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Abstract. We prove some (and conjecture more) relations between the mul-
tizeta values for positive genus function fields of class number one, focusing

on the zeta-like values, namely those whose ratio with the zeta value of the
same weight is rational (or conjecturally equivalently, algebraic). These are

the first known relations between multizetas, which are not with prime field

coefficients. We seem to have one universal family. We also find that, interest-
ingly, the mechanism with which the relations work is quite different from the

rational function field case, raising interesting questions about the expected

motivic interpretation in higher genus.

1. Introduction

Recently studied connections of the multizeta values

ζ(s1, · · · , sr) := ζZ(s1, · · · , sr) :=
∑

n1>···>nr>0

1

ns11 · · ·n
sr
r
∈ R, (si ∈ Z, si ≥ 1, s1 > 1),

introduced by Euler, with the arithmetic fundamental groups have made them an
important tool in the recent push towards non-abelian, homotopical directions in
number theory. See e.g., [Z16] and references there to the huge body of work by
several mathematicians.

For a survey of work on function field analogs of multizeta, with connections
to Drinfeld modules and Anderson’s t-motives (see [A86, G96, T04] for back-
ground), we refer to the survey [T17]. For the definitions of the multizeta values
ζ(s1, · · · , sr) = ζA(s1, · · · , sr), now defined for certain analogs A of Z and taking
values in appropriate completions of the corresponding function fields, we refer to
the Section 2 below.

Let us focus on very simple type of relations between the multizeta values. Fol-
lowing [LT14], we call a multizeta value zetalike, if its ratio with the zeta value of
the same weight, i.e.,

∑
sj in the notation above, is rational. In the special case of

even weight (for a function field over Fq, this ‘even’ condition gets replaced by the
analog ‘q-even’, i.e. multiple of q−1), we also call it Eulerian. (Often we restrict to
multizeta of depth more than one, without mention, since only then the concept is
really significant). In the case of rational number field (i.e., ζ = ζZ), we know some
eulerian families [LT14], but we speculated that only ζ(2m+ 1) and its ‘dual’ (see
[Z16] for the explanation of this terminology) ζ(2, 1, · · · , 1), where 1 is repeated
2m− 1 times, may be the only multizetas that are zetalike of odd weight.

1991 Mathematics Subject Classification. 11M32, 11G09, 11G30.
Key words and phrases. t-motives, periods, mixed Tate motives.

1
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In contrast, we proved [LT14] (see also [CPY19, Ch17, T17]) some multizeta fam-
ilies to be Eulerian for the rational function field case, and conjectured that these
are the only Eulerian multizetas, but could only prove and conjecture several zeta-
like families of weights which are not q-even, without getting full characterization,
even conjecturally.

For the t-motivic interpretation of these notions of zetalike and eulerian, at least
in the rational functions field case, we refer the interested reader to [CPY19].

In this paper, we investigate this question for higher genus function fields, where,
up till now, the only relations known [T10] were the sum shuffle type relations (with
prime field coefficients), and the obvious relations ζ(ps1, · · · , psr) = ζ(s1, · · · , sr)p
in characteristic p, which are also derivable from the more complicated sum shuffle
type relations mentioned. In both number field and function field cases, the shuffle
relations reduce the study of algebraic relations to linear relations.

The t-motivic period interpretation [AT09] in depth more than one is also only
developed so far in genus zero. Now we find (and can prove some) much more
interesting relations involving non-prime field coefficients. See the conjectures and
theorems in Sections 3 and 5 below.

Several years ago, the second author had checked (numerically) that ζ(1, q−1) is
not zetalike (for one class number one elliptic curve over Fq, with q = 2), in contrast
to what he had proved [T04, T09] in the rational function field case over Fq. That
this multizeta being zetalike is (conjecturally) the only non-trivial linear relation
in weights at most q. So in contrast to the rational function fields, in higher genus,
it seems that the relations start at higher weights. (It seems at weight q2 − 1, see
Section 3 for details.)

Now with more extensive use of computer aided numerical experiments, we have
better understanding (see below) of what should happen and some ‘positive iden-
tifications’ of zetalike multizeta.

We then prove some of these conjectures by developing further, from the zeta case
to multizeta, the ‘polylog-algebraicity techniques’ of [T92], where an appropriately
constructed algebraic function on the curve (corresponding to the function field)
cross itself (or its Hilbert cover cross itself, in general) specialized at the graph of
the d-th power of the Frobenius endomorphism gives appropriate power sums of
degree d (or at most d) times the d-th coefficient of appropriate polylog, for all d.
(See Section 3, and Theorem 3.5 in particular, for several examples.) In [T92], these
special algebraic functions (called F-functions) were used to give motivic algebraic
incarnation of some zeta values (especially at 1, in class number one situation)
generalizing partially the results of [AT90] to higher genus.

In 2009, these were used to verify [T20] that Taelman’s beautiful analog of an-
alytic class number formula [Ta10], which was then made only for the base Fq[t],
works also for the higher genus cases of class number one. Aspects of log-algebraicity
were developed much further in various directions e.g., [A94, A96, B13, F15, APT16,
D16, GP18, M18] by Anderson, Anglès, Böckle, Debry, Fang, Green, Mornev, Ngo
Dac, Papanikolas, Pellarin, Taelman, Tavares Ribeiro, and [T04][Sec. 8.9-8.10].
Since we do not make any use of these developments in this paper, we just refer
the interested reader to the original papers, by only making a remark that to use
them, we would need to extend these techniques to adapt to multizeta. We have
not resolved this issue of the extent of log-algebraicity for multizetas fully in this
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paper, but have just developed it sufficient to prove our theorems and to illustrate
the techniques.

Interestingly, the proofs as well as the mechanisms how these identities work out
at infinite level, as limits from finite levels, are now quite different than in the genus
zero case. It shows that we will need a better understanding of the underlying t-
motivic mechanisms to understand the situation in general. In informal terms, the
motives here are constructed through such algebraic functions on products of curves
and the motivic identities are identities between such functions, and the iterated
sum mechanism comes via the Frobenius-difference matrix equations [AT09][Sec.
2.5] that arise in Anderson’s theory of t-motives. We expect (and know to a large
extent by the works of Anderson, Brownawell, Papanikolas, Chang and Yu) that
the multizeta values relations come from motivic identities, but in our higher genus,
in contrast to what we know in genus zero, though it is certainly not ruled out,
we have not been able to do this (as explained in Section 4), but have resorted
to different mechanism of proofs, which raise some interesting questions and for-
mulations. Roughly, in addition to the algebraic geometric techniques (which we
will only identify by keywords such as Drinfeld modules, Shtukas, and Frobenius
difference equations), in our proofs, we had to also use the limit processes. See
Remark (II) in Section 4 for more on this.

We find (with only numerical evidence in low weights) exactly one zetalike/
eulerian family ζ(qn − 1, (q − 1)qn, · · · , (q − 1)qn+k) (where q is the cardinality of
the field of constants Fq) surviving from the rational function field case, for all (4 of
them) class number one situations of higher genus. (Here we have restricted, with-
out loss of generality, to ‘primitive’ tuples (si), i.e. those which are not multiples
of p). We have not yet found any nontrivial zetalike example in weights which are
not q-even, in the higher genus case.

We did not find any zetalike examples in higher class number function fields, and
speculate that probably there are families of Hilbert class field coefficient linear
combinations of multizeta values of different ideal classes (for the same tuple of
si’s) that are algebraic multiples of zeta of the same weight, but it might be rare
or impossible for a single value to be zetalike in this case, unless you use variant
definitions (see e.g., [G96, T04]) of the multizeta taking all ideal classes into account.

In the function field analog that we investigate (see [T17] for survey and refer-
ences), the relations are still not conjecturally well-understood, though in contrast,
there are also some very strong transcendence and linear/algebraic independence
results (by Anderson, Brownawell, Chang, Papanikolas, Yu, et al) proved. Note
that the various transcendence, independence results that have been proved for the
zeta immediately carry over to the zetalike multizeta.

Here is the organization of the paper. We first fix the notation and give the
basic definitions. Next, we state our conjectures on the zetalike families and give
the proof of the special cases of conjectures in one example of class number one and
positive genus.Then we give several remarks on possible generalization of the proof
techniques, the contrasts with the genus zero case and the motivic implications.
Then we discuss the relative situation, as well as the numerical methods, and the
data, calculated by the first author, for some variants explored. Finally, we give all
the computational details of the similar proofs of the cases for the remaining three
class number one examples of positive genus.
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2. Notation and definitions

Consider a function field K (of one variable over finite field Fq), having a rational
place i.e., a place of degree one. We choose any such place and label it ∞. Denote
the corresponding ring of integers by A (consisting of elements of K having no pole
outside ∞), the completion of K by K∞, and the completion of its fixed algebraic
closure by C∞. Fix a uniformizer at infinity, so that we have corresponding sign
(and degree) function. Let A+ (Ad+, respectively) denote the set of monic, i.e., of
sign 1 (monic of degree d respectively) elements of A.

For k, ki, d ∈ Z, consider the power sums (sometimes denoted by Sd(−k) in the
references)

Sd(k) =
∑

a∈Ad+

1

ak
∈ K,

and extend inductively to the iterated power sums

Sd(k1, · · · , kr) = Sd(k1) S<d(k2, · · · , kr)

= Sd(k1)
∑

d>d2>···>dr

Sd2(k2) · · ·Sdr (kr),

where S<d =
∑d−1
i=0 Si as the notation suggests.

For positive integers si, we consider the multizeta values

ζ(s1, · · · , sr) :=

∞∑
d=0

Sd(s1, · · · , sr) =
∑ 1

as11 · · · a
sr
r
∈ K∞,

of weight
∑
si and depth r (associated, a priori, to the tuple si rather than the

value). (Here the second sum is over monic ai ∈ A of strictly decreasing degrees).
Call ζ(s1, · · · , sr) zetalike (we only care, if r > 1) if ζ(s1, · · · , sr)/ζ(

∑
si) ∈ K.

In the case the weight
∑
si is q-even (i.e., a multiple of q − 1), we also call

the zetalike value eulerian, in recognition of the simple evaluation by Euler in the
rational case, and analogous evaluations [C35, T04] by Carlitz and Goss in function
fields.

Finally, for ρ a sign normalized rank one Drinfeld A-module (also called Hayes
module), we denote the corresponding exponential and logarithm functions as

expρ(z) =
∑
zq

i

/di and logρ(z) =
∑
zq

i

/`i. While `i and di are polynomials in t
in the A = Fq[t] case, in higher genus case, they are rational functions (non-integral
in general) in the Hilbert class field. (see e.g., [T04], Chapter 2 for details).

3. Class number one situation: Conjectures and theorems

Apart from A = Fq[t]’s (one for each prime power q), there are exactly four (see
[T04] for references and corresponding Hayes modules) other A’s of class number
one:

• (i) F2[x, y], with y2 + y = x3 + x+ 1,
• (ii) F3[x, y], with y2 = x3 − x− 1,
• (iii) F4[x, y], with y2 + y = x3 + w, where w2 + w + 1 = 0,
• (iv) F2[x, y], with y2 + y = x5 + x3 + 1.

Note that the first three are of genus 1 while the last one is of genus 2.
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Conjecture 3.1. For any class number one A with constant field Fq, the multizeta
values ζ(qn − 1, (q − 1)qn, · · · , (q − 1)qn+k) are zetalike (equivalently eulerian, in
this case.)

Remarks 3.2. (i) For the case of A = Fq[t]’s, following more explicit form below
was conjectured, proved in depth 2 in [LT14] and proved for any depth by Chen in
[Ch17].

ζ(qn − 1, (q − 1)qn, . . . , (q − 1)qn+k) =
[n+ k][n+ k − 1] · · · [n]

[1]qn+k [2]qn+k−1 · · · [k + 1]qn
ζ(qn+k+1 − 1),

where [n] = tq
n − t.

(ii) In genus zero case, there are more such families [LT14], but in higher genus,
our limited exploration leads only to the family in the conjecture. (Of course, we
restrict to ‘primitive’ tuples, i.e. not divisible by the characteristic).

Here are some more explicit conjectures, when k = 0, in higher genus, class
number one cases, listed above.

Conjecture 3.3. Put Rn = ζ(qn − 1, qn(q − 1))/ζ(qn+1 − 1).
For the case (i), we have

Rn =
x2n+1

+ x2

y2n+1 + y + x2n+1+1 + x
.

For the case (ii), we have

Rn =
(x3n − x)(y3n − y)2 + (x3n − x)(−x3n − x3 − x+ 1)

x2·3n+1 + x1+3n+1 + x3n+1 + y1+3n+1 + x2 − x+ 1
.

For the case (iii), we have

Rn =
(x4n

+ x)(y4n+1

+ y4) + (x4n+1

+ x4)
(
x4n+2 + x3 + 1

)
+ (x4n

+ x)

x2·4n+1+2 + x4n+1y4n+1 + x4n+1y + x4n+1 + xy4n+1 + xy
.

For the case (iv), we have

Rn =
X22 + (1 + x)(X20 +X18 +X16) + (1 + x+ x2)(X12 +X10) +X9 + LRn

X24 + xX16 + (x+ 1)X8 + x2 + x
,

where X = x2n−1

and Y = y2n−1

and LRn = xX8 +X5 +(Y +y)(X2 +X4)+x2 +x.

Note that in addition to the non-uniqueness of expressions coming through the
relations between x, y, the fractions in the conjecture are not in the reduced form
either, and in fact, there is a lot of cancellation (making it hard to guess from
numerical data!). Compare, for example, the reduced forms in the special case
of the theorems below. Thus, to make these guesses, we had to use theoretical
ideas and expressions found in the proof of the first theorem below, then generalize
and verify. See remark (V) of Section 4 for some indication. We have numerically
verified the case (i) for n ≤ 11 , and (ii) for n ≤ 9, (iii) for n ≤ 5 and (iv) for
n ≤ 12.

We also have some more such explicit ratio conjectures, but not yet for large
satisfactory families.

Our main theorems below prove the following cases of the conjecture in higher
genus for k = 0: the case (i), when n = 1, 2 (Theorems 3.4 and 5.1 respectively),
the cases (ii, iii, iv) when n = 1 (Theorems 8.1, 8.2, 8.3 respectively).
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We start with case (i) and note here that for this example, the Taelman’s class
module [Ta10] is also trivial (as proved in [T20]), in addition to the class group. We
will use the theory of [T92] (see also [T04][Sec. 4.15, 8.2]), but recalling everything
(parts (i) to (v) of Theorem 3.5) that we need from there.

Theorem 3.4. For A = F2[x, y]/(y2 + y + x3 + x+ 1), we have

(x2 + x+ 1)ζ(1, 2) = ζ(3).

Proof. We first give some explicit ‘(poly-)log-algebraicity’ formulae developed in
[T92] for the relevant power sums, and in [T09] for the iterated versions, together
with one extension needed for the multizeta case. These give expressions for polylog-
coefficient `wd times power sums Sd(k1, · · · , ki)’s in terms of algebraic functions, on
the curve (corresponding to K) cross itself, specialized at the graph of d-th power
of Frobenius map.

We will now define several functions in F2(x, y,X, Y ), where x and X are inde-
pendent transcendentals and y2 + y = x3 + x+ 1, Y 2 + Y = X3 +X + 1. For each
such function, say f , put f (k) for the function resulting from f after substituting

X2k

, Y 2k

respectively for X,Y , and put f(d) ∈ K for the function resulting from

f after substituting x2d

, y2d

for X,Y .
More generally, we say [T92], in class number one case, that a function h : Z>c →

C∞ is F -function, if there is a rational function H on C cross itself such that H
specialized to the graph of d-th power of Frobenius on C is h(d+ k), i.e., the value
of h at d + k (for sufficiently large d, fixed k). Since we use such usual function
notation h(k) below, only for the various power sums Sd(k)’s, there should be no
confusion between the usual functional notation and the ‘twist’ notation introduced
in the previous paragraph.

Put

Bx = X + x, By = Y + y, g =
By +XBx

B
(1)
x + 1

, F1 =
X + x2

By + xBx + x2 + x
,

F<1 = g2 + F 2
1 + F1, F12 = F1F

2
<1, F3 = F 2

1 (g2 + F 2
1 ),

gm =
Y 2 + y4 +X2(X2 + x4)

X4 + x4 + 1
, A2 = F1(

g4gm
x2 + x

+ (g2 + F 2
1 + F1)2(F 2

1 + F1)),

F<3 =
A2

F1
+ (g2 + F 2

1 + F1)3,

C = By + xBx + x2 + x,Cm = Y + y2 + x2(X + x2) + x4 + x2,

U =
(X + x2)(X3 +X2x)

x2 + x
+
X2

x
+Xx+ 1, J =

U + C2

1 + ((g(1))3C2F12)/CmF
(1)
12 )

,

F≤12 =
JF12

Cm
.
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Theorem 3.5. For A as in the previous theorem, and for `d the (reciprocal) co-
efficients of the logarithm for the Hayes module for this A as defined at the end
of Section 2, for d ≥ 2 (check d=0, 1, 2) we have (i) `dSd(1) = F1(d), (ii)
`dS<d(1) = F<1(d),
(iii) `3dSd(1, 2) = F12(d), (iv) `3dSd(3) = F3(d),
(v) `3dS<d(3) = F<3(d) and (vi) `3dS≤d(1, 2) = F≤12(d).

Proof. We use the generating functions Ad0/(1 −
∑
Adit

qi) =
∑
Sd(k)tk−1 of

[T92][(18)] for Sd(k) and (Ad0x)(
∑
Adix

qi)−1 = 1 +
∑
S<d(k)xk of [T09][3.2] for

S<d(k) given by one type of binomial coefficient [T92, T09], and the method of
[T92] to calculate this in higher genus. (Here i runs from 0 to d and k from 1 to
∞, and S<d(k) = 0 unless k is q-even.)

We first explain briefly, how (i)-(v) follow from theory developed in [T92], by
unwinding and specializing the genus one formulas there to our specific A. Note the
notations matches Bx(i) = [i]x, By(i) = [i]y. Once one uses the known coefficients
of ρ (see Exa. C page 192 of [T92]) to get x1 = x2+x, y1 = y2+y, y2 = x(y2+y), the
recursions for `i, di (and this aik by (7), (14) of [T92]) from the functional equations
of logarithm, exponential in terms of ρ, give formulas (we use `1 = 1, d1 = 1 in
particular) for fi, gi, µi in (20), (27), (28), (23) of [T92] implying in particular
that g(i) = gi = `i/`i−1. This allows us to calculate Ai0, Ai1, Ai2 of [T92][(14)]

by comparing t, tq, tq
2

coefficients in (21) (see also (14), (7)) of [T92], which is all
we need from the generating function coefficients. (In fact, A2(d) = `4dAd2 and
(g2F1 + F 3

1 + F 2
1 )(d) = `2dAd1.) Then we need only to verify by straightforward

manipulation that (we note here that gm(d) = g(d− 1)4, Cm(d) = C(d− 1)2)

`dSd(1) = `dAd0 = F1(d),

`dS<d(1) =
`2dAd1

`dAd0
,

`3dSd(3) = `dAd0(`2dAd1 + `2dA
2
d0) = F3(d),

`3dSd(1, 2) = (`dSd(1))(`dS<d(1))2 = (`dAd0)(
`2dAd1

`dAd0
)2 = F12(d),

`3dS<d(3) =
`4dAd2

`dAd0
+ (

`2dAd1

`dAd0
)3 = F<3(d).

Finally, we verify (vi) by induction on d, using (ii) and the iterated definition: it is
enough to check the initial value and the identity corresponding to S≤d+1−Sd+1 =

S≤d. Since g(1)(d) = `d+1/`d, the identity is F
(1)
≤12 − F

(1)
12 = (g(1))3F≤12, which

follows directly.
�

Now it is easy to finish the proof of the main theorem by just noticing that
(x2 + x+ 1)F≤12 − F<3 has negative degree in X,Y , so that as d tends to infinity,
the ‘error’ (x2+x+1)S≤d(1, 2)−S<d(3) tends to zero, establishing the theorem. �
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4. Some remarks

(I) Explicit F-functions in standard forms: To get more concrete perspec-
tive, we give some of these functions more explicitly. We split lower order part of
numerators just for the display convenience.

F3 =
X3 + x2X2 + Y +X + x3 + x2 + y + x+ 1

X4 + x2 + 1
.

F12 =
X4Y + xX5 +X3Y + (y + 1)X4 + x2X2Y + (x3 + y + x)X3 + (x+ 1)XY + L12

X6 + (x+ 1)X4 + (x2 + 1)X2 + x3 + x2 + x+ 1

with L12 = (x2y+x3 +x2 +x)X2 +x3Y + (x4 +xy+x2 + y+x)X+x3y+x4 +x2,

F<3 =
(x2 + x+ 1)X6 +X5 + (x4 + x3 + x2 + x)X4 +X2Y + (x+ 1)X3 + L<3

(x2 + x)X6 + (x3 + x)X4 + (x4 + x3 + x2 + x)X2 + x5 + x

with L<3 = (x4 + x3 + x2 + y)X2 + xY + xX + x6 + x5 + x3 + xy + x2

F≤12 =
X6 + (x2 + x+ 1)X5 + (x3 + x2)X4 + (x2 + x+ 1)X2Y + L≤12

(x2 + x)X6 + (x3 + x)X4 + (x4 + x3 + x2 + x)X2 + x5 + x

with L≤12 = (x3+x2+x+1)X3+(x2y+x3+xy+y)X2+x3Y +x3X+x5+x3y+x3.
Note that the denominators are (X2 +x+1)2, (X2 +x+1)3, (x2 +x)(X2 +x+1)3

(twice) respectively.
Comparing the dominating terms of the last two expressions, makes visible the

last calculation of the proof above.
(II) Comparison with the genus zero situation: For the genus zero case

A = Fq[t], we have [T09, T04] the F -function identity Sd(q−1, q(q−1)) = Sd−1(q2−
1)/(t − tq)q−1, which by summing over degrees up to d then gives corresponding
F -function identity for S≤d, and then, by taking the limits, the identity at the
multizeta level. The same is true in any depth by the formula for Sn(d) in the
proof on page 795 in [LT14]. On the other hand, in our case here, we have the
identity only at the level of ζ, only leading terms matches at S≤d level, and nothing
at Sd level! In fact, for q = 2 case above (for example, by the theorem 2 and
(I)), for d > 2, the degree of both Sd(1, 2) and Sd−1(3) is −2d. The degree of
Sd(1, 2)+Sd−1(3)+(t2+t)Sd+1(1, 2) is−2d+1, and the degree of (t2+t+1)S≤d(1, 2)+
S<d(3) + (t2 + t)Sd+1(1, 2) is −2d+2.

Consider the genus zero zetalike Euler basic identity ζ(1, q − 1) = ζ(q)/(t− tq),
which is not eulerian, if q > 2. It corresponds to F -function identity at Sd level,
we do not think that the resulting identity at S≤d level obtained by summing is
F -function identity.

We have checked (by computing the rank of the relevant matrices) that in the
case (i), there is no non-trivial linear relation (leading to our theorem by sum-
ming) between the 8 quantities Sk(3), Sk(1, 2), Sk(2, 1), Sk(1, 1, 1)’s, with k = d
or d + 1, of weight 3, (working for all d, or equivalently working for the cor-
responding F-functions), in contrast to the existence of such ‘binary’ relations
[To18]. We have also checked that the same situation persists, even if we add
Sd+2(1, 2), Sd−1(3), Sd+2(3), but have not tried adding more terms. Similarly, we
have checked that there is no non-trivial linear relation (leading to our theorem
by summing) between the 10 quantities Sk(1, 2), Sm(3), with d ≤ m ≤ d + 4, d <
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k ≤ d+ 5, again in contrast to the genus zero situation [To18]. (See also [T17][Pa.
17-18] for relevant discussion of Todd’s data.)

Since the F -functions involved in Sd-level identities were used to define [AT90,
AT09] the corresponding motives in the genus zero case, we need to understand
better the motivic mechanisms underlying these relations in higher genus.

(III) Comparison of polylog-algebraicity for iterated sums and zetalike
property: As mentioned above, for a positive integer k and a positive q-even
integer m, `kdSd(k) and `md S<d(m) are F -functions [T92, A94, T09, GP18] (we say
alternately that Sd(k) and S<d(m) satisfy ‘log-algebraicity’ property).

In our situation, if weight w =
∑
si is q-even, and if `wd S<d(s1, · · · , sr) is

F -function, then as in the proof above, comparison of leading terms shows that
ζ(s1, · · · , sr) is zetalike (equivalently, eulerian, in this case).

For simplicity, let s1, s2 be q-even, w = s1 + s2. If F≤ is the F -function for
`wd S≤d(s1, s2), and if F is the F -function representing `wd Sd(s1, s2), and g represents
the F -function `d/`d−1, then F≤(d) − F (d) = g(d)wF≤(d − 1), so to get such
F≤ from (known) F and g, we need to solve the Frobenius-difference equation

F≤ − gwF (−1)
≤ = F . When exactly is it solvable? If this is understood, the method

explained in the next section to solve it should then give (case-by-case) proofs for
such multizeta relations through directly verifiable relations between such functions.

(IV) Origin/explanation of some functions introduced in the proof:
For interested reader, we indicate how the formula (vi) was discovered (without
knowledge of such algorithm). To guess what F≤12 should be, comparison of the
LHS of (vi) with F12(d) was made (for small d’s) and factored to notice match
of denominators, so their ratio was considered. (Note that without the factor
`(d)3, the relevant denominators do not match!). Again consideration of factors
suggested that primes in denominators came from those of F12(d − 1). Now the
expressions show that cube of C(d) = [d]y +x[d]x + [1] kills denominator of F12(d),
here the square was enough so polynomials E(d) = C(d − 1)2`3dS≤d(1, 2)/F12(d)
were calculated for a few d’s and it was noticed that except for the constant term
which alternated between 0 and 1, the tail of E(d) matched with E(d− 1), so the
recursion between E(d) and E(d − 1) was considered as F-polynomials are easy
to guess explicitly (using geometric series). This led to function U(d) satisfying
E(d) = U(d− 1) + E(d− 1). Next we consider equation coming from the relation
S≤d = Sd+S≤d−1, which, after a simple straight manipulation, translates to E(d) =
C(d − 1)2 + E(d − 1)g(d)3C(d − 1)2F12(d − 1)/(C(d − 2)2F12(d)). Solving these
two equations led to F-function expression for E and thus for F≤12. For more
streamlined version developed later, see the next section.

(V) Structure behind the explicit conjecture: In the notation of the the-
orem, the first depth 2 explicit conjecture is ζ(qn − 1, (q − 1)qn)/ζ(qn+1 − 1) =
[n]2/C(n + 1). We have similar but more involved descriptions for the rest. We
remark that the denominators listed above in each case are (Frobenius twists of)
denominators of F-function F1 satisfying `dSd(1) = F1(d).

(VI) Low Fi’s: If Fk denotes the F-function with Fk(d) = `kdSd(k), then for

Fmpn = Fmp
n

1 , for m ≤ q, by p-th powers and Fq-linearity and power sums-
symmetric sums argument [T14][Remark 6.1].
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5. Another case

In order not to make the theorem and proof any more complicated by combining
too many formulae at once, we decided to state the second case separately as the
following theorem.

Theorem 5.1. For A = F2[x, y]/(y2 + y + x3 + x+ 1), we have

(x8 + x6 + x5 + x3 + 1)ζ(3, 4) = (x4 + x2)ζ(7).

Proof. We proceed in a similar way to the proof of the first case. In fact, the func-
tions interpolating `3dSd(3), `3dS<d(3), are already computed and since Sd(2

ns) =

Sd(s)
2n

, the similar interpolating functions for s = 4 are just fourth powers of the
functions we calculated above for s = 1.

This gives F34 such that `7dSd(3, 4) = F34(d). Here it is explicitly: F34 =
N34/D34, where D34 = (X2 + x+ 1)6 and

N34 = X11 + x2X10 +
(
x3 + x+ 1 + y

)
X8 +

(
x4 + 1

)
X7 +

(
x6 + x3 + x2 + x+ y

)
X6

+
(
x4 + x2 + 1

)
X5 +

(
x7 + x6 + x5 + x4 + x2 + yx4

)
X4 +

(
x6 + x2 + 1

)
X3

+
(
x8 + x5 + x4 + x2 + x+ y(x2 + 1)

)
X2 + x6X + x9 + x8 + x7 + x4 + yx6

+ Y
[
X8 +X6 + x4X4 +

(
x2 + 1

)
X2 + x6

]
.

We claim that F≤34 = N≤34/D≤34 satisfies `7dS≤d(3, 4) = F≤34(d), whereD≤34 =
(x6 + x5 + x4 + x3 + x2 + x+ 1)(X2 + x+ 1)7 and N≤34 is(
x2 + x

)
X14 +

(
x2 + x

)
X13 +

(
x6 + x5 + x4 + x3 + x2 + x+ 1

)
X12

+
(
x6 + x5 + x4 + x2 + 1

)
X11 +

(
x8 + x7 + x6 + x5 + x4 + x2 + x+ y(x2 + x)

)
X10

+
(
x8 + x4 + x3 + x2

)
X9 +

(
x8 + x7 + x6 + x5 + x3 + y(x6 + x5 + x4 + x+ 1)

)
X8

+
(
x9 + x7 + x6 + x4 + x3

)
X7

+
(
x9 + x7 + x5 + x2 + x+ 1 + y(x8 + x6 + x5 + x3 + x2 + x+ 1)

)
X6

+
(
x10 + x9 + x8 + x4 + x2 + x+ 1

)
X5

+
(
x7 + x6 + x5 + x3 + x+ 1 + +y(x9 + x8 + x7 + x4 + x2 + x+ 1)

)
X4

+
(
x11 + x10 + x9 + x7 + x5 + x4

)
X3

+
(
x12 + x10 + x9 + x8 + x6 + x5 + x4 + y(x10 + x7 + x5)

)
X2

+
(
x11 + x9 + x4

)
X + x10 + x8 + x7 + x6 + x5 + x4 + y(x11 + x9 + x4)

+ Y
[(
x2 + x

)
X10 +

(
x6 + x5 + x4 + x+ 1

)
X8 +

(
x8 + x6 + x5 + x3 + x2 + x+ 1

)
X6
]

+ Y
[(
x9 + x8 + x7 + x5 + x4 + x2 + x+ 1

)
X4 +

(
x10 + x7 + x5

)
X2 + x11 + x9 + x4

]
.

This is proved by straightforward verification of the initial condition and the

recursion identity F
(1)
≤34 − (g(1))7F≤34 = F

(1)
34 .

Finally, similar methods as in the proof of the first case, gives F<7 satisfying
F<7(d) = `7dS<d(7) as follows
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F<7 = N<7/D<7, where D<7 = (x8 + x)(X2 + x+ 1)7 and N<7 is(
x8 + x6 + x5 + x3 + 1

)
X14 +

(
x8 + x6 + x5 + x3 + 1

)
X13

+
(
x8 + x6 + x5 + x4 + x3 + x2 + 1

)
X12 +

(
x9 + x7 + x6 + x2 + x

)
X11

+
(
x12 + x10 + x4 + x3y + x2 + y(x8 + x6 + x5 + x3 + 1)

)
X10 +

(
x12 + x8 + x7 + x4 + x3

)
X9

+
(
x12 + x8 + x7 + x5 + x2 + y(x9 + x8 + x7 + x5 + x3 + x2 + x+ 1)

)
X8

+
(
x13 + x10 + x6 + x5 + x4 + x3 + x

)
X7

+
(
x13 + x12 + x9 + x7 + x5 + x3 + y(x12 + x9 + x5 + x4 + x2 + x+ 1)

)
X6

+
(
x14 + x13 + x12 + x11 + x9 + x6 + x4 + x3 + x2

)
X5

+
(
x14 + x13 + x12 + x11 + x9 + x8 + x3y + x3 + y(x13 + x12 + x10 + x9x6 + x2 + 1)

)
X4

+
(
x15 + x12 + x11 + x8 + x6 + x4 + x3 + x2 + x+ 1

)
X3

+
(
x16 + x15 + x14 + x13 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + y(x14 + x11 + x10 + x4 + 1)

)
X2

+
(
x15 + x14 + x12 + x10 + x8 + x6 + x3 + x2 + x

)
X

+ x15 + +x14 + x12 + x10 + x9 + x8 + x7 + x5 + x4 + x2

+ y(x15 + x14 + x12 + x10 + x8 + x6 + x3 + x2 + x)

+ Y
[(
x8 + x6 + x5 + x3 + 1

)
X10 +

(
x9 + x8 + x7 + x5 + x3 + x2 + x+ 1

)
X8
]

+ Y
[(
x12 + x9 + x5 + x4 + x2 + x+ 1

)
X6 +

(
x13 + x12 + x10 + x9 + x6 + x3 + x2 + 1

)
X4
]

+ Y
[(
x14 + x11 + x10 + x4 + 1

)
X2 + x15 + x14 + x12 + x10 + x8 + x6 + x3 + x2 + x

]
.

The proof is thus complete, as before, by observing the ratio of the leading terms
of F<7 and F≤34 is exactly (after simple cancellations) (x8 +x6 +x5 +x3 +1)/(x4 +
x2). �

Remarks 5.2. (1) We solved by using SageMath, the Frobenius-difference equation

(X2 + x+ 1)7[Z(1) − (X4 + x+ 1)N
(1)
34 ] = (Y + y +X4 +X3 +X2x+X + 1)7Z,

where Z =
∑14
k=0 akX

k + Y
∑12
m=0 bmX

m, by using the elliptic curve relation to
get rid of higher powers of Y and then equating coefficients of Xn and Y Xm, for
0 ≤ n ≤ 39, 0 ≤ m ≤ 38 in the resulting linear system in 26 unknowns ai, bi. The
unique solution obtained, in fact, proves the recursion relation. (We note here that
Z = N≤34/(x

6 + x5 + x4 + x3 + x2 + x+ 1).)
(2) We would have complete case-by-case algorithmic proof method for the whole

family (at least in depth 2 and probably in general by induction on depth), if only
we are assured of solvability of such equations resulting from our recursion. In the
last section, we provide details of proofs of 3 more cases, done this way.

6. Dedekind type relative zeta situation

We also consider Dedekind type relative zeta and multizeta functions using norms
from A to some corresponding Fq[x], say and explore corresponding zetalike multi-
zetas.

More precisely, for a monic a ∈ A, we use the monic generator of −k-th power of
the relative norm of a. For the class number one situation, this corresponds more
closely to the Dedekind zeta. See [T04][Sec. 5.1].
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First note that if the relative extension is Galois of degree p and A is class
number one, then (argument of [T04][Pa 162] generalized to power sums) for an
element of A − Fq[x], the p conjugates having the same norm, the total norm
contribution is zero, where as for an element in the base, the norm is p-th power, so
ζA/Fq [x](s1, · · · , sr) = ζFq [x](ps1, · · · , psr). In particular, we get zetalike elements
just from the genus zero case. This works for the three class number one examples
A with p = 2, which are quadratic over Fq[x] of the form y2 + y = P (x), and the
fourth class number one example with q = 3 of the form y2 = x3−x− 1 considered
as a cubic Galois extension (since F3 translations of a root are roots) over F3[y].

Considered the class number one examples above of characteristic 2, as exten-
sions of the relevant Fq[y]’s, we did not find any zetalike examples, in numerical
experimentation. Similarly, for q = 3, y2 = x3−x−1, andNorm(f+yg) = f2−y2g2,
we have not yet found any zetalike examples.

We are in the beginning stages of exploration in the general relative situation
and will report in the future paper about more refined conjectures on degrees, other
F-functions and relations.

For now, we only make following simple remark that in higher genus, some power
sums are zero, not only as the relevant sets are empty because of Weierstrass gaps
(at the point at infinity), but also power sums can be zero, even if the relevant sets
are not empty. For example, consider F2[x, y]/y2 + y = x3 + x + 1 over F2[y]. In
this case, since the norm of x as well as of x+ 1 is y2 + y + 1, all the power sums
for degree 2 also (for degree 1 they vanish for the reason above) vanish.

7. Numerical experiments

The numerical exploration to find zetalike values was done following the method
of [LT14] using SageMath on laptop, using the continued fractions in Fq((1/x)).
Note that in cases (i, iii, iv), Sd(k) ∈ Fq(x) by invariance with respect to the Galois
action y → y + 1 of K over Fq(x). In the case (ii), if si’s are even, we get the
relevant Galois invariance. In these cases, the method of [LT14] using continued
fractions for Fq((1/x)) works immediately. In case (ii), in general, and in higher
class number cases, (for low q, g), we used the norms to descend to this Fq((1/x))
situation.

Apart from higher class number and Dedekind situation, we also looked for
possible rational ratios of multizeta (of depth 2 or 3) of the same weight in class
number one case, not explained by our conjecture on the zetalike family. We did
not find any, in contrast to several examples in genus zero. For example, when
A = F2[t], we have rational ratios ζ(1, 3)/ζ(2, 2), ζ(2, 3)/ζ(3, 2), ζ(7, 4)/ζ(4, 7),
where only for the first example the numerators and denominators are zetalike (so
the rationality of the first example is explained by this observation), but none of
the numerators or denominators of the last 2 are zetalike. (We checked the class
number one cases (i), (iv) for weights up to 32, and (iii) for weights up to 12, only
for depth 2).

8. Details of the three other class number one cases proved

Theorem 8.1. For A = F3[x, y]/(y2 − (x3 − x− 1)), we have

(x9 + x6 + x4 − x3 + x2 − 1)ζ(2, 6) = (x3 − x+ 1)ζ(8).
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Proof. We proceed in a similar way to the proof of case i). We will now define
several functions in F3(x, y,X, Y ), where x and X are independent transcendentals
and y2 = x3 − x− 1 and Y 2 = X3 −X − 1. For each function, say h, put h(1) for
the function resulting from h after substituting X3, Y 3 respectively for X,Y , and

put h(d) ∈ K for the function resulting from h after substituting x3d

and y3d

for
X,Y . Put

F1 =
−(X − xq)

X2 + (x+ 1)X + yY + x2 − x+ 1
, g3 =

−(Y − y)3 + Y q(X − x)3

Y (Y 3 − Y )− (X − x3)− Y 3Y (X3 −X)
,

F<2 = −yg3 + F 3
1 − F 2

1 , F26 = F 2
1F

3
<2,

F<8 = − (x3 − x+ 1)g9(g(−1))9

x3 − x
+ (yg3 − F 3

1 + F 2
1 )4 + (F 3

1 − F 2
1 )(y3g9 − F 9

1 + F 6
1 ),

A1 = F1(yg3 − F 3
1 + F 2

1 ), A2 = F1

(
x3 − x+ 1

x3 − x
· g9(g(−1))9 − (F 3

1 − F 2
1 )(y3g9 − F 9

1 + F 6
1 )

)
.

Notice that A1(d) = `3dAd1 and A2(d) = `9dAd2. Then, we have `dSd(1) =
`dAd0 = F1(d) and

`2dS<d(2) =
−`3dAd1

`dAd0
=
A1(d)

F1(d)
= (−yg3 + F 3

1 − F 2
1 )(d) = F<2(d),

`8dSd(2, 6) = (`2dSd(2))(`2dS<d(2))3 = F1(d)2F<2(d)3 = F26(d).

Finally, we have

`8dS<d(8) =
(`3dAd1)4 − (`dAd0)3 · `9dAd2

(`dAd0)4
=
A1(d)4 − F1(d)3A2(d)

F1(d)4

= − (x3 − x+ 1)g9(g(−1))9

x3 − x
+ (yg3 − F 3

1 + F 2
1 )4 + (F 3

1 − F 2
1 )(y3g9 − F 9

1 + F 6
1 ),

= F<8(d).
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Explicitly F26 = N26/D26, where D26 = (X3 − x+ 1)8 and N26 is

(
x6 + x4 + x3 + x2 − x+ 1

)
X17 +

(
x3y − xy − y

)
X16Y +

(
x7 + x6 + x5 − x4 − x3

)
X16+(

x6y − x2y + xy − y
)
X15Y +

(
x8 − x7 − x4 − x3 + x2 − x+ 1

)
X15 +

(
−x3y + xy

)
X14Y+(

x7 + x6 + x5 − x4 − x3 + 1
)
X14 + (−xy − y)X13Y +

(
−x9 + x8 − x7 − x4 + x3 + x2 − x

)
X13+(

x7y + x6y − x5y + x4y − x3y − x2y + xy − y
)
X12Y+(

−x12 − x10 − x9 + x7 + x6 + x5 + x4 + x2 + x+ 1
)
X12+(

−x9y − x6y + x3y + x2y
)
X11Y +

(
−x9 + x8 − x7 − x4 + x3 + x2

)
X11+(

−x10y − x9y − x7y + x6y + x5y − x4y − x3y
)
X10Y+(

−x12 + x10 − x9 + x7 − x6 + x5 + x4 − x2 + 1
)
X10+(

−x11y + x10y + x9y + x7y − x6y − x5y + x4y − x3y
)
X9Y+(

−x13 − x11 − x10 + x9 + x8 + x7 + x5 + x3 − x2 + x+ 1
)
X9 +

(
−x6y − x4y − x2y + y

)
X8Y+(

−x12 + x10 + x9 − x7 + x6 − x5 + x4 − x3 + x2 + x+ 2
)
X8+(

−x9y − x7y − x6y − x5y + x4y − xy − y
)
X7Y+(

−x13 − x12 + x11 − x10 − x8 − x6 − x4 + x3 + x2 + x+ 1
)
X7+(

−x12y − x10y − x9y − x8y − x6y + x5y − x4y + x3y − x2y + xy − y
)
X6Y+(

−x14 + x13 − x12 − x10 − x8 + x3 + x+ 2
)
X6 +

(
x9y − x7y − x6y − x5y + x2y − xy + y

)
X5Y+(

−x13 + x12 + x11 − x8 + x6 − x4 − x3 − x2 − x
)
X5+(

−x9y − x8y + x7y − x6y + x5y + x4y − x3y + xy + y
)
X4Y+(

−x14 + x11 − x10 − x9 − x8 − x7 + x6 − x4 − x3 + x2 − x+ 1
)
X4+(

−x13y + x12y − x10y − x9y − x8y + x7y + x6y − x5y + x4y − x3y + x2y − xy + y
)
X3Y+(

−x15 − x14 + x13 − x12 − x11 − x10 + x8 + x6 − x4 + x3 − x2 + x
)
X3+(

−x8y − x7y + x5y + x4y + x3y + x2y + xy + y
)
X2Y+(

−x14 − x13 + x12 − x11 + x10 + x9 − x8 + x7 − x6 − x3 + x2 + 1
)
X2+(

−x11y − x10y − x9y + x8y − x7y − x6y + x5y + x4y + x3y
)
XY+(

−x15 + x14 + x11 − x9 + x7 − x6 + x5 + x3
)
X+(

−x14y − x13y − x12y + x11y + x10y + x9y − x8y − x6y
)
Y − x16 − x14 + x13 − x12

+ x11 − x10 + x9 + x8 − x7.

In order to find F≤26, such that F≤26(d) = `8dS≤d(2, 6), we use the recursion

identity F
(1)
≤26 − (g(1))8F≤26 = F26. Let Z = (X3 − x+ 1)8F≤26. We solve by using

SageMath, the equation

(X3 − x+ 1)8(Z(1) −N (1)
26 ) = (−X6Y +X4Y + (x− 1)X3Y + (−x− 1)XY + (−x− 1)Y − y)8Z,

where Z =
∑18
k=0 akX

k + Y
∑15
m=0 bmX

m. The unique solution obtained is Z =
N≤26/(x

3 − x), so that F≤26 = N≤26/D≤26 where D≤26 = (x3 − x)(X3 − x + 1)8
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and N≤26 is(
x3 − x+ 1

)
X18 +

(
−x6y − x4y + x3y − x2y − xy

)
X15Y +

(
−x9 − x6 − x4 + x3 − x2 + 1

)
X15+(

x6y + x4y − x3y + x2y + xy
)
X13Y +

(
−x9y + x7y − x6y + x5y + x4y + x3y + xy

)
X12Y+(

−x10 + x9 − x7 + x6 − x5 − x4 + x2 − x
)
X12 +

(
x9y − x7y − x6y − x5y + x3y + x2y

)
X10Y+(

−x7y − x6y − x5y − x3y + x2y + y
)
X9Y +

(
−x11 − x10 + x9 − x8 − x7 + x6 + x4 − x3 + x2 + 1

)
X9+(

x9y − x3y − y
)
X7Y +

(
−x10y + x7y + x6y + x5y + x4y − x3y − x2y + y

)
X6Y+(

−x12 − x10 + x7 + x5 − x3 − x2 + x+ 1
)
X6 +

(
x10y + x9y − x7y − x6y − x5y − x4y + x2y + y

)
X4Y+(

−x11y − x9y − x8y − x6y − x5y − x4y + x2y + y
)
X3Y+(

−x13 − x12 − x11 − x9 + x8 − x7 + x6 − x5 − x4 + x3 − x2 − x+ 1
)
X3+(

x11y + x10y − x9y + x8y − x7y
)
XY+(

x11y + x10y − x9y + x8y − x7y
)
Y + x15 − x14 − x13 + x12 + x11 + x10 + x9 + x8 + x7.

F<8 = N<8/D<8 where D<8 = (x3 − x)(X3 − x+ 1)8 and N<8 is(
x9 + x6 + x4 − x3 + x2 + 2

)
X18 +

(
−x3y + xy

)
X15Y −X15 +

(
x3y − xy

)
X13Y+(

−x12y + x10y − x4y + x3y + x2y − xy
)
X12Y+(

x9 + x6 + x4 − x3 + x2 − x
)
X12 +

(
x12y − x10y + x4y − x2y

)
X10Y+(

x12y − x10y + x4y + x3y − x2y − xy − y
)
X9Y +

(
−x9 − x6 − x4 + x3 + x2 − x+ 2

)
X9+(

−x3y + xy + y
)
X7Y +

(
x12y − x10y + x4y − x3y − x2y − y

)
X6Y +

(
x9 + x6 + x4 + x3 + x2 − x+ 2

)
X6+(

−x12y + x10y − x4y + x2y + xy − y
)
X4Y +

(
−x12y + x10y − x4y − y

)
X3Y+(

−x4 + x3 − x2 + x+ 2
)
X3 +

(
x2y + xy

)
XY +

(
x2y + xy

)
Y + x18 + x15 + x13 − x12 + x11 + x6 − x5 + x.

Notice that denominators of F≤26 and F<8 match. The degree of E = (x9 +
x6 +x4−x3 +x2− 1)F≤26− (x3−x+ 1)F<8 is negative; more precisely, the degree
of E(d) is −(−27 + 15 × 3d); since the degree of `d is −(3d+1 − 3)/2, the degree
of the E(d)/`8d is −(−15 + 3d+1); therefore, E(d)/`8d tends to zero as d tends to
infinity. �

Theorem 8.2. For A = F4[x, y]/(y2 + y+x3 +w), where w2 +w+ 1 = 0, we have

ζ(3, 12)/ζ(15) = (x12 + x9 + x6 + x3 + 1)/(x24 + x18 + x9 + x3 + 1)

Proof. We will now define several functions in F3(x, y,X, Y ), where x and X are
independent transcendentals and y2 + y = x3 + w and Y 2 = X3 + w. For each
function, say h, put h(1) for the function resulting from h after substituting X4, Y 4

respectively for X,Y , and put h(d) ∈ K for the function resulting from h after

substituting x4d

and y4d

for X,Y . Put

F1 =
X + xq

x2X2 +XY + (y + 1)X + xY + xy
, g =

Y + y +X2(X − x)

X4 + x

F<3 = (x4 + x)g4 − F 4
1 + F 3

1 , F3,12 = F 3
1F

4
<3, A1 = F1((x4 + x)g4 + F 4

1 + F 3
1 ),

A2 = F1(
(x12 + x9 + x6 + x3 + 1)g16(g(−1))16

x4 + x
+ (F 4

1 + F 3
1 )((x4 + x)g4 + F 4

1 + F 3
1 )4),
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and

F<15 = ((x4 + x)g4 + F 4
1 + F 3

1 )5+

(x12 + x9 + x6 + x3 + 1)g16(g(−1))16

x4 + x
(F 4

1 + F 3
1 )((x4 + x)g4 + F 4

1 + F 3
1 )4.

Note that A1(d) = `4dAd1 and A2(d) = `16
d Ad2.

We have

`dSd(1) = F1(d)

`3dS<d(3) =
`4dAd1

`dAd0
=
F1(d)((x4 + x)g4 − F 4

1 + F 3
1 )(d)

F1(d)
= F<3(d),

`15
d Sd(3, 12) = (`dSd(3))3(`3dS<d(3))4 = F1(d)3F<3(d)4 = F3,12(d),

`15
d S<d15 =

(`4dAd1)5 + (`dAd0)4(`16
d Ad2)

(`dAd0)5
= F<15(d).

Explicitly, we have F<15 = N<15/D<15, where D<15 = (x4 + x)(X4 + x)15 and

N<15 =
(
x24 + x18 + x9 + x3 + 1

)
X40 +

(
x8 + x2

)
X38 +

(
x16 + x10 + x4 + x

)
X36 +

(
x8 + x2

)
X35

−X34 +
(
x8 + x2

)
X32Y +

(
x32 + x26 + x20 + x17 + x8y + x2y

)
X32 −X31 + xX30 −X28Y+

(y + 1)X28 + xX27 + x2X26 + xX24Y + (xy + x)X24 + x2X23 + x3X22 + x2X20Y+(
x2y + x2

)
X20 + x3X19 + x4X18 + x3X16Y +

(
x24 + x18 + x9 + x3y + 1

)
X16 + x4X15+(

x8 + x5 + x2
)
X14 + x4X12Y +

(
x16 + x10 + x4y + x

)
X12 +

(
x8 + x5 + x2

)
X11 +

(
x6 + 1

)
X10+(

x8 + x5 + x2
)
X8Y +

(
x32 + x26 + x20 + x17 + x8y + x5y + x5 + x2y

)
X8 +

(
x6 + 1

)
X7+(

x7 + x
)
X6 +

(
x6 + 1

)
X4Y +

(
x24 + x18 + x9 + x6y + x6 + x3 + y

)
X4 +

(
x7 + x

)
X3+(

x7 + x
)
Y + x40 + x34 + x25 + x19 + x10 + x7y + x7 + x4 + xy.

On the other hand, F3,12 = N3,12/D3,12 where D3,12 = (X4 + x)15 and N3,12 is
(too large to fit in here)

N3,12 = (x18 + x6)X39 + (x16 + x4)X38Y + (x22 + x16y + x16 + x10 + x4y + x4)X38 + · · ·

Next, We calculate F≤3,12 such that F≤3,12(d) = `15
d S≤d(3, 15). By using the

identity recursion F≤3,12 − (g(1))15F≤3,12 = F3,12, we get the Frobenius difference
equation

(X4 + x)15(Z(1) −N (1)
3,12) = (X12 + xX8 +X6 +X3 + Y + y + 1)15Z,

where Z = (X4 + x)15F≤3,12. We put Z =
∑40
k=0 akX

k + Y
∑36
m=0 bmX

m. The
unique solution obtained is Z = N≤3,12/(x

4 + x) so that F≤3,12 = Z/(X4 + x)15 =
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N≤3,12/D≤3,12 where D≤3,12 = (x4 + x)(X4 + x)15 and N≤3,12 is(
x12 + x9 + x6 + x3 + 1

)
X40 +

(
x20 + x17 + x8 + x5

)
X38 +

(
x22 + x19 + x10 + x7

)
X36+(

x20 + x17 + x8 + x5
)
X35 +

(
x24 + x18 + x9 + x3 + 1

)
X34 +

(
x20 + x17 + x8 + x5

)
X32Y+(

x26 + x23 + x20y + x17y + x14 + x11 + x8y + x5y
)
X32 +

(
x24 + x18 + x9 + x3 + 1

)
X31+(

x25 + x19 + x10
)
X30 +

(
x24 + x18 + x9 + x3 + 1

)
X28Y+(

x24y + x24 + x18y + x18 + x9y + x9 + x6 + x3y + y + 1
)
X28 +

(
x25 + x19 + x10

)
X27+(

x26 + x20 + x11 + x8 + x5
)
X26 +

(
x25 + x19 + x10

)
X24Y +

(
x25y + x25 + x19y + x19 + x10y + x7

)
X24+(

x26 + x20 + x11 + x8 + x5
)
X23 +

(
x27 + x21 + x6

)
X22 +

(
x26 + x20 + x11 + x8 + x5

)
X20Y+(

x26y + x26 + x20y + x20 + x14 + x11y + x8y + x8 + x5y + x5
)
X20 +

(
x27 + x21 + x6

)
X19+(

x28 + x22 + x16 + x13 + x7
)
X18 +

(
x27 + x21 + x6

)
X16Y+(

x27y + x27 + x21y + x21 + x18 + x15 + x12 + x9 + x6y + x3 + 1
)
X16 +

(
x28 + x22 + x16 + x13 + x7

)
X15+(

x29 + x23 + x17 + x14 + x5
)
X14 +

(
x28 + x22 + x16 + x13 + x7

)
X12Y+(

x28y + x28 + x22y + x22 + x16y + x16 + x13y + x13 + x10 + x7y
)
X12 +

(
x29 + x23 + x17 + x14 + x5

)
X11+(

x30 + x24 + x18 + x15 + x3 + 1
)
X10 +

(
x29 + x23 + x17 + x14 + x5

)
X8Y+(

x29y + x29 + x23y + x23 + x20 + x17y + x14y + x11 + x8 + x5y
)
X8 +

(
x30 + x24 + x18 + x15 + x3 + 1

)
X7+(

x31 + x28 + x19 + x16
)
X6 +

(
x30 + x24 + x18 + x15 + x3 + 1

)
X4Y+(

x30y + x27 + x24y + x24 + x18y + x18 + x15y + x15 + x12 + x9 + x3y + x3 + y
)
X4+(

x31 + x28 + x19 + x16
)
X3 +

(
x31 + x28 + x19 + x16

)
Y + x34 + x31y + x28y + x25 + x19y + x19 + x16y.

The leading term of the numerator of E = (x24 + x18 + x9 + x3 + 1)F≤3,12 −
(x12 + x9 + x6 + x3 + 1)F<15 is

(x44 + x41 + x38 + x35 + x32 + x20 + x17 + x14 + x11 + x2)X38

so that the degree of E(d) is −(−80 + 44qd); since the degree of `d is −8(4d− 1)/3,
the degree of E(d)/`15

d is −(−40 + 4d+1) and thus as d tends to infinity, the error
tends to zero. �

Theorem 8.3. For A = F2[x, y]/(y2 + y + x5 + x3 + 1), we have

(x8 + x6 + x5 + x4 + x3 + x+ 1)ζ(1, 2) = (x6 + x5 + x3 + x+ 1)ζ(3).

Proof. We will now define several functions in F2(x, y,X, Y ), where x and X are
independent transcendentals and y2+y = x5+x3+1 and Y 2+Y = X5+X3+1. For
each function, say h, put h(1) for the function resulting from h after substituting
X2, Y 2 respectively for X,Y , and put h(d) ∈ K for the function resulting from

h after substituting x2d−2

and y2d−2

for X,Y . Put F1 = N1/D1, where D1 =
(X8 + x)(X16 + x+ 1) and

N1 = X15 + x2X14 + xX13 +
(
x3 + x

)
X12 + xX11 +X10Y +

(
x2 + x+ y

)
X10 + (x+ 1)X9

+ (x+ 1)X8Y +
(
x2 + xy + y + 1

)
X8 + xX7 +X6Y +

(
x2 + y

)
X6 + xX5 + xX4Y

+
(
x3 + xy + x

)
X4 + xX3 +

(
x3 + x2

)
X2 + xY + x4 + xy + x.

By Conjecture E in [T92, pa. 194] (which is now a theorem, see [A94]), we get
that `dSd(1) = F1(d). Next we will calculate F<1 in such a way that F<1(d) =
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`dS<d(1). From the identity S<d+1(1) = S<d(1) + Sd(1) we get

`d+1S<d+1(1) =
`d+1

`d
(`dS<d(1) + `dSd(1))

F<1(d+ 1) = g(d+ 1)(F<1(d) + F1(d)).

The Frobenius equation to be solved is F
(1)
<1 = g(1)(F<1 + F1). Let Z = (X8 +

x)(X16 + x+ 1)F<1. The equation to be solved now is

(X8 + x)(X16 + x+ 1)Z(1) = (N (1)
g )(Z +N1).

We put Z =
∑16
i=0 aiX

i+Y
∑10
j=0 bjX

j , and it is obtained a system of 107 equations

with 28 unknowns. The unique solution is Z = N<1, so that F<1 = N<1/((X
8 +

x)(X16 + x+ 1)), where

N<1 = x2 + x)X16 +X15 + (x2 + 1)X14 + xX13 + (x3 + x2 + x+ 1)X12 + xX11 +X10Y

+ (x2 + y)X10 + xX9 + (x+ 1)X8Y + (x3 + x2 + xy + y)X8 + (x+ 1)X7 +X6Y

+ (x2 + x+ y + 1)X6 +X5 + (x+ 1)X4Y + (x3 + xy + x+ y)X4 +X3 + (x3 + x2)X2 + Y

+ x4 + x2 + y.

Next we define F12 = F1F
2
<1. Then

`3dSd(1, 2) = (`dSd(1))(`dS<d(1))2 = F1(d)F<1(d)2 = F12(d).
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Explicitly, F12 = N12/D12, where D12 = (X8 + x)3(X16 + x+ 1)3 and N12 is(
x4 + x2

)
X47 +

(
x6 + x4

)
X46 +

(
x5 + x3 + 1

)
X45 +

(
x7 + x3 + x2

)
X44 +

(
x5 + x4 + x3 + x+ 1

)
X43

+
(
x4 + x2

)
X42Y +

(
x5 + x4y + x4 + x2y + x2 + x

)
X42 +

(
x4 + x3

)
X41 +

(
x5 + x4 + x3 + x2 + 1

)
X40Y

+
(
x7 + x6 + x5y + x5 + x4y + x4 + x3y + x3 + x2y + y + 1

)
X40 +

(
x6 + x4

)
X39 +

(
x2 + x

)
X38Y

+
(
x8 + x6 + x3 + x2y + x2 + xy

)
X38 +

(
x7 + x5 + x4 + 1

)
X37 +

(
x4 + x3 + x2 + x

)
X36Y

+
(
x9 + x7 + x6 + x4y + x4 + x3y + x2y + x2 + xy + x

)
X36 +

(
x7 + x2 + x+ 1

)
X35

+
(
x6 + x3 + x2 + x

)
X34Y +

(
x8 + x7 + x6y + x4 + x3y + x2y + xy + x

)
X34 +

(
x7 + x4 + x3 + x2

)
X33

+
(
x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

)
X32Y

+
(
x8 + x7y + x6y + x6 + x5y + x5 + x4y + x3y + x2y + x2 + xy + x+ y + 1

)
X32 +

(
x4 + x

)
X31

+
(
x6 + x5 + x4 + x3

)
X30Y +

(
x9 + x6y + x6 + x5y + x4y + x3y

)
X30 +

(
x8 + x6 + x4 + x3 + 1

)
X29

+
(
x7 + x6 + x5 + x2

)
X28Y +

(
x10 + x7y + x7 + x6y + x6 + x5y + x3 + x2y + x2

)
X28

+
(
x8 + x6 + x3 + x+ 1

)
X27 +

(
x7 + x6 + x5 + x4 + x2 + x

)
X26Y

+
(
x8 + x7y + x7 + x6y + x6 + x5y + x4y + x2y + xy + x

)
X26 +

(
x8 + x6 + x5 + x4 + x3 + x+ 1

)
X25

+
(
x8 + x7 + x5 + x3 + x2 + x+ 1

)
X24Y

+
(
x10 + x9 + x8y + x8 + x7y + x7 + x5y + x4 + x3y + x2y + xy + x+ y + 1

)
X24

+
(
x8 + x6 + x3 + x2 + 1

)
X23 +

(
x7 + x6 + x5 + x2

)
X22Y +

(
x8 + x7y + x6y + x5y + x5 + x3 + x2y + x

)
X22

+
(
x3 + x

)
X21 +

(
x8 + x7 + x4 + x3 + x2 + x+ 1

)
X20Y

+
(
x9 + x8y + x7y + x7 + x5 + x4y + x3y + x3 + x2y + xy + x+ y + 1

)
X20 +

(
x6 + x4 + x2 + x

)
X19

+
(
x7 + x6 + x4 + x

)
X18Y +

(
x10 + x9 + x7y + x6y + x6 + x5 + x4y + x4 + x3 + xy

)
X18

+
(
x8 + x7 + x5 + x3 + x2 + x+ 1

)
X17 +

(
x7 + x6 + x4 + x3

)
X16Y

+
(
x11 + x10 + x7y + x7 + x6y + x4y + x4 + x3y + x3

)
X16 +

(
x6 + x5 + x4 + x

)
X15

+
(
x7 + x3 + x2 + x

)
X14Y

+
(
x10 + x9 + x8 + x7y + x7 + x6 + x5 + x4 + x3y + x3 + x2y + xy + x

)
X14

+
(
x9 + x8 + x6 + x5 + x4 + x2 + 1

)
X13 +

(
x8 + x5 + 1

)
X12Y

+
(
x11 + x10 + x9 + x8y + x8 + x7 + x5y + x5 + x4 + x3 + x+ y + 1

)
X12 +

(
x9 + x8 + x4 + x3 + 1

)
X11

+
(
x8 + x6 + x4 + x+ 1

)
X10Y +

(
x9 + x8y + x7 + x6y + x5 + x4y + x4 + xy + y

)
X10

+
(
x9 + x8 + x7 + x6 + x5 + x2 + x+ 1

)
X9 +

(
x9 + x5 + x2 + x

)
X8Y

+
(
x11 + x9y + x9 + x8 + x7 + x6 + x5y + x2y + x2 + xy

)
X8 +

(
x9 + x7 + x6 + x4 + x2

)
X7

+
(
x8 + x5 + x4 + x3 + x2 + x+ 1

)
X6Y

+
(
x10 + x9 + x8y + x8 + x5y + x4y + x4 + x3y + x3 + x2y + xy + y

)
X6

+
(
x9 + x6 + x5 + x3 + x2

)
X5 +

(
x9 + x7 + x6 + x4 + x3

)
X4Y

+
(
x11 + x10 + x9y + x9 + x7y + x6y + x6 + x4y + x3y

)
X4 +

(
x9 + x6 + x5

)
X3 +

(
x3 + x2

)
X2Y

+
(
x11 + x10 + x8 + x5 + x3y + x2y

)
X2 +

(
x9 + x6 + x5

)
Y + x12 + x9y + x8 + x7 + x6y + x5y + x5.

Now, we calculate F≤12 such that F≤12(d) = `3dS≤d(1, 2) by using the identity

recursion F
(1)
≤12 − (g(1))3F≤12 = F

(1)
12 . Let Z = (X8 + x)3(X16 + x+ 1)3F≤12. The
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equation to be solved is

(X8 + x)3(X16 + x+ 1)3(Z(1) −N (1)
12 ) = (N (1)

g )3Z.

Put Z =
∑48
i=0 aiX

i + Y
∑40
j=0 bjX

j . This gives a system of 329 equations in 90

unknowns. The unique solution implies that F≤12 = N≤12/D≤12, where D≤12 =
(x2 + x)(X8 + x)3(X16 + x+ 1)3), and N≤12 is(
x6 + x5 + x3 + x+ 1

)
X48 +

(
x6 + x5 + x4 + x3

)
X46 +

(
x8 + x7 + x4 + x3

)
X44

+
(
x7 + x6 + x5 + x4 + x2 + x

)
X42 +

(
x6 + x5 + x4 + x3

)
X41 +

(
x9 + x7 + x6 + x4 + x3 + x+ 1

)
X40

+
(
x6 + x5 + x4 + x3

)
X39 +

(
x7 + x6 + x5 + x

)
X38 +

(
x7 + x3 + x2 + x

)
X37 +

(
x6 + x5 + x4 + x3

)
X36Y

+
(
x8 + x7 + x6y + x5y + x5 + x4y + x3y + x

)
X36 +

(
x7 + x3 + x2 + x

)
X35

+
(
x7 + x6 + x4 + x3 + x2 + x

)
X34 +

(
x6 + x5 + x3 + x2

)
X33 +

(
x7 + x3 + x2 + x

)
X32Y

+
(
x9 + x7y + x7 + x6 + x5 + x4 + x3y + x2y + xy + x+ 1

)
X32 +

(
x6 + x5 + x3 + x2

)
X31 +

(
x8 + x

)
X30

+
(
x7 + x5 + x4 + x

)
X29 +

(
x6 + x5 + x3 + x2

)
X28Y

+
(
x10 + x9 + x8 + x6y + x5y + x3y + x3 + x2y + x2 + x+ 1

)
X28 +

(
x7 + x5 + x4 + x

)
X27

+
(
x9 + x8 + x6 + x5 + x4 + x3

)
X26 +

(
x8 + x7 + x5 + x4

)
X25 +

(
x7 + x5 + x4 + x

)
X24Y

+
(
x11 + x10 + x9 + x7y + x5y + x4y + x3 + x2 + xy

)
X24 +

(
x8 + x7 + x5 + x4

)
X23

+
(
x9 + x6 + x5 + x4 + x3 + x

)
X22 +

(
x9 + x7 + x6 + x3

)
X21 +

(
x8 + x7 + x5 + x4

)
X20Y

+
(
x9 + x8y + x8 + x7y + x7 + x6 + x5y + x5 + x4y + x3 + x2 + 1

)
X20 +

(
x9 + x7 + x6 + x3

)
X19

+
(
x8 + x6 + x5 + x3 + x2 + x+ 1

)
X18 +

(
x7 + x5 + x4 + x

)
X17 +

(
x9 + x7 + x6 + x3

)
X16Y

+
(
x11 + x10 + x9y + x8 + x7y + x6y + x4 + x3y + x2 + x

)
X16 +

(
x7 + x5 + x4 + x

)
X15

+
(
x9 + x7 + x3 + x+ 1

)
X14 +

(
x8 + x7 + x6 + x4 + x3 + x2 + 1

)
X13 +

(
x7 + x5 + x4 + x

)
X12Y

+
(
x11 + x10 + x9 + x7y + x7 + x5y + x4y + x3 + xy

)
X12 +

(
x8 + x7 + x6 + x4 + x3 + x2 + 1

)
X11

+
(
x10 + x9 + x7 + x4 + x3 + x2 + x

)
X10 +

(
x9 + x8 + x6 + x4 + x2 + x

)
X9

+
(
x8 + x7 + x6 + x4 + x3 + x2 + 1

)
X8Y

+
(
x12 + x11 + x9 + x8y + x8 + x7y + x6y + x6 + x5 + x4y + x4 + x3y + x3 + x2y + y

)
X8

+
(
x9 + x8 + x6 + x4 + x2 + x

)
X7 +

(
x10 + x8 + x7 + x6 + x3

)
X6 +

(
x10 + x8 + x7 + x6 + x3

)
X5

+
(
x9 + x8 + x6 + x4 + x2 + x

)
X4Y +

(
x9y + x9 + x8y + x8 + x6y + x5 + x4y + x4 + x2y + xy

)
X4

+
(
x10 + x8 + x7 + x6 + x3

)
X3 +

(
x10 + x8 + x7 + x6 + x3

)
Y

+ x12 + x11 + x10y + x10 + x8y + x7y + x7 + x6y + x3y.

We first calculate F3, such that F3(d) = `3dSd(3). Since

F<1(d) = `dS<d(1) =
`2dAd1

`dAd0
,

it follows that `2dAd1 = (`dAd0)(`dS<d(1)) = F1(d)F<1(d).

`3dSd(3) = `dAd0(`2dAd1 + (`dAd0)2) = F1(d)(F1(d)F<1(d) + F1(d)2).

We then define F3 = F 2
1F<1 + F 3

1 .



ZETA-LIKE MULTIZETA VALUES 21

Finally, F<3 is calculated such that F<3(d) = `3dS<d(3). In a similar way as F<1

was obtained, we obtain the equation

F
(1)
<3 = (g(1))3(F<3 + F3).

Making the change of variable Z = (X8 + x)3(X16 + x+ 1)3F<3 we obtain (X8 +

x)3(X16 + x + 1)3Z = (N
(1)
g )3(Z + N3). We put Z =

∑48
i=0 aiX

i + Y
∑45
j=0 bjX

j

and obtaing a system of 334 equations with 95 unknowns. Then F<3 = N<3/D<3,
where D<3 = ((x2 + x)(X8 + x)3(X16 + x+ 1)3 and N<3 is(
x8 + x6 + x5 + x4 + x3 + x+ 1

)
X48 +

(
x4 + x2

)
X46 +

(
x8 + x6 + x4 + x

)
X44

+
(
x5 + x3 + x2 + x

)
X42 +

(
x4 + x2

)
X41 +

(
x10 + x7 + x3 + x2 + 1

)
X40 +

(
x4 + x2

)
X39

+
(
x8 + x6 + x2 + x

)
X38 +

(
x5 + x4 + x3 + x

)
X37 +

(
x4 + x2

)
X36Y

+
(
x10 + x9 + x8 + x7 + x5 + x4y + x4 + x2y

)
X36 +

(
x5 + x4 + x3 + x

)
X35

+
(
x9 + x8 + x7 + x6 + x5 + x3 + x2 + x

)
X34 +

(
x8 + x6 + x5 + x4 + x3 + x2

)
X33

+
(
x5 + x4 + x3 + x

)
X32Y +

(
x8 + x7 + x6 + x5y + x4y + x4 + x3y + x3 + x2 + xy + 1

)
X32

+
(
x8 + x6 + x5 + x4 + x3 + x2

)
X31 +

(
x4 + x

)
X30 +

(
x9 + x7 + x4 + x

)
X29

+
(
x8 + x6 + x5 + x4 + x3 + x2

)
X28Y

+
(
x11 + x8y + x7 + x6y + x6 + x5y + x5 + x4y + x4 + x3y + x3 + x2y + 1

)
X28

+
(
x9 + x7 + x4 + x

)
X27 +

(
x10 + x9 + x8 + x5 + x3 + x2

)
X26 +

(
x9 + x7

)
X25

+
(
x9 + x7 + x4 + x

)
X24Y

+
(
x12 + x9y + x9 + x8 + x7y + x7 + x6 + x5 + x4y + x4 + x3 + x2 + xy

)
X24 +

(
x9 + x7

)
X23

+
(
x10 + x9 + x5 + x4 + x3 + x

)
X22 +

(
x10 + x8 + x7 + x5 + x3 + x2

)
X21 +

(
x9 + x7

)
X20Y

+
(
x11 + x9y + x9 + x7y + x5 + x4 + x+ 1

)
X20 +

(
x10 + x8 + x7 + x5 + x3 + x2

)
X19

+
(
x10 + x+ 1

)
X18 +

(
x9 + x8 + x7 + x4 + x2 + x

)
X17 +

(
x10 + x8 + x7 + x5 + x3 + x2

)
X16Y

+
(
x10y + x8y + x7y + x7 + x5y + x5 + x4 + x3y + x3 + x2y

)
X16 +

(
x9 + x8 + x7 + x4 + x2 + x

)
X15

+
(
x6 + x5 + x4 + x2 + 1

)
X14 +

(
x10 + x9 + x8 + x7 + x4 + x2 + 1

)
X13

+
(
x9 + x8 + x7 + x4 + x2 + x

)
X12Y

+
(
x12 + x11 + x10 + x9y + x8y + x8 + x7y + x7 + x5 + x4y + x4 + x2y + x2 + xy + x

)
X12

+
(
x10 + x9 + x8 + x7 + x4 + x2 + 1

)
X11 +

(
x11 + x8 + x7 + x2 + x

)
X10

+
(
x10 + x9 + x8 + x7 + x6 + x5

)
X9 +

(
x10 + x9 + x8 + x7 + x4 + x2 + 1

)
X8Y

+
(
x13 + x10y + x9y + x9 + x8y + x8 + x7y + x7 + x6 + x4y + x3 + x2y + y

)
X8

+
(
x10 + x9 + x8 + x7 + x6 + x5

)
X7 +

(
x11 + x10 + x9 + x6 + x5 + x2 + x

)
X6

+
(
x11 + x10 + x9 + x6 + x5 + x2 + x

)
X5 +

(
x10 + x9 + x8 + x7 + x6 + x5

)
X4Y

+
(
x10y + x10 + x9y + x9 + x8y + x8 + x7y + x7 + x6y + x5y

)
X4

+
(
x11 + x10 + x9 + x6 + x5 + x2 + x

)
X3 +

(
x11 + x10 + x9 + x6 + x5 + x2 + x

)
Y

+ x11y + x11 + x10y + x9y + x9 + x7 + x6y + x6 + x5y + x5 + x4 + x2y + xy.

Notice that denominators of F≤12 and F<3 match. The leading term of (x8 +
x6 + x5 + x4 + x3 + x+ 1)N≤12 − (x6 + x5 + x3 + x+ 1)N<3 is (x14 + x13 + x11 +
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x9 + x7 + x6 + x4 + x2)X46, so that the degree of E(d) = (x8 + x6 + x5 + x4 + x3 +
x + 1)F≤12(d) − (x6 + x5 + x3 + x + 1)F<3(d) for d ≥ 3 is −(−24 + 52 × 2d−2);
since the degree of `d is −(2d+2 − 2) the degree of E(d)/`3d is −(−12 + 2d) (d ≥ 2);
therefore, (x8 + x6 + x5 + x4 + x3 + x+ 1)S≤d(1, 2)− (x6 + x5 + x3 + x+ 1)S<3(d)
tends to zero as d tends to infinity. �

Finally, we take this opportunity to record corrections in normalizations in
[T93][Pa. 561], when the degree δ of the infinite place is more than one: In 0.3.7,

replace 2∞ there by ∞(−2) +∞(−1) and normalize the differential ω by requiring
the residue of ω(1)/f at ∞(−1) be 1. In 0.3.5 recipe, we just drop the implied claim
that the resulting Drinfeld module ρ is sgn-normalized (when δ > 1). We are not
aware of any mistakes in the literature resulting from this, as the usage (as in this
paper) so far seems to be limited to the case δ = 1. We also record that for the
Hopf algebra alluded to in [T17][Pa. 1006], associativity and co-associativity is still
conjectural with a lot of computational evidence, and in [T17][Thm. 10.1] the entry
A[vn] should be A[ζvn ].

Acknowledgments. The second author thanks Max Planck Institute in Math-
ematics, Bonn for its support when he conducted this research. Theorem 3.4 was
first announced in October 2019 at his MPI seminar.
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