

EXPECTED MORDELL-WEIL RANK HEURISTICS THROUGH SATO-TATE, BIRCH AND SWINNERTON-DYER CONJECTURES

DINESH S. THAKUR

Dedicated to Jing Yu on his 75th Birthday

ABSTRACT. We present an heuristic argument for the prediction of expected Mordell-Weil rank of elliptic curves over number fields, using Birch and Swinnerton-Dyer's original conjecture and Sato-Tate conjecture. We do calculations in CM and non-CM cases and raise questions about their relations, if any, with the predictions of various average rank models that have been considered. We also point out incompatibility of a conjecture in the literature with the conjecture of Birch and Swinnerton-Dyer.

1. INTRODUCTION

Even with the major advances in the theory of elliptic curves in the last few decades, we do not know yet even for the elliptic curves over rationals, an algorithm to calculate their ranks (i.e. ranks of the Mordell-Weil groups of their rational points), or the answers to the basic questions such as whether the ranks are bounded, what the averages (apriori different or even non-existent) of the ranks are when the curves are normalized and ordered using the natural invariants such as heights, discriminants, conductors etc. The conjectures on these have been evolving over the time. See [BS15, PPWV19, P13, P18, W15]. The current thinking seems to be that average rank (using naive heights, see [BS15, P13] for details) should be $1/2$, and it is known to be less than $.885$.

In this note, we present a heuristic, based on the famous conjectures of Sato-Tate (ST) and Birch and Swinnerton-Dyer (BSD) from the early 1960s, for the 'expected' rank and discuss its possible relation with averages. In the last section, which is independent of the rest, we point out incompatibility of a conjecture in the literature with BSD.

2. SATO-TATE AND BIRCH-SWINNERTON-DYER CONJECTURES

For an elliptic curve E over the rational number field \mathbb{Q} , and p a prime, write N_p for the cardinality of $E(\mathbb{F}_p)$, where \mathbb{F}_p is the finite field of p elements, and let $P_x = \prod_{p \leq x} N_p/p$.

Then the strong original form of Birch and Swinnerton-Dyer (BSD) conjecture [BSD63-65] says that there is a positive constant $C = C(E)$ such that P_x is asymptotic to $C(\log x)^r$, as x tends to infinity, where r is the (Mordell-Weil) rank of E , i.e., the rank of the finitely generated group $E(\mathbb{Q})$.

Date: May 29, 2024.

2020 *Mathematics Subject Classification.* Primary 11G05, 11G40, Secondary 14H52.

Goldfeld [G82] showed that this implies the usual L -function form of this conjecture, as well as the Riemann hypothesis for this function. The finite field-function field Riemann Hypothesis, i.e., Hasse bounds imply much weaker result $\log(P_x) = O(x^{1/2+\epsilon})$, for any $\epsilon > 0$, instead of the asymptotics $r \log \log(x)$ expected from above. But they also imply that we can write $N_p = p + 1 - 2\sqrt{p} \cos(\theta_p)$, $\theta_p \in [0, \pi]$.

Given an elliptic curve E over \mathbb{Q} without complex multiplication (non-CM), the distribution of θ_p is predicted by the Sato-Tate (ST) conjecture [T63] as equidistribution wrt. $(2/\pi) \sin^2(\theta) d\theta$. This is now a theorem [BGHT11] ([Tay08] for such E with non-integral j -invariant.)

3. EXPECTATIONS HEURISTICS

We calculate the expected value of $\log(P_x)$ under the Sato-Tate distribution on θ_p for non-CM elliptic curve. We write \mathbb{E} for the expectation.

Using $\log(1+y) = y - y^2/2 + \dots$, and $\sum_{p \leq x} 1/p = \log \log(x) + B + O(1/\log(x))$, for some constant B , we get

$$\begin{aligned} \mathbb{E}(\log(P_x)) &= \sum \mathbb{E}(\log(1 + 1/p - 2 \cos(\theta_p)/\sqrt{p})) = \log \log(x) - \frac{1}{2} \log \log(x) + O(1) \\ &= \frac{1}{2} \log \log(x) + O(1), \end{aligned}$$

using $\int_0^\pi 2 \cos(\theta) \sin^2(\theta) d\theta = 0$ and $\int_0^\pi 2 \cos^2(\theta) \sin^2(\theta) d\theta = \pi/4$ to get the first two terms from the first 2 terms of the Taylor expansion, and putting the error from the remaining convergent series in the big O term.

Comparison with the strong original BSD conjecture asymptotics of $r \log \log(x)$ for $\log(P_x)$ implies heuristically that *the expected value of the Mordell-Weil rank of $E(\mathbb{Q})$ in the non-CM case is $1/2$* .

Remarks (1) Note that we have not taken averages or expectations of actual ranks under any family, but have only matched the asymptotics of the expectation of the quantity $\log(P_x)$ under ST for non-CM case with the asymptotics conjectured (a conjecture is, in fact, basically just an ‘expectation’!) and called the result heuristic expected value because it comes from such a matching (and [B68] connection with the averages mentioned below). Interestingly, this seems to fit well with the predictions (and some evidence and bounds in some cases) by Dorian Goldfeld [G79, Conjecture B] (for quadratic twists) and others (e.g., [PR11, Conjecture 1.2] over global fields) for the average rank as $1/2$ in various ‘averages scenarios’ when you take averages by ordering the elliptic curves by the heights (normalized coefficients sizes) or use families of quadratic twists ordered by the twist parameter. (I do not know of any predictions (or results) specifically mentioning ordering by minimal discriminants or conductors, apart from Katz-Sarnak function field work [KS99]). We refer to [BS15, PPVW19, P18, P13] for some results and surveys. Is this a coincidence or is there a better explanation? In the Sato-Tate original case [T63], one fixes E and averages over primes, but as Birch [B68] proved, one gets the same probability distribution when we fix p and average over curves E over \mathbb{F}_p , and let $p \rightarrow \infty$. So there might be an explanation of the coincidence.

In fact, Andrew Sutherland suggested to the author that probably the ordering of E ’s over \mathbb{Q} by naive height has the property that for any fixed p and all sufficient

large M the first M of the E 's have reductions mod p that are equidistributed over the isomorphism classes of E over \mathbb{F}_p , and Birch's result mentioned above would then apply to connect our expectation with the actual averages.

Peter Sarnak suggested that going from one curve (as in the expectation calculation) to a family, a serious complicated issue is how big the parameter x is compared to the conductors of the family one is supposed to be averaging over.

(2) Similar calculation gives the same expectation $1/2$ for non-CM elliptic curves over any number field, by exactly the same argument and using that sum of the reciprocals of the norms of primes (up to x) still grows like $\log \log x$. Only the constants seem to depend on the number field. In contrast to [PR11, Conjecture 1.2] for global fields, Dorian Goldfeld suggested to the author that $1/2$ may not now be expected to be the average rank for the elliptic curves over number fields with many complex places, since the discrepancy is known [DD09] for some quadratic twist families. The 'expectations' and predictions by experts of the rank distributions have changed a few times over the time. The 'Infinite family Rank at most 21' heuristics of Granville [W15] and of [PPVW19] for elliptic curves over \mathbb{Q} also seems to go wrong when generalized naively for general number fields, as pointed out in [PPVW19, Sec. 12], [P18, Sec. 4].

Next we look at the expectation under the distribution for CM elliptic curves over \mathbb{Q} . A similar calculation now with the predicted uniform distribution of θ_p for ordinary primes and $a_p = 0$ for super-singular p gives

$\mathbb{E}(\log(P_x)) = 1/2 \log \log(x) + O(1)$, now $1/2$ coming from the density of super-singular primes, the ordinary primes contribution being $O(1)$ term: as $(1/2) \log \log(x)$ from the y term (since $\int_0^\pi \cos(\theta) d\theta = 0$) cancels from the $(1/2) \log \log(x)$ from $-y^2/2$ term (since $\int_0^\pi 2 \cos^2(\theta) d\theta = \pi$.)

Again, this heuristically gives the expected rank as $1/2$. This argument shows that the expected rank is $1/2$ for CM E over field not containing the CM field and 0 for CM E over field containing the CM field.

The author does not know whether these are the 'expected' (i.e., conjectured) averages in these cases, could not find any published predictions, and would love to know references, if any. Note that in Birch's result, the CM cases, being rare, don't contribute, so there may not be any good reason for connection with the actual averages.

4. HIGHER MOMENTS

To push this further, let us now calculate the higher moments $\mathbb{E}((\log P_x)^n)$'s.

Write x_i for $1/p_i - 2 \cos(\theta_{p_i})/\sqrt{p_i}$, where p_i is the i -th prime. Then $\mathbb{E}(x_i) = 1/p_i$ and $\mathbb{E}(x_i^2) = 1/p_i$, so that $\sum \mathbb{E}(x_i) = \log \log(x) + O(1)$ and $\sum \mathbb{E}(x_i^2/2) = (1/2) \log \log(x) + O(1)$ by the calculations done above. Since third and higher powers of x_i can be ignored as they give convergent sums, we have, up to $O(1)$, $\mathbb{E}((\log P_x)^n) = \mathbb{E}((\sum \log(1+x_i))^n) = \mathbb{E}(\sum \prod_{i=1}^n (x_i - x_i^2/2))$ since terms with some repeated indices $i_1 = i_2$ again contribute bounded quantities as they involve at least $3/2$ powers of primes in denominator.

Let us do $n = 2$ case first. Then up to $O(1)$ again, with $i \neq j$ below, we have

$$\begin{aligned}\mathbb{E}((\log(P_x))^2) &= \mathbb{E}(\sum \log(1+x_i) \log(1+x_j)) = \sum \mathbb{E}((x_i - x_i^2/2)(x_j - x_j^2/2)) \\ &= \sum \mathbb{E}(x_i x_j - x_i x_j^2/2 - x_i^2 x_j/2 + x_i^2 x_j^2/4) \\ &= \sum [1/(p_i p_j) - 1/(2p_i p_j) - 1/(2p_j p_i) + 1/(4p_i p_j)] \\ &= \sum 1/(4p_i p_j) = (\log \log(x))^2/4\end{aligned}$$

For general n , we get, by the simplification above that

$\mathbb{E}((\log P_x)^n) = \sum \mathbb{E}((\prod x_i)(\prod (-x_j^2/2)) = \sum \prod \mathbb{E}(x_i) \mathbb{E}(-x_j^2/2)$, where we take k of x_i terms and $n - k$ of $-x_j^2/2$ terms, so we get

$$\left(\sum_{k=0}^n (-1)^k \binom{n}{k} / 2^k\right) (\log \log(x))^n = (1 - 1/2)^n (\log \log(x))^n = (\log \log(x))^n / 2^n$$

Remarks The expectations (in the generic non-CM case that we only worked out so far) now seem ‘unexpected’: n -th moment is basically $(\log \log x)/2^n$, rather than $(\log \log x)/2$, which would be ‘expected’, if it is supposed to be the just average of r^n , since half of the curves are expected to be of rank 0 and half of rank 1, in the widely believed conjectures [BS15, P13]. Are the expectations of higher powers not supposed to be reasonable averages or is there some other good explanation for higher moments discrepancy with average considerations?

5. REMARK ON CONJECTURES INCOMPATIBILITY

Finally, we mention another (unrelated to the above) observation regarding the rank conjectures. In a beautiful work [P02], Bjorn Poonen showed (among other things) that for a number field K , the Hilbert’s tenth problem over its ring of integers \mathcal{O}_K is undecidable, if there exists an elliptic curve E over \mathbb{Q} with rank of E over \mathbb{Q} and over K being one. (He did this by giving a Diophantine definition of \mathbb{Z} over \mathcal{O}_K using the hypothesis and using the well-known result of undecidability of Hilbert’s tenth problem over \mathbb{Z}). The optimistic conjecture [P02, 2.6] made then says that for any number field K , such E exists.

We want to point out that this conjecture is incompatible with the BSD conjecture (and even with its weaker ‘parity’ form which says that the parity (even or odd) of the rank of E is the same as the parity of the vanishing order of its L -function at 1), since for some number fields K , e.g., $K = \mathbb{Q}(\sqrt{-1}, \sqrt{17})$, it is known (by Karl Rubin, see e.g., [D13, Sec. 8.1]) that the analytic rank of E over K is always even for all E over \mathbb{Q} , as determined by root number calculations.

Bjorn Poonen tells me that he and Alexandra Shlapentokh proved later that for this application to Hilbert’s tenth problem, it is enough to know that for every quadratic extension of number fields L/K , there is an elliptic curve E of a positive rank over K (not necessarily 1) that has the same rank over L . In fact, Karl Rubin and Barry Mazur [MR10] have proved that such an E exists, assuming the well-known conjecture that the Tate-Shafarevich group for elliptic curves is always finite.

Acknowledgments I thank Dorian Goldfeld, Peter Sarnak, Bjorn Poonen (especially for pointing out a wrong comment), Andrew Sutherland for their comments. It is my pleasure to dedicate this paper, on his 75th Birthday, to Jing Yu, whom we admire, for nurturing generations of students (especially from Taiwan) in number theory, and developing a strong school in transcendence in function field arithmetic through his pioneering work and kind mentorship.

REFERENCES

- [BGHT11] Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R. *A family of Calabi-Yau varieties and potential automorphy II.* Publ. Res. Inst. Math. Sci. 47 (2011), no. 1, 29-98.
- [BS15] Bhargava, M., Shankar, A. *Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves.* Ann. of Math. (2) 181 (2015), no. 1, 191-242.
- [B68] Birch, B.J., *How the number of points of an elliptic curve over a fixed prime field varies.* J. London Math. Soc. 43 (1968), 57-60.
- [BSD63-65] Birch B.J., and Swinnerton-Dyer H. P. F. *Notes on elliptic curves I and II.* I. J. Reine Angew. Math. 212 (1963), 7-25 and 218 (1965), 165-172.
- [D13] Dokchitser, Tim. *Notes on the parity conjecture.* Elliptic curves, Hilbert modular forms and Galois deformations, 201-249, Adv. Courses Math. CRM Barcelona, Birkhauser/Springer, Basel, 2013.
- [DD09] Dokchitser, T., and Dokchitser, V. *Elliptic curves with all quadratic twists of positive rank.* Acta Arith. 237 no. 2 (2009), 193-197.
- [G79] Goldfeld Dorian. *Conjectures on elliptic curves over quadratic fields.* Number Theory, Carbondale 1979, Lecture Notes in Math., vol. 751, Springer, (1979), 108-118.
- [G82] Goldfeld Dorian. *Sur les produits partielles eulériens attachés aux courbes elliptiques.* C. R. Acad. Sci. Paris Ser. I Math. 294 (1982), no. 14, 471-474.
- [KS99] Katz, N.M., Sarnak, P. *Random matrices, Frobenius eigenvalues, and Monodromy.* AMS Colloq. Pub. vol. 45, AMS (1999).
- [MR10] Mazur, B., Rubin, K. *Ranks of twists of elliptic curves and Hilbert's tenth problem.* Invent. Math. 181 (2010), no. 3, 541-575.
- [PPVW19] Park, J., Poonen, B., Voight, J., Wood, M. *A heuristic for boundedness of ranks of elliptic curves.* J. Eur. Math. Soc. (JEMS) 21 (2019), no. 9, 2859-2903.
- [PR11] Poonen, B., Rains, E. *Random maximal isotropic subspaces and selmer groups* J. Amer. Math. Soc. vol. 25, no. 1, (2012) 245-269.
- [P02] Poonen, Bjorn. *Using elliptic curves of rank one towards the undecidability of Hilbert's tenth problem over rings of algebraic integers.* Algorithmic Number Theory, Ed. by C. Fieker, D. Kohel, Lecture Notes in Comp. Sci. 2369, Springer (2002), 33-42.
- [P13] Poonen, Bjorn. *Average rank of elliptic curves [after Manjul Bhargava and Arul Shankar].* Seminaire Bourbaki. Vol. 2011/2012. Exposes 1043-1058. Asterisque No. 352 (2013), Exp. No. 1049, viii, 187-204.
- [P18] Poonen, Bjorn. *Heuristics for the arithmetic of elliptic curves.* Proceedings of the International Congress of Mathematicians- Rio de Janeiro 2018. Vol. II. Invited lectures, 399-414, World Sci. Publ., Hackensack, NJ, 2018.
- [T63] Tate, John T. *Algebraic cycles and poles of zeta functions. Arithmetical Algebraic Geometry.* (Proc. Conf. Purdue Univ., 1963) pp. 93-110 Harper & Row, New York 1965.
- [Tay08] Taylor, Richard. *Automorphy for some l -adic lifts of automorphic mod l Galois representations. II.* Publ. Math. Inst. Hautes Etudes Sci. No. 108 (2008), 183-239.
- [W15] Watkins, Mark. *A discursus on 21 as a bound for ranks of elliptic curves over \mathbb{Q} and sundry related topics.* August 20, 2015. Available at <http://magma.maths.usyd.edu.au/~watkins/papers/DISCURSUS.pdf>