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We show that the exponential e(r) for F,[T]. whose definition and properties 
are recalled in Section 0, has a continued fraction expansion with an interesting 
pattern. c 1992 Academic Press. Inc. 

0. ANALOGUE OF THE EXPONENTIAL 

Let F, be a finite field of cardinality q. Let A := Fy[ T], K := FY( T), 
K, := F,(( l/T)) and let Sz be the completion of an algebraic closure of 
K,. Then A, K, K,, R are well-known analogues of Z, Q, R, C, respec- 
tively. Carlitz [Cl] introduced an entire function e : 52 -+ 52 as an analogue 
of the exponential function. We will now give its power series expansion 
and describe some analogies with the classical exponential function. (Our 
notations and normalizations of signs are different from [Cl 1. In par- 
ticular, Carlitz uses the symbol II/ for the exponential. It is the same as our 
e for characteristic 2, but in odd characteristic 9 and e differ by a simple 
change of variable. Also, we will ignore historical motivation. For a wider 
perspective, see [G, T] and references there.) 

Let [i] := Tq’ - T. This is just the product of manic irreducible elements 
of A of degree dividing i. Note [i+ l]= [iI”+ [1]= [i]+ [l]“‘. Let 
D,, := 1, D, := [i] Dyp ,, i> 0. (Di is the same as Carlitz’ F,.) This is the 
product of manic elements of A of degree i. Let 

e(z) := f g. 
r=O 1 

Some analogies: 

(1) e(z) is an entire function (in the sense that the power series 
defining it converges for all ZEN), but it is additive unlike the classical 
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exponential, which is multiplicative. For a E A, e(az) = C,(e(z)), where 
C,(U) is a polynomial in u (e.g., C,(u) = TM + u4), somewhat analogous to 
the classical case en2 = (e’)“. (For nonzero a, the degree of C, is Norm 
u : = qkee 0, which is just the number of residue classes modulo a. Note 
that n is the number of residue classes modulo n.) In fact, associating this 
polynomial to a gives an embedding of A as a ring in the endomorphism 
ring of the additive group, similar to the embedding of Z (by sending n to 
the nth power map) in the endomorphism ring of the multiplicative group. 
Also as an analogue of e’ = lim( 1 + z/n)“, one has e(z) = lim C,(z/a), where 
now the limit is taken as the degree of a tends to infinity. (See [H, T].) 

(2) e(z) has analogous transcendence properties, for example, 
analogues of the Siegel-Schneider and Hermite-Lindemann theorems 
hold. In particular, e := e( 1) is transcendental. (The irrationality of e can 
be proved easily by imitating the classical proof (see, e.g., [HW, 
Theorem 471). The kernel of e(z) is of the form itA, for some ZEJ?. 
Compare this to eZ = 1 iff z ~2niZ. In fact, it is an analogue of 2ni: 
It is known to be transcendental and it occurs in analogous fashion in 
the special values of analogues of zeta and gamma functions. (See 
[C2, Wl, W2, T].) 

(3) Adjoining e(itu/b), for some a, b E A, to K, one gets analogues of 
cyclotomic extensions, with similar Galois actions, ramification, and prime 
splitting properties. (See [HI.) 

(4) Compare e’ = C(z”/n!) with the power series expansion above. In 
fact, Di gives a good analogue of the factorial of qi: It has analogous prime 
factorization, divisibility properties, growth rate, interpolations at all places 
with analogous functional equations, and special values. (See CT].) 

(5) Analogues of the Bernoulli numbers can be obtained from the 
generating function z/e(z); classically one uses z/(e’ - 1). These satisfy 
von-Staudt-Clausen type congruences and appear analogously in the 
special values of the zeta function and in connection with the class groups 
of the cyclotomic fields. (See [C2, Gel.) 

(6) Classically the derivative of e’ with respect to z is e’ itself. Here 
the usual derivative of e(z) is 1, but for an analogue, see [T], 

1. CONTINUED FRACTIONS 

We recall some standard facts and notation (see, e.g., [HW]): 
[a,, a,, a2, . ..] (there should be no confusion with [i] of Section 0, since it 
has only one entry), denotes the continued fraction 
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1 
a0 + 1 * 

UI +- 
a,+ ... 

a: denotes [a,, a,, 1, . ..I 

(A) Let 

PO = a,> qo= 1, p1 =a,a,+ 1, 41 =a1 

Pn=%Pn-l+Pn-2, qn=%qn-I+qn-2 

then 

(B) p,/qn = [a,, . . . . 4 
(Cl Pn4n-I-Pn- lqn=(-w-‘3 

PI C~~,a,,...l=(a:,p,-,+p,~~)/(a:,q,-,+q,~~), and 
(El q&n-, = Ca,,, . . . . a,l. 

In the classical case, Euler proved e = [2, 1, 2, 1, 1, 4, 1, . . . . 1, 2n, 1, . ..I. It 
is also well known that 

e’= ] 

Our 

z 1 
+ = 

2 z 
l- 

2Z 
l- 

Z 
2-t-z-- 

32 1+ z 3+z-4+z- 2- . . . 
Z 

3+ - 

2- ‘ 
Z 

5+2- . . . 

main result is 

THEOREM 1. Define a sequence x, by setting x, := [0, zPq[l]] and if 
x, = [a,, a, 2 ..‘, uZn ~, 1, then setting 

x n+1:= Ca 0, . . . . u,n-,, -z -q”(y-2’ D,,+JD;, -u2”pl, . . . . -a,], 

In particular, e(z) = z + lim, _ o. x, and the continued fraction for e is 
obtained by patting z = 1. In particular, for q = 2, 
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e= Cl, Cz, PI, [z, C31, Cll, C21, Cl], 

- 

z 
2 

e(z) = z + 
2 

Cll+ - 2 

[21+[1]: . . . 

ProojI Let e n := C7=, zyyDi and e,, := e, - 2zqn/D,,. Also, for x, as in 
the statement of the theorem, we let X, := [0, -a2np,, . . . . -al]. Let 
pi, qi, pi, qi have the obvious meanings, corresponding to the continued 
fractions x,, 2,‘s. (Note that the continued fraction for x, is obtained by 
truncating that of x, + r, but the analogous statement is not true for X, and 
x It+19 so pi, qi depend on the particular X, we are considering). Let the 
induction hypothesis H, be 

Then H, clearly holds. Assume H,,. Applying (E) to the definitions of 
x,2 f,, we see that q2”-* is the same as ~7~~~ r, which is the same as 
-pznP I + 2, by the induction hypothesis. Application of (C) then shows 
that p2”- z = - ( p2”- 1 - 1)2/q2”- r. On the other hand, (D) together with 
H, implies that 

X 
(-~~“(~~~‘D~+,/D;:+X,)p~n~,+pzn~2 

?I+‘= (- zqn’(q--2)Dn+,/D~+X,)q2”-1+q2n--’ 

Using the formulae we have obtained, a simple manipulation shows that 
-0,/z@ times the denominator (the numerator resp.) of this expression is 
z-4”+’ D n+lL-q”+lDn+l en+, resp.). From this evaluation of X, + , , we see 
that pZn+l- r, q2”+l _, are as stated in H,,+ r, by an easy count, using (A), 
of their sign and degrees in T and z. Similarly, one sees using (D) and H,, 
that 

x 
(.z~“(~ - 2’ D, + ,/DE + X,) p2n _ I+ p2n _ 2 

n+1= 

Similar manipulation then shows that p 2”+1-,, q2”+l-, are also as stated in 
H n+l7 thus proving H, + 1. This completes the proof by induction. 
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Remarks. (1) In fact, the proof shows that the partial sums of any 
series of the form l/r, - l/(rTr?) - l/( rTrfr3) + .. . have continued fractions 
with similar “negative reverse repetition” with the terms r,, r?, rx, . . . . 

(2) For q = 2, use of the auxiliary continued fraction X, can be 
avoided and a simpler proof can be given by just using (E). 

(3) In general, it is much easier to express the given quantity as a 
generalized continued fraction, since there is no uniqueness. For example, 
we have a term by term equality 

L-l+&- . . . = 1 
a a 

a+ h 
h-l+ 

c+l+A 

This gives generalized continued fractions, with interesting looking 
partial quotients in terms of the [i]‘s, for e(z), its inverse log(z), 
i(l), . . . . i(q) (where c(s) := CnmonlcEA l/n’, s E N, is an analogue of the 
Riemann zeta function), the analogue y := [( 1) of Euler’s gamma constant, 
ii”- ‘/[ 11. For more information about these quantities and series 
expansions for them, see [T] and references there. We just give a simple 
example. For q = 2, 

&i(l)=log(l)=,.= 
1 

1 
1+ 

[l]+l+ 
[Ill 

[2] + 1 + 
121 

[3]+1 +u . . 

(4) After circulating a preliminary version of this article, I was 
informed by J. Shallit that in [S, PSI, continued fractions of some real 
numbers were shown to have similar “reverse repetition” patterns. He also 
suggested a nice alternate description of a, in Theorem 1, when q = 2, z = 1, 
n > 0: a, = [ord,(2n)], where ord,(2n) is the largest integer k such that 2” 
divides 2n. 
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