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Abstract. We develop the theory of hypergeometric functions introduced
in [6] further by explaining the non-commutative and differential equations
aspects and various analogies satisfied by it. In particular, we give analogue
of Kummer’s solutions at oo, by defining a suitable analogue of (a)—,. The
analogies do not always work as expected naively.

0. Introduction

This paper is a sequel to [6], where we introduced and studied hyperge-
ometric functions in the setting of function fields over finite fields. We
showed that they satisfy analogues of Gauss differential equations, have
integral representations, satisfy good transformation formulae, have in-
teresting continued fractions and that analogues of various special func-
tions and orthogonal polynomials occur as their specializations. In fact,
there were two analogues: . F; with the parameters a, b, ¢ etc in a char-
acteristic zero domain and ,.JF; with parameters in a characteristic p
domain. (We just recall here that there are also two analogues of cyclo-
tomic theory, gamma functions etc.)
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To make this paper reasonably self-contained, we will recall the
notation and some basic analogies, but leaving more analogies and mo-
tivation, including the connection to the theory of Drinfeld modules, to
(6]. We will use the same notation, except we write d, for dp there.

The g-analogues of the classical hypergeometric series are obtained
when n is replaced by ¢" in a certain fashion. At this naive level, the
A := TF,[t] analogue seems to be [n] := $9" — ¢ or just t7" . Let us define
the basic building blocks:

dy:i=1l:=1, d,:= [n}d?l_l, = —[n]l,,_l n>1. (1)
0 Zqi ) zqi

e(z) := Z T I(z) := E T (2)
i=0 ° i=0 ?

We note here that e(z) and [(z) are the exponential and the logarithm
of the Carlitz module respectively and d; is the Carlitz factorial of ¢*.
But (see 2.3 of [6)) note that d; = [¢]([i] — [1]) - - - ([¢] — [¢ — 1]) and hence
can be regarded as ‘factorial’ of . This naive analogy is justified in (1]
where the factorials are associated to a subset X of a Dedekind ring
R, and d; turns out to be the value at i of the factorial associated to
Pa= {t"j :j>0}or X ={[j] : 7 > 0} and R = I[t] (as well as the
value at ¢* for X = R = F,[t]).

Finally we recall the definition of the first analogue of the hyperge-
ometric series: Let
a0 ifa>1
(@n=191/9_ ifn<-a>0 ()
0 ifn>-a2>0
and for a;, b; € Z (for which it makes sense, see 2.2 of [6]), we define the
first analogue by

rFs = rFa(ala' "yar;bls' ",bs;Z) = Z (g:l;)n:ib(a)r); zq"' (4)

Let us also introduce the second analogue, with which we deal only in
3.2. Let £ be the completion of an algebraic closure of F,((1/t)) (our

n=0
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analogue of the field of complex numbers).

(2)i ==el2):= [] (z-a). (5)

a€A
dega<1

For a;, b; € Q for which it makes sense [6], we define the second analogue
by

o0

We will concentrate on F := ,F} and F := »F; and leave it to the reader
to see what generalizes to ,.F, and ,F, in a similar fashion.

n=0

Finally, we also need to recall the following analogue of the binomial
coefficients and the Carlitz module:

(=22

k=0 dklgfk
dega a qi g
Co(2) := Z g 2%, a€ A (8)
i=0

In the first section, we make explicit the non-commutative and differ-
ential aspects implicit in [6], in the second section, we analyze the con-
vergence and other solutions of our analogue of the Gauss differential
equation, in particular, we define {a)_, and give analogue of Kummer
solutions at co. In the last section, we work out some more properties
and mention some open problems.

1. Functions and Differential Operators

1.1. We will be concerned with F,-linear polynomials or power series
in z, with coefficients in 2. These form a non-commutative ring un-
der composition and we identify them with Q{r} or Q{{r}}, the (non-
commutative) polynomial or power series rings respectively, where the
commutation relation is 7w = w9 for w € 2. Sometimes we also use

= . . . — -1 __
7-! with obvious meaning: 77w = w? 7L
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1.2. The (non-commutative) ring of differential operators for us is D :=
Q{r,d.}, with commutation relations

TW = qu: d,w = wq_ldr, d,7—71d, = _[‘.1].

1.3. The action of D on the functions is the obvious one, except perhaps
for d (3 ant™) := 3 ak/%[n]!/97"~1. We note that d,(f + g) = d.(f) +
d.(g) and d, (wf) = w'/d,(f) and d,(fw) = d.{f)w, for w € Q. Recall
that A = 7d, and A, = A—[—a] (for a € Z). Note that A is a derivation.
In fact, A is just a commutator with ¢ (or any generator ¢ +a, a € F, of
F,{t] over I;). The operators A,’s commute among themselves and with
the constants. We have A,7 = 7Aq4; andso d¥f =77 %Ag- - Aj_y.

The motivation (and analogies) for all this is explained in [6]. We
just note that A, is an analogue of zd/dz + a, d, is an analogue of d/dz.

2. Solutions of Gauss Equation

2.1. In [6], we showed that y = o F)(a, b; c; 2) satisfies the Gauss differ-
ential equation (19) of [6]:
DeBpy =drAcry (9)
or equivalently,
(1 =7)7d? + (=[-¢] + ([-1]7 + [~b] + [~c])r)d: — [—a][-b])y = 0.

Now we study solutions of (1) more systematically. First we seek the
solutions of the formy =3 2?7 Equating the coefficients of 2! ,
we get the indicial equation [g+c—1)7 "[g]7” = 0 analogous to (1.3.3)
of (5], which shows that g = 0 or g = 1 — c. Further,

—a+1 -b+1
o Intgtal In+g+b)e . (10)
n+l (n+g+c]q—c+l [n+g+ 1] n

In 3.1 of [6], we gave two solutions F(a, b; ¢; 2) and F(1+a—c,1+b~c; 2—
c;z)"l-c corresponding two g’s which correspond to a particular choice
of ¢o. As noted there and in 1.3, d, is right linear, but not left linear, so
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together with solution y(z) we get solutions y(6z) depending on choice
of ¢g, in contrast to the classical case where we get 8y(z). (Of course,
for special cases such as y(z) = 29", eg. with ¢ = —n, ¢ = 1 — n both
are equivalent.) In particular, if we think of these solutions as functions
(rather than non-commutative formal power series in 7) the radius of
convergence is affected by the choice of c;.

2.2. Radius of convergence: F(a,b,c; z) makes sense in some region if
¢ > 0 (so one of the two solutions in 2.1 is always defined), when it is
an honest power series if a,b > 0 and a polynomial (terminating case)
otherwise, or if c < a < 0 or ¢ < b < 0, when it is a polynomial (with
standard conventions, when ¢ = b, there are two ways to interpret the
series: either as a series truncating at the appropriate place or as 1 Fo.
Both are good options). We now state the radius of convergence (in the
non-terminating case) both oo-adically and gp-adically. At oo, the results
follow from the explicit formula above by the calculation of degrees of
coefficients. At p, a prime of A of degree d, we have only to note that
p divides (to the exponent one then) [n] iff d divides n. We omit the
straight-forward calculations.

2.2.1. At oco: For F the radius of convergence is ¢°*!1 %% 5o that for
other solutions F'(z) the radius is ge*!1=¢~b+degé [n particular, if we
choose ¢g =1 in (2), then we get the radius to be 1.

2.2.2. At p: For F the radius of convergence is 1 for any g, so that for
other solutions F(z) it is ¢**'#%. In particular, if we choose cp=1in
(2), then we get the radius to be 1 for g of large enough (depending on
a, b, c) degree.

2.3. Kummer solutions: Kummer gave six different series solutions to
Gauss equation, two each at 0, 1 and oco. (See 1.3 of [5]). We now look
for analogues of those. In 2.1, we have mentioned the solution at z = 0.
Solutions around z = 1 or z = oo involve typically power series in (z— 1)
or 1/z. We note that (z — 1)¢" or 279" are not linear functions. We do
not know how to make a good sense of Kummer solution at 1, but to
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look at ‘solutions around infinity’ we rather look at 77" i.e we seek a
solution of Gauss equation of the form y = ) caz? "M 1t is easy to
verify that parallel to Kummer’s solutions (—2) %2 Fi(a,1+a—¢; 1+a—
b;1/z) and (~2) %2 F1(b,1 4 b - ¢;1+ b — a;1/z) we have the solutions
Fla,1+a-¢l+a- b,2)7 " and F(b,1+b—c;1+b~ a;z:)""_‘> with

F(a,b;c; 2) = Z (((zc):)'"’fg?;" i SRR (11)

n=0
where for n > 0,a € Z we have put
-n
Iﬁﬂ ,  ife>1
(a)—n = / L ifn<—-a=>0 (12)
0 ifn>—-a2>20

and d_, = (1)-p = 197", We note some immediate consequences of
these definitions:

(@net = [-n—al" (@7, (13)
(@)-n = (a+1)7 oy, fora 0, (14)
(@+1)_p:=[-n—a]" (a)-n for a #0. (15)

Secondly, if a,b,¢ > 0, these are only formal solutions, since straight
valuation calculation shows that the series converges only for z = 0,
both at oo or p. On the other hand, we get honest solutions in the
terminating cases. But note that in that case, we do not get any new
solution than ones listed in 2.1.

2.4. The notation (a)_, clashes with the earlier notation (a)n when
n = 0 and that means if we want to consider a bilateral series, we need
to choose ¢y appropriately to get the same term for n = 0.

3. More Properties

3.1. Contiguous relations and orthogonal polynomials: Classically, many
orthogonal polynomials can be obtained by simple specializations of
the hypergeometric series. In 3.5 of (6], we showed that analogues by
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Carlitz [2, 3] of binomial coefficients, Jacobi and Legendre polynomi-
als etc. come as simple specializations of our hypergeometric functions.
Carlitz has given several reasons for such analogies in [2, 3]. But we
now examine for them one crucial property that holds for classical or-
thogonal polynomials: they satisfy a three term recursion relation of
the type pny1(z) = (an + bn)pa(z) + cppn-1(z) and conversely se-
quence of polynomials satisfying such recursion (with mild sign condi-
tions on a;, b;, ¢;) gives orthogonal polynomials for some inner product
by Favard’s theorem. By analogy, we would expect a relation of the
form py41(2) = (an7 + bs)pn(2) + cnpn—1(2) for our ‘linear’ orthogonal
polynomials p,, of degree ¢™. In fact, for any reasonable notion of inner
product for which 7 is self-adjoint, we are forced to this by imitating the
classical proof.

Now by (27) of [6], the binomial coefficients do indeed satisfy such
relation, even with ¢, = 0. But by (29) and (30) of {6], the particular
form for the specializations there show that the three term relations
there are just contiguous relations (of type 1.4.1 of [5]) for F, namely
the relations as in 3.3 of (6] between F, F(a+1) and F(a— 1). A straight
calculation gives the contiguous relation of the form A(1—7)F(a+1) =
(BT +C)F(a) + DF(a — 1), which translates for P,, := P{™*) of (29) of
(6] as Pryi = (@nT + bp)Ppn + a1l — T}Pp_1 with ¢, # 0.

3.2. Integral formula: Classically, we have well-known integral formula
of Euler for F:

L(c) e c—b— -a
I‘(b)I‘(c—b)/o 2711 — )70 1(1 - zt)~dt.

In essence, it is obtained via the integral formula (a consequence of

F(a,byc;2) =

Cauchy’s residue theorem for appropriate contour C)

1 dw
(o9& = 57 [ Hwigtaru) o
for the Hadamard convolution

(fog)(z) = anbaz™if f(z) = Y an2",g(2) = Y bn2”
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because F(a, b; ¢; z) is Hadamard convolution (term by term product) of
Y (a)n/nlz" = (1 — 2)7° and Y (b)n/(c)nz™ which is essentially up to
multiplying by 2z~ ¢ can be realized as a shifted version of the first series.

For our second analogue, we do have ((32) of [6]) >(a)a/ (1)n27" =
e(a(l(2)), an analogue of e(alog(l — 2)) = (1 — 2)%, but we do not
know yet how to interpret the second series as a shifted version. But
in the special case b = ¢, the series is just Y29 = (1-7)"1(2) in
contrast to the classical 37z" = (1 — 2)~'. In this case, Hadamard
integral just reduces to the Cauchy integral. We do get similar integral
formula for F(a, b; b; z) case, because the first series being linear, we may
use 3. 2" = (1~ z)~! in place of our Yz,

For the first analogue, we get Hadamard convolution integrals for
F(—m,b;b; z) and F(—m, —n; 1; 2), by realizing them as convolutions of
binomial coefficients ((27) of [6]) rather than of full binomial series!

Now instead of looking at the negative parameters, let us look at the
positive parameters: Let us first compare }-(a)n/(1)27" with 1-7)"°
in analogy with the classical case. We have already noted that fora =1
we do get (1 — 7)~1. By (13) and (17) of [6], we have

S @0/ (D™ = Bacr -+ Ay 37"

whose analogue would be just (zd/dz+a—1)- - (2d/dz+1)(1— =
(a — 1)I(1 — 2)°. Similarly, Y (b)n/(c)a7™ can be realized by (12) of
[6], which implies that 7€ 1(c)n = (Vn4c—17 1, as 717 (b —c+
1)n/(1)n7 essentially (plus a correction term which goes away anyway
taking Hadamard convolution, just as in the classical case). This would
be a good analogue of integral formula then, except that because of our
non-commutative rules the sum under consideration is not really ‘(a —
1)!(1-7)~1". For example, for a = 2, Ay (1-7)7" = (1-7) ") (= [-1])(1-
)L

3.3. Summation formula: The zeros of F satisfied interesting analogy in
3.7 of [6]. Now (32) of [6] specializes to e{a({(1))) = Ca(1), fora € A
and this is zero iff ¢ = 2 and a is a multiple of % + ¢.
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3.4. Continued fractions: In addition to the generalized continued frac-
tions for the hypergeometric functions in 3.6 of [6], we refer to Section
6 of [7] for evaluation of some interesting simple continued fractions
in terms of hypergeometric functions, in spirit of Lehmer’s results on
classical hypergeometric functions.

3.5. Open questions: The theory and literature on hypergeometric and
g-hypergeometric functions is vast, so there are indeed a huge number
of open questions. But we have focused on only the simplest properties
and it seems that the main open question is that of geometric interpre-
tation. Since historically hypergeometric functions and especially their
g-analogues also got backed by solid mathematical structures (such as
quantum groups) much later, we are hopeful that a good geometric un-
derstanding of the hypergeometric functions, integral formulas etc. will
emerge.

Another important issue is what happens when the two solutions
in series around zero coincide (i.e., when ¢ = 1). Classically one gets a
logarithm function from the bigger space of functions than serics around
zero. What should be a good space to look at, when there is only one
F,-linear series solution? Are Kummer solutions at other points to be
found in such spaces? May be the formal solutions we found are related
to actual solutions in bigger function spaces, analogous to the classical
Stokes line phenomenon.

Finally, is there an interesting p-adic (or p-adic) theory analogous
to Dwork’s theory [4]?
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