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Patterns for simple continued fractions of the analogues of (xe2�f+y)�(ze2�f+w)
in the Fq[t] case are described. In contrast to the classical case where they consist
of arithmetic progressions, in this case they involve an interesting inductive scheme
of block repetition and reversals, especially for q=2. � 1997 Academic Press

This is a sequel to [T2]. For perspective, motivation, and background
material on continued fractions and the Carlitz exponential, the reader may
profit from looking at [BS, T1, T2], but this paper is mostly self-contained.
We start with a brief introduction:

0.0. Classical results of Euler and Hurwitz ([H1], [P]) show that the
sequence of partial quotients for the (simple) continued fraction for
(xe2�f+y)�(ze2�f+w), with x, y, z, w, f integers, f {0, xw&yz{0 (the so-
called Hurwitz numbers), eventually consist of a fixed number of arithmetic
progressions.

Examples.

e=[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, ..., 1, 2n, 1, ...]=[2, 1, 2i, 1]�
i=1

e+1
3

=[1, 4, 5, 4i&3, 1, 1, 36i&16, 1, 1, 4i&2, 1, 1, 36i&4, 1, 1, 4i&1, 1, 5, 4i, 1]�
i=1 .

There is no ``formula'' giving the sequence of partial quotients: the reduction
process giving a procedure to work out the sequence is quite involved. See
[P, R, MW, vP] for more information.

article no. NT972134

129
0022-314X�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* Supported in part by NSF Grant DMS 9314059.
- E-mail: thakur�math.arizona.edu.



File: 641J 213402 . By:DS . Date:12:08:01 . Time:02:43 LOP8M. V8.0. Page 01:01
Codes: 3016 Signs: 1957 . Length: 45 pic 0 pts, 190 mm

0.1. Let q be a power of a prime p and let Fq denote a finite field of q
elements. From now on, we will be interested in the case where integers are
replaced by polynomials (though we sometimes refer to them as integers)
in Fq[t] and the exponential function is replaced by the Carlitz�Drinfeld
exponential. See [C1], [Ha] for background and motivation for 0.1.1 and
0.1.2. We will not need any knowledge of the theory for this paper.

0.1.1. The Carlitz�Drinfeld exponential e(z) is defined as follows:
Let [i] :=t qi

&t, d0 :=1 and di :=[i] d q
i&1 , for i>0. Put

e(z) := :
�

i=0

zqi

di
.

0.1.2. By Hurwitz numbers we will mean (xe(%�f )+y)�(ze(%�f )+w),
with x, y, z, w, f # Fq[t], f {0, xw&yz{0 and % # Fq*. For q=2, we also
allow %=t, t+1, t2+t. The motivation for this is that these are exactly the
values whose Carlitz torsion is ``rational'', i.e., the roots of Carlitz
cyclotomic polynomial (see [Ha] for the definition and properties) C%(u)
are in Fq(t ). This is analogous to the fact that the only roots of unity which
are rational are the first and the second roots. So analogue of 2, in this
context, is [1]=t2+t.

0.1.3. We do have ``patterns'' for analogues, but of completely dif-
ferent kind. We have complete results [T2] for q>2. They can be roughly
described (see below for the precise description) as ``block reversals at each
stage.'' The case q=2 leads to the most interesting and subtle patterns,
involving ``an inductive scheme of block reversal and repetition at each
stage.'' We study and settle this case completely for %=1. For %=t, t+1,
t2+t, we will be content with partial results and conjectures based on
experimental evidence.

0.1.4. As the simplest example of ``patterns'' we will encounter, we
have [T1, 2], for q=2,

e :=e(1)=[1, [1], [2], [1], [3], [1], [2], [1], [4],

[1], [2], [1], [3], [1], [2], [1], [5], ...].

0.1.5. A number and its integral linear fractional transformation of
determinant \1 have continued fractions with the same ``tail'' and they
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can be easily computed from one another. Hurwitz numbers can be trans-
formed [T2] by such a transformation to numbers of the form :=
(a�b) e(%�f )+(c�d ), with % and f as before, a, b, c, d integral and a, b, d{0.
Without loss of generality, we will assume that a�b and c�d are in reduced
form. We will show�observe that these numbers have ``pure patterns.'' In
other words, the patterns start immediately after the first partial quotient,
rather than after some number of partial quotients.

0.1.6. Let :n :=(a�b) :n
i=0 (%�f )qi�di+(c�d ). For large n, the :n give

convergents to : (See Theorem 1 and Propositions 1 and 4 below). We
write their continued fraction expansion as [w:x, Mn], where ``the integral
(polynomial) part'' wxx is defined to be �m

i=0 xi t i, when x=�m
i=&� xi t i.

We show how Mn is obtained by ``an inductive scheme of block reversals
and repetitions up to one well defined sequence of partial quotients''.

0.1.7. Basic notation: A capital letter such as X denotes a finite tuple
(a vector) of partial quotients and X& denotes the tuple with the same
entries in the reverse order. We sometimes write X+ for X. Also, &X
denotes the tuple obtained from X by putting a negative sign in the front
of each entry. We also write Mn+1=(Mn , tn+1, Nn+1).

Hence to describe the continued fraction we describe the sequence of
partial quotients tn and new vectors Nn at each stage.

1. THE CASE q>2

1.0. The exponential is Fq linear, so without loss of generality, %=1 in
this case. The completely satisfactory answer [T2] to our problem is:

Theorem 1. We have Nn+1=&M &
n and tn=\a( f n&1 dn&1)q&2 [n]�b

(with an explicit sign) for n&1 larger than the maximum of the degrees of
a, b, d.

Hence all such :'s have continued fractions made up of block reversals:

[a0 , X, x1 , &X&, x2 , X, &x1 , &X&, x3 , X, x1 ,

&X&, &x2 , X, &x1 , &X&, x4 , ...],

with a0 , X, xi explicitly known.

2. THE CASE q=2, %=1

2.0. We will describe the main results in this section. The proofs will be
given later.
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Proposition 1. If n>C :=1+max(deg d, deg a, deg b), then :n is a
convergent to : and tn+1=wa[n+1]�bx.

2.1. Since we have described tn 's it remains to describe Nn .

2.2. Let l :=l(:) :=l(b) be the least common multiple of the degrees of
the primes dividing b.

2.2.0 Patterns for all the :'s with the same l will be described in a
uniform fashion. In fact, for each positive integer z, we will give a pattern
which works for all the :'s with l a divisor of z. But as we will see, the com-
plexity of the patterns grows with z, so for practical purposes, the reader
would do well to concentrate on the case z=l.

2.3. Below, n will be assumed to satisfy n>C+z.

2.3.0. For such n, the patterns will be given inductively, so that the
continued fraction pattern for all the :'s will be described effectively. Note
that deg c does not come into the picture, as it can be assumed to be less
than deg d by a harmless shift of an integer (polynomial).

We will start with the simple cases, which will be needed anyway for the
proof of the main theorem.

Theorem 2. For n>C+z, we have

(P1) If l divides z=1, then Nn=Mn&1 .

(P2) If l divides z=2, then Nn=(Nn&1 , tn&1 , Mn&2).

2.4. We will show (the reader is also urged to look at example given
in 5.0) in the course of the proof of the main theorem that Nn has a well-
defined decomposition into 2 j smaller blocks (for any n sufficiently large
compared to any j in fact, but we will only use this for n and j appearing
in the main theorem, namely for n as in 2.3 and for j�z&2) as follows:

2.4.1. We will write i j
n (for 1�i�2 j) for the vector of partial

quotients giving the ``ith part'' in the ``2 j th fold decomposition'' of Nn .
These are related inductively as follows:

Nn=10
n , i j

n=((2i&1) j+1
n , tn& j&1 , (2i ) j+1

n ).
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2.4.2. For example,

Nn=10
n=(11

n , tn&1 , 21
n)=(12

n , tn&2, 22
n , tn&1 , 32

n , tn&2, 42
n)

=(13
n , tn&3 , 23

n , tn&2 , 33
n , tn&3 , 43

n , tn&1 , 53
n , tn&3 , 63

n , tn&2 , 73
n , tn&3, 83

n).

2.4.3. We also define sk=sk, j , for 0�k� j, by sk :=�k
u=1 2 j&u. Note

that s0=0 and sj=2 j&1.
We are now ready to state our main result:

Theorem 3. For n>C+z, we have:

(P3) If l divides z = 3, then 11
n = (21

n&1 , tn&2 , 11
n&1) and 21

n =
(Nn&2, tn&2 , Mn&3).

(P4) If l divides z=4, then

12
n=(42

n&1 , tn&3 , 32
n&1), 22

n=(22
n&1 , tn&3 , 12

n&1),

32
n=(21

n&2 , tn&3 , 11
n&2), 42

n=(Nn&3 , tn&3, Mn&4).

(Pz) More generally, for z>1, if l divides z, then with j=z&2, for
1�i<2 j, i j

n is given by

((2 j&k&2(i&sk&1)) j&k
n&k&1 , tn& j&1 , (2 j&k&2(i&sk&1)&1) j&k

n&k&1),

if sk<i�sk+1

and

(2 j) j
n=(Nn&j&1 , tn&j&1 , Mn&j&2).

2.5. To help visualize these patterns without a complicated scheme of
subscripts and superscripts, we reformulate the patterns as follows: The
pattern in (P3) is equivalent to

Nn=(An , tn&1 , Bn) with An=(Bn&1 , tn&2 , An&1)

and

Bn=(Nn&2 , tn&2, Mn&3).
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At this point, the reader should look at the example in 5.0 and check that the
pattern follows our description.

Pattern in (P4) is equivalent to

Nn=(Xn , tn&2 , Yn , tn&1 , Zn , tn&2 , Wn),

Xn=(Wn&1 , tn&3 , Zn&1), Yn=(Yn&1 , tn&3 , Xn&1),

Zn=(Zn&2 , tn&4 , Wn&2 , tn&3 , Xn&2 , tn&4 , Yn&2),

Wn=(Nn&3 , tn&3 , Mn&4).

Finally, (Pz) can be described in rough words as: Nn is formed by first
writing the 2z&2-fold decomposition into blocks of Nn&1 in the reverse
order, followed by the 2z&3-fold decomposition in reverse for Nn&2 and so
on, until you write Nn&(z&1) (1-fold) followed by Mn&z , all punctuated by
the appropriate ti 's. A simpler description (which fails to illuminate the
richer interconnections though) is that for larger n, Nn=(Xk , xk , Xk&1 ,
xk&1 , ..., X0) where Mn&1=(X0 , x1 , X1 , ..., xk , Xk) is the unique decom-
position where the xi are entries of degree �2n&l(b)+1+deg a&deg b and
the Xi are vectors which do not contain such entries.

2.6. Since Mn=(Mn&1 , tn , Nn), we can rephrase (Pz) by giving an
induction scheme purely in terms of parts of Ni 's, an aesthetic advantage
being that one has to remeber only the last few new vectors to write the
next new vector.

3. ADDITIONAL�SIMPLER PATTERNS

3.0. These continued fractions exhibit many more additional and
simpler symmetries in special cases. (In fact, this made the general pattern
in the theorem as well as the role of l(b) difficult to discover).

3.1. For example, (see [T2], or Corollary to Proposition 2 below) if b
divides [1], then Nn=M &

n&1 for large n and if b is square-free, the same
formula holds for n any multiple of l(b). So in the first case, we have
Mn=M &

n for all n, whereas in the second case, we have complicated
patterns much more simply expressed for many n 's. Similarly [T2], for
:=e�tm, we have Nn+1=Mn and for :=e�(t2+t+1), if n is odd (more
than 1), we have Nn+1=M &

n and if n is even (more than 2), we have
Nn+1=(Nn , tn , N &

n ).
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3.2. Note that (Pz) implies that after some initial (explicit) vector, the
only new partial quotients appearing are the tn 's. Moreover, every single
partial quotient (after a0) occurs infinitely many times. In particular, we
know the exact set of partial quotients.

3.3 The simplest case of block reversal: Nn+1=M &
n can equally well be

presented as: Nn=(N &
n&1 , tn&1 , Nn&1).

3.4. For e�(t2+t+1), the scheme can also be presented [T2] as:
N2n=(N &

2n&1 , t2n&1 , N &
2n&2 , t2n&2 , N2n&2) and N2n+1=(N2n , t2n , N &

2n),
instead of using M 's as above. This scheme also works for : having b
square-free, with l=2.

3.5. For b square-free, with l(b)=3 and large n, the scheme can also be
presented as: Let us put Xn=(M &

3n&2 , t3n&1 , N &
3n&1). Then N3n=M &

3n&1

(by 3.1), N3n+1=(Xn , t3n , X &
n ) and N3n+2=(X &

n , t3n , Xn , t3n+1 , M &
3n&1,

t3n , M3n&1). It can also be presented without involving M 's, by just noting
that 3.1 implies M &

3n&2=(N &
3n&2 , t3n&2 , N &

3n&3, t3n&3 , N3n&3) and
M3n&1=(M3n&2 , t3n&1 , N3n&1). We leave the proof, which is a
straightforward modification of the proof of the main Theorem below, to
the interested reader. See also 4.2.3.

3.6. For e�(t4+t+1) or for e�(t(t 4+t+1)), we have N7=(N5 , t5 , M4 ,
t6 , N &

6 ), N8=M &
7 =(N6 , t6 , M5 , t7 , M &

6 ) and N9=(N7 , t7 , M6 , t8 , M &
6 ,

t7 , N &
7 ); whereas for e�(t 4+t3+1), N7 has new digits, N8 is given by the

first but not the second equality above and N9=(M &
5 , t6 , N &

6 , t7 , A&
7 , t6 ,

B&
7 , t8 , B7 , t6 , A7 , t7 , N6 , t6 , M5), where N7=(A7 , t6 , B7). Here we note

that t4+t+1 is invariant for the automorphism t � t+1, but t4+t3+1 is
not.

3.7. In fact, most of the time, the patterns we have described seem to
have sub-patterns inside the initial part itself.

4. PROOFS

4.0. We can assume w:x to be zero, by subtracting it from :, if
necessary.

4.0.1. We will use frequently the recursion relation 0.1.1 for di , as
well as the fact [C1] that di is the product of the polynomials of degree i.

4.0.2. We use the standard notation (see [HW, T2]) for continued
fractions. Our first lemma (see [BS]) is an analogue of the standard
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approximation criterion for the convergents of the usual continued
fractions.

Lemma 1. Let f # F2((1�t)). If deg( f &p�q)+2 deg q=&d<0, with
p, q # F2[t] having no common factor, then q=qk , p=pk and deg ak+1=d
for some k.

Proof of Proposition 1. By 4.0.1, if we write q=bf 2n dn �a, we have
:n=p�q for some p prime to q, since n>C. (This is proved in the proof of
Theorem 2 [T2] and also follows from the integrality of Q proved in the
proof of Proposition 2 below. Also, to show that :n is a convergent, we just
need the obvious fact that the denominator of :n divides q, because the
upper bound for deg q thus obtained is sufficient). Now,

:&:n=(a�b) :
�

i=n+1

1�( f 2i di), deg(:&:n)=deg(a�(bf 2n+1 dn+1)).

Hence by a straightforward calculation, using 0.1.1, we have

deg(:&:n)+2 deg q=deg(b�(a[n+1])=deg b&deg a&2n+1<0.

By Lemma 1, :n is a convergent to :.

4.1.1. We write :n=pkn �qkn , in the standard notation. To avoid
double subscripts, we write k for kn below. The reader should not confuse
between k&1=kn&1 and kn&1.

Let un=wa[n]�bx. We want to prove that un+1=tn+1. It is enough to
show that + :=(un+1 pk+pk&1)�(un+1 qk+qk&1) is a convergent to :. By
Lemma 1, it is enough to show that deg(:&+)+2 deg(un+1 qk)<0.

Now, :&:n is (a[n+1] q2
k �b)&1 plus terms of degree less than

&2 deg(un+1 qk), as is apparent from a straightforward calculation
using the series representation above. On the other hand, :n&+=
(un+1q2

k+qk qk&1)&1. Adding the two quantities we have,

deg(:&+)+2 deg(un+1qk)

�deg
(a[n+1]�b+un+1) q2

k+qk qk&1

(a[n+1] q2
k �b)(un+1 q2

k+qkqk&1)
+2 deg(un+1qk)<0

since deg(a[n+1]�b+un+1)<0. This finishes the proof. K

4.2.0. We have

qkn=
bf 2n dn

a
, pkn=qkn \(a�b) :

n

i=0

1�( f 2i di)+(c�d )+ .
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4.2.1. Let us write tn=wa[n]�bx, tn=a[n]�b, rn=tn+tn .

Proposition 2. We have

(1) [0, Nn]=rn+(qkn&1&1�qkn&1
),

(2) qkn&1=qkn rn+pkn i.e., rn=( pk�qk)+(qk&1�qk).

Proof. We have

pkn

qkn

=[0, Mn]=[0, Mn&1 , tn , Nn],
pkn&1

qkn&1

=[0, Mn&1],

so that

pkn

qkn

&
pkn&1

qkn&1

=
a

bf 2n dn
=

1
q2

kn&1
(tn+[0, Nn]+qkn&1&1�qkn&1

)
,

which simplifies to (1).
To prove (2), we first note that Q :=qkrn+pk is clearly an integer (i.e.,

a polynomial) and claim that P :=(1+pk Q)�qk=(1+p2
k+pkqk rn)�qk is

also an integer.
To prove the claim, note that

pk=qk \ a
b

:
n

i=0

1

f 2i di

+
c
d+=1+qk \ a

b
:

n&1

i=0

1

f 2i di

+
c
d+ ,

so that

P=qk \ a2

b2
:

n&1

i=0

1

f 2i+1 d 2
i

+
c2

d 2++qk \ a
b

:
n

i=0

1

f 2i di

+
c
d + rn

= :
n

i=1

f 2n&2i \ adn

bd 2
i&1

+
dn rn

di ++{ f 2n&1 dnrn+qk \ c2

d 2+
crn

d += .

By 2.3, d 2 and bd divide qk and the quantity in the curly brackets is an
integer. Hence it is enough to show the integrality of adn�(bd 2

i&1)+
dn rn �di=(dn�di)(ti+rn). But b divides dn�di , if i<n and if i=n the
integrality follows, since tn is an integer by definition. Hence the claim is
justified. Finally, pk Q+qkP=1 implies Q=qk&1 (eg. as in [T2]), since
deg( pk&1&P)<deg pk (This is equivalent to deg(1+p2

k+pk qkrn)<
deg pkqk and this in turn follows from deg pk<deg qk and deg rn<0). This
finishes the proof of the proposition. K

Corollary 1.We have [0, Nn]=rn+[0, M&
n&1]=rn+rn&1+[0, Mn&1].
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Proof. This follows by combining (1) and (2) of the Proposition 2 and
by using the following standard formula (see [HW]) to reverse a con-
tinued fraction:

4.2.2. If [0, X]=pi �qi , then [0, X&]=p&
i �q&

i , with

p&
i =qi&1 , q&

i =qi , p&
i&1=pi&1 , q&

i&1=pi .

4.2.3. The Corollary explains some of the simpler additional patterns,
when b is square-free: then, ril(b)=0 for large i.

4.3.0. We note another key fact about the divisibility, which will be
used frequently: The condition that l(b) divides z is equivalent to the condi-
tion that b divides some power of [z], eg. the deg b th power, which is
equivalent to rn+rn&z=0 (since 2n&1�n�deg b). Hence, the Corollary
proves part (P1) of the Theorem 2.

4.3.1. Now, we have qk&1=qkrn+pk and pk&1=(1+pkqk&1)�qk , by
the basic determinant relation.

4.3.2. We write [0, Nn]=p~ s �q~ s , with s=sn .

Proposition 3. We have p~ s=rnqkn&1
+qkn&1&1 , q~ s=qkn&1

,

q~ s&1=qkn&1
(rn+pk�qk)+1�(tnqkn&1

), p~ s&1=(1+p~ s q~ s&1)�q~ s .

Proof. The first two formulas follow easily from the Proposition 2 and
the last is just the determinant identity, so it remains to prove the third
formula. We have, by the reversal formula quoted above,

qk&1

qk
=[0, M &

n ]=[0, N &
n , tn , M &

n&1]

=
ap~ &

s +p~ &
s&1

aq~ &
s +q~ &

s&1

=
aq~ s&1+p~ s&1

aq~ s+p~ s
,

with a=tn+p&
kn&1

�q&
kn&1

=tn+qkn&1&1 �qkn&1
. Plugging in the value for p~ s&1

above, we see that

q~ s&1=(qk&1q~ s(a+p~ s �q~ s)�qk+1�q~ s)�(a+p~ s �q~ s).

By the first two formulas, we have a+p~ s �q~ s=tn+rn=tn . Using (2) of
Proposition 2 finishes the proof. K

4.4.0. So we have given formulas, in general, for the pm , qm ,
pm&1 , qm&1 (in terms of pkn 's, qkn 's, rn 's and tn 's) for each of the
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fractions [0, M \
n ] and [0, N \

n ], so that given any claimed induction
scheme involving only M's or N's for a particular example, it should be
mechanical (though laborious) to prove it, modulo simple divisibility
arguments. We illustrate this philosophy now, by proving part (P2) of
Theorem 2.

Write w=tn+pkn&1
�qkn&1

, then

[0, Nn , tn , Mn&1]=(wp~ s+p~ s&1)�(wq~ s+q~ s&1).

By Propositions 2 and 3, the denominator is

wqkn&1
+qkn&1

(rn+pk �qk+1�qk)=tn qkn&1

and the numerator is

qkn&1
(w(rn+rn&1+pkn&1

�qkn&1
)+(rn+pk �qk+1�qk)

_(rn+rn&1+pkn&1
�qkn&1

)+1�q2
kn&1

)

=qkn&1
(tn(rn+rn&1+pkn&1

�qkn&1
)+1�q2

kn&1
.

4.4.1. Hence the ratio is rn+rn&1+:n&1+1�qk , which can be
written, by Proposition 2, as

[0, Nn , tn , Mn&1]=[0, Nn]+1�qk=rn+1+rn&1+[0, Nn+1].

By 4.3.0, since l(b) divides 2, we have rn+1+rn&1=0. Hence, we have
proved Theorem 2. K

4.5. Now we start the proof of the main theorem.
First we prove two general lemmas, which extract all we need from the

theory of continued fractions and the particular form of the :'s. After
exploiting them, the proof will be reduced to induction book-keeping and
an application of 4.3.0.

Lemma 2. Let

[0, X]=s+:n&i , [0, X&]=u+:n&i , [0, Y]=v+:n&i ,

with s+:n&i (and hence u+:n&i also) having denominator exactly qkn&i ,
and with the denominator of v dividing qkn&i . Then we have

[0, X, tn&i+k , Y]=s+:n&i+1 , if u+v=tn&i+1+tn&i+k .
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Proof. Recursion formulae (see [HW] or [T2]) for the numerators
and the denominators for the continued fractions imply that if (in standard
notion for continued fractions [HW]) [a0 , a1 , ..., an]=pn�qn , then

[a0 , a1 , ..., an+1]=
an+1(pn�qn)+(pn&1 �qn)

an+1+(qn&1 �qn)
,

and pn&1 �qn=(\1+pnqn&1)�q2
n=\1�q2

n+(pn�qn)(qn&1 �qn).
Hence [0, X, tn&i+k , Y] is

(tn&i+k+v+:n&i)(s+:n&i)+1�q2
kn&i

+(s+:n&i)(u+:n&i)
(tn&i+k+v+:n&i)+(u+:n&i)

=
(s+:n&i) tn&i+1+1�q2

kn&i

tn&i+1

=s+:n&i+1�qkn&i+1
=s+:n&i+1 ,

by 0.1.1, 4.2.0, and 4.2.1. This finishes the proof. K

Lemma 3. Let i<z and [0, X]=g+:n+i with denominator of g a
divisor of b. Then the denominator of g+:n&i is exactly qkn&i and
[0, X&]=g+rn&i+:n&i .

Proof. Let us write q=qkn&i and p=pkn&i temporarily for the proof. If
the denominator is not exactly q, then some prime (i.e., an irreducible poly-
nomial) divides q but does not divide q�b. This is impossible, because b2

divides q by 4.0.1, 2.3, and 4.2.0.
The rest of the proof is very similar to the proof of (2) of Proposition 2.

In fact, Q :=(g+rn&i) q+p is clearly an integer and we claim that

P :=((gq+p) Q+1)�q=g(g+rn&i) q+(1+p2+pqrn&i)�q

is an integer (i.e., a polynomial).
Now the first part is an integer, since b2 divides q and the fact that the

second part is an integer is proved in the proof of Proposition 2. (One has
only to replace n there by n&i, which is valid, because of the bound on i
and 2.3). Finally, a straightforward degree estimate, as in the proof of
Proposition 2, shows that P and Q are the penultimate convergents to
[0, X] and 4.2.2 finishes the proof. K

To help better understand the argument by induction on z, we give the
arguments for part (P3) in detail together with the general arguments.

4.5.1. By Lemma 1 and Corollary to Proposition 2, a straightforward
calculation (exactly as in the proof of Proposition 1) shows that [0, 11

n] :=
rn+rn&1+:n&2 is a convergent to [0, Nn]=[0, 10

n]=rn+rn&1+:n&1
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with the next partial quotient tn&1. So we write [0, Nn]=[0, 11
n , tn&1, 21

n].
By Lemma 3, [0, 11&

n ]=rn+rn&1+rn&2+:n&2. Lemma 2 now implies
that [0, 21

n]=rn+rn&2+:n&2. One more application of Lemma 3 gives
[0, 21&

n ]=rn+:n&2 . (Notice that by Proposition 3, [0, N &
n ]=rn+:n&1

which is consistent with its convergent [0, 21&
n ]=rn+:n&2 , which we

would have started with, if we had argued with the reverse vector first).

4.5.2. Exactly in the same fashion, we see that, i j
n=((2i&1) j+1

n ,
tn&j&1, (2i ) j+1

n ), as claimed in 2.4.1, together with

[0, (2i&1) j+1
n ]=[0, i j

n]+:n& j&2+:n& j&1 .

4.5.3. By Lemma 3, we have [0, i j
n]=[0, i j&

n ]+rn&j&1. Applying
Lemma 2 to this, together with 4.5.2, we get

[0, (2i ) j
n]=[0, (2i&1) j

n]+rn&j+rn&j&1.

Also, by 4.5.2, we have

[0, (2i&1) j+1
n ]=[0, i j

n]+:n& j&1+:n& j&2.

By induction, this gives the values of all i j
n 's and i j&

n 's.
Here is a table for j=0, 1, 2.

[0, 10
n]=rn+rn&1+:n&1 [0, 10&

n ]=rn+:n&1

[0, 21
n]=rn+rn&2+:n&2 [0, 21&

n ]=rn+:n&2

[0, 11
n]=rn+rn&1+:n&2 [0, 11&

n ]=rn+rn&1+rn&2+:n&2

[0, 42
n]=rn+rn&3+:n&3 [0, 42&

n ]=rn+:n&3

[0, 32
n]=rn+rn&2+:n&3 [0, 32&

n ]=rn+rn&2+rn&3+:n&3

[0, 22
n]=rn+rn&1+rn&2+rn&3+:n&3 [0, 22&

n ]=rn+rn&1+rn&2+:n&3

[0, 12
n]=rn+rn&1+:n&3 [0, 12&

n ]=rn+rn&1+rn&3+:n&3

Now we explain how Lemma 2 together with the table for j=0 and 1
finish the proof of (P3). (We urge the reader to verify (P4) from the table
above for j�2 in exactly similar fashion to help better understand the
general arguments that follow.):

By the j=1 entries of the table (for n replaced by n&1) and Lemma 2,
[0, 21

n&1 , tn&2 , 11
n&1]=rn&1+rn&3+:n&2 , but by 4.3.0, this is the same

as rn&1+rn+:n&2 which is [0, 11
n]. This proves the first claim of (P3).

The second claim follows by comparing the 21
n entry with the value given

4.4.1 and Corollary 1, using 4.3.0.
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4.5.4. We now claim that in general, for 1�i<2 j,

[0, i j
n]+rn+rn&j&2=[0, (2 j&k&2(i&sk&1)) j&k

n&k&1 ,

tn&j&1 , (2 j&k&2(i&sk&1)&1) j&k
n&k&1]

if sk<i�sk+1 .
First we notice that by Lemma 2, the right hand side is [0, (2 j&k&

2(i&sk&1)) j&k
n&k&1]+:n&j&1+:n&j&2 . (In more detail, by the first for-

mula of 4.5.3 (in the notation of Lemma 2), we have u=s+rn&j&2 and by
the second formula of 4.5.3, we have v=s+rn&j&1+rn&j&2 , so that
u+v=rn&j&1=tn&j&1+tn&j&1 as required.)

So we are reduced to proving that

[0, i j
n]=[0, (2 j&k&2(i&sk&1)) j&k

n&k&1]+:n& j&1+:n&j&2+rn+rn&j&2.

The proof is by induction on j:
We will work out the case when i is odd and leave the case when i is

even, which is similar, to the reader. First note that sk, j=2sk, j&1 , so that
if sk, j<i�sk+1, j , then sk, j&1<(i+1)�2�sk+1, j&1. We use this below in
the induction step. We have

[0, i j
n]=[0, ((i+1)�2) j&1

n ]+:n&j+:n&j&1

=[0, (2 j&1&k&2((i+1)�2&sk, j&1&1)) j&1&k
n&k&1+rn+rn&j&1 ,

where the first equality is by the third formula in 4.5.3 and the second is
by the induction hypothesis. On the other hand, we have

[0, (2 j&k&2(i&sk&1)) j&k
n&k&1]

=[0, (2 j&k&2(i&sk&1)&1) j&k
n&k&1]+rn&1&j+rn&j&2

=[0, (2 j&1&k&(i&sk&1)) j&1&k
n&k&1+rn&1&j+rn&j&2+:n&j&1+:n&j&2 ,

where the first (resp. second) equality is by the second (resp. third) formula
of 4.5.3. Comparison proves the reduction and hence the claim.

4.5.5. Now we proceed to the proof of (Pz). So let j=z&2. The fact
4.3.0 shows that under the hypothesis of the theorem, rn+rn&z=0 and by
4.5.4, we get the proof of (Pz) for i<2 j. Finally, the claim for the case
i=2 j follows by comparing the value obtained by 4.5.2 and 4.5.3 with the
one obtained in 4.4.1 and Corollary 1, using 4.3.0. K

142 DINESH S. THAKUR



File: 641J 213415 . By:DS . Date:12:08:01 . Time:02:43 LOP8M. V8.0. Page 01:01
Codes: 3433 Signs: 2540 . Length: 45 pic 0 pts, 190 mm

5. AN EXAMPLE

5.0. For the benefit of the reader, we provide the C program output of
an example giving the partial quotients for M8 for :=e�(t3+t+1). We
have put in some empty spaces and new lines to facilitate the pattern
recognition. Each entry in a squared bracket is a partial quotient, [2, 3, 4]
standing for t 2+t 3+t 4 for example. This temporary notion, used for this
example only, should not be confused with square brackets denoting con-
tinued fractions or with the square brackets defind in 0.1.1. The larger size
entries are ti 's of degree 2i&3. The reader should check the general pattern
(P3), which works for N6 , N7 , N8 and in fact the reader can check it for
N9 also, as N9=M &

8 . The reader should also check the special patterns
mentioned above: for example, the pattern in 3.5 and N6=M &

5 .

[3] [0,1] [1] [1] [1,3,4,5] [1,2,3,5] [1,3,4,5] [1] [1] [0,1] [3] [2,3,4,6,9,10,11,13] [0,1]

[0,1] [0,1,2] [1] [1] [3] [0,1] [1] [1,2,3,5] [1] [0,1] [3] [1] [1] [0,1,2] [0,1] [0,1]

[1,4,5,6,8,11,12,13,15,18,19,20,22,25,26,27,29]

[1,2] [1,2,5,7] [1,2] [1,2,3,5] [1,2] [1,2,5,7] [1,2] [2,3,4,6,9,10,11,13] [1] [0,1,2] [0,1]

[0,1] [1] [1,2] [1,2,4,8,9,11] [1,2] [1] [0,1] [0,1] [0,1,2] [1]

[1,2,3,5,8,9,10,12,15,16,17,19,22,23,24,26,29,30,31,33,36,37,38,40,

43,44,45,47,50,51,52,54,57,58,59,61]

[1] [0,1,2] [0,1] [0,1] [1] [1,2] [1,2,4,8,9,11] [1,2] [1] [0,1] [0,1] [0,1,2] [1]

[2,3,4,6,9,10,11,13] [1,2] [1,2,5,7] [1,2] [1,2,3,5] [1,2] [1,2,5,7] [1,2]

[1,4,5,6,8,11,12,13,15,18,19,20,22,25,26,27,29]

[0,1] [0,1] [0,1,2] [[1] [1] [3] [0,1] [1] [1,2,3,5] [1] [0,1] [3] [1] [1] [0,1,2] [0,1] [0,1]

2,3,4,6,9,10,11,13] [3] [0,1] [1] [1] [1,3,4,5] [1,2,3,5] [1,3,4,5] [1] [1] [0,1] [3]

[2,3,4,6,9,10,11,13,16,17,18,20,23,24,25,27,30,31,32,34,37,38,39,41,

44,45,46,48,51,52,53,55,58,59,60,62,65,66,67,69,72,73,74,76,79,80,

81,83,86,87,88,90,93,94,95,97,100,101,102,104,107,108,109,111,

114,115,116,118,121,122,123,125]

[0,1] [0,1] [0,1,2] [1] [1] [3] [0,1] [1] [1,2,3,5] [1] [0,1] [3] [1] [1] [0,1,2] [0,1] [0,1]

[2,3,4,6,9,10,11,13] [3] [0,1] [1] [1] [1,3,4,5] [1,2,3,5] [1,3,4,5] [1] [1] [0,1] [3]

[1,4,5,6,8,11,12,13,15,18,19,20,22,25,26,27,29]

[1] [0,1,2] [0,1] [0,1] [1] [1,2] [1,2,4,8,9,11] [1,2] [1] [0,1] [0,1] [0,1,2] [1]

[2,3,4,6,9,10,11,13] [1,2] [1,2,5,7] [1,2] [1,2,3,5] [1,2] [1,2,5,7] [1,2]

[1,2,3,5,8,9,10,12,15,16,17,19,22,23,24,26,29,30,31,33,36,37,

38,40,43,44,45,47,50,51,52,54,57,58,59,61]

[1,2] [1,2,5,7] [1,2] [1,2,3,5] [1,2] [1,2,5,7] [1,2] [2,3,4,6,9,10,11,13] [1] [0,1,2] [0,1]

[0,1] [1] [1,2] [1,2,4,8,9,11] [1,2] [1] [0,1] [0,1] [0,1,2] [1]

[1,4,5,6,8,11,12,13,15,18,19,20,22,25,26,27,29]

[3] [0,1] [1] [1] [1,3,4,5] [1,2,3,5] [1,3,4,5] [1] [1] [0,1] [3] [2,3,4,6,9,10,11,13] [0,1]
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[0,1] [0,1,2] [1] [1] [3] [0,1] [1] [1,2,3,5] [1] [0,1] [3] [1] [1] [0,1,2] [0,1] [0,1]

[1,4,5,6,8,11,12,13,15,18,19,20,22,25,26,27,29,32,33,34,36,39,

40,41,43,46,47,48,50,53,54,55,57,60,61,62,64,67,68,69,71,74,75,

76,78,81,82,83,85,88,89,90,92,95,96,97,99,102,103,104,106,109,

110,111,113,116,117,118,120,123,124,125,127,130,131,132,134,137,

138,139,141,144,145,146,148,151,152,153,155,158,159,160,162,165,

166,167,169,172,173,174,176,179,180,181,183,186,187,188,190,193,

194,195,197,200,201,202,204,207,208,209,211,214,215,216,218,221,

222,223,225,228,229,230,232,235,236,237,239,242,243,244,246,249,

250,251,253]

[1,2] [1,2,5,7] [1,2] [1,2,3,5] [1,2] [1,2,5,7] [1,2] [2,3,4,6,9,10,11,13] [1] [0,12] [0,1]

[0,1] [1] [1,2] [1,2,4,8,9,11] [1,2] [1] [0,1] [0,1] [0,1,2] [1]

[1,4,5,6,8,11,12,13,15,18,19,20,22,25,26,27,29]

[3] [0,1] [1] [1] [1,3,4,5] [1,2,3,5] [1,3,4,5] [1] [1] [0,1] [3] [2,3,4,6,9,10,11,13] [0,1]

[0,1] [0,1,2] [1] [1] [3] [0,1] [1] [1,2,3,5] [1] [0,1] [3] [1] [1] [0,1,2] [0,1] [0,1]

[1,2,3,5,8,9,10,12,15,16,17,19,22,23,24,26,29,30,31,33,36,37,

38,40,43,44,45,47,50,51,52,54,57,58,59,61]

[0,1] [0,1] [0,1,2] [1] [1] [3] [0,1] [1] [1,2,3,5] [1] [0,1] [3] [1] [1] [0,1,2] [0,1] [0,1]

[2,3,4,6,9,10,11,13] [3] [0,1] [1] [1] [1,3,4,5] [1,23,5] [1,3,4,5] [1] [1] [0,1] [3]

[1,4,5,6,8,11,12,13,15,18,19,20,22,25,26,27,29]

[1] [0,1,2] [0,1] [0,1] [1] [1,2] [1,2,4,8,9,11] [1,2] [1] [0,1] [0,1] [0,1,2] [1]

[2,3,4,6,9,10,11,13] [1,2] [1,2,5,7] [1,2] [1,2,3,5] [1,2] [1,2,5,7] [1,2]

[2,3,4,6,9,10,11,13,16,17,18,20,23,24,25,27,30,31,32,34,37,38,39,

41,44,45,46,48,51,52,53,55,58,59,60,62,65,66,67,69,72,73,74,76,79,

80,81,83,86,87,88,90,93,94,95,97,100,101,102,104,107,108,109,111,

114,115,116,118,121,122,123,125]

[1] [0, 1,2] [0,1] [0,1] [1] [1,2] [1,2,4,8,9,11] [1,2] [1] [0,1] [0,1] [0,1,2] [1]

[2,3,4,6,9,10,11,13] [1,2] [1,2,5,7] [1,2] [1,2,3,5] [1,2] [1,2,5,7] [1,2]

[1,4,5,6,8,11,12,13,15,18,19,20,22,25,26,27,29]

[0,1] [0,1] [0,1,2] [1] [1] [3] [0,1] [1] [1,2,3,5] [1] [0,1] [3] [1] [1] [0,1,2] [0,1] [0,1]

[2,3,4,6,9,10,11,13] [3] [0,1] [1] [1] [1,3,4,5] [1,2,3,5] [1,3,4,5] [1] [1] [0,1] [3]

[1,2,3,5,8,9,10,12,15,16,17,19,22,23,24,26,29,30,31,33,36,37,38,40,

43,44,45,47,50,51,52,54,57,58,59,61]

[3] [0,1] [1] [1] [1,3,4,5] [1,2,3,5] [1,3,4,5] [1] [1] [0,1] [3] [2,3,4,6,9,10,11,13] [0,1]

[0,1] [0,1,2] [1] [1] [3] [0,1] [1] [1,2,3,5] [1] [0,1] [3] [1] [1] [0,1,2] [0,1] [0,1]

[1,4,5,6,8,11,12,13,15,18,19,20,22,25,26,27,29]

[1,2] [1,2,5,7] [1,2] [1,2,3,5] [1,2] [1,2,5,7] [1,2] [2,3,4,6,9,10,11,13] [1] [0,1,2] [0,1]

[0,1] [1] [1,2] [1,2,4,8,9,11] [1,2] [1] [0,1] [0,1] [0,1,2] [1]

6. THE REMAINING CASES %=t, t+1, t2+t

6.0. In these cases, we will be content with giving guesses deduced from
examples worked out. Note that we have proved ([T2] Theorem 3) the
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pure pattern for :, when % divides b and divides t2+t. We now prove a
basic proposition in the general case.

Proposition 4. Let % divide [1]. If n is large enough, then :n is a
convergent to :.

Proof. By 0.1.1, [1] divides [i], for every i, so that %2i&1 divides di .
Hence, if q is the denominator of :n , then q divides b df 2i di �%2i&1. So

deg(:&:n)+2 deg(q)�deg(ab d 2%2�[n+1])<0,

for large n and hence by Lemma 1, :n is a convergent to :. K

6.0.1. We get a glimpse of why t2+t=t(t+1) serves as an analogue
of 2 in Hurwitz numbers, at the crude level of divisibility analysis as in the
proof above. Classically, ordp(n !)�n � 1 as n � �, if and only if p=2 and
in fact, ord2(2k !)=2k&1. Our di is an analogue of the factorial of qi. (See
[T1] for more analogies). We have ord^(dk)�qk � 1 as k � � for a
prime ^, if and only if q=2 and ^=t or t+1 (since the norm of t or t+1
is 2, in the F2[t] case) and also ord^(dk)=2k&1 exactly in this case, as
is seen in the proof above.

6.0.2. We also see that possibilities of common factors between
a, b, %, d, f make the analysis of the exact denominators of :n more com-
plicated, when % � Fq*.

6.1. First we consider %=t.

We do not consider %=t+1 separately, as t � t+1 is an automorphism
of the whole situation.

Qualitatively, we expect the same kinds of inductive schemes, but it
seems that the sequence of new partial quotients need not be from the same
sequence as tn 's and the recipe for tn also gets more complicated.

Let k be the valuation at t of a�b. Write an=w[n] a�bx and bn=
w[n] t2a�bx.

If b=t, Nn=M &
n&1 with tn=an=[n] a�t.

If b divides t2 + t, then Nn = (M &
n&2, an&1, Mn&2), with tn =

w[n] a�(t2k+2b)x . Note that an&1=[n&1] a�b now.
If l(b)=1, then we have

Nn=(Nn&2, t*n&2 , An&1 , an&1 , Bn&1 , tn&2 , Nn&2)

=(Nn&2, t*n&2 , An&1 , an&1 , Mn&2)
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where Nn=(An , an&1 , Bn) and with tn given by the formula above if
k�&1, but with t2n=b2n and t2n+1=a2n+1 , if k<&1; and with tn*=tn if
k�&1, but with t*2n=a2n and t*2n+1=b2n+1 , if k<&1.

6.2. Finally we consider %=t 2+t.

For l(b)=1, Nn is given by exactly the same formula (the special cases
are also similar, but we will not spell them out here) as above, with t n*
having exactly the same relation with tn as before, but with tn given as
follows:

Write a�b=t k(t+1)m f�g, with f and g relatively prime to t 2+t. If
k, m�&1, we have tn=w[n] f�(t k+2(t+1)m+2 g)x .

Otherwise, if k, m�&1 then t2n+1=w[2n+1] a�bx . If not, and if
m�&1, then t2n+1=w[2n+1] a�((t+1)2m+2 b)x . The case k�&1
follows by the automorphism sending t to t+1 i.e., in that case we replace
(t+1)2m+2 by t2k+2.

On the other hand, t2n=w[2n] ft u(t+1)v�gx, with u=0, if k=&2;
u=k+4, if k<&2; and v=&m&2, if k�&2 and m�&1. Automor-
phism then determines all the cases: i.e., v=0, if m= &2; v=m+4, if
m<&2; and u=&k&2, if m�&2 and k�&1.

The author will greatly appreciate hearing about any progress on proofs
(or counter-examples ), or more general guesses.

7.0. Some important open questions are (1) What is the deeper reason
underlying the existence of strong patterns (of totally different kind) for
Hurwitz numbers in both the classical and function field cases? (2) What
is the deeper reason behind the appearance of the rationality question of
torsion? (3) Is there a similar easy universal scheme for describing the
patterns in the classical case? Which Hurwitz numbers give the pure
patterns? (4) What is the general theory behind the special patterns we
have illustrated?
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