
Chapter 6

Automata methods in transcendence

Dinesh S. Thakur1

The purpose of this expository article is to explain diverse new tools that automata
theory provides to tackle transcendence problems in function field arithmetic. We
collect and explain various useful results scattered in computer science, formal lan-
guages, logic literature and explain how they can be fruitfully used in number theory,
dealing with transcendence, refined transcendence and classification problems.

6.1 Introduction

Naturally occurring interesting numbers (say real, complex, p-adic or their function
field counterparts) in number theory or algebraic geometry, such as periods, special
values of !; "; L or other special functions, are usually defined by analytic processes
such as infinite sums, products, limits or integrals. In transcendence theory, we are
interested in knowing whether they are linked algebraically or not, i.e. whether they
are transcendental, algebraically independent etc.

Though in science, the usual way to exhibit a number given by a limiting process
is by its decimal (base p, p-adic, Laurent series etc.) expansion, such a description
had been usually useless for transcendence purposes, for naturally occurring numbers.
For usual numbers such as e and # we do not know good description of expansion,
and carry over makes it hard to manipulate the expansions.

Work of Christol [C79, CKMR80] (also see Furstenberg [F67]) showed that the
series

P
fnt

n 2 Fq ŒŒt $$ for an algebraic function over Fq.t/ (‘numbers’ in function
field arithmetic) can be generated by a finite q-automaton (weakest machine model
with no memory and which accepts q different inputs only) taking the expansion
digits of n base q one by one as input and producing fn as the output at the end. Not
only that, but conversely such machines produce algebraic series.

This translates the finite algebraic description of the polynomial that function sat-
isfies over Fq.t/ to finite computer science description of patterns of digits. There are
similar nice equivalent descriptions given by formal language theory, logic etc. These
subjects have been developed a lot and generated various equivalent viewpoints and
many more implications, which are enough for transcendence applications and often
directly applicable as we will see.

Our previous accounts [T94, T96, T98, T04] explained applications in detail while
quoting automata results used. Here we explain automata tools in more detail (at least
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with definitions and full statements and sketches of proofs of things we use) and only
sketch and quote applications. We describe a few more things than we use in the hope
that they might be of future use.

For more extensive treatments of automata theory, we refer to books [HU79, S85,
AS03], and especially the excellent bibliography and bibliographical notes of [AS03].

6.2 Automata: implications, equivalences: definitions and statements

6.2.1 Automata: definition. Let q be a positive integer. A q-automaton is a ‘ma-
chine’ which can be in one of finitely many states and takes q possible inputs which
act on these states, and finally each state has an output associated with it. Mathemat-
ically, we can consider it as a quadruple .S; s0; T;O/ where S is a finite set (think
of set of ‘states’), s0 2 S (think of ‘initial state’), T W f0; 1; ! ! ! q " 1g # S ! S is
a function (called transition function describing how possible inputs marked by digits
from 0 to q " 1 act on states) and O W S ! F is a function (called output function
describing the output in F when the machine is in ‘final state’).

Of course, one is interested in infinitely many inputs represented by all integers
n $ 0. This is achieved as follows. The input n is expended into its base q expansion
as
P
niq

i , 0 % ni < q, and is fed digit by digit, say from left to right, and output on
the final state ns0 is read when one is finished.

Without loss of generality, F is a finite set, which will in fact be a finite field
in our applications. Often the question can be reduced to only two output values:
0 (rejection), and 1 (acceptance or recognition). Hence we call a subset M of ZC q-
automatic subset, if for some q-automaton we haveO.ns0/ D 1 if and only if n 2M .
Our main interest is of course infinite subsets, and thus we call an infinite increasing
sequence of positive integers listing all elements of such a set a q-automatic sequence.

6.2.2 Visualization and representations. Those familiar with Turing machine for-
mat can visualize a machine whose control head moves, depending on input and tran-
sition function, on a tape representing (outputs on) states and once it stops, one just
reads the output at that position. Those familiar with neural network models can vi-
sualize active neuron (current state s) firing on input i and making another neuron
T .i; s/ active.

If N is the number of states, one can describe the automaton by a transition func-
tion by giving q # N table and output function; or one can describe it by labeled
graph, with vertices representing the states with initial and accepting states specially
marked and edges from a state to another labeled by digits giving those transitions.
Then accepted words are just ordered lists of labels of edges of all paths from initial
to accepted states.

For automaton with output 0; 1 and withN states, we have a matrix representation
h W f0; 1; ! ! ! ; q " 1g ! MatN!N .f0; 1g/ with h.d/ij being 1, if the digit d takes
the state i to state j , and being 0 otherwise. This is extended by taking concatenation
of digits to multiplication of corresponding matrices. For N -vectors v1; v2 with 0; 1
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entries, corresponding to initial and final states, v1h.w/v2 > 0, if and only if the
word w is accepted.

6.2.3 Variants on automata models. The notion of q-automata (also called finite
automata in the literature) is quite robust in the sense that many a priori different
variants like (i) non-deterministic automata (think of a parallel computer), where the
transition function is multi-valued, so that acceptance is through some possible transi-
tions path, (ii) incomplete automata, where transition function is partial i.e. not always
defined, (iii) non-deterministic automata with "-moves, that is state can change with-
out input, (iv) two-way automata, (v) with one marker, where the control head can
return as memory etc.

We refer to [HU79, S85, AS03] for definitions and proofs of equivalences. It is
easy to see that at the expense of exponential blow up of the number of states, we can
use usual automata simulating non-deterministic one, by using its new states to be all
subsets of set of states of the non-deterministic one and keeping track of possibilities
at each stage. The non-deterministic ones are quite useful in proofs because of their
flexibility. For example, to make a machine accepting n’s accepted by two machines,
we just feed the new start state into start states of the two machines on any input,
possible in non-deterministic realm.

6.2.4 Variants on digit models. Also, whether (a) we allow leading zeros in base q
expansions of n, whether (b) we read from left to right or right to left, or whether (c)
we use base q or qk , does not change the final outcome.

To see that there is no difference on (a), we just introduce a new start state, which
stays the same on input zero and on other input goes to the start state of the new
machine.

For (b), we just reverse arrows and interchange initial and final states, which is
possible in non-deterministic realm (if we insist on one start state, introduce one and
feed into (old) terminal states on any input).

For (c), given a q-automaton, corresponding qk-automaton would have same
states, start and final states with transition on a digit base qk being the transition
on corresponding base q word, and conversely given a qk-automaton, from each state
make k-length paths with new states according to q-digits of the base q word corre-
sponding to qk base digit.

6.2.5 Christol’s theorem. Automata method is based on the following theorem of
Christol [C79, CKMR80].

Theorem 6.2.1. The series
P
fnt

n 2 Fq ŒŒt $$ is algebraic over Fq.t/, if and only if
there is a q-automaton which gives output fn on input n.

Remark 6.2.2. Note that for algebraicity questions, general (finite tail) Laurent series
immediately reduce to corresponding power series part, and also whether a series in
t or in 1=t does not make a difference.
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6.2.6 Some simple consequences. The power of the method derives from the non-
obvious equivalence, as well as various viewpoints and tools from which automata
has been studied over the years by computer scientists, logicians, formal language
theory experts. We will describe these and the applications. But first let us see, how
such unusual equivalence gives new perspective on algebraic relationships.

Theorem 6.2.3. (1) If
P
fnt

n;
P
f 0nt

n 2 Fq ŒŒt $$ are algebraic, then so is
P
fnf

0
nt
n.

(2) The series
P
fnt

n 2 FqŒŒt $$ is algebraic, if and only if each
P
fnD f t

n is
algebraic for each f 2 Fq .

Proof. To see (1), just imagine two corresponding automata running in parallel (take
direct product) and at the end combine their outputs by multiplying, which can be
achieved by a table. (Hence, the algebraicity of this Hadamard or term-by-term prod-
uct is obvious from the automata viewpoint, but hard from the definition of algebraic-
ity, whereas for the algebraicity of usual product of two algebraic series, the situation
is reversed!)

The ‘if’ direction of (2) is clear, by taking linear combinations. The hard converse
direction is clear from automata viewpoint: change the output function by sending f
to 1 and the other elements to 0. !

Here is another direct nice consequence (pointed out to me by Allouche): The
series

P
ai t

pi 2 FpŒŒt $$ is algebraic over Fp.t/ if and only if
P
ai t

i 2 Fp.t/. This
is since both the statements are equivalent to the fact that ai is an eventually periodic
sequence.

6.2.7 Examples. Now we give three examples, all with outputs only 0; 1, so that the
corresponding series is of form s DPm2M tm.

Example I: We describe the transition function by the following table, where 2 %
i < q, and the output function separately by O.s0/ D O.s2/ D 0 andO.s1/ D 1

s0 s1 s2
0 s0 s1 s2
1 s1 s2 s2
i s2 s2 s2

or both by graph, with accepted states overlined and only movements shown:

!! s0
1 !!

>1

""

s1

"1
##⑦⑦
⑦⑦
⑦⑦
⑦⑦

s2

To get the final state s1 to end up with output 1, digit expansion of m has to be
1 followed by all zeros, i.e. m is a power of q, so that the corresponding series is
s D P

tq
n
, which is algebraic, as you can see by telescoping and noticing that q-th

power is linear: sq " s D "t .
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Example II: Let q D 2. Consider the output O.s0/ D O.s1/ D 1 and O.s2/ D
O.s3/ D 0, and the transition function

s0 s1 s2 s3
0 s0 s2 s1 s3
1 s1 s3 s1 s3

Now m 2 M precisely when ms0 is either s0 or s1. Note 0; 1 2 M and we
claim that m 2 M precisely when 4m; 4m C 1 2 M . This is immediately seen by
diagram-chase of automata theory: note that base 2 expansions of 4m; 4m C 1 are
obtained by appending 00, 01 respectively to the expansion of m and the diagram
chase shows that if you are in (out respectively) fs0; s1g you stay in (out respectively)
by the action of 00 or 01. We can reformulate this in terms of the generating function
s as s D P

tm D .1 C t/P t4m D .1 C t/s4, so that we have algebraic series
s D .1C t/#1=3.

Example III: Let q D 3. Consider the two-state machine whose initial state s0 is
the only accepting state and machine stays in the initial state on input 0 or 2, but goes
to error (i.e. the other non-accepting) state s1 on input 1, and once it is there, stays
there on any input.

Here it is immediate that m 2 M precisely when its base 3 expansion does not
contain digit 1 (Cantor type description!), so that s D s3 C t2s3.

Example IV: We leave it as a fun exercise to the reader to build a 2-automaton
representing Thue-Morse sequence containing m’s whose base 2 expansion has even
number of ones (by keeping track of parity of the number) and get algebraic equation
for the corresponding series. The reader should also work out details of other equiv-
alences mentioned below on this example. We also mention a simple non-example:
f1n0ng cannot be recognized by automata.

6.2.8 Languages and grammars. We saw how digit pattern of algebraic power se-
ries is described by machines. Other common ways of describing patterns are to give
generating or accepting rule for the language exponents or describe it by logical sen-
tences. In fact, all these a priori different and independent descriptions of classes have
converged to the same robust classes. We will exploit this fact later.

In this language perspective, the digits are now possible words so that Z"0 con-
sists of all possible tries to make sentences, whereas a subset M of the set of non-
negative integers can be considered as a language of particular class of ‘grammatical’
sentences.

Grammar teaches us, for example, how a sentence can break up into a noun phrase
and a verb phrase; a noun phrase can break up into an adjective and another noun
phrase; a noun phrase can be a noun like the word ‘man’, and adjective can be a word
like ‘tall’.

In a formal language theory, this is abstracted by defining a grammar to be a tuple
.V; T; fP ! Qg; N /. Here V is a finite set (think of variables or non-terminals or
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syntactic classes), T is a disjoint finite set (think of terminals or words), P ! Q
are finitely many ‘production rules’ (think of ‘sentence’ goes to ‘noun phrase’, ‘verb
phrase’ etc.) where P is a string on V [T containing at least one element of V andQ
is a string on V [T , andN 2 V (think of a special start symbol). Finally the language
generated by this grammar is collections of all possible grammatical sentences, i.e.
strings on words (terminals) arising via the allowed productions starting from the start
symbol (i.e. N ! ! ! !! string on terminals).

For our applications to q-automata, T D Dq WD f0; 1; ! ! ! ; q " 1g, so the digits
are possible words, non-negative integers are sentences (do not have to worry about
leading zeros as we saw) and a language will thus correspond to a set M of non-
negative integers or equivalently a power series

P
m2M tm. In other words, we are

talking about the language of ‘exponents’.
The class of a language is defined by the production types allowed.
(i) The language is regular language if each production rule is of form X ! YP

or X ! P , where X; Y 2 V and P a string on T .
(ii) The language is context-free language if each production rule is of formX !

Q, where X 2 V and Q a string on V [ T .
(iii) The language is context-sensitive language if each production rule is of form

Q1XQ2! Q1PQ2, where Qi are strings over V [ T and X and P as above.
Warning: though the definition of context-sensitive allows replacement only within

some context as you would imagine, the context-free and context-sensitive are not op-
posite notions. In fact, regular is context-free and context-free is context-sensitive.

Our examples I, II, III correspond to regular languages given by production rules
(I) N ! 1, N ! N0; (II) N ! 0, N ! 1, N ! N00, N ! N01; (III) N ! 0,
N ! 2, N ! N0, N ! N2, where in the last two we have allowed leading zeros
for simplicity. If we do not want to do that, we use, e.g., for (III), N ! 0, N ! N 0,
N 0 ! 2, N 0 ! N 00, N 0 ! N 02.

6.2.9 Regular expressions. Regular languages on words T can also be described by
regular expressions defined recursively by strings of symbols in T and operations of
concatenation (denoted by juxtaposition), or (denoted byC), and repetition (denoted
by $).

Rather than giving a formal definition [HU79], we note that our examples I, II,
III correspond to regular expressions (I) 10$ on T D Dq , (II) 0 C 1.00 C 01/$ on
T D D2, (III) 0 C 2.0 C 2/$ (or simply .0 C 2/$, if we allow leading zeros) on
T D D3.

6.2.10 Fixed point of a q-substitution. A q-substitution over S is just a function
f W S ! Sq . If q > 1, writing f .s/ D sw and extending by juxtaposition, we see
that f .1/.s/ D swf .w/f .2/.w/ ! ! ! D s1s2 ! ! ! is a fixed point. If I W S ! F is
some function, then we say that fn D I.sn/ is a sequence which is image of fixed
point (starting at s) of q-substitution. Again, we also call the subset of integers where
the sequence is 1 by the same name.
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The Example I above corresponds to S D fa; b; cg, f .a/ D abc ! ! ! c; f .b/ D
bc ! ! ! c; f .c/ D c ! ! ! c and I.a/ D I.c/ D 0; I.b/ D 1, with starting point a, the
n-th position of I.f1.a// being one, exactly when n is a power of q.

The Example II above corresponds to S D fa; b; c; dg. f .a/ D ab; f .b/ D
cd; f .c/ D bb; f .d/ D dd , and I.a/ D I.b/ D 1; I.c/ D I.d/ D 0, with starting
point a. We give a little more details to help understand the notation. The fixed point is
abcdbbddcdcdddddbbddbbdddd ! ! ! , its image is 11001100000000001100110
000 ! ! ! , with 1’s at (base 10) positions 0; 1; 4; 5; 16; 17; 20; 21; ! ! ! .

The Example III above corresponds to S D fa; bg, f .a/ D aba; f .b/ D bbb
and I.a/ D 1; I.b/ D 0, with starting point a.

6.2.11 q-Definability. Let vq.x/ denote the largest power of q dividing x, for a non-
zero x, and vq.0/ D 1.

Again, rather than giving a formal definition [BHMV94], we describe q-definable
set informally as a subset of Z"0which can be defined by a first order formula over the
structure .Z"0;C; vq/. Roughly, this means that the subset is defined by a statement
involving sentential logical operations and quantifiers running over non-negative in-
tegers (but not, for example, over subsets or functions), and involving onlyC, vq (but
not, say multiplication, or individual non-negative integers, unless they are defined
by such properties). The following examples should make this clearer.

The Example I above corresponds to vq.x/ D x, which isolates powers of q. Let
us see, following [BHMV94], how to build a formula for example III. Note that ‘0’
can be defined as x with ‘for all y, xCy D y’ and ‘x $ y; x > y’ etc. can be defined
by ‘there is z such that x D y C z’ and so on. Then the formula we need is ‘there is
no y such that y is a power of 3 and 1 is a coefficient of y in the base 3 expansion of
x’, where the first part is done in Example I above and second part is taken care of by
‘there exist w; z such that x D zC 1 & yCw and w < y and (v3.z/ > y or z D 0)’.
We leave (II) to interested readers by saying that the accepted words can be described
as those having digit zero at any even numbered position from right.

We refer to [BHMV94] for detailed description and references to literature with
this viewpoint and for example, work of Büchi in 1960 giving ‘second order arith-
metic’ description of automata.

6.2.12 q D 1. There is a way to define things, so that for q D 1, the notions give
periodic sequences. We ignore this, except for pointing out this terminology.

6.2.13 Equivalent notions to automata.

Theorem 6.2.4. Let q > 1 be an integer, and F be a finite set. Consider a F -valued
sequence fn and for each f 2 F , putMf WD fm W fm D f g. Then the following are
equivalent.

(i) The sequence fn is q-automatic.
(ii) There are only finitely many distinct subsequences of the form n ! fqknC r ,

where k varies through positive integers and r through 0 % r < qk .
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(iii) The sequence fn is q-definable.
(iv) For each f 2 F , Mf is a regular language.
(v) For each f 2 F , Mf is given by a regular expression.
(vi) For each f 2 F , Mf is an image of a fixed point of a q-substitution.
Further, if q is a power of a prime p, F D Fq then these are equivalent to the

following.
(vii) The series s DP fnt

n is algebraic over Fq.t/.
(viii) The series s is (a diagonal)

P
fn%%%ntn, where

P
fn1%%%nk

xn1
1 ! ! ! x

nk

k is a ra-
tional function in Fq.x1; ! ! ! ; xk/.

We have already given several equivalences in our examples. For the Example I,
the series is a diagonal of the rational function x1=.1 " xq#11 " x2/, and the only
subsequences of the type we consider are clearly fn itself and identically 0 sequence.
We leave the other examples to the reader.

6.2.14 Some properties of automatic sequences. Instead of equivalent notions, we
now look at implications of automata which are simple to check and thus good tools
to prove transcendence results.

Language theoretic viewpoint immediately suggests that long enough grammati-
cal sentences should contain some parts, which can be pumped any number of times
retaining grammatical property. For example, from ‘he is a friend of mine’ we can
have ‘he is a friend of a friend of mine’ etc. Indeed, there are such pumping lemmas
for many languages, as we will see and use below.

Theorem 6.2.5. (Pumping lemma for finite automata/regular languages) Let S be an
q-automatic set. Then there is N such that any word in S of length at least N can be
written as juxtaposition xyz, with y being a non-empty word and length of xy not
more than N and so that for all i , the juxtaposition xyiz is also in S .

Proof. The numberN is just (greater than) the number of states in the corresponding
automaton. As you keep inputing the digits from left, we will get a repeat of states:
the portion between the repeat is y, and can be clearly pumped. !

Here are some results [Co72, E74, A87, AS03] about restrictions on densities,
gaps and asymptotic behavior of automatic sequences:

Theorem 6.2.6. Let S D fnig be a q-automatic set, with ni an increasing se-
quence. Define its maximum growth rate to be lim sup niC 1=ni , its natural den-
sity to be lim sn=n, where sx WD jfni % xgj, and its logarithmic density to be
lim.

P
1=ni/= log.n/, where the sum is over ni % n. Then

(1) The maximum growth rate is finite.
(2) Either the maximum growth rate is more than one, or limsup .niC 1"ni / <1,

and these are mutually exclusive.
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(3) The logarithmic density exists and if the natural density exists, then both are
the same and rational. If the natural density is zero, then either there is an integer
d $ 1 and a real number s with 0 < s < 1 such that

0 < lim inf sx=.xs logd#1 x/ < lim sup sx=.xs logd#1 x/ <1;

or there are integers d $ 1, m $ 2 and rational c > 0 such that sx is asymptotic to
c.logm x/

d#1.
(4) Consider the characteristic sequence % of S , namely the sequence %.n/ which

takes values one or zero according as n is in S or not. There is c such that the number
ˇ.n/ of distinct blocks of given length n occurring in this sequence of zero-ones is at
most cn. The number ˇ.n/ is at least n, for %.n/ not ultimately periodic.

(5) There is a subsequence n0i of ni such that n0iC 1=n
0
i ! qd . More precisely,

there are non-negative integers a, b > 0, c, d > 0 such that for all positive integers
n, aqnd C b.qnd " 1/=.qd " 1/C c 2 S .

(6) The series
P
Nkt

k 2 QŒŒt $$, where Nk is number of elements in S of k digits,
is a rational function in Q.t/.

(7) If lim sup sn= log.n/ is infinite, then lim inf .niC 1 " ni / <1 (i.e. small gaps
infinitely often). If the natural density is zero, then maximum growth rate is more than
one (i.e. large gaps infinitely often).

6.3 Sketches of proofs

We now sketch proofs of some parts of Theorems 6.2.4 (which implies Theorem
6.2.1), 6.2.6, as well as of some other facts mentioned above. For full proofs or parts
we do not cover, we refer to several available treatments such as [HU79, S85, AS03,
CKMR80, Co69, Co72, E74, F67, A87, BHMV94].

6.3.1 Ideas connecting parts of Theorem 6.2.4. (i) implies (ii): If we note that the
base q expansion of qknCr is obtained from that of n by just appending the expansion
of r (with leading zeros, if necessary, to make it of size k), this is immediate, since
there are only finitely many possible maps ˇ W S ! S and any fqknC r is of the form
O.ˇ.ns0//. (Equivalence of regular languages with (ii) is known as Myhill-Nerode
theorem in language theory perspective.)

(ii) implies (vii): Let V be the vector space over Fq.t/ generated by monomials inP
fqknC r t

n. Then V is finite dimensional with sV ' V , so s satisfies its character-
istic polynomial.

(vii) implies (ii): For 0 % r < q, define Cr (twisted Cartier operators)
by Cr .

P
fnx

n/ D P
fqnC rxn. Considering the vector space over Fq generated

by the roots of the polynomial satisfied by s, we can assume that
Pk
iD 0 ais

qi D 0,
with a0 ¤ 0. Using g D Pq#1

rD 0 x
r.Cr .g//

q and Cr .g
qh/ D gCr.h/,
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we see that

fh 2 Fq..x// W h D
kX

iD 0
hi .s=a0/

qi
; hi 2 FqŒx$; deghi % max.dega0; degaia

qi!2

0 /g

is a finite set containing s and stable under Cr ’s.
(ii) implies (i): If there are m subsequences f .i/n with f .1/n D fn say, put S WD

fs0 WD ˛1; ! ! ! ; ˛mg. Define a digit action by, r˛i WD ˛k if f .i/qnC r D f .k/n . Define
O.˛i / WD fn, if n#˛1 D ˛i with n# being the base q expansion of n written in the
reverse order.

Equivalence of (i) and (vi): Given a q-automaton .S; s0; T;O/, construct q-subs-
titution with same start state and image map and with substitution function f .s/ D
T .0; s/T .1; s/ ! ! !T .q"1; s/. Conversely, given a q-substitution, we define the corre-
sponding automaton similarly with the transition function T .j; s/ being the .jC1/-th
letter in the word f .s/. It is easy to see that the image of the fixed point starting with
s0 represents the sequenceO.ns0/.

Equivalence of (i) and (v): We just mention that it is done constructively, by in-
duction on the number of operations C; $ and concatenation, by constructing an au-
tomaton, and in the other direction, by induction on the number of edges in the non-
deterministic automaton, by building the regular expression from regular expressions
obtained (by induction) by four non-deterministic automata obtained by erasing an
edge from p to q say, and by using initial s0, final state set A replaced by .s0; A/,
.s0; fpg/, .q; fpg/, .q; A/ in the four cases.

For equivalence of (vii) and (viii), due to Furstenberg, see [F67] and also [T04,
11.1]. This was one of the first result, and was used in [C79] to prove equivalence of
(i) and (vii), whereas [CKMR80] gave a direct proof.

For (iii), see [BHMV94]. For (iv), see [HU79, 9.1].

Remark 6.3.1. A given algebraic series can be generated by several different au-
tomata. Even if you restrict to ‘smallest’ automaton, there is no simple way to con-
nect basic numerical data on both sides, for example genus, degree, height of a series
versus number of states, or invariants of corresponding labeled graph. Following the
proofs above, rough bounds on the degree and height in terms of the size of the au-
tomaton, and rough bounds on the size in terms of the degree and height (together)
can be given.

6.3.2 Parts of Theorem 6.2.6. Part (4): We use the substitution equivalence. Let
qm#1 % n < qm, and jqm % i < .j C 1/qm. Then I.si ! ! ! siC n#1/ is a sub-block
of I.f m.sj sjC 1//, and depends only on sj sjC 1 (at most N 2 possibilities where N
is the cardinality of S ) and i " jqm (at most qm < qn possibilities). This proves the
first part, with c D qN 2. Now ˇ is non-decreasing function, thus for the least k such
that ˇ.k/ < k, we have ˇ.k/ D ˇ.k " 1/ D k " 1. Thus, for j $ k " 1, I.sj /
is uniquely determined by the .k " 1/-block immediately preceding it. This implies
eventual periodicity.

Part (5) is nothing but the pumping lemma above read in base q. It also implies
(1) showing, in fact, that the maximum growth rate % qd , in the notation of (5).
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Alternately, note that if s is algebraic of degree d , then truncation approximation
with Liouville theorem shows that growth rate cannot be bigger than d .

Now we prove the first part of (7): let u be smallest such that every symbol oc-
curring at least once in squsquC 1 ! ! ! occurs infinitely often there. If qu % i < quC 1,
and k $ 1, such that 1 occurs at least twice in I.f k.si//, then since si occurs in-
finitely often, this block occurs infinitely often, and hence gaps of size at most qk

occur infinitely often. Otherwise, each quC kC 1- image block can contain 1 at most
qk " .k C 1/.quC 1 " qu/ times and thus sn= log.n/ % .q " 1/qk= log.q/ <1.

Now we explain ideas and techniques coming in the proof of (3). These density
and asymptotics results come through study of powers and eigenvalues of incidence
matrix: Let N be the cardinality of S as usual, and consider square matrix .mij / of
sizeN , withmij being the number of occurrences of the j -th entry of S in f applied
to the i -th entry, so that corresponding entry in the k-th power of the matrix denotes
the same number with f replaced by f k . Now the matrixM obtained by multiplying
the above matrix by 1=q, giving proportions is stochastic matrix with all row sums
being one and all entries non-negative. Powers and eigenvalues of such matrices are
described by Perron–Frobenius theory. In particular, there is h such thatM h has 1 as
the largest eigenvalue and it is simple. Then M hk tends to a limit, say M1, which
can be described by rational operations and density (if the limits exist) can also be
expressed in terms of entries rationally, because of interpretation given above. Hence
the density, if it exists, is rational. The other asymptotics results mentioned depend
on how entries of powers grow and hence on finer analysis of eigenvalues and Jordan
blocks, and we just refer to [Co72] or [AS03, Chap. 8].

For Part (6) Consider automaton with N states and output 1 on subset Sf . If
M D .mss0/ is N # N matrix with mss0 being the number of digits taking s to s0.
Then .I " tM/#1 D P

tnMn has entries rational functions in t and ss0-th entry
being number of words of length n taking s to s0. Let X be a row vector with 1 at the
place s0 and 0 otherwise, Y be a column vector with 1 at places corresponding to Sf
and 0 otherwise. Then the series in (6) is just X.I " tM/#1Y , and thus rational.

Part (6) is due to Chomsky and Schützenberger, who also gave a general version
with series in noncommuting variables (words giving monomials in the alphabet and
summing over all the words in the language), in which context rationality is equivalent
to regular languages. Note that when we specialize to all variables being equal, we get
the series in (6). They also showed that unambiguous (only one way to derive from
grammar) context-free languages give algebraic series (in different perspective than
we are considering). See [SS78] for details.

We see part (2) as follows. If for each n, ns0 is a state from which a final (accept-
ing) state can be reached, then since maximum lengths of such paths are bounded,
say by k, for any n, there is 0 % r < qk such that nqk C r is accepted, and thus
limsup .niC 1 " ni/ % 2qk . Otherwise, let m be such that ms0 is a state from which
accepting state cannot be reached. Then there is no ni between mqn and .mC 1/qn,
for any n, so that the maximum growth rate is at least .mC 1/=m > 1. It is clear that
the two statements are mutually exclusive.

For (7), we refer to [Co72].
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6.4 Applications to function field arithmetic

We will focus on how and which automata techniques were used in these applications,
leaving full detailed definitions of the objects, statements of the theorems and detailed
proofs to the references provided.

6.4.1 Special values of gamma function. The gamma function! W Zp ! Fq..1=t//
associated with FqŒt $ by Carlitz and Goss is defined by

!.nC 1/ D ….n/ D
Y
.Di=t

degDi /ni ; n D
X

niq
i ; 0 % ni < q;

where

Di WD
i#1Y

kD 0
.tq

i " tqk
/ 2 FqŒt $

is the product of all monic polynomials of degree i . The author had proved functional
equations and related some special values to periods of Drinfeld modules, given an
analog of Chowla–Selberg formula. Combined with Thiery and Jing Yu’s transcen-
dence results [Thi92, Y92] on periods, the known transcendence results (for frac-
tions with only a few denominators) were exactly parallel [T04, pa. 334] in this case
and in the number field case. In [T96], the automata method, namely (ii) of Theo-
rem 6.2.4, was used to show that ! value at any proper fraction in Zp , with some
restrictions on the numerator is transcendental. Using logarithmic derivatives (which
reduce modulo p the exponents in the monomials occurring in the products and caus-
ing troubles and restrictions on numerators with their size, and thus removing size
problem), Allouche [A96] proved the transcendence of all values at proper fractions.
Author [A96, T98, T04] then used the same trick combined with his earlier work to
show that all the monomials in gamma values at fractions that were not earlier shown
by him to be algebraic were, in fact, transcendental. Soon afterwards, it was shown
[Mf-Y97] that any ….n/ is transcendental, for n 2 Zp " Z"0.

I will now give a quick sketch of this very nice proof in [Mf-Y97]. Note that if
s is algebraic non-zero, s0 WD ds=dt (and thus s0=s) is also algebraic, as one can
see directly, or by applying (1) by Theorem 6.2.3. Thus, as mentioned before, using
logarithmic derivatives, products are turned into sums and it is enough to prove that
if the sequence nj 2 Fq is not ultimately zero, then

P
nj =.t

qj " t/ is transcendental
over Fq.t/. This is then achieved by writing the series as

P
c.m/t#m#1 and using

(ii) of Theorem 6.2.4 to conclude by showing that there are infinitely many distinct
subsequences cr.m/ D c.qrmC 1/. In fact, one shows by direct manipulation using
elementary number theory of divisibility arguments that ca ¤ cb if a > b and na
and nb are non-zero by showing that these sequences differ at their .qh " 2/-th term,
where h is the least positive integer s dividing a, but not dividing b such that ns ¤ 0.

See [T04, Cha.4, 11] and the references quoted above for more details and moti-
vations and comparison with classical case.

6.4.2 Tate multiplicative period for elliptic curves. Mahler–Manin conjecture as-
serted transcendence (over the field of definition) of the fundamental multiplicative
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period (traditionally denoted by q not to be confused with our usage in this paper) of
Tate elliptic curveGm=qZ) over (complex or p-adic) local field. Voloch proved [V94]
analog over finite characteristic local field of Laurent series using Igusa towers and
cohomology. When he lectured on this at University of Arizona, the author could give
automata style proof [T94] as follows. By transcendence degree considerations (and
algebraic identities between coefficients) the question of transcendence of q over the
field of coefficients, which are essentially ‘q-expansions’ of certain Eisenstein series,
is equivalent to whether these expansions represent transcendental series over field of
rational functions over q. By algebraic identities between modular forms this in turn
can be deduced from the transcendence of theta series

P
qn

2
modular form. This is

equivalent to the set of squares being not automatic, well-known fact to computer
scientists, in fact, one of the first application of automata due to Richie, Büchi etc.
For us it may be the easiest to deduce this from (2) or (7) of Theorem 6.2.6, since
ratio of successive squares tends to one, but the gap between them tends to infinity.
(See another proof in the next subsection.) The original conjecture was soon proved
[BDGP96] by Mahler method. It had a nice application to BSD conjecture case stud-
ied by Mazur, Tate and Teitelbaum. See the papers quoted or [T04, Cha. 11] for more
details on this.

6.4.3 q-Expansions of Eisenstein and fake Eisenstein series. In [AT99], more di-
rect (more automatic!) proof of the transcendence of q was given, by noticing that
coefficients of the expansions of eisenstein series are given by arithmetic functions
called higher divisor functions &u.n/, and modulo p distribution of their values has
been well-studied by number theorists. In particular, Rankin proved some asymp-
totics which does not fit in classification of automatic sequence asymptotics studied
by Cobham, more precisely with (3) of Theorem 6.2.6, so that these series are tran-
scendental.

Another application [AT99] was showing that if ".p/=".p"1/ is an irrational real
number (here " is the Riemann zeta function, so this is expected but not known), and
if p"1 divides u, then Su D

P
&u.n/q

n 2 FpŒŒq$$ is transcendental over Fp.q/. First
note that when, as in this case, u is even, the expansions are no longer connected to
Eisenstein series (which have even weight and odd u), thus we call them fake Eisen-
stein series. Again, Rankin’s result gives in this case the natural density as rational
multiple of this zeta values ratio, and thus proof just consists of quoting that together
with (3) of Theorem 6.2.6. The result is amusing concluding transcendence of a finite
characteristic Laurent series representing (fake) modular form from irrationality of
a real number representing (ratio of) zeta value!

Soon afterwards, Yazdani [Yaz01], using stronger automata criterion (ii) of Theo-
rem 6.2.4 showed the transcendence unconditionally and dropping the condition on u.

6.4.4 Special values of v-adic gamma. For a monic irreducible polynomial v of
FqŒt $, Goss defined v-adic gamma function !v W Zp ! FqŒt $v by

!v.nC 1/ D …v.n/ D
Y
."Di;v/ni ; n D

X
niq

i ; 0 % ni < q;
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where

Di;v WD .Di=Di#degv/v
#ordv.Di =Di!deg v/ 2 FqŒt $

is the product of monic polynomials not divisible by v and of degree i . The author
had proved functional equations and analog of Gross-Koblitz formula and conjectured
which monomials in values at fractions would be transcendental.

It was proved in [T98] in the special case of fractions and in [WY02] in the general
case, with a simpler proof based on results of [Mf-Y97], that for v a prime of degree
one, for n 2 Zp, …v.n/ is transcendental, if and only if the digit sequence nj is not
ultimately constant. (The only if part was proved earlier by the author.)

Using translation automorphisms, it is enough to prove the claim for v D t . Again
one turns products into sums by using logarithmic derivatives and is led to prove
transcendence of the series

P
.nj " njC 1/=..1=t/qj " .1=t// and one applies the

result of [Mf-Y97] quoted above.
Similar transcendence results are not known for higher degree v. See [T04, Cha.4,

11] and the references quoted above for more details and motivations and comparison
with classical case.

6.4.5 Algebraicity criterion for hypergeometric functions. We now quote a gen-
eralization (due independently to Sharif and Woodcock, Harase [SW88, Ha88, A89])
of Christol’s theorem, or rather of equivalence (ii) of Theorem 6.2.4, to function fields
over any field (not necessarily finite) of characteristic p and just mention its recent
application [TWYZ11, TWYZ09] to characterization of all parameters for which the
hypergeometric function of [T04, 6.5(a)] is an algebraic function.

Theorem 6.4.1. Let F be a field of characteristic p. The series
P
fnt

n 2 F ŒŒt $$
is algebraic over F.t/ if and only if the F -vector space generated by the sequences

n! f 1=p
k

nC k , as k runs through positive integers, is of finite dimension.

6.4.6 Carlitz periods, logarithm and zeta values. We have only looked at applica-
tions which are (or were when introduced) new results. For other automata applica-
tions in Drinfeld module context for Carlitz period, Carlitz zeta values and logarithm
values, as well as many others outside this context, we refer to papers by Allouche,
Berthé and Yao [A87, A90, AS03, B92, B93, B94, B95, Ya97] and references there.

6.5 Comparison with other tools

When one tries to prove transcendence results for naturally occurring quantities in
function field arithmetic, say from the theory of Drinfeld modules, t-motives or va-
rieties, there are several tools available. When automata method applies, which is
surprisingly often, it leads to quick direct proofs. But when the other methods such
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as functional equations, Mahler method, period methods using algebraic groups and
motives etc. apply, they usually give more general and structurally more satisfying
results.

For example, the transcendence result for appropriate gamma monomials at frac-
tions mentioned above has been now generalized [CPTY10] to complete algebraic
independence results between appropriate gamma as well as Carlitz zeta values, by
using transcendence techniques of Anderson, Brownawell, Papanikolas covered in
Brownawell’s and other lectures of this Banff workshop. Using author’s generaliza-
tions for gamma functions to other function fields and his results connecting them to
periods of Drinfeld modules together with Jing Yu’s results about transcendence of
such periods prove transcendence of some special gamma values but for any function
field.

As for the method of Diophantine approximation is considered, it is interesting to
note that very often, in function field case, it is much easier to obtain faster approxi-
mations than for the number field counterparts of the quantities, but at the same time,
because of the failure of Roth theorem analog, it is harder in function field case to
conclude transcendence from such fast approximations!

As we have seen above, automata leads to equations of type handled in Mahler’s
method, such as

P
ai.x/f .x

pi
/ D 0, which becomes algebraic equation in charac-

tersitic p, as we can take the exponent out to get powers of f . We refer to Pellarin’s
lectures at this workshop for more on Mahler method.

The applicability of the automata method is somewhat limited so that we do not
know how to generalize it to get similar results for quantities occurring in the context
of higher genus function fields, or to get strong algebraic independence results. For
example, period methods have finally, not only caught up with automata methods for
transcendence of gamma values at fractions, but have also provided much stronger full
independence results. On the other hand, some results such as Mendès France-Yao re-
sult on transcendence of gamma values at p-adic integers which are non-fractions and
v-adic gamma results, as well as refined transcendence results are still only obtained
by automata method and not by other methods. Same can be said for transcendence
results for quantities not strongly related to geometry, such as ‘wrong weight’ Eisen-
stein series discussed above.

Many of these function field results were proved by different methods by Denis,
Hellagoauarch, de Mathan, Yao etc. References and comparison of these methods can
be found in [FKdM00, Ya09].

In the next section, we discuss another big strength of automata methods.
We end this section with a challenge: it is well-known that the power series for

the Artin–Hasse exponential

exp

 1X

0

xp
n

pn

!
D

Y

n 6&0mod p

.1 " xn/#!.n/=n

has coefficients in Zp. I wonder which method will settle the open question about
transcendence over Fp.x/ of its reduction modulo p.
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6.6 Refined transcendence classification based on strength
of computers

6.6.1 Computational classification with algebraic properties. We now briefly ex-
plain computational classification [BT98] with good algebraic properties and give an
illustration of refined transcendence classification of some important Laurent series.
We saw above how various ways of thinking of automata have helped giving tran-
scendence proofs by completely different methods when usual methods do not apply.
Now usual numbers/Laurent series coming up in number theory and geometry are
computable (already a small countable subclass) and like automata, computability
has various incarnations studied by various viewpoints, such as Turing machines, lan-
guages generated by unrestricted grammar, recursive function theory, Post systems,
Church’s lambda calculus etc. Computer scientists, logicians, linguists have also stud-
ied intermediate strength classes (e.g., Chomsky hierarchy) and often converged to
the same notions. So we examined [BT98] these robust classes from computational,
series perspective as we have been studying above and found that many of these have
good algebraic properties, such as forming a field, a field algebraically closed in Lau-
rent series etc.; in addition to closure, logical properties, such as closure under union,
concatenation, complementation etc., explored before. The algebraic properties allow
you to move by algebraic operations the problem about one series to another series
which might be more convenient to deal by these generalized automata tools. We will
give an example below.

For example, the context-sensitive languages form a field, and are equivalent to
Turing machine which uses work space at most linear in input size. Context-free lan-
guages are equivalent to ‘pushdown automata’, but have very weak algebraic prop-
erties. On the other hand, Turing machines which take polynomial space to operate
etc. form fields algebraically closed in Laurent series. For proofs, precise definitions,
various equivalences and algebraic and closure properties, we refer to [BT98] and
only sketch here some applications.

6.6.2 Refined transcendence of ! by language tools. Let Q# be the fundamental pe-
riod of Carlitz module for FqŒt $, so that # WD t#q=.q#1/ Q# is a Laurent series. By result
of Wade in 1941, it is known to be transcendental, thus non-automatic. (For a direct
automata proof, see [A90]). We show that it (or rather its reciprocal) is not context-
free (which gives, in particular, a language theoretic proof of its transcendence), but
is context-sensitive. The tools here are language theoretic closure properties, mov-
ing to convenient series by algebraic properties and getting contradiction by pumping
lemma for context-free languages.

Here is a part of the argument illustrating this dealing with series with coefficients
fn D

P
qj#1jn 1 2 Fq . Just dividing n by qj " 1’s, one at a time, in a linear space,

and reusing it, we see the series to be context-sensitive, but if it were context-free,
intersection with regular language fqu"1g $ .q"1/ ! ! ! .q"1/ is also context-free.
Now cqu#1 D d.u/ D

Q
.uiC1/ for u DQp

ui
i . Hence, the subset of these qn"1’s

where d.n/ D 2 (odd respectively), is also context-free. By pumping, the only digits
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being q " 1, we get same value (modulo p) of d on some arithmetic progression and
are led to a contradiction by elementary number theoretic arguments.

6.6.3 Refined transcendence of e, # . Using computational and language tools, we
[BT98] show that Carlitz analog of e, (known to be non-automatic by Wade 1941)
is context-sensitive and theta series or set of squares (explained to be non-automatic
above) is context-sensitive (even in logarithmic space under GRH), but (for q D 2)
not context-free.

6.6.4 Algebraic dependence. We also give a computational criterion for algebraic
independence, but have not found any application to natural quantities. Algebraic
properties mentioned above and theta or Eisenstein calculations above show that mod-
ular forms expansions are in polynomial space class. It was suggested in [T04, pa.
369] that construction of non-periods can probably be done by computational meth-
ods, because periods are probably in polynomial or exponential space class. Mahler
put all complex numbers in four classes of A; S; T; U numbers, with property that
algebraically dependent transcendental numbers belong to the same class. We have
divided countable class of computable numbers into infinitely many finer classes with
this property, but do not have a good diophantine approximation theoretic description
yet. For some applications of automata tools in diophantine approximation questions,
we refer to [T03].

Remark 6.6.1. In these equivalences, the role of generalization in substitution view-
point is not yet clear. For example, what do context-free and context-sensitive corre-
spond to on substitution side, and what do non-uniform substitutions (different letters
can go to strings with different lengths) correspond to in other viewpoints? For some
other interesting open questions, see [BT98, pa. 816].

6.7 Beyond function field real numbers

Automata method immediately applies to Puiseux series, which are Laurent series
in t1=k (for some k), which is an algebraic quantity. But unlike the characteristic
zero case, the Puiseux series field no longer gives the algebraic closure of the Laurent
series field, for example, as Chevalley pointed out, in characteristic p, the polynomial
xp " x " t#1 has no root in Puiseux series field. But as Abhyankar noticed, it has
a root

P
t#1=p

i
in the (algebraically closed) field of ‘generalized fractional power

series’ (considered first by Hahn and studied in detail in this context by Huang) of
the form

P
i2S fi t

i , where S ' Q is a well-ordered subset such that for some m
the elements of mS have denominators powers of p. Kedlaya [K01] described the
algebraic closure of Fq..t// as subfield of this field and described [K06] the algebraic
closure of Fq.t/ in it by adapting Christol’s algebraicity criterion to these type of
series by considering automata with radix point, a special symbol sk , so that one
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considers a string of symbols s1 ! ! ! sk#1skskC 1 ! ! ! sn, with s1 ! ! ! sk#1 is integral part
and skC 1 ! ! ! sn is the fractional part. We refer to [K01, K06] and corrections published
by Kedlaya in 2017 for the detailed definitions, statements and proofs.

I do not know yet any naturally occurring such generalized series, which is not
a Puiseux series, to have a nice application of this generalization.

6.8 Strong characteristic dependence for algebraicity
and real numbers

6.8.1 Finite characteristic. No carry over of power series expansions, finite pos-
sibilities of coefficients and Fq-linearity of q-power map makes function field case
amenable to combinatorial description of automata. But in fact, even in function field
case, this algebraicity description is very strongly dependent on characteristic as the
following theorem by Cobham (whose combinatorial proof is a ‘challenge to alge-
braists’ according to Eilenberg [E74]) shows.

Theorem 6.8.1. Non-periodic sequence cannot be m-automatic and n-automatic, if
m; n > 1 are multiplicatively independent (e.g., ifm; n are powers of distinct primes).

Corollary 6.8.2. If s DPm2M tm is irrational algebraic in one finite characteristic,
then it is transcendental in all other finite characteristics.

6.8.2 Characteristic zero. Natural question is what happens for similar expansions
in characteristic zero. Corresponding power series is transcendental over Q.t/ as re-
duction shows. But how about related p-adic, real numbers? Despite earlier claimed
proofs in the literature, the following theorem was only recently proved [ABL04] by
Adamczewski, Bugeaud, Luca, making very nice use of Schmidt’s subspace theorem
and automata equivalences. (Note that naive analogs of this theorem and of its con-
sequence Roth’s theorem, fail in finite characteristic.) We sketch an important special
case.

For words W in alphabet, say S or F , we denote by w D jW j its length, and for
x > 0, we put W x WD W bxcW 0, where W 0 prefix of W of length d.x " bxc/we.

Theorem 6.8.3. Let p be a prime. If fn is p-automatic non-periodic sequence taking
values in F D f0; 1; ! ! ! ; p " 1g (so that

P
fnt

n is algebraic over Fp.t/), then ' WDP
fn=p

n 2 R and p-adic number ( WDPfnp
n are transcendental over Q.

Proof. In the notation of 6.2.10, fn corresponds to p-substitution .f; I /, with S of
cardinalityN , and a fixed point u D u1u2 ! ! ! whose image is the sequence fn. Write
a prefix of length N C 1 of u as W1aW2aW3, with a 2 S and Wi words (possibly
empty) over S . Put Un D I.f n.W1//, Vn D I.f n.aW2//. Put r D 1C 1=N . Then
(1)UnV rn is a prefix of non-eventually periodic sequence fn, (2) un=vn % c WD N"1,
(3) vn is increasing sequence.
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Put f .n/k WD fk , if k % un C rvn and WD f
.n/
kC vn

, if k $ un C vn. For every
n, it gives ultimately periodic sequence of preperiod Un and period Vn. Put 'n WDP
f .n/k =pk , so there is pn such that 'n D pn=.p

un.pvn " 1// and j' " 'nj <
p#.unC rvn/, by (1).

Consider six linear forms in x; y; z with algebraic coefficients:

L1 D 'x C 'y C z; L2 D y; L3 D z; L01 D x; L02 D y; L03 D z:

The forms Li (L0i respectively) are linearly independent over Q. Put Xn D .punC vn ,
"pun ;"pn/. Evaluated on Xn, we have

jL1j1 <
1

p.r#1/vn
; jL2j1 D pun ; jL3j1 D pn; jL01jp

D 1

punC vn
; jL02jp D

1

pun
; jL03jp % 1:

Then, by (2), there is ı > 0 such that

Y
jLi .Xn/j1jL0i .Xn/jp <<

1

p.r#1/vn
<

1

p.unC vn/ı
% jjXnjj#ı ;

where jjXnjj is the max norm. Hence by Schmidt’s subspace theorem, Xn’s lie in
union of proper subspaces ofQ3, so that there are rationals x0; y0; z0, not all zero such
that x0 " y0.pun=punC vn/ " z0.pn=punC vn/ D 0. By (3), taking limit, x0 D z0'.
But ' is irrational, so that z0 D 0, so x0 D y0 D 0 giving a contradiction and thus
proving the first claim.

For the p-adic case, we put (n D
P
f
.n/
k pk . Then j( " (njp % p#.unC rvn/ and

(n D bn=.p
vn " 1/, with bn % punC vn . Now choose Li to be x; y; z and L0i to be

x; y; (xC(yCz, andXn D .pvn ;"1;"bn/. Again, the straight estimates work, and
Schmidt’s subspace theorem applied to the same product (with new notation) gives
similar contradiction. !

6.8.3 Errata. Finally, we take this opportunity to correct some misprints in the
chapter on automata of [T04].

(i) Pa. 344, Example 11.1.5: (1) In the automata table, entries in the column
headed by s2 should be s3; s4. In (2) line 2, s2 and s3 should be switched.

(ii) Pa. 348, Thm. 11.2.2 (5) n0iC 1=ni should be n0iC 1=n
0
i , and 0 is missing from

d > 0. It should have been mentioned that ni is increasing sequence and thus S is
infinite.

(iii) Pa. 349, last para. It should be added to ‘turns out to be a trivial monomial’
that ‘after a preliminary reduction as in Thm. 4.6.4, which changes it by a rational
function’.

(iv) Pa. 353, first paragraph of 11.4 is misplaced and should be dropped.
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