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Automata and Transcendence

DINESH S. THAKUR

Interesting quantities of number theory or geometry are often defined by an-
alytic processes such as integration or infinite series or product expansions. A
central question which transcendence theory addresses is whether they can also
be described by simpler (‘finite’) algebraic methods; in particular, whether they
turn out to be algebraic. For example, the most common analytic description
of a number is by its infinite decimal or p-adic expansion and that of a function
is by its power series expansion. It is well-known that any expansion that is
eventually periodic represents a rational number (or a function). On the other
hand, rational numbers and rational functions over a finite field give expansions
that are eventually periodic

More generally, we can ask for a similar, simple characterization of digit pat-
terns for algebraic numbers or functions. We begin by describing an automata-
theoretic criterion of discrete mathematics for this, and will prove three tran-
scendence results in number theory as applications

The first major advance in answering this general question was made by
Furstenberg [F67]:

Forr =3 tpn,, . nZ1' - Z*, define the ‘diagonal’ Dr:= Y ry,.. nz".

THEOREM 1. For k = C or [, the set of algebraic power seres f(x) over
k(z) s the same as the set of diagonals Dr of two-variable rational functions
r(zy,x2). The diagonal of a rational function of many varwables over F, (but not

over C) s algebrazc.

Proor. : Over C, for small € and |z|, we have

1 x.dz
Dr(z) = +— r(z,—=)—.
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Evaluating by residues gives an algebraic function. On the other hand, suppose
[ is algebraic, satisfying a polynomial equation P(x, f(x)) = 0. Also assume
f(0) = 0 and that 0 is an isolated root of P(0,w) = 0, then expressing

¢

f(x) =/wz——§(r, w)/P(z,w)dw

as an integral above, we see that f is a diagonal of a rational function. Also, if we
have more than two variables, the resulting contour integration of an algebraic
function of two variables is in general transcendental. Though this proof does
not work over I, the resulting formulae can be directly checked. [J

Deligne [D84] generalized the last statement of the Theorem to algebraic func-

tions of many variables.
From now on, we restrict to a coefficient field F, of characterstic p.

COROLLARY 1. (1) Algebraic power series are closed under Hadamard (term-

by-term) product.
(2) 3" anx™ 1s algebraic if and only i1f 2o, =a &" 18 algebraic for each a € F,

PROOF. : If 3~ a,z™ = Dry(x1,22), Y bpz™ = Dra(x), x2), then Y~ apb,z" =
D(ry(zy, z2)r2(x3,x4)). Thisimplies (1). Then (2) follows from (1) by expanding
out 3o, _ 2" =3 (1-(an—a))z". O

By the Corollary, we can focus on characteristic sequences on subsets of nat-
ural numbers, ie., on the series 3~ 2™, if we wish. The main theorem giving
the automata-theoretic criterion for algebraicity is the following theorem due to
Christol [C79], [CKMRS80]. In fact, the equivalence of the last two conditions
(as well as another description in terms of substitutions) of the Theorem is due
to Cobham [C072]. We sketch the proof later

THEOREM 2. (i) 3_ faa™ is algebraic over Fy(x) of and only of (i) f. € F,
s produced by a g-automaton if and only if (wi) there are only finitely many
subsequences of the form fo, ., wth 0 < r < ¢~.

Here, an m-automaton (we shall usually use m = q) consists of a finite set S
of states, a table of how the digits base m operate on S, and a map 7 from S
to K, (or some alphabet in general). For a given input n, fed in digit by digit
from the left, each digit changing the state by the rule provided by the table,
the output is 7(na) where a 1s some chosen initial state. For more details, see
the expository article [A87].

Example: The following table, where 2 < ¢ < p, together with 7(a) = 7(v) =
0 and 7(/) = 1 defines a p-automaton whose output f, is the characteristic
sequence of {p”}, i.e., the numbers of the form 1000 - base p.
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i A

It is easy to see directly that f := f(z) = z:c”" satisfies fP — f+z =0, in
accordance with Theorem 2. In fact, this f is Mahler’s famous counterexample
to the analogue of Roth’s theorem in characteristic p. The partial sums to f
approximate f with Liouville bounds.

From the proof of the first theorem, we find that f = D(z, /(1 - (z’l’"l +1z3))).
We leave to the reader the interesting exercise of verifying this equation directly
from the definition by expanding the right hand side via a geometric series,
and proving the necessary divisibility properties of the binomial coefficients thus
arising.

As a warm-up to the proof in the second application, we now prove that f is
transcendental in finite characteristic £ # p. Clearly, there are infinitely many
k's such that 0 < p™ — ¥ < €% | for some m and some 0 < g < £. So the
subsequence fyx, 4 (pm —¢x,) assumes the value 1, for n = p < ¢. The next n for
which it is 1 corresponds to £5n + (p™* — £ ) = p™**, with w > 0 the least such.
So £* divides p* — 1 and hence n = p + p™(p¥ — 1)/€* > p™ — oo as k tends
to co. Hence there are infinitely many such subsequences, and (iii) of Theorem
2 finishes the proof.

In fact, this is a special case of a very general result of Cobham [Co69):

THEOREM 3. Non-periodic sequences produced by m-automata cannot be pro-
duced by n-automata, if m and n are multiphicatively independent.

We do not sketch the proof. To quote Eilenberg [E74], “The proof is correct,
long and hard. It is a challenge to find a more reasonable proof of this fine
theorem”. See [BHMV94] for survey of other proofs based on logic.

Together with Theorem 2, this implies

COROLLARY 2. If Y z™ 1s irrational and algebraic in one finite characteris-
tic, then it 1s transcendental in all other finite characteristics,

The natural question is whether corresponding real numbers, e.g. the decimal
5. 10", are transcendental. For our example f(x) above, instead of using the
algebraicity equation f(z)? — [(z) 4 z = 0, which is special to characteristic p,
Mahler [M29] used the characteristic-free functional equation f(z7)— f(z)4z = 0
and established (for p = 2) the transcendence of various values of f(x). It implies
the transcendence of real numbers f(1/k) = 5"k 2" for any integral base k > 1
See [LP77) for a nice exposition of the proof of a more general result.

Loxton and van der Poorten generalized Mahler’s method, but it should be
noted here that the proof of the often quoted result of Loxton and van der
Poorten that under the hypothesis of the Corollary, the real number 3 10~
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is transcendental, has a gap, as van der Poorten has mentioned to the author.
Thus, this statement and similar p-adic statement remain as challenging open
questions.

We now present an example due to Richie [Ri63], which we shall use, and
which does not look as special as the first example.

THEOREM 4. The characteristic sequence of the set of squares is not produced
by any 2-automaton.

PROOF. : Consider the 2-automaton given by the following table and 7(f) =
1, 7(rest) = 0.

I x 81 82 83 84 f n
m 83 S4 S84 S3 N N
1|31 82 &1 n f n n

A straight entry chase in the table shows that this produces the characteristic
function x 4 of the set A = {1"0™1:n,m > 0,n+m odd}. It is easy to see that
the intersection of A with the set of squares is B = {1"0"*'1 : n > 0} and also
that in general, the intersection corresponds to the direct product of automata
or the Hadamard product of series.

But xp can not be produced by a 2-automaton: As there are only a finite
number of states, 1‘a = 1“t™q, for some ¢,m. But 1¢+™0¢*'] is not in B
whereas 1¢0¢*'1 e B. O

We finish this introduction by giving a very brief sketch of the ideas involved
in the proof of Theorem 2. For more details, see [CKMRS0] or [A87].

(ii) implies (iii): There are only finitely many possible maps 4 : $ — S and
any fok,., is of the form 7(8(na)).

(iii) implies (i): Let V' be the vector space over F,(x) generated by monomials
in 3 foensr 2" Then V is finite dimensional with fV C V, so [ satisfies its
characteristic polynomial

(i) implies (iii): For 0 < r < g, define C, (twisted Cartier operators) by
Cr(3 fuz") = 3 fonsrx™. Considering the vector space over [, generated by
the roots of the polynomial satisfied by f, we can assume that Z,k;(, a;f? =0,
with ag # 0. Using g = 32970 2"(C,(g))? and C,(g?h) = ¢C, (h), we see that

A
{h € Fy((z)): h= Z hi(f/ag)?  h, € 2], deg h, < max(deg ag, deg a,agl 2)}

=0

i5 a finite set containing f and stable under C, s,

(i) implies (ii): If there are m subsequences fi with j,‘,” = fp say, put
S = {a = a, - ,an}. Define a digit action by, ra, := a4 if f(E:L,, = fr(lk)‘
Define 7(ax;) := fu, if n”ay = @, with n™ being the base ¢ expansion of n written

in the reverse order. [
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Now we shall present three applications of Theorem 2 to Number Theory,
where the quantities are not naturally presented as power series, but are con-

vertible to manageable power series.

1. Application I

Let k be an algebraic closure of I, ¢ be a variable and let

— —5”3([” e ,‘("‘“-3 i 5”‘1)(111
a4 ‘= (1.1((1) = L _____ y Qg = rui((l) = L VAVI‘)(l_—V”q?;i')” .
n>l n>1 "

THEOREM 5. The pertod q of the Tate elliptic curve vV +zy =2 +asz+ag
over K := k(ayq,ag) is transcendental over K.

This Theorem was proved by Voloch [V96] using Igusa theory and we provided
another proof [T96a). The Theorem can be considered as an analogue of the
result of Siegel and Schneider on the transcendence of the period of elliptic
curve (over a number field) over its field of definition. If, more appropriately, we
consider q as the multiplicative version of the period, then it can be considered
as an analogue of a conjecture of Mahler (in p-adic setting) and a conjecture of
Manin (in the complex setting), as pointed out to us by Waldschmidt. These
conjectures themselves were settled since then by Barre-Sirieix, Diaz, Gramain,
Philibert [BDGP96]. In particular, they show that the ‘log, ¢’ appearing in
the p-adic Birch-Swinnerton-Dyer conjectures of Mazur, Tate and Teitelbaum
(Theorem of Stevens/Greenberg) does not vanish, so that the order of vanishing
is exactly as predicted in the conjectures

ProorF. : First, let p = 2. Then

as = ag = Z /(1 -q") = Z qu" = Z do(m)q™,

n odd>1 n odd>1 k=0 m=1

m,

where d,(m) = number of odd positive divisors of m. Hence, if m = i TIp;
then d,(m) = H(m, +1). So d,(m) is odd if and only if o = n? or 2n?. Hence,
with f = 5. ¢" (essentially theta), we have

oo
1.’ A"Z 5
ag= Y (" ¥ )= 41,
n=1

Now Theorems 2 and 4 imply that f and so ag = ag = f + f* is transcendental
over k(q), i.e., q 1s transcendental over K = k(a4), finishing the proof when
p=2.

Now consider the case of general p. We will show:

(1) f is transcendental over k(g): This follows from the generalization [E74]

of the Theorem 4 to any base
(2) ay and ag are algebraically dependent over k.
(3) f is algebraic over k(ay,ag), where @4 := aq(q?), @s := ag(q?).
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It is easy to see that (1), (2) and (3) imply the Theorem.

Proof of (2): Elementary congruences show that ay = ag if p = 2, aqg = 0 if
p=>5and ag =5ag if p=T7.

Swinnerton-Dyer [S-D73] noticed that expressing the fact that the Hasse in-
variant of the Tate elliptic curve is one in terms of ay and ag gives (2) for p > 3.

For p = 3, the Hasse invariant is identically one and we do not get a relation
this way. Nonetheless, we claim that ag + a4 + 2a = 0. In fact, a4 + ag is

n

q" " n+ (_l)nf:l[n/:ij q 3
2 — = =
Z 1—gn * Z 1-—qn Z 3 1-¢gn 4

n=2,4(9) n=5,7(9) n#0(3)

The first two equalities follow by analyzing n modulo 9 and the last equality
is a rearrangement of Ramanujan’s identity (19) of [R16].

Proof of (3): Note that @z, ag, f are connected to the well-known Eisenstein
series and theta function: 6 =1+ 2f , eq = 1 —48a4 and eg = 1 — 72a4 + 864ag.

We have the following explicit algebraic dependency relation between the three
modular forms:

de2 — ded + 27e20° — 54e40'6 +270%* =0

A straight translation to the original variables implies (3). [

2. Application II

Here we give an application to the transcendence of the gamma monomials
(in the function field case) evaluated at fractions.

The most well-known classical result is : I'(1/2) = (-1/2)! = /7. Chud-
novsky [Chu84] showed that I' values at proper fractions with denominator 4 or
6 are transcendental. This is basically all that is known about the transcendence
of the individual gamma values at proper fractions.

We shall consider A = Fy[T], K = F;(T'), Ko = F,((t)) (with t = 1/T) and
§) = the completion of an algebraic closure of K,. These are analogues of Z, Q,
R, C respectively, in the theory of function fields.

The Carlitz factorial II(n) € A for n € Z>( is defined by

k

[n):=T9" =T, D, := H[k]""
k=1

I(n) := H D™, forn = Z"zq', B, <
David Goss noticed that

i D,

i A Lo
pEe - Sl ot — 19 9
LT Tdeg Dy 1-t

1
+ higher degree terms — 1 as ¢ — oo

gives an interpolation: ﬁ(n) € K for n € Z, by

n! :=1II(n) == H_Ij:“ for n = Zn,q’, 0<n; <q.
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Why is this gamma function good? We mention some reasons as catch-
phrases: analogous prime factorization, divisibility properties, analogous occur-
rence in the Taylor coefficients in the relevant exponential (of Carlitz-Drinfeld
module), right functional equations, interpolations at finite primes and connec-
tion with Gauss sums (Gross-Koblitz type formula), and connection with periods
(Chowla-Selberg type formula). See [T92| for details and references

For our factorial (—1/2)! = V&, when p # 2, where & € Q is the period of the
Carlitz-Drinfeld exponential (the analogue of 271 € C). This is known [W41] to
be transcendental. See also [A90] for an automata-theoretic proof.

In fact, the correct analogue for classical (—1/2)! is (1/(1 — g))!, because 2
and g — 1 are the number of roots of unity in Z and F,[T], respectively. And the
analogue of Chudnovsky's 4,6 (which are numbers of roots of unity in quadratic
imaginary fields) is ¢* — 1 (the number of roots of unity in Fg2(T7).

We have an analogue of the Chowla-Selberg formula for constant field ex-
tensions, expressing periods of Drinfeld modules with complex multiplication in
terms of gamma values at particular fractions. Combining with their results on
transcendence of periods, Jing Yu [Y92] and Thiery [Thi92] (by different tech-
niques) proved that (1/(1—g?))! is transcendental. So far, the results are parallel
in the classical and the function field case.

Using Christol's criterion, we proved [T96b] the transcendence of gamma val-
ues at rationals with any denominator, but with some restrictions on numerators.
Using logarithmic derivatives on the product formula, which makes exponents
relevant only modulo p, instead (a trick also used by L. Denis), Allouche [A96]
then proved the transcendence for all values at fractions. Finally, we have shown
how Allouche’s technique, in fact, settles completely the question of which mono-
mials in gamma values at fractions are algebraic and which are transcendental.
Let us describe the result in detail and sketch the simplest case. For the full
details and the history, we refer to [A96].

For a proper fraction f, let (f) denote its fractional part. For a finite formal
sum f = S m,[f,], with m; € Z and f, € Q, put m(f) = Y mi(-f;) and
I'(f) = [IT(f.)™. Also, for o € Z, put f") =Y m;|fio]

Let f be given, with all f,’s having a common denominator, say N.

THEOREM 6. (Usual Gamma) If m(f”)) = 0 for all o relatively prime to N,
then I'(f) 1s algebraic.

The way we have presented it, this was conjectured (together with Galois
action) by Deligne [D79] (proved in [D82]). But using the ideas of Lang and
Kubert on distributions, it was shown in the appendix by Koblitz and Ogus
to [D79] that the algebraicity also follows by taking the correct combinations
of multiplication and reflection formulae. The converse is not known, but is
conjectured, because it follows from the general belief that functional equations
force all the relations and also from conjectures [D82] in algebraic geometry.
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THEOREM 7. (Our case) ‘m(!_(”’) =0 for all 0 = ¢’ if and only if I'(f) 15

algebraic.

The conditions of the two theorems are analogous, since the Galois group
in the relevant cyclotomic theory is (Z/NZ)* = Gal(Q(¢n)/Q) in the classical
case and Gal(IF, (7")(¢x) /I, (T')) (generated by g-power Frobenius) in our case. In
our case, the monomials are not obtained by combinations of naive analogues of
multiplication and reflection formulae, but the ‘only if’ part was proved directly
[T91] by showing that in the multiplicative basis of factorials of 1/(1 — ¢*) our
monomial turns out to be a trivial monomial. Automata theory takes care of
the converse, as mentioned above. We explain the simplest case below:

Claim: (1/(1 — ¢*))! is transcendental.

PRrROOF. : After some simple manipulations, we get

oo pu—1

poe i = -

i1=1 3=0

Write P = Y a,t™ and use Christol’s criterion (Theorem 2).
Consider the representations

n= Z(q’“ —¢’), all terms distinct, 0 < 7 < p.

If such a representation is impossible, then a,, = 0, whereas if such a rep-
resentation is unique (not always the case), then a, = +1. (In a special case,
when the representations are always unique, a different type of proof for the next
claim is given in [A90]).

Claim: There are infinitely many subsequences of the form by, := @r (g6 1) =
Qgk(nt1)-k- (Hence P is transcendental).

An imbalance between what ¢#*’s can add up to and what ¢’’s can subtract
makes it impossible to have representations of q*(n+1) =k of the required form,
for at least the first k/q*~' — 1 values of n, if k is sufficiently large. This implies
that for sufficiently large k, b, is 0 for at least the first k/¢"~' — 1 values of
n. Since k/q"~' —1 — o0 as k — 00, to show that there are infinitely many
distinct subsequences (b,,), it is enough to show that infinitely many of these
subsequences are not identically zero.

Let m:=k/¢*~' —1and n:=g* + ¢* +--- +¢™. Then

Fn+ 1)~ = (" = 1)+ (¢ — @V ne o (gHH™E < )
is the unique representation of the form required, and so b, = £1 # 0. [J

Since then another proof of this case has been given by Hellegouarch [H95],
using de Mathan’s criterion [Ma95] instead. Note also that Koskas [K95] has
given an automata-theoretic proof of de Mathan’s criterion.

In fact, there is another gamma function in function field theory, and a break-
through in establishing the transcendence of its values at proper fractions has

LA TN R e
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been recently achieved by S. Sinha [S95], using Anderson’s theory of t- motives
and solitons, in particular. The proof expresses the gamma values as periods on
analogues of Fermat Jacobians in the setting of - motives and uses Jing Yu's
transcendence results for this. In a sense the reason why we can do better than
the classical case by similar (philosophically!) methods is that in the setting of
Drinfeld modules and t- motives, we can have arbitrary fractions (and not just

half integers) as ‘weights’.

3. Application III

Recently, using the automata-theoretic techniques, as well as the logarithmic
differentiation trick used in Allouche’s proof, Mendes France and Yao gave a very
nice proof [MY] proving that n! = TI(n) is transcendental for all n € Zy, — Lo
This settles the question of the transcendence of the values of II(n) completely,
as it is easy to see that II(n) € K if n € Z>o-

We cannot expect to have analogous result for the classical gamma function,
because its domain and range are archimedean, and continuity is a quite strong
condition in the classical case. In other words, a non-constant continuous real
valued function on an interval cannot fail to take on algebraic values. Since, as we
have seen above, the values at proper fractions are expected to be transcendental,
many values at irrationals should be algebraic.

Morita’s p-adic gamma function has domain and range Z,, which being non-
archimedean is closer to our situation. In fact, let us also look at interpolation
of TI(n) at a finite prime v of A =T, (1)

Carlitz showed that D; is the product of all monic polynomials in A of degree
i. Following Morita’s idea of throwing out terms divisible by p, David Goss
defined D, , to be the product of all monic polynomials of degree ¢, which are
not divisible by v. He showed (an analogue of Wilson-type theorem) that —D, ,
approaches 1 as i tends to infinity and defined I1,(n) € A, for n € Z, by

I, (n) = H(—D,_,‘)"‘, for n = anq‘, 0<n; <q.

We refer to [T92] and references there for several properties of this interpolation,
as well as a discussion of the transcendence question at fractions.

In particular, we have proved that if d is the degree of v, then IT,(1/(1 — q9)
is algebraic (connected to function field Gauss sums).

As our third application of the automaton method, we will prove

THEOREM 8. If v is a prime of degree 1, then ay = I,(1/(1 — ¢*)) € A, is
transcendental for all k > 1.

Before we begin the proof, let us give direct proofs of some results quoted
above, in the case where v is of degree one. Using the automorphism sending 7'
to T + 0, 8 € F,, we can assume without loss of generality that v = T Now,

q»
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for a general monic prime v of degree d, we have D; ., = D;/v*D;_q4, where w is
such that D, , is a unit at v. So in our case,

n—1 n—2
=Dy = ([T -1~ N/[[a =T ) =1, asn = 00
1=0 1=()
and
1 N N-1 i
(i) =13 N, P Yo e
H,(l_q)—hmH D;r = —lim H(l T ) 1
1=0 J:U
because the product telescopes after the first term —Dg 7 = —1.

PROOF OF THE THEOREM . We have

N N
~m~=limH—Dk,,T:H H (l—T"k'""')/ H (l-T"M“l""))

i=1 1=10<5<ki 0<7<kr~1

Notice that the logarithmic derivative with respect to T" of 1 — T9' -7 when
i>j2>0,is —(¢' —=¢/)T9 -1 /(1-T9-9) = 60T ~2/(1=T9 1), Hence we

have
o |

ki KL
af 79" -1 Ta 4 l
Ta _Zl—T(IM—l _Zl—qu"l—l —ZC('II)T"

where ¢(n) is the number of divisors of n of the form ¢** — 1 minus the number
of divisors of the form ¢*¥*~! — 1, as we can see by expanding the sums above in
geometric series. We shall show using Theorem 2 that T, /vy is transcendental,
which is enough to prove the Theorem.

Let us first do the simplest case: p = k = 2. Then c(n) is just the number of
divisors of n of the form ¢' — 1. Note that ¢* — 1 divides ¢’ — 1 if and only if
divides j. Let P be the set of primes. Since this is an infinite set, by the Theorem
2, it is enough to show that if p;,ps € P, p; > py, then the subsequences Cp,
and ¢, are distinct, where we define ¢, (n) := ¢(¢*n+ ¢® — 1). Let n be so large
that n? — (p1 — p2) is not a square and put u = n? — p;. Then we claim that
¢p, (q“ = 1) # ¢p, (¢" — 1). The left hand side is c(g"* — 1), which is the number
of divisors of n? and hence odd (equals one, since p = 2), whereas the right
hand side is ¢(¢"" ~(”*=72) — 1), which is the number of divisors of the non-square
n? — (p1 — p2) and hence even. This finishes the proof of the simplest case.

To do the general case, we use lemma 1 of [MY], which states that for positive
integers a, b, c; ¢¢ — 1 divides ¢°(¢” — 2) + 1 if and only if ¢ divides (a,b), the
greatest common divisor of @ and b. We do not repeat the proof, which is an

elementary exercise in divisibility.

First we assume that k£ > 2. Let S be the set of primes which are not congruent
to —1 modulo k and which are greater than k. By Dirichlet’s theorem, S is
infinite, so it is enough to show that if p; > p, are members of S, then the
subsequences Cyp, and Cy,, are distinct, where we define C,(n) := ¢(¢*n + 1).
In fact, we claim that Cy,, (¢*2 — 2) # Cy,,(¢"?? — 2). The left hand side is
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c(q*" (¢*P? — 2) + 1), which equals, by the lemma quoted above, the number of
divisors of k of the form ki minus the number of divisors of k that are congruent
to —1 modulo k, and so is 1 — 0 = 1. On the other hand, the right hand side
is ¢(g*2(¢** — 2) + 1), which equals, again by the lemma quoted above, the
number of divisors of kpy of the form ki minus the number of divisors of kp;
that are congruent to —1 modulo k, and so is 2 — 0 = 2. This establishes the
claim and finishes the case, when k > 2.

Finally, we settle the remaining case k = 2. As before, it is enough to show
that if py,p2 € P and p; > p2 > 2, then Cp, (¢7* — 2) # Cp,(¢”* — 2). The left
hand side is the number of even divisors of p; minus the number of odd divisors
of p; and so is 0 — 2 = —2, whereas the right hand side is the number of even
divisors of 1 minus the number of odd divisors of 1 and so is 0 —1 = —1. [J

The referee has pointed out that the proof could have been made shorter (but
less self-contained) by appealing to Theorem 3 of [MY], which says that for a
sequence n; € I, which is not ultimately zero, Z;’”_l nj/(a? — ) € Fy((1/x)) is
transcendental over F,(z). With 7' = 1/z and with n; being 1, —1 or 0 depending
on whether j is congruent to 0, 1 modulo k or otherwise, we immediately get the
transcendence of T'a), /ay.

In fact, by a similar argument, Yao has recently proved (private communica-
tion) that with 0 < n; < ¢, and for v of degree one, IT, (3 n;¢’) is transcendental
if (and only if, by the results quoted above) n; is not ultimately constant.

The author would be grateful to learn about any progress by the reader on
these questions or related questions of transcendence of gamma or zeta values
for rational function fields or higher genus function fields, by automata-theoretic
or other methods. For the results on the zeta values, the reader should look at
[Y92], [B94], [B95] and the references there.

What should be the implications for the Morita’s p-adic gamma function? As
explained in [T92], the close connection to cyclotomy leads us to think that the
situation for values at proper fractions should be parallel. But then this implies
that the algebraic values in the image not taken at fractions (conjecturally (see
[T92]) the only algebraic values at fractions arise at fractions with denominators
dividing p — 1, and we know these values by the Gross-Koblitz theorem and
functional equations) should be taken at irrational p-adic integers. Thus we do
not expect a Mendes France-Yao type result for Morita’s p-adic gamma function,
but it may be possible to have such a result for I1,,’s. This breakdown of analogies
seems to be due to an important difference: in the function field situation, the
range is a ‘huge’ finite characteristic field of Laurent series over a finite field,
and the resulting big difference in the function theory prevents analogies being

as strong for non-fractions.
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