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A NOTE ON NUMERATORS OF BERNOULLI NUMBERS

DINESH S. THAKUR

(Communicated by Matthew A. Papanikolas)

ABSTRACT. The object of this short note is to give some observations on
Bernoulli numbers and their function field analogs and to point out ‘known’
counterexamples to a conjecture of Chowla.

Bernoulli numbers B,, defined (for integer n > 1) by z/(e* — 1) = > B,z"/nl,
and their important cousins B, /n, play interesting roles in many areas of math-
ematics. (Below we only restrict to these for n even, precisely the case when
they are non-zero.) We mention some key words by which the reader can search:
power sums, Zeta special values, Eisenstein series, measures, p-adic L-functions,
finite differences, combinatorics, Euler-Maclaurin formula, Todd classes in topol-
ogy, Grothendieck-Hirzebruch-Riemann-Roch formula, K-theory of integers, stable
homotopy, Bhargava factorial associated to the set of primes, Kummer-Herbrand-
Ribet theorems in cyclotomic theory, Kervaire-Milnor formula for diffeomorphism
classes of exotic spheres. Their factorization is of interest; the denominators (which
show up explicitly in the third and fourth items from the end) are well understood
via theorems of von Staudt, but the numerators (which show up explicitly in the last
two items above) are mysterious and connected to many interesting phenomena.

In one of the rare lapses, Ramanujan, in his very first paper [R1I911] (14), (18)
and Sec. 12|, claimed to have proved (editors downgrade it to a conjecture) that
the numerator N,, of B, /n is always a prime, when it was already known since
Kummer (in Fermat’s last theorem connection) that the ‘irregular’ prime 37 is a
proper divisor of N33, and even Nyj is composite. In [C1930], Chowla showed that
Ramanujan’s claim had an infinity of counterexamples. Note that this also follows
from one counter-example and the Kummer congruences (recalled below) for that
prime!

Interestingly, in his last paper [CCI986], Chowla (jointly with his daughter) asks
as an unsolved problem whether the numerator is always square-free. (This is also
mentioned in the nice survey article by Murtys and Williams on Chowla’s work in
Vol. 1 of [C1999], where the author learned about it.)

Theorem 1. Chowla’s conjecture stated above has an infinity of counterexamples.
In fact, for any given irreqular prime p less than 163 million, and given arbitrarily
large k, there is an n such that p* divides N,,.

Proof. Using the tables (or the reader can try to check directly!) giving factor-
izations of B, /n, for example the table by Wagstaff at the Bernoulli webpage
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www.bernoulli.org, we see that 372 divides Nags. Now recall the well-known Kum-
mer congruences that the value of (1 — p"~!)B,/n modulo p* depends only on
(even) n modulo p*~1(p — 1), for n not divisible by p — 1. The first claim follows
by taking p* = 372.

By the Kummer congruences and the von Staudt theorem [W1982, Ch. 5], the
prime divisors of N, are exactly the irregular primes p defined [W1982, p. 62] as
those dividing By, for some even positive k less than p — 1.

Now, Kubota-Leopaldt p-adic L-functions [W1982, Chs. 5, 7] are p-adically con-
tinuous functions of n interpolating the values at (1 — p"~1)B, /n at n in a fixed
congruence class £ modulo p — 1. Thus having a zero in Z, for these functions
implies that arbitrarily high powers of p divide N,, as n approaches such a zero
p-adically through the positive integers.

Computations by Iwasawa, Sims, Johnson, Wagstaff, Buhler et al. (see for exam-
ple [EM1991], p. 852] and [BCEMS, [BH]) show that for irregular primes p less than
163 million, the Iwasawa lambda invariant for the Kubota-Leopaldt L-functions is
always one for all irregular pairs (p, k) for this range, and thus the corresponding
Weierstrass polynomials, being linear, have a zero in Z,. This proves the second
claim. O

Remarks 2. (i) The awkward reference at the start of the proof is because we do
not know exactly when the relevant computations in the range we want were first
made and by whom. The website has many examples; we have chosen one with the
smallest n.

(ii) The proof shows that, in some sense, infinitely many counterexamples were
already ‘known’, but probably Chowla’s conjecture was not known to the people
who knew counterexamples, as there are no citations to [CC1986].

It may be of interest to the reader that before thinking of these things and look-
ing at the data, the author had noticed the evidence in the function field case.
There is a well-developed number fields (function fields) analogy [G1996, [T2004].
The analogy is even stronger in the simplest case: it is between Z, Q, R, the expo-
nential ‘e*’, the Euler-Riemann zeta ‘((s)’, the factorial ‘I’ on the one hand, and
Fq(t], Fq(t),Fq((1/t)), the Carlitz exponential ‘e(z)’, the Carlitz-Goss zeta ‘(.(s)’
and the Carlitz factorial ‘!.’, respectively.

Let us define our terms: Here ¢ is a prime power, and F, a finite field of ¢
elements. If a positive integer n has the base ¢ expansion, n = >_n;¢*, 0 < n; < q,
then n!. := [[ D" € F,[t], where D,, = [/, (t9" — 7). We have e.(z) =
329" /¢, parallel to e* = 3 2"/nl. Finally, for s € Z, ((s) == 00,3 1/a® €
F,((1/t)), where the second sum is over monic polynomials a € F,[t] of degree d.
Counting cardinalities of analogous objects Z* and F,[t]*, we see that the analog
of even integers is played often by multiples of ¢ — 1, which we call ‘even’. Other
integers (if any!) are called ‘odd’.

The Bernoulli-Carlitz numbers B,, € F,(t) are defined analogously by z/e(z) =
> B,z"/nl.. They are non-zero, precisely when n is ‘even’. See, e.g., [T2004]
4.16, 5.2, 5.3, 8.9] or [G1996] for properties, various analogies, such as an analog
of Euler’s theorem connecting to values of zeta at positive ‘even’ integers n, von
Staudt, Herbrand-Ribet theorem analogs, and references to the original works.
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Note that since n is in characteristic zero, while B,, is in characteristic p, B, /n
does not make sense and is thus replaced by B,(n — 1)!./n!., and its numerator is
denoted by N,,.

Here are counterexamples to a naive analog of the Chowla conjecture.

Theorem 3. For any given prime @ of F,[t] and any positive integer k, there are
infinitely many n (in fact, even of the form q" — 1) such that ¥ divides N,,.

Proof. Carlitz [T2004, Thm. 4.16.1] proved that for n = ¢* — 1, we have
k—1
B, = Bn(n—1)l/nle = (=1)" [[ Ik — 7 ~2/[K],
i=1

where [j] := 7 — ¢ is the product of all monic irreducible polynomials of degree
dividing j. Hence for large k, the numerators are divisible by large (tending to
infinity with k) powers of all primes of small (tending to infinity with k) degree. O

In spite of various nice analogies mentioned above, the Bernoulli-Carlitz numbers
do not satisfy Kummer type congruences, and thus the prime divisors of AV, are not
necessarily ‘irregular’ primes p, defined again by analogy as those dividing some
By, for positive ‘even’ k less than the norm(p) — 1. Here, as usual, the norm of a
polynomial in F,[t] is ¢ raised to its degree.

Analogs of Kummer congruences, as well as Herbrand-Ribet theorems, are sat-
isfied by another analog B(n) € F,[t] due to Goss, the Bernoulli-Goss numbers
[G1996], [T2004, 5.3] defined by B(n) = (.(—n) for ‘odd’ positive n. (For general n,
they are defined by some kind of ‘derivative’, but we will not need it.) Recall that
¢(1 =n) = —B,/n, for even n, but also note that 1 —n is ‘odd’ does not mean n is
‘even’! We do not know any ‘functional equation’ for (. connecting B,, and 3(n).
We can have a new notion of ‘irregular’ primes in this connection, defined as prime
divisors of these §(n).

Theorem 4. Given any ‘irregular’ prime o defined as in the last paragraph, and
any positive integer k, there are infinitely many n such that B(n) is divisible by pF.

Proof. Let q be a power of a prime p. We have that (p"m) = S(m)P" just from
the definitions since p-th powers are additive in characteristic p. ([

Remarks 5. (i) Hence, both of the function field Bernoulli analogs prove an analog
of the ‘conjecture’ in the classical case that primes which divide the numerators of
B, /n divide some B,,/m to an arbitrarily large given power, with a second analog
fitting even more strongly by working exactly for ‘irregular’ primes. It is also
interesting that these Iwasawa theory calculations which started with analogies
with cyclotomic extensions of constant field type also fit well in this case with
cyclotomic extensions of Carlitz-Drinfeld type [G1996, [T2004].

(ii) Regarding the ‘conjecture’ mentioned in (i), it has a status similar to the
Vandiver conjecture: some have expressed the possibility (see e.g. [BCEMS| p. 94])
of this being true, whereas many experts tend to go with probabilistic models ini-
tiated by Siegel [W1982] which predict counterexamples. In fact, Ralph Greenberg
has mentioned to the author that he believes that for some irregular primes, the
power they divide IV,, can stay bounded, so that the Iwasawa lambda invariants can
be more than one and no zeros in Z,, for the p-adic L-functions in the corresponding
case. Hopefully, we will know soon!
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