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AUTOMATA AND TRANSCENDENCE OF THE TATE PERIOD 

IN FINITE CHARACTERISTIC 


JEAN-PAUL ALLOUCHE AND DINESH S. THAKUR 

(Communicated by David E. Rohrlich) 

ABSTRACT.Using the techniques of automata theory, we give another proof 
of the function field analogue of the Mahler-Manin conjecture and prove tran- 
scendence results for the power series associated to higher divisor functions 

a(")= Edlndk. 

Let p be a prime number, and let lc be an algebraic closure of Fp. Let q be a 
variable and consider ad, a, E lc[[q]] defined by 

Theorem. The period q of the Tate elliptic curve y2 + xy = x3 + a42 + a, over 
K := lc(a4, a,) is transcendental over K. 

This function field analogue of the Mahler-Manin conjecture was proved by 
Voloch [V96] (soon afterwards the original conjecture was proved in [BDGP96]; 
see also [W96]), by approximating q by algebraic quantities and getting a contra- 
diction by analyzing the Galois action using Igusa's theorem. We offer below a proof 
based on the automata criterion of algebraicity due to Christ01 [C79, CKMR801. 

Proof. It  suffices to prove that a4 (resp. a,) is transcendental over lc(q), if p # 5 
(resp. p = 5). Namely, the Hasse invariant of the Tate elliptic curve, i.e., the 
coefficient of xp-' in (x3 + x2/4 + a4x + a6)(p-')l2 for p > 3, is equal to one, 
which shows (essentially first noticed in [S-D731) that a4 and a, are algebraically 
dependent, for p > 3. (See the first part of the remarks below for the case p < 3.) 
In fact, we prove 

Proposition. If h := (p - l ) /gcd(u,p - 1) is even (e.g., if p > 2 and u is odd), 
then xnllnUqn/(l- qn) is transcendental over Fp(q). 

Proof. With au(C) :=xdledu, we have 
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Now, from Christol's theorem [C79], [CKMR80], the series xbnqn E F,[[q]] 
is transcendental over F,(q) if and only if the sequence b, is not p-automatic. 
Furthermore, from a theorem of Cobham [Co72], for any pautomatic sequence b,, 
and for any value a taken by this sequence, if #{n 5 x, b, = a) is o(x), then 

- either there exist an integer d 2 1 and a real number s with 0 < s < 1, such 
that 

0 < lim inf #{n 5 2 ,  bn = a )  
xS logdp1 x 

#{n < 2, bn = a )< lim sup 
xS logd-l x < 0, 

or there exist integers d 2 1, m 2 2, and a rational number c > 0, such that 

On the other hand, since h is even, for some A > 0, we have 

#{n 5 x, a,(n) # 0 mod P) - Ax 
(log x)llh ' 

(We learned this result in [R77], but it had been first proved in [Ran611 .) Now define 
b, = 0 if a,(n) = 0 mod p, and bn = 1otherwise. If au(n)qn were algebraic 
over k(q), then the sequence (a,(n) modp), would be &automatic, as would be 
the sequence b,, and the two statements above give us the desired contradiction. 

Remarks. (1) In [T96], another proof of the theorem above was given by reducing 
the question to the transcendence of the theta function and using the theory of 
modular forms to show algebraic dependence between the theta function and ad, 
as, which are related to Eisenstein series. The present proof avoids this modular 
technology form by directly establishing the transcendence of a4 or as. For p 5 7, 
the proof is simpler in that we do not then need the fact on the Hasse invariant 
either: it is easy to see that a4 = as if p = 2; a4 = 0 if p = 5; a4 = 5aG if p = 7; 
and (see [T96]) as + a4 = a2 if p = 3. A more conceptual proof of the last equality 
has been recently given (private communication) by Antonios Broumas, based on 
his generalization of the Hasse invariant (taking values in Witt vectors). Another 
proof follows from the results of Katz mentioned in (2). It  would be nice to have a 
direct elementary proof of the algebraic relation between a4 and as, in general. 

(2) For a non-negative integer u, let S, := a,(n)qn E F,[[q]]. One might 
ask in general whether S, is transcendental over k(q) and when S, and S, are alge- 
braically dependent over F,, or more generally what the transcendence degree of the 
field generated by all 3,'s over F, is. It is easy to see that S, = S,+k(,-l),if u, k > 0 
and S,-1 = So-S:, so that the answers depend only on u, v modulo p - 1and the 
case p = 2 has been completely settled. The situation of algebraic dependence, in 
general, is unclear when u or v is even. Poonen checked that there is no non-trivial 
algebraic relation of total degree < 21 between Sl and S2,when p = 3. Even when 
u and v are odd, the question of the possible algebraic dependences is non-trivial 
because the well-known relations between Eisenstein series when expressed in terms 
of S,'s and reduced modulo p can sometimes become trivial. For example, the fact 
that the Hasse invariant is one, gives a non-trivial relation between S3and S5for 
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p > 7, and we have S3= S5for p = 2,3 as explained above. Even though the re- 
lation obtained is trivial for p = 5,7, Bjorn Poonen found by computer calculation 
that with x = S3and y = S5,we have x5 - x = 3y4 + 2y3 - y2 - y, for p = 5 and 
y7 - y = 4x12 + 32'' + 3x1° + x9 - x8 + x6 + 5x5 - x3 + 4x2 - x for p = 7. He 
proved these relations using some results of Katz and pointed out that Theorem 2.1 
of [K75] on higher congruences between modular forms implies that for odd u and 
v ,  Suand Svare algebraically dependent over Fp,because of their relation with the 
q-expansion of Eisenstein series. 

As for the transcendence question, we have (for example) the following result: 
If cp := <(p)/<(p- 1) is an irrational real number (here < is the Riemann zeta 
function), and i f  p - 1 divides u, then Su is transcendental over lc(q). The proof 
uses again Rankin's result [Ran611 for the case where the number h defined above 
is odd. Here h = 1,and Rankin's result implies that, for some positive rational r ,  

But from Cobham's theorem [Co72], if the sequence b, is p-automatic and if the 
set {n, b, = a )  has a natural density, then this density must be a rational number. 

(3) Watson proved in [Wat35] a conjecture of Ramanujan, stating that the 
Ramanujan r function satisfies ~ ( n )  = 0 mod 691 for almost all n. Watson used 
the congruence r (n)  = al l (n)  mod 691. We can add a modest contribution to the 
study of the sequence r(n) by proving, as above, that it is not 691-automatic. 

This work was done when the first author visited the University of Arizona. The 
first author warmly thanks his colleagues for the very nice and fruitful time he spent 
there. We also thank Antonios Broumas and Bjorn Poonen for their comments. 
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