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We show that the exponential e(z) for F,[77], whose definition and properties
are recalled in Section 0, has a continued fraction expansion with an interesting
pattern. @ 1992 Academic Press, Inc.

0. ANALOGUE OF THE EXPONENTIAL

Let F, be a finite field of cardinality ¢q. Let A:=F [T], K:=F (T),
K., =F,((1/T)) and let Q be the completion of an algebraic closure of
K. Then A, K, K, Q are well-known analogues of Z, Q, R, C, respec-
tively. Carlitz [C1] introduced an entire function e¢: £ — @ as an analogue
of the exponential function. We will now give its power series expansion
and describe some analogies with the classical exponential function. (Our
notations and normalizations of signs are different from [Cl1]. In par-
ticular, Carlitz uses the symbol  for the exponential. It is the same as our
e for characteristic 2, but in odd characteristic  and e differ by a simple
change of variable. Also, we will ignore historical motivation. For a wider
perspective, see [G, T] and references there.)

Let [i]:=T“ — T. This is just the product of monic irreducible elements
of A of degree dividing i. Note [i+1]=[i]*+[1]1=[i]+[1]% Let
Dy:=1, D;:=[i]1D? ,i>0. (D, is the same as Carlitz’ F,.) This is the
product of monic elements of 4 of degree i. Let

Some analogies:

(1) e(z) is an entire function (in the sense that the power series
defining it converges for all ze Q), but it is additive unlike the classical
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exponential, which is multiplicative. For ae A4, e(az)=C,(e(z)), where
C,(u) is a polynomial in u (e.g., Cy(u)= Tu+ u?), somewhat analogous to
the classical case e™ = (e?)". (For nonzero a, the degree of C, is Norm
a = q%¥*“ which is just the number of residue classes modulo a. Note
that » is the number of residue classes modulo n.) In fact, associating this
polynomial to a gives an embedding of A4 as a ring in the endomorphism
ring of the additive group, similar to the embedding of Z (by sending # to
the nth power map) in the endomorphism ring of the multiplicative group.
Also as an analogue of ¢” = lim(1 + z/n)”, one has e(z) =1im C,(z/a), where
now the limit is taken as the degree of a tends to infinity. (See [H, T].)

(2) e(z) has analogous transcendence properties, for example,
analogues of the Siegel-Schneider and Hermite-Lindemann theorems
hold. In particular, e :=e(1) is transcendental. (The irrationality of e can
be proved easily by imitating the classical proof (see, e.g, [HW,
Theorem 477]). The kernel of e(z) is of the form #A, for some 7Ze Q.
Compare this to e=1 iff ze2niZ. In fact, # is an analogue of 2ni:
It is known to be transcendental and it occurs in analogous fashion in
the special values of analogues of zeta and gamma functions. (See
[C2, W1, W2, T])

(3) Adjoining e(#a/b), for some a, be A4, to K, one gets analogues of
cyclotomic extensions, with similar Galois actions, ramification, and prime
splitting properties. (See [H].)

(4) Compare ¢” = (z"/n!) with the power series expansion above. In
fact, D, gives a good analogue of the factorial of ¢': It has analogous prime
factorization, divisibility properties, growth rate, interpolations at all places
with analogous functional equations, and special values. (See [T].)

(5) Analogues of the Bernoulli numbers can be obtained from the
generating function z/e(z); classically one uses z/(e”—1). These satisfy
von-Staudt—Clausen type congruences and appear analogously in the
special values of the zeta function and in connection with the class groups
of the cyclotomic fields. (See [C2, Ge].)

(6) Classically the derivative of ¢* with respect to z is e itself. Here
the usual derivative of e(z) is 1, but for an analogue, see [T].

1. CONTINUED FRACTIONS

We recall some standard facts and notation (see, e.g, [HW]):
[ao, a,, a,, ...] (there should be no confusion with [i] of Section 0, since it
has only one entry), denotes the continued fraction
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1
1
a2+

ag +

a, denotes [a,, a, 1, ..]-

(A) Let

Po =4y, go=1, pi=aap+1, q,=a,

pn:anpn71+pn72’ qnzanqn71+qn—2

(B) Pn/qn = [aO’ ey an]’
(C) Pugu—r—Pp1gn=(=1)""1,
(D) (ao,ay,..1=(a,p, +p, 2)a,q,_ +4q, ») and
(E) qn/qn\I = [am ey a1]~
In the classical case, Euler proved e=1[2,1,2,1,1,4,1,..,1,2n, 1, .7 It
is also well known that

ty
3]

Our main result is
THEOREM 1. Define a sequence x, by setting x,:=1[0,z 9[1]] and if
x,=Lag, a,, ..., Ay _, ], then setting
. - " qg—2 2
Xpp1:= [0, @y, =272 D, /D5, —ap_ys ey — 1],

then

g

(8]

Xp=

N-Mz
S|

Vi

i

In particular, e(z)=z+lim, , ., x, and the continued fraction for e is
obtained by patting z = 1. In particular, for g=2,



THE EXPONENTIAL FOR F [ T'] 153

e=[1,[1], (2], [1], [3], 1] [2), [1],

——e_
—— e

4], [11, [2], [1]. (3], [1], (2], [1], [5]. ..]

™

e(z)=z+ = .
(1] t—
p) [ R —
[2] [+
Proof. Let e,:=3"_,z7/D, and ¢é,:=¢,—2z7/D,. Also, for x, as in
the statement of the theorem, we let %, =[0, —a_,;,.., —a;]. Let

Dis 4> Pi» §; have the obvious meanings, corresponding to the continued
fractions x,, X,’s. (Note that the continued fraction for x, is obtained by
truncating that of x,, ;, but the analogous statement is not true for x, and
X.41, SO P;, q; depend on the particular x, we are considering). Let the
induction hypothesis H, be

qar 1= '—qZ"—IZZ‘q”Dm Pr—1=€,qm_1, Doy 1 =€,4m_ .

Then H, clearly holds. Assume H,. Applying (E) to the definitions of
X, X,, we see that g,._, is the same as p,._,, which is the same as
—pa_1+2, by the induction hypothesis. Application of (C) then shows
that p,n_,= —(pyp_;—1)*/g»_,. On the other hand, (D) together with
H, implies that

3 (=279 2'D,, \/Di+X,) pr_ 1+ Py >
n+1— g — ¥ ’
(=D, /DI X) g+ G,

X

Using the formulae we have obtained, a simple manipulation shows that

—D,/z7 times the denominator (the numerator resp.) of this expression is
n+ 1 n+1

z7? D, (277" D, e,,, resp.). From this evaluation of x,, ,, we see

that p,si1_y, gone1_ are as stated in H,,,, by an easy count, using (A),

of their sign and degrees in T and z. Similarly, one sees using (D) and H,,,

that

(Zq"(q Z)D +1/D +X,) P+ P 2
(272D, /D2 +%,) g1+ G

n+l1=

Similar manipulation then shows that p,.«:1_, §»+1_, are also as stated in
H, ., thus proving H, . This completes the proof by induction.
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Remarks. (1) In fact, the proof shows that the partial sums of any
series of the form 1/r, — 1/(rir,)— 1/(r}rirs) + --- have continued fractions
with similar “negative reverse repetition” with the terms r |, r,, r5, ...

(2) For g=2, use of the auxiliary continued fraction X, can be
avoided and a simpler proof can be given by just using (E).

(3) In general, it is much easier to express the given quantity as a
generalized continued fraction, since there is no uniqueness. For example,
we have a term by term equality

1 1 1 1

a ab abc T a
a+

b—1+
C
c+ 14—

This gives generalized continued fractions, with interesting looking
partial quotients in terms of the [i]s, for e(z), its inverse log(z),
L(1), ..., {(g) (where {(s):=2, monice 4 /7, s€N, is an analogue of the
Riemann zeta function), the analogue y :={(1) of Euler’s gamma constant,
#47'/[1]. For more information about these quantities and series
expansions for them, see [T] and references there. We just give a simple
example. For g=2,

i
—=={1)=log(l)=y =
L1] 1+ 1

(1]
[2)

[3]+1+[.i._]

[11+1+
[2]+1+

(4) After circulating a preliminary version of this article, I was
informed by J. Shallit that in [S, PS], continued fractions of some real
numbers were shown to have similar “reverse repetition” patterns. He also
suggested a nice alternate description of a, in Theorem 1, when ¢ =2,z=1,
n>0: a,=[ord,(2n)], where ord,(2n) is the largest integer k such that 2*
divides 2n.
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