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We give another proof of Voloch’s result on transcendence of the period of the
Tate elliptic curve. The proof is based on the transcendence criterion of Christol
involving notions of recognizable sequences and automata.  © 1996 Academic Press, Inc.

Let p be a prime number, k be an algebraic closure of F,. Let g be a
variable and consider a,, as € Z[¢q] (sometimes we consider them in k[¢])
defined by
—Snq" —(7n° +5n%) ¢"

ay:=ay,(q) = Z 12(1—¢")

n=1

ag:=aeq):= Z

n=1

1—q*°

Let K:=k(a,, as). In [V], Voloch proved the following function field
analogue of the classical results of Siegel and Schneider proving the trans-
cendence of periods of elliptic curves defined over algebraic number field.

THEOREM. The period q of the Tate elliptic curve y>+ xy = x>+ a,x + a,
over K is transcendental over K

For more on the Tate curve (which we will not use directly) and for
standard facts on modular forms (which we will use later), see [ S, Chap. 5;
M. Chap. 1], respectively. Voloch’s nice proof involved approximating ¢ by
algebraic quantities and getting a contradiction by analyzing the Galois
action using Igusa’s theorem. We offer below a proof based on the criterion
of algebraicity due to Christol. In [ V] Voloch also proves transcendence
of parameters of algebraic points by his method. It is unlikely that our
method yields this easily.
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Proof of the Theorem. First, let p=2. Using straightforward divisibility
arguments we see that

[ee]

dimag= Y ¢Ml—g)= Y 3 ¢"=3 dm)q".

nodd=>1 nodd=1 k=0 m=1

where we have put d (m) to be the number of odd positive divisors of m.
Writing m =2%T] p™, where p, are distinct odd primes, we see that
d,(m)=T] (m,+1), so that d_(m) is odd if and only if m is of the form n>
or 2n> Since we are in characteristic 2, this means

a=Y (¢"+¢) =1+ 17

where we have put f:=3" q"2 (essentially the theta function).

By [E Chap. V, Example 52], the sequence of squares is not
m-recognizable, for any integer m>1. (For m=2, this is due to [Ri
p- 530]). In particular, it is not p-recognizable, for any prime p. This
implies by the Theorem 1 of [C] (or the Theorem 1 of [CKMR]) that f
is transcendental over k(g), for any p.

In particular, when p=2, a,=as=f+ f* is transcendental over k(q);
L.e., ¢ is transcendental over K =k(a,).

Since f is transcendental over k(¢q) for any p and since a, and a, are
algebraically dependent over k (see Remark 1 below), the proof of the
theorem will be complete for any p, if we can show that fis algebraic over
k(a,, ags), where a, :=a,(q%), as:=asq?). (See Remarks 2 and 3 below).
But a,, a4, and f are related to the well-known modular forms

eq:=1+240 > os(n)q™,

n=1

ee:=1-504 > os(n)q™,

n=1

0:=1+2 Y ¢

n=1

(given by their g-expansion at the cusp at infinity) by the relations
e,=1—48a,, es=1—"7T2a,+864a,, and 6=1+2f Since any three
modular forms, e.g., for I'((4) (our case) are algebraically dependent over
C (in fact over @ in our case by the g-expansion principle), we get what
we want by reduction modulo p, except possibly for finitely many p, where
the reduction gives a trivial relation.
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We know ([M, p.36]) all conjugates of 0% under I':=SL,(Z). Now
e4, € generate modular forms for I". Hence, a calculation shows

del —del +27e20° —54e,0'° +270** = 0.

A straight translation to the original variables gives the following iden-
tity of power series:

2%(dg — a2) — 2113%,d, + 2123%G2 + 2143 + 0%(1 — 2°3a, + 283°a2)
F01(—2+253d,) + 0% =0.

This reduces to a non-trivial relation modulo p. (For p =2 we get our
relation back by transforming to f variable, since § =1). Hence the proof
of the theorem is complete. ||

Remark. (1) Elementary congruences show that a,=a¢ifp=2,a,=0
if p=5 and a,=5a4 if p=7. In fact, e, and e, are algebraically dependent
for all p by [ S-D ], which implies that a, and a4 are algebraically dependent
for all p>3. In the remaining case p =3, we claim that as+ a, +2a;=0.
This is seen by

n

q q
agt+a,= ) S+2 ) p
w1 —4 ne5 70y 1 —4
1)n73er/3J qn
= Z :ai’
3tn 3 1_

where the first two equalities follow by considering the possibilities of n
modulo 9 and the last equality is rearrangement of Ramanujan’s identity
(19) in [ R] (which is also Theorem 383 of [ HW ] for 8 =2x/3 in the nota-
tion there).

(2) The differences between ¢’s and ¢’s in some formulae here and

in standard textbooks are due to the different classical normalizations
q m‘r or q_ 827[”.
(3) In view of the immense literature on representations as sums of
squares, both from elementary and modular points of view, it is possible
that such an algebraicity relation between theta and Eisenstein series
already exists in the literature.
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