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Abstract. We show that in contrast to the various known analogies, the orders of vanishing of the
characteristic p zeta functions introduced by Goss sometimes follow interesting patterns involving
base g-digits, providing a challenge to understand them in a general framework as in the classical
case. We answer some questions raised by Goss about the connection of the zeta values and periods.
We also generalize and simplify the proofs of some results.

1. Introduction

It is known in various contexts, that the order of vanishing and the leading term of
zeta function have a lot of interesting arithmetic information encoded in them. The
characteristic p zeta functions studied by Carlitz and Goss are no exception. Their
values relate to the periods, the divisibilities of Bernoulli numbers analogues arising
from them give information on class numbers of cyclotomic extensions in a way
analogous to the classical case and they are related to the classical L-functions via
congruence formulae. An important ingredient missing is that there is no functional
equation in sight, even though there are analogues of gamma functions and Gauss
sums. In the classical case, the gamma factors control the orders of vanishing of
the zeta functions at the negative integers.

Using the congruence formula with the classical L-functions, Goss has provided
[G4] lower bounds for orders of vanishing of these zeta functions at the negative
integers and has raised a question whether they are exact. We show (Section 3) that
there can be extra vanishing, even when these lower bounds are naive analogues
of the exact orders of vanishing in the classical case. The patterns involving the
g-digits which control these extra zeros are an interesting phenomenon giving us a
challenge to put these zeros in a general framework, as is done classically.

In the other sections, we answer some questions about the connection of the
zeta values at the positive integers with the periods and refine some results of Goss.
We also give alternate simple proofs for some of the results in the literature.

* Supported in part by NSF grants DMS 9207706 and DMS 9314059
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Let us briefly recall the classical case. If F' is a number field, the Dedekind
zeta function (,(s) € C is defined, for s € C with real part greater than 1,
as 3 1/Norm(I)* = J(1 — 1/Norm (P)®)~!, where the sum is over all non-
zero ideals I of the ring of integers of F' and the product is over the primes P.
(For F' = Q, this is the Riemann Zeta function). This function has meromorphic
continuation to the whole complex plane with only pole at s = 1 and has a simple
functional equation connecting ¢, (s) to (,(1 — s). Clearly, for s > 1, there are
no zeros and hence analyzing the factors in the functional equation (essentially
gamma functions), we see that at negative integer s, the zeta function vanishes
to order r1 + 7 (72 respectively) if s is even (odd respectively). In addition, if
F is totally real, then values at negative integers are rational or equivalently, by
functional equation, for s a positive even integer, ((,(s)/(279)™)? € Q.

For a function field over a finite field Fy, a complex valued zeta function was
introduced and studied by Artin and Weil, by thinking of the norm as the number
of residue classes and using similar definitions. It has functional equation and
interesting theory of special values, but it turns out to be a rational function of ¢~
and we do not have connection to 27, for example.

If we want to consider the norm in the usual relative sense instead, as was done
by Goss, (and in the simplest case by Carlitz), we have to deal with the fact that
there are neither naturally given infinite places or rings of integers nor is there
a naturally given base field (like Q). Even the rational function field, which can
be considered as a subfield, sits in the function field in various different ways.
Even when you choose the base and the infinite places, the norm of an ideal is an
ideal in the base and it may not be principal, if the base has class number greater
than 1 and even if it is principal, there may be several units to consider, to get a
well-defined generator out of it. Finally, once we get an element, we can raise it to
an integral power only, not to any arbitrary complex power. This suggests either
restricting to a class number 1 base with only one place at infinity (as is the case for
Q or an imaginary quadratic field) so that the unit group is a finite group or more
generally restricting to the extensions for which the norms are principal ideals or
defining ideal exponentiation. This boils down to choosing representatives of the
ideal classes of the base and dealing with vector (of length class number) valued
zeta functions. We will discuss these in the next section.

The main reference is [G4] where the reader can find an exposition of various
results and additional references. See also [T2]. We will assume some background,
especially in the Section 4, on the relevant theory of Drinfeld modules of rank one.
For this, see [H1], [H2] or the summary in [T3], whose notation we will follow.
Otherwise, we have tried to give a self-contained exposition of the issues most
relevant to this paper.
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2. Zeta Values and Zeros

DEFINITIONS. Let K be a function field of one variable with field of constants F,
of characteristic p, oo be a place of K of degree 4, K , be the completion of K at oo
and A be the ring of elements of K having no pole outside co. We take {2 to be the
completion of an algebraic closure of K. Let us also denote by A the class number
of K, so that the class number of A is hé. Fix a sign function sgn : K §°—>F;6.
(In examples, we usually take sgn such that z, y, ¢t have sgn 1). Now let S be a
set of representatives of F; /F;. Let Ay := {a € A : sgn(a) € §}. (This way
of dealing with signs, when § > 1, was suggested in [T1] p. 46). Elements of
sgn = 1 are called ‘positive’ or ‘monic’. By deg we will denote the residue degree
over F,. By convention deg(0) = —oo. Let A; := {a € A : deg(a) = ¢} and
Ay = {a € Ay : deg(a) = i}. Let H be the Hilbert class field of A i.e., the
maximal abelian unramified extension of K in which oo splits completely. Recall
that K = H if h6 = 1. Let L be a finite separable extension of K and let O, = O
denote the integral closure of A in L.

Now we define the relevant zeta functions.

For s € Z, define the ‘absolute zeta function’:

(5, X) 1= Cal0,X) = 3 X - € KX,

=0 a€A;4

¢(s) :=Ca(s) :=((s,1) € Ko

A priori, the second definition makes sense only for s positive, as the terms then
tend to zero (and also for s = 0 when ((s) = 1), but we will show below that it
works for for s a negative integer also and in fact, then {(s) € A. The results on the
special values and the connection with Drinfeld modules mentioned in the paper
later on, justifies the use of elements rather than ideals even when the class number
is more than one. Also, we can look at a variant where a runs through elements of
some ideal of A or we can sum over all ideals by letting s to be a multiple of class
number and letting a® to be the generator of I° with appropriate sign. In the latter
case, we have Euler product for such s, if § = 1.

If L contains H (note that this is no restriction if k6 = 1, e.g. for A = F[t)),
then it is known that the norm of an ideal Z of O is principal. Let NZ denote the
generator whose sign is in 5. Let us now define the relative zeta functions in this
situation. Put, for s € Z

1

Gols, X) = Copal(s, X)i= X' Y o € KX,
1=0 degNT=:

Co(s) := Coya(s) = Co(s,1) € Keo.

The same remark as above applies to the second definition.
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Finally, we define the vector valued zeta function, which generalizes both def-
initions above and works without assuming that L contains H. We will leave the
simple task of relating these definitions to the reader.

Let C, (1 < n < hé) be the ideal classes of A and choose an ideal I,, in ;1.
For s € Z, define the vector Zp (s, X ) by defining its nth component Zo (s, X ),
via

1
(I,NI)?

Zo(8, X)n = Zoja(s,X)n:=3 X 3 e K[[X]),

=0 degNI=:
NIeCn,

Zo(8)n = Zo/a(8)n := Zo(8,1)n € K.

(Here I, NI stands for the generator of this ideal with sign in .5).

Again the same remark as above applies to the second definition.

Also note that Z depends very simply on the choice of I,,’s, with components
of Z, for different choices of I,’s, being non-zero rational multiples of each other.
In particular, the questions of when it (i.e., all the components) vanishes, when it
is rational or algebraic etc. are independent of such choice.

REMARKS. Goss [G4] defines the zeta functions for a bigger space using a bigger
piece of the character space to define n®. Since the results we are interested in deal
only with s integral, for us X is an indeterminate and we deal only with integral s.
Also note that Goss’ function on the bigger space has many more zeros. We leave
the task of relating our definitions to Goss’ to the reader. a

We use X as a deformation parameter for otherwise discretely defined zeta
values and hence we define the order of vanishing ord; of ¢, (o or Zp at s to be
the corresponding order of vanishing of (s, X), (o(s, X)or Zp(s,X)at X = 1.
This procedure is justified by the results described below. It is easy to see that the
order of vanishing is the same for s and ps, as the characteristic is p.

Now we state and prove a theorem which is essentially due to Lee [L1]. (See [T2]
for the relevant history). For a non-negative integer k = _ k;q*, with 0 < k; < ¢,
we let (k) := 3 k;, hence [(k) is the sum of base g digits of k.

THEOREM 1. Let W be a F,-vector space of dimension d inside a field (or ring)
FoverF,. Let f € F = W.Ifd > l(k)/(qg— 1), then e (f + w)F = 0.
Proof. (Compare [L1]). Let wy, - - - wq be a Fy-basis of W. Then (f + w)F =
(f+ 0wy +---+ Odwd)k, 6; € F,. When you multiply out the k£ brackets, terms
involve at most k& of 8;’s, hence if d > k the sum in the theorem is zero, since we
are summing over some 6; a term not involving it and ¢ = 0 in characteristic p.
The next observation is that in characteristic p, (a 4+ b)* = [[(a? + b7 )¥:, hence
the sumis zero, if d > {(k), by the argument above. Finally, note that 3y f, 67 =0
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unless ¢ — 1 divides j. Expanding the sum above by the multinomial theorem, we
are summing multiples of products #7' - - - #%* and hence the sum is zero; because
the sum of the exponents being [(k) < (g — 1)d, all the exponents can not be
multiples of ¢ — 1. a

For the applications, note that {a € A : deg(a) < ¢} form such F;, vector
spaces whose dimensions are given by the Riemann-Roch theorem. Similarly, A;
are made up of affine spaces as in the theorem. Hence

THEOREM 2 (Goss [G1]). For a negative integer s, {(s) € Aand (((¢— 1)s) =
0.
Proof: Our remark above shows that by the Theorem 1, the sum over : is a finite

sum, hence the first statement follows. Now if k = —(q — 1)s, then
((g-1)s)=D_ D a*==3 ) a*=0,
1=0a€A;4 1=0 a€A;
where the first equality holds since ¢, 67! = —1 and the second equal-
ity is seen by using that the sum is finite and applying the Theorem 1 with
W := {a € A: deg(a) < m} for some large m. O

REMARKS. Goss’ proof of the first part used a weaker version of the Theorem 1,
with d > k/(q — 1), the simpler version d > k mentioned in the proof would also
suffice. Goss’ proof of the second part involved an inductive argument. The proof
given here was mentioned in [T2] in the simplest case dealt there. It is interesting
to note (as detailed in [T2]) that though Carlitz and Lee almost proved this, nobody
before Goss seems to have dealt with exactly the zeta sum at negative integer
as such, though Carlitz [C1] obtained results for positive integers. (See below).
Since the zeta sums turn out to be finite and since a® interpolates by Fermat’s little
theorem, we have [G1] gp-adic interpolation for zeta values at negative integers,
once we remove the Euler factor at the prime p of A. a

Let us now recall what we know of the values of the Riemann zeta function (
at integers. There is a simple functional equation relating values at s and 1 — s.
At s = 1, we have a pole. At even positive s, Euler showed that ((s) is a rational
multiple of 7° or rather (27¢)°. For odd positive s, we know only that {(3) is
irrational (Apery). At negative integer s, ((s) is a rational, which is zero, if s is
even and nonzero if s is odd.

In our context, multiples of ¢ — 1 are considered even and the rest are considered
odd, since the cardinalities of A* and Z* are ¢ — 1 and 2 respectively. There is
an analogue 7 of 2w¢ coming from the theory of Drinfeld modules. There is no
reasonable functional equation known. (We do have ((sp”) = ((s)?" though
trivially). At s = 1, we have no pole (the zeta sum converges), but at even positive
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s, modeling Euler’s proof in the setting of the theory of Drinfeld modules, Carlitz
for A = F,[t] (where in fact he developed the relevant theory from scratch and
also identified Bernoulli numbers and factorials occurring in the zeta value and
proved many analogies for them) and Goss in general (for 6 = 1, but it is trivial
to remove this restriction as noted on [T1] pa. 46) showed that {(s)/#° € H. For
odd positive values, there are results in [A1], [A-T], [Y1] etc. At negative integer
s, ((s) is integer in A (by the Theorem 2), which is zero, if s is even. Hence the
question arises whether it is non-zero if s is odd. That it is, was proved by Goss
for A = F,[t] using a recursion formula for the values. See [G1]. It is not known
in general.

THEOREM 3. Let § = 1 and s be a negative odd integer. Then ((s) is non-zero if
A has a degree one rational prime p (e.g. if g = O (this reproves F,[t] case) or if
is large compared to the genus of K ) or if h = 1. (Together they take care of the
genus I case). In fact, in the first case, ((s) is congruent to 1 mod p.

Proof. The first part follows by looking at the zeta sum modulo g and notic-
ing that } gcp, 07° = 0, hence the only contribution is 1 from the : = 0 term.
Apart from g = 0, there are only 4 other A’s with hé = 1 (these have no degree
1 primes) and they are listed in [H1] p. 213. For ¢ = 2, there are no odd inte-
gers. That leaves only two possibilities: (a) A = F3[z,y]/y* = 23 — 2 — 1 and
(b) A = Fy[z,y]/v* + y = 23 + (3. In both the cases, we look at contribution to
the zeta sum for each : modulo z : 2 = 0 gives 1, : = 1,2, 3 give 0 and for higher
¢’s, with @ modulo z we also get fa, § € F, and hence the contribution is zero as
before. a

REMARKS. In many particular examples of A we can settle the non-vanishing by
this method. If we ask, instead, for odd negative s’s for which ((s) is always (i.e.,
for any A) non-zero, the Theorem 1, says that {(s) = 1,if {(—s) < ¢ — 1. Again,
this can be pushed farther: For example, if /(—s) < 2(¢ — 1) (and s odd nega-
tive as before), then by the Theorem 1 and the F,[t] case of Theorem 3 (by taking
t to be an element of A of the lowest positive degree), we see that {(s) is nonzero. O

It should be mentioned that there is a close connection known between divis-
ibility properties of Bernoulli numbers arising from the Riemann zeta values and
the class groups of cyclotomic fields. For similar results, due to Goss, Okada, Shu
and Sinnott, coming from the values of ¢ at both positive and negative integers,
see [G4] and [T5].

Let us now turn to the relative zeta functions.

THEOREM 4 (Goss [G4]). For anegative integer s, (o(s) € A. Infact, Zo(s), €
A for every n.

Proof. (Goss [G4]). The idea is to decompose the sum in F,-vector spaces and
use the Theorem 1 to show that for large k, the k-th term of the zeta sum is zero. It
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is enough to show that for each ideal class C of O, the contribution from Z € C is
zero. Let 7 € C. Then ZJ ~! = (¢) C J . Hence it is sufficient to show that

Sk = Z 1“(1)_'s =0
i€ J~1{0} /units
degN(i)=Fk

Let coq,...,00, be the infinite places of L with relative residue degrees
fi,..., fn and the corresponding embeddings o1, . .., 0, respectively. Then, writ-
ing the polar divisor as —(i)oo = Y. mi(00;), we have k = degN(¢) = § > my fi.
We will show that parts of S, corresponding to a fixed choice of {m;} also vanish.
Namely, let D := 5 m;(oo;), then we will show that if the deg(D) is large, then
S N(4)* = 0, where the sumis over § := {i € J~!—{0} /units, —(i)oo = D}.

Once we fix a polar divisor, the ambiguity in ¢ is only through a finite
field. Hence, given ¢ € S, fix a representative 7(¢) by demanding that the sign of
o1(r(7)) is 1, for some choice of the sign in Leo,. £ := {j € J~! : (§)+
>-(m;—1)(o0;) > 0} acts on S by translation: j or(z) = (%) +j. This is an action
because as k is assumed large, this translation does not change the top degree and
hence polar divisor or a sign. Further, if (j; + 7(¢))/(j2 + (%) is a unit, then since
its polar divisor is zero, it has to be in a finite field, but then the choice of the sign
makes it 1 and hence j; = j,. In other words, there is no isotropy.

Now we show that the contribution of each orbit of S under this action
is zero. In other words, we have to show that 3" N(j + r(¢))™® = 0, where
now the sum is over j running though £, which is a F,-vector space. Now
N + r(2))~% = p[T1o1(j + r(¢))~*, where p is the root of unity to take care of
the sign, and can be taken out of the sum, as it is the same for all . Hence a slight
modification of the Theorem 1, with []( f; + w) in the place of f + w (see [G4] ),
we see that the sum is zero, when £ is large. This finishes the proof. a

THEOREM 5. For anegative integer s, (o((g—1)s) = 0. Infact, Zo((¢—1)s), =
0 for every n.

Proof. By the previous theorem, the sum over : defining the zeta value is finite,
so the proof follows exactly as in the Theorem 2, the fact that some norms get
repeated being irrelevant. a

REMARKS. (a) Let H; be the class field of K corresponding to K* x tZ x Uy,
where ¢ is an uniformizer at oo with sgn(t) = 1 and Uy is the subgroup of the idele
group consisting of those ideles with unit components at the finite places and with
component at co of sgn = 1 (see [T3] for the alternate definition and summary of
basic properties of Hj, we just mention that /1 = H when é = 1). In the case L
contains H1, this theorem follows from the results of Goss [G4] described in the
next section, which use L-functions.

(b) The proof of the Theorem 4 can be used to get bounds, similar to those
obtained by the Theorem 1, on ¢ for which the ith term of {» can be nonzero. For
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the abelian extensions, using L-function factorization, much better bounds follow
immediately from the Theorem 1.

3. Orders of Vanishing

Now we turn to the question of the order of vanishing. Goss [G4] gave a very nice
method to find a lower bound for orders of vanishing, when L contains H; and
mentioned as an open question whether they are exact. We will show that they are
not and indeed that the patterns of extra vanishing are quite surprising in terms of
the established analogies.

The main idea of Goss is to turn the similarity in the definition of our zeta
function with the classical one into a double congruence formula, using the Teich-
muller character, and to use the knowledge of the classical L function Euler factors
to understand the order of vanishing. This is done as follows. (See the references
mentioned in the introduction for the facts recalled from the theory of Drinfeld
modules).

Let p be a prime of A and let W be the Witt ring of A/p. The identification
W/pW 2 A/p provides us with the Teichmuller character w : (A/p)*—W*
satisfying w* (a mod p) = (a* mod p) mod p.

Now let A, denote the gp-torsion of the rank one, sgn-normalised Drinfeld
module p of generic characteristic. Let L contain H; and let G be the Galois group
of L(A,) over L. Then G can be thought of as a subgroup of (A/p)* and hence
w can be thought of as a W-valued character of G. Let L(w™°,u) € W (u) be the
classical L-series of Artin and Weil in u := ¢~°™, where m is the extension degree
of the field of constants of L over Fy.

Let So := {o0;} denote the set of the infinite places of L and let G; denote the
Galois group of Lo, (Ay) over Loo,. Then Gj C Fy'. Given s, let S5 C S, be the
subset of the infinite places at which w™* is an unramified character of G. Then S
does not depend on . Put

o(s,X) = (o(s,X) J[ (1-w*(c0;)Xdets))=1,

OOJESS

THEOREM 6 (Goss [G4]). Let L contain Hy and let s be a negative integer. Then
CO(S» X) € A[X]

Sketch of the proof. Tracing through the definitions, the property of w men-
tioned above gives the double congruence formula L(w™*, X™)mod p = Co(s, X)
mod p for infinitely many p. But as the L function is known to be a polynomial,
the result follows. a

This immediately gives the following lower bound for the order of vanishing.
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THEOREM 7 (Goss [G4]). Let L contain H; and let s be a negative integer, then
the order of vanishing of (o (s) is at least

Vei=ordx=1 [] (1- w™*(00;) X 9e8(%01)),
OOJGSS

REMARKS. Note that V; depends on s only through its value modulo ¢ — 1 and
Vs < [L : K]. This is analogous to the properties of the exact orders of vanishing
in the classical case, but not in our case as we will see below. o

EXAMPLES: (i) L = K = H;: (This is possible, when h§ = 1). Then V; = O or
1, according as s is odd or even. Goss proved that for A = O = F,[t], the order of
vanishing is V.

(i1) L is totally real extension of degree d of K containing H1, i.e., oo splits
completely in L: V; is O or d according as whether s is odd or even. (Note that the
bounds V; in (i) and (ii) are in analogy with the orders of vanishing in the classical
case mentioned in the introduction).

(iii) L = K(Ap): Vs = (g%8®) — 1)/(q — 1) for all s.

(iv) L = Fyn(t) and K = F,(t): Vs = O'is s is odd and for s even V; = p*, if
n=pFl,(I,p)= 1.

(v) L = Fs(+/—t) and K = Fs(t): V; is 1 or 0 according as whether 2 (not 4)
does or does not divide s. a

First few calculations we made on situations (ii) to (v) showed equality of
the bounds with the exact orders of vanishing in the examples. (We detail the data
afterwards). But in the following situation of (i) (which can be thought of as special
case of (ii) also), we found that the bound is not exact:

Let(a) A = Fafz,9]/y*+y = e*+2+1,(0) A = Fyfz,y]/y*+y = 2+ +1.
In both these situations, hd = 1 and hence K = H;. For small s we computed
((s, X) by hand as follows: The genus of K is 1 and 2 for (a) and (b) respectively.
Hence by the bounds obtained from the Theorem 2 and the Riemann-Roch theorem
shows that for (a) and (b), ((—1,X) = 1+0+ X +(z+(z+1))x X2 = 1+ X% =
(1 + X)2 Hence the order of vanishing is 2 for s = —2". Similar simple hand
calculation showed that the order of vanishing is 1 if 2" # —s < 9 for (a) and is 1
for s = —7 and 2 for other s with —s < 9 for (b).

As the pattern, if indeed there should be one, was not clear to us, more calcula-
tions (we list the results below) were performed, using the method and bounds
described above, on macsyma by Jennifer Johnson for example (b), first for
—s < 43 not divisible by 2 (without loss of generality). This showed that within
the range of computation the order of vanishing at s is 2 or 1 depending on whether
I(—s) < 2 or not. From this we could see the pattern and prove the following
theorem.
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THEOREM 8. If§ = 1, ¢ = 2 and K is hyperelliptic, then the order of vanishing
of ((s) at negative integer s is 2 if [(—s) < g, where g is the genus of K

Proof. Let € A be an element of degree 2 and let n be the first odd non-gap
for A at co. Then the genus g of K is seen to be (n — 1)/2. Let S, (¢) denote
the coefficient of X* in (, (s, X ). A simple application of the Theorem 1 and the
Riemann-Roch theorem shows that for 7 > I(—s) + g, 5,(¢) = 0. Hence

(n=1)/2 '
(s, X)= ) 5, (20)Xx%
1=0
since I(—s) < g = (n — 1)/2. On the other hand, as z has degree 1 in F,[z],
we have 5,(21) = Sp : ](i), for 0 < 7 < (n — 1)/2. Further, by the Theorem
q x

1, SF[ )(z) = 0,ift > (n—1)/2,as (n — 1)/2 > I(—s). Hence, (,(s,X) =
q.’t
CF [ ]( s, X?). Hence by the example (i) above, the order of vanishingis 2 = 2 * 1
q.’t
as required. o

REMARKS: (i) We do not need a restriction on the class number of K, so apart from
(a) and (b) this falls outside the scope of the theorem giving the lower bounds.

(ii) Let A be of genus g, with § = 1, and with the gap structure at co so
that I(igoo) = ¢4+ 1,forl < i < randl((g+r)o) =r+1,7¢ < g+ .
Then a straightforward generalization of the proof of the theorem above gives the
vanishing order ¢ (the lower bound V;, is 1) at even s such that I(—s)/(¢— 1) < r.
For ¢ > 2, the simplest such example would mean§ = 1,¢ = 3,7 =1, ¢ = 5 and
[(300) = 2, 1(600) = 3.1 am obliged to J. F. Voloch for providing the following
concrete example of this situation: 22(z — 1)3 — y? 4+ y2> 4+ y3 + y° = O with 0o
being (1, 0). In fact, for this example /(700) = 3, so we can take r = 2. Other
variants of this phenomenon are also possible.

(ii1) Analogies between the number fields and the function fields are usually the
strongest for A = F,[y]. But even in that case, here is an example of extra vanish-
ing, when A = F4[y] and O = Fy[z,y]/y* + v = 23 + (3: Order of vanishing of

(o at s = —1 is 2 (as can be verified by direct computation, for example, by using
the remark (b) following the Theorem 5) whereas the lower bound of the Theorem
7is 1. O

We refer to the last section for some issues raised by this theorem.

We do not know yet whether in these cases, the order of vanishing is V;, except
for the extra vanishing exceptional situation mentioned in the theorem. This is
true in the computational range and we have the following partial result (which
can again be pushed further by the proofs along the same line), which shows that
situation in general can only be worse as far as the pattern of zeros is concerned.

PROPOSITION: For the example (a) above, the order of vanishing of {(s) is 1
(=Vs), ifl(—s) =2o0rif—s =0,3,50r 6mod 7.
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Proof. We know that ((s) = 0 by the Theorem 2. Hence we have

S Xxa= Y Y @

1=0 a€A2g+1

(¢(s, X)/(X = 1))lx=1

f: Z a”®.

=0 a€Ay;

Since the genus is 1, by the Riemann-Roch theorem and the Theorem 1, we see
that in the first case, the terms of the last sum vanish if : > 1, and hence the sum
is1+ 2%+ (z + 1)~° # 0 as claimed. For 7 > 1, the terms of the second sum
are all zero modulo y (as they can be decomposed as sums over pairs b and b + y),
hence the sum is congruent to 1 + 2~° + (z 4+ 1)~° modulo y, which takes care of
the second case. O

We end this section by listing the computational results mentioned above. Let
O denote the order of vanishing of the relevant zeta function at s. Note that in (c),
(d) and (e) below, it agrees with V.

(a) For the example (a) above, for 0 < —s < 32,0, is 2 if [(—s) < 1 and 1
otherwise.

(b) For the example (b) above, and for A = F[z,y]/y*+y = 2" + 2 + 1 and
for A = Fy[z,y]/y*> + y = 2° + = + 1 respectively, for 0 < —s < 65, s
not divisible by 2 (without loss of generality), O, is 2 if [(—s) < 2or3 or 4
respectively and 1 otherwise.

(c) A=TFifz,y]/v* =2~z —1.0,for0 < —s < 28 is 1 if s is even and 0
otherwise.

(d) A = F3[t] with O = F3[t,y]/y* = t> —t — 1 and O = F3[v/t] respectively,
for0 < —s < 31,0,is 1.

(e) A = F3[t] with O = Fy[t], for 0 < —s < 179, O, is 1 if s is even and O
otherwise.

4. Values at Positive Integers

We now look at the values of the zeta functions at the positive integers. The results
obtained are analogues of the classical results with the base being ¢) (with 273
as the relevant period) or an imaginary quadratic field (with the relevant period
being the period of elliptic curve with complex multiplication by the field. In this
second case, the similar results for the absolute and relative zeta values may be
known, but we do not know a suitable reference). For the necessary background
on Drinfeld modules and the explicit class field theory based on them see the
references mentioned in the introduction. Notice that since there is no functional
equation known linking the values at positive and negative integers, these seem
to be two distinct theories. Let 7 be a fundamental period of a sgn-normalized



242 DINESH S. THAKUR

rank one Drinfeld A module p with the lattice corresponding to p being 7 A. (This
determines 7 up to multiplication by an element of F;). This is an analogue of 2.
As an analogue of Euler’s theorem we have,

THEOREM 9. Let s be a positive even (i.e., a multiple of ¢ — 1) integer, then
CA(S)/ﬁ's € H;.

REMARK. Much more precise version of this theorem was proved by Carlitz for
the case A = F,[t], using (what is now understood as) F,[t] Drinfeld module. Goss
proved the Theorem 9 under the additional hypothesis 6 = 1 using the Drinfeld
A modules in general, with essentially the same method. The full Theorem 9 was
proved in [T1], with the only additional ingredient in the proof being the handling
of the signs as in the Section 2. Also note that if we use a period of a Drinfeld
module defined over H instead, the ratio belongs to H.

THEOREM 10. (Goss [G4]). Let p be a sgn-normalized rank one Drinfeld module
with corresponding lattice 7 ,1,, where I, is an ideal of A. Let J be an ideal of
A, A, j be the J-torsion of p and let « € J~11,. Then for s a positive integer, we
have
M, = 7~rp_s Z (Oz + ’i)—s € H](Ap,.]).
ielp
a+4i#0
Proof. We will drop the subscripts p in the proof. Let e(z) be the exponential

function corresponding to p. It has coefficients in H;. Also, e(a#) is a J-torsion
point of p and hence belongs to H(A ;). (For a nontrivial J, this field is the same as
K (Aj),by theclass field theoretic results of Hayes, see p. 245 of [T3]). Hence, if we
write 1/e(z + aft) = Y ¢y,2", then ¢, € Hi(Ay). Now e(2) = z[[(1 — 2/(71%)),
where the product runs over ¢ € I — {0}. Taking the logarithmic derivative, if
a ¢ I,sothata + @ # 0, we get

1 1 1
e(z+af)  e(z)+e(af) ; z+ 7(a + 1)

- LT s o

n=0 1€l

We get a similar equality if we multiply both sides by z to get rid of the pole at
0, if a € I. Comparison of the coefficients now proves the theorem. a

Proof of the Theorem 9. The special case « = 0 and J = I = A of the previous
theorem shows that #° 5~ a~° € Hj, where a runs through the nonzero elements
of A. By looking at the signs, we see that the sum is zero, if s is odd and is —((s),
if s is even. a
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Now we turn to the relative zeta functions.

THEOREM 11. Let L be an abelian totally real (i.e., split completely at o)
extension of degree d of K containing H and let s be a positive even (i.e., a
multiple of ¢ — 1) integer. Then Ry := (o(s)/#% is algebraic. Furthermore,
R, € K(Ay) in the notation introduced below, R? € Hy and R*" € H if ¢® — 1
divides 2dsn.

Proof. Let G = {o; : 1 < ¢ < d} be the Galois group of L over K. By
the explicit class field theory, L is contained in the maximal totally real subfield
K(A,)* of K(A,), where J is the conductor of L and A denotes the J-torsion
of p.

To make the main ideas clear, let us first consider the special case hé = 1. (e.g.,
A = F,[t).

As G is abelian, the relative zeta function factors into L functions: {p(s) =
[T, cq L(x, s), where L(x,s) := [](1 - x(P)P~*)"! = S x(I)I~*, where I
(1‘g< respectively) runs through (irreducible respectively) elements of A, . Note
that since s is even, I° is independent of the choice of signs. (Here the subtlety,
important when p divides d, (see also the remarks below or [G4] p. 345) is that we
consider x as coming from reductions to characteristic p of 6; valued characters,
so that e.g., if G = Z/p we still consider p characters (all trivial), rather than just
one). Since this decomposition is through the Euler factors matching and since each
Euler factor of (o lies in K, it is enough to show the corresponding statements for
R! := [1 L(x, 8)s/#%%, where the subscript J indicates that Euler factors for J
have been removed.

For o € G, let {, := >_ I~*°, where the sum is over I € A, prime to J and
with the Artin symbol o7 = o.

Then we have L(x, s)g = Y x(¢)(,. Furthermore, the ideal group correspond-
ing to K (A ;)" consists of principal ideals generated by elements congruent to one
modulo J. Hence (, is K-linear combination of sums in the Theorem 10, which
then implies that R, € K (A, 1), where p is the root of unity of the order equal
to the exponent of G, so that x € F,(x). Hence R; is algebraic. To get a better
control on the field which contains it, we use the Dedekind determinant formula:
ITL(x,s)s = det(Cai—lUj )dxd-

Hence R, = det((a¢1aj /7%*), where the entries lie in K(A,) by above. The

action of Gal(K (A )/ K) permutes the rows of the determinant, multiplying it by
+1, hence R? € K and this completes the proof when hé = 1.

In the general case, in the definitions given above, I € A, should be replaced
by an ideal I. So if s is an even multiple of the class number hé of A, we can
replace I° by an element in the obvious fashion and the proof above works just the
same. But in general, to pass from ideals to elements, we proceed as follows.

Let R := {I,...,Ins} be collection of the ideals of A prime to J representing
the ideal classes of A. Since H C L and since the Galois group of H over K
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is naturally isomorphic to the ideal class group of A, we have a surjective map
o0 € G+ r(g) € R.Now []r(o)? is the identity in the ideal class group, by a
simple argument in group theory. (Pair elements with inverses and look at order
2 elements). Hence this product is a principal ideal (@) and since s is even, a® is
defined independent of the choice of the generator a of (a), just as (o (s) is then
defined independent of the choice of §.

Next, we define I® (for s an even integer) in such a way that (IJ)* = I*J*® and
for a principal ideal I = (%), I°® = 4*, so that Dedekind determinant formula and
factorization into L-series would get through.

The class group of A is a finite abelian group and hence a direct product of
cyclic groups C; of orders c;, 1 < j < k say. We fix ideals Iy, ..., I} representing
the classes given by some generators of these cyclic groups. Let [ ;’ = (a;).Let I3,
1 < ¢ < hé be the ideals representing all the ideal classes of A obtained by taking
the obvious monomials in the chosen ideals.

We first define for 1 < 7 < &, IJ‘?' = (aj)l/cf where we fix the c;th root
arbitrarily. Then we extend this definition to I7, 1 < ¢ < hé by multiplicativity
using the monomial defining I;. Finally, given any I, for a unique I;, we have
I = I)(b;) and we define I° := I}b]. It is straightforward to check the consistency
and the two properties mentioned above.

Notice that the ambiguity in passing from the principal ideal to its generator is
irrelevant here, since the sth power that we take kills it. Hence, exactly as above, we
finally get (o(s)s/7% = det((afla]r(a‘l)sr(aj)s/ﬁ's)a‘zs, where the subscript
J again denotes the restriction to prime to J ideals.

(Another way to see that we can extend the exponentiation multiplicatively from
the principal ideals: (a)® = a® to all ideals, is to note that since 2* is a divisible
abelian group (Z-module), it is injective and hence the exponentiation homomor-
phism from the group of principal nontrivial fractional ideals to 2* extends to the
bigger group of all nontrivial fractional ideals. Notice also that when é = 1 or
when the class of ideals is restricted to positively generated ideals (eg. norms from
L if L contains H;), then our approach defines the ideal exponentiation for any
integral s satisfying the properties listed above, by choosing positive generators of
the principal ideals involved. Similar remark holds when S can be chosen multi-
plicatively. Reader should also look at 3.3 of [G4], where the ideal exponentiation
is defined on a much bigger space of exponents by more sophisticated technology.
We do not need this for our limited purpose here).

Again, keeping in mind the natural correspondence between ideal classes and
conjugate sgn-normalized Drinfeld modules, the entries in the determinant can be
expressed in terms of the quantities of the Theorem 10 by the class field theory.
The action of Gal(H (A ,)/H;) as before, implies R2 € H;. The final statement

follows since (o (s) € Ko as well as #9°-1 ¢ K., bye.g., [T1] p. 19.
This finishes the proof of the theorem. a
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REMARKS. (I) A version of the theorem, with ¢ — 1 in place of ¢ — 1, is due to
Goss [G4] and the proof here is also a minor variant of his proof. Classically, an
analogous result for arbitrary (not necessarily abelian over Q) totally real number
field is known. For the history and references on this general as well as the abelian
case using L-functions, as we have done here, see [K] and see [G4] for ideas about
carrying over the proof in the general case. On the other hand, such an algebraicity
result for the ratio of the relative zeta value with an appropriate power of the period
27t is not expected for number fields which are not totally real. But in our case,
we can have such a result even if L is not totally real, as was noted in [G3]: Let L
be a Galois extension of degree p* of K, then since all the characters of the Galois
group are trivial, the L-series factorization shows that (o(s) = ((s)*" and the
result follows then from the Theorem 9. (More elementary way to see this when
the degree is p and O is of class number one is to note that for o € O — A, there are
p conjugates with the same norms which then add up to zero, whereas for a € A,
the norm is o). This can also be used to create examples of situations where the
exact orders of vanishing are known.

(I) From the results stated in the introduction, values of the Dedekind zeta
function at negative integers are all zero, if the number field is not totally real. By
(D), similar result does not hold in our case. In fact, we do not even need degree to
be a power of the characteristic, as can be seen from the examples (c) and (e) in
the last section. The ramification possibilities for the infinite places are much more
varied in the function field case.

(II) The following example shows that we can not replace H in the theorem,
when § = 1, by K in general, answering a question raised by Goss [G4]. Take
A =Fs3z,y]/y*> = 23 + 22 — 1, whichhash = 3and § = 1. Let L be H. Then L
is a totally real abelian extension of K of degree 3 containing H and by the remark
M, Co(2)/78 = ¢(2)*/7° = (z — 2*)? /23 by (12) and (1) of [T4], where z; is the
coefficient of F' in p, for p defined on pa. 214 of [H1] and hence generates H over

K and hence m? can not be in K, otherwise H would not be a separable extension. O

5. Open Questions

Finally, we briefly discuss some open questions raised by these results. Clearly
the main question is how to predict the exact orders of vanishing in general and
whether there is any reasonable functional equation relating the values at positive
integers to those at the negative integers.

The results of Goss and Sinnott, mentioned above, come via congruence with
the classical L-function and hence relate the arithmetic of the class group to the
V,th term of the expansion of the zeta value at X = 1, rather than the leading term.
It is not clear what information the leading term provides in the cases of the extra
vanishing.
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There are also simpler open questions such as whether {(s) can be zero at odd
negative s if the hypotheses of the Theorem 3 are not met or whether there are
any non-totally real extensions (which are not Galois of p-power degree) for which
the values at positive even integers are related to the periods as in the Theorem
11 or whether anything special happens at the positive integers in the cases of
extra vanishing. Another open question, already alluded to in the remark (I) of the
Section 4, is whether the Theorem 11 generalizes to arbitrary totally-real extension
(perhaps via Eisenstein series, see [G4]).

We hope that the reader will take the challenge and solve some of these ques-
tions.
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