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Patterns for simple continued fractions of the analogues of (xe*’ + y)/(ze*/ 4+ w)
in the F [ 7] case are described. In contrast to the classical case where they consist
of arithmetic progressions, in this case they involve an interesting inductive scheme
of block repetition and reversals, especially for g =2.  © 1997 Academic Press

This is a sequel to [ T2]. For perspective, motivation, and background
material on continued fractions and the Carlitz exponential, the reader may
profit from looking at [ BS, T1, T2], but this paper is mostly self-contained.
We start with a brief introduction:

0.0. Classical results of Euler and Hurwitz ([H1], [P]) show that the
sequence of partial quotients for the (simple) continued fraction for
(xe® + y)/(ze*” +w), with x, y, z, w, f integers, f #0, xw—yz#0 (the so-
called Hurwitz numbers), eventually consist of a fixed number of arithmetic
progressions.

EXAMPLES.

e=[2,1,2,1,1,4,1,1,6,1,..,1,2n, 1, ..1=[2,1,2i, 11,

1
e; =[1,4,5,4i—3,1,1,36i—16,1,1,4i—2, 1,1, 36i—4, 1, 1,4i— 1, 1,5,47, 11 ,.

There is no “formula” giving the sequence of partial quotients: the reduction
process giving a procedure to work out the sequence is quite involved. See
[P, R, MW, vP] for more information.
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130 DINESH S. THAKUR

0.1. Let g be a power of a prime p and let F, denote a finite field of ¢
elements. From now on, we will be interested in the case where integers are
replaced by polynomials (though we sometimes refer to them as integers)
in F,[7] and the exponential function is replaced by the Carlitz-Drinfeld
exponential. See [ C1], [ Ha] for background and motivation for 0.1.1 and
0.1.2. We will not need any knowledge of the theory for this paper.

0.1.1.  The Carlitz-Drinfeld exponential e(z) is defined as follows:
Let [i]:=t"—1t dy:=1 and d,:=[i]d?_,, for i>0. Put

D18

e(z) =

i

z4
o di
0.1.2. By Hurwitz numbers we will mean (xe(0/f) + y)/(ze(0/f)+w),
with x, y, z,w, feF [t], f#0, xw—yz#0 and 0eF}. For ¢ =2, we also
allow 0 =t, t+ 1, t> + t. The motivation for this is that these are exactly the
values whose Carlitz torsion is “rational”, ie., the roots of Carlitz
cyclotomic polynomial (see [Ha] for the definition and properties) Cy(u)
are in F (). This is analogous to the fact that the only roots of unity which
are rational are the first and the second roots. So analogue of 2, in this
context, is [1]=1>+1t.

0.1.3. We do have “patterns” for analogues, but of completely dif-
ferent kind. We have complete results [ T2] for ¢ > 2. They can be roughly
described (see below for the precise description) as “block reversals at each
stage.” The case ¢ =2 leads to the most interesting and subtle patterns,
involving “an inductive scheme of block reversal and repetition at each
stage.” We study and settle this case completely for 6 =1. For =1, 1+ 1,
t>+t, we will be content with partial results and conjectures based on
experimental evidence.

0.1.4. As the simplest example of “patterns” we will encounter, we
have [T1, 2], for ¢ =2,

er=e(l)=[1,[1],[2], [1], [3], [1]. [2]. [1], [4],
W_/ ~— —

N— -
e

(11, 02),[1], 03], (1], (2], [1). [5], ...
N— -

~

0.1.5. A number and its integral linear fractional transformation of
determinant +1 have continued fractions with the same “tail” and they
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can be easily computed from one another. Hurwitz numbers can be trans-
formed [T2] by such a transformation to numbers of the form o=
(a/b) e(0/f) + (c/d), with 0 and f as before, a, b, ¢, d integral and a, b, d #0.
Without loss of generality, we will assume that a/b and c/d are in reduced
form. We will show/observe that these numbers have “pure patterns.” In
other words, the patterns start immediately after the first partial quotient,
rather than after some number of partial quotients.

0.1.6. Let a,:=(a/b) Y"_, (0/1)/d,+ (¢/d). For large n, the «, give
convergents to o (See Theorem 1 and Propositions 1 and 4 below). We
write their continued fraction expansion as [| «_|, M, ], where “the integral
(polynomial) part” | x| is defined to be Y7, x,¢’, when x=Y"___ x,t"
We show how M, is obtained by “an inductive scheme of block reversals
and repetitions up to one well defined sequence of partial quotients”.

0.1.7.  Basic notation: A capital letter such as X denotes a finite tuple
(a vector) of partial quotients and X~ denotes the tuple with the same
entries in the reverse order. We sometimes write X+ for X. Also, —X
denotes the tuple obtained from X by putting a negative sign in the front
of each entry. We also write M, ,=(M,, t,,1, N, 1)
Hence to describe the continued fraction we describe the sequence of
partial quotients ¢, and new vectors N, at each stage.

1. THE CASE ¢>2

1.0. The exponential is F, linear, so without loss of generality, 0 =1 in
this case. The completely satisfactory answer [ T2] to our problem is:

THEOREM 1. We have N, .= —M, and t,= +a(f" 'd,_ )9 *[n]/b
(with an explicit sign) for n—1 larger than the maximum of the degrees of
a, b, d

Hence all such o’s have continued fractions made up of block reversals:

[a05 Xs X1 _X79 X2, Xa — X1, _X79 X3,X, X1
_Xia — X3, X) — X1, _Xia X4, ]9

with a,, X, x, explicitly known.

2. THE CASE ¢=2, 0=1

2.0. We will describe the main results in this section. The proofs will be
given later.
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ProrosiTION 1. If n> C:=1+max(degd, dega, deg b), then «, is a
convergent to oo and t,,, = a[n+1]/b_].

2.1.  Since we have described ¢,’s it remains to describe N,,.

2.2. Let /:=[l(a):=1[(b) be the least common multiple of the degrees of
the primes dividing b.

2.2.0 Patterns for all the o’s with the same / will be described in a
uniform fashion. In fact, for each positive integer z, we will give a pattern
which works for all the «’s with / a divisor of z. But as we will see, the com-
plexity of the patterns grows with z, so for practical purposes, the reader
would do well to concentrate on the case z=1.

2.3.  Below, n will be assumed to satisfy n> C+ z.

2.3.0. For such n, the patterns will be given inductively, so that the
continued fraction pattern for all the «’s will be described effectively. Note
that deg ¢ does not come into the picture, as it can be assumed to be less
than deg d by a harmless shift of an integer (polynomial).

We will start with the simple cases, which will be needed anyway for the
proof of the main theorem.

THEOREM 2. For n> C+ z, we have

(P1) If'I divides z=1, then N,=M, _,.
(P2) If'l divides z=2, then N,=(N, _1,t,_1, M, _>).

2.4. We will show (the reader is also urged to look at example given
in 5.0) in the course of the proof of the main theorem that N, has a well-
defined decomposition into 2/ smaller blocks (for any n sufficiently large
compared to any j in fact, but we will only use this for » and j appearing
in the main theorem, namely for » as in 2.3 and for j <z —2) as follows:

24.1. We will write i/ (for 1<i<2/) for the vector of partial

quotients giving the “ith part” in the “2/th fold decomposition” of N,,.
These are related inductively as follows:

N,=1,, i =(Qi=1)" 1, Q20
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24.2. For example,

an 122(11 lnfl’ 2:1)2(12 tn729 2i7 Z‘)1715 359 ln727 42)

n’ n’ n

_ 3 3 3 3 3 3 3 3
- (lﬂ’ ln73’ 2n’ tana 3na 1;1737 4n9 tnfla Snn ln73a 6nn ln72a 7n’ tn739 Sn)
- — - —
~ ~

243. We also define s, =, ;, for 0 <k <, by s, :=3%_,2/7* Note
that s,=0 and 5;,=2/—1.
We are now ready to state our main result:

THEOREM 3. For n> C+ z, we have:

(P3) If | divides z=3, then 1'=(2'_,,¢t, ,,1' ) and 2! =
n n—1 n—1 n
(Nn—2> tn—ZaMn—:i)‘
(P4) If I divides z=4, then
15:(4i71’tn73a3f2171)9 2§:(257]71r17391r2171)9

32:(2;72’[}17391;72)’ 4ﬁ=(Nn73atn735M;174)'

n

(Pz) More generally, for z>1, if | divides z, then with j=z—2, for
1<i<?2/, i’ is given by

(27 =20 s = D) s tu s (2775 =201 =5, = 1) = 1)7 5 ),
I sp<U<Spy
and

(2'7)£=(N,17j71, tnfjfls Mnfj72)'

2.5. To help visualize these patterns without a complicated scheme of
subscripts and superscripts, we reformulate the patterns as follows: The
pattern in (P3) is equivalent to

N :(An’ tnfl’Bn) Wlth An:(anl»[an’Anfl)

n

and

Bn:(Nn—Za Z‘n—Za Mn—3)'
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At this point, the reader should look at the example in 5.0 and check that the
pattern follows our description.

Pattern in (P4) is equivalent to

Nn= (an 1;7727 Yn: anls Zn: l‘,,,2, Wn)s
X, :(anlatnfihznfl)’ Y, :(Ynfl’tnfithfl)a

n n

Zn: (Zn727 Z‘;1747 Wn725 tn73’ anZ’ tn74: Yn72)’
w_/

Wn:(N;1737tr173aMn 4)'

Finally, (Pz) can be described in rough words as: N, is formed by first
writing the 2°~2-fold decomposition into blocks of N, ; in the reverse
order, followed by the 2~ *-fold decomposition in reverse for N, _, and so
on, until you write N, ., (1-fold) followed by M, ., all punctuated by
the appropriate #,’s. A simpler description (which fails to illuminate the
richer interconnections though) is that for larger n, N, =(X;, x;, Xt_1,
Xp_15 - Xo) Where M, = (X, X1, Xy, ., X, X}) 1s the unique decom-
position where the x; are entries of degree >2"""®*! 4+ deg a —deg b and
the X, are vectors which do not contain such entries.

2.6. Since M,=(M,_,,t,, N,), we can rephrase (Pz) by giving an
induction scheme purely in terms of parts of N,’s, an aesthetic advantage
being that one has to remeber only the last few new vectors to write the
next new vector.

3. ADDITIONAL/SIMPLER PATTERNS

3.0. These continued fractions exhibit many more additional and
simpler symmetries in special cases. (In fact, this made the general pattern
in the theorem as well as the role of /(b) difficult to discover).

3.1. For example, (see [T2], or Corollary to Proposition 2 below) if b
divides [1], then N,=M, , for large n and if b is square-free, the same
formula holds for n any multiple of /(). So in the first case, we have
M,=M, for all n, whereas in the second case, we have complicated
patterns much more simply expressed for many n’s. Similarly [T2], for
a=e/t", we have N, ,, =M, and for a=e/(t>*+t+1), if n is odd (more
than 1), we have N,,, =M, and if n is even (more than 2), we have
N, =(N,,t,,N).

n ns "ns n
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3.2. Note that (Pz) implies that after some initial (explicit) vector, the
only new partial quotients appearing are the ¢,’s. Moreover, every single
partial quotient (after a,) occurs infinitely many times. In particular, we
know the exact set of partial quotients.

3.3 The simplest case of block reversal: N, , ;= M, can equally well be
presented as: N,=(N,_,,t,_1,N,_).

3.4. For ¢/(t?>+t+1), the scheme can also be presented [ T2] as:

Now=(Ny, 15 tou_1s N3y 5y l2u_2, Noy_5) and Ny, =(Ny,, 15,, N3,),
instead of using M’s as above. This scheme also works for a having b
square-free, with /=2,

3.5. For b square-free, with /(b) =3 and large n, the scheme can also be
presented as: Let us put X, =(M3, ,, t3,_1, N5, ;). Then Ny, =M;, ,
(by 31): N3n+l = (an Z‘3ns X;) and N3n+2 = (X;a Z‘3n’ Xna Z‘3n+1’ M;nfl’
t5,, M5, _4). It can also be presented without involving M’s, by just noting
that 3.1 implies M3, ,=(N3, 5, t3,-2, N3 5, t3,_3, N3,_3) and
M, =(Ms,_ 5, ty,_1, Ns,_;). We leave the proof, which is a
straightforward modification of the proof of the main Theorem below, to
the interested reader. See also 4.2.3.

3.6. Fore/(t*+1t+1)orfor e/(t(t*+1+1)), we have N;=(Ns, t5, M,
te; Ng ), Ny=M; =(Ne, ts, Ms, 17, M) and No= (N, t;, M, t5, Mg ,
t7, N7); whereas for e/(1* +¢>+ 1), N; has new digits, Ny is given by the
first but not the second equality above and Ng= (M3, t,, N, 15, A7, tg,
B>, tg, B,, tg, A7, t5, Ng, ts, Ms), where N, =(A4,, ts, B;). Here we note
that *+ ¢+ 1 is invariant for the automorphism ¢ — ¢+ 1, but t*+¢3+ 1 is
not.

3.7. In fact, most of the time, the patterns we have described seem to
have sub-patterns inside the initial part itself.

4. PROOFS

40. We can assume |a| to be zero, by subtracting it from o, if
necessary.

4.0.1. We will use frequently the recursion relation 0.1.1 for d,, as
well as the fact [C1] that d, is the product of the polynomials of degree i.

4.0.2. We use the standard notation (see [ HW, T2]) for continued
fractions. Our first lemma (see [BS]) is an analogue of the standard
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approximation criterion for the convergents of the usual continued
fractions.

Lemma 1. Let feF,((1/t). If deg(f—p/q)+2degg=—d<0, with
P, q € F,[ t] having no common factor, then q=q,, p=p, and dega, ,,=d
for some k.

Proof of Proposition 1. By 4.0.1, if we write g=>5bf*d,/a, we have
o, = p/q for some p prime to ¢, since n> C. (This is proved in the proof of
Theorem 2 [ T2] and also follows from the integrality of Q proved in the
proof of Proposition 2 below. Also, to show that «, is a convergent, we just
need the obvious fact that the denominator of «, divides ¢, because the
upper bound for deg ¢ thus obtained is sufficient). Now,

e}

a—a,=(a/b) Y, 1/(f*d),  degla—a,)=deg(a/(bf*" " d,. ).

i=n—+1

Hence by a straightforward calculation, using 0.1.1, we have
deg(a—a,) +2 deg g =deg(b/(a[n+1])=deg b—dega—2"+' <.

By Lemma 1, «, is a convergent to a.

41.1. We write «,=p, /q,,, in the standard notation. To avoid
double subscripts, we write k for k, below. The reader should not confuse
between k—1=k,—1 and &k, _,.

Let u,=|a[n]/b]. We want to prove that u,,,=¢,,,. It is enough to
show that p:=(u,  pr+pr_1)/(U, 19+ qi_1) 1s a convergent to «. By
Lemma 1, it is enough to show that deg(a — u) + 2 deg(u,, ., q4) <O.

Now, a—a, is (a[n+1]4¢7/b)~" plus terms of degree less than
—2deg(u,,19), as is apparent from a straightforward calculation
using the series representation above. On the other hand, o,—u=
(t, 192+ qrqr_1) " Adding the two quantities we have,

deg(ox —p) +2 deg(u,, 11 )

(aln+11/b+u, \) qi+q:qx
(aln+11qz/b)(u, 193+ qidi 1)

X

+ 2 deg(un+ 1 q/c) < O
since deg(a[n+1]/b+u, ) <0. This finishes the proof. ||
42.0. We have

bf*d - ;
T b= (@) $ 00 )+ @) ).

9r, =
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42.1. Let us write t,=a[n]/b], t,=a[n]/b, r,=t,+1,.

PROPOSITION 2. We have

(1) [07Nn]:rn+(qk,,,|—l/qk”,|)a

(2) Q-1 =i, 70t P, 1€ Ty = (/1) + (qre—1/q5)-
Proof. We have

%:[09 Mn]:[oa Mnflatn’ Nn]’ pkn : [0 Mnfl]
kn i,

so that
P Proy_ @ 1

Qe i, , b7d, qi (L, +[0,N,1+qx , 1/, )

which simplifies to (1).

To prove (2), we first note that Q :=gq,r,+ p, is clearly an integer (i.e.,
a polynomial) and claim that P:=(1+4p,0)/q,= (14 p;+peqcrn)/qx is
also an integer.

To prove the claim, note that

a 1 c a"Z' 1 c
1 1+ K 1
b= ‘“< PIE d> "’< Zo7at d>

so that
a’ "t 1 c? a 1 c
P=q:| 5 o 3 + ; T
q"<b2 PINERE d> q"< Lzt d>

on__oi adn % 2 —1 iz C}"n>
_Zf <bd2 ]+ d.>+{f d,,rn+qk<d2+ 70

i=1 i

By 2.3, d? and bd divide ¢, and the quantity in the curly brackets is an
integer. Hence it is enough to show the integrality of ad,/(bd? )+
d,r,/d;=(d,/d)(t;+r,). But b divides d,/d;, if i<n and if i=n the
integrality follows, since ¢, is an integer by definition. Hence the claim is
justified. Finally, p, QO+ ¢q,P =1 implies Q=¢, _, (eg. as in [T2]), since
deg(pp_1—P)<degp, (This is equivalent to deg(l+p;+piqirn) <
deg p.q, and this in turn follows from deg p, <deg ¢, and deg r, <0). This
finishes the proof of the proposition. |

COROLLARY 1.We have [O,N,]=r,+[0, M, 1=r,+r,_+[0,M,_,].
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Proof. This follows by combining (1) and (2) of the Proposition 2 and
by using the following standard formula (see [HW]) to reverse a con-
tinued fraction:

422, If[0,X]=p,;/q;, then [0, X~ ]=p; /q;, with

P =4qi_1, 9, =4 Pi_i1=Pi1, q,_1=D:

4.2.3. The Corollary explains some of the simpler additional patterns,
when b is square-free: then, r;,,=0 for large i.

43.0. We note another key fact about the divisibility, which will be
used frequently: The condition that /(b) divides z is equivalent to the condi-
tion that b divides some power of [z], eg. the deg hth power, which is
equivalent to r,+r, .=0 (since 2" ! >n>degb). Hence, the Corollary
proves part (P1) of the Theorem 2.

43.1. Now, we have ¢, _,=¢q,r,+p,and p,_=(1+prqi_1)/qc, by
the basic determinant relation.

432. We write [0, N,]=p./4,, with s=3s,,.
PROPOSITION 3. We have p,=r,q,, + 9, ,—1> §s=qr,_,»

qsfl zqkn,l(rn +pk/qk) + 1/(ankn,])9 ﬁsfl =(1 +ﬁsqs71)/qs'

Proof. The first two formulas follow easily from the Proposition 2 and
the last is just the determinant identity, so it remains to prove the third
formula. We have, by the reversal formula quoted above,

qr—1

9

:[ODM;]:[OaN;stnaM;fl]

:aﬁ; +p~s:1:aq,v—1+15x71
ag, +q,_, ag,+ps

with a=1¢,+p, /g, =1, + 4, ,—1/4%, ,- Plugging in the value for p,_,
above, we see that

'qS71 = (Qkf lqs(a +ﬁs/q~s)/qk + l/qs)/(a +p~s/és)

By the first two formulas, we have a+p,/j,=t,+r,=1,. Using (2) of
Proposition 2 finishes the proof. |

440. So we have given formulas, in general, for the p,,, q,,,
Pm—1-49m_1 (in terms of p,°s, ¢, ’s, r,’s and ¢,’s) for each of the
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fractions [0, M*] and [0, NF], so that given any claimed induction
scheme involving only M’s or N’s for a particular example, it should be
mechanical (though laborious) to prove it, modulo simple divisibility
arguments. We illustrate this philosophy now, by proving part (P2) of
Theorem 2.

Write w=t,+p.,_,/q,_,» then

[0’ Nn> [}17 Mnfl] = (M)ﬁ,\‘+ﬁx71)/(wqx+q.\'fl)'
By Propositions 2 and 3, the denominator is
Wi, + Gr (a0 a) =1, 45,
and the numerator is
an,l(w(”n +7,_ +Pkn,1/‘1k,,,1) +(r, + Pl +1/q;)
X (rn+ rnfl +pk”,1/qk,,,1) + l/qlzc,l,l)
= qkn,l(rn(rrl + Fn—1 +pk,,,1/qk,,,1) + l/q/%,,,l'

44.1. Hence the ratio is r,+r,_;+a,_;+1/q,, which can be
written, by Proposition 2, as

[05 Nna t;nMn—l]:[O’ Nn] +l/qk:rn+l +rn—l+[05 Nn+1]'

By 4.3.0, since /(b) divides 2, we have r, ., +r,_, =0. Hence, we have
proved Theorem 2. |1

4.5. Now we start the proof of the main theorem.

First we prove two general lemmas, which extract all we need from the
theory of continued fractions and the particular form of the a’s. After
exploiting them, the proof will be reduced to induction book-keeping and
an application of 4.3.0.

LEMMA 2. Let
[O,X]:S-FO(,[?,-, [OaXi]:u_'_O(nf[a [09 Y]:vdl—anfia

with s+a, ; (and hence u+a, ; also) having denominator exactly q,, .,
and with the denominator of v dividing q,.,, .. Then we have

[OaX’ tn—i+ka Y]:S+(xn—i+la lf u+v:tn—i+1+tn—i+k'
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Proof. Recursion formulae (see [HW] or [T2]) for the numerators
and the denominators for the continued fractions imply that if (in standard
notion for continued fractions [ HW1]) [«ay, @4, ..., a,,]1 =p,/q,, then

an+1(pn/qn) +(pn71/qn)
Ay +(qn71/qn)

[a()s a17 (id) an+l:| =

and p, /g, =(*1+p,q, )a,=+q,+(p./a.)(q,1/q,)-
Hence [0, X, ¢, .4, Y] is

(1, jonto+a, Ns+a, )+1/gr +(s+a, Juta, )
(tn7i+k+v+an7i) + (u+anfi)

:(S+<X'n7i) [nfi+l + 1/qin,,~

tn7i+l

:s+an—i+ l/qkn,i+]zs+an—i+l;

by 0.1.1, 42.0, and 4.2.1. This finishes the proof. |

Lemma 3. Let i<z and [0, X]=g+a,,; with denominator of g a
divisor of b. Then the denominator of g-+«, ; is exactly gq, , and
[03 Xﬁ] :g+rn7i+an7i'

Proof. Let us write ¢=gq,,_, and p=p,  temporarily for the proof. If
the denominator is not exactly ¢, then some prime (i.e., an irreducible poly-
nomial) divides ¢ but does not divide g/b. This is impossible, because b>
divides ¢ by 4.0.1, 2.3, and 4.2.0.

The rest of the proof is very similar to the proof of (2) of Proposition 2.
In fact, Q:=(g+r,_;) ¢+p is clearly an integer and we claim that

P:=((gg+p) O+ 1)jg=g(g+r, ) g+ +p>+pgr, )/q

is an integer (i.e., a polynomial).

Now the first part is an integer, since b* divides ¢ and the fact that the
second part is an integer is proved in the proof of Proposition 2. (One has
only to replace n there by n —i, which is valid, because of the bound on i
and 2.3). Finally, a straightforward degree estimate, as in the proof of
Proposition 2, shows that P and Q are the penultimate convergents to
[0, X] and 4.2.2 finishes the proof. |i

To help better understand the argument by induction on z, we give the
arguments for part (P3) in detail together with the general arguments.

4.5.1. By Lemma 1 and Corollary to Proposition 2, a straightforward
calculation (exactly as in the proof of Proposition 1) shows that [0, 1}] :=
r,+r,_1+o, , is a convergent to [0, N,]=[0,1°]=r,+r,_;+a,_,
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with the next partial quotient 7, _,. So we write [0, N,]=[0,1},7,_,,2.].

By Lemma3, [0,1) 1=r,+r, +r, »+a, >. Lemma?2 now implies

that [0,2}]1=r,+r,_»+a,_,. One more application of Lemma 3 gives

[0,2)"1=r,+a,_,. (Notice that by Proposition 3, [0, N, ]=r,+a,_,

which is consistent with its convergent [0,2' " ]=r,+a,_,, which we
would have started with, if we had argued with the reverse vector first).

Jj+1
n

4.52. Exactly in the same fashion, we see that, i/ =((2i—1)
be i1 (2i)7* 1), as claimed in 2.4.1, together with

E

[0» (21_1);;+1] = [07 l{z] +an7j72+an7j71'

453. By Lemma3, we have [0,i,]=[0,i,"]+r, ; ,. Applying
Lemma 2 to this, together with 4.5.2, we get

[0,(20),1=10, 2i—1)/]1+r, ;+r, ;..
Also, by 4.5.2, we have
[0, (2i—1);* ' I=[0,i7]+a, ; 140, ; o

By induction, this gives the values of all i/’s and i/ ’s.
Here is a table for j=0, 1, 2.

[0, 1] =r,+r, 1+, ; [0,1°"]1=r,+a,_,
(0,2 1=r,+r, >+, > [0,2) ) =r,+a,_»
[0, 1 ]=r,+r,_1+o,_, [0, 1) ]=r,+r, 1 +F, ato, »
[0,42]1=r,+r, s+, 3 [0,427 ] =r,+a,_;
[0,3]=r,+r, >+a,_; (0,32 1=r,+r, 2+r, 3+, 5

[Oa 2121] :rn+rnfl +rn72+rn73+a1173 [05 zii] :r11+r1171 +r,172+oc,173

[0, li]=rn+rn71+an73 [0, 157]=rn+rn—l+rn—3+a‘n—3

Now we explain how Lemma 2 together with the table for j=0 and 1
finish the proof of (P3). (We urge the reader to verify (P4) from the table
above for j<2 in exactly similar fashion to help better understand the
general arguments that follow.):

By the j=1 entries of the table (for n replaced by n —1) and Lemma 2,
[0,2) |\, t,_» 1. 1=r,_+r,_3+a,_,, but by 43.0, this is the same
as r,_,+r,+a,_, which is [0, 1}]. This proves the first claim of (P3).
The second claim follows by comparing the 2! entry with the value given
4.4.1 and Corollary 1, using 4.3.0.
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4.5.4. We now claim that in general, for 1 <i<2/,

[0.i7]+ 7,47, 2 =[0.(2/ =26 =5, = 1)1 ..

tij_1s (27 =2(i—s,—1)—1)7 % ]

if s, <i<spy,.

First we notice that by Lemma 2, the right hand side is [0, (2/ % —
2i—se—1)0 "% I+, ;1 +a, , ,. (In more detail, by the first for-
mula of 4.5.3 (in the notation of Lemma 2), we have u=s+r, ;, , and by
the second formula of 4.5.3, we have v=s+r, ;, +7r, ; ,, so that
ut+v=r, ; =t, ; ;+1t, ; ; as required.)

So we are reduced to proving that

[0,i51=1[0, (2" *=2(i—s,—I)i % J4+% i+ atr, 47 s

The proof is by induction on j:

We will work out the case when i is odd and leave the case when i is
even, which is similar, to the reader. First note that s, ;=2s, ; ;, so that
iff s, ;<i<Sp,q, thens, ; <(i+1)/2<s,,; ,; ;. We use this below in
the induction step. We have

[0,;1="[0,((+1)/2); T+, ;+o, ;

=[0, (2" =20+ D)2 =5, ;= )i T .,

where the first equality is by the third formula in 4.5.3 and the second is
by the induction hypothesis. On the other hand, we have

[0, (27 F =2(i—=s, — 1))} "%,
= [O’ (Z‘iik_z(i_sk_ l)_ 1);]1:11\(71] +r}7717j+rn7j72

= [0’ (2]'7171\'_(1._‘8‘/6_ 1)){1:}(:]; +rn717j+rn7j72+a’n7j71 +an7j729

where the first (resp. second) equality is by the second (resp. third) formula
of 4.5.3. Comparison proves the reduction and hence the claim.

4.5.5. Now we proceed to the proof of (Pz). So let j=z—2. The fact
4.3.0 shows that under the hypothesis of the theorem, r,,+r,_.=0 and by
4.5.4, we get the proof of (Pz) for i <2/, Finally, the claim for the case
i=2/ follows by comparing the value obtained by 4.5.2 and 4.5.3 with the
one obtained in 4.4.1 and Corollary 1, using 4.3.0. |
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5. AN EXAMPLE

5.0. For the benefit of the reader, we provide the C program output of
an example giving the partial quotients for Mg for a=e¢/(£*+1+1). We
have put in some empty spaces and new lines to facilitate the pattern
recognition. Each entry in a squared bracket is a partial quotient, [ 2, 3, 4]
standing for ¢>+ ¢> + t* for example. This temporary notion, used for this
example only, should not be confused with square brackets denoting con-
tinued fractions or with the square brackets defind in 0.1.1. The larger size
entries are ¢,’s of degree 2' — 3. The reader should check the general pattern
(P3), which works for Ny, N,, Ng and in fact the reader can check it for
N, also, as Ng=M . The reader should also check the special patterns
mentioned above: for example, the pattern in 3.5 and Ng=M .

[3100,17[17[11[1.34,51[1,23,51[1.3.4,51[11[1]1[0,11[31[2.3.4,6,9.10,11,13][0,1]
(0.1700,1L.2] (1111031 00,11 (11 [1,23,5] (1] [0,1][3][1][1]1[0,1,2][0,11[0,1]
[1,4,5,6,8,11,12,13,15,18,19,20,22,25,26,27,29 ]
[1,2][1.257][1,2][1.23,5]1[1,2][1,25,7][1,2][2.3.,4,6,9,10,11,13] [11[0,1,2] [0,1]
(0110110 1.2][1,2.4,89,117[1,21[1]1[0,17[0,17[0,1,2][1]
[1.2,35.8,9,10,12,15,16,17,19,22,23,24,26,29,30,31,33,36,37,38,40,
43,44,45,47,50,51,52,54,57,58,59,61]
(1100121017011 11[L2]1[1,24,89,111[1.2][11[0,11[0,11[0,1,2][1]
[2.3,4,69,10,11,131[1,21[1,2,571[1.2]1[1.2,3,51[1,2][1,2,5,71[1.2]
[1.4,5,6.,8,11,12,13,15,18,19,20,22,25,26,27,29
(0,170,171 0,23 [L1I (11037 00,17 11 01,2,3,5] (1] [0,17[3][1][1]1[0,1,2][0,1]1[0,1]
2,34,69,10,11,131[31[0,11[11[11[1,34,51[1.23,51[1.3.451[11[1]1[0.11[3]
[2.3,4,6,9,10,11,13,16,17,18,20,23,24,25,27,30,31,32,34,37,38,39,41,
44,45,46,48,51,52,53,55,58,59,60,62,65,66,67,69,72,73,74,76,79,80,
81,83,86,87,88,90,93,94,95,97,100,101,102,104,107,108,109,111,
114,115,116,118,121,122,123,125]
(0,170,171 0,L2] (1] (113100, 1701][1,2,3,57[1T[0,17[31[1][1][0,1,2][0,1]1[0,1]
[2.3,4,69,10,11,131[31[0,11[1]1[1]1[1,34.51[1.23.51[1.3451[11[11[0.11[3]
[1.4,5,6.8,11,12,13,15,18,19,20,22,25,26,27,29]
(1100127017011 17 [1,2]1[1,24,89,111[1.21[11[0,11[0,11[0,1,2][1]
[2.3,4,69,10,11,131[1,2][1,2,5,71[1.2][1.2,3,51 [ 1,2] [ 1.2,5,7]1[1.2]
[1,2,35,8,9,10,12,15,16,17,19,22,23,24,26,29,30,31,33,36,37,
38,40,43,44,45,47,50,51,52,54,57,58,59,61 ]
[1,2101,2,57][1,2111,2,3,5][1,21[1,2,5,7][1,21[2,3.4,6,9,10,11,13] [ 1][0,1,2][0,1]
[011[11[1.2][1,2.4,89,117[1,21[1]1[0,17[0,1][0,1,2][1]
[1.4,5,6.8,11,12,13,15,18,19,20,22,25,26,27,29]
[310017[11[11[1.3.451[1.2.3,5][1.34,5][11[11[0,11[3]1[23.4,69,10,11,13]0,1]
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[0,1700,1,2 (1101131 00,17(1][1,23,5] 110,11 [3][11[1]1[0,1,2][0,17[0,1]
[1,4,5,6,8,11,12,13,15,18,19,20,22,25,26,27,29,32,33,34,36,39,
40,41,43,46,47.48,50,53,54,55,57,60,61,62,64,67,68,69,71,74,75,
76,78.,81,82,83,85,88,89,90,92,95,96,97,99,102,103, 104,106,109,
110,111,113,116,117,118,120,123,124,125,127,130,131,132,134,137,
138,139,141,144,145,146,148,151,152,153,155,158,159,160,162,165,
166,167,169,172,173,174,176,179,180,181,183,186,187,188,190,193,
194,195,197,200,201,202,204,207,208,209,211,214,215,216,218,221,
222,223,225,228,229,230,232,235,236,237,239,242,243,244,246,249,

250,251,253]
[1,21[1,2,57]1[ 1,21 [1,2,3,51 [ 1,21 [1,2,5,71 [ 1,21 [2.3.4,6,9,10,11,13] [ 1] [0,12] [0,1]

[0,17[11[1,2][1,2,4,89,111[1,2][11[0,17[0,11[0,1,2][1]
[1,4,5,68,11,12,13,15,18,19,20,22,25,26,27,29]

[3100,11[ 11111113457 1.2.3.51[1.3.451[1][1][0.11[3][2.3.4.6.9,10,11,13][0,1]

[0.1700,L,2T[1]1[1]3700,1] (111,235 [1][0,1][3][11[1]1[0,1,2][0,1][0,1]
[1,2,3,5,8,9,10,12,15,16,17,19,22,23,24,26,29,30,31,33,36,37,
38,40,43,44,45,47,50,51,52,54,57,58,59,61 ]
[0,1700,1700,1,2[1][1][3]1(0,17[1][1,23,5](1][0,1][3][1]1[1][0,1,2][0,1][0,1]

[2,3,4,69,10,11,137[3][0,11[1][1][ L3451 [1,23,51[1.3.45][11[11[0,1][3]
[1,4,5,68,11,12,13,15,18,19,20,22,25,26,27,29]
[1700,1,2100,17[0,17[17[1,21[1.2.4,8.9,117[1,21[11[0,11[0,17[0,1,2][1]

[2,3,4,69,10,11,13][1,21[1,2,5,7] [ 1,21 [ 1,2,3,5] [ 1,21 [ 1,2,5,7][1.2]
[2,3,4,6,9,10,11,13,16,17,18,20,23,24,25,27,30,31,32,34,37,38,39,
41,44,45,46,48,51,52,53,55,58,59,60,62,65,66,67,69,72,73,74,76,79,
80,81,83,86,87,88,90,93,94,95,97,100,101,102,104,107,108,109,1 11,
114,115,116,118,121,122,123,125]
[1700,1,2100,11[0.17[17[1,2]1[1,24.8,9,111[1,21[17[0,11[0,17[0,1,2][1]

[2,3,4,69,10,11,13][1,2][1,2,5,7][ 1,21 [ 1,2,3,5][ 1,21 [ 1,2,5,7][1.2]
[1,4,5,6,8,11,12,13,15,18,19,20,22,25,26,27,29]

[0.1700.17[0,1.2] (1] [1]1[3]00,1][1][1,2.3,5][1][0.1][3][1][1][0,1,21[0,11[0.1]

[2,3,4,69,10,11,13]1[31[0,11[11[1][1,3,4,57[1,2,3,51[1.3.4,5]1[11[11[0,11[3]
[1,2,3,5.8,9,10,12,15,16,17,19,22,23,24,26,29,30,31,33,36,37,38,40,
43,44.45.47,50,51,52,54,57,58,59,61]

[3700,11[ 11011013457 [1.2.3.51[1.3.451[1][1][0.11[3][2.3.4.6.9,10,11,13][0,1]

[0.1700,L,2T[1]1[1]3]00,17(1][1,2,3,5][1]100,1][3][11[1]1[0,1,2][0,1][0,1]
[1,4,5,68,11,12,13,15,18,19,20,22,25,26,27,29]
[1,2111,2,57101,21[1,2,3,51[1,2111,2,5,71 [ 1,21 [2,3.4,6,9,10,11,13] [1]10,1,21[0,1]

[0,17[1]1[1,2][1,2,4,89,111[1,2][11[0,1][0,11[0,1,2][1]

6. THE REMAINING CASES O0=1¢, t+1, t*+1

6.0. In these cases, we will be content with giving guesses deduced from
examples worked out. Note that we have proved ([T2] Theorem 3) the
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pure pattern for «, when 0 divides b and divides 7*+ . We now prove a
basic proposition in the general case.

ProrosiTiON 4. Let 0 divide [1]. If n is large enough, then o, is a
convergent to o.

Proof. By 0.1.1, [1] divides [i], for every i, so that 6*~' divides d,.
Hence, if ¢ is the denominator of «,, then ¢ divides b df* d,/0* ~'. So

deg(a—a,) + 2 deg(q) < deg(ab d*0*/[n+1]) <0,

for large n and hence by Lemma 1, «, is a convergent to a. ||

6.0.1. We get a glimpse of why >+ 7=1(z+ 1) serves as an analogue
of 2 in Hurwitz numbers, at the crude level of divisibility analysis as in the
proof above. Classically, ord,(n!)/n— 1 as n— oo, if and only if p =2 and
in fact, ord,(2*!)=2%—1. Our d, is an analogue of the factorial of ¢’. (See
[T1] for more analogies). We have ord@(dk)/q" -1 as k- oo for a
prime ¢, if and only if g=2 and @ =¢ or ¢ + 1 (since the norm of 7 or 7 + 1
is 2, in the F,[ 7] case) and also ord ,(dy) =2%—1 exactly in this case, as
is seen in the proof above.

6.0.2. We also see that possibilities of common factors between
a, b, 0, d, f make the analysis of the exact denominators of «, more com-
plicated, when 0 ¢ F*.

6.1. First we consider 0=t.

We do not consider =t + 1 separately, as t —> ¢ + 1 is an automorphism
of the whole situation.

Qualitatively, we expect the same kinds of inductive schemes, but it
seems that the sequence of new partial quotients need not be from the same
sequence as #,’s and the recipe for 7, also gets more complicated.

Let k& be the valuation at ¢ of a/b. Write a,=|[n]a/b_| and b,=
L[n] t%a/b_].

Ifb=t, N,=M, | with t,=a,=[n] a/t.

If » divides >+t then N,=(M, ,,a,_,, M,_,), with 1,=
L[#n] a/(t**3b) ]. Note that a, ,=[n—1] a/b now.

If /(b) =1, then we have

Nn:(Nn—27 [;zk—ZaAn—laan—IJBn—l> tn—2> Nn—2)

=(N, ot} 5,4, ,a, M, ,)
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where N,=(4,,a,_,,B,) and with 7, given by the formula above if
k= —1, but with ¢,,=b,, and t,,  , =d,,,, if k< —1; and with ¥ =¢, if
k= —1, but with ¢, =a,, and t%,, ,=b,,,,, if k< —1.

6.2. Finally we consider 0 =1t>+t.

For /() =1, N, is given by exactly the same formula (the special cases
are also similar, but we will not spell them out here) as above, with ¢*
having exactly the same relation with ¢, as before, but with 7, given as
follows:

Write a/b=t*(t+1)" f/g, with f and g relatively prime to >+t If
k,m> —1, we have t,=| [n] fl(t* 2(t+1)" 2 g)].

Otherwise, if k,m< —1 then t,, ,=[[2n+1]a/b]. If not, and if
m>=—1, then t,,,,=L[2n+1]a/((t+1)*""?b)]. The case k> —1
follows by the automorphism sending ¢ to ¢+ 1 i.e., in that case we replace
(f+ 1)2m+2 by t2k+2.

On the other hand, t,,=|[2n] ft“(t+1)"/g], with u=0, if k= —-2;
u=k+4, if k<—-2; and v=—-—m—-2, if k< —2 and m> —1. Automor-
phism then determines all the cases: ie., v=0, if m= -2, v=m+4, if
m<—2;and u=—k—2,if m< —-2and k> —1.

The author will greatly appreciate hearing about any progress on proofs
(or counter-examples ), or more general guesses.

7.0. Some important open questions are (1) What is the deeper reason
underlying the existence of strong patterns (of totally different kind) for
Hurwitz numbers in both the classical and function field cases? (2) What
is the deeper reason behind the appearance of the rationality question of
torsion? (3) Is there a similar easy universal scheme for describing the
patterns in the classical case? Which Hurwitz numbers give the pure
patterns? (4) What is the general theory behind the special patterns we
have illustrated ?

ACKNOWLEDGMENTS

The necessary calculations were done on a Sun Sparcstation. Jeremy Teitelbaum helped me
with Maple and Unix. The resulting computer experimentation resulted in guesses for /< 3 for
0 =1, in all of the evidence for @=t¢, 1>+t and in the hope that there is a universal pattern.
The general pattern was only guessed after Joe Buhler wrote and sent me a very efficient
program in C, which allowed computations for a, with n <13 in less than 7 hours, as opposed
to a couple of days for <8 or 9 on Maple. I thank Jeremy Teitelbaum and Joe Buhler for
their generous help. I also thank Barry Mazur and Greg Anderson for their constant
encouragement.



[BS]
[C1]

[H]

[Ha]
[HW]
[MW]
[P]

[R]
[T1]

[T2]

[vP]

PATTERNS OF CONTINUED FRACTIONS 147

REFERENCES

L. Baum and M. Sweet, Continued fractions of algebraic power series in characteristic 2,
Ann. Math. 103 (1976), 593-610.

L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke
Math. J. 1 (1935), 137-168.

A. Hurwitz, Uber die Kettenbriiche, deren Teilnenner arithmetische Reihen bilden
(1896), in “Mathematische Werke von Adolf Hurwitz” (G. Polya, Ed.), Birkhduser,
Zurich, 1932.

D. Hayes, Brief introduction to Drinfeld modules, in “The Arithmetic of Function
Fields” (D. Goss et al, Eds.), pp. 1-32, de Gruyter, New York, 1992.

G. Hardy and E. Wright, “An Introduction to the Theory of Numbers,” 4th ed.,
Oxford Univ. Press, Oxford, 1971.

K. Matthews and R. Walters, Some properties of the continued fraction expansion of
(m/n) eV?), Proc. Cambridge Philos. Soc. 67 (1970), 67-74.

O. Perron, “Die Lehre von den Kettenbriichen,” Chelsea, New York, 1950. [reprint
of the second edition, 1929]

G. Raney, On continued fractions and automata, Math. Ann. 206 (1973), 265-283.
D. Thakur, Continued fraction for the exponential for F [ T, J Number Theory 41
(1992), 150-155.

D. Thakur, Exponential and continued fractions, J. Number Theory 59 (1996),
248-261.

van der Poorten, Continued fraction expansions of values of the exponential function
and related fun with continued fraction, Nieuw Archief Wiskunde 14 (1996), 221-230.



