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We show that the simple continued fractions for the analogues of
(ae®™ +b)/(ce?" +d) in function fields, with the usual exponential replaced by the
exponential for F,[#] have very interesting patterns. These are quite different
from their classical counterparts. We also show some continued fraction expansions
coming from function field analogues of hypergeometric functions  © 1996 Academic

Press, Inc.

1. INTRODUCTION

The continued fraction expansion of a real number is a fundamental and
revealing expansion through its connection with Euclidean algorithm and
with “best” rational approximations (see [ HW]). At the same time, it is
very poorly understood for some interesting numbers. We know that it is
essentially unique and finite (i.e., terminating) exactly for rational numbers
and periodic exactly for quadratic irrationalities. But apart from that, the
expansion of even a single additional algebraic number is not explicitly
known; we do not know even whether the partial quotients are unbounded
for such numbers. (See [ BS] for the function field situation).

For transcendental numbers of interest, it is not clear when to expect a
continued fraction with a good “pattern”. For example, Euler gave a nice
continued fraction for e

e=[2,1,2,1,1,4,1,1,6,1,..,1,2n, 1, ..].

On the other hand, nobody has made any sense out of the pattern for 7.
(We restrict our attention to simple continued fractions: of course, there
are many generalized continued fractions with nice patterns for numbers
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related to n). There is a vague folklore statement that the nice patterns
come from the connection with hypergeometric functions and the general-
ized continued fractions for hypergeometric functions (see [ P] sections 59
and 64) due to Gauss. (For more on this aspect and a survey, see [ CC]).

Various fruitful analogies between the number fields and function fields
of one variable over finite fields suggest exploring the question of finding
“Interesting patterns for interesting numbers” in the function field setting.
In [T1], we found an interesting continued fraction for an analogue of e
for F [t] coming from the Carlitz-Drinfeld exponential.

Classically, building on Euler’s continued fractions (we will use the
abbreviation “CF” from now on for continued fraction) for e¢*”, Hurwitz
proved [H, P] that linear fractional transformations of e¢*”, with integer
coefficients, have CF’s whose partial quotients eventually consist of a fixed
number of arithmetical progressions. For example, after the first digit 2, the
CF for e consists of 3 progressions 1 +0n, 0+ 2n, 1 +0n. For ' —1/5 one
needs 62 arithmetic progressions!

In characteristic p, arithmetic progressions are periodic and hence will
give rise to quadratic numbers, whereas the numbers we look at are trans-
cendental. Nonetheless we will show below that analogue of the Hurwitz
class of numbers have very different interesting patterns, indicating that
though the patterns and proofs are quite different, for some reason the
analogues do have nice patterns.

After recalling the background material in Sections 1-3, our main results
are contained in Sections 4-6.

For a general exposition on function field arithmetic we refer to [ GHR ]
and for exposition on classical continued fractions to [HW] or [P].

1. BACKGROUND ON CONTINUED FRACTIONS

The basic reference here is [HW] or [P].

1.1. We start by recalling some standard facts and notation. [(a,)] :=
[ag, a;, as, ...] denotes the continued fraction

a)+———
a2+

The a; is called the ith partial quotient. The quantity «), denotes
la,,a,.,..]- By a tail of the CF [(a;)] we mean a, for some n.
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I.1.1. Let

Po=4dy, go=1, pi=aao+1, q,=a,
pn:anpnfldl—pan’ qn:anqnfldl—qan
then

112, p.Jg,=[ag > a,],

L13. pugy 1 =Py rgu=(=1""",

L14. [ag,ay,..1=(ayp, 1 +Py-2)/@,qu—1+4q,_>) and
LS. ¢./9,-1=1[a,, - ai]-

1.1.6. For x=[(x,)] and y=[(y,)], x,,=y,, for some m and n (i.e.
tails agree) if and only if y=(ax+b)/(cx+d) with a,b,c,deZ and
ad—bc= +1. We say that such x and y are equivalent.

1.2. For a real number «a, the continued fraction for « is obtained by
repeating the procedure of “taking the integral part to be the partial
quotient and starting again with the reciprocal of the number minus its
integral part (if nonzero)”. Except possibly for «a,, all /s are then positive
integers. Any CF with a,€ Z and a,> 0 for i > 0 converges to a real number
(CF for a converges to a) and the equality of two such CF’s implies
equality of the corresponding partial quotients, except for the ambiguity in
the last digits in terminating case due to n=(n— 1)+ 1/1. Uniqueness is
restored if we insist that the last digit is not 1 (except in the special case
a=1 when we take the first digit (which is also the last digit) to be 1), this
condition is guaranteed anyway if we follow the procedure above to find
the CF expansion.

1.3. Now we turn to the function field case. Let F, be a finite field
of cardinality ¢ and of characteristic p. Let A4:=F [7], K:=F,(1),
K. :=F,(1/t)) and let Q be the completion of an algebraic closure of K, .
Then A4, K, K_,, 2 are well-known analogues (see [GHR]) of Z, Q, R, C
respectively.

For ae K, if we replace the notion of “integral part of a number” by
the analogous polynomial part >%_ 4,/ in the Laurent expansion
>k__ A,t" of a, the same procedure gives CF for a, with a;e A. This time
there is no sign condition forced on a; (such as they must be monic), in
contrast to the positivity condition in 1.2. On the other hand, for i>0,
a,¢ F,. Conversely, with these conditions there is convergence and unique-
ness of CF.

Observe that [a+1,b+1]=[a, 1, b] in characteristic 2.
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2. RESULTS OF EULER AND HURWITZ

The basic reference here is [ P].

2.1. Generalizing the CF for e mentioned in the introduction, Euler
showed (the overline in the notation indicates infinite arithmetic progres-
sions), that for n>1

e=[Ln—1+2im112,=[L,n—11,1,3n—1,1,1,5n—1,1, ...]

and for odd n>1,

e?"=T1,(n—1)/2+3in, 6n+ 12in, (5n—1)/2 + 3in, 1] ,.

Hurwitz showed (see [P] for the full statement) that if you have a
number whose CF consists of arithmetic progressions from some point
onwards, then the same property holds for the number obtained by
applying linear fractional transformation of any nonzero determinant to it.
(Note that if the determinant is + 1, then this follows from 1.1.6 already and
if the determinant is zero, we get the degenerate case of rational numbers).

2.1.1. In particular, (ae*" + b)/(ce*" + d) for n a positive integer and
a, b, c,deZ with ad—bc+#0 have all CF’s whose partial quotients are
eventually in a fixed number of arithmetic progressions. But the process to
write down the CF is quite involved and there is no easy “formula” in
general.

2.1.2. We give two examples worked out by Hurwitz [H]:
2¢e=1[5,2,3,2i,3,1,2;, 117,

e+1_
-

[1,4,54i—3,1,1,36i— 16,1, 1,4i—2,1,1,36i—4, 1, 1,4i—1,1,5,4, 11~

i=1"

3. THE EXPONENTIAL FOR F [ 7]

The basic reference here is [C1].

3.1.1. Let [i]:=¢"—¢. This is just the product of monic irreducible
elements of 4 of degree dividing i. Note [i+1]=[i]?+[1]=[i]+[1]7.
3.12. Letd,:=1, d;:=[i]d! ,, i>0. (d;is Carlitz’ F;.) This is the

product of monic elements of 4 of degree i.



252 DINESH S. THAKUR

3.1.3. Let

e(z):=

HM@

=
o d;
This is the exponential for F [¢], introduced by Carlitz [C1]. We put

e:=¢(1). For many analogies with the properties of the classical exponen-
tial, we refer the reader to the introduction to [T1].

4. Tue F [ 1] Case

4.1. We start by recalling the result of [T1] and pointing out the
immediate consequences, even though they will also follow from our main
results below:

THEOREM 1. Define a sequence x, with x,:=[0,z"1]] and if x,=
[ag, ayy ..., azn 1], then setting

. —q"(q—2) 2
Xyt = [y eeer Aon_ gy —2 197D A2 —asn ey —ay]

Then

=
L\ d;

)
N
Il
II M=

In particular, e(z)=z+1lim,_,  x, and for g=2,

=e(l)=[1,[1], (2], [1].[3]. [1]. [2]. [1]. [4], 1], [2]. (11, (3], [11. [2]. (1], [5]. -]
—~ —~ —— . -
——— T
- —
~—~

(More explicitly, for n>0 the n-th partial quotient is 1> —t with u, being
the exponent of the highest power of 2 dividing 2n).

4.2. We now introduce some terminology to talk about such patterns,
with negative reverse repetition: By a CF u of pure e-type with the initial
block X = (ay, ..,a,,) and digits w,, we mean CF described by its
suitable truncations u; as follows: Let u, :=[ay, .., a;,,w,;] and if u,=
[ay, ay, ..., a;,, w;] then

i1 := [y Ay ey gy Wiy — Qs — gy oy — A1, Wi 1]
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Let’s make it more visual: For Y= (¥1s o Vi), pUt (I_/ziy,(, ., 1) and
—Y:=(—Y&» —Vi_1,» —»1).- Then we have u,=[a,, X,w,;] and for
w,=lay, Y,w;] we have u,,,=[ay, ¥Y,w;, —Y,w,, ] so that

—

— - — -
luz[aos X: Wi, _Xa W, Xa — Wy, _Xa W3, Xs ]

We say that x =[(x;)] is of e-type, if it is equivalent (see 1.1.6) to some
u of pure e-type, i.e., for some n, the tail x/, is a tail of some CF of pure
e-type.

4.3. Theorem 1 then shows that e and e(a/f) —a/f for fe A— {0} and
aeFJ* (see also 5.1, 5.2) are of pure e-type.

4.4. The proof of Theorem 1 (see also the remark following the proof
in [T1]) is based on a calculation abstracted in the following lemma of
[PS], [DMP] whose variants already appear in [ S1].

LEmMMA 1. Let X = (ay,..,a,), so that [ay, X’] =p,/q,. Then
[a09 X)ya _X] :pn/Qn+(_l)n/yqi

Proof. This is a straightforward calculation using 1.1.1-1.1.5. ||

The Main Result when g >2

THEOREM 2. Let g >2, a,b,c,d,fe A, f#0. If ad— bc#0, then
(ae(1)f) + b)/(ce(1/f) +d) is of e-type. If a,b,d#0, then M :=
(a/b) e(1/f) + (c/d) is of pure e-type.

Proof.  We first prove the second claim. We have

M:{<c+1+...+ - )+ 1 }
d  bfja bf d, \/a) bf7d, a

1
bfq d}1+l/a

Let n—1 be a positive integer greater than the degrees of ¢, b and d. Let
the quantity (call it #) in the curly brackets { } in the displayed equation
have CF [q,, X].

CLAM. The CF of M is of pure e-type with the initial block X and digits
wo=(=D5a(f"""'d,,, ) 2 [n+il/b, for i=1 to o (note that these
are nonconstant integers, by 3.1.2 since q > 2), where k;=1 for i>1 and k,
is the length of the initial block.
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Proof of the Claim. By 3.1.2, our choice of n implies that the quantity
in the round backets ( ) in the displayed equation can be written with com-
mon (integral) denominator bf "'d | Ja, but it may not be the reduced
denominator. On the other hand, since by our choice of n every prime
dividing bf“"d,, /a divides d, or f, it will not divide the numerator of 5 written
with the denominator bf9'd,/a showing that it is in fact the reduced
denominator of 5. Since bf"d,, Ja = (bf "~ 'd,, ,/a)*a(f*""'d,, _,)?~*[m]/b,
Lemma 1 finishes the proof of the claim and hence of the second claim in
the Theorem by induction on m.

To deduce the first claim in the Theorem from this, it is enough, by
analogue of 1.1.6 (see p. 601 of [ BS]) to establish the following claim.

CLAM. Let a, b, c,de A, with D :=ad—bc#0 be given. Then there are
a,b,c,d eA, withad —b'c'=1 and r,, r, €K satisfying

ax+b a(rix+r,)+b
= €
ex+d d(rix+ry)+d

K(x)

Proof of the Claim. We leave the easier case when one of a, b, ¢, d is
zero to the reader. Let g be the greatest common divisor of a and ¢. Then
a :=alge A and ¢' :=c/ge A are relatively prime and hence there are b’
and d' in A4 such that a'd’ —b'c’ =1. With r,:= —(bg+ b'D)/(d'D) € K, we
have b/d= (a'r,+b")/(c'ry+d"). Hence we can solve for ry, ¢ € K such that
g=rt, b=(a'r,+b')t and d=(c'r,+d’)t. But this is equivalent to the
displayed equation in the claim. This finishes the proof of the claim and
hence of the Theorem. ||

4.5. Remark. Notice that we have given, together with 1.1.6, an effec-
tive (finite) procedure to determine the pattern for analogues of Hurwitz
numbers, Also, note that sometimes we can use a smaller size “building
block” X by taking a smaller n than prescribed above (and keeping the rest
of the recipe in the claim the same).

The case g =2

4.,6. When g =2, the situation is more subtle. Now — X=X and for
g =2 the expansion of e given in the Theorem 1 can be equally interpreted
as negative reverse repetition or reverse repetition or just repetition. But
these interpretations will lead to distinct generalization, as we will see shortly.

THEOREM 3. Let q=2, and let a,b,c,d,feA, b,d f#0. Let M:=
(a/b) e(1/f) + c/d. If b divides t* + t, then M is of pure e-type. If, in addition
t divides b, (and does not divide a) then N :=(a/b) e(t/f) + c/d is also of pure
e-type. If b is a square-free polynomial, then for infinitely many n, the CF for
M is of the form [ay, X, a,, — X, ...] with X =(a,, ..., a,_,).
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Proof. We proceed exactly as in the case ¢ >2. The fact that b divides
d?~? in that case may not carry over, but b still divides [z + 1], by 3.1.1
and we get the proof of the first claim. For the second claim, note that for
large n, under the given condition both the terms in ( ) in the equation

b, o = (bf'd, Jar)? ([n+ 1] afb)

are integral. Hence the claim follows exactly as before.

Now note that for large enough n, the truncated series (displayed in the
proof of the last theorem) for M give convergents (i.e. truncated continued
fractions) for M because of rapid convergence. (More precisely, if the trun-
cation is p/g with (p, q)=1, then deg(M —p/q) < —2 deg ¢, by straight-
forward calculation, and (e.g. by Lemma 1 of [BS]) this guarantees that
p/q 1s a convergent). If b is square-free, let m be the least common multiple
of the degrees of the primes dividing . Then by 3.1.1, when m divides n+ 1,
then b divides [#+ 1] and Lemma 1 gives the reversal as claimed at the
corresponding truncations. i

4.7. Remark. We can of course replace ¢ by t+1 or t>+¢ in the
theorem above. If we look for the analogue of 2/n in the Hurwitz theorem,
at first we may think of o/f with « € F, (in particular, say ¢ — 1, which plays
the role of 2, in many contexts). Indeed, since e(a/f) = ae(1/f) such a result
is included in our result. But it seems that the fact that 1 and 2 are the only
allowed numerators in the classical case is related to the fact that only first
and second roots of unity are in the ground field Q. With this interpreta-
tion, if we look for the a-torsion points of the Carlitz module (see the intro-
duction of [T1] or [GHR]; these are analogues of roots of unity), which
are in K, then an easy calculation shows that for ¢ > 2 this forces aeF,,
but for =2 a=t, ¢+ 1, or 1>+t are exactly the extra a’s that are allowed.
This fits with our result.

Now we show that the patterns in the general case are more subtle when
g =2, giving a mixture of reversing and repeating of patterns, and we do
not have the same results as for ¢ > 2. Since we have some general results
in the previous theorem about square-free denominators and complete
result for a degree one denominator, we now look at denominators with
higher multiplicity and degrees.

THEOREM 4. Let g=2. Then for n>2, and with A7,), defined by
Yrog1/(dit") =0, X,,] we have,

e frped n—1 ey n g n—1 g n+1
2 — 2mn— 2 — 2 —
n [O’ Xn 2 t n7 Xn b t n’ Xn 2 [ ”’ Xn 2 t n’ "']

tn =
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Also, with X =(1>+ 1,1, t+ 1) we have

—

=[0, X, % X, 15 X, 1% X, 1", ..].

e
22

~

Proof. We_start with e/t*: Observe that [0, A_}] =1/ +1/(+*d,) and
[o, X]+[0 X]—l/z

LEMMA 2. Let g=2 and X= (ay, ..., a,), so that [0, X/] =p,/q,. Then

[0, X, p, X1=p,/qu+ 123+ (D0t qu1)/ds)
=0, X]+1/(¢2(y+[0, X]+[0, XT)).

Proof. The proof is a straightforward application of 1.1.1-1.1.5. In more
detail

pn+l/qn+l = [03 Xayn X] = [Oa X9y+pn/qn]

By 111 and 113’ pn+ l/q;:+1 :pn/qn + ( - l)n/(qi(arh}—l + qn— l/q;z)) BUt in
our case, a,,.;=y+p,/q,. This proves the first equality. The second
equality follows from 1.1.5. ||

Let us write p, /q,, =1/*+ --- +1/(1’d,) =0, ?] it being understood
as usual that p, and ¢, are relatlvely prime. Then ¢, =t°d, is also the
denominator of ¢, ,/q,,=1[0, Y] (by 1.1.5). Let our induction hypo-
thesis be that p,w/qA” +qi,_1/qx, = 1/t. This is true for n=1. Lemma 2 and
3.1.2 together imply that

[09 Yna t2n+]729 Yn] :pk,,/qk,, + 1/(t2dn+l) :pk,,+1/q/€n+]

(notice that this is the claim in the statement of the Theorem, so we are
really using double induction) and similarly also that

Qs 1 /90 =00, Y, 27 2 Y, T = qu 1 [, + 1/12(d, 1)

This shows that the induction hypothesis is true in general and conse-
quently, the claim in the case of e/t follows.

For the general case n>2,

Cram. [0, X,]+T[0, X,]=1/""".

Assuming this, by induction using the lemma just as before we get the
formula claimed for e/t”, so it remains to prove the claim: We have
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qr,=1t"d, > and p, =d, (1 +1/d,+ --- +1/d, ). Let Q=1td, >+py,
and P=(1+p, 0)/q,, Then Pq, —Op, =1. We first show that P is an
integer. Now

1 +pi,, + tdn72pk,,
B tndan

d d d
<dn2+ 2;2+~~- - "2>+t<d,,2+ R ”2>
1

ln

By 3.1.1 and 3.1.2, (we calculate directly for n =3 and check that P is an
integer) it follows that for n>3, td, ,=0 (mod ¢") and

d d d dy_s i
ot = (i 1] ] = 2 =0 (mod 1)

n—i dn7i+l dn7i+l n—i+1

Hence we see that P is an integer.

Now Pg, — Op,, =1 whereas by 1.1.3, we have p,, ¢, —qr, 101, = L,
so that p, (g, 1—0)=qs(pPr,_1—P). Now p, and g, are relatively
prime by 1.1.3, and it follows easily from the definitions that the degree of
Di,—1 — P 1s less than that of p, . Hence P=p, _, and the latter formula
proves the claim. Hence the proof of the claim and the theorem is
complete. |

Next we deal with the CF for e/¢ where @ =>4+t + 1, the degree two
prime. Let 0,:=3"_, 1/(pd,).

THEOREM 5. The CF for e/(t*+t+ 1) is u.,, which is a limit of its trun-
cations u; defined as follows:

us:=[0,[1],[2] o, [1], [2][1]+1,[2],[1], [2]]
For odd k=3, if 1, =[0,Y], let uy,,:=[0, Y, [k+1]/p, Y]. For even
k=4, if u,=[0, Z, [k1/@, Z], let

tior=[0. Z, [k)/p. Z, LLk+11/p . Z.[K]/p. Z]

where | [k+1]/¢_ denotes the polynomial obtained as the quotient when
[k + 1] is divided by ¢ using the division algorithm.

Proof. First observe that u, is well defined. It is enough to prove that
=0, for k=3. The proof is by induction on k and holds for k=3 by
construction. For odd k the passage from k to k+ 1 follows by Lemma 1.
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Now if we write u,=p,,/q,,, then we simultaneously claim by induction
that for odd k we have (p,, +9,, 1)/¢, =1/¢. Again k=3 is a straight-
forward calculation. The induction on both claims is now complete by
using the following lemma, in a similar manner as in the previous theorem.
(The main calculation is spelled out after the proof of the Lemma).

LemmA 3. Let q=2 and X= (ay, ..., a,), so that [0, /\7] =p,/q,. Then

AN AN AR SO 1
U:=[0,X,y, X,x, X,p, X]="24—+
In yqi q:yz(x+ (pn +Qn71)/qn)

Proof. By Lemma 1 and 1.1.5, we have

L. 1 - 1
Poria10, X9, X1 =224 —dn=ty

D 4 g 4. V4,

Note that ¢,,=yq2 and p,, =1 + yq,p,. Also by 1.1.5, we have q,, | =p,.
by the reversal symmetry of the CF. Hence we have, by a calculation as in
Lemma 2,

I 1
U:{O, X, y, X,x+q'7l+2}
qn Y4,

1 1
(i
qn yqn qz ( 1 qm — 1>

2 (xqpdnzty —  Imt
G Ven

Substituting the values for ¢,, and ¢,,_, obtained above, we see that U
is as claimed. This finishes the proof of the lemma.

Now we spell out the details of the application of the lemma: First let us
write Q for the quantity | [k+ 1]/¢ _|. By an easy induction we see that
""" is congruent to 7 + 1 modulo @, so that Q= [k+1]+ 1, for k even.
Next note that 0, ,=0,_,+1/(¢9d,)+1/(9d, ). In the application of
the lemma, p,/q, is 0,_,, so that ¢,= @d,_, and 1/yq2=1/(gpd,) (by
3.1.2) and

1 1 1 1
VaRx+ (Patdn1)/0,) ©die0+1) edilk+1] @d.,,

Hence the induction and the proof of the theorem is complete. ||

These examples illustrate the subtleties of the case ¢ =2. We have some
more examples of this kind and in all these examples, we do find some
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inductive scheme of block reversal and block repetition. But we have not
yet understood the situation fully for general Hurwitz type numbers when
g ="2. We hope to address that in a future paper.

5. SPECIAL PHENOMENA

There are some special phenomena in characteristic p, which do not
seem to have analogues for real numbers:

5.1. For example x =[(x;)] implies x”=[(x?)] in characteristic p, so
nice patterns carry over for x” from x.

5.2. For example, when ¢ =2, e(¢'*) —t"? has a pure e-type pattern as
in section 4 as can be seen by putting z=¢"? in the Theorem 1. Similarly,
if we subtract from e(z) a few initial terms in the defining series we can get
e-type patterns for resulting numbers for various z involving pth roots, for
g =2 or even for general ¢g. We leave it to the reader to find such variants.

5.3. Because of different kind of functional equations satisfied by expo-
nentials (though they both correspond to the relevant cyclotomic theory,
see [GHR]), care must be taken in comparison. For example, classically

ae®+b  ae"+be" V"
ce?"+d ce'+de "

whereas in our case

ae(l/f)+be(—1/f) a—b
ce(1/f)+de(—1)f) c¢—d

which may not be even defined if ¢ =d. Similarly, we have good patterns
for e(a+ 1) —e(a), which is just e in disguise, but e“*' — ¢“ need not have
good pattern. We leave it to the reader to find more examples combining
these ingredients.

6. COMPLEMENTS

6.1. Lehmer [ L] evaluates some CF whose partial quotients are in one
or two arithmetic progressions in terms of Bessel functions. We proceed in
roughly the same spirit to give some elegant CF’s with elegant values: In
[T2], a function field analogue of the hypergeometric series was intro-
duced and a generalized CF was provided for it. We now give, in some
special cases, the simple CF for values of these hypergeometric functions.
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By specializing 3.6 of [ T2], we get in notation of [ T2], the following
examples, when ¢ =2:

(a) Forintegers a>1, F,(1;a; 1) " is of pure e-type with the initial
block d,_, and digits w,:=[a+i—1] for i=1 to oo.
(b) For integers a>1, J,_ (1) is of pure e-type, with the initial
block d, , and digits w,:=[k+i—1][i]¢ "
We leave it to the reader to provide more specializations of such type
when ¢ >2 or when z is not necessarily one.

6.2. Objects which have patterns with “reversing and repeating” sym-
metries as in the examples of CF’s above have been explored by various
angles, such as with their connections with paperfoldings, functional equa-
tions for generating functions, Rudin—Shapiro sequence, ising model,
automata, transcendence, geometrical representations, Toeplitz sequences
etc. But we need an infinite alphabet in our case, in contrast to standard
examples from automata theory. The reader is referred to the expository
articles [AB], [DMP] and further references there.

6.3. Remark. It may interest the reader to know that the author first
proved part of the function field results and then guessed (unaware of
Hurwitz’s results) that there should be patterns classically for analo-
gous numbers and this was then verified on computers using Pari and
Mathematica.

Note added in proof. The author has settled the patterns for (ae(1/f)+ b)/(ce(1/f)+d),
when ¢ =2. See the forthcoming paper by the author.
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