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ABSTRACT

We describe the valuations of the function field Gauss sums at the infinite places, by relating them to
Weierstrass gaps. This generalizes our previous results for F [T], in which case the valuations are all
—1/(g—1), in direct analogy with the well-known classical result that all the absolute values of Gauss sums
are ¢*/%. We also investigate the sign of quadratic or higher-order Gauss sums, giving results in the direction
of Gauss’ sign theorem and the work of Cassels and Matthews.

Introduction

An analogue of Gauss sums taking values in function fields over finite fields was
introduced and studied in [8, 9, 10, 12]. In [8, 9], analogues of various classical results
about Gauss sums such as Stickelberger factorization, Hasse-Davenport and
Gross—Koblitz results were established, in the case of F [T]. The general case turns
out to be interestingly different, in view of the established analogies, and is discussed
in [10, 12]. More relevant to this paper is another well-known classical fact that the
absolute value of a Gauss sum at any infinite place is ¢*/*. For the F [T] analogue, it
was shown in [8, 9] that the valuation at any infinite place is —1/(¢—1). Here 2 and
g—1 can be described as the cardinalities of Z* and F [T]* respectively, or as the
degrees of respective cyclotomic fields over their maximal ‘totally real’ subfields.
We shall see (Theorem 1.8) that even though these analogies generalize, the valuation
in the general case is closely related to Weierstrass gaps.

We deal only with the case where the infinite place is of degree one. It might be
worthwhile to consider the general case, and the interested reader will find the
relevant cyclotomic theory developed in [S]. For the general case, when the genus is
zero, see [10, 12].

Next we consider the question of the sign of Gauss sums and establish (Theorem
2.5) an analogue of Gauss’ theorem on the sign of quadratic Gauss sums. Then we
consider signs of mth-order Gauss sums, in the spirit of the investigations of Cassels
and Matthews (see [7]).
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0. Background
Notation

F,: a finite field of characteristic p containing ¢ elements

K: a function field of one variable with the field of constants F,
co0: a place of K of degree one

H: maximal abelian unramified extension of K split at oo

A: the ring of elements of K with no poles outside oo

#: a prime of A of degree d

K, : the completion of K at oo

Q: the completion of an algebraic closure of K

h: the class number of K

g: the genus of K

Drinfeld modules, Gauss sums (see [2, 4, 10] for more details)

0.1 Fix a local parameter ¢t at oco. For xeK*, define deg(x)eZ and
sgn (x)eF} to be the exponent in the highest power of ¢ and the coefficient of the
highest power, respectively, in the expansion of x as a Laurent series in 1}, with
coefficients in F,.

0.2 Let L be a field containing A and let L{F} denote the noncommutative ring
generated by the elements of L and by a symbol F, with the commutation relation
Fl = [°F, for all /e L. By a Drinfeld A-module p over L (in fact, ‘sgn-normalized, of
rank one and generic characteristic’, but we shall drop these words) we mean an
injective homomorphism p: A — L{F} (ae A+ p, € L{F}) such that, for all ae 4 —{0},

deg (a)

pa= Z pa,iF" pu,fEL’ pa,0=a’ pa,deg(u)zsgn(a)'

=0

Two Drinfeld A-modules p, j are considered isomorphic (say over L’ o L) if there is
a nonzero /e L’ such that I'p, = p, I’ for ac A.

0.3 Minimal L such that a Drinfeld 4-module over L exists is H up to
isomorphism. Note that the degree of the extension H of K is h. There are A
nonisomorphic Drinfeld 4-modules over H, Galois conjugates over K to each other.

0.4 For a Drinfeld module p over K, define the exponential e(z) = e,(z) of p as
the power series characterized by e(az) = p,(e(z2)), for all ae 4 and e(z) = z + higher-
order terms in z. Then e(z) is everywhere convergent in Q; it has coefficients in H. The
kernel of the function e is a rank one A4-lattice in Q and hence can be described as
=i, o/, for some 7 = 7_,€Q and an ideal &/ of 4. The fundamental period # (in fact, it
has been defined only up to multiplication by elements in F}) of e(z) can be thought
of as an analogue of 2zi and is known to be transcendental [13]. We have #*'e K,
just as (2ni)*eR. The nonarchimedean nature of Q then gives the product formula
e(z) = z[ [ (1 +z/4), where the product runs over the nonzero elements 1 of the lattice
.

0.5 Let L be an algebraic closure of L. For ae A, define ‘a-torsion of p’ as
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A, ={ueL: p,(u) = 0}. For an ideal I of 4, we define ‘I-torsion of p’ as A, :={ueL:
pu) =0, for all ie I}. It is an A-module under p. By adjoining A, ({ nonzero) to K, we
obtain another type of cyclotomic extension of K. In analogy with the classical case,
K(A,) = H(A,) has Galois group (4/1)* over H, and the decomposition (also inertia)
group at an infinite place of H is F} < (4/I)*. Hence the degree of H(A,) over its
‘maximal totally real’ subfield H(A,)* is g—1.

0.6 Let 4 be a prime of 4 of degree d. Choose an 4-module isomorphism
w:A/f— A, (an analogue of additive character) and let x;, (jmodd) be
F,-homomorphisms A4/ — L, where L is a field containing K(A ), indexed so that
X = x;s1 (special multiplicative characters which are ¢’-powers of ‘Teichmiiller
character’, say y,). Then we define the Gauss sums

8= g(XJ) == Z Xj(z_l) w(2).

ze(A/p)*

1. Valuations at o

1.1 Let p be a Drinfeld module over K with the corresponding lattice #&/. Let
# be a prime of 4 of degree d. Consider the Gauss sums as defined in 0.6. Note that
A, ={e(fir): re 7'/} and that g,e AF o((t™)).

THEOREM 1.2. The degree of the Gauss sum is same as the maximum possible
degree of a s-torsion element.

Proof. Let Rc 4'o/ be a set of representatives modulo &/ of the lowest
possible degrees. It is easy to see that there is an F,-basis {r,,...,r,} of R such that
{ry+r,0,+...4r,6,:6,€F } is exactly the subset of monic (that is, of sign 1) elements
of R of maximal degree.

We can assume that the torsion points y(r) are just e(7ir), for r€ R. The product
formula in 0.4 shows that the degree of w(r) is maximal when the degree of r is
maximal. Now, y being additive, the maximal degree is the degree of w(r,). It is
enough to show that this top degree does not get cancelled in the summation.
Since both y and y, are F -linear, and ¢—1 = —1 in characteristic p, we have g, =
Y 2z p(z), where now the sum is taken over the monic representatives of
#7'of [s£. If we note that y,(r,) is a basis of F. over F,, the theorem then follows
from the following lemma.

LemMma 1.3. If f,,....f, is a basis of F a over F, then

1
I= 0.
O‘E‘qfl+f;02+---+fd0d *

Proof. Let

k
M(xy,....x)=]1 IT 4%, 051+ ... +x,6,).
j=1 6;€F,
Then with P(f) =[] (t+ 1.6, + ... +/,6,), where the product is over all 6, € F , we have

L =P(f)/P(f,) and P(f) =M, ... .0/ M(f,,....f)). As P(t) is an F linear
polynomial, P'(¢) is just the coefficient of ¢ in P(f) and hence equals [[(f,8,+...
+/20,), where now the product runs through 6,€F, not all zero. But this is just
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(=1 M(fy - f)7, because [Jpep: 6 = —1 and (— 1)@~/ = (— 1)1, Hence
T =(=D"Mf,,.... L)Y/ M(f,, ....f,) is nonzero, as it is the product of terms which
are nonzero because the f, are linearly independent over F,. This finishes the proof of
the lemma and of the theorem.

DEerINITION 1.4, Let0 <n, <n, <... <n, be the integers n (‘gaps of &/’) so that
there are no elements of & of degree n. (Here g is just the number of gaps. It is the
genus g when &/ = A, by Riemann-Roch. Note that n, —g is an ideal class invariant,
and hence when g = 0 we take n, = —1 to retain this property.) Call 4 exceptional
with respect to o/ (or, rather, its ideal class) if n, is a gap for the fractional ideal /' &/
(that is, there is no element of degree n, in 4 ~'&/). We say that 4 is exceptional if it
is exceptional with respect to some .

THEOREM 1.5. (1) Principal primes are not exceptional. (2) Primes of degree more
than g are not exceptional. In particular, there are at most finitely many exceptional
primes. (3) Primes of degree one which are not principal are exceptional.

Proof. Let £ be a prime of degree d. Since n, is the largest gap of &, there is an
element, say ee &/, of degree n, +d. If 4 is principal, 4 = (P) say, thene/Pe /' has
degree n, and (1) follows. In general, given 4, let d” be the degree of the smallest
degree element in the smallest degree ideal £ in the ideal class inverse to that of 4.
Counting the gaps of £, we see that d” < deg £ +g. If d > d’ —deg £, then 47" has an
element of negative degree, and just as above we see that 4 in that case cannot be
exceptional. (2) follows. Now let £ be of degree one and not principal (equivalently,
g #0). Then 0 is a gap for 4, but not for 4. Hence the count of gaps shows that
the largest gap for A is also the largest gap for #, and hence £ is exceptional for
& = 4. This proves (3) and hence the theorem.

RemMarks 1.6. (i) If £ is a nonprincipal prime of the lowest possible degree
for A4 for a hyperelliptic X, then 4 has 2g—1 as a gap and hence is exceptional for
A = 4.

(i) When g = 1, the theorem shows that the exceptional primes are exactly the
primes of degree one and are hence A—1 in number.

(iii) By Theorem 1.5, there are no exceptional primes when & = 1. (By [6], apart
from A =F [T] (one for each g), there are only four such 4.) On the other hand,
Voloch (see the Appendix) has given a nice characterization of exceptional primes and
proved that they do exist when /> 1.

LeMMA 1.7. If 4 is (respectively is not) exceptional, the highest degree element in
R has degree less than (respectively equal to) n,.

Proof. 1If 4 is not exceptional, £« has an element of degree n,, which is not
congruent to any element of lower degree modulo &, since n, is a gap for &/. On the
other hand, any element of 4/ of degree more than n, is congruent modulo & to
one of lower degree, as can be seen by subtracting an element of same degree (which
exists, as n, is the largest gap) and opposite sign.

Now we state the main theorem of this section.
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THEOREM 1.8. Let p be a Drinfeld module over H. Let i,: Ho K, be the
embedding corresponding to an infinite place oo, of H and #sf be the corresponding
lattice. Then (with the notation as in Definition 1.4) the degree of the Gauss sum is the
same at any prime above o0, and is less than or equal to q**'/(q— 1), with equality
if and only if 4 is not exceptional with respect to .

Proof. Let n(i) be the number of monic elements of .« of degree i. Then it is easy
to see that n(i) is ¢, if n, < i < n,,,, where for convenience we take n,,; = co. Then
by [11, p. 41], the degree of # is (the sum is p-adic) ) (g—1)in(i) = X, +X,, where X,
is the sum over i < n, and X, over i > n,. Then

) qn,—g+2
Z,=(q—1) Y (n,+k)g"** " = —(n,+ 1) """ +F-
k=1

By Theorem 1.2 the degree of the Gauss sum is the degree of e(fir,) = #r, [[ (1 +r,/a),
where the product runs over nonzero aes/. Let us compute the degree of
r [ 1(1+r,/a). Note that there are no terms of negative degree in the product, by the
choice of R. It is clearly sufficient to consider only the case where £ is not exceptional.
Then the degree is easily seen to be

nt+ Y (ny=(g=Dn@=nll1+}¥ (g—-Dn@d]- L (g—1)in().

t#n;,i<n,

Now the sum in the bracket telescopes to g"¢~¢*! by the determination of n(i) above.
Combining with the formula for the degree of #, the degree of the Gauss sum then
turns out to be — g9t 4 g% 92 /(g — 1) = g™ 7! /(g— 1), as claimed. This proves the
theorem.

REMARK 1.9. Let D be the degree of a nonprincipal prime of A4 of smallest
possible degree. If the largest gap for A is smaller than D+g—1 (for example,
D > 1 and 4 with gaps 1 to g), then # is not exceptional for &# = 4 and hence for such
A, every prime has ‘ generic’ infinite valuation for at least one co,, by the theorem. The
situation when A4 has a gap 2g—1 gives another example of this, since then there are
no exceptional primes for .o/ = A: the largest gap for #"tis < 2g—1+(h—1)d, and
hence the largest gap for 4! is < 2g—1—d. In fact, for general 4, Voloch (see the
Appendix) shows how to find & with no exceptional primes with respect to it.

2. Sign of the Gauss sum

2.1 In this section, we restrict to the case 4 = F [T], with T of sign one. Then
pr = T+F. We begin by explaining what mth-order Gauss sum, when m divides
g*—1, means in our context. For ye(¢®—1)"'Z/Z —{0}, let us write 0 < (¢*—1)y =
Y. 7,4 < ¢*—1,with0 < y, < g. Then we put g(y) = [ | g%. Note that g(¢//(¢°— 1)) = g,
corresponds to the multiplicative characters y, of order ¢*— 1. Hence it is natural to
consider the reduced denominator of y as the order of the Gauss sum. (For more
explanation, see (8, 9].) In particular, if p # 2, we can talk about the ‘quadratic Gauss
sum” g(1/2) = []g{* "% Also, g(»)g(1—y) =[]g"* = (—1)*4 (here and below 4
will be assumed to be monic) can be thought of as an analogue of the well-known
classical fact g(x)g(x) = x(—1) q (see [8]).
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2.2 We can consider g, as an element of 7K ({,«_,) and can talk about its ‘sign’
sgn. Carlitz [1] (but see [11, pp. 33, 42] for our normalizations) gives a formula for 7,
which implies that 79' € K and sgn (7*") = — 1. We write &= sgn (%) and ¢, := (7).
Here j is considered modulo d. We first give a formula for sgn(g,) in terms of ¢ and
the ¢,.

THEOREM 2.3. We have
d-1 q’
sgn (gj) = (_ l)d_le l_[ (tk_ to)_ .
k=1

Proof. Consider the F -basis r, ;= T*™, 0 < i < d, for the representatives of 4/ 4.
Then Theorem 1.2 shows that sgn(g,) is & times x,(E) where X = ZafeF (r,+
r,0,+...+r;6,). By [1, Theorem 9.4] (there are some sign mistakes in the theorem
and proof, but these are easily correctable), we have T = (—1)*/[[(T o -T),
where k runs through 1 < k < d. This proves the theorem.

2.4 Now, in general, as can be easily seen from this theorem, the dependence of
the sgn (g,) or even sgn (g(1/m)) on 4 is quite complicated and not just through 4. But
when m =2, that is, the case of quadratic Gauss sums, we have the following
analogue of Gauss’ theorem.

THEOREM 2.5. Let i:=¢9"V/% (Note i* = —1.) Then s, = sgn (g(1/2)) depends only
on the congruence class of q and d modulo 4. In fact, we have

5, = (—)*? (g=1mod4), s,=(—0)*** (¢ =3mod4).

In other words, s, is i, (— 1)@ V% (—i)(—1)@V"2 or —1 according as d is congruent to
1, 2, 3 or 4 modulo 4.

Proof. (We know by 2.1 that g(1/2)* = (—1)*# and hence s, is a fourth root of
unity, a priori. ) By Theorem 2.3 and the formula for g(1/2) in 2.1, we see that s, =
2l —t )"V with 0 <k <d. Now (¢°—1)/2 = (¢*+...+q+1)(g—1)/2.
Since ##' =1, we have

1—[ (tlc - to)qd_l.h = I__[ (tj - tt) = (_ l)d(d_l)/2 I—[ (tj - tt)2, (**)

where d > j # i > 0 in the second product and d > j > i > 0 in the third. On the other
hand,

— q—l=nj>t(tj+1_tt+1)_ — 1)
;Ut(tf & O

where the last equality follows from the fact that there are d— 1 reversals of the sign,
namely when j = d— 1. (Alternatively: the ‘discriminant’ is square exactly when d is
odd.) Putting this together, we see that s, = i%(—1)**" V@ D/A(—1)?1 which is
equivalent to the formulae claimed. This proves the theorem.

2.6 Now we turn to the question of sign, say s,,, of the mth-order Gauss sum
g(1/m), when m > 2. Theorem 2.3 provides a formula. Now, for the classical Gauss



BEHAVIOUR OF FUNCTION FIELD GAUSS SUMS AT INFINITY 423

sums, Matthews [7] has given some interesting formulae when m = 3 or 4, in terms
of ‘1/mth residue set’, factorials and torsion values of elliptic functions. Theorems 2.7
and 2.10 provide rough analogues of these formulae, when m divides ¢*— 1. Note that
Q(¢;) and Q({,) are quadratic cyclotomic extensions of Q, whereas K({:_,) is a
quadratic cyclotomic extension of K. Results with the weaker condition that m divides
q*— 1 would be more desirable. In our situation we do have ‘complex multiplication’
as in (7], and the exponential for F ¢[T] seems to be a good function in the place of
elliptic functions of [7], but we have not been able to make a stronger analogy. On the
other hand, in the general case, our formulae can be considered to be in the spirit of
Patterson’s simplification (see [7]) of Matthews’ formulae. For history of the subject,
various analogies and comparison of complexities of different formulae, see [7].
Let S be a “1/(g— 1)th residue set modulo 4’, that is, a set of representatives of
(A/ £)*/F;. Define a(S) e Fjaby a(S) = [ [,. ssmod . Then by F -linearity of e(z), p :=
[Tes e(sn/ £)/a(S) is mdependent of the choice of S. Then it is easy to see, from the
fact that the product of all nonzero s-torsion points is 4, that g(1/(g—1))*" =

(=) =—p
THEOREM 2.7. We have
s 3 = (_ 1)d(d—l)/2 g—d Sgn (”)2

Proof. By Theorem 2.3 and (x+), we have s,_, = (—1)*2[](f,—1)2,
where the product is over d > j > i > 0. Hence it is enough to show that sgn (u) =
g@* V1@ T (1,—1)™. We can choose S to be the set of all monic elements of A
of degree less than 4. Let D, denote the product of all monic elements of 4 of
degree j. Then 1t is enough to show that yo(D,,...D,Dy) =][](1,—1). Now
D, = ]—IK,(T -T ") by [1, p. 140]. The claim and the theorem now follow easily.

REMARK 2.8. Let m divide g— 1. Choose a set S, of representatives for F*/<{{,.>
and let S’ be 1 /mth residue set. We can choose S’ to consist of elements of degree less
than d and with signs in S,. Let 4’ be defined in analogous fashion to g with S” in place
of S. Then sgn(u’) = sgn(u)""'™ and s,, = s\ V'™ Hence the theorem provides a
similar formula for s,,.

2.9 Now consider m dividing g?—1. As in Remark 2.8, it is enough to consider
m = q*—1. Let # be such that the norm of £ (that is, ¢%) is congruent to one modulo
m, so that d is even and 4 splits in B:=F o[T] as say 4 = 4, 4,. We identify (4/4)*
with (B/f,)*. By Theorem 2.3, ignoring the exphcrt powers of —1 and ¢, the
interesting part of s,s_; is &= H(t — 1)@V D Let o =[] (t,—1,), where the
product runs through d > j > i > 0, and let a, = ]_[(t,—t,) where the product runs
through d > j > i > 0 and i,j are even. Then «, and a, are a(S) for S as in 2.6 for a,,
but for S corresponding to B and 4, in place of 4 and 4 for a,.

THEOREM 2.10. We have & = al a,.

Proof. It is easy to see that & =[[(f,—t), where i is even and j#1i.
Decomposing the product over i > j and i < j, we see that & = a, [ [ (1,—1,), where
now the product is over j > i and at least one of i and j is even. But then this product
is a,/od, and hence the theorem is established.
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REMARK 2.11. By [1, p. 148], the sum X in the proof of Theorem 2.3 can also be
expressed as (—1)*1TI(g* ' —1)/TI(¢*™"), where Il is Carlitz’ factorial (see [1, 11]).
This gives a simple expression for the sign of Gauss sums in terms of Carlitz factorials.
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