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Computational Classification of Numbers

and Algebraic Properties

Robert M. Beals and Dinesh S. Thakur

1 Introduction

In this paper, we propose a computational classification of finite characteristic num-

bers (Laurent series with coefficients in a finite field), and prove that some classes have

good algebraic properties. This provides tools from the theories of computation, formal

languages, and formal logic for finer study of transcendence and algebraic independence

questions. Using them, we place some well-known transcendental numbers occurring in

number theory in the computational hierarchy.

Existence of or lack of patterns in the digit sequences of naturally occurring

real numbers is a natural question. Rational numbers (and only rational numbers) have

eventually periodic digit sequences. But the question has not been studied much for

irrational real numbers, except for statistical studies on normality and randomness of

digits for general numbers as well as special numbers such as π. Apart from the fact

that no interesting patterns are found in general, the other reason for the lack of such

studies is that irrationals usually are not naturally presented by their digit expansions

(say decimals), at least in theoretical studies. Also, since it is hard to control carry-overs

well, when we add or multiply, it is usually hard to manipulate the formulas to get good

control on digit expansions of sums and products.

The situation seems to be much better for finite characteristic numbers: There

are well-known strong analogies between integers, rationals, and reals on one hand,

and polynomials, rational functions, and Laurent series (all with coefficients in a finite

field) on the other. Again rational functions correspond to eventually periodic Laurent

series expansions. Also the Laurent series representation is widely used: There are no
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carry-over difficulties, and many times the expressions can be manipulated to find the

expansions. There is also a remarkable result of Christol [Ch] (combined with work of

Cobham) which says roughly that for Laurent series, being algebraic over the rationals

corresponds exactly to digit patterns recognizable by a finite automaton,which is a very

simple and weak model of a computer.

The notion of pattern is closely linked with the notion of computation: the stronger

(easier) patterns can be produced by weaker (easier) machines. Most Laurent series (and

real numbers) arising naturally in number theory/geometry are computable in the sense

that they can be produced (see below for a more precise description of how this is done)

by a Turing machine,which is the strongest theoretical model of the computer. There are

in-between categories (hierarchies) of complexity studied in computer science, formal

language theory, and logic; and remarkably, really diverse viewpoints have converged to

the same notions. This is at least well known for the notion of computability: Recursive

function theory, Church’s lambda calculus, Turing machines, Post systems, generative

grammars, cellular automata, etc., all lead to the same notion. Similarly, the notion of

finite automata corresponds to regular languages, images of fixed points of uniform sub-

stitutions (uniform tag sequences), definability (in logic), and algebraicity (in the context

of finite characteristic numbers). We give more examples in the next section.

Hence it seems natural to attempt a finer classification of transcendental Laurent

series arising in number theory, by finding out where they fit in the hierarchy. Then we

can use techniques of all these diverse fields for further study. For such a classification

to be useful, it is necessary to relate closure properties of language classes to algebraic

properties of the sets of numbers representable in the class. This is the focus of our

study here. Basically, we classify numbers
∑
ait

i ∈ Fq((t)) by looking at what kind of

machines can produce ai, given i (say, positive), expanded in base q, as the input. (This

is different than the study of (time or space) complexity of producing the first i terms

of a power series.) Since there are only countably many computable numbers, we are

really attempting a finer classification of this small class of numbers,which nonetheless

contains many naturally occurring important numbers.

In the next section, we describe the computational classes we want to consider.

We provide informal descriptions referring the reader to standard references for precise

definitions.

After that, we prove some of the algebraic properties of the classification: We

show that the class of context-free Laurent series is at least closed under addition

of algebraic power series, as is the class of deterministic context-free Laurent series.

Context-sensitive Laurent series form a field. Context-sensitive languages are exactly

those languages recognizable by nondeterministic machines with space bounded by a
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linear function of the input length (which is roughly the logarithm of the input number).

(Note that this standard usage of ‘context-sensitive’ is different than ‘not context-free’.)

Space complexity seems to be a very natural property of finite characteristic numbers.

For any deterministic or nondeterministic space class at least linear, we show that the

corresponding numbers form a field. In addition, PSPACE (i.e., polynomial space) Laurent

series (and many other classes including the almost biggest class of recursive) form a

field algebraically closed in Laurent series.

Making use of such good algebraic (as well as differential) closure properties

of the classes, we can manipulate from numbers we are interested in to the numbers

which easily yield to the standard tools of language theory, such as pumping lemmas, for

instance. In the next section,we give such examples of classification for some important

Laurent series such as analogues of π, e, and q-expansions of modular forms.

Finally, in the last section,we compare our results with other studies of power se-

ries in formal language theory and studies for real numbers: the results of Rice, Chomsky

and Schützenberger, Mahler’s classification, etc.

2 Computational classes and basic tools

In this section, we collect some basic information on computational classes and the

corresponding language classes.

The most well-known hierarchy is the Chomsky hierarchy consisting of: finite au-

tomata (regular languages),pushdown automata (context-free languages), linear bounded

automata (context-sensitive languages), and Turing machines (languages generated by an

unrestricted grammar). See [HU], [S] for precise definitions and many equivalent descrip-

tions. Informally, Turing machines have infinite two-directional writing tape, whereas

linear bounded automata has tape size linear in the input size (but note that we can

erase and use the same tape several times), and finite automata corresponds to zero or

constant size working tape. For more on finite automata, especially in connection with

number theory, the reader may look at [A1], [CKMR], [E], and perhaps [T3]. We will also

consider some refined categories such as various space and time classes.

We give a brief summary of properties of the language classes we treat in this

paper. These will help us later to establish whether a given power series belongs to the

class or not. The main tools to show that something does not belong to a given class

are various closure properties and the pumping lemma. We include, for completeness,

some properties which we do not actually use (but which may be useful in further inves-

tigations). Unless noted otherwise, this material is from [HU], where many other closure

properties that we do not discuss are proved.
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Fact 1. The regular sets are closed under union, concatenation, complementation, and

intersection.

The “pumping lemmas” below are useful in proving that certain languages are

not context-free. There are similar pumping lemmas for the class of regular languages

and for some other language classes. (ε denotes the empty string.)

Fact 2. Let L be a context-free language. Then there is a constant n0, such that for any

z ∈ L with length |z| ≥ n0, z is a concatenation uvwxy such that vx 6= ε, |vwx| ≤ n0, and

for all n ≥ 0, uvnwxny ∈ L.

Fact 3. Let L be a context-free language. Then there is a constant n0, such that for any

z ∈ L with n0 or more positions of zmarked as distinguished, z is a concatenation uvwxy

such that v and x together have at least one distinguished position, vwx has at most n0

distinguished positions, and for all n ≥ 0, uvnwxny ∈ L.

Here the substrings v and x are said to be “pumped.” Also note that this fact

clearly implies the previous fact.

Context-free languages (CFL’s) have many, but not all, of the closure properties

of regular sets.

Fact 4. Context-free languages are closed under union, concatenation, and intersection

with regular sets. Context-free languages are not closed under complementation or in-

tersection.

CFL’s may be equivalently defined as those languages generated by context-free

grammars, or those languages accepted by pushdown automata (PDA, i.e., nondetermin-

istic machines with a finite state control and a stack). An important subclass of CFL’s is

the class of deterministic context-free languages (DCFL’s), which are accepted by deter-

ministic pushdown automata (DPDA or, equivalently, generated by LR(k) grammars). (We

note here that the class of deterministic finite automata is the same (as far as its com-

putational power is concerned) as that of nondeterministic finite automata.) The DCFL’s

have different closure properties from the CFL’s.

Fact 5. DCFL’s are closed under complementation and intersection with a regular set.

DCFL’s are not closed under union or concatenation. There exist DCFL’s L1 and L2 such

that L1 ∩ L2 is not a CFL (and therefore is not a DCFL).

Now we turn our attention to space complexity. The most well-known space com-

plexity class is the class of context-sensitive languages (CSL’s) which are generated by

context-sensitive grammars (the left-hand side of a production may contain more than
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one symbol, but the right-hand side must be at least as long). Equivalently, the CSL’s are

those languages which are accepted by a nondeterministic Turing machine which uses

O(n) tape cells on inputs of length n.

The class NSPACE(S(n)) contains exactly those languages which are accepted by a

nondeterministic machine which uses O(S(n)) tape cells on inputs of length n. Similarly,

the class DSPACE(S(n)) contains exactly those languages which are accepted by a deter-

ministic machine which uses O(S(n)) tape cells on inputs of length n. Note that, if S(n) is

less than n, the input tape is regarded as read-only, and only the space on the work tape

is counted.

A function S from the positive integers to the positive integers is space con-

structible if for some Turing machineM that is S(n) space bounded, for all n, the machine

M actually uses S(n) tape cells on some input of length n. S is fully space constructible if,

in addition, there is anM that uses S(n) space on all inputs of length n. If S(n) ≥ n is space

constructible, then S is fully space constructible. Most naturally occurring functions are

fully space constructible. These include products of functions such as blognc, n, 2n.

Clearly, deterministic space classes are closed under complementation. Neil Im-

merman and Robert Szelepcsényi independently proved the following (cf. [P]).

Fact 6. For S(n) ≥ logn, NSPACE(S(n)) is closed under complementation.

This fact is sometimes stated with the additional condition that S(n) be fully

space constructible. This condition is not needed (but makes the proof cleaner). If L ∈
NSPACE(S(n)) for some S(n) ≥ logn which is not fully space constructible, then there is

a space constructible S′(n) ≥ logn such that L ∈ NSPACE(S′(n)) and for all n, S′(n) ≤ S(n):

Simply let S′(n) be the actual space bound of some nondeterministic machine accepting

L in at most S(n) space (and at least logn space). Since S′(n) ≥ logn, it is fully space

constructible; so the complement of L is in NSPACE(S′(n)) ⊆ NSPACE(S(n)) as desired.

Clearly DSPACE(S(n)) ⊆ NSPACE(S(n)). It is not known precisely what relationship

holds in the other direction. However, we know that for fully space constructible S(n) ≥
logn, NSPACE(S(n)) ⊆ DSPACE(S(n)2).

Fact 7. Let SPACE stand for DSPACE or NSPACE throughout. IfS2(n) is space constructible

and

lim inf
n→∞

S1(n)

S2(n)
6= 0,

then there is a language in SPACE(S2(n)) which is not in SPACE(S1(n)). In particular, for

ε > 0 and r ≥ 0, SPACE(nr) ( SPACE(nr+ε).

This fact is stated and proved in [HU] for DSPACE only. For NSPACE, a much more

roundabout proof is used to obtain a weaker result. However, using the Immerman–
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Szelepcsényi theorem, [HU] the proof for the DSPACE version of this fact can be readily

adapted to prove the same result for NSPACE.

We also define the polynomial space class

PSPACE :=
⋃

DSPACE(ni) =
⋃

NSPACE(ni).

The well-known class P (NP, respectively) of polynomial time (nondeterministic poly-

nomial time, respectively) complexity is a (conjecturally proper) subset of PSPACE. But

unlike the separation theorems above for the space classes, it is not even known (though

it has been conjectured) that LOGSPACE := DSPACE(log(n)) is properly contained in P. So

it is not known whether CFL is contained in LOGSPACE. On the other hand, it is easy to

see that CFL does not contain LOGSPACE, because {anbncn : n ≥ 1} is clearly in the latter,

but well-known ([HU]) to be not CFL. It is known that

DTIME(S) ⊆ NTIME(S) ⊆ DSPACE(S) ⊆ NSPACE(S) ⊆
⋃
c>0

DTIME(cS),

LOGSPACE ⊆ NSPACE(logn) ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE

with at least one strict inclusion in each line. All the inclusions here are conjectured to

be strict.

For ease of exposition,when considering space classes,we will consider machines

which, on input N, compute the value of the tN coefficient. Let Lc be the language over

the alphabet Σq := {0,1, . . . q − 1} consisting of the base q representations of those N

for which the coefficient of tN is c. Note that if all of the languages Lc, for c ∈ Fq, are

in NSPACE(S(n)) or DSPACE(S(n)), then a nondeterministic or, respectively, deterministic

machine, can calculate the tN coefficient in space S(n), where n is the length of N. For a

nondeterministic machine to compute a function, we mean that the machine halts with

either the correct value of the function, or with an honest failure report. For any input,

it must be the case that some computation path exists in which the machine halts with

the correct function value.

Note that in any base, there are infinitely many representations of any number

obtained by prepending zeroes. Of course,we do not want to have two different represen-

tations of the same number as elements of different Lc’s. We simply require that numbers

be written without leading zeroes. Since the set of strings of digits with no leading ze-

roes is a regular set, and all the classes we consider are closed under intersections with

regular sets,we may henceforth ignore the problem of leading zeroes. That is,we simply

do not care whether any strings with leading zeroes are in any of the Lc’s, since they may

be removed with no increase in complexity by an intersection with a regular set.

If L is a language over an alphabet Σ, we denote by L the complement Σ∗ \ L.
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3 Algebraic properties

In this section, we divide finite characteristic numbers (i.e., the Laurent series in Fq((t)),
where we fixFq) into computational classes and explore which classes have good algebraic

properties.

Given a finite characteristic number
∑
ait

i, we look at a machine which can, for

each positive integer i, produce ai ∈ Fq as output when given the base q-expansion of

i as input. For example, we will say that
∑
ait

i is context-free if there is a pushdown

automaton which accomplishes this task. Note that the problem of computing coeffi-

cients of a Laurent series is not a decision problem, and so does not correspond to a

language membership problem, except when q = 2. However, we may, for a particular

finite characteristic number α = ∑i ait
i, associate the languages {Lc | c ∈ Fq}, where Lc

consists of the base q representations of those i such that ai = c. The second strategy

clearly leads to the same classification for automata and space classes. This is true as

well for context-free languages, because a PDA can nondeterministically guess c, and

then simulate the PDA which accepts Lc, and output c if the simulation accepts.

In other words, whether we use one machine to compute coefficients or q ma-

chines to recognize coefficients, does not make a difference for these classes.

On the other hand, for DCFL’s, the situation is different. It may happen that each

Lc is a DCFL; yet no deterministic pushdown automaton can, on input i, compute the c

such that i ∈ Lc. The difficulty is that the machines for the various languages Lc cannot

be simulated simultaneously by a deterministic machine with a single stack. Of course,

if q = 2, then there is no problem; L0 and L1 are merely the complements of each other,

and the DPDA for L0 can be made to output 0 instead of accepting, and output 1 instead

of rejecting. However, consider the following example with q ≥ 5: Let r, s, t, u be distinct

nonzero elements of Σq. Let L1, L2 ⊆ Σ∗q be DCFL’s such that L1∩L2 is not a CFL. Let Lr = L1r

(i.e., strings from L1 with an r appended), Ls = L1r, Lt = L2s, Lu = L2s, L0 = Σ∗q(Σq \ {r, s}),
and Lx = ∅ for all other x ∈ Σq. All of these languages are DCFL’s, but we will see that no

DPDA can compute c (to be consistent with the notation above, we identify here the sets

Fq and Σq) given i, since such a machine could be modified to produce a PDA recognizing

L1 ∩ L2.

Suppose that some DPDA M computes c from i. To recognize L1 ∩ L2, a PDA can

essentially simulate the computation of c. To test ifw ∈ L1∩L2, the machine simulatesM

on both wr and ws. To see how this is accomplished, note that the two simulations make

the same stack moves right up to the last symbol, and that the stack moves on the last

symbol are not so important: they need not be saved; only their effect on the state of the

machine needs to be computed. Since L1 ∩ L2 is not context-free, this is impossible.
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For DCFL’s, it seems reasonable to require the first (stronger in this case) condition;

that a DPDA can compute the coefficient c from the exponent i.

For language class C, the corresponding Laurent series set will be denoted by

Fq((t))C.

As mentioned in the introduction, the starting point of our investigation was the

following result [Ch], [CKMR] of Christol.

Fact 8. Automatic Laurent series in Fq((t)) are exactly the Laurent series algebraic over

Fq(t), so that Fq((t))Aut is a field algebraically closed in the Laurent series.

We digress for a moment to record a nice corollary (pointed out to us by Allouche):

The series
∑
ait

pi ∈ Fp[[t]] is algebraic over Fp(t) if and only if
∑
ait

i ∈ Fp(t). This is since

both the statements are equivalent to the fact that ai is an eventually periodic sequence.

In contrast to such nice properties for the automata, as we shall see, the next class

in the Chomsky hierarchy of the context-free languages has only very weak algebraic

properties.

Theorem 1. The class of context-free (or deterministic context-free) Laurent series is

closed under addition of algebraic Laurent series, but is not closed under addition or

multiplication in general.

Proof. The first statement follows because a PDA (DPDA, respectively) can simulate a

PDA (DPDA, respectively) and a finite state automaton in parallel (see 6.5 of [HU]), and

add the coefficients obtained at the end.

For q = 2, this boils down to closure under the symmetric difference with a

regular set:∑
n∈L

tn +
∑
n∈R

tn =
∑

n∈(L∪R)\(L∩R)

tn.

Recall that we require both L and the complement L to be context-free, so the symmetric

difference is a union (L ∩ R) ∪ (L ∩ R) of context-free languages, as is the complement of

the symmetric difference.

For the negative statements, by “not being closed in general” we mean that for

some q, counterexamples exist. While it seems likely that counterexamples exist for all

q, we are content with proving the weaker statement.

We now consider the addition of two context-free Laurent series. It suffices to ex-

hibit two deterministic context-free Laurent series such that the sum is not context-free.

There are (see 6.4 of [HU]) deterministic context-free languages L1, L2,whose intersection

is not context-free. Let p 6= 2 and q = pk. Then∑
n∈L1

tn +
∑
n∈L2

tn =
∑

n∈L1∩L2

2tn +
∑

n∈(L1∪L2)−(L1∩L2)

tn.
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So, the sum is not context-free. In characteristic 2, with q > 2, we can modify this

argument slightly: Let α ∈ Fq with α 6= 0,1. Then the sum g given by

g(t) :=
∑
n∈L1

tn + α
∑
n∈L2

tn

has tn coefficient (α + 1) exactly when n ∈ L1 ∩ L2. For q = 2, something stronger is

required of L1 and L2: their symmetric difference or its complement must not be a CFL.

While it seems likely that such languages exist, the matter appears to be open.

For multiplication of context-free Laurent series, we focus on q = 2, although

similar techniques should work in general. Consider f =∑ t2
2n−2n . Since 1n0n is the base

2 expansion of 22n − 2n, we see that f is context-free, in fact, deterministic context-free.

We claim that f3 is not context-free.

By the binomial expansion, it follows that the coefficient of tn in f3 is 1 if and

only if n ∈ L := {3(22n − 2n),2(22n − 2n) + (22k − 2k), n 6= k}. We will show that L is not

context-free by using Fact 3: If L is context-free, so is its intersection, say L0, with the

regular language 1a0b1c0d,with a, b, c, d positive,with c+d even. By considering various

carry-over possibilities, we see that L0 consists of z := 1n0 j1k0k, with j = n + 1 − 2k,

corresponding to the case n ≥ 2k−1. Now if we let k be large, and mark the last n0 zeroes

as distinguished, then x in Fact 3 must contain some zeroes on the right, but no ones.

Now v can contain either digits from 0 j part or 1k part, but not both, and in either case,

the pumping takes you outside the language.

Next, we turn to the properties of the space classes. Let S be a function from

positive integers to positive integers. We say that a finite characteristic number is in

DSPACE(S) (respectively, NSPACE(S)) if the deterministic (respectively, nondeterministic)

space complexity of computing the N-th coefficient is bounded above by S(n), where n is

the encoding length of N.

Theorem 2. Let a and b be finite characteristic numbers in DSPACE(S) (respectively,

NSPACE(S)). Then a+ b is also in DSPACE(S) (respectively, NSPACE(S)).

Proof. We describe the machine. On input N, of length n, the machine computes aN

using space S(n). Since aN ∈ Fq, it can be stored in constant space. Then, reusing the S(n)

space, it computes bN and the sum aN + bN.

Theorem 3. Let S(n) ≥ n for all n. Let a and b be finite characteristic numbers in

DSPACE(S) (respectively, NSPACE(S)). Then ab is also in DSPACE(S) (respectively,

NSPACE(S)).

Proof. Let N be an input of length n. The N-th coefficient of ab is
∑
aibN−i. To compute

this, a machine can run through all possible values of i, using space O(n) to store both i
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and j = N − i. For each pair i, j, the machine computes ai and bj, using space S(n). This

space is reused for each ai and each bj. The running total of the products aibj is kept

using constant space. So the total space is O(S(n)).

Theorem 4. Let S(n) ≥ n for all n. Let a be a finite characteristic number in DSPACE(S)

(respectively, NSPACE(S)), with a 6= 0. Then a−1 is also in DSPACE(S) (respectively,

NSPACE(S)).

Proof. We assume without loss of generality that a ∈ 1+ tFq[[t]]. Let α = 1− a. Let p be

the characteristic, and let β = 1+α+ · · · +αp−1. By Theorems 2 and 3, β is in DSPACE(S)

(respectively, NSPACE(S)). We have

a−1 = 1+ α+ α2 + · · · = ββpβp2
. . . .

Let β = ∑i bit
i (note b0 = 1). Since p is the characteristic, βp

k = ∑i(bi)
pktip

k
. Let

Ω = Ω(N,n) = {N := (N0, N1, N2, . . . , Nn−1) | N0 + pN1 + · · · + pn−1Nn−1 = N}, where as

usual, n is the length of the encoding of N. Then the N-th coefficient of a−1 is

∑
N∈Ω

n−1∏
i=0

(bNi )
pi .

We describe a space-efficient ‘divide and conquer’ strategy to compute this sum.

Basically, the same space S(n) is reused to compute all of the bNi, and the difficultly lies

in keeping track ofN0, N1, . . . , Nn. Naively, this would take space n2, since half of these n

numbers are of length at least n/2. Let fk(m) be the tm coefficient of β(1+p+p2+···+pk−1), i.e.,

fk(m) =
∑

N∈Ω(m,k)

k−1∏
i=0

(bNi )
pi .

We use the recurrence

fk(m) =
∑

i+pbk/2c j=m
fbk/2c(i)fdk/2e( j)p

bk/2c
.

So, to compute fk(m),we run through all possible values of i and j, recursively computing

fbk/2c(i) and fdk/2e( j) (reusing space). This leads to an S(n)+ n logn algorithm if we simply

write down i, compute fbk/2c(i), then write down j (reusing the space where iwas written),

and compute fdk/2e( j), since the same S(n) space is used for all computations of coefficients

of β (the logn factor comes from the fact that the depth of the recursion is logn, since

each recursive call involves cutting k in half).

We improve on this by observing that i and j only require half the space as m to

write down. This is because j simply is a number with half the digits ofm,while i,which

may be as long asm,must agree withm in the rightmost bk/2c places. So each of i, j can
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be written in half the space as m, and the total space is therefore n plus the S(n) that we

use for computing coefficients of β.

Theorem 5. Let r be a Laurent series which is a root of f(x) ∈ Fq((t))[x]. Suppose that the

coefficients of f are in DSPACE(S) (respectively, NSPACE(S)) for some S(n) ≥ n. Then r is

in DSPACE(nS(n)) (respectively, NSPACE(nS(n))).

Proof. Let K be the field generated by the coefficients of f. By Theorems 2, 3, and 4,

everything in K has space complexity S(n). So we can assume without loss of generality

that f is irreducible over K (otherwise consider the minimal polynomial of r), and that r is

separable over K (otherwise consider rp, rp
2
, etc., all of which have the same complexity).

Let a, b ∈ K[x] be such that af + bf′ = 1. Let g(x) = x − b(x)f(x). Suppose that

α ≡ r mod (ti). Then g(α) ≡ r mod (t2i−c) for some constant c depending only on f, since

g(r) = r and g′(r) = 0.

Let α0 ∈ Fq be congruent to r mod (t(c+1)). For i ≥ 0, let αi+1 = g(αi). By induction,

we have that αi ≡ r mod (t2
i
). Therefore, to compute theN-th coefficient of r, it suffices to

compute the N-th coefficient of αk for some k with 2k > N. Let n be the encoding length

of N. Then for some k = O(n), we have 2k > N.

Using the technique of Theorems 2 and 3, we may build a machine which, using

work space S(n), computes the coefficients of αi+1 given an oracle for the coefficients of αi.

To compute the N-th coefficient of αk, it suffices to simulate k of these machines hooked

together, which takes space kS(n), which is O(nS(n)), as desired.

Theorem 6. (1) If S(n) ≥ n, then the class of Laurent series corresponding to deterministic

(nondeterministic, resp.) space class S(n) form a field. In particular, context-sensitive

Laurent series form a field.

(2) The Laurent series in PSPACE form a field (Fq((t))PSPACE in our notation) alge-

braically closed in the field Fq((t)) of all Laurent series. More generally, any space class

of the form
⋃

DSPACE(niS(n)) or
⋃

NSPACE(niS(n)) (such as the class corresponding to

exponential space or the Turing machines) has the same property.

Proof. The first part follows from Theorems 2, 3, 4. For the second part, we also use

Theorem 5: If g is in the space class for S and r is algebraically dependent on g, with

dependency relation P(g, r) = 0, then f is just P developed as a polynomial in the second

variable.

Remarks. (1) Theorem 5 can be used as a tool to prove algebraic independence of two

given numbers by comparing their relative complexity.

(2) More generally, Fact 7 together with Theorem 5 implies, for example, that

SPACE(nr+1+ε) contains some element transcendental over SPACE(nr).



810 Beals and Thakur

(3) To compute iai ∈ Fq, one needs to only look at the last digit of i, so all classes

(including automata, context-free and space classes) are closed under derivatives. So

by Theorems 3 and 4, the space classes for S(n) ≥ n are closed under derivative and

logarithmic derivative. The same is true for automata. This is a quite useful tool to

show nonmembership in a class, because logarithmic derivatives turn products into

(sometimes simpler) sums, and derivatives kill all powers which are multiples of the

characteristic.

(4) Closure under Hadamard products (i.e., term-wise products) for algebraic

power series (so for automata by Christol’s theorem) was proved in [F]. At the automata

or regular languages level, it corresponds to direct product or intersection, respectively,

and the property is very transparent and natural in that viewpoint. From a computa-

tional classes perspective, it is clearly valid for all space classes as well. It does not hold

for CFL’s: Let f1 and f2 be power series with only 0,1 coefficients. Then the Hadamard

product corresponds to taking the intersection of the L′1s, but CFL’s are not closed under

intersection. (Indeed, the intersection of two DCFL’s need not be context-free.)

(5) One can use these algebraic (and differential) properties to manipulate from

numbers we are interested in to numbers whose Laurent series expansion yields more

easily to computational analysis by various computational/ language theoretic tools such

as a pumping lemma. This is illustrated in the examples in the next section.

(6) The class PSPACE has independent characterizations: A problem is in PSPACE

if and only if it is describable in first-order logic with the addition of the partial fixed point

operator if and only if it is describable in second-order logic with a transitive closure

operator. See [I] and references therein for the terminology and many such equivalences,

which also may lead to more tools.

4 Examples

In this section, we show where several naturally occurring finite characteristic numbers

in number theory lie in our classification.

The theory of Drinfeld modules gives analogues of e, 2πi, gamma, and zeta val-

ues. Also, one encounters periods of elliptic curves and Fourier expansions of modular

forms in finite characteristic. Many of these were shown (see, e.g., [T3] for examples and

references) to be nonautomatic (i.e., transcendental). Most of them are easily seen to be

computable or even in PSPACE (this will be clear from the formulae below: For mod-

ular form expansions, this follows from their algebraic dependence on, say, theta and

Eisenstein series). Here we attempt to pin some of them down more accurately.

First we consider π̃ which is a fundamental period of the Carlitz-Drinfeld expo-
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nential for Fq[T ] and hence is a good analogue of 2πi. It is known that π̃q−1 is a Laurent

series in Fq((t)) (with t = T−1) just as (2πi)2 is a real number. Another simple way to get a

Laurent series is to take its one unit part π := T−q/(q−1)π̃. Note that for q = 2, π = π̃/T2.

For more on the analogies and connections with values of function field gamma function,

see [T1], [T2].

Theorem 7. (1) 1/π is in LOGSPACE, π is in linear space. In particular, π̃q−1 (which is just

π̃ for q = 2) is context-sensitive. On the other hand, 1/π is not context-free.

(2) Let w be the logarithmic derivative of π with respect to T . Then w is context-

sensitive, but not context-free.

Proof. In [A2], it is shown that 1/π =∑an(T−1)n,with an = 0 if n cannot be represented

as a sum of distinct qj−1’s ( j > 0), and with an = (−1)k if n is the sum of k such numbers

(k is then uniquely defined). Note that this occurs if and only if for somem, the following

hold:

(1) The base q representation of m has only zeroes and ones.

(2) k is the number of ones in the base q representation of m.

(3) m− k = n.

Since the encoding length of k is logarithmic in the encoding length of n, a machine can

run through all possible values of k in LOGSPACE. For each value of k, the machine checks

that n+ k has only zeroes and ones, and that k of the digits are one. Therefore, 1/π is in

LOGSPACE. By Theorem 4, π is in linear space; i.e., it is context-sensitive. Theorem 3 and

the remarks before the theorem now finish the proof of the first part of (1).

Suppose the language of n’s with an = −1 is context-free. Then so is its inter-

section, say L, with the regular set 1a0b. Now let r be large and f := qr. Then n :=
(qr+f−1 − 1) + (qr+f−2 − 1) + · · · + (qr − 1) has base q expansion 1f−10r+1, and thus n ∈ L.

Then by marking some 1’s as distinguished, Fact 3 implies that for some b > 0 and c, we

have ni := 1f−1+bi0r+1+ci ∈ L, for all i. But this easily leads to contradiction, by looking for

possibilities formi− (sum of digits of mi) = ni as follows: Since
∑l−1

j=0(qj− 1) < ql− l, the

digits of mi up to exponent l − 1 cannot influence the l-th digit of ni. So mi is forced to

have the expansion of the form 1f−1+biar+1+ci · · ·a1, where aj are zero or one. So in order

to get the expression for ni, with all those zeroes at the end, the f − 1 + bi of the −1’s

occurring in
∑

(qj − 1) from the 1f−1+bi part have to cancel with qj − 1’s from the next

digits; i.e., f−1+bi =∑(qaj( j−1)−1). Now Fact 3 implies that b, c are absolutely bounded,

independently of r. So one can choose large enough r and i so that qr − r < bi < qr − 1.

Then qr − 1 < f− 1+ bi < qr+1 − 1. So when we express f− 1+ bi as the sum of qj − 1’s,

one term has to be qr − 1 = f − 1, but by the inequalities above, bi is not a sum of this

type. This contradiction finishes the proof of (1).
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Now we use the formula in [A3], [MY], namely, w = ∑ cn(T−1)n+1 with cn =∑
qj−1|n 1 ∈ Fq. Just dividing n by qj − 1’s one at a time in linear space (and reusing

the space), we can see that w is context-sensitive. (Alternately, we can conclude this

combining part (1) above, part (1) of Theorem 6, and Remark (3) of the last section.)

Suppose it is also context-free; then its intersection with the regular set {qu − 1} (which

consists of numbers with all digits q−1) is also context-free. But cqu−1 = d(u) =∏(ui+1),

where u =∏p
ui
i is the prime factorization of u. Now the subset of these qn − 1’s, where

cqn−1 = d(n) = 2, is also context-free. But since all these numbers have q− 1 as the only

digit, we can only pump it. This implies that if d(n) = 2, then for some h > 0 (pump-

length), d(n+hi) is also two for all i. Now for somem, the number (nh)m+1 is a prime, so

d(n+ h(mn2)) = d(n)d((nh)m+ 1) = 2d(n). This gives a contradiction if the characteristic

is not two. On the other hand, if the characteristic is two, we look at the subset where

d(n) is odd; i.e., n is a square. By pumping, the context-free assumption implies d(n+hi)
are all odd, which means n+hi is a square for all i, which is a contradiction again. This

completes the proof. Note that we have generalized the proof of nonautomaticity of w

(and hence of transcendence of π) by using the pumping lemma.

Next we look at an analogue of e given by the Carlitz-Drinfeld theory. Namely,

e =∑D−1
i ∈ Fq((1/T )), where Di =

∏
0≤ j<i(T

qi − Tqj ).

Theorem 8. e is in DSPACE(n) and so is context-sensitive.

Proof. Since D−1
i ∈ tiq

iFq[[t]], to compute the N-th coefficient of e, it suffices to consider

D−1
i for i ≤ logN. So, using logn space (where n is the length of N), a machine can

enumerate values of i such that iqi < logN. SinceN is written in base q, once i is written

down, using logn space for scrap work, the machine has access to the digits of N− iqi.
So it suffices to describe a machine which, in linear space, computes theN-th coefficient

of (tiq
i
Di)−1 given N and i. Since

(
tiq

i
Di

)−1
=

i∏
j=0

(
1− tqi−qj

)−1
=

i∏
j=0

(
1+ tqi−qj + t2

(
qi−qj

)
+ t3

(
qi−qj

)
· · ·
)
,

it follows that the N-th coefficient is the number of ways to write N as
∑

j<i `j(q
i − qj)

with nonnegative integers `j. Call this number fi(N); we have the recurrence

fi(N) =
∑

qbi/2ca+b=N
fdi/2e(a)+ fbi/2c−1(b).

As in the proof of Theorem 4, the machine can effect this recursion in linear space; either

a or b can be written using only half as much space as n, since a is a number of half the

length, and b agrees with N in the rightmost n/2 positions.
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Next we look at the sequence of squares (essentially the expansion of the theta

function) when q = 2.

Theorem 9. The set L of squares (and hence
∑
tn

2
) is context-sensitive, and under the

generalized Riemann hypothesis (GRH), it is even in LOGSPACE. But for q = 2, it is not

context-free.

Proof. L is easily recognizable (just check whether a2 = n, reusing the same space for

a with a2 ≤ n) in deterministic linear space. So, in particular, it is context-sensitive. In

fact, one can do better: Under GRH, if n is not square, it is a quadratic nonresidue for

a prime smaller than c(logn)2+ε, and this can be checked in LOGSPACE: A machine need

only check, for each m < c(logn)3, that n is a quadratic residue modulo m. Each such m

can be written inO(log logn) space (this space is reused for eachm),which is logarithmic

in the input length. Also, computing nmodulom and enumerating the quadratic residues

modulo m can all be done in the same space.

Since CFL’s are closed under intersections with regular sets, it suffices to show

that L5 = L ∩ {x ∈ {0,1}∗ | x has exactly five ones} is not context-free.

Note that L5 contains the binary representations of elements of the following three

sets: A = {(2k + 3)2 | k ≥ 3}, B = {(3 · 2k + 1)2 | k ≥ 3}, and C = {(22k−1 + 2k + 1)2 | k ≥ 3}.
Both A and B clearly correspond to context-free subsets of L5, while C does not.

Most probably, L5 contains binary representations of only finitely many odd num-

bers not in A∪B∪C (among odd numbers with at most 64 bits, there are only 13 squares

with exactly five one bits not in A ∪ B ∪ C; all of these have at most 26 bits). This would

imply that L5 is not context-free. However, our proof goes by another route.

Let n0 be the pumping lemma constant for L5, and take a string z ∈ L5 encoding

an element of C with |z| ≥ n0, and |z| large enough that z neither begins nor ends with

1001. Then z = uvwxy,where |vx| ≥ 1 and for n ≥ 0, uvnwxny ∈ L5. Let σ(n) be the number

whose binary representation is uvnwxny. Since v and x consist only of zeroes, σ(n) = P(2n)

for some P ∈ Z[x]. Since P(2n) is a square for all n ≥ 0, it follows that P(x) is a square in

Z[x]. We present the proof of this implication explained to us by Bjorn Poonen in Lemma 1

below.

Let f(x) ∈ Z[x] be such that f(x)2 = P(x). We see that P has three nonzero terms,

from which it follows that f is a binomial: Let P(x) = a2x2k + bx` + c2 with ac 6= 0 (clearly

the degree of P is even and the first and last coefficients are nonzero squares). Then f

has degree k, and has nonzero constant term. The term of fwith the least positive degree

is necessarily the x` term: ` is the multiplicity of zero as a root of P′(x) = 2f(x)f′(x), and

therefore the multiplicity of zero as a root of f′(x). By a similar consideration,with xkf(1/x)
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in the role of f,we see that the term of fwith the greatest degree less than k is `−k. This

is only possible if k = ` and f(x) = axk + b.

So P(x) = a2x2k + 2acxk + c2. If x is a sufficiently large power of two, then the

number of ones in P(x) is simply the sum of the numbers of ones in a2, ac, and c2. Since

this sum is 5, at least one of the summands is one, so either a or c is a power of two.

Say a is a power of two; then c is not a power of two, so 2ac and c2 each have at

least two ones. But since the total number of ones is 5, 2ac and c2 have exactly two ones.

However, the only square with two ones is 9: if r2 − 1 is a power of two, then both r− 1

and r+ 1 are powers of two, so r = 3. So c = 3 if a is a power of two. On the other hand,

if c is a power of two, then an identical argument yields a = 3.

However, z was chosen to be the binary representation of a sufficiently large

element of C so as to neither begin nor end with the string 1001. This contradicts that

a = 3 or c = 3, and finishes the proof modulo the following lemma.

Lemma 1 (Poonen). If P ∈ Q[x] is such that P(4k) is an integer square for all sufficiently

large k > 0, then either P(x) or xP(x) is a square in Q[x]. If in addition P ∈ Z[x], then P(x)

or xP(x) is a square in Z[x].

Proof. We may assume that degP(x) is even (by multiplying by x if necessary). Clearly

the leading coefficient of P must be positive.

Write
√
P(x) = f(x)+ e(x), where f(x) is a polynomial in R[x], with positive leading

coefficient, and e(x) is a series over R in positive powers of 1/x,which (by complex analysis)

converges for |x| > |α|, α being the largest complex zero of P(x).

We show first that e(x) is zero. If not, write e(x) = er/xr + · · · with er nonzero. Let

d = deg f. Define integer constants bi by B(y) =∑biy
i =∏d

j=0(y−4 j) for an indeterminate

y. Then grouping terms of equal degree in x shows that
∑
bif(4ix) vanishes. Now the left-

hand side of
∑
bi
√
P(4ix) =∑bif(4ix)+

∑
bie(4ix) =

∑
bie(4ix) is an integer when x = 4k

for sufficiently large k, by assumption. The right-hand side is a series starting with the

nonzero term er4−rkB(4−r)/xr. For sufficiently large k, the value of such a (convergent)

series at x = 4k is small but nonzero, and cannot be an integer. This contradiction shows

that e(x) = 0.

Hence f(x) is a polynomial in R[x]. Its values at 4k for sufficiently large k are

integers, so by Lagrange interpolation, f(x) ∈ Q[x].

If one knows moreover that P(x) has integer coefficients, then so must f(x).

We expect that the second assertion of the theorem generalizes to any q, but have

not proved it. For connections with q-expansions of modular forms,we refer to [T3], [AT].

The tools seem to be successful in placing some natural numbers in Chomsky

hierarchy, and one might hope to do the same for some gamma and zeta values in a
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function field setting. But to get a finer classification, tools need to be developed to show

that certain languages are not in the given space class.

5 Complements

In this section, we comment on some related topics of interest.

(I) Formal power series have been studied in the literature on the formal language

theory (see [SS] and references therein), but from the point of view which is most natural

to language theory. Let us note some similarities and differences: One associates to a

language its characteristic power series,which is a formal power series in noncommuting

variables (alphabet), so that words in the language get coefficient one; others get zero. If

you write this in exponential notation,we get the same series we consider, but the natural

operations considered are different. For example,when we multiply two series, instead of

algebraic multiplication, one combines exponents by concatenation rather than adding

in some base. Even the commuting variables specialization is thus different. Also, the

studies are not finite characteristic specific.

As an illustration, let us compare a special instance of the famous algebraicity

result of Chomsky and Schützenberger for context-free languages. For alphabet A :=
{a, b} and the context-free language L := {anbn}, one associates the series s :=∑anbn. It

is algebraic in the sense that it satisfies the formal equation s = asb+ ab. In our sense,

of course, the corresponding series (say,with a = 1, b = 0, and q = 2, and with the words

considered as the exponents) is transcendental, as the language is not regular.

In these studies,we also associate ([Pi]) with a language L as its generating func-

tion φL(t) := ∑ c(n)tn, where c(n) is the number of words in L of length n. It is known

that if L is regular (recognizable by finite automata), then φL is a rational function. The

Chomsky-Schützenberger result says that if L is context-free, unambiguous (i.e., only

one way to derive from grammar), then φL(t) is algebraic over Q(t). Again, this is quite

different than our perspective.

(II) What can one say about digit expansions of real numbers in some base or

of p-adic or λ-adic numbers? There is a classical result of Rice [R] which showed that

recursive real numbers form a field which is algebraically closed in the field of real

numbers. Though there is a lot of work done on complexity of the basic operations, it

seems that no other such good class is known. The class of automatic real numbers is

closed under addition and under multiplication by rationals ([L]),but it is not closed under

multiplication or reciprocation ([LST]). We are currently investigating other classes.

In order not to give the wrong impression, that the finite characteristic numbers

are much easier to deal with than the real or p-adic numbers, we point out that a naive
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analogue of famous Thue-Siegel-Roth theorems on diophantine approximations of real

numbers fails quite badly (and the situation is still unclear) for finite characteristic

numbers. (See [M3], [LM].) Also, from the point of view of logic and model theory, real

and p-adic fields are well understood (form complete, model complete theory), whereas

the Laurent series fields are still not understood. (See [C, p. 65] and [K].)

(III) On the other hand, there is a well-known classification of complex numbers

z due to Mahler (see [M1], [B], [Sch]) into A, S, T , U numbers by optimizing diophantine

approximation properties of values of all polynomials evaluated at z. The A numbers

turn out to be algebraic numbers. The other classes also have the property that alge-

braically dependent (transcendental) numbers belong to the same class. But these classes

(or simple modifications by taking unions) are not closed under addition or multiplica-

tion. Analogues of this classification have been studied also for the p-adic case ([M2]),

finite characteristic Laurent series ([Bu]), and general Laurent series ([D]). In each case,

there are four classes (subdivided often into finer classes, but the finer classes usually

do not have the nice algebraic property mentioned above) with similar properties. But,

except in the complex case, the A numbers are now algebraic by definition rather than

by intrinsic diophantine approximation characterization. In all these situations, almost

all numbers are S numbers, and Liouville numbers are U numbers. So there are uncount-

ably many S and U numbers. In the complex case, Schmidt ([Sc]) proved the existence of

(uncountably many) T-numbers.

We can also consider disjoint classes, e.g., Aut, PSPACE \Aut, Comp \PSPACE,

and Fq((t)) \ Comp with the same algebraic dependence (and more) properties. (We can

consider even the EXP class, for example.) But except for the Fq((t)) \ Comp class, our

classes are countable. Also, since complex numbers form a two-dimensional space over

the real numbers, it is easy to make computational classes for complex numbers (as in

Mahler’s classification), but the finite characteristic complex numbers form an infinite

dimensional space over the finite characteristic real numbers. On the other hand, at least

in Carlitz modules theory, most of the interesting numbers lie in the finite extension

Fq((u)), with u = T−1/(q−1).

(IV) Now let us point out some open questions which naturally arise: Can our

classes be characterized by some diophantine approximation properties? Can one pro-

vide a class of interesting numbers which generate Fq((t))C or generate a field whose

algebraic closure in the Laurent series is Fq((t))C, say, for C = PSPACE or Comp? Does the

well-known result of Cobham, which says that if m and n are multiplicatively indepen-

dent (e.g., powers of distinct primes), then a nonperiodic sequence of integers given in

base m or n cannot both be recognized by automata, generalize to other low complexity

computational classes, say, LOGSPACE? (Recently, an interesting algorithm (see [BBP]) to
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compute the N-th digit base 16 of π, without computing all the previous digits, has been

discovered. Unfortunately, its time complexity is worse than the time complexity of the

fastest known algorithm to generate the first N digits, and also its space complexity is

of order nk, probably too large for Cobham type expectation.) What are the closure prop-

erties with respect to solutions of some interesting class of differential equations? What

are the good time complexity or mixed complexity classes with good algebraic proper-

ties? (It is easy to see that they are closed under addition, but even for multiplication, the

naive approach leads to the time exponential in the size of input.) What are the algebraic

properties of, say, PSPACE for real or p-adic numbers?

Finally, we take this opportunity to correct an oversight in [T2]: In Theorem 2,

the hypothesis that ‘αl are not all zero’ is missing.
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[A1] J.-P. Allouche,Automates finis en théorie des nombres, Exposition Math. 5 (1987), 239–266.
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