Γ(qk−1/(1− qk))q/Γ(1/(1− qk)) is an algebraic multiple of
π̃k, as we have seen before.

Remarks 2.1. (1) In case I, the Γ function is closely connected with ζ and L
functions, it is in some sense a factor at infinity for the ζ function and hence
appears in functional equations. Such connections are missing in the other cases.
We only have Π′(x)/Π(x) = ζ(x, 1) in the third case.

(2) The Hurwitz formula ζ(x, s) = 〈−x〉 − 1/2 + s log Γ(x) + o(s2) around s = 0
connects partial zeta, ‘brackets’ and logarithm of gamma. For case III, the partial
zeta value for x = a1/a2 (with deg a1 < deg a2 and a2 ∈ A+) is obtained by
summing q−s deg a over monic a congruent to a1 modulo a2. Hence at s = 0, it
equals 1 − 1/(q − 1) or −1/(q − 1) according as a1 is monic or not. This is the
motivation for the definition, due to Anderson, of the brackets as above in the
geometric case

(3) See [T04, Cha. 4] for the connection of this set-up with function field gauss
and jacobi sums we mentioned before. Chris Hall made the following interesting
remark about the connection of the condition in (H1) with the classical gauss sums
and their occurrence in the work related to Ulmer’s parallel lecture series on ranks
of elliptic curves over function fields. The classical Gauss and Jacobi sums arise,
e.g., in Weil’s work, as (reciprocal) zeros of zeta functions of Fermat varieties X/Fq.
When such a sum arises as a (reciprocal) eigenvalue of Frobenius acting on the
even-index cohomology of X and when the n-th power of the sum is a power of q,
then the Tate conjectures predict that there are corresponding algebraic cycles on
X/Fqn . While finding such algebraic cycles is usually very difficult, the seemingly
simpler question of determining whether or not some power of a Gauss or Jacobi
sum is a power of q also appears quite difficult. (In the literature (cf. papers of
R. Evans and N. Aoki), such sums are called ‘pure’). One can use Stickelberger’s
theorem to reformulate the condition for a particular sum to be pure in terms of
a fractional sum (cf. section 2.3 of [Ulmer, Math. Res. Lett. 14 (2007), no. 3,
453–467.]), and the resulting condition resembles hypothesis (**) of theorem 3, Sec.
1.4 or (H1).

We will see, in section 4, that H1 is best possible in arithmetic case by automata
method. In both the function field cases, by motivic method, which was developed a
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little later, we can even prove (see sections 3 and 6) stronger algebraic independence
results. In the classical case, much less (see sec. 4.1) is known.
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3. Solitons, t-motives and complete gamma relations for Fq[t]

In this section, we restrict to A = Fq[t].
Our examples in the last section can be considered as simple cases of Fermat

motives: Drinfeld modules with complex multiplication by ring of integers of ‘cy-
clotomic fields’. In these cases, we saw connections between periods and gamma
values and Frobenius eigenvalues at finite primes, the gauss sums connecting to
values of interpolated gammas at that prime. Now we will outline how complete
generalization using t-motives, which are higher dimensional generalization of Drin-
feld modules, works.

So far, we handled gamma values by connecting them to Drinfeld modules with
complex multiplications by (integral closure of A in) cyclotomic fields, such as
constant field extensions K(µn) of K or Carlitz-Drinfeld cyclotomic extensions
K(Λ℘). Drinfeld modules can handle only one point at infinity. For the geometric
gamma function, this restricted us to Γ(1/℘) (and its v-adic counterparts), with
degree one prime ℘. To handle Γ(1/f), for any f(t) ∈ A, we need objects with
multiplication from K(Λf ). Thus we need ‘higher dimensional t-motives’ which
can handle many infinite places. We will focus on the geometric gamma in this
section and return to the general case in section 6.

3.1. Anderson’s solitons: General overview. If you look at the proof of the-
orems 2.6, 2.7, the crucial point was to produce special functions (coined ‘solitons’
by Anderson, the reason will be explained below) on Xf×Xf (where Xf is the f -th
cyclotomic cover of the projective line, namely the curve corresponding to K(Λf )),
with the property that they specialize on graph of d-th power of Frobenius to the
d-th degree term in the product defining the gamma value.

Examples 3.1. For f(t) = t, as we saw before by Moore determinants, this corre-
sponded to a ‘compact formula’ (for the left side which has exponentially growing
size)

(
∏
a∈Ai+

a≡1 mod t

a)/(tq
i−1

Di−1) = 1− ζt

ζq
i

t

= 1− (−t)−(qi−1)/(q−1),

with corresponding ‘soliton’ φ = (t/T )1/q−1 = ζt/ζT , if you use two independent
variables t and T for the two copies of the line. The additivity of the solitons (as
functions of a/f) was established using Moore determinants and this formula was
used (essentially the method of partial fractions) to get formulas for (what is now
understood as) the solitons when f was a product of distinct linear factors.

In general, we get ‘compact’ formulas for the product of the monic polynomials
in Fq[t] of degree i in a given congruence class (essentially the same as asking for
a formula for the term in the definition of the geometric gamma function at a
fraction). Here is another example

(
∏
a∈Ai+

a≡1 mod t2

a)/((t2)q
i−2

Di−2) = 1−
ζt2(−t)qi−1/(q−1) − ζq

i−1

t2 (−t)1/(q−1)

(−t)2qi−1/(q−1)
.

Here f(t) = t2, and

φ = (ζt2CT (ζT 2)− ζT 2Ct(ζt2))/CT (ζT 2)2.
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Remarks 3.1. For A = Fq[t], we have good analogs of binomial coefficient polyno-
mials { xn} obtained by digit expansions, just as in factorial case, from the basic ones

for n = qd, defined via analogy e(x`(z)) =
∑
{ xqd }z

qd . We have the exponential

e(z) =
∑
zq
i

/di and the logarithm `(z) =
∑
zq
i

/`i, in general, so that Di = di and
Li = (−1)i`i, in our case of Carlitz module for A = Fq[t].

It can be easily shown that

{ x
qk
} =

∑
xq

i

/(di`
qi

k−i) = ek(x)/dk =:

(
x

qk

)
,

with ek(x) =
∏

(x − a) where the product runs over all a ∈ A of degree less than
k. Same definitions easily generalize to all A’s, but the curly and round brackets
binomials differ in general and we will return to this issue. For several analogies,
we refer to [T04, Sec. 4.14].

It is easy to verify that the degree d term in the geometric gamma product

definition for Γ(a/f) is nothing but 1 +
(a/f
qd

)
. So solitons are ‘interpolations’ of

these binomial coefficients, for x = a/f , as d varies.

Some such functions constructed by the author were constructed using Moore
determinants. Anderson had a great insight that such determinant techniques are
analogs of techniques found in the so called tau-function theory or soliton theory.
Applying deformation techniques from soliton theory, which occur in Krichever
theory of solving, using theta functions, certain integrable system partial differential
equations, such as KdV, to the arithmetic case of Drinfeld dictionary, Anderson
obtained [A92, A94, ABP04], for any f , the required functions, which he coined
solitons. Anderson used tau- functions, theta functions, and explicit constructions
(using exponential, torsion and adjoints) respectively in the three papers mentioned.
We refer to these papers and [T01] for motivations and analogies.

We will only describe the last construction. See [T04, 8.5] or [T99] for alternate
approach of the author giving Frobenius semilinear difference equations analogous
to partial differential equations.

Interpolating the partial gamma products, by such algebraic functions on the cy-
clotomic curve times itself, Anderson constructed t-motives and showed that their
periods are essentially the Gamma values, and that they also give ideal class annihi-
lators. This vastly generalizes very simple examples we looked at. The applications
to special values and transcendence go way beyond the classical counterparts this
time, because the t-motives occurring can have arbitrary fractions as weights in
contrast to the classical motives

We saw that the gamma product for Γ(a/f), restricted to degree d, is essentially

the binomial coefficient {a/f, qd}, which is the coefficient of tq
d

in e(`(t)a/f), which
can be thought of as deformation of torsion e(`(0)a/f), since π̃ is a value of `(0). In
function fields, we have the luxury of introducing more copies of variables (tensor
products, products of curves, generic base change) with no direct analog for number
fields. (In other words, we do not know how to push polynomials versus numbers
analogy to multi-variable polynomials.)

Before describing constructions of solitons, we sketch how they are used to con-
struct t-motives which have periods and quasi-periods the corresponding gamma
values.
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3.2. t-modules, t-motives and dual t-motives. Let F be an A-field, ι : A→ F
being the structure map (not needed in the number field case where we have the
canonical base Z). We assume F is perfect. This is needed for technical reasons,
but for our transcendence applications, we can even assume it to be algebraically
closed. The kernel of ι is called the characteristic. We will usually stay in ‘generic
characteristic’ situation of zero kernel.

Recall that a Drinfeld A-module ρ over F is roughly a non-trivial embedding of
(commutative ring) A in the (non-commutative ring of) Fq-linear endomorphisms
of additive group over F . It gives, for a given a ∈ A, a polynomial ρa ∈ F{τ}
(where τ is the q-th power map) with constant term ι(a). Now ρt, for a single
non-constant t ∈ A, determines ρa, for any a ∈ A, by commutation relations. So
without loss of generality, we can just look at t-modules, which one can think of
as special case A = Fq[t], or the general case can be thought of as having extra
multiplications. In other words, a t-module G is an algebraic group isomorphic to
the additive group together with a non-trivial endomorphism denoted by t, such
that at the Lie algebra level t acts by scalar θ = ι(t) ∈ F .

(Warning: Since we have stated everything with t-variable at the start, we will
do so for the end results also, but in proofs we will distinguish t and θ, just as we
distinguish the role of coefficient and multiplication field, even when they are the
same. Our answers will thus often be in terms of θ, which we then replace by t!
As we progress, we will see the advantage of having two isomorphic copies of Fq(x)
together, something which we can not do in the number field case).

We can generalize to d-dimensions by replacing the additive group by its d-th
power, and Anderson realized that rather than requiring t acting by a scalar matrix
θ at the Lie algebra level, one should relax the condition to t having all eigenvalues
θ or equivalently t − θ should be a nilpotent matrix. We will see the need for the
relaxation clearly when we calculate C⊗n in section 6.

Anderson called M(G) := Hom(G,Ga) the corresponding t-motive. By compos-
ing with t-action on left and τ -action on right, this is a module for (non-commutative
ring) F [t, τ ]. This dual notion is called motive, because it is a nice concrete linear/τ -
semilinear object from which cohomology realizations of Drinfeld modules and t-
modules can be obtained by simple linear algebra operations.

We will not go into details (see [G94] or [T04, 7.5]) here, but just note that by
efforts of Drinfeld, Deligne, Anderson, Gekeler, Yu, cohomologies of Betti, v-adic,
DeRham, Christalline types, comparison isomorphisms etc. are developed and that
the recent works of Pink, Böckle, Hartl, Vincent Lafforgue, Genestier etc. have
developed Hodge theoretic and Christalline aspects much further into a mature
theory.

The dimension d and rank r of M are, by definition, the ranks of M (freely
generated) over F [τ ] and F [t] respectively. Choosing a basis, a t-motive can thus
be described by a size r matrix Mτ with entries in F [t]. Unlike the one dimensional
case of Drinfeld modules, in general, the corresponding exponential function need
not be surjective. The surjectivity or uniformizability criterion can be expressed
as existence of solution of matrix equation (see below) in the rigid analytic realm.
(The uniformizability is equivalent to the rank of lattice being r). The period
matrix is then obtained by residue (at t = θ) operation from this solution.
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Anderson later used the ‘adjoint’ duality [T04, 2.10] developed by Ore, Poo-
nen, Elkies, between τ objects and σ := τ−1-objects and considered ‘dual t-
motives’ which are F [t, σ]-modules. For t-module G, one associates such M∗(G) :=
Hom(Ga, G). When F is perfect, eg. algebraically closed (as is sufficient for tran-
scendence purposes), and when we do not bother about finer issues of field of
definition etc., the q-th root operation is fine too.

The technical advantages are quick, clean description [ABP04] as M∗/(σ−1)M∗

for points of G and M∗/σM∗ for its Lie algebra in terms of M∗, and being able to
replace residue operation by the simpler evaluation operation.

In [ABP04], this was put to great use and transcendence theory papers now use
this language and call the dual t-motives, the t-motives or Anderson t-motives.
Just be warned that this basic term means slightly different (but related) con-
cepts in different papers. In transcendence literature, the rigid analytically trivial
(equivalently uniformizable) dual t-motive is often called t-motive.

We just remark that in the first part of these notes, dealing with gamma values,
we use ‘pure’ complex multiplication (rank one over higher base) t-motives (coming
from solitons), while dealing with zeta and multizeta values in the second part, we
use mixed motives of higher rank and the language of Tannakian theory in terms
of motivic galois group, which we could have used, to simplify once developed, in
the first part also.

3.3. Period recipe and examples. Let Φ be size r square matrix with entries
in F [t] giving the σ action σm = m(−1) on the (dual!) t-motive M . Consider the
Frobenius-difference equation Ψ(−1) = ΦΨ. If it has a solution Ψ with entries in
the fraction field of power series convergent in closed unit disc (fraction field of the
Tate algebra), then Anderson proved that M is uniformizable with period matrix
being the inverse of Ψ evaluated at t = θ. (Here n-th twist (n) represents entry wise
qn-th power on elements of F and identity on t).

For example, for the Carlitz module, we have Φ = t− θ. Then we have

Ω := Ψ = (−θ)−q/(q−1)
∞∏
i=1

(1− t/θq
i

)

and π̃ = 1/Ψ(θ). We will denote this particular Ψ by Ω, as is the common notation.

Remarks 3.2. We remark here that though C∞ being of infinite degree over K∞
is quite different than [C : R] = 2, the formulas for π̃ show that for many purposes
the role of C∞ is played by the degree q − 1 extension

K∞(π̃) = K∞(ζt) = K∞((−t)1/(q−1)) = K∞((−[1])1/(q−1))↔ C = R(i) = R(2πi).

The algebraic elements of K∞(π̃) are separable over K.

Note that ignoring simple manipulations needed for the convergence in the right
place, we always have a formal solution Ψ =

∏∞
i=1 Φ(i), so that in the rank one

case, the (reciprocal of the) period is given as product of Φ evaluated at graphs of
powers of Frobenius, as we mentioned above.

So given a soliton Φ, one gets a motive with period the corresponding gamma
value at the proper fraction, up to a simple factor.
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3.4. Explicit construction. We follow the notations of [ABP04], the T (t respec-
tively) below corresponds to our t (θ respectively).

Let e(z) = e(π̃z). Now put Ω(−1)(T ) =
∑
aiT

i, ai ∈ K∞(t̃). Let Res : K∞ → Fq
be the unique Fq-linear functional with kernel Fq[t]+1/t2Fq[[t]] and with Res(1/t) =
1, i.e. the usual residue function for parameter t. For x ∈ K∞, put

e∗(x) :=

∞∑
i=0

Res(tix)ai.

We have

Ω(−1)(T ) =

∞∑
i=0

e∗(
1

ti+1
)T i,

1

Ω(−1)(T )
=

∞∑
i=0

e(
1

ti+1
)T i

So e∗(1/t) = 1/t̃. From the functional equation above, we get recursion on ai’s
which implies that

te∗(x)q + e∗(x) = e∗(tx)q.

Comparison with adjoint C∗t = t + τ−1 of Carlitz module shows that e∗(a/f) are
q-th roots of f -torsion points of this adjoint.

Definition 3.1. For f ∈ A+, we say that families {ai}, {bj} (i, j = 1 to deg f) of
elements in A are f -dual if Res(aibj/f) = δij.

Theorem 3.1. Fix f ∈ A+ and f -dual families {ai}, {bj} as in the definition
above. Fix a ∈ A with deg a < deg f . Then

deg f∑
i=1

e∗(ai/f)q
N+1

e(bia/f) = −
(
a/f

qN

)
for all N ≥ 0. Also, if a ∈ A+,

deg f∑
i=1

e∗(ai/f)e(bia/f)q
deg f−deg a−1

= 1.

Thus we define soliton by

Definition 3.2. For x = a0/f ∈ f−1A−A, put

gx := 1−
deg f∑
i=1

e∗(ai/f)(Ca0bi(z)|t=θ).

If y is ‘fractional part’ of ax,

g(N+1)
x (ξa) = 1 +

(
y

qN

)
=

∏
n∈AN+

(1 + y/n),

where ξa := (t, e(a/f)). Thus on graph of N + 1-th Frobenius power it gives N -th
term of gamma product.

For x ∈ K∞ = Fq((1/t)) and integers N ≥ 0, let us define 〈x〉N to be 1, if the
fractional part power series of x starts with (1/t)n+1, and 0 otherwise. Then for
bracket defined in uniform framework, we have 〈x〉 =

∑∞
N=0〈x〉N .
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Theorem 3.2. For x ∈ f−1A−A, we have equality of divisors of f -th cyclotomic
cover Xf of the projective line

(gx) = − 1

q − 1
∞Xf +

∑
a∈A<deg f ,(a,f)=1

∞∑
N=0

〈ax〉Nξ(N)
a .

The divisor D on the right (note the sum is finite) being the Stickelberger divisor
of the cyclotomic theory, you get through the partial zeta function corresponding
to a/f , we get the soliton specialization as the Stickelberger element, generalizing
Coleman’s constructions [A92] corresponding to few denominators f .

Specializing the solitons at appropriate geometric points, Anderson has proved [A92]
two dimensional version of Stickelberger’s theorem. For connection with the arith-
metic of zeta values and theta functions, see [A94, T92b]. The reason for the name
soliton is that the way it arises in the theory of Drinfeld modules or Shtukas, when
dealing with the projective line with some points (in support of f) identified, is
analogous to the way the soliton solutions occur in Krichever’s theory of algebro-
geometric solutions of differential equations, as explained in [Mum78, pa. 130, 145]
and [A92, A94, T01].

3.5. Analog of Gross-Koblitz for Geometric Gamma: Fq[t] case. Using An-
derson’s analog of Stickelberger, the proof of Gross-Koblitz analog generalizes, from
the simplest case considered in 2.3, to the general Fq[t] case by a proof exactly as
in previous cases:

Theorem 3.3. Let A = Fq[t]. Let v be a monic prime of degree d such that f (of
positive degree) divides v−1. Let a be an element of degree less than that of f . Then
Γv(a/f) is (explicit) rational multiple of the a/f -Stickelberger element applied to v.
In particular, it is algebraic. (So If a consists of Frobv-orbits, up to translation by
elements in A, then Γv(a) is algebraic.)

3.6. Fermat t-motive. With soliton function g = gx, consider Mf := as K[t, τ ]-

module by left multiplication action of K[t] and by τ action given by g. The
underlying space here is rank one over ‘cyclotomic base’. (See [ABP04] for details).

Let f ∈ A+, I := {a ∈ A : (a, f) = 1,deg(a) < deg(f)}, and I+ = I∪A+. Sinha,
in his University of Minnesota thesis, proved

Theorem 3.4. With the notation as above, Mf is a uniformizable abelian t-motive

over K of dimension φ(f)/(q − 1) and rank φ(f) := |(A/fA)∗|. In fact, the corre-
sponding t-module is HBD module with multiplications by A[ζf ]+ and is of CM type
with complex multiplication by A[ζf ]. Its period lattice is free rank one over A[ζf ],
with the a-th coordinate (for a ∈ I+) of any non-zero period being (with appropri-
ate explicitly given C∞{τ}-basis of M to give co-ordinates) the (explicit non-zero
algebraic multiple of) value Γ(a/f).

Brownawell and Papanikolas [BP02] proved

Theorem 3.5. The coordinates of periods and quasi-periods of Mf (in the same
coordinates as above) are exactly the (explicit non-zero algebraic multiples of) values
Γ(a/f), with a ∈ I.

We refer to [Sin97b, BP02, ABP04] for very nice and clean treatment of these
issues considered in 3.4, 3.6-3.8.
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3.7. ABP criterion: Period relations are motivic. Here we use F = K, C∞
with variable θ and t an independent variable.

Let C∞{t} be the ring of power series over C∞ convergent in closed unit disc.

Theorem 3.6. [ABP] Consider Φ = Φ(t) ∈ Matr×r(K[t]) such that det Φ is a
polynomial in t vanishing (if at all) only at t = θ and ψ = ψ(t) ∈ Matr×1(C∞{t})
satisfying ψ(−1) = Φψ.

If ρψ(θ) = 0 for ρ ∈ Mat1×r(K), then there is P = P (t) ∈ Mat1×r(K[t]) such
that P (θ) = ρ and Pψ = 0.

Thus K-linear relations between the periods are explained by K[T ]-level linear
relations (which in our set-up are the motivic relations and thus ‘algebraic relations
between periods are motivic’, as analog of Grothendieck’s conjecture for motives he
defined). In terms of special functions of our interest, this makes the vague hope
that ‘there are no accidental relations and the relations between special values come
from known functional equations’ precise and proves it.

Motives are thus simple, concrete linear algebra objects and have tensor products
via which algebraic relations between periods i.e., linear relations between powers
and monomials in them reduce to linear relations between periods (of some other
motives). In this sense, the new [ABP] criterion below is similar to Wüstholz type
sub-t-module theorem proved by Jing Yu, as remarked in 3.1.4 of [ABP]. The great
novelty is, of course, the direct simple proof as well as its perfect adaptation to the
motivic set-up here. Because our motives are concrete linear algebra objects, it is
‘easy’ (compared to the cycle-theoretic difficulties one encounters in the classical
theory) to show that their appropriate category (up to isogeny) is neutral Tannakian
category over Fq(t), with fiber functor to vector spaces over Fq(t) category given
by lattice Betti realization, because the formalism of such categories is based on
linear algebra motivation anyway. (Soon afterwards [Be06], Beukers proved similar
criterion for dependence of values of E-functions, but it does not have such strong
applications to relations between periods of classical motives, because of differences
in period connections in this case). Each motive M also generates such (sub-)
category and thus equivalent to a category of finite dimensional representations
over Fq(t) of an affine group scheme ΓM over Fq(t), called the motivic Galois group
of M , which can be described as the group of tensor automorphisms of the fiber
functor.

After developing [P08] this machinery, the following very useful theorem [P08]
(which is analog of Grothendieck period conjecture for our abelian t-modules) fol-
lows [P08, pa. 166-167] easily from the ABP criterion and goes one step further in
the quantitative direction:

Theorem 3.7. If M is uniformizable t-motive over K, then transcendence degree
of the field extension of K generated by its periods is the dimension of the motivic
Galois group of M (i.e., the group corresponding to Tannakian category generated
by M).

In [P08], we have further a description of the motivic Galois group as ‘difference
equations Galois group’ for the ‘Frobenius semilinear difference equation’ Ψ(−1) =
ΦΨ. This allows the calculation of the dimensions and proofs of theorems described
in section 6.

Here is the proof from [ABP04] of the Theorem for the simplest r = 1 case.
Without loss of generality we can assume ρ 6= 0, so that we have to conclude ψ
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vanishes identically from ψ(θ) = 0. For v ≥ 0, we have

(ψ(θq
−v

))q
−1

= ψ(−1)(θq
−v−1

) = Φ(θq
−v−1

)ψ(θq
−v−1

).

Since Φ(θq
−v−1

) 6= 0, ψ has thus infinitely many zeros θq
−v

in the disc |t| ≤ |θ| and
so it vanishes identically.

The general case makes similar beautiful use of functional equation of the hy-
pothesis by manipulating suitable auxiliary function to vanish identically (so as to
recover P ). This is done by applying the standard transcendence theory tools such
as Siegel lemma (to solve system of linear equations thus arising) and Schwarz-
Jensen, Liouville inequalities (to estimate bounds needed). We refer the reader to
the clean treatment in [ABP].

3.8. Complete determination of geometric gamma relations for Fq[t]. Brow-
nawell and Papanikolas [BP02] developed complex multiplication theory and theory
of quasi-periods for general t-motives, and analyzing the connection between the
CM types of soliton t-motives showed, that only K- linear relations among the
gamma values at fractions are those explained by the bracket criterion in our uni-
form framework, as they mirror relations coming via CM type relations.

Anderson, Brownawell and Papanikolas [ABP04], using tensor powers to real-
ize all monomials as periods (do not need quasi-periods then) and ABP criterion,
proved

Theorem 3.8. Let Γ stand for geometric gamma function for A = Fq[T ]. By a Γ-
monomial, we mean an element of the subgroup of C∗∞ generated by π̃ and Γ-values
at proper fractions in K.

Then a set of Γ-monomials is K-linearly dependent exactly when some pair of
Γ-monomials is, and pairwise K-linear dependence is entirely decided by bracket
criterion (H1).

In particular, for any f ∈ A+ of positive degree, the extension of K generated
by π̃ and Γ(x) with x ranging through proper fractions with denominator (not nec-
essarily reduced) f , is of transcendence degree 1 + (q − 2)|(A/f)∗|/(q − 1) over
K.

We will talk about important applications of Papanikolas theorem to under-
standing relations between gamma (arithmetic or geometric) and zeta values in
section 6.
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4. Automata method, General A, v-adic situation and another gamma
mystery

This section is independent of the last section.

4.1. Automata and transcendence for arithmetic gamma. In this subsec-
tion, we will restrict to A = Fq[t] and look at the arithmetic gamma. We will show
that

Theorem 4.1. (Arithmetic gamma) In the case A = Fq[t], m(f (σ)) = 0 for all

σ = qj if and only if Γ(f) is algebraic.

The ‘only if’ part is (H1) in this case and was already explained, so new result
that theorem implies is that (H1) is best possible for arithmetic gamma.

This was proved by the ‘automata method’. Before that the methods based on
the transcendence of periods and the Chowla-Selberg formula in the section two
gave transcendence results (due to Thiery [Thi] and Jing Yu [Y92] independently)
parallel to those known in the number field case. In the number fields case, the tran-
scendence is known only for gamma values at fractions with denominators dividing
4, 6, while in our case, it was known only for denominators dividing q2 − 1, the
analogy being that 4, 6 are numbers of roots of unity in imaginary quadratic fields,
whereas q2 − 1 is the number of roots of unity in quadratic extension field Fq2(t)
and the reason being the Chowla-Selberg formula and complex multiplication from
these fields that we saw. The automata method settled completely [T96, All96] the
question of which monomials in gamma values at fractions are algebraic and which
are transcendental. (In section 6, we will mention recent [CPTY] results proving
much stronger result than the theorem above). It is based on the following theorem
[Chr79, CKMR80] by Christol and others.

Theorem 4.2. (i)
∑
fnx

n is algebraic over Fq(x) if and only if (ii) fn ∈ Fq is pro-
duced by a q-automaton if and only if (iii) there are only finitely many subsequences
of the form fqkn+r with 0 ≤ r < qk.

For our proof, we will only need (and prove) (i) implies (iii). But (ii) is the reason
for the name of the method and the reason for various other techniques from this
viewpoint and results, for which we refer to the surveys [All87, AS03, T98, T04].
Thus we also say a few words about the concept of automata and how (ii) quickly
implies (iii), though it is logically not necessary. The concept of automata will not
be used in these notes after the next paragraph, except for the references to the
method.

Here, an m-automaton (we shall usually use m = q, a prime power in the appli-
cations) consists of a finite set S of states, a table of how the digits base m operate
on S, and a map Out from S to Fq (or some alphabet in general). For a given
input n, fed in digit by digit from the left, each digit changing the state by the rule
provided by the table, the output is Out(nα) where α is some chosen initial state.
So instead of our ideal Turing machine which has infinite tape and no restriction
on input size (and still is a good approximation to computers because of enormous
memories available these days) the finite automata has a restricted memory, so
integer has to be fed in digit by digit, with the machine retaining no memory of
previous digits fed except through its changed states.
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Proof. (ii) implies (iii): There are only finitely many possible maps β : S → S and
any fqkn+r is of the form Out(β(nα)).

(i) implies (iii): For 0 ≤ r < q, define Cr (twisted Cartier operators) by
Cr(
∑
fnx

n) =
∑
fqn+rx

n. Considering the vector space over Fq generated by

the roots of the polynomial satisfied by f , we can assume that
∑k
i=0 aif

qi = 0,

with a0 6= 0. Using g =
∑q−1
r=0 x

r(Cr(g))q and Cr(g
qh) = gCr(h), we see that

{h ∈ Fq((x)) : h =

k∑
i=0

hi(f/a0)q
i

, hi ∈ Fq[x],deg hi ≤ max(deg a0,deg aia
qi−2

0 )}

is a finite set containing f and stable under Cr’s. �

The particular case of theorem 4.1 is the transcendence at any proper fraction,
proved by Allouche generalizing the author’s result for any denominator, but with
restrictions on the numerator. Mendès-France and Yao [MFY97] generalized to
gamma values at p-adic integers from the values at fractions, and simplified further.
We present below an account based on their method.

Lemma 4.1. For positive integers a, b, c; qc − 1 divides qa(qb − 2) + 1 if and only
if c divides (a, b), the greatest common divisor of a and b.

The proof, which is short, straightforward and elementary, is omitted.

Theorem 4.3. If the sequence nj ∈ Fq is not ultimately zero, then
∑∞
j=1 nj/(t

qj −
t) ∈ K∞ is transcendental over K.

Proof. We have
∑
t nj/(t

qj − t) =
∑
c(m)t−m, where

c(m) =
∑

(qj−1)|m

nj .

Consider the subsequences ct(m) := c(qtm + 1), as there are infinitely many
non-zero nj ’s, it is enough to show, by Christol’s theorem, that ca 6= cb, for any
a > b such that na and nb are non-zero.

Let h be the least positive integer s dividing a, but not dividing b and with
ns 6= 0. (Note s = a satisfies the three conditions, so h exists.) By the lemma,

ca(qh − 2)− cb(qh − 2) =
∑

(ql−1)|(qa(qh−2)+1)

nl −
∑

(ql−1)|(qb(qh−2)+1)

nl

=
∑

l|gcd(a,h)

nl −
∑

l|gcd(b,h)

nl

= nh 6= 0.

Hence ca 6= cb and the theorem follows. �

Theorem 4.4. Let A = Fq[t]. If n ∈ Zp is not a non-negative integer, then
n! = Γ(n + 1) is transcendental over K. In particular, the values of the gamma
function at the proper fractions and at non-positive integers are transcendental.

Proof. If a power series f is algebraic, so is its derivative f ′, and hence also the
logarithmic derivative f ′/f . In other words, transcendence of the logarithmic de-
rivative implies the transcendence. This is a nice tool to turn products into sums,
sometimes simplifying the job further because now exponents matter modulo p only.
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(This nice trick due to Allouche got rid of the size restrictions on the numerator
that author had before).

Write the base q expansion n =
∑
njq

j as usual, so that n! =
∏
D
nj
j , and hence

n!′

n!
=
∑

nj
D′j
Dj

= −
∑ nj

tqj − t
.

Now if all sufficiently large digits nj are divisible by pk, then modifying the first few
digits (which does not affect transcendence) we can arrange that all are divisible by
pk and then take pk-th root (which does not affect transcendence). So without loss
of generality, we can assume that the sequence nj is not ultimately zero (modulo
p). Hence the previous theorem applies. �

Now we describe the proof of Theorem 4.1 at the beginning of the section.

Proof. By taking a common divisor and using Fermat’s little theorem, any mono-
mial of gamma values at proper fractions can be expressed as a rational function
times monomial in (qj/(1 − qd))!’s, where d is fixed and 0 ≤ j < d. It was shown
in the proof [T04, pa.107 ] of Theorem 1.4 that if the hypothesis of H1 is not met,
this monomial is non-trivial. So again taking p-powers out as necessary, as in the
proof of the previous theorem, we can assume that the exponents are not all divis-
ible by p. But the exponents matter only modulo p, when we take the logarithmic
derivative. So this logarithmic derivative is logarithmic derivative of some gamma
value also, and hence is transcendental by the previous theorem. �

Remarks 4.1. We cannot expect to have analogous result for the classical gamma
function, because its domain and range are archimedean, and continuity is quite a
strong condition in the classical case. In other words, a non-constant continuous
real valued function on an interval cannot fail to take on algebraic values.

Morita’s p-adic gamma function has domain and range Zp, which being non-
archimedean is closer to our situation. Let us now look at interpolation of Π(n) at
a finite prime v of A = Fq[t]:

We have proved, as a corollary to analog of Gross-Koblitz theorem that if d
is the degree of v, then Πv(q

j/(1 − qd)) (0 ≤ j < d) is algebraic. The straight
manipulation with digits then shows that Πv(n) is algebraic, if the digits nj are
ultimately periodic of period d. The converse, in a case n is a fraction, is a question
raised earlier whether (H2) is best possible. In analogy with the Theorem above,
Yao has conjectured the converse for n ∈ Zp.

Things become quite simple [T98] when v is of degree one, so that without loss
of generality we can assume that v = t. Yao used [MFY97] result to simplify and
generalize again.

Theorem 4.5. Let A = Fq[t]. If v is a prime of degree 1, then Πv(n) is transcen-
dental if and only if the digits nj of n are not ultimately constant.

Proof. Using the automorphism t→ t+ θ for θ ∈ Fq of A, we can assume without
loss of generality that v = t. Then Πv(n) =

∏
(−Dj,v)

nj , for n =
∑
njq

j . Since
q = 0 in characteristic p, when we take logarithmic derivative, it greatly simplifies
to give

t
Πv(n)′

Πv(n)
=
∑

nj(
tq
j

1− tqj−1
− tq

j−1

1− tqj−1−1
) =

∑ nj − nj+1

(1/t)qj − (1/t)
.
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This power series in Fq((t)) is transcendental over Fq(t) = Fq(1/t) by previous
theorem, by just replacing t by 1/t, because the hypothesis implies that nj − nj+1

is not ultimately zero. Then the theorem follows as before. �

Remarks 4.2. What should be the implications for the Morita’s p-adic gamma
function? The close connection to cyclotomy leads us to think that the situation
for values at proper fractions should be parallel. But then this implies that the
algebraic values in the image not taken at fraction should be taken at irrational p-
adic integers. Thus we do not expect a Mendès France-Yao type result for Morita’s
p-adic gamma function, but it may be possible to have such a result for Πv’s, for
any v. This breakdown of analogies seems to be due to an important difference:
in the function field situation, the range is a ‘huge’ finite characteristic field of
Laurent series over a finite field, and the resulting big difference in the function
theory prevents analogies being as strong for non-fractions.

We will see in section 6 that by powerful techniques of [ABP04, P08] there is now
much stronger and complete independence result [CPTY] for values at fractions for
arithmetic gamma, whereas the non-fraction result (Theorem 4.4) or v-adic result
(Theorem 4.5) above is still not provable by other methods.

4.2. General A. What happens for general A? In short, it seems that several
analogies that coincide for A = Fq[t] now diverge, but still generalize to different
concepts with some theorems generalizing well. So we can think that this divergence
helps us to focus on core relations in the concepts by throwing out accidents.

In 4.3-4.9 we discuss a new gamma and return in 4.10 to gammas of section 1, for
general A. We start with the summary in 4.3, followed by some details in 4.4-4.9.

4.3. Another gamma function coming from the exponential analogy: Sum-

mary. Consider the exponential eρ(z) =
∑
zq
i

/di for sign-normalized rank one
Drinfeld A-module ρ. Now di ∈ K∞ lie in the Hilbert class field H for A. It turns
out that still we can define a factorial by digit expansion and interpolate its unit
parts to get gamma functions at ∞ and v, by generalizing our earlier approach
for the arithmetic gamma in one particular way. The fundamental two variable
function t − θ specializing to [n]’s on the graphs of Frobenius power, in the Fq[t]
case, now generalizes to Shtuka function corresponding to ρ, by Drinfeld-Krichever
correspondence. Our proof of Gross-Koblitz formula generalizes very nicely con-
necting the values of v-adic interpolation at appropriate fractions to gauss sums
that the author had defined, even though these gauss sums in general no longer
have Stickelberger factorization, but have quite strange factorizations, which now
get explained by the geometry of theta divisor! This fundamental correspondence
with shtuka and these v-adic results suggest that there should be very interesting
special value theory at the infinite place too.

To me, the most interesting mystery in the gamma function theory is that we
do not even understand the nature of the basic value Γ(0) for this gamma at the
infinite place. Is it related to the period? The question is tied to the switching
symmetry (or quantifying the lack of it) of two variables of the shtuka function.

4.4. Some details: Drinfeld correspondence in the simplest case. We de-
scribe the Drinfeld’s geometric approach for the simplest case when the rank and
the dimension is one, namely for Drinfeld modules of rank one.
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Let F be an algebraically closed field containing Fq and of infinite transcendence

degree. Let X denote the fiber product of X with Spec(F ) over Fq. We identify

closed points of X with F -valued points of X in the obvious way. For ξ ∈ X(F ), let
ξ(i) denote the point obtained by raising the coordinates of ξ to the qi-th power. We
extend the notation to the divisors on X in the obvious fashion. For a meromorphic
function f on X, let f |ξ denote the value (possibly infinite) of f at ξ and let

f (i) denote the pull-back of f under the map idX × Spec(τ i) : X → X, where
τ := x → xq : F → F . (Note that our earlier mention of two copies of the curve
is taken care of X, as F can contain even several copies of (extensions of) function
field of X). For a meromorphic differential ω = fdg, let ω(i) := f (i)d(g(i)).

Fix a local parameter t−1 ∈ OX,∞ at ∞. For a nonzero x ∈ OX,∞, define

deg(x) ∈ Z and sgn(x) ∈ F to be the exponent in the highest power of t and the
coefficient of the highest power respectively, in the expansion of x as Laurent series
in t−1, with coefficients in F .

Drinfeld proved, by nice argument analyzing cohomology jumps provided by
Frobenius twists and multiplications by f ’s of sections and using Riemann-Roch
that

Theorem 4.6. Let ξ ∈ X(F ), a divisor V of X of degree g and a meromorphic
function f on X be given such that

V (1) − V + (ξ)− (∞) = (f).

If ξ 6=∞, then

Hi(X,OX(V − (∞))) = 0 (i = 0, 1).

In particular, ξ does not belong to support of V .

We review the language of Drinfeld modules again in this notation.
Let ι : A → F be an embedding of A in F . By a Drinfeld A-module ρ relative

to ι, we will mean such a ρ normalized with respect to sgn, of rank one and generic
characteristic, but we will drop these words. Let H be the Hilbert class field. Write

its exponential as e(z) =
∑
eiz

qi .
Fix a transcendental point ξ ∈ X(F ). Then evaluation at ξ induces an em-

bedding of A into F . In our earlier notation, ξ = ι. By solving the corresponding
equation on the Jacobian of X, we see that for some divisor V , V (1)−V +(ξ)−(∞)
is principal. A Drinfeld divisor V relative to ξ is defined to be an effective divisor
of degree g such that V (1) − V + (ξ) − (∞) is principal. From the theorem and
Riemann-Roch, it follows that Drinfeld divisor is the unique effective divisor in its
divisor class. (In particular, there are h such divisors.) Hence there exists a unique
function f = f(V ) with sgn(f) = 1 and such that (f) = V (1) − V + (ξ)− (∞). By
abuse of terminology, we call f a Shtuka. (In fact, in our context, Shtuka is a line
bundle L on X with L(1) being isomorphic to L(−ξ +∞) and in our case, with
L = OX(V ), f realizes this isomorphism.)

Drinfeld bijection: The set of Drinfeld divisors V (relative to ξ) is in natural bi-
jection with the set of Drinfeld A-modules ρ (relative to ξ) as follows. (See [Mum78]
for details of the proof.) Let f = f(V ) be as in above. Then

1, f (0), f (0)f (1), f (0)f (1)f (2), · · ·
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is an F -basis of the space of sections of OX(V ) over X−(∞×Fq F ). Define ρa,j ∈ F
by the rule

a :=
∑
j

ρa,jf
(0) · · · f (j−1).

Then the ρ corresponding to V is given by ρa :=
∑
ρa,jτ

j .

Theorem 4.7. We have

e(z) =

∞∑
n=0

zq
n

(f (0) · · · f (n−1))|ξ(n)

.

Proof. To see that the right hand side satisfies the correct functional equations for
e(z), divide both sides of the equation above defining ρa,j by f (0) · · · f (n−1) and

evaluate at ξ(n). �

Given ρ, we can recover f and V from exponential.

Theorem 4.8. We have

l(z) =

∞∑
n=0

(Resξ
ω(n+1)

f (0) · · · f (n)
)zq

n

.

Examples 4.1. For Carlitz module for Fq[t], the genus is zero and thus the Drinfeld
divisor is empty, so that f = t−t|ξ and ω = dt. The reader should verify the formula
for coefficients of the exponential and the logarithm.

We give one more example in 4.7. For more examples, see [T04, 8.2].

4.5. Some details: Definition of new gamma. We can write eρ(z) =
∑
zq
i

/di.

Definition 4.1. For n ∈ N, we define the factorial Π(n) of n as follows: Write
n =

∑
niq

i, 0 ≤ ni < q and put Π(n) :=
∏
dnii .

Let ℘ be a prime of A of degree d and let θ be an Fq- point of X above ℘. If
w ∈ K℘ is a local parameter at θ, we put

d̃i := d̃i,w :=
di

di−dwli

where li is chosen so that d̃i is a unit at θ.

We can show that as i tends to infinity, di (unit part with respect to chosen
uniformizer at infinity) tends to one, ∞-adically and the degree of di tends to zero,
p -adically. So we can interpolate the one-unit part and also put the degree back to
get the gamma interpolation at ∞ exactly as in the first lecture. We just note here
that when d∞ > 1, there are several sign issues to be taken care of, the coefficients
now are in field bigger than the Hilbert class field etc.

It can be shown that if u is any local parameter at θ, there is a nonzero c ∈ Fqd

such that with w = cu, d̃i tends to one θ-adically as i tends to infinity.
Let w be a local parameter at θ such that d̃i is a one unit for large i, then this

implies that d̃i tends to one.

Definition 4.2. Define ℘-adic factorial Π℘(z) := Πw(z) for z ∈ Zp as follows.

Write z =
∑
ziq

i, 0 ≤ zi < q and put Π℘(z) :=
∏
d̃zii .

When hA = 1, if we choose w to be a monic prime ℘ of A of degree d, then
−d̃i → 1 as i tends to infinity.
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4.6. Some details: Gauss sums. First we recall definition of Gauss and Jacobi
sums. Let ℘ be a prime of A of degree d. Choose an A-module isomorphism
ψ : A/℘ → Λ℘ (an analog of additive character) and let χj (j mod d) be Fq-
homomorphisms A/℘ → F , indexed so that χqj = χj+1 (special multiplicative

characters which are qj-powers of ‘Teichmüller character’). We can identify χj(z)
with a|θ(j) , for some geometric point θ above ℘, if a ∈ A is such that a mod ℘ is z.
Then we define basic Gauss sums

gj := g(χj) := −
∑

z∈(A/℘)∗

χj(z
−1)ψ(z).

The gj are nonzero. We define Jacobi sums Jj by Jj := gqj−1/gj . Then Jj is
independent of the choice of ψ. We put J := J0.

For the Carlitz module, it was shown that Jj = −(t − χj(t)) and Stickelberger
factorization of gj (mentioned in proof of theorem 10) was easily obtained from

this. Note for example that gq
d−1
j = JjJ

q
j−1 · · · J

qd−1

j−d+1.

We now describe Anderson’s explicit Gauss-Jacobi sums [ATp, A92] in geometric
case, and the corresponding Stickelberger theorem already mentioned in 3.4. (The
Stickelberger theorem in this context was first proved by Hayes [H85], but with a
different construction). We use the notation of 4.6. Let f ∈ A+ be of positive
degree, x ∈ K be of form x = a/f , with a ∈ A, (a, f) = 1, and let ℘ be a prime of
A[e(1/f)] not dividing f . Let χj be the qj-th power of the Teichmuller character
at ℘ as above. Let ai, bi be f -dual family as in 4.6. We consider Gauss and Jacobi
sums

gj(℘, x) := 1−
deg f∑
i=1

χj(e∗(ai/f))e(bix)) ∈ FqA[ζf ], g(℘, x) :=
∏
j

gj(℘, x) ∈ A[ζf ].

For a fractional ideal I of A[e(1/f)] supported away from f , we define g(I, x)
multiplicatively from the above sums for primes. Let Gf = Gal(K(e(1/f))/K) and
σf,a ∈ Gf be the element corresponding to a under the usual identification. Then
we have Stickelberger type result [ATp]

(g(I, x)) = I
∑
σf,ab−1 ,

where the sum is over b ∈ A+ prime to f and of degree less than deg f

4.7. Some details: Shtuka connection and Analog of Gross-Koblitz. Now
we show that the Jacobi sums made up from ℘ torsion of a Drinfeld module can
be interpreted as specializations at geometric points above ℘ of a meromorphic
function, obtained from the Shtuka corresponding to the Drinfeld module, on curve
cross its Hilbert cover. Hence the strange factorizations of the Gauss sums get
related to the divisor of this function and since the divisor is encoding cohomology
jumps, to theta divisor.

Theorem 4.9. Let V and f be the Drinfeld divisor and the Shtuka respectively,
corresponding to a sgn-normalized Drinfeld module ρ (of rank one and generic char-
acteristic) via the Drinfeld bijection. Then with the Jacobi sums Jj defined using
℘-torsion of ρ and normalized as above, we have

f |θ(j) = Jj .
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We put x := x|ξ and y := y|ξ. While giving the divisor of J , by abuse of notation,
instead of the quantities corresponding to θ, we use those corresponding ξ.

(i) A = F2[x, y]/y2 + y = x3 + x+ 1: We have

f =
x(x+ x) + y + y

x+ x+ 1
.

If ξ + 1 is the point where x is x + 1 and y is x + y + 1, then V = (ξ + 1). (Note
that this point corresponds to the automorphism σ above.) By the recipe above it
follows that

(J) = 2(ξ + 1)(−1) − (ξ + 1) + (ξ)− 2(∞)

where ξ + 1 is the point where x is x+ 1 and y is x+ y.
We showed how in g = d∞ = 1 case to write down f ‘parametrically’ in terms

of the coefficients of sgn-normalized ρ.
Let F be an algebraic closure of K℘, ξ be the tautological point, i.e., the F -valued

point of X corresponding to K ↪→ K℘ and let θ be the Teichmüller representative
in the residue disc of ξ. Note that even though we used the ∞-adic completion
earlier, the Taylor coefficients of e(z), being in H, can be thought of as elements of
F .

Theorem 4.10. Let 0 ≤ j < d. If µ is the valuation of gj at ξ, then we have
gj = ζwµ/Π℘(qj/(1− qd)), where ζ is a qd − 1-th root of unity.

4.8. Some details: Value for ∞-adic gamma. Let us use the short-form fij :=

f (i)|ξ(j) . In the Carlitz case of genus 0, we have switching-symmetry fij = −fji.
In general, up to simple algebraic factors arising from residue calculations, π̃−1 is∏∞
i=1 fi0 and Π∞(−1)−1 is

∏∞
j=1 f0j , as can be seen from formulas giving di and

li in terms of specializations of f . So the switching-symmetry mentioned above
connects the two in the Carlitz case.

4.9. Some details: Non-vanishing of exponential coefficients. We proved

(for d∞ = 1) that the coefficients of zq
i

in the expansion of e(z) are non-zero, so
that we can consider di as the reciprocal coefficient. In general, this non-vanishing
is equivalent to the nice geometric condition that ξ(i) does not belong to the support
of the Drinfeld divisor, and is known for many situations [T04, 8.3.1] but not in full
generality, when d∞ > 1.

4.10. General A: arithmetic and geometric gamma. The gamma functions
we defined earlier for general A are expected to have good properties, and we have
established some of them, such as period connections for simple values. But we
saw very strong complete results only for A = Fq[t] case. In general, the hypotheses
(Hi) have not been scrutinized much in general. For simple examples of higher
genus solitons, in arithmetic as well as geometric case, see [T04, Sec. 8.7]. But
to get general results, one needs to expand both the technology of A-modules and
solitons for general A. The crucial step of providing solitons for general A, at least
conjecturally with a lot of evidence, has been taken by Greg Anderson in another
spectacular paper [A06] ‘A two variable refinement of the Stark conjecture in the
function field case’, building on his earlier work [A94, A96]. It uses the adelic
framework of Tate’s thesis.

I hope that somebody (hopefully from this audience!) takes up this issue and
settles the general case soon!
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5. Zeta values: Definitions, first properties and relations with
cyclotomy

The Riemann zeta function, the Dedekind zeta function in the number field
case, and Artin’s analog in the function field case, can all be defined as ζ(s) =∑

Norm(I)−s ∈ C, where the sum is over non-zero ideals and s ∈ C, with Re(s) > 1.
Artin’s zetas satisfy many analogies. But they are simple rational functions of
T := q−s-variable. For example, ζ(s) = 1/(1− qT ), for A = Fq[t], as you can see by
counting and summing the resulting geometric series. So the special values theory
in this case is completely trivial.

The norm depends only on the degree and we thus ignore all the information
except the degree. We can take the actual ideal or polynomial or a relative norm to
the base instead: Carlitz used another function field analogy and considered special
zeta values ζ(s) :=

∑
n−s, where now n runs through monic polynomials in Fq[t],

i.e., monic generators of non-zero ideals. (With this basic idea, we can then con-
sider various zeta and L-values, for example, those attached to finite characteristic
valued representations by using product of characteristic polynomials of ‘Frobenius
at ℘ multiplied by ℘−s’. We refer to [G96] and references therein for various such
definitions.)

Now polynomials can be raised to integral powers, and in particular, if s is a
natural number, then the sum converges (as the terms tend to zero) to a Laurent
series in K∞.

Goss showed that if s is non-positive integer, then just grouping the terms for
the same degree together, the sum reduces to a finite sum giving ζ(s) ∈ A.

Examples 5.1. For A = F3[t], we have ζ(0) = 1 + 3 + 32 + · · · = 1 + 0 + 0 + · · · = 1
and ζ(−3n) = ζ(−1)3n = 1 because

ζ(−1) = 1 + (t+ (t+ 1) + (t− 1)) + · · · = 1 + 0 + · · · = 1.

For A = F2[t] on the other hand, ζ(−2n) = 0 because ζ(−1) = 1+(t+(t+1))+0+
· · · = 1 + 1 = 0. We leave it to the reader to verify ζ(−5) = 1 + t− t3 for A = F3[t]
using either the bound in the lemma below or the formula below. Note that these
examples fit with the naive analogy with Riemann zeta, which vanishes at negative
integers exactly when they are even, as 1 is ‘even’ exactly when q = 2.

In fact, the weaker version consisting of the first 3 lines of the proof of the
following Theorem, which is essentially due to Lee, implies that grouped terms
vanish for large degree. (See [T90, T95] for the relevant history and [She98, T09a]
for more recent results. )

For a non-negative integer k =
∑
kiq

i, with 0 ≤ ki < q, we let `(k) :=
∑
ki, i.e.,

`(k) is the sum of base q digits of k. Here is very useful general vanishing theorem.

Theorem 5.1. Let W be a Fq-vector space of dimension d inside a field (or ring)
F over Fq. Let f ∈ F . If d > `(k)/(q − 1), then

∑
w∈W (f + w)k = 0.

Proof. Let w1, · · · , wd be a Fq-basis of W . Then (f+w)k = (f+θ1w1+· · ·+θdwd)k,
θi ∈ Fq. When you multiply out the k brackets, terms involve at most k of θi’s,
hence if d > k, the sum in the theorem is zero, since we are summing over some θi,
a term not involving it, and q = 0 in characteristic p. The next observation is that

in characteristic p, (a + b)k =
∏

(aq
i

+ bq
i

)ki , hence the sum is zero, if d > `(k),
by the argument above. Finally, note that

∑
θ∈Fq θ

j = 0 unless q − 1 divides j.
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Expanding the sum above by the multinomial theorem, we are summing multiples
of products θj11 · · · θ

jd
d and hence the sum is zero; because the sum of the exponents

being `(k) < (q − 1)d, all the exponents can not be multiples of q − 1. �

For the applications, note that A<i = {a ∈ A : deg(a) < i} form such Fq
vector spaces whose dimensions are given by the Riemann-Roch theorem. Similarly,
Ai+ = {a ∈ A : deg(a) = i, a monic} are made up of affine spaces as in the theorem.

Remarks 5.1. Following Goss, we can interpolate the zeta values above to ζ(s)
with s = (x, y) in the much bigger space C∗∞×Zp, by defining as := xdeg a〈a〉y, with
〈a〉 denoting the unit part of a, which can be raised to p-adic y-th power, just as
in the gamma case. These p-adic power homomorphisms are the only [J09] locally
analytic endomorphisms of one-unit groups. At least for an integral y, the usual
integral power ay is recovered as a(ty,y). In general, ζ(s) is a power series in the
x-variable, which keeps track of the degrees. See for more on these analytic issues
[G96] or Böeckle’s lecture series notes.

Focusing on just the special values at integers, we use the theorem above and can
ignore the convergence questions. Thus we work in the following simpler set-up.

Let L be a finite separable extension of K and let OL = O denote the integral
closure of A in L. Now we define the relevant zeta functions.

Definition 5.1. For s ∈ Z, define the ‘absolute zeta function’:

ζ(s,X) := ζA(s,X) :=

∞∑
i=0

Xi
∑
a∈Ai+

1

as
∈ K[[X]]

ζ(s) := ζA(s) := ζ(s, 1) ∈ K∞.

By theorem above ζ(s) ∈ A for integer s ≤ 0. The results on the special values
and the connection with Drinfeld modules later on, justifies the use of elements
rather than ideals even when the class number is more than one. Also, we can look
at a variant where a runs through elements of some ideal of A or we can sum over
all ideals by letting s to be a multiple of class number and letting as to be the
generator of Is with say monic generator. In the latter case, we have Euler product
for such s.

If L contains H (note that this is no restriction if hd∞ = 1, eg., for A = Fq[t]),
then it is known that the norm of an ideal I of O is principal. Let NormI denote
the monic generator. Let us now define the relative zeta functions in this situation.

Definition 5.2. For s ∈ Z, define the ‘relative zeta function’:

ζO(s,X) := ζO/A(s,X) :=

∞∑
i=0

Xi
∑

deg(Norm I)=i

1

Norm Is
∈ K[[X]]

ζO(s) := ζO/A(s) := ζO(s, 1) ∈ K∞.

Finally, we define the vector valued zeta function, which generalizes both defini-
tions above and works without assuming that L contains H. We leave the simple
task of relating these definitions to the reader.
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Definition 5.3. Let Cn (1 ≤ n ≤ hd∞) be the ideal classes of A and choose an ideal
In in C−1

n . For s ∈ Z, define the vector ZO(s,X) by defining its n-th component
ZO(s,X)n via

ZO(s,X)n := ZO/A(s,X)n :=

∞∑
i=0

Xi
∑ 1

(InNorm I)s
∈ K[[X]]

where InNorm I stands for the monic generator of this ideal and the second sum
is over I whose norm is in Cn and is of degree i.

ZO(s)n := ZO/A(s)n := ZO(s, 1)n ∈ K∞.

Also note that Z depends very simply on the choice of In’s, with components
of Z, for different choices of In’s, being non-zero rational multiples of each other.
In particular, the questions we are interested in such as, when it (i.e., all the
components) vanishes, when it is rational or algebraic etc. are independent of such
choice.

We use X as a deformation parameter for otherwise discretely defined zeta values
and hence we define the order of vanishing ords of ζ, ζO or ZO at s to be the
corresponding order of vanishing of ζ(s,X), ζO(s,X) or ZO(s,X) at X = 1. This
procedure is justified by the results described below. The order of vanishing is the
same for s and ps, as the characteristic is p.

Using these basic ideas, we can immediately define L-functions in various settings
and can study their values and analytic properties [G96], but we focus here on the
simplest case.

5.1. Values at positive integers. In contrast to the classical case where we have
a pole at s = 1, here ζ(1), which can now be considered as an analog of Euler’s
constant γ, makes sense.

Euler’s famous evaluation, ζ(m) = −Bm(2πi)m/2(m!) for even m, has following
analog:

Theorem 5.2. (Carlitz [Car35]): Let A = Fq[t]. Then for ‘even’ m (i.e., a multiple
of q − 1), ζ(m) = −Bmπ̃m/(q − 1)Π(m).

Proof. First note that q − 1 = −1 in the formula. Multiplying the logarithmic
derivative of the product formula for e(z) by z, we get

z

e(z)
= 1−

∑
λ∈Λ−{0}

z/λ

1− z/λ
= 1−

∞∑
n=1

∑
λ

(
z

λ
)n = 1 +

∑
n ‘even′

ζ(n)

π̃n
zn

since
∑
c∈F×q cn = −1 or 0 according as n is ‘even’ or not. But z/e(z) =

∑
Bnz

n/Π(n).

�

For general A and corresponding sign-normalized ρ, noting that now the coeffi-
cients of the exponential are in H, we get, similarly

Theorem 5.3. Let s be a positive ‘even’ (i.e., a multiple of q − 1) integer, then
ζ
A

(s)/π̃s ∈ H.

Examples 5.2. By comparing the coefficients of zq−1 in the equation above, we
get ζ(q − 1)/π̃q−1 = −1/d1 ∈ H.

Now we turn to the relative zeta functions.
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Theorem 5.4. Let L be an abelian totally real (i.e., split completely at ∞) exten-
sion of degree d of K containing H and let s be a positive ‘even’ (i.e., a multiple of
q − 1) integer. Then Rs := ζO(s)/π̃ds is algebraic, and in fact, R2

s ∈ H.

The idea of the proof is to factor such zeta value as product of L-values which
are linear combinations of partial zeta values, which are handled as in the absolute
case above, and use Dedekind determinant formula to get better control of the fields
involved. There is more refined version when d∞ > 1. We refer to [T04, 5.2.8].

Remarks 5.2. (1) We can not [T95] replace H in the theorem, even when d∞ = 1,
by K, in general. Classically, for arbitrary (not necessarily abelian over Q) totally
real number field F , it is known that (ζF (s)/(2πi)r1s)2 ∈ Q. This uses Eisenstein
series.

(2) For the history and references on this general as well as the abelian case
using L-functions, as we have done here, see references in [T95] and see [G92] for
ideas about carrying over the proof in the general case. On the other hand, such an
algebraicity result for the ratio of the relative zeta value with an appropriate power
of the period 2πi is not expected for number fields which are not totally real. But
in our case, we can have such a result even if L is not totally real, as was noted
in [G87]: Let L be a Galois extension of degree pk of K, then since all the characters

of the Galois group are trivial, the L-series factorization shows that ζO(s) = ζ(s)p
k

and the result follows then from the theorem above on the absolute case. More
elementary way to see this, when the degree is p and O is of class number one is to
note that for α ∈ O − A, there are p conjugates with the same norms which then
add up to zero, whereas for α ∈ A, the norm is αp.

5.2. Values at non-positive integers. We have seen how just grouping together
the terms of the same degree gives ζ(−k) =

∑∞
i=0(

∑
n∈Ai+ n

k) ∈ A, for k > 0.
Hence we have stronger integrality rather than rationality in the number field case,
reflecting absence of pole at s = 1 in our case.

We also have the following vanishing result, giving the ‘trivial zeros’:

Theorem 5.5. For a negative integer s, ζ((q − 1)s) = 0.

Proof. If k = −(q − 1)s, then

ζ(−k) =

∞∑
i=0

∑
a∈Ai+

ak = −
∞∑
i=0

∑
a∈Ai

ak = 0

where the second equality holds since
∑
θ∈Fq θ

q−1 = −1 and the third equality is

seen by using that the sum is finite and applying Theorem above with W = A<m
and f = 0, for some large m. �

For A = Fq[t], another proof giving a formula as well as non-vanishing result
parallel to the case of the Riemann zeta function can be given: For k ∈ Z+,
ζ(−k) = 0 if and only if k ≡ 0 mod (q − 1). Also ζ(0) = 1.

The proof [G79, T90] follows by writing a monic polynomial n of degree i as
th+ b with h of degree i− 1 and b ∈ Fq and using the binomial theorem to get the
induction formula

ζ(0) = 1, ζ(−k) = 1−
k−1∑

f=0,(q−1)|(k−f)

(
k

f

)
tf ζ(−f),
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which shows ζ(−k) ∈ A since ζ(0) = 1. If (q − 1) divides k, then induction shows
ζ(−k) = 1 − 1 + 0 = 0. If (q − 1) does not divide k, then there being no term in
the summation corresponding to f = 0, ζ(−k) = 1− tp(t) 6= 0 where p(t) ∈ A.

We do not know for general A whether the values at odd integers are non-zero.
But we have

Theorem 5.6. Let s be a negative odd integer. Then ζ(s) is non-zero if A has a
degree one rational prime ℘ (e.g. if g = 0 (this reproves Fq[t] case) or if q is large
compared to the genus of K) or if h = 1. (Together they take care of the genus 1
case.) In fact, in the first case, ζ(s) is congruent to 1 mod ℘.

Proof. The first part follows by looking at the zeta sum modulo ℘ and noticing that∑
θ∈Fq θ

−s = 0, hence the only contribution is 1 from the i = 0 term. Apart from

g = 0, there are only 4 other A’s with hd∞ = 1 (these have no degree 1 primes),
which we check by calculation omitted here. �

Remarks 5.3. This can be easily improved, but the full non-vanishing is not
known. Note that for number fields case, the Dedekind zeta functions have Euler
product thus showing non-vanishing in the right half-plane, and the functional
equation (missing here!) concluding the non-vanishing at negative odd integers by
analyzing the relevant gamma factors.

Let us now turn to the relative zeta functions.

Theorem 5.7. (Goss [G92]) For a negative integer s, ζO(s) ∈ A. In fact, ZO(s)n ∈
A for every n. For a negative integer s, ζO((q−1)s) = 0. In fact, ZO((q−1)s)n = 0
for every n.

The idea is to decompose the sum carefully in Fq-vector spaces and use Theorem
above to show that for large k, the k-th term of the zeta sum is zero. The second
part follows as before.

Remarks 5.4. The values of the Dedekind zeta function at negative integers are
all zero, if the number field is not totally real. By the remarks above, similar result
does not hold in our case. In fact, we do not even need degree to be a power of the
characteristic, as will be seen from examples below. The ramification possibilities
for the infinite places are much more varied in the function field case.

For A = Fq[t], Goss defined modification β(k) ∈ A of ζ(−k), for k ∈ Z≥0, as
follows:

β(k) := ζ(−k) if k is odd, β(k) :=

∞∑
i=0

(−i)
∑

n∈Ai+
nk if k is even.

In other words, the deformation ζ(−k,X) of Z(−k, 1) = ζ(−k) has a simple zero

at X = 1 if k is even and hence one considers dζ
dx (−k,X)

∣∣
X=1

= β(k) instead. For

k ∈ Z+, β(k) 6= 0 and in fact

β(0) = 0, β(k) = 1 −
k−1∑

f=0,(q−1)|(k−f)

(
k

f

)
tf β(f).

For general A, Goss similarly defines β(k) by removing the ‘trivial zero’ at k, of
order dk say (see the next section for the discussion of this order ) by β(k) := (1−
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X)−dkζA(−k,X)|X=1. One gets Kummer congruences and ℘-adic interpolations
for β(k)’s, as for zeta values.

Since ζ(−k) turns out to be a finite sum of nk’s, by Fermat’s little theorem
we see that ζ(−k)’s satisfy Kummer congruences enabling us to define a ℘-adic
interpolation ζ℘ from s ∈ Zp, by removing the Euler factor at ℘. For interpolations
at ℘ and ∞ on much bigger places, analytic properties etc, we refer to [G96].

Instead of the kummer congruences, the Bm’s satisfy analogs of the von-Staudt
congruences and the Sylvester-Lipschitz theorem. We have now two distinct analogs
of Bk/k: −ζ(−k + 1) for k − 1 ‘odd’ on one hand and Π(k − 1)ζ(k)/π̃k, with k
‘even’ on the other. But the shift by one does not transform ‘odd’ to ‘even’ unless
q = 3, and we do not know any reasonable functional equation linking the two.

5.3. First relations with cyclotomic theory: At positive integers. Next we
give the connection of these Bernoulli numbers with the class groups of cyclotomic
fields, giving some analogs of Herbrand-Ribet theorems. We restrict to A = Fq[t].

Let ℘ be a monic prime of A of degree d. Recall analogies

Λ℘ = e(π̃/℘)↔ ζp = e2πi/p, K(Λ℘)↔ Q(ζp).

One also has ‘maximal totally real’ subfield

K(Λ℘)+ = K

( ∏
θ∈ F∗q

e

(
θπ̃

℘

))
↔ Q(ζp)

+ = Q
( ∑
θ∈Z∗

eθ2πi/p
)
.

The classical cyclotomic Galois group (Z/pZ)∗ now gets replaced by (A/℘A)∗

and the Frobenius action is similar from this identification, so that it is straight-
forward to write down the splitting laws for primes. Note that we now have two
kinds of class groups, one traditionally done in algebraic geometry, that is class
group (divisors of degree zero modulo principal) for the complete curve, and the
other the class group for the integral closure of A in these cyclotomic fields (which
typically has many points at infinity). Hence we make the following definition.

Definition 5.4. Let C (C+, C̃, C̃+ resp.) denote the p-primary component of the
class group of complete curve for K(Λ℘) (K(Λ℘)+, ring of integers of K(Λ℘), of
K(Λ℘)+ respectively).

Let W be the ring of Witt vectors of A/℘. Then we’ve decomposition into
isotypical components C ⊗Zp W = ⊕0≤k<qd−1C(wk) according to characters of

(A/℘)∗, where w is the Teichmüller character. (Similarly for C+, C̃, C̃+.)

Theorem 5.8. (Okada, Goss [Oka91, G96]): Let A = Fq[T ]. Then for 0 < k <

qd − 1, k ‘even’, if C̃(wk) 6= 0, then ℘ divides Bk.

Proof. (Sketch) We define analogs of Kummer homomorphisms ψi : O∗F → A/℘ (0 <
i < qd−1) (note that p-th powers map to zero) by ψi(u) = ui−1, where ui is defined
as follows. Let u(t) ∈ A[[t]] be such that u = u(λ) and define ui to be Π(i) times
the coefficient of zi in the logarithmic derivative of u(e(z)). Using the definition of
the Bernoulli numbers, we calculate that the i-th Kummer homomorphism takes
the basic cyclotomic unit λσa−1 to (ai − 1)Bi/Π(i). If C̃(wk) 6= 0, then by (the
component-wise version due to Goss-Sinnott) of Galovich-Rosen theorem (analog
of Kummer’s theorem) that class number of ring of integers of K(Λ+

℘ ) is the index

of cyclotomic units in full units of that field, we have ψk(λ
∑
w−k(σ)σ−1

) = 0. Hence
the calculation above implies that ℘ divides Bk. �
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The converse is false and Gekeler has suggested the following modification (see
also [Ang01]) using the Frobenius action restriction:

Conjecture (Gekeler [Gek90]) If ℘|Bk′ for all k′ such that k′ ≡ pmk(qd − 1)

with 0 < k, k′ < qd − 1, k ≡ 0(q − 1) then C̃(wk) 6= 0.

5.4. First relations with cyclotomic theory: At non-positive integers. For
the zeta values at non-positive integers, we have the following story.

Theorem 5.9. (Goss- Sinnott [GS85]): For 0 < k < qd − 1, C(w−k) 6= 0 if and
only if p divides L(wk, 1).

Proof. (Sketch) The duality between the Jacobian and the p-adic Tate module
Tp transforms the connection between the Jacobian and the class group in the
Tate’s proof of Stickelberger Theorem [T04, Cha.1] to Tp(w

−k)/(1− F )Tp(w
−k) ∼=

C(w−k). On the other hand, we have a Weil type result: det(1 − F : Tp(w
−k)) =

Lu(wk, 1). Here Lu is the unit root part of the L-function and hence has the same
p-power divisibility as the complete L-function. Hence ordp(L(wk, 1)) is the length
of C(w−k) as a Zp[G]-module. �

For a proof without going through the complex L-function, we refer to the lecture
notes of Böckle.

The interpretation above of the L-function as the characteristic polynomial in
the above is precisely the result on which Iwasawa’s main conjecture is based.
Since this is already known, the Gras conjecture giving the component-wise results
above, which follows classically from the main conjecture, is known here. This was
recognized in [GS85].

Comparison with the corresponding classical result shows that we are looking
at divisibility by p, the characteristic, rather than the prime ℘ relevant to the
cyclotomic field. To bring ℘ in, we need to look at the finite characteristic zeta
function.

Theorem 5.10. (Goss-Sinnott [GS85]) C(w−k) 6= 0 if and only if ℘|β(k), 0 < k <
qd − 1.

Proof. The identification W/pW ∼= A/℘ provides us with the Teichmüller character
w : (A/℘)∗ → W ∗ satisfying wk(n mod ℘) = (nk mod ℘) mod p. Hence the
reduction of L value (since it also has ‘trivial zero’ factors missing) in the Theorem
above modulo p is β(k) mod ℘. �

Remarks 5.5. (1) Recall that for A = Fq[t] and ‘odd’ k, β(k) = ζ(−k), so the
result is in analogy with Herbrand-Ribet theorem, but for ‘even k’ we get a new phe-
nomenon. This is connected with the failure of Spiegelgungsatz for Carlitz-Drinfeld
cyclotomic theory. Classically the leading terms at even k are conjectured to be
transcendental, here they are rational, even integral. For values at positive integers
on the other hand, the situation seems to be as expected with naive analogies.

(2) For A = Fq[t], both analogs of Bn/n mentioned in 5.2 thus connect to arith-
metic of related class groups suggesting a stronger connection between the two
analogs than what is currently understood.
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5.5. Orders of vanishing mystery. Now we turn to the question of the order
of vanishing. Classically, the answer is simple: The Euler product representation
shows there are no zeros in the region where it is valid and hence the orders of
vanishing of the trivial zeros (namely those at the negative even integers) are easily
proved by looking at poles of the gamma function factors in the functional equation.
(For the number field situation in general, these are predicted by motives and these
orders of vanishing are connected to K-theory and extensions of motives, so many
structural issues and clues are at stake in this simple question.) We do not have
functional equations. As described below, Goss gave a lower bound for orders of
vanishing, when L contains H and mentioned as an open question whether they are
exact. The lower bounds match the naive analogies. But we will see that they are
not exact orders and indeed that the patterns of extra vanishing are quite surprising
in terms of the established analogies. The full situation is still not understood, even
conjecturally.

The main idea of Goss (already mentioned in the proof of Theorem 5.10) is
to turn the similarity in the definition of our zeta function with the classical one
into a double congruence formula, using the Teichmüller character, and to use
the knowledge of the classical L-function Euler factors to understand the order of
vanishing. This is done as follows:

Let ℘ be a prime of A and let W be the Witt ring of A/℘. The identification
W/pW ∼= A/℘ provides us with the Teichmüller character w : (A/℘)∗ → W ∗

satisfying wk(a mod ℘) = (ak mod ℘) mod p.
Now let Λ℘ denote the ℘-torsion of rank one, sgn-normalized Drinfeld module ρ

of generic characteristic. Let L contain H and let G be the Galois group of L(Λ℘)
over L. Then G can be thought of as a subgroup of (A/℘)∗ and hence w can be
thought of as a W -valued character of G. Let L(w−s, u) ∈ W (u) be the classical
L-series of Artin and Weil in u := q−sm, where m is the extension degree of the
field of constants of L over Fq.

Let S∞ := {∞j} denote the set of the infinite places of L and let Gj denote the
Galois group of L∞j (Λ℘) over L∞j . Then Gj ⊂ F∗q . Given s, let Ss ⊂ S∞ be the

subset of the infinite places at which w−s is an unramified character of G. Then
Ss does not depend on ℘. Put

ζ̃O(s,X) := ζO(s,X)
∏
∞j∈Ss

(1− w−s(∞j)X
deg(∞j))−1.

Theorem 5.11. (Goss [G92]) Let L contain H and let s be a negative integer.

Then ζ̃O(s,X) ∈ A[X].

Proof. (Sketch) Tracing through the definitions, the property of w mentioned above

gives the double congruence formula L(w−s, Xm) mod p = ζ̃O(s,X) mod ℘ for
infinitely many ℘. But as the L function is known to be a polynomial, the result
follows. �

This gives the following lower bound for the order of vanishing:

Theorem 5.12. (Goss [G92]) Let L contain H and let s be a negative integer, then
the order of vanishing of ζO(s) is at least

Vs := ordX=1

∏
∞j∈Ss

(1− w−s(∞j)X
deg(∞j)).
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Remarks 5.6. Note that Vs depends on s only through its value modulo q−1 and
Vs ≤ [L : K]. This is analogous to the properties of the exact orders of vanishing
in the classical case, but not in our case as we will see.

Examples 5.3. (i) L = K = H: Then Vs = 0 or 1, according as s is ‘odd’ or
‘even’. We have seen that for A = O = Fq[t], the order of vanishing is Vs.

(ii) L is totally real extension of degree d of K containing H, i.e., ∞ splits
completely in L: Vs is 0 or d according as whether s is ‘odd’ or ‘even’. (Note that
the bounds Vs in (i) and (ii) are in analogy with the orders of vanishing in the
classical case.)

(iii) L = K(Λ℘): Vs = (qdeg(℘) − 1)/(q − 1) for all s.
(iv) L = Fqn(t) and K = Fq(t): Vs = 0 when s is ‘odd’, and for s ‘even’, Vs = pk,

if n = pkl, (l, p) = 1.
(v) L = F5(

√
−t) and K = F5(t): Vs is 1 or 0 according as whether 2 (not 4)

does or does not divide s.

Let Os denote the order of vanishing of the relevant zeta function at s. Then
simple exact calculations using the vanishing theorem bounds show that Os = Vs
for small s in the several examples, such as (i) A = F3[x, y]/y2 = x3 − x − 1, (ii)
A = F3[t] with O = F3[t, y]/y2 = t3 − t− 1, (iii) A = F3[t] with O = F9[t].

But the following simple calculation shows that the Vs 6= Os in general.

Examples 5.4. Let (a) A = F2[x, y]/y2 +y = x3 +x+1 , (b) A = F2[x, y]/y2 +y =
x5 + x3 + 1. In both these situations, hd∞ = 1 and hence K = H. For small s we
compute ζ(s,X) as follows: The genus of K is 1 and 2 for (a) and (b) respectively.
Hence by the bounds obtained from the vanishing Theorem and the Riemann-Roch
theorem shows that for (a) and (b), ζ(−1, X) = 1 + 0 ∗X + (x + (x + 1)) ∗X2 =
1 +X2 = (1 +X)2. Hence the order of vanishing is 2 for s = −2n. Similar simple
calculation shows that the order of vanishing is 1 if 2n 6= −s ≤ 9 for (a) and is 1
for s = −7 and 2 for other s with −s ≤ 9 for (b).

In fact, more generally, we have

Theorem 5.13. If d∞ = 1, q = 2 and K is hyper-elliptic, then the order of
vanishing of ζ(s) at negative integer s is 2 if l(−s) ≤ g, where g is the genus of K.

Proof. Let x ∈ A be an element of degree 2 and let n be the first odd non-gap for A
at∞. Then the genus g of K is seen to be (n−1)/2. Let S

A
(i) denote the coefficient

of Xi in ζ
A

(s,X). A simple application of our general vanishing Theorem and the
Riemann-Roch theorem shows that for i > l(−s) + g, S

A
(i) = 0. Hence

ζ
A

(s,X) =

(n−1)/2∑
i=0

S
A

(2i)X2i

since l(−s) ≤ g = (n − 1)/2. On the other hand, as x has degree 1 in Fq[x], we
have S

A
(2i) = SFq [x]

(i), for 0 ≤ i ≤ (n − 1)/2. Further, by vanishing Theorem,

SFq [x]
(i) = 0, if i > (n− 1)/2, as (n− 1)/2 ≥ l(−s). Hence, ζ

A
(s,X) = ζFq [x](s,X

2).

(This works only for the s as above, and is not an identity of zeta functions). Hence
by Example (i), the order of vanishing is 2 = 2 ∗ 1 as required. �

Remarks 5.7. (i) We do not need a restriction on the class number of K, so apart
from (a) and (b) this falls outside the scope of the theorem giving the lower bounds.
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But there are other examples of this phenomenon, with q > 2, as well as for full
ideal zeta function for higher class numbers. See [T95] and University of Arizona
thesis (1996) of Javier Diaz Vargas and [DV06].

(ii) Analogies between the number fields and the function fields are usually the
strongest for A = Fq[y]. But even in that case, there are examples of extra vanishing.
For example, when A = F4[y] and O = F4[x, y]/y2 + y = x3 + ζ3, the order of
vanishing of ζO at s = −1 is 2, as can be verified by direct computation, whereas
the lower bound is 1.

Remarks 5.8. These results, when combined with Goss-Sinnott results above, im-
ply relative class group components non-vanishing for all primes and raise important
open questions about the meaning of the real leading terms.
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6. Period interpretations and complete relations between values

For A = Fq[t], we saw in 3.1 that a binomial coefficient, also related to terms
of gamma product, was given as (i) a ratio of natural products related to A, as
we all as (ii) a coefficient coming from a series involving Drinfeld exponential and
logarithms for rank one sgn-normalized Drinfeld A-modules. If you generalize to A,
the two properties do not agree and give rise to two binomial coefficients notions,
expressed by round and curly brackets respectively. The following result shows this
coincidence of the two notions allows one to get nice generating function for the
terms of the zeta sums for ζ(−k), namely the power sums Sd(k) =

∑
ak, where the

sum is over monic elements of degree d in A.
The basic idea is that power sums are symmetric functions of a’s and can be

calculated via Newton’s formulas from the elementary symmetric functions, which
are coefficients of

∏
(x−a) related to binomial coefficients, where one uses x→ x−td

to move from Fq-vector space of all a’s of degree less than d to the affine space of
monic of degree d. We can use the reciprocal polynomial for 1/a’s.

6.1. Generating function. Here is [T04, Thm. 5.6.3] and its proof with signs
corrected.

Theorem 6.1. (Carlitz) If Bd(x) denotes the binomial coefficients { xqd } =
(
x
qd

)
for

Fq[t], then the quantity − B′d(0)
1−Bd(x) has Laurent series expansion

∑∞
n=0 Sd(n)x−n−1

at x =∞ and −
∑∞
n=0 Sd(−n− 1)xn at x = 0.

Proof. Since 1−Bd(x) has all monic polynomials of degree d as its simple zeros, by
taking the logarithmic derivative to convert products into sums, we see that

∑
a∈Ad+

1

x− a
= − B′d(0)

1− Bd(x)
.

Developing the left hand side as geometric series in two different ways, we
see that the Laurent series expansion is

∑∞
n=0(

∑
a∈Ad+ a

n)x−n−1 at x = ∞ and

−
∑∞
n=0(

∑
a∈Ad+ a

−n−1)xn at x = 0. �

We note exp1 x log1 =
∑
Bd(x)τd, and B′d(0) = 1/`d.

In particular, we see that Sd(−1) = 1/`d and so ζ(1) = log(1), implying in
particular, that ζ(1) is transcendental. When q > 2, 1 is ‘odd’ value. For the
Riemann zeta, the transcendence of only even values is known because of Euler’s
result. We will show below how the t-motives allow us to handle all values for
A = Fq[t].

Remarks 6.1. Let us give a simplification of the argument, avoiding the full evalu-
ation of binomial coefficients, to prove directly the simplest case Sd(−k) = 1/`kd, for
1 ≤ k ≤ q. Let a (b respectively) run through polynomials of degree < d (monic of
degree d respectively). Then

∏
(x− a) has x-coefficient (−1)d(D0D1 · · ·Dd−1)q−1.

Since this polynomial is Fq-linear,
∏

(x−td−a) =
∏

(x−b) has the same x-coefficient
(only constant coefficient is different), which is now the sum over b of products of
all monics except b of degree d, that is (

∏
b)(
∑

1/b) = DdSd(−1). Comparison
gives the claim for k = 1. The Fq-linearity of the polynomial makes appropriate
coefficients zero so that the Newton formula for power sums implies that the k-th
power sum is k-th power of the first, for the given range of k.
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In the other direction, relating explicitly the two different notions of binomial
coefficients mentioned above, this relation between zeta and logarithms of Drinfeld
modules was generalized [T92b] (see also [T04, 4.15, 5.9] to some higher genus A.
For example, for A = F3[x, y]/y2 = x3 − x− 1, we have ζ(1) = logρ(y − 1) for the
corresponding sgn-normalized (x and y having signs 1) Drinfeld A-module ρ. We
omit the details and move back to A = Fq[t] case and ζ(n) for any n.

6.2. n-th tensor power of the Carlitz module. By definition, the tensor prod-
uct of t-motives is the tensor product over F [t] on which τ acts diagonally. Thus
ranks multiply under tensor product and so the Carlitz-Tate motive C⊗n is of rank
one. It is uniformizable, simple, pure t-motive of dimension n and it has no complex
multiplications. Now the Carlitz module is rank one over F [t] with basis m so that
τm = (t− θ)m. Thus C⊗n is free rank one over F [t] with basis m1 = m⊗n. With
mi := (t − θ)i−1m1 as its f [τ ]-basis, we see that if we write [a]n ∈ End(Gna) for
the image of a, then. [t]n(x1, · · · , xn) = (tx1 + x2, · · · , txn−1 + xn, txn + xq1). Here
by abuse of notation, we have identified θ = t. If we write d[a]n for the coefficient
of τ0, then it is the matrix representing the endomorphism of Lie(Gna) induced by
[a]n and in particular, we have d[a]n(∗, · · · , ∗, x) = (∗, · · · , ∗, ax): The largest quo-
tient of Lie(Gna) on which the derivative and multiplication actions of A coincide
is isomorphic to Ga with the isomorphism `n : Lie(Gna) → Ga given by the last
co-ordinate.

Note that by the definition of diagonal τ -action, the matrix Φ for C⊗n is just
the scalar matrix (t− θ)n.

There is λ ∈ Cn∞ with the last entry π̃n such that the period lattice of C⊗n is
{d[a]nλ : a ∈ A}.

By solving the functional equations for the exponential and logarithm, we can
find expansions for these series. In particular, the canonical last co-ordinate `n of

logn(X) is given by
∑n−1
i=0 (−1)i∆iLn(xn−i), where Ln(x) =

∑∞
i=0(−1)inxq

i

/Lni is
naive poly-logarithm corresponding to the Carlitz logarithm and ∆ is our analog of
zd/dz operator, which is commutator with t acting on linear functions f(z) giving
f(tz) − tf(z). In particular, the last co-ordinate seems to be a good deformation
of the naive poly-log `n(logn(0, · · · , 0, x)) = Ln(x). Note that

∆kLn(x) =
∑ [i]kxq

i

`ni
=
∑(

k

i

)
tk−iLn(tix).

Also note the differences with the usual complex logarithms and multilogarithms,
that in our case, log(1−x) = log(1)− log(x), Ln(x) is naive generalization of series
for log(x) rather than for log(1−x), and that ∆iLn(x) is as above compared to the
usual (zd/dz)i logn(x) = logn−i(x), for i < n.

6.3. Period interpretation for zeta. We now use the logarithmic derivatives
trick of generating function with binomial coefficients as explained above to turn
the solitons giving terms of gamma products into terms giving zeta sums and give
an explicit algebraic incarnation of (transcendental) Carlitz zeta value ζ(n) (and
its v-adic counterparts), for n a positive integer, on the Carlitz-Tate motives C⊗n.

For classical polylog logn and Riemann ζ, we have a simple connection ζ(n) =
logn(1), which follows directly from definition and is of not much use to prove irra-
tionality or transcendence results for these zeta values. For Fq[t] case, the situation
is quite different. The relation as above holds for n = prm, with m ≤ q, as we
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have seen in 6.1, but in general the relation is much more complicated, but because
of the direct motivic connection to abelian t-modules, such as C⊗n, we can draw
much stronger transcendence and algebraic independence conclusions.

Let us temporarily write Vn for the vector (0, · · · , 0, 1) of length n.

Theorem 6.2. Let A = Fq[t]. There exists (constructed explicitly below) A-valued
point Zn of C⊗n such that the canonical last co-ordinate of logn(Zn) is Γ(n)ζ(n).

If we put Zn,v := [vn − 1]nZn, for a monic irreducible v ∈ A, then the canonical
last co-ordinate of logn,v(Zn,v) is vnΓ(n)ζv(n).

The point Zn is a torsion point, if and only if n is ‘even’.

Proof. We use the connection between the binomial coefficients and the power sums
giving the terms of the zeta functions explained earlier to construct the point Zn
as follows.

Let Gn(y) :=
∏n
i=1(tq

n − yq
i

), so that Gi(t
qk) = (lk/lk−i)

qi and so for the

binomial coefficient notation before, Bk(x) =
∑k
i=0Gi(t

qk)/di(x/lk)q
i

. Hence if we
define Hn(y) ∈ K[y] by

∞∑
n=0

Hn(y)

n!
xn = (1−

∞∑
i=0

Gi(y)

di
xq

i

)−1,

then the fact that n!m! divides (n + m)! for the Carlitz factorial, implies first of
all that with Hn−1(y) =

∑
hniy

i, the coefficients hni belong to A. Further by
generating function recalled above, we see that

Hn(tq
k

)/ln+1
k = n!Sk(−(n+ 1)).

This connection with multilogarithms is what we need for later applications.
We define Zn ∈ C⊗n(A) = An by

Zn :=
∑

[hni]n(tiVn).

Straight degree estimates [AT90] show that for i ≤ degHn−1, tiVn is in the
region of convergence for logn. Hence we have

`n(logn(Zn)) =
∑
`n(d[hni]n logn(tiVn)) =

∑
hni`n(logn(tiVn))

=
∑
hni

tiq
k

lnk
= Γ(n)ζ(n).

Notice that logn is multi-valued function. With zn :=
∑
d[hni]n(tiVn) ∈ Kn

∞,
we have expn(zn) = Zn.

If Zn were a torsion point, when n is ‘odd’, then since π̃n is the last co-ordinate
logarithm of zero, ζ(n) would be a rational multiple of π̃n. But we know (e.g.,
from fractional degree q/(q − 1) of π̃) that ζ(n)/π̃n is not in K∞, when n is ‘odd’.
Conversely, if n is ‘even’ and Zn is not a torsion point, then by Jing Yu’s Hermite-
Lindemann type transcendence result for C⊗n, we would have ζ(n)/π̃n transcen-
dental, contradicting the Carlitz result mentioned above. (In [ATp], we now have
a direct algebraic proof of this without appealing to the transcendence theory).

Notice that the calculation proceeds degree by degree, so that instead of dealing
with ζ(s) ∈ K∞, we can also work with ζ(s,X) ∈ K[[X]], so multiplication by 1−vn,
which is just removing the Euler factor at s = −n, then gives the corresponding
sum where the power sums are now over a prime to v, thus giving v-adic zeta value
(see [AT90] for detailed treatment paying attention to convergence questions). �
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Examples 6.1. For n = rpk, with 0 < r < q, we have Zn = [Γ(n)]n(0, · · · , 0, 1)
and Zq+1 = (1, 0, · · · , 0) + [tq − t]q+1Vq+1.

6.4. Transcendence and algebraic independence results. Proving analog for
C⊗n of Hermite-Lindemann theorems (and v-adic counterparts) about transcen-
dence of values of logarithm for C⊗n, Jing Yu [Y91] concluded from above theorem
that

Theorem 6.3. Let A = Fq[t]. Then ζ(n) is transcendental for all positive integers
n and for all ‘odd’ n, ζ(n)/π̃n and ζv(n)’s are transcendental.

More recently, directly using multilogarithms and using the techniques of [ABP04,
P08], much stronger results (at least at ∞) were proved by calculations of dimen-
sions of relevant motivic groups. We now turn to explaining these.

Theorem 6.4. (1) [CY] Only algebraic relations between ζ(n)’s come from the
Carlitz-Euler evaluation at ‘even’ n, and ζ(pn) = ζ(n)p. In particular, for n ‘odd’,
ζ(n) and π̃ are algebraically independent and the transcendence degree of the field
K(π̃, ζ(1), · · · , ζ(n)) is n+ 1− bn/pc − bn/(q − 1)c+ bn/(p(q − 1))c.

(2) [CPYa] Only algebraic relations between ζ`(n)’s for all ` and n, where ζ` de-
notes Carlitz zeta over Fq` [t], are those as above coming from n ‘even’ or divisible by
p. The periods π̃` of the Carlitz modules for Fq` [t] are all algebraically independent.

(3) [CPYb] Only algebraic relations between ζ(n)’s and geometric Γ(z)’s at proper
fractions are those between zeta above and bracket relations for gamma.

(4) [CPTY] Only algebraic relations between ζ(n)’s and arithmetic gamma values
at proper fractions are those for zeta mentioned above and those for gamma coming
from the bracket relations, and thus the transcendence degree of the field

K(π̃, ζ(1), · · · , ζ(s), (c/(1− q`))!)1≤c≤q`−2

is s− bs/pc − bs/(q − 1)c+ bs/(p(q − 1))c+ `.

We quickly describe relevant motives and corresponding algebraic groups, (which
can often be calculated by using recipes in [P08] or using Pink’s results [Pin97] on
images of Galois representations) leaving the details to the references above.

For Carlitz module M , we have Φ = (t− θ), Ψ = Ω and ΓM = Gm. This follows
from the fact that Hom(C⊗m, C⊗n) is Fq(t) or zero, according as m = n or not,
and thus that the category generated by M is equivalent to the Z-graded category
of vector spaces over Fq(θ)(t) with fiber functor to category of vector spaces over
Fq(t).

For its n-th tensor power (with n ∈ Z, with n = −1 corresponding to the dual)
M , we have Φ = (t− θ)n, Ψ = Ωn, and ΓM = Gm.

The rank two Drinfeld module M given by ρt = t + gτ + τ2 is in analogy with
elliptic curves. We give the set-up here, higher rank situation being straight gener-
alization. It corresponds to size two square matrix Φ = [0, 1; t− θ,−g(−1)] and the
corresponding period matrix Ψ−1(θ) = [w1, w2; η1, η2], where wi are periods, and
ηi = Fτ (wi) are quasi-periods, and where the quasi-periodic function Fτ satisfies
eρ(z)

q = Fτ (θz) − θFτ (z). (See [T04, Sec. 6.4].) Recall the elliptic curve analog
ηi = 2ζ(wi/2), with Weierstrass ζ related to ℘ by ζ ′ = −℘. For non-CM case, we
get the group Gl2.

It is clear how to generalize to define the matrices for higher rank Drinfeld
modules, and we can calculate the motivic groups by appealing to Pink’s results.
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In particular, for getting Carlitz module over base Fq` [t], which is a rank `
Drinfeld module over A, we have size `-matrix Φ` := (t− θ) if ` = 1, and otherwise

Φ` :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
(t− θ) 0 0 · · · 0

 .
Let ξ` be a primitive element of Fq` and define Ψ` := Ω` if ` = 1, and otherwise let

Ψ` :=


Ω` ξ`Ω` · · · ξ`−1

` Ω`

Ω
(−1)
` (ξ`Ω`)

(−1) · · · (ξ`−1
` Ω`)

(−1)

...
...

. . .
...

Ω
(−(`−1))
` (ξ`Ω`)

(−1) · · · (ξ`−1
` Ω`)

(−(`−1))

 ,
where Ω` is just obtained from Ω by replacing qn-th powers by q`n-th powers.

The associated motivic Galois group is the Weil restriction of scalars of Gm from
the constant field extension in question, and hence a torus of dimension `. (See
[CPTY]).

This already allows us to handle the arithmetic gamma values as follows. We
have

( 1
1−q` )!

( q
`−1

1−q` )!q
∼ Ω`(θ),

( qj

1−q` )!

( q
j−1

1−q` )!q
∼ Ω

(−(`−j))
` (θ) (1 ≤ j ≤ `− 1),

where the first is just the Chowla-Selberg analog we proved for arithmetic gamma
and the second its quasi-period analog established similarly.

Now any gamma value with denominator 1 − q` (note that any denominator
is of this form without loss of generality by Fermat’s little theorem), by integral
translation by integer of the argument resulting in harmless algebraic factor, a
monomial in basic values (qj/(1−q`))!’s (0 ≤ j ≤ `−1), thus the field generated by
all these values is `-dimensional, by the dimensional calculation mentioned above.
In particular, (qj/(1− q`))!’s (0 ≤ j ≤ `− 1) are algebraically independent.

To handle zeta values, we use the multilogarithm connection mentioned above
and first handle a set of multilogarithm Ln at algebraic αi’s.

For α ∈ k̄× with |α|∞ < |θ|
nq
q−1
∞ , the power series

Lα,n(t) := α+

∞∑
i=1

αq
i

(t− θq)n(t− θq2)n · · · (t− θqi)n
,

satisfies Lα,n(θ) = Ln(α). It is easy to check the functional equation

(1) (ΩnLα,n)(−1) = α(−1)(t− θ)nΩn + ΩnLα,n.

Thus after choosing

Φn = Φ(αn0, . . . , αnk) :=


(t− θ)n 0 · · · 0

α
(−1)
n0 (t− θ)n 1 · · · 0

...
...

. . .
...

α
(−1)
nk (t− θ)n 0 · · · 1

 ,
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Ψn = Ψ(αn0, . . . , αnk) :=


Ωn 0 · · · 0

ΩnLn0 1 · · · 0
...

...
. . .

...
ΩnLnk 0 · · · 1

 ,
the functional equation translates to Ψ

(−1)
n = ΦnΨn, and Φn defines a t-motive

which is an extension of the k+1-dimensional trivial t-motive 1k+1 over k̄(t) by C⊗n

and its motivic Galois group is extension of Gm by a vector group. (See [CY] Lemma
A.1). Using this, [CY] proves that the linear independence over K implies algebraic
independence over K̄ for n-th multilogarithms at algebaraic quantities, generalizing
Papanikolas [P08] result for n = 1 by the same method, which generalizes earlier
result of Jing Yu giving analog of Baker’s theorem, giving linear independence over
K̄.

To deal with the algebraic independence issue for the zeta values ζ(n) for n ≤ s,
one takes direct sums of such appropriate multilog motives for appropriate ‘odd’
n ≤ s not divisible by p and αi’s coming from the relation before and calculate
[CY] dimensions.

For geometric gamma, because of complex multiplications from cyclotomic func-
tion field, the motivic Galois group of the corresponding ‘gamma motive’ is a torus
inside certain finite product of the Weil restriction of scalars of Gm from the cy-
clotomic function field. The direct sum with the ‘zeta motive’ has motivic Galois
group an extension of a torus by vector group. The dimension can be written down
explicitly and gives what we want.
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7. Cyclotomic and class module, special points, zeros and other
aspects

In this section, we review some new developments without proofs, just stressing
the new objects, ideas and interconnections. We begin by mentioning new connec-
tions of the special zeta value theory with cyclotomic theory.

7.1. Log-algebraicity, Cyclotomic module, Vandiver. In our first look at the
relations with cyclotomic theory, the p-divisibilities of orders of groups related to
the class groups for ℘-th cyclotomic fields were linked to the ℘-divisibilities of the
zeta values. This mixture of p and ℘ is not satisfactory analog. Also, we see that
naive analogs of the Kummer’s theorem that ‘p does not divide h(Q(ζp))

− implies
p does not divide h(Q(ζp)

+)’ and of Vandiver conjecture that ‘p does not divide
h(Q(ζp)

+)’ both fail for simple examples. The p-divisibilities or even Norm(℘)-
divisibilities do not work. To get good analog [T94, pa. 163] so that we can talk
about ℘ divisibilities, we want A-modules and not abelian groups which are just
Z-modules.

In a very nice important work [A96], Greg Anderson provided ‘cyclotomic A-
module, class polynomial’, and an analog of Vandiver conjecture! To do this, he
generalized the log-algebraicity phenomena that we have been looking at in the
previous lectures, as follows.

The cyclotomic units come from 1 − ζ = exp(log(1 − ζ)) = exp(
∑
−ζn/n).

Instead of logarithm, which is just inverse function of exponential, to get more, one
should view the series occurring at right as the harmonic series or the zeta. For
x a fraction, we consider, following Anderson, the triviality ζn = exp(2πinmx) =
exp(2πinx)m and look at analog eC(

∑
eC(ax)m/a). By such mixing of the Carlitz

action by a ∈ A = Fq[T ] and usual multiplicative action by m ∈ Z (thus getting
the usual powers and polynomials in the game using functional equations for the
exponential), Anderson considered, for A = Fq[T ],

Sm(t, z) :=

∞∑
i=0

1

di

∑
a∈A+

(
Ca(t)m

a
)q
i

zq
i+deg a

∈ K[[t, z]]

and proved the following ‘log-algebraicity’ theorem:

Theorem 7.1. (Anderson [A96]) We have Sm(t, z) ∈ A[t, z].

Using this theorem, Anderson then defines cyclotomic module (an analog of
the group of the cyclotomic units in Q(ζp)) C to be the A-sub-module of O :=
OK(Λ℘) (under the Carlitz action) generated by ‘special points’ Sm(eC(π̃b/℘), 1) =
eC(
∑
eC(abπ̃/℘)m/a)’s. He proved that the cyclotomic module C is Galois stable

module of rank (Norm(℘)− 1)(1− 1/(q − 1)).
His first proof [A94], which works in more generality of any A with d∞ = 1,

uses his soliton ideas of deformation theory to get explicit interpolating functions
on powers of the cyclotomic cover similar to what we have seen for solitons, and
then showing directly by analysis of divisors and zeros that the coefficients for large
enough power of z are zero. His second proof [A96] is more elementary using the
Dwork’s v-adic trick (for all finite v) to deduce integrality of coefficients and then
using analytic theory to get degree estimates to show that coefficients tend to zero
eventually, so that they are zero from some point on-wards and the power series is
really a polynomial.
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We record a family of examples. Let m =
∑k
e=0 q

µe , with k < q. We have [T04,
pa. 300]

Si(m− 1) = (
∏

[µe]i)/li, where [h]i = dh/d
qi

h−i.

Sm(t, z) =

µ1∑
l1=0

· · ·
µk∑
lk=0

CP(µj,lj)
(T )(z

k∏
e=1

CT le (t))

where

P(µj ,lj)(T ) = (−1)
∑

(µe−le)
∑

T q
j1,1+···+qj1,µ1−l1 +···+qjk,1+···+qjk,µk−lk

with 0 ≤ je,1 < je,2 < · · · je,µe−le ≤ µe − 1, for 1 ≤ e ≤ k.
This suggests that there is more underlying structure to these special polynomials

and it would be desirable to get such an expression for general m.
Anderson also expresses L(1, wi) as algebraic linear combination of logarithms

of these ‘special points’ (and a v-adic analog). (Papanikolas in a recent preprint
has shown using these and ideas from C⊗n section that L(m,χ) (for m ≤ q and
χ character of (A/f)∗ which is m-th power) can be expressed as explicit algebraic
linear combination of m-th polylog at algebraic arguments).

Now Kummer-Vandiver conjecture that p does not divide the class number of
Q(ζp)

+ can be rephrased as the canonical map taking the cyclotomic units mod
the p-th power to all units modulo p-th power is injective. Replacing O∗ which are
integral points for the multiplicative group by O which are integral points for the
additive group (with Carlitz action), analog of Anderson for Vandiver conjecture
would be that map C/℘C → O/℘O is injective. It would be nice to settle this.

As an analog of the Kummer’s theorem that p does not divide h− implies p does
not divide h+, Anderson proved that the map above is injective, if ℘ does not divide
ζ(1− i) for 1 ≤ i ≤ Norm(℘), and 1− i ‘odd’.

If
√
C is the divisible closure of C in O thought of as O-points of the Carlitz

module, then since the units are divisible closure of cyclotomic units, the analogies
suggest that analog of the class number h+ is the class polynomial giving the
(Fitting) index of A-module

√
C/C.

Using the analogy with cyclotomic units and the relation between class numbers
and index of cyclotomic units, we thus get a polynomial as some kind of A-module
version of class number in this special case. How about getting A-module ‘class
group’ concept in general?

This leads us to the discussion of the recent beautiful work of Taelman.

7.2. Taelman class number formula conjecture. In a very nice recent work
[Ta10], Lenny Taelman gave a good analog of Dirichlet unit theorem in the context
of Drinfeld modules and gave a conjectural ‘class number formula’ for Dedekind
zeta ζO/A(1), for A = Fq[t]. We now describe some of the ideas.

Let A = Fq[t]. We use the notation of the zeta section, with finite extension L
of K and R = O being the integral closure of A in it. Define L∞ := L ⊗K∞ and

Lsep∞ similarly. Note that these are products of fields. Let G = Gal(K
sep
∞ /K∞).

Let ρ be Drinfeld A-module with coefficients in R. Taking the G-invariants of the
G-equivariant short exact sequence Λ ↪→ Lieρ(L

sep
∞ ) −→→ ρ(Lsep∞ ) (given by expρ) of

A-modules, we get ΛG ↪→ Lie(L∞)→ ρ(L∞) −→→ H1(G,Λ) by additive Hilbert 90.
Taelman proves
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Theorem 7.2. The cokernel (kernel respectively) of ρ(R) → H1 is finite (finitely
generated respectively) and the inverse image under expρ of ρ(R) is a discrete and
co-compact sub-A-module of Lieρ(L∞).

He defines the cokernel to be the class module HR, and the kernel to be the
Mordell-Weil group UR, and shows that UR =

√
C, when L is the cyclotomic ex-

tension of K, and ρ is the Carlitz module.
By the theorem, the natural map ` : exp−1(ρ(R))⊗AK∞ → Lieρ(R)⊗AK∞ in-

duced by exp−1(ρ(R))→ Lieρ(L∞) is an isomorphism of K∞-vector spaces. With
respect to any A-basis of exp−1(ρ(R)) and Lieρ(R), the map has well-defined deter-
minant in K∗∞/A

∗, call its monic representative in K∗∞ the regulator RegR. Finally,
for A-module M , let |M | denote monic generator of its first fitting ideal, i.e. the
product of monic polynomials fi ∈ A such that M ≡ ⊕A/(fi).

Now let ρ be the Carlitz module. Then Taelman’s conjectured class number
formula is

ζR/A(1) = RegR ∗ |HR|.
He proves it for R = A = Fq[t] and gives numerical evidence. The author has

proved the naive generalization of this for A = R of class number one, having
already calculated the left side as a logarithm [T92b] as we mentioned above. For
details, we refer to [Tp]. Note that Anderson, in the work already mentioned
above, already proves ζR/A(1) to be some explicit combination of logarithms of
special points for abelian extensions.

Let us now look at the example A = Fq[t] and R = Fq2 [t]. Then ζR/A(1) =

ζ(1)L(1), where L(1) =
∑
χ(a)/a, where χ(a) = (−1)deg(a), so that if ζ is a q − 1-

th root of −1, then L(1) = log(ζ)/ζ, as can be verified from formulas we have seen
for logarithms and power sums, and is obvious for q = 2. The class number formula
in this case can be verified using this.

Remarks 7.1. While C is a local field and extension of degree 2 of R, C∞ is not
local and is of infinite degree over K∞. But the infinitude of the degree has virtue
of allowing lattices, and thus Drinfeld modules, of arbitrarily large ranks. Similarly,
Taelman’s work above shows another virtue by getting finitely generated quantities
by taking invariance with respect to infinite Gal(Ksep

∞ /K∞).

Update: In recent preprints [Tap1, Tap2], Taelman has proved his conjecture
and has given several nice interpretations in the Carlitz case.

7.3. Valuations of the power sums and the zero-distribution for the Zeta.
We will go in reverse chronological order to explain this topic. Let A = Fq[t] to
start with.

For k ∈ Z and d ∈ Z≥0, let Sd(k) =
∑
a−k, where the sum is over a ∈ Ad+.

(Note we changed sign from the earlier notation) and sd(k) be its valuation (i.e.,
negative of the degree) at the infinite place. While the individual terms have
valuations dk, which are monotonic in either d or k, if we fix the other, constant (k
or d respectively) jumps, the cancellations in summation makes sd(k) a very erratic
function, not monotonic in k and monotonic in d, but for not so obvious reasons.

For q = p a prime, in [T09a], we found a nice but strange recursion (another proof
by Böckle using his cohomological formula can be found in the lecture notes of the
parallel lecture series) sd(k) = sd−1(s1(k)) + s1(k), which immediately implies that
sd(k) is monotonic in d and the jumps sd+1(k)− sd(k) are also strictly monotonic
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in d, just by straight induction on d, the recursion relation reducing the statement
for d to d − 1, and the initial case being obvious. (The recursion works for both
k positive and negative and so you can approach p-adic integer y below both from
positive and negative integers).

Now, for a fixed y ∈ Zp, the zeroes of Goss zeta function ζ(y,X) in X ∈ C∞ can
be calculated by the Newton polygon of this power series, but the above monotonic-
ity in jumps exactly translates to the slopes of the polygon increasing at each vertex,
so that horizontal width of each segment is one, and thus all these zeros, which are
a priori ‘complex’ are simple and ‘real’, i.e., lie on the ‘real line’ K∞ ⊂ C∞. (Also,
there is at most one zero for each valuation). This zero distribution result is the
Riemann hypothesis for the Goss zeta function, first proved by Daqing Wan, in case
Fp[t]. The author noticed that the statement can be quickly reduced to a combina-
torial unproved assertion made by Carlitz. This was then proved for q = p by Javier
Diaz-Vargas [DV96] in his Univeristy of Arizona thesis. But the general non-prime
case proved to be much more difficult and after the initial proof by Bjorn Poonen
for q = 4, Jeff Sheats, then a postdoc in combinatorics at University of Arizona,
gave a complete but quite complicated proof of the general case, proving the same
statement for A = Fq[t].

It would be nice if this proof can be simplified in any way, for example, by
finding some simple recursion similar to that above for any q, which gives the slope
statement as immediately. For more on power sums, references to the literature,
see [T09a].

What happens for general A? Notice that our example in the extra vanishing
phenomena were of the type ζA(s,X) = ζFq [x](s,X

p), for some s and some x ∈ A,
and since these polynomials are often non-trivial, we get zeroes giving inseparable
extensions of K∞. (The simplest example being A of class number one, genus
2 (there is unique such, given as example (b) before theorem 44) and s = −3).
So the naive generalization of Riemann hypothesis as above does not work. But
David Goss [G00, G03] has made some interesting conjectures for the general case
of L-functions and also at v-adic interpolations, regarding the finiteness of maximal
separable extension when you adjoin zeroes, absolute values of the zeroes etc. For
precise statements, a discussion and examples, we refer to these papers.

Wan already noticed that v-adic situation for degree one primes can be handled
similarly, at least partially.

The author, in ongoing work, has found interesting patterns (partially proved,
partially conjectured) in valuation tables of Sd(k) at finite primes of higher degree.
This should lead to some interesting consequences for the zero distribution of v-
adic zeta functions of Goss. We also saw some interesting computationally observed
phenomena in higher genus case in Böckle’s lecture series.

7.4. The Zeta measure. The polynomials taking integers to integers are integral
linear combinations of the binomial coefficients, just as in the Z case, for A = Fq[t]
with the binomial coefficients we talked about.

Now Mahler’s theorem that continuous functions from Zp to itself are exactly the
functions of the form f(x) =

∑
fk
(
x
k

)
, with fk → 0 as k tends to infinity, has exact

analog obtained by replacing Zp by A℘ and replacing usual binomial coefficients by
Carlitz binomial coefficients we introduced above. It was proved by Carlitz’ student
Wagner.
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A Zp-valued p-adic measure on Zp is just a Zp-linear map µ: Conti (Zp,Zp)→ Zp.
One writes µ(f) symbolically as

∫
Zp f(x) dµ(x).

In the binomial coefficient basis, such a measure µ is uniquely determined by
the sequence µk :=

∫
Zp

(
x
k

)
dµ(x) of elements of Zp. Any sequence µk determines a

Zp-valued measure µ by the formula
∫
Zp fdµ =

∑
k≥0

fkµk =
∑
k≥0

(4kf)(0)µk.

Convolution ∗ of measures µ, µ′ is defined by
∫
f (x) d(µ ∗ µ′)(x) =

∫ ∫
f(x +

t) dµ(x)dµ′(t).
In other words, if one identifies measure µ with

∑
µkX

k then convolution ∗ on
measures is just multiplication on the corresponding power series. This identifica-
tion of Zp-valued measures on Zp with power series is called Iwasawa isomorphism.

In the Fq[t] case, with function field binomial coefficient analogs, an A℘-valued
measure µ on A℘ (called just measure µ for short) is uniquely determined by the
sequence µk =

∫
A℘

(
x
k

)
dµ of elements of A℘. Any sequence µk determines measure

µ by
∫
A℘

f dµ =
∑
k≥0 fk µk.

Because of different properties of this analog, if we identify measure µ with the
divided power series

∑
µk(Xk/k!) (recall the formal nature of Xk/k! in the context

of divided power series), then the convolution ∗ on measures is multiplication on
the corresponding divided power series.

Classically, Nick Katz showed that the measure µ whose moments
∫
Zp x

kdµ are

given by (1 − ak+1)ζ(−k) for some a ≥ 2, (a, p) = 1 has the associated power
series (1 + X)/(1 − (1 + X)) − a(1 + X)a/(1 − (1 + X)a). We need a twisting
factor in front of the zeta values to compensate for the fact that the zeta values are
rational rather than integral, in contrast to our case. It would be quite interesting
to understand the comparison of this result with the following result [T90]. (This
reference contains references and details about all the results mentioned in this
subsection).

Theorem 7.3. For A = Fq[t], the divided power series corresponding to the zeta
measure µ, namely the measure whose i-th moment

∫
A℘

xidµ is ζ(−i), is given by∑
µk(Xk/k!) with

µk = (−1)m if k = cqm + (qm − 1), 0 < c < q − 1, and µk = 0 otherwise.

7.5. Multizeta values, period interpretation and relations. We briefly men-
tion work [T04, Sec. 5.10] and more recent works [AT09, T09b, T10, Lr09, Lr10, Tp]
on multizeta values. For detailed discussion, bigger context in the number field and
function field situation, full results and proofs, these references should be consulted.

There has been a strong recent interest in multizeta values which are iterated
sums

ζ(s1, · · · , sk) :=
∑

n1>···nk>0

1

ns11 · · ·n
sk
k

initially defined by Euler, through their appearance in Grothendieck-Ihara pro-
gram [I91] of understanding the absolute Galois group of Q through the algebraic
fundamental group of the projective line minus zero, one and infinity, and related
interesting mathematical and mathematical physics structures in diverse fields. The
connection comes through integral representation from them by iterated integral
of holomorphic differentials dx/x and dx/(1− x) on this space giving a period for
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its fundamental group. The relations they satisfy such as sum shuffle and inte-
gral shuffle relations have many structural implications. We will just mention the
simplest sum shuffle

ζ(s1)ζ(s2) =
∑

1/ns11

∑
1/ns22 = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2),

which just follows from n1 > n2 or n1 < n2 or n1 = n2, the generalization being
obtained by shuffling the orders, when you multiply multizeta values, of terms or
of differential forms to write the expression as the sums of some multizeta values.
Thus the span of multizeta values is an algebra.

For si ∈ Z+, we define multizeta value ζ(s1, · · · , sr) by using the partial order
on A+ given by the degree, and grouping the terms according to it:

ζ(s1, · · · , sr) =
∑

d1>···>dr≥0

Sd1(s1) · · ·Sdr (sr) =
∑ 1

as11 · · · a
sr
r
∈ K∞,

where the second sum is over ai ∈ Adi+ satisfying the conditions as in the first
sum.

We say that this multizeta value (or rather the tuple (s1, · · · , sr)) has depth r
and weight

∑
si. Note we do not need s1 > 1 condition for convergence as in the

classical case.
Since there are many polynomials of given degree (or norm), the usual proof

of sum shuffle relations fails. In fact, it can be seen that naive analogs of sum or
integral shuffle relations fail. The Euler identity ζ(2, 1) = ζ(3) fails in our case, for
simple reason that degrees on both sides do not match.

On the other hand, we showed that any classical sum-shuffle relation with fixed
si’s works for q large enough.

More interestingly, we can show that linear span of multizeta values is an algebra,
by completely different type of complicated ‘shuffle relations’ such as:

If b is odd, ζ(2)ζ(b) = ζ(2 + b) +
∑

1≤i≤(b−3)/2 ζ(2i + 1, 1 + b − 2i), and if b is

even, ζ(2)ζ(b) = ζ(2 + b) +
∑

1≤i≤b/2−1 ζ(2i, b+ 2− 2i).

There are very interesting recursive recipes [T09b, Lr09, Lr10] which are con-
jectural. To give a flavor of combinatorics, we will just say that for q prime, given
expression of ζ(a)ζ(b) as sum of multizeta, one can get expression for ζ(a)ζ(b +
(q − 1)pm), where m is the smallest integer such that a ≤ pm, by adding precisely
described ta =

∏
(p − j)µj new multizeta terms, where µj is the number of j’s in

the base p expansion of a− 1.
There are identities as above with Fp-coefficients (understood in some precise

sense) and identities (not yet well-understood) with Fp(t) (or K) coefficients, such
as ζ(1, 2) = ζ(3)/`1 = ζ(3)/(t− t3), for q = 3 as analog of Euler identity.

In any case, in [AT09], the period interpretation was provided.

Theorem 7.4. Given multizeta value ζ(s1, · · · , sr), we can construct explicitly
iterated extension of Carlitz-Tate t-motives over Fq[θ] which has as period matrix
entry this multizeta value (suitably normalized).

Recall from 6.3, the polynomials Hn(y) ∈ K[y] = Fq(t)[y]. We write them as
Hn(y, t) below.

Let s = (s1, . . . , sr) ∈ Zr+, and consider matrices (the first one is a diagonal
matrix)

D = [(t− θ)s1+···+sr , (t− θ)s2+···+sr , · · · , (t− θ)sr , 1],



58 DINESH S. THAKUR

Q =


1

Hs1−1(θ, t) 1
. . .

. . .

Hsr−1(θ, t) 1

 .
Then Φ = Q(−1)D defines the mixed t-motive of rank r + 1 whose period ma-

trix (obtained by specializing Ψ−1 at t = θ) contains the depth r multizeta value
ζ(s1, . . . , sr), for A = Fq[θ]. For the details of calculation, we refer to the paper.

In this case, the situation is quite complicated and one is far from understanding
the motivic Galois group or the corresponding transcendence degrees unlike the
cases studied in the last section.

There is interesting Galois side to this motivic study and we achieved the first
step of constructing [ATp] analogs of Ihara power series, Deligne-Soule cocycles
which connects zeta, gamma, gauss sums, cyclotomic modules etc. in towers and
big Galois actions.

Update: In the recent preprint [Lrp] based on his PhD thesis work with the
author, Alejandro Lara-Rodriguez has proved many of the explicit conjectures
[Lr09, Lr10, T09b] that the author and he made on the multizeta relations with
Fp-coefficients, by making the effective recipe of [T10] very explicit.

7.6. Cohomology approach. Taguchi-Wan [TW96, TW97], Böckle-Pink [BöP,
Böc02] have developed nice cohomological approach getting determinantal formulas
(see also [A00] and [T04, Sec. 5.11]) for zeta special values, developing much general
L-functions, rationality results, meromorphic continuations, criterion for analyticity
etc. by Dwork style or Crystalline methods respectively. Fortunately, we got a nice
exposition about some of this in the parallel lecture series by Böckle. So we can
just refer to those lecture notes.

Recently, Vincent Lafforgue [L09] proved some Bloch-Kato type results at posi-
tive integers using Fontaine-Perrin-Riou methods, and he also defined good notion
of extensions which inspired Taelman’s work mentioned above. Soon after these
CRM lecture series, Taelman applied these determinantal formula directly to the
special value and proved his class number formula conjecture mentioned in 7.1.

7.7. Open questions. We collect some important open questions at the end.
Overall the present results bring the special value theory of the arithmetic, geo-

metric gamma functions and zeta function for A = Fq[θ] at infinite place to a very
satisfactory state; however, similar questions for (i) v-adic interpolations (see [T04,
Sec. 11.3] for very partial results about v-adic gamma values using automata meth-
ods and [Y91] for transcendence of v-adic zeta values), (ii) generalizations to other
rings ‘A’ in the setting of Drinfeld modules [T04, 4.5, 8.3], (iii) values of the two
variable gamma function of Goss [T04, 4.12], [T91a, Sec. 8], [G88], are still open.

Let us gather some other important open questions and projects, apart from
generalizations, that we looked at.

(1) What is the arithmetic nature of Γ(0) for the gamma function in 4.5?
(2) What are general conjectures for special values of L-functions, generaliz-

ing Taelman? What are the arithmetic meanings and applications of new class
modules etc.? What are general conjectures about orders of vanishing (good com-
putational data can be easily obtained here with some effort), and what would be
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the arithmetic significance of new leading terms, or of non-trivial zeros of Goss zeta
functions? Is the zeta non-vanishing at ‘odd’ integers a general phenomena?

(3) Connection of the zeta values at the positive and negative integers with class
groups suggests some connection between them. How can we make it more explicit?

(4) For d∞ > 1, there is a question referred in 4.9 on non-vanishing of en’s and
equivalently whether ξ(n) does not belong to support of the Drinfeld divisor V .

(5) Values of zeta for non-abelian extensions at positive values and whether there
is a modular forms connection as in the classical case. Better understanding of the
zeta measure result is also highly desirable.

(6) Simplification of the Sheats proof of the zero distribution, by possible simple
recursive in d relation on the valuations.

Guide to the literature: We give some comments on the references missing in
the text. Good references for pre-2003 material are [G96, T04], which contain more
details and extensive references. Except for the comments and developments after
2003 that are mentioned, and except for most of sections 3, 6, 7, the other material
is based on [T04], which in turn is based on many original papers accessible from
author’s homepage.

In more detail, most of the material in the first two sections can be found (except
for citations there) in [T87, T88, T91a] or [T04, Cha. 4], that in section three in
[T99] or [T04, Cha. 7, 8] and that in the fourth section in [T96, T98, T93b] or
[T04, Cha. 8, 11]. For section 5, see [T95, G96] and [T04, Cha. 5] and references
there. For section 6, see [A86, ABP04], [T04, Cha. 7].

Having focused on relatively new results with a particular transcendence method
and period connections, the references given here are limited. For surveys with
many other references and overlapping results on transcendence, in particular,
Mahler method, automata method, see [Wal90, Bro98, G96, Pe07], [T04, Cha.
10].

Note added, October 2012: For many interesting related developments since
the lectures were delivered, we refer to papers by Chang, Lara Rodriguez (multi-
zeta relations and independence); author (multizeta, congruences); Angles, Tael-
man (cyclotomic and class modules, Herbrand-Ribet, Vandiver analogs, L-values);
Papanikolas (L-values); and Pellarin, Perkins (deformations of L-values).
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266, 1987.
[All96] J.-P. Allouche. Transcendence of the Carlitz-Goss gamma function at rational arguments.

J. Number Theory, 60(2):318–328, 1996.
[A86] G. Anderson. t-motives. Duke Math. J., 53(2):457–502, 1986.

[A92] G. W. Anderson. A two-dimensional analogue of Stickelberger’s theorem. In [G+92], pages
51–73.



60 DINESH S. THAKUR

[A94] Greg W. Anderson. Rank one elliptic A-modules and A-harmonic series. Duke Math. J.,

73(3):491–542, 1994.

[A96] Greg W. Anderson. Log-algebraicity of twisted A-harmonic series and special values of
L-series in characteristic p. J. Number Theory, 60(1):165–209, 1996.

[A00] Greg W. Anderson. An elementary approach to L functions mod p. J. Number Theory,

80(2): 291-303, 2000.
[A02] Greg W. Anderson. Kronecker-Weber plus epsilon. Duke Math. J., 114(3):439–475, 2002.

[A06] G. W. Anderson, A two-variable refinement of the Stark conjecture in the function field

case, Compositio Math. 142 (2006), 563-615.
[A07] G. W. Anderson, Digit patterns and the formal additive group, Israel J. Math. 161 (2007),

125-139.

[Ang01] Bruno Anglès. On Gekeler’s conjecture for function fields. J. Number Theory, 87(2):242–
252, 2001.

[AS03] J.-P. Allouche and J. Shallit. Automatic sequences. Cambridge University Press, Cam-
bridge, 2003.

[AT90] G. Anderson and D. Thakur. Tensor powers of the Carlitz module and zeta values. Ann.

of Math. (2), 132(1):159–191, 1990.
[AT09] G. W. Anderson, D. S. Thakur, Multizeta values for Fq [t], their period interpretation and

relations between them, Internat. Math. Research Notices IMRN (2009) no. 11, 2038-2055.

[ATp] G. W. Anderson and D. S. Thakur, Ihara power series for Fq [t], Preprint.
[Be06] F. Beukers, A refined version of the Siegel-Shidlovskii theorem, Ann. Math (2006) 163, no.

1, 369-379.

[Bha97] Manjul Bhargava. P -orderings and polynomial functions on arbitrary subsets of Dedekind
rings. J. Reine Angew. Math., 490:101–127, 1997.

[Bha00] Manjul Bhargava. The factorial function and generalizations. Amer. Math. Monthly,

107(9):783–799, 2000.
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