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Gamma functions for function fields and
Drinfeld modules

By Dinesn S. Taakur™

Introduction

The purpose of this paper is to study gamma functions in the context of the
theory of function fields of one variable over a finite field. In particular, we
explore, among other things, their connection with the theory of Drinfeld
modules of rank one (which is function field cyclotomic theory), their interpola-
tions, functional equations, the nature of their special values (transcendence,
algebraicity, connection with “periods”) and various analogies. Most of the facts
about the classical gamma function are recalled when necessary. Readers may
refer to [G-K] or Artin’s book on the classical gamma function.

Now we describe more precisely the contents of this paper. Let F, be a
finite field of characteristic p. Section 0 covers the background material on
Drinfeld modules. It also describes the gamma function I' for Fq[T] (with
domain N and with values in F,[T]) introduced by Carlitz and its interpolations
I, T, (with domain Z,, and with values in the completions of F,(T) at its infinite
and finite places respectively) due to Goss. In Section 1, we relate this gamma
function to the Carlitz module (which is a special Drinfeld F,[T ]-module) by
showing essentially that

T(0)=# T(1/2)=V7,

where 7 is a period of the Carlitz module (the analogue of 21ri), and putting a
bar over a quantity which “removes the degree part”. The second (first) of the
equations stated above, is in analogy to (in contrast to) what we know about
usual gamma functions. We also recall results of [T2], [T3] (relating special
values of T, to Gauss sums of [T2], [T3]), a weak corollary of which gives values
of T,(0) and I,(1/2) for example. In the third and fourth sections we define
gamma functions for function fields and interpolate them at all places by finding
a suitable generalization of constructions of Carlitz and Goss and prove analo-
gous results about the special values. Following a suggestion of Gekeler, we also
include the degree part of the gamma function.

*Supported in part by NSF grant DMS 8610730C2.
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The second section proves functional equations for these gamma functions,
giving in particular, analogues of the reflection and the multiplication formula.
The functional equations turn out to be equivalent to some relations between
digit expansions of certain combinations of p-adic numbers. Material in Sections
0—4 formed a part of the author’s thesis [T2].

The gamma function considered in this part has domain in characteristic
zero and it reflects arithmetic of cyclotomic extensions which are constant field
extensions. In Section 5, we introduce another gamma function with domain
(and range) in characteristic p, now reflecting the cyclotomic theory of Carlitz-
Hayes-Drinfeld and we interpolate it at all places. In Section 6, we prove
functional equations for this gamma function (at all places). One interesting
consequence is transcendence of values of gamma at all proper fractions and
algebraicity of values of v-adic gamma at all fractions when g = 2. The seventh
section analyses these results and tries to put the visible analogies studied so far
in a better framework of brackets ( ) and partial zeta functions, following a
suggestion by Anderson (see [A1] and references there). Section 8 studies similar
questions for a two variable gamma function of Goss [Go3], of which the two
types of gamma functions studied above are essentially specializations. The last
section contains miscellaneous comments, analogies and partial results verifying
special cases of Chowla-Selberg phenomena for one and two variable gamma
functions.

It should be noted that we only have partial results on analogues of
Chowla-Selberg and Gross-Koblitz formulae. Also, the analogue of Deligne’s
theorem we prove gives trivial Hecke characters. It seems that recent results of
Greg Anderson (private communication) will provide complete results covering
also the relations to the higher-dimensional generalizations of Drinfeld modules
studied in [A2].

Warning on the notation. Symbols I, T, T, 7, D,,{ ) etc. signify different
objects according to the context. This has been done to avoid cumbersome
notation and to make analogies more visible. The change of notation will be
made explicit each time. We follow the standard convention where the empty
sum evaluates to zero and the empty product evaluates to one. A prime over the
summation or the product symbols means that the variable runs only through

nonzero values.
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0. Background

This section describes the work of Carlitz, Drinfeld and Goss relevant to
this paper. More precisely, we explain the basic set-up of Drinfeld modules and
describe the gamma function for F,[T] introduced by Carlitz and its interpola-
tions due to Goss.

0.1. Drinfeld modules (for more details, see [Dr], [Ge)).
0.1.0. Let K be a function field of one variable with field of constants
k =.F, (where g is a power of a prime p); let « be a place of K, & be the
residue class degree of ®, A be the ring of integers outside » of K, K, be
the completion of K at o, k,, be the field of constants F,: of K, and €} be the
completion of an algebraic closure of K. It will be useful to keep in mind
analogies

KeQ, AoZ K, oR QocC.

For z € K, let deg(z) = —& ord (z). For a subfield L of Q, L*** will denote
the separable closure of L inside (). '

0.1.1. Drinfeld introduced the key concept of an elliptic module (also
called a Drinfeld module) in the theory of function fields. A Drinfeld module is
an analogue of the multiplicative group, elliptic curve or of an elliptic curve with
complex multiplication. To motivate the definition, we recall that classically an
elliptic curve is just C/A where the lattice A is a rank two Z-submodule of C.
Similarly, C*= C/A with A being a rank one Z-submodule of C. For a finite
extension L, inside (), of K, a lattice A over L will be, by definition, a finitely
generated discrete A-submodule in L°°P, invariant with respect to Gal(L**® /L).
An important point, though irrelevant for this paper, is that, in contrast to the
classical case, lattices of arbitrary rank exist.

0.1.2. Given such a lattice A, the corresponding exponential function
(the analogue of exponential, sine or Weierstrass o-functions)

ez) =z [T (1=2/%)

is an entire additive function and induces a group isomorphism /A = ().
Since A is an A module, we obtain ) as an A module. In fact, for a € A,
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a # 0, by comparing divisors, we see that

enaz) =c [T (ea(z) = ea(D)) = pu(en(2))
be(l/a)A/A
where p, is a polynomial function and ¢ € ().
From the analytic object /A, we extracted a nice algebraic object p. It
gives an A-module structure on the additive group scheme G, i.e., a nontrivial
embedding

p: A - End; G, = L{F}

where L{F} is a twisted polynomial ring in the Frobenius, ie., the ring
generated by elements of L and by F with the commutation relation FIl = [PF.
Also, the constant term of p, is just a. This leads to:

Definition 0.1.3. Let i: A = L be an embedding of A in a field L. The
elliptic (or Drinfeld) A-module (“of generic characteristic” according to the
standard terminology; but we will drop this phrase, as we will have no occasion
to use the more general notion) over L is a homomorphism p: A — L{F},
(a = p,) such that the constant term of p, is just i(a) and p is not just
i: A »> L C L{F} (the nontriviality condition).

0.1.4. This is analogous to “elliptic curve over L with complex multi-
plication by A”. One should keep in mind the classical situations Z — End G,,,
Z — End E, where E is an elliptic curve, and &, — End E (where F is an
imaginary quadratic field and E is a complex multiplication elliptic curve). (In
the first case, n € Z acts by the n-th power map, which is reflected in the
functional equation (¢*)" = ¢"*. Compare with the functional equation for e, in
0.1.2.)

Definition 0.1.5. Let p, p’ be Drinfeld A-modules over L.

(1) An isomorphism (isogeny resp.) over L from p to p’ is a nonzero
element w € L™ (u € L{F} resp.) such that up, = p’,u for a € A.

(2) If the degree of p, (viewed as polynomial in F) is —r(deg a)(log, q)
for all a € A, then we say that p has rank r.

It can be shown that, for any Drinfeld module p such an r exists and is a
natural number. Drinfeld showed (see [Dr] for the definitions of the categories
mentioned below):

Prorosition 0.1.6. If L is a finite extension of K, then the category of
elliptic A-modules of rank r over L is isomorphic to the category of A-lattices of
rank r over L. (So, in particular, there exist elliptic A-modules of arbitrary rank
over K5P))
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0.1.7. We have already described how to pass from A to p = p* via
ey = e, On the other hand, given p, we can essentially solve for e, via
e (az) = p (e (z)) (with any nonconstant a) and then recover A as Ker e,

0.2. The special case.

0.2.0. Some forty years before Drinfeld defined the general notion, by
different considerations, Carlitz [C1] came across the Fq[T]-module over Fq(T)
given by T — p; = T — F (T being the generator of F,[T], p is well-defined as
an F -algebra homomorphism). Also F is now the “g-th power Frobenius”
(abuse of notation).

Following Carlitz, define [i], D, (Carlitz used F, in place of now-standard
D,) for nonnegative integers i by

1

[i]]=T9-T, D,=1, D,= [i]D{,.

He showed that the exponential corresponding to p is given by

0 W

)= (1= [,
h=0

and the corresponding lattice is 7 F,[T]. (This defines 7 up to multiplication by

F,) where

# = lim[1]7/Y/[k] --- [1].

See [C1] for details. This period 7+ was shown to be transcendental over Fq[T]
by Wade [W].

0.2.1. Let u, denote the set of n-th roots of unity. By adjoining u, to
Q or K one obtains cyclotomic extensions with abelian Galois group. Over Q, by
the Kronecker-Weber theorem, any finite abelian extension of Q is contained in
some cyclotomic extension. Over K, the corresponding statement is, of course,
false. In fact, Carlitz [C3] showed that adjoining the roots in Q of “the
cyclotomic equation” p (z) = 0,a € A = Fq[T] — {0} (i.e., the set of a-division
points (let us denote it by A,) of the action by p) to K = F,(T), we get an
abelian extension with Galois group (A/aA)*. (This should be compared with
the cyclotomic extension of Q obtained by adjoining the division points of
Z — End G,, and the situation in Lubin-Tate theory.) Carlitz developed an
analogous cyclotomic theory for F,[T]. This aspect has been greatly generalized
by the work of Drinfeld and Hayes (see [Dr], [H1], [H2], [H3]). In particular, see
[H1] for an analogue of the Kronecker-Weber theorem for F,(T). Roughly, the
abelian extensions K(A,) are tamely ramified over the infinite place. To get the
maximal abelian extension of K, one has to let the infinite place vary through all
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the places of K, choose sgn-normalized (see Section 3 for the definition) rank-1
Drinfeld A-modules, for corresponding A’s and then adjoin all torsion points
thus obtained.

0.3. The zeta function for F,[T]
0.3.0. The Riemann zeta function is given by

> 1
{(s)= 2 prE s€C, Re(s)>1.
n=1

By interpreting n as the cardinality of the residue class ring (i.e., the norm) of a
nonzero ideal (n) in Z and carrying over the interpretation to function fields,
Artin developed zeta functions of a complex variable for function fields and
showed that they gave an excellent analogue.

Carlitz thought of n as a positive or monic (there are two choices +1 of
signs for Z whereas there are ¢ — 1 choices of “signs” in qu for Fq[T])
representative of a nonzero ideal (n). Hence he considered [C1] zeta values

Z(s) = 1/n°, s €N, Z(s) e F ((1/T)).
() nmoniczi‘:1 F,(7T] / () € R (Q/1)
In other words, instead of the norm which just depends on the degree of the
polynomial, he used the whole polynomial, trading it for a smaller domain for s.
More justification lies in the obvious Euler product expression and in the
following proposition [C1], [C2]. (Notation is further explained in 0.3.3.)

Prorosition 0.3.1.

_ Ba-vm goim
where m is a positive integer, B, ), € F(T), [I((g — Dm) € F,[T] and 7 is
as above.

0.3.2. Example:

a1

Z(g - 1) = T =T

0.3.3. This proposition should be compared with

B2m 2m
em) = 55 )

where B,, € Q,(2m)! € Z,27 is transcendental over Q. Hence one should
think of multiples of (¢ — 1)m as analogues of even integers, B,_,), as
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analogues of Bernoulli numbers B,,, (Carlitz [C2] defined these by a generating
function analogous to the classical case and proved von-Staudt-type congruences
for them to justify the terminology), II((g — 1)m) as factorials (see 0.4.1 for the
definition of IT) and 7 as an analogue of 27ri (these analogies will be explained

later). For interpolations and more on zeta functions, see [Gol] and other papers
by Goss.

0.4. The factorial function for F,[T].
The factorial function IT for F,[T], which appeared in Proposition 0.3.1 was
defined by Carlitz [C2] as follows:

0.4.1. For a nonnegative integer n, n = Xn,q’, 0 <n, < q — 1, de-
fine the factorial function by

I(n) = [ D} € F,[T].

In addition to its analogous occurrence in the special values of the zeta function
(see Proposition 0.3.1), its prime factorization

M(n)=II P np= X [n/NP‘]
P monic prime e=1
(where the norm NP is the cardinality of the residue class field) is an exact
analogue of the classical formula
nl= 11 p™, n,= Y. [n/Np°].
p a positive prime in Z :
This was noticed by W. Sinnott and is easy to prove from the definitions since [i]

is the product of all monic primes whose degree divides i and D, is the product
of all monic polynomials of degree i (see [C1, p. 140]).

0.4.2. Remark. This factorization formula does not hold in general
(i.e., for general A), for the definition of gamma functions we propose in Section
3, or for the definition proposed by Goss. Also, Goss in his papers called what we
call the factorial function, the gamma function. We put I'(n) =: II(n — 1) in
accordance with the classical convention, for all factorials occurring in Sections
0-4.

0.4.3. Carlitz [C2] also showed that I1(a)II(b) divides II(a + b) (in-
tegrality of binomial coefficients).

0.4.4. Goss [Go2, Appendix] made interpolations of the factorial at all
places of F,[T] as follows. Since D, =T — TG-Da'+4"™" 4 Jower degree
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terms, the unit part

D,=:D,/T%Pi =1 — 1/T@ D" 4 ...
tends to 1 in F,((1/T)) as i tends to . So the unit part of Il(n) interpolates to
a continuous function (called the -adic factorial, this is not canonical: we are
implicitly choosing uniformizer 1/T at «; see [Go2] and also Section 3) I1(n);

ﬁ: Zp - Fq((l/T))> Zniqi - ]._[—D—ini .

Also, since D, is the product of all monic elements of degree i, we have a
Morita-style v-adic factorial IT : z, - Fq[T]D for finite primes v of Fq[T] given
by

m,(n) = [T(-D;,)"

where D, , is the product of all monic elements of degree i, which are relatively
prime to v, and n; are digits in the g-adic expansion of n. This makes sense
since —D, , — 1 v-adically as i — o, as can be seen [Go2] by generalizing the
standard group theoretical argument proving (p — 1)! = —1 modulo p.

1. The gamma function and the Carlitz module

In the last section, we introduced the gamma function and described many
reasons why it is a good analogue. The aim of this section is to explain the
analogy further by relating the gamma function to Drinfeld modules.

1.1. Let C be a rank-one Fq[T]-module, given by C; =: T + F. Then from
0.2.0 it is easy to see that the corresponding exponential is given by e (z) =
Zz"j/Dj. But D; = I1(g’). This should be compared with ¢* = ¥z"/Il(n). We
can rephrase this in a more striking fashion as follows.

Let 7 denote the contour starting at —o on the real axis, encircling the
origin once in the positive sense and returning to the starting point. Then
classically (closely related to Euler's famous integral representation of the
gamma function) we have Hankel’s formula: '

1 1 . _ndz
M(n) 2wty © 2

Here, for a positive integer n,1/II(n) is a visible residue of e*z™" dz/z (at
z = 0) by the Taylor series expansion; and from that point of view, the same
holds (with the classical exponential replaced by e. and 2i replaced by a
period (which is just # of 0.2.0 multiplied by the g — 1-th root of —1; see 3.13
for a more detailed discussion) corresponding to C) in the function field case,
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but now only for n = g/. (We get 0 otherwise.) The general value is then
obtained multiplicatively.

1.2. Another interesting analogy is as follows. Carlitz [C1] considered a
linear operator A given by Af(x) = f(Tx) — Tf(x) on linear functions. (Note
that in characteristic p, one has a wide variety of linear functions.) It satisfies the
derivation rule A(fo g) =f°(Ag) + (Af)e g, where o denotes composition.
Consider d, =: A"/ which is linear and satisfies the derivation rule for compo-
sition if one restricts to “linear” power series with coefficients in F,. Interest-
ingly, the functional equation e (Tx) = Te (x) + e-(x)? is equivalent to
drec(x) = ec(x) just as d/dx(e*) = e* (in contrast to d/dx(e.(x)) =1). In
fact, this holds term by term, and one has d(x9"/TI(¢")) = x""_]/H(q"*l) and
also d(x7"/[n]) = d(x?"") analogous to d/dx(x"/n!) = x"~'/(n — 1)! and
d/dx(x"/n) = x" ! resp. Also note that one has twisted recursions II(g"*') =
[n + 1)I(g™)? and [n + 1] =[n]? + [1] = [n] + [1]*" in place of the usual
(n+ D=+ Dn!and (n + 1) =n + 1 resp.

1.3. Now we relate the special values of T to the period 7. Note that we
are still dealing with Carlitz’ p and 7. Similar statements can be made about C
and the corresponding periods; indeed all these will be a special case of results
in Section 3, where we also take care of the degree part and the signs. In the
rest of this section, for 0 # M € F,((1/T)), M/T*#™ will be denoted by M.
Recall the Carlitz formula for the period 7 given in 0.2.0. Namely,

# = lim[1]7/“7/[1] - - - [K]

so that 797! € F((1/T)) and 797" makes sense. By # we will denote its

unique g — 1-th root which is a one-unit in F,((1/T)). A similar remark applies
to #1/@~D,

TaeoreM 14. For 0 <a <gqg — 1,

|- @

a

g—1

F(l _ a/(q—l)‘
In particular, if q # 2", then
T(1/2) = V7.

Proof. Since —1 = X(g — 1)g’, from the definitions of 0.4.4, we have

['(0)=T(-1)=lim(D, --- D) ".
It is easy to see from the definition of D, that

(Dy -+ D)™ =Dyy/[1] -+ [n+ 1]
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Hence

F(0)""' /79" = tim Dy} /1] =
since we have already seen that D,— 1, and since [1] — 1, because any
one-unit raised to the ¢"-th power tends to 1 as n — .

Hence we have proved T'(0) = #. Observing that a/(1 — q) = Laq' for
0 <a <q — 1, we get the theorem.

CoroLrary 1.5, T(i — a/(q — 1)), T(n) are transcendental, where a,i,n
are integers, 0 <a <q—1andn < 0.

Proof. The corollary follows from the fact that

I'(z+1)/T(z) = [1] -+ [n]

if g" divides z, (in the sense of valuations for p-adic numbers), and ¢"*! does
not (the empty product being defined always as one; this excludes only z = 0).
This fact, in turn, is immediate from the definitions together with the observa-
tion made above that (D, -+ D) '=D,,,/(1]1---[n + 1D.

To investigate the nature of gamma values at all fractions, it is sufficient to
look at all TI(g7/(1 — ¢*)) for 0 < j < t. They can be related to the periods #,’s
of Carlitz modules for th[T]. For example:

Turorem 1.6. 7,= (q*~! /(1 — ¢ /TI(1/Q1 — ¢*)).
Proof.

(l/l—q)) . DyDyg_yy - Dy
= lim p
( . (l—q)) D, -+ D{,
= lim[tn][t(n — 1)] - - - [£]
T '—1

= (”Tt) :
This is the Chowla-Selberg formula for constant field extensions, as will be
explained in Section 7. Similarly, it can be shown, for example, that

ﬁ(l/(l _ qz))q2‘1 e (q 1)
M(q/(1 - q%))" ' =77 L.

Transcendence of these combinations of periods follows from [Y1].

1.7. In [T2] (see also [T3], Th. V, Cor. and Th. VI), we introduced Gauss
sums for F,[T] and related some special values of the v-adic gamma function to
these. This also implied algebraicity of some special values. In Section 4, we
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provide a simpler proof of a weak corollary (for the F,[T] case) of this result, to
make a parallel statement to the theorem above. (Compare it to the analogous
nature of I',(1/2), for Morita’s p-adic gamma function T,.)

2. Functional equations

2.0. Recall that the classical gamma function satisfies (1) the reflection
formula: T'(z)T(1 — 2) = 7 /sin w2z and (2) the multiplication formula:

) / [(nz) = (27) "~/ 2pl/2-n2,

We will prove analogues of these and also their p-adic counterparts in the
function field case. The proof naturally falls into two parts. The first one, which
is the subject of Sections 1, 3, 4, evaluates I'(0), T',(0) (Thms. 3.10 and 4.4 resp.)
and ‘the other part, which is the subject of this section, establishes relations
between gamma values in the abstract setting below (Thms. 2.6 and 2.8).

TR P

2.1. Consider a function f defined on Z, by

f( Zajqj) = HAj'j
for some A’s which can be thought of as independent variables with the evident
manipulation rules. Put g(z) = f(z — 1). The various factorial (“f”) and gamma
(“g”) functions introduced in Sections 0-4 are all of this form.

We want to get formal relations satisfied by f. In particular, we would like
to know when ITf(x,)" = 1 formally, i.e., independently of A,’s. In other words,
if x; has g-adic expansion Xx,;q’, then we want to know about the kernel of the
map

Y n(x) — (Zi:nixij) .

formal J

If n,(x,) is in the kernel, then

Yonx; = Znizxijqj = Z(Xi:"ixij)qj = 0.

J
Lemma 2.2. For z # 0, g(z + 1) /g(2) depends only on ord ().
Proof. This is obvious from the definition.
Lemma 2.3. g(2)g(1 — 2z) = g(0).

Proof. This follows (replace z by z + 1) since —1 = (g — 1)g’ and if
z=1Xz;q’ then —1 —z = X(qg — 1 — z;)q’. Another way to prove this is to
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notice that g(1) = f(0) = 1; so it is true for z = 0. And since ord (z) =
ord (—z), by Lemma 2.2, we have g(z + 1)/g(z) = g(1 — z) /g(—2); hence
by induction it is true for all integers z. Integers being dense in Z ,, the lemma
follows easily.

Lemma 24. Forz € Z, and (n,q) =1,

| en2) = 0"~

(Here, if n is even, so that q is odd, then by g(0)'/* the element T15_,AY~D/?
whose square is g(0) is meant.)

g(z)g(z + %) g(z + -

Proof. Since ord (z) = ord (nz), Lemma 2.2 implies that

g(z)g(z+-11;)-..g(z+ ";1) | g(nz + 1)
g(nz) ‘ g(z+%)g(z+%)'--g(z+l)

g(z) g(nz+1)
= . = 1
g(z+1)  g(nz)
and again, as before, it is enough to prove the claim for a single z, say z = 1/n.

So we want to prove g(1/n)--- g((n — 1)/n) = g(0)"~V/2 which follows
from the reflection formula (Lemma 2.3), by pairing g(a/n) with g((n — a) /n).

2.5. It is amusing to note that Lemma 2.4 also follows immediately from
well-known results (e.g., Hardy and Wright, Chapter 9) on digit expansions;
namely, if (n,q) =1, —1/n has a purely recurring expansion of r recurring
digits where r is minimal such that n divides ¢” — 1. Essentially, the recurring
digits for —a/n are obtained by permutations of those of —1/n, so that the
sum of the i-th digits of all of them is constant. This constant is easily seen
to be (g—Dn—-1/2, as -1/n+-+—-(r—1D/n=—-(n-1/2=
((n — 1/2)Z(g — Dg’.

Summarizing, we have proved the following:

Tueorem 2.6. Let z € Z,, (n, q) = 1. Then
1) g(z2)g(1 — 2) = g(0);
() g(2)g(z + 1/n) -+ glz + (n — D /n)/g(nz) = g(0)"~ /2,

2.7. We now give a more general functional equation (Theorem 2.8). For
the motivation and application of this result, see Sections 4 and 7. (In particular,
4.7 and 7.3 will explain the analogy with the classical case and how it generalizes
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Theorem 2.6.) Let N be a positive integer prime to p. For x € Q, define {x) by
x={(x) modulo Z, 0 < {(x) <L If a=YXmJ[a,](m, €Z,a,€(1/NZ - {0})
is an element of the free abelian group with basis (1/NZ) — {0}, put n(a) =
Ym,(a;). Also, for u € (Z/NZ)*, let a™ = Lm[ua,]. By abuse of notation,
we put

f(=a) = TTf(=<a)™.
Consider the hypothesis
(% *) n(c_z("j)) is an integer independent of j.
Tueorem 2.8. If (* %) holds, then
f(=a) = f(-1)".

l3roof. Without loss of generality, we may assume that N = q" — 1. Put
a = Xm,a,; and

Na;=b;=b,_,;q" " +b,_5,q" %+ - +by ;.
For 1 <j <r — 1, (* %) is equivalent to
(Zmibi)/N = (Zmibiqj)/N - Zmibrﬂl,iqj_l - T Zmibr—j,i'

So

_q] Lm;b;
f(-a) = ﬂf( N )
1 Zmb,_,; _qj Zmi(by,i—b._1:)
=f(1—q) Hf( N ) '

Claim. Ym(b; ; — b,_, ) = 0.
This is obvious if j = r — 1; suppose itis truefor j =r — 1,...,r —t + 1.
Then (* %) for j = ¢ says that

t_
Zmibi(; 1) _ [(Zmibr—l,i)(qt_l + qt—2 4+ - +1)]
—[Zmibr—l,i - Zmibr—t,i]'

Now (**) for j=1 gives (Xm;b(q — 1))/N = Xm;b,_,; and hence
(Xm;b,(qg* — 1))/N is equal to the first [ -], and thus the second [--- ] is
zero, proving the claim for j = r — ¢. Hence induction completes the proof.
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3. General A

In this section we define the gamma function in general and relate its value
at 0 to the period of the appropriate Drinfeld module.

3.1. Definitions. Recall the notation in 0.1.0. Note that for a in A, deg a is
just the usual notion; i.e., dega = diqu(A/aA) = degree of the divisor of
zeroes of a. The degree is always a multiple of 8. For an ideal &7 of A, put

oy = {a € &7:deg a < N}.

Then the Riemann part of the Riemann-Roch theorem shows that #.47,; = ¢*°*°
for i € N, i > 0, ¢ some constant.

Choose a uniformizer ¢ at ®. This gives us splitting of KX as F s X U' X ¢?
where U! is the group of one-units at «. In other words, z in K can be written
uniquely as z = sgn(z) X Z X t", with sgn(z) € kX, 2 € U, n € Z.

This gives a homomorphism sgn: KX — kX such that sgn(U") = 1, sgn(¢) =
1, sgn(a) = a for a € kX. There are g° — 1 such sgn functions, depending on
the choice of . For o € Gal(k,/F,), o osgn is called a twisted sign function
and a Drinfeld module p is called sign-normalized (see [H3, p. 224)) if the
leading coefficient of p is a twisting of sign.

By [H3, p. 224], every rank-one Drinfeld A-module over ) is isomorphic to
a sign-normalized p, for chosen sgn.

So fix a sign function (in 3.13-3.14 we discuss how the situation depends on
the choice of sgn function) and let p be a corresponding sign-normalized
rank-one Drinfeld A-module with corresponding rank-one lattice A and expo-
nential (or sine) e, = ¢,. Since A is a Dedekind domain, A is isomorphic to an
ideal, say 7, of A. Choose such an &, and let 7 € () be a corresponding
“period” defined up to an element in F, by the equation A = #&/. Think, if
you will, of this period 7 of p as an analogue of period 27i (up to +1) in the
situation Z = End G,,.

3.2. In this setting, E. U. Gekeler ([Ge, p. 36]) gave a nice formula, based
on the formula ((*) below) of Hayes ([H3, p. 233)), for the period 7. This
formula will now be described (see also [Ge]) and reinterpreted as the identity
I'(0) = 7 multiplied by a root of unity.

Let x be an element of A of degree > 0, say of degree d and with
sgn(x) = 1. Then, since p is sign-normalized of generic characteristic, we have

p(u) =ud" + - +xu.

For each a € &/ mod x&7, e (afr/x) = frey(a/x) is an xA-torsion point of ()
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viewed as A-module via p. (Since

pe(e,(u)) = ey(xu)

we have

pe(Feq(a/x)) = pi(eso(fa/x)) = ex(Fa) = 0.)

In other words, we have the following commutative diagram whose rows
are exact:

7N

0 A Q Q 0
0 > A 0O—250 0.

So these are distinct roots of p,(u). Since (—1)?“~! =1 in characteristic p,
comparison of the coeflicients of ¢ gives

r= [I #ey,(a/x)=#9"" [Te(a/x).

=784

Now

a1 ,
#70= — JT eyn(a/x).

X ae o/ Ax

This implies #9'~1 € K_. We will see later that #9°~! € K. Hence,

(*) #-=1/x T1 (a/x)bl;[M(l — a/xb)

aE /A x

= x"’d(l—[al_[(xb - a)/xb)

which is the limit of the same expression with b € & replaced by b € 75 as
N tends to infinity. (This follows, since the exponential itself is such a limit.)
Now (xb — 0)/xb =1, so that if N is large, then the numerator of the
right-hand side of (), with xb — 0 allowed, is just the product of nonzero
elements of &5, ,;, whereas the denominator is x*: w=D*a* times the g“-th
power of the product of nonzero elements of 7, (as there are g¢ a’s).

Take the one-unit part of both sides and notice that

—_pd - _ d - —__ ,Né+c
xq*x (#Ays—D*q =x#MN5=xq —)]_

since a one-unit raised to the g’-th power tends to 1 as r — .
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I3 ! qd
'ﬁ-l“’d=( I a)/( I b) .
a€ N5 14 bey;

Keeping in mind that we want to interpret this as

Hence,

- — - —1y1-q¢
T =Ti(-1)'" = (DD, -+ )" )
suggests the following definitions for D, D, T

3.3. First notice that, the field of constants being F, if x € & then
ax € &, a € F', so that the signs (elements of F,%) appear in F,‘-equivalence
classes. Choose representatives for F5/F, and let D, be the product of all
elements a of & of degree i8 with sgn(a) being one of these representatives.
Now D, € &/C A. Also let d; be the number of these elements. The one-unit
part D, is obviously independent of the choice of representatives. (Notice that
for 5= 1and 1 € F,*/F as the representative, D, = product of all monic (i.e.,
with sign 1) elements in A of degree i.)

3.4. With these definitions, our equation becomes

d

#1-9 = |im (Do .. DN+d/6)q_l/((D_0 e —DTV)q_l)l_q )

N-—>

So

lim(DN+d/3q_1)/(D_N‘7‘l)qd =1.

But in characteristic p, qd power spreads out the power series expansion, so
. . . 9! FaY
that, since D, is a one-unit, we get D;” =~ — 1, and D,— 1.
Hence I': Z, — K,, given by

F(l + Zaiqi) = nﬁi"%
is well-defined and

et = T(0)' "
In 3.8, we will prove the following:
LeEmma 3.5.

ged{q? — 1: d = deg(x), x € A, sgn(x) =1} = ¢° — 1.
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Hence

#1740 = T(0) 7.

If 7 is that (1 — ¢®)-th root of #'~%" which is a one-unit, then T'(0) = 7.

3.6. Gekeler showed how to interpret the degree as degI' (or log I').
Analysing the degrees on both sides of tPe(quation, we get

deg 79~ = lim(qd Z, (deg b) — Z/ (deg a) + d# Ay,

beAys aE A5 g

= (q? — 1) X (g — 1)idd,

where d, = (¢° — 1)¢g?®*°/(q — 1) > 0 g-adically as i tends to infinity (by
Riemann’s theorem).

This implies that the map N — Z given by z — deg I1(2) interpolates to a
continuous function deg Il: Z, — Z, given by ¥z,q' - Lidz,d,. Since —1 =
Y(g — g, we get deg II(—1) = X(q — 1)idd,. So deg II(—1) = deg 7 and
hence if we change the range of the gamma function, so as to make sense out of
p-adic integral powers of ¢, we would get TI(—1) = 7 times a root of unity, if
we define TI(z) = II(z)¢t~ 481/ (Note that we use symbol II again, as we
have recovered the degree part also.) These would then be independent of the
choice of the uniformizer, if it gives the same sign function.

3.7. The most natural way to do this is to complete K p-adically; i.e.,
define KX =: lim KX/KZ?". Since finite fields are perfect, signs in K project to
1 in KX. We obtain a gamma function which is independent of the choice of
sign.

If 6 > 1, as J. Tate pointed out to me, one can do a little better. Since d,,
for large i, is not only divisible by a large power of g, but also by (¢° — 1)/
(g — 1), we can evidently put KX=: lim KX /KZX@=Dp" /(=D and take it as the
range. The signs in Fj survive now in F.5/F. Summarizing, one obtains
II: Z, — K with TI(z) = [I(z)¢~ e =72,

3.8. Before analysing the root of unity (i.e., the sign from (%)) and the
question of the variation of the situation with respect to the choices we make, we
first prove the lemma above.

Proof of Lemma 3.5. 1t is enough to prove that the ged of d’s is 8. First of
all, by Riemann’s theorem we know that the gcd of degrees of elements of A is
8. Next, since K is dense in K, there is an element of degree 0 in K of any
given sign. Multiplying by elements in &7 of high degree, clearing the denomi-
nators we see that & has, for some large i, elements of degree i of all signs.
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Now, choose elements x,’s in A of degrees d; such that the ged of d;’s is 8.
Then multiplying by powers of x,, we get all signs in degree i + nd; for all
positive n, so that the ged in question divides the ged of i + nd, which is 8,
and the lemma is proved.

3.9. Now we analyse the signs in (). The sign of the right-hand side is the
limit as N — o of the sign of the product of nonzero elements of &7y, ,
divided by the product of nonzero elements of Zy; (as the g%th power is the
identity on F,s). When d varies, a simple ged argument shows that 7l =
e['(0)' =7 where the sign ¢ is the stationary limiting sign (we have shown that it
exists; for a more direct proof see [Ge, p. 30]) of the product of elements of &7 of
degree N6 as N - . If § =1, as [I,.pgxa = —1, and as (-D9" = —1 it
follows by straightforward counting using Riemann’s theorem that & = — 1.
Hence,

F(O)q_l = —'ﬁ'q_l € (K:;)sgn=l c leo):

as (g — 1)deg T'(0) € Z rather than just in Z,
We summarize the discussion in the following:

Tueorem 3.10.
I'(0) = u

(where w is at most a (q® — 1)*-th root of unity. If § = 1, itis a (g — 1)-th root
of —1), in the sense that (q° — 1)-th powers of both sides are the same,
considered in K.

3.11. Jing Yu ([Y1, Th. 5.1]) has proved transcendence of 7, which .then
implies transcendence of some special values of the gamma function as in
Section 1.

3.12. Using this value of T'(0) in Theorem 2.6, we see that the powers of 7
appearing are the same as in the classical formulae 2.0, but some interesting
algebraic parts are missing.

3.13. It should be noted that in the case A = Fq[T] studied in Section 0, T’
and p did not correspond correctly from the point of view of this section. If
uniformizer T corresponds to sign function sgn and for a € F,T/a corre-
sponds to sgn’ say, then C;, = T + F, p), = T = aF are sgn-normalized for sgn
and sgn’ respectively. So p is sgn-normalized for the uniformizer —T rather
than T. Now C and p’ are isomorphic. Suppose the corresponding lattices are A
and pwA. Then u T + aF) u = (T + F); i.e., u? 'a = 1. In other words, in
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this case, change of sign function changes 7 up to a (¢ — 1)-th root of an
element in F,".

3.14. To summarize, given a rank-one Drinfeld module, we get an ideal
class in A. If an ideal & is chosen representing the class, we get a gamma
function and if in addition a sgn function is chosen 7 is defined up to F,5 and
I'(0) = 7 times a root of unity (at most (g% — 1)>-th in general and at most
2(q — D-th if 6 = 1). Observe that, if ¢ = 2 and & = 1, the question of signs
disappears. A change of sgn function may change #9°~! by an element in F, pet
but leaves the formula intact. The I' function is independent of choices of coset
representatives of Fi/F*, and depends on the uniformizer only through its
sign. If ¢ and ¢’ are uniformizers with t = at’, a € Fq>§, then a%8T/°T =T so
there are (¢° — 1) /(¢ — 1) gamma functions (unique if 8 = 1) and the gamma
function is independent of the sgn choice on a smaller disc of Z,. Notice that if
you use the gamma function for A (i.e., choose &= A) and use p (to get period
) which need not correspond to the lattice giving the principal ideal class, still
the relation in the theorem is true up to an algebraic number, since all rank-one
normalized Drinfeld A-modules are isogenous.

4. Interpolations at the finite places

In this section we show that the gamma function interpolates at all finite
places v of A which are relatively prime to &7 and that T',(0) = (—1)%#°~! We
also establish an analogue of Deligne’s theorem in this context.

4.1. Let v be a finite place of A refatively prime to &7, with residue class
degree h. We form D, =: D, , as usual by removing the factors divisible by v.

(%

Definition 4.1.1. Let D, be the product of elements a of degree i6 with
sgn(a) one of the chosen representatives and v(a) = 0. Let S, be the set of
these elements.

4.2. We will prove (-1)°D, - 1.
Definition 4.2.1.

1 (Eee) = T 15)°

so that II : Z, — K. Even though D, depends on a choice of representatives
for F3/F, D; for large i does not, because the number of elements in S, of
given sign is a multiple of ¢" — 1 and (¢" — 1)-th power kills the choice.
Similarly it is independent of the choice of sgn for large i. So T, is again unique
on a smaller disc of Z,. In any case, a value I'(z) is determined up to
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multiplication by an element in F,*. (So again, there is a unique function for
qg=2)

Lemma 4.3. (=1)°D, - 1.
Proof. 1t is enough to prove:

Claim. There is an integer ! such that for i > 0, (—1)°D, = 1 mod v®
with w = [id/h] — L.

Proof. Assume that i is sufficiently large. Then the product of elements of
(& Lv*)* is —1mod v”, by a generalization of Wilson’s theorem. (Notice
that we need i (and hence w) large to control elements of order two; for
example, if A = &/= F,[T] then the relevant product is not — 1 precisely when
q = 2, v of degree 1 and w = 2,3.) Now the elements of S, are equidistributed
among the cosets, since elements of S, with fixed sign are. (This is because, for
large i, all members of one coset can be transferred to any other by subtracting
coset-representatives of degree less than i8, leaving the sign unchanged.) This
takes care of the case p = 2; so now assume that the characteristic is odd. It is
enough to prove that the number of elements of S, in any coset is = & mod 2.
Now #{a € &7: deg a < k8} = ¢*°*°, by Riemann’s theorem, so that

#{a € &7 deg a = i8 with sgn(a) one of the chosen}

= (4" = 1)/(q ~ g
Now #S, = ((¢° — 1) /(g — 1))q"""2~h*<(g* — 1), but the number of cosets is
(¢g" — 1)g"®, so that the required number is
{(a®>=1)/(¢ = D}g"=(¢° = 1)/(q — 1) = 5mod 2

as claimed. (Here [ is chosen so that the equidistribution works and 'r is
positive.) Hence the lemma is proved.

Tueorem 4.4. T,(0) = (—1)%8*~! for all v prime to /. For 0 <a <
q— 1, the T (1 — a/(q — 1)) are roots of unity and T (b/(q — 1)) is algebraic
for b € Z. '

Proof. The first statement of the theorem implies the rest and the first
statement will follow, if we show that

(Im)"™" = (=1

mod v’ where m runs through monic polynomials prime to v and of degree not
more than ¢; and with [, ¢, = o as i — . Given [, choose ¢, so that {am}, as a
runs through F%, spans the reduced residue class system mod v". (For example,
in the Fq[T] case, t, = hl, — 1 works.) Then it is easy to see that {am} covers
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each reduced residue class an equal number (which is a power of g) of times.
Hence we have

—1 = (a)*™(--- )",

But ITla = —1, so we are done if p = 2. Assume p is not two: then we have to
show that #{m} = h mod 2. But for some ¢ we have

#{m} = (g% — qt‘nc_h)/(q -1)= (qh —1)/(q —1) =hmod2.
This finishes the proof.

Using congruences to decide the root, one can pin down the roots of unity
mentioned in the theorem.

4.5. For the rest of this section, we use the notation of 2.7. Let us recall
some notation and results of [T3]. (For comparison with the classical case, see
[Del.or [G-K].) Let A = Fq[T]. Let N be a positive integer prime to p as in 2.7.
Choose r such that N divides q" — 1 and let F = F,(T). For prime P of
F,.[T], the “Gauss sum” g(g, P) is defined as in [T3, p. 111]. From the analogue
of Weil's theorem on Jacobi sums as Hecke characters, proved in [T3, Thm. IX,
p. 111] (also see forthcoming paper by D. Hayes proving it in full generality
using different definitions and approach), we see that if a satisfies condition
(% ) of 2.7, then g(a, P)/(NP™?) is a Hecke character yx,(P) for F of finite
order. More precisely x,(P) =(—1)" deg Pn(a) )

Now we prove the analogue of a theorem of Deligne ([De, p. 91]) in our
situation. Note that we are using the Drinfeld module C of 1.1 to define the
Gauss sums mentioned above and the corresponding period 7 in Theorem 4.6
below.

If one takes a general A, with 6 =1 and chooses a sgn-normalized
Drinfeld module and a corresponding period 7, Theorem 4.6 and its proof carry
over word for word, when one takes y,(P) = (—1)" 4?9 a5 3 definition of x,
(as a character of F =t K(u,-_,) in this case). But in this general case, one loses
the connection with the Gauss sums of [T3].

Tueorem 4.6 (analogue of Deligne’s theorem). If condition (* %) of 2.7
holds, and if Q, = II(—a) /7"® (this definition is to be understood in the sense
explained in Theorem 3.10), then Q/Q, = x (7) for any 7 € Gal(F*? /F).

Proof. Theorem 3.10 shows that M =: T'(0)/# = (—1)/“~Y; if Frob,
denotes the Frobenius (g9 F-th power), then Frob, M/M = (—1)" &7,

It is sufficient to look at the action of 7 = Frob,. By Theorem 2.8 and by
the analogue of Weil’s theorem mentioned above, we see that both sides are
(—1)rdee P Hence the theorem follows.
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4.7. Remark. Note that Gal(Q(uy)/Q) is (Z/NZ)* whereas
Gal(K(uy)/K) in our case consists of Frobenius powers. Hence (see 7.2—7.3 for
more details) the classical counterpart of condition (* *) is (condition 1.13 of
[G-K] “n(a'™) is an integer independent of u € (Z/NZ)*”. This being a much
stronger condition, the gamma function in the function field case satisfying
“more” relations, we can handle more a’s and at the same time, we can prove
the full result and not just up to sign (see [G-K], remark after Theorem 4.5). We
do not need to use Kubert or Koblitz-Ogus results [K-O]. It should be noted that
the multiplication and the reflection formulae follow easily from Theorem 2.8
(since they arise just as in the classical case (see, e.g., p. 577 of [G-K]) from a’s
satisfying the stronger condition mentioned above). Also, in those cases, we can
use ['(a) instead of II(—a) in the definition of Q.

Remark. Instead of using the analogue of Weil’s theorem to get an expres-
sion for x,, we could have used the analogue of the Gross-Koblitz Theorem [T3,
Thm. VI]. It immediately implies Theorem 4.8 below. (Since we will not use the
rest of the section anywhere else, we use the notation of [T3] without further
explanation.)

Tueorem 4.8 (for Fq[T] and C; =T + F).
F-1
a(ghf— — _ f-1 ig i
g(a, P) = (_1) (q 1)(_1)f(h I)A(qh l)Zlf:o(q" )]-:-‘!)I‘p(<qha>).

From this we get an expression

f-1
n(a) hi
Xo(P) = (=1) f/( _lj!)ﬂp(—g(" )))
for the Hecke character in terms of p-adic gamma functions and use of Theorem
2.8 gives the required expression.

For the rest of the paper, we restrict to the case 6 = 1 for simplicity.

5. Characteristic p gamma function

5.1. The gamma functions we have studied so far had domain in character-
istic zero, even though the values were in characteristic p. This is connected to
the fact that as we have seen, for example in the A = Fq[T] case, its arithmetic
is linked up with cyclotomic extensions F,(T)(u,) of F(T) which are just
constant field extensions. More precisely, the analogue of the Gross-Koblitz
theorem in [T3, p. 110] and the Chowla-Selberg formula of Section 1 are related
to Stickelberger elements of these constant field extensions. The fractions we
handle there are p-integral, and so are of the form m/(¢" — 1). The values of
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gamma function at these fractions are connected to extension F,(T)(u,-_,)
which is a general finite constant field extension.

But we have another nice family (see 0.2.1) (among other cyclotomic
families, given similarly, but with a different infinite place) of cyclotomic
extensions F,(T)(A,) of Carlitz; so one would expect another gamma function
with domain of characteristic p such that its special values at fractions with
denominator a are related to the arithmetic of F,(T)(A,).

5.2. With all its nice analogies, the gamma function of the first part has one
feature strikingly different from the classical gamma function. It has no poles.
The usual gamma function has no zeroes and has simple poles exactly at 0 and
the negative integers (negative of positive integers). In our non-archimedean
case, the divisor determines function up to a multiplicative constant. (The
simplest choice of constant we choose below also seems to be the best for the
analogies we describe later.) As we have seen, monicity is an analogue of
positivity (but note that positivity is closed under both addition and multiplica-
tion, but monicity only under multiplication).

5.3. Consider the meromorphic function defined as follows (note that we
are changing the notation):

Definition 5.3.1.

M) = ~ II (1+%)_leﬂu{oo}, req.

X n monic

(Note that for p = 2, positive is the same as negative and for g = 2 all

integers are negative!) From the point of view of divisors, the factorial IT should
be defined as follows:

Definition 5.3.2. II(x) = xT'(x).

Classically, xI'(x) = II(x) = TI'(x + 1), whereas here the first equality is
natural for the gamma and factorial defined here and the second equality holds
for the ones considered previously in Sections 0-4. Consequently, gamma and
factorial now differ by more than just a harmless change of variable. Also, in
characteristic p, addition of p brings you back, so that giving the value at x + 1
in terms of that at x will not cover all integers by recursion anyway.

5.4. Remark. Definitions in 5.3 can be modified, as in 3.3, 4.1, so as to
make good sense not only for A with 6 = 1, but for general A, by choice of sign
representatives if 8§ > 1 and use of the general ideal class &7 instead of A.
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5.5. Taking logarithmic derivatives in the definition one sees that

r 1 1 T
@ == T - - = =21, ) = ~Z()

7 monic x+n x

where Z(s) is as defined in 0.3.0 and Z(x, s) is an analogue of Hurwitz’s partial
zeta function defined analogously. But classically, the value at zero of the
logarithmic derivative of the factorial is —y, where vy is Euler’s constant. Hence

in our case, the analogue, denoted by vy again, of Euler’s constant gamma is (see
[A-T] for details)

NG
y=2(1) = =3 (0)

(and this is equal to log(1), where log is the inverse function (with log(0) = 0) to
the exponential e, of 1.1, if A = Fq[T], and also equal to #/(T2+ T) if
further, g = 2 (see [A-T).

5.6. Notation. We will write “n.€ j” (resp. n €j + ) for “n is integral
(resp. monic integral) of degree j”, A, (resp. A_) for the set of “positive” (resp.
“negative”) elements of A.

57. If j>degx, I1,c;un/(n+a)=1 and so if a €A —A_, then
I'(a) € K. For example, when A = F,[T], 1/T(T) = 2T(T + 1) (so prime
factorization does not depend only on the degree of the prime in contrast to the
gamma function of Section 0).

5.8. Remark. In fact, interestingly enough, for A =F,[T], if a €A,
1/T(a) € A (and even 2/T(a) € A,U{0} when a € A,). To see this, it is
enough to see that I, o, n divides I, o, (a + n). (Choosing n, , appropri-
ately, of degree less than e deg p, one sees that if p° divides n then it also
divides a + (n + n, ,).) (This is not true for general A, because of the irregular
behaviour in the Riemann-Roch for higher genus. For example, if A =
F [x,yl/(y® = 2® —x — 1)(g = 3), then neither T'(y) nor 1/T(y) is integral.)
Another way to see this is: By Carlitz [C1, 2.17] one has (in the Fq[T] .case)

M(x)"' = ]lj) 1+ !/!;(;))
where
k—1
Pi(x) = le;lo Ej(x —a)

and by [C4, p. 502], ¢,(x)/D; is an integer when x is. For more on the
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l/lj(x) /D;, which are analogues of binomial coefficients, see [Go4], [T4] and
references there.

5.9. This rationality gives us hope for interpolation a la Morita. First we
make the following definition (note that we are changing notation: The use will
be clear from the context).

Definition 5.9.1. For a € A,, let @ = a (resp. 1) if v(a) = 0 (resp. v(a) >
0) and when x € A, put

n

I1,(x) = H( I

nej+ X +n

Again terms are 1 for large j. Hence Il (a) € K for a € A.

Lemma 5.92. 11, interpolates to 11,: A, — A} and is given by the same
formula, as in the definition, even if x € A,. Similarly, T (x) = II (x)/x
interpolates.

Proof. In fact, it is easy to see that if x =y mod v!, then II (x) =
IT,(y)mod o,

5.10. Example. (A = F[TD. TI(T?) is (T + 1)/{(T? + IXT — IXT? +
T—1}if g=3andis 1if g = 2.

5.11. Remark. 1/11 (x) = T17_y — I, c;+(x 4+ n) up to multiplication by
a fixed root of unity by Theorem 4.4.

6. Functional equations

6.1. The reflection formula. For q = 2, all nonzero elements are monic, so
that

~

elx)  e(Fx)’

(where e, is the exponential corresponding to lattice A as in Section 1, e is the
exponential corresponding to the sgn-normalized Drinfeld module with period
lattice 7A) so that for x € K — A, I'(x) has algebraic ratio with 7 and hence, in
particular, I'(x) is transcendental (see 3.11). From the point of view of their
divisors, e(7x) being analogous to sin(7x) (i.e., both have simple zeros at
integers and no poles), this observation suggests a relation between I' and sine.
We state these reflection relations (proof is immediate from the definitions) as
follows (to make the analogy more visible).

I'(x) =
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The classical reflection formula can be stated as 1, ,<I1(0x) = 7x /sin 7«
and here we have:

Tueorem 6.1.1.

~

IT O(ex) =

x
aeA* e('ﬁ'x)'

Hence the classical name “half sine” for T' should be replaced by
“1/(q — 1)-th exponential” in our case! Notice also that the interesting cyclo-
tomic part missing from the reflection formula (see 3.12) is present now. One
interesting difference is that for x a fraction, the ratio (denoted by Q, again to
stress analogy with the situation in Theorem 4.6) obtained by dividing the
left-hand side by the first power of the period 27 (7 resp.) lies in Q(u,, J(K(A )
resp.) if the denominator of x is n (a resp.). Consequently, if 7 is an element of
the relevant Galois group fixing appropriate roots of unity (i.e., n-th in the
classical case, a-th torsion in our case (and (¢" — 1)-th roots of unity in the case
of Theorem 4.6), then from what we have just said, Q7/Q_ is 1 in our case.
Hence the character y, occurring as in the analogue of Deligne’s theorem (take
the formula in Theorem 4.6 as the definition of X,) is trivial in our case; whereas
it can be nontrivial in the classical case (see [De, p. 91] or [G-K, p. 577]). On the
other hand, if we look at Q7 /Q, for 7, not necessarily fixing the appropriate
roots of unity, we get cyclotomic units in both cases.

6.2. The multiplication formula.

Tueorem 6.2.1. Let g € A be monic of degree d and let a run through a
full system of representatives modulo g. Then

+ ! d —
nn(x - a ) _ H(x)ﬁ-(q“l)/(q‘l)((—l)dg)q /a q)R(x)
where
R(x) _ n;=0nﬁej+ﬁ +x

T IT¢Z0T,c 80 + @ +
where t is any integer larger than max(deg a,2g) + d.

Proof. To avoid confusion, here and for the rest of the paper, we use II,
(T, resp.) for the factorial (gamma resp.) of Section 3. Using Theorem 3.10 and
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the fact (see 3.4) that 5j—> 1 as j — o, we see that

l_IH(x+a)=nl_Il_[ ga

a g j a€j+ a ga+a)+x

IT T1

k=0 ack+ a +x

R(x) lim

j—o®

j+d (ga)qd j+d 1
k=j+1ack+ (ga)qd

{l( j—e_l) -1 . (l_l
q“(q /(q )Hi=on q

ack+@

= R(x)II(x)lim
()T Djyy - " Djsa

— R(x)[I(x)g?" /DI (- 1)~ D/

q?/(1-q)

= R(x)H(x)fﬁ'(qd_ 1)/(q— 1)(( — 1)dg)
Hence the proof is complete.

6.2.2. Remark. Here R(x) takes care of beginning irregularity in
Riemann-Roch. For example, R(x) =TT, ,ou(x + @) in case A = F,[T] and
{a} is the set of all polynomials of degree not more than d.

6.2.3. Remark. (*) of 3.2 is the multiplication and reflection formulae
combined (for x = 0) and can be used to recover these formulae.

6.2.4. Analogy with the usual multiplication formula (2.0) is quite
visible in that an analogous combination of factorials is an analogous power of
the period (instead of (n — 1) /2 here one has (Ng — 1) /(g — 1) but we have
seen that 2 and g — 1 represent choices of signs in respective situations whereas
n and Ng are the number of residue classes that are relevant) times an algebraic
part. For x € K — A, call the algebraic part , again (see 4.6 and 6.1). Now a
corresponds to the multiplication formula (see [G-K, p. 577]). Again it is
interesting to note that 0, € K(A,), which makes, just as in 6.1, the corre-
sponding character x, (see 4.6 and 6.1) trivial again, in contrast with the
classical situation. i

6.3. The multiplication formula for 11 .

Tueorem 6.3.1. Let a, g be as in Theorem 6.2.1 with (g,v) = 1. Let
h =: deg v and let g, be the Teichmiiller representative of g modulo v. Then

X+ a A \
I, = 7o) g70()
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where
§=On66j+ﬁ +x
T I 20T, cjiga +a +x’

Q(x) =

t is any integer larger than max(deg @,2g) + d and —m is the number of
n €j+, j <d with n not congruent to —x modulo v.

Proof. By manipulations similar to those in 6.2.1, we obtain

[T, - T 1 ——=

a g « j a€j+ (ga+a+x)

g

d

gmj(ﬁo 15j)q !
D, -

- QMM () lim =

J

where by Riemann-Roch-type counting m; is seen to be

) a1
for some integer c. Now (1) the g*-th power of g/g,, a one-unit at v, tends
to one as k tends to ®. By 4.2 and Theorem 4.4, (2) —D, > 1 and (3)
(D, - ﬁj)q_l — (= 1D""!, Hence the theorem follows easily.

6.3.2. Remark. Here Q(x) takes care of beginning irregularity in
Riemann-Roch, just as in 6.2.2. Also, Q(x) = I, ...(x + @) when A and {a}
are as in 6.2.2. Note that when x € K, IT IT ((x + «)/g)/I1 (x) € K™.

6.4. The reflection formula for 11 .

Tueorem 6.4.1. Let x € A,. Then

9eF
where {, € F".
Proof. First, let x = a/b with (b,v) = 1. Let
R= [] I, (0a/b).

0EF,]

Then

. 1;1 111 (6b)“n

i neir 0bn + a
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where w; is the number of n € i + with n not congruent to —a/(8b) modulo
v. For large i, by the equidistribution of n € i + among the residue classes
modulo v, w; is also the number of n € i + not congruent to 0 modulo v.
Hence 6’s and 7’s can be combined (i.e., the condition of monicity for n can be
dropped; see below). On the other hand, Riemann-Roch gives T, _ jw, = e +
(¢7¢ — D(g" — 1)/(¢g — 1) where ¢ and e are integers independent of j.
Hence

R = {a lim bf+<q"‘”‘“<q"‘”( I1 n) ( I m)
Jjoeo deg n<j, (n,v)=1 degm<j+d, m=a(b),(m,v)=1

Here { € F is a contribution of §“’s for low i’s and f is an integer
independent of j. Also ( ) /() on the right-hand side is plus or minus one, since
numerator and denominator both tend to plus or minus one by Theorem 4.4 and
by proofs similar to those of 4.3 and 4.4.

(In more detail, we use the claim: There is an [ such that {m € A:
(m,v) =1, m = a(b), deg m <j} is equidistributed among residue classes
mod v/~ if j is large enough: By the Chinese remainder theorem, we may
choose integers of degree < j congruent to each given residue mod v/~! and
congruent to 0 mod b; using these representatives to do the coset transfer, we
see that the claim is true. Each residue is repeated some power of ¢ number of
times; hence [Im = —1mod v/7%)

Combining this information, we see that R = {_ab*® for some integer s. But
the answer should be the same if we replace a,b by ra,rb for (r,v) = 1.
Hence R = {.a/b. The continuity of II, now enables us to finish the proof.

6.4.2. Remark. (1) It is easy to determine {_  using congruences.
(2) The theorem implies that if ¢ = 2, IT (a/b) is rational and in fact, IT (x) = X
and so I'(x) = 1. In general, for x € K, TTII (#x) € K*.

7. Framework of brackets

In this section, we will try to explain the visible analogies studied so far in
the framework of brackets { ) and partial zeta functions. For comparison with
the classical case, readers should refer to [De], [G-K], [K-O] or [A1].

7.1. Unless clear from the context, I' will stand for either the classical
gamma or the p-adic gamma function of Morita or gamma functions and their
interpolations in previous sections. I, will stand for gamma at the infinite place
(note that it is just Euler's gamma in the classical case) and T', for gamma
functions at a finite place (p-adic or v-adic). We use shorthand “a ~ b” for
“a/b is a nonzero algebraic number” (over Q or K according to the context).
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The idea of the framework of brackets is: Given a certain type of gamma
function, to identify the relevant definition for { ), so that simple recipes using
( )’s (see, e.g., 7.3, 7.4, 7.12) will yield results on algebraicity and relations to
periods of values of the gamma function at fractions. For certain types of gamma
functions, these recipes are proved in full and in other cases they are to be
considered as conjectures, for which some evidence is then provided.

7.2. If a is a proper (i.e., nonintegral) fraction in the relevant domain, then
up to ~ (in fact, up to “rational”), I'(a@) depends only on a modulo the integers.
Classically, { ):Q —Z — (0,1) N Qisdefinedby 0 < (a) <1, a = {a)mod Z.

We consider a etc. as in 2.7. Without loss of generality, one can take

N = q" — 1. Identifying Gal(K(u,)/K) with ¢%/"%, one defines a” for o in the
Galois group, as in 2.7. (In other words, we think of o as some ¢’ € (Z/NZ)*)

Definition 7.2.1. m(a) = Lm,{ —a,;).

Notice that {(a) + ( —a) = 1 for any proper fraction a and that for a’s
corresponding to multiplication or reflection formulae, one has Ym, = 2n(a).
Hence Theorem 2.8 together with Theorems 3.10 and 4.4 can be reformulated,
in general, as (proved for I' of Sections 3, 4):

7.3. Recipe /conjecture. 1If m(a'”’) is independent of o € Gal(K(u,)/K)
then [[(a) ~ #™% and I',(a) ~ 1.

The classical counterpart of this can be found in [K-O], [De], [G-K]. Also, in
both ours and the classical case, ~ can be replaced by the more precise “up to
multiplication of a rational number and a root of unity”, if m(a) is an integer.

The proof of Theorem 2.8 shows that the hypothesis of 7.3 can be rephrased
as “a” is made up of Galois orbits” (i.e., if one expresses a in terms of basic
a;, = q'/(q" — 1) (using digit expansion), then all a,’s occur with the same
multiplicity). This suggests:

7.4. Recipe /conjecture. T,(a) ~ 1if a is made up of Frob -orbits (observe
that this is not equivalent to “n(a™"") is independent of j”).

7.4 is true classically by [G-K, Cor. 1.11], and it is true for I" functions of
Section 4, if A = F,[T], by Theorem 4.8 (e.g. II,(¢’/(1 — Nv)) is algebraic,
because ¢’/(1 — Nv) is a Frob-orbit; i.e, one has (g/Nv*/(1 — Nv)) =
(g’ /(1 — Nv))). Some evidence for 7.4 in other cases is presented in Section 9.

7.5. One wonders whether 7.3 and 7.4 are best possible in full generality
(i.e., for all the different gamma functions under consideration in this paper), as
far as values at proper fractions are concerned.
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If one wants to extend this framework to I and I, in Sections 5 and 6, and
to use the other cyclotomic family K(A,)/K, then one has to deal with { )
defined for proper fractions in K as follows. (I would like to thank Greg
Anderson for explaining this to me.)

7.6. Greg Anderson defined { ) as follows. (See also [A1] where he deals
with the classical case.)

Definition 7.6.1. We define { ): K — A — {0, 1} by putting { — f/g) =1
if f is monic and zero otherwise, where we first normalize, using translation by
elements in A, by making g monic and deg f < deg g.

7.7. Motivation for this is as follows. Classically, one has the Hurwitz
formula {(x,s) = ( —x) — 1/2 + (log ['(x))s + o(s®) around s = 0. Hence
one expects connection between (e.g., between distribution relations satisfied by
them) partial zeta values at s = 0, { )’s and I'’s.

Now we do not have such a relation (yet), but we can consider (for

A=F|[TD
g

which is 1 — 1/(q — 1) if f is monic and —1/(g — 1) otherwise. The analogy
1/2 & 1/(q — 1) now explains the definition of { ) in 7.6.

= Z q~sdegn's=0

s=0 n monic=f mod g

7.8. The important thing is 7.3 holds (even with the refinement mentioned
there) with this definition of {( ), with u, replaced by A, and @ having
fractions with denominator a € A in place of N € Z and n(a) and m(a) defined
similarly, of course. (First note the case g =2, when the ( ) is 1 and
correspondingly, I'(a) ~ 7 (see 6.1) and T’ (a) ~ 1 (see 6.4).) The reason is that
the reflection and multiplication formulae in Section 6 are special cases of 7.3,
and they generate (K-linearly) all of the relations of 7.3, as can be seen by
straightforward modification of the Koblitz-Ogus proof [K-O], by the analogies
mentioned. (More precisely, signs + 1 are now to be replaced by F,* and even
and odd to be interpreted in that context. The ¢ and { ) connection there works
by definition and L(0, x;) # 0 has a similar expression.)

7.9. As noted in 4.7, for I" of Sections 2, 3, 4, Theorem 2.8 gives many more
relations than those generated by reflection and multiplication, since the condi-
tion in this case (g’-powers) is weaker than that in [K-O] (power prime to
denominator).
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7.10. For A = Fq[T], if 0 <r <k, the basic partial zeta value
Tt jmrmarq "Y€ is g"/(1 — g*) at s = 0. These are (negatives of) basic
{ )’s for T' of Sections 2, 3, 4.

7.11. Now we turn to an “explanation” of Theorem 1.6 as the Chowla-
Selberg formula. Recall that if E is an elliptic curve over Q with complex
multiplication by (Q(V'— d)), then the classical Chowla-Selberg formula ex-
presses period 7, in terms of I' values at fractions with denominators d.
“Discriminant” d can also be viewed via Q(V—d) < Q(u,) (or Q(uy,).
Hence considering the Carlitz module for F,[T] c F [T, _,) as an analogue
of E, we see that Theorem 1.6 is a Chowla-Selberg formula. (Unit parts in the
statement can be removed as in Section 3.) But, as explained to me by Greg
Anderson (implicit in [Al] and in references given there), the particular combi-
nation of I' values occurring there is no accident, but can be explained via { )’s
as follows. (For more details see [Al] and forthcoming work by Anderson.)

7.12. Recipe /conjecture. The general set-up in our case is roughly as
follows. We have the Drinfeld module E over K*® with complex multiplication
via integral closure of A in an abelian extension L over base K. (This forces L
to have only one place above the infinite place of K; one must use higher-dimen-
sional generalizations of Drinfeld modules to remove this restriction.)

Define h(a): Gal(K*? /K) — Q, by h(a)(o) = { — b) where exp(2mia)” =
exp(2ib). (Here the exp is the classical exponential, since we are dealing with
constant field extensions and { )’s which have values in characteristic zero. In
dealing with Sections 5 and 6 one needs e(7 a), of course, in place of exp(21ria).)
Let x,, ,x be the characteristic function of Gal(L/K); i.e., x;, ,x: Gal(K*?/K)
— Z such that x, (o) = 1if o|, =1 and 0 otherwise. Then if x, . =
Ym  h(a) then the recipe for expressing the period 7 is:

my ~ ML (a)™".

7.13. In our example, L = th(T), the K = Fq(T), xo,(F) =1ifn=0
mod ¢ and 0 otherwise, where F is the g-power Frobenius. Now

M lq—q) 5 _lqt”(m

t+n—1 n
q q .
=Q<q¢_ 1> - <qt— 1> :XL/K(F )

explains Theorem 1.6.

7.14. By the Chowla-Selberg phenomenon, we mean the expression, in a
complex multiplication situation, for the period in terms of a certain combination
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(predicted by simple calculation on { )’s as in 7.12) of gamma values at
appropriate fractions. We will give more examples of this phenomenon in
Section 9.

8. Two variable gamma functions of Goss

In this section, we make a similar study of a two variable gamma function
introduced by Goss [Go3].

8.1. Goss introduced a two-variable gamma function T': Q X Z, 6 — Q
which, up to small factors and change of variables, can be expressed as
[(x, y) = (/217 oI, ;. (1 + x/n) ") (y), where as usual y = Ly,q’ is a
g-adic expression and I is the gamma function of Sections 0 and 1. I'(y) can be
replaced by T'(y) (recall the notation from 6.2) if one makes adjustments similar
to those in Section 3. We ignore such technical difficulties below and compare
natural variations:

Definition  8.1.1. y(x, y) = (IT7_IT,c;,(1 + x/n)7%), Il(x, y) =
My(x, y) /M (y) and IIy(x,y) = U (x, Y (y). For i=1,23, [[(x,y)=
O,(x,y — D/x.

The definition of I seems to be a natural definition in view of previous

1
sections.

8.2. Note that I1,(0, y) is the factorial of Section 3 (now denoted by II(y)
to distinguish it from others) and IIy(x,1/(1 —¢q)) is up to constant
(=TI, (1/(1 — ) the factorial of Section 5. Hence two gamma functions
studied so far are essentially specializations of II,. Similar statements can be
made for II,. But, though I1,(x,1/(1 — q)) gives the factorial of Section 5, one
cannot recover the factorial of Section 3 from it; on the other hand II; is more
simply defined, in that technical problems of II1,(y) are absent and, as we will
see below, ( ) for II, turns out to be simple and integral. See also [Go4], where
Mahler coeflicients of II, are identified with analogues of binomial coefficients
(see 5.8). At the moment, it seems to be a matter of taste, whether one should
use II; or II; and II, etc. We will ignore questions of v-adic interpolations,
integrality (these can be treated as in Section 5) and turn to the subject of
functional equations.

8.3. Evaluation of the partial zeta function Yq *%&" (where n is monic

congruent to f modulo g and the degree of n is d modulo t) at s = 0 suggests
the following definition of bracket { ) corresponding to II, (brackets for II; and
I1, are obtained just by adding or subtracting { ) for II,).
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Definition 8.3.1. (,): (K —A) X (Q N Z,- Z) — Z is defined by:

(1) {x,y) depends only on x mod A and y mod Z.

@ If feA geA,, degf<degg, 0<s <t then ( — f/g,
q*/(q"' — 1)) = 1if f is monic and s = deg f — deg g mod ¢ and 0 otherwise.

(3) Given a proper fraction y, one can write £/”{n,q’/(¢' — 1); then

(=f/g.y) = En —f/g,4/(q" = 1)). '

8.4. Let us state functional equations in [Go3] adapted to II,. First of all,
I1, is of the form “f” in 2.1, so that Theorem 2.8 applies. On the other hand, for
y = 1/(1 — @), I, becomes the factorial of Section 5. (Notice that { ) reduces
to one considered before.) In other words, straight modification of 7.3 works, if
restricted to the first or second variable. From Theorem 4.5.4 of [Go3], it is easy
to see the following:

Tueorem 8.4.1.

Il Hs(%w) ~ HB(%q‘ly)Ho(y)"d/Ho(qdy)-

amod g

We do not yet know whether analogues of 7.3 and 7.4 are true for 11, and
whether they give all relations. Also, we have not yet tried to work out,
generalizing 6.3 and 6.4, functional equations for v-adic interpolations of II,.

More evidence that the two-variable gamma function deals with both
cyclotomic families (i.e., constant field extensions and Carlitz’ family) is pre-
sented in Section 9.

9. Miscellaneous results

This section contains some partial miscellaneous results: cases of the
Chowla-Selberg phenomenon (see 7.14), special cases of 7.3 and 7.4. We also
discuss some open questions.

9.1. We now give some examples of the Chowla-Selberg phenomenon for
gamma functions of Sections 5-8. For 9.1-9.3, let the base be A = F(,[T].

9.1.1. If one wants a rank-one Drinfeld B-module (complex multiplica-
tion) where B is the integral closure of A in the full cyclotomic field K(A ),
then the condition: “one infinite place” forces deg a < 1. So without loss of
generality consider B =: F(,[T](AT) = Fq[y] where y9 ! = —T.

We will show that if 7, is a period of the Carlitz module of B, then
my ~ I'(1/T). (Notice that for ¢ = 2, mz = 7 ~ ['(a/b) for any proper fraction
a/b as noted before. This is consistent with the fact that { ) = 1, when ¢ = 2.)
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Leta € A, b €A,,dega <degb = h say, and let D, , ;, be the product
of monic elements of A of degree r, which are congruent to ¢ modulo b. We
will show how to evaluate some of these in 9.3; in particular, we will show

i D) g — L B
D, \,r=DT* ((—T)(q D/(q=D _ 1)/(_T)(q D/g=1
Hence, we have

()~ L) - s

nT i=0 D]+1 LT

(_T)(qj“—l)/(q-l)

) ]IJ; (=)@t
On the other hand, since y7" — y = y((—T)@" ~D/@=D — 1) by 0.2.0, we have
y?" /@D — 1)1/(‘7‘“

yn((_T)(q”—l)/(q—l) . 1) (—T ~ 1) .

g ~ lim

By straightforward algebraic manipulation, as in Section 1, one now sees that
my ~ I'(1/T) as claimed.

9.1.2. It is easy to see that if one takes, for example, an intermediate
case B' =: Fq[Tz/(q_l)] between A and B, then 75 ~ '(1/T)I'(—=1/T), by a
similar proof. (Note consistency with ( ) philosophy and case ¢ = 3, when
A=B and my =7 ~T(1/T)['(—=1/T) by the reflection formula.)

9.1.3. Now we turn to the two-variable case. First notice the following
special case of the multiplication formula: [Ty <y I1 L0/T,y) =1 ,(y)7/(qy),
which with y = (¢'™1) /(0 — ¢") gives 7, of 1.6, consistent with { ) for
subextension F, (T) of F (Ay).

9.1.4. In fact, if 7 denotes the period of Carlitz module for th[AT]
then 7, ~ II,(1/T,q"""'/(1 — ")) can be easily seen from the proof of one
variable case (i.e., Theorem 1.6).

9.2. We now give some examples of 7.4 for the gamma function of Section
5. We already know, by 6.4, that [';(1/(T + 1)) ~ 1, for ¢ = 2. Using the
formula for D;,, in 9.1.1, we now generalize this to p =2. Put W, =
{n: nej+, (nT)—l n=1(mod T + 1)} and T; = {n: nej+, n=
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1(mod T + 1)}. Then,
(T + 1)n r D1+ T)

FT(T-li-l)NJI:;[ I areer ™ m 1l

ji=0nej+,(n,T)=1 (T + 1)” + 1 ro® j=0 l_IneW_’/n

. -1
~ lim( IT1IIn
j=0new,

since the numerator D, -+ - D1 + T)?" of () tends to 1, by Theorem 4.4 and
the fact that 1 + T is a one-unit at T. Now,

nn=(ﬂn) ( l_I n)TB

neWw, n&T; n€Tj_,
where B is such that the quantity is a unit at T. (Observe that this is the step
which expresses the product as a telescoping product, where we use T =
1(mod T + 1) (as p = 2); i.e., one has Frob-orbit.)

Combining this with the formula for I, < ;n, which is just D, , ; obtained

above with T replaced by T + 1, we are reduced to showing algebraicity of the
T-adic limit

lim

r—o

1 :
r—1 ﬁr
1+ 1+ T)(q"—l)/(q—l))D"_l(l + 1) /T

where, again, B’ is such that the quantity is a unit at T. Now since 1 + T is a
one-unit at T, its g"~'-th power tends to 1; also by [T3, p. 109], D,/T valy (D)
tends to 1. Now, (1 + T)@ ~V/@=D =1 4 T 4+ ---; hence the limit above is

1
AP
The claim is established.

The same method shows algebraicity of I, on Frobenius orbits of fractions,
with denominators of degree not more than one.

1

1+ (1 + T)(q"—l)/(q—l)

lim

9.3. We now show how to “evaluate” D if a/b has a denominator

which factors into distinct linear factors over F,.

r,a,b>

Prorosrrion 9.3.1 (Moore [M]). If G runs through G = a,x, + - +a,x,,

a, €F, and a; =1 for the lowest i for which a; is nonzero, then T1G =
r—j
det(x? 7).

9.3.2. We use shorthand [a, b]_ (or just [a, b] if there is no chance of
ambiguity) for the determinant of the square matrix of order r + 1 whose
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(i, j)-th entry is x¢ ', where x, = a and x, = bT""* for 0 <k <r. For
6 € F,, we also write [T + 8], (or just [T + 0] for scalar (T + g)@ " =D/@-D)

9.3.3. For example, by 0.4.1, we have [1,1] =D, --- D,

9.3.4. Observe that, for 0 € qu, [0a,b] = 6la,b], and [a,b], +
[c,b], =[a + ¢, b],.

9.3.5. First let us compute D, ; ;. Taking x, = T"*' + 1 and x, =
T ! for i > 0 in 9.3.1, we see that

IlGc= Dr+1,1,T(Tqr4 Dr—l) =+ (TD,)
=D, 110D 0 Do[T], 1

1

On the other hand, by 9.3.1 and elementary row operations, one sees that

[1c = (7], + (-1))[1.1],.
This, together with 9.3.3, gives the formula in 9.1.1.

9.3.6. Let {a,} be an arbitrary set of distinct elements of qu. We
“know” [1, 1] by 9.3.3.

[T +a][1,1] + [-a;, T +a,] =[T,T+a,] =[T][L1].

(After one “takes out” [T], the last equality follows from addition of suitable
multiples of the next row to the given row from the bottom up.) Hence, by 9.3.4,
one “knows” [1, T + a,]. By induction, similarly, the equalities

[T + an+1][1,(T + al) e (T + an)] + [al - an+l’(T + al) e (T + an+1)]
= [T+ aq][L,(T+ay) - (T+a,.,)].

together with 9.3.4, show how to evaluate D, ,,,
which factors into distinct linear factors over F,.
Even though the expression thus obtained for D, ,, is complicated, it
seems that using it one can generalize algebraicity results in 9.2, by the same
method. We have also proved a case of the Chowla-Selberg formula for a
higher-dimensional generalization [A2] of Drinfeld modules, combining 9.3 with
techniques of 9.1.1. Since this is just a special case and since it seems that recent
results of Anderson mentioned in the introduction will prove much more in a

better way, we do not go into details.

if a/b has a denominator

9.4. Functional equations and all examples of the Chowla-Selberg phe-
nomenon so far, can be thought of as giving, for some a’s (note that n(a) is an
integer), a motive (in the sense of [A2]) M(a) with complex multiplication (with
the infinity type corresponding to a), whose period is (up to an algebraic
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quantity) T'(a) and for which eigenvalues of Frob, are Gauss (or rather Jacobi)
sums g(a, v) with prime factorization v=""7"_ In our examples, M(a) is just a
Carlitz module for Fq[T], qu[T], qu[AT], etc. Since the cyclotomic equation
C,(u) = 0 is Eisenstein at v by [C3], the eigenvalue of Frob  is v. This fits with
our situations: n(a) = 1, n(a”) = 0 for o not the identity (see also the analogue
of Weil's theorem on Jacobi sums as Hecke characters [T3] for Gauss sums for
Fq[T] introduced in [T3]). (Using the tensor products of [A2], one can create
more examples of M(a)’s.) For v in the base, the v-adic periods of M(a) (in the
sense of A. Ogus: essentially eigenvalues of Frobenius at v) should be T (a) (up
to an algebraic quantity). In our cases, when v is “ordinary”, our results show
that I' (@) is algebraic. This seems to fit with the statement above.

9.5. In [H3], Hayes introduced “Gauss sums” (in the sense of providing
“correct Stickelberger elements”) in general, explicitly. (Their existence was
shown by Tate and Deligne (see [H3]).) The interesting feature of his construc-
tion is that the Gauss sum for a prime v occurs as a torsion point for some
rank-one Drinfeld A-module, where the infinite place for A lies above v. But
since the infinite place is arbitrary, by Theorem 3.10 and reflection formula 6.1,
we get a v-adic expression for the Gauss sum for prime v, in terms of values of
gamma functions (for v) at appropriate fractions. The difference from the
Gross-Koblitz phenomenon is that this gamma function at v, though defined
uniformly at all places, does not arise as interpolated from a fixed gamma
function at infinity.

9.6. Some results of this paper are mentioned or proved only for F, [T ] and
not for general A. We now want to separate out what does not hold for general
A from what is not proved, but may be generalized: 0.4.1, 0.4.3 do not hold (for
example, for A =: Fylx,yl/(y*> + y = x® + x + 1), I1(8) /TI(4) is not an inte-
ger); 1.1 and 1.2 do not hold; 1.6 and 1.7 should generalize, but 1.7 does not, if
one defines “Gauss sums” as in [T3]; but 1.7 may generalize with the definition
as in [H3] mentioned above. More on this subject will appear in a separate
paper. Equality Z(1) = log(1) in 5.5 does not hold in general.

9.7. We finish this paper by mentioning briefly some of the open problems
apart from the generalizations:

(a) How are the gamma functions related to the zeta functions of [Gol]?

(b) Why do the characters coming from the analogue of Deligne’s theorem
(4.6,6.1,6.2) turn out to be trivial?

(c) Why does the { ), which was obtained from the partial zeta function for
Fq[T], seem to work in general?
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(d) Can gamma functions be defined in a better fashion treating sign and
class number problems better?

(e) Is there a v-adic Chowla-Selberg phenomenon? (I.e., can one decom-
pose a combination, similar to that occurring in the Chowla-Selberg formula, of
[, values into natural transcendental (“v-adic periods) and algebraic parts?.)
A. Ogus has recently described (unpublished) the p-adic Chowla-Selberg for-
mula using Morita’s p-adic gamma function. We just note here that the p-adic
periods he uses are different from the Fontaine-Messing periods and that there
is some indication (see, e.g., 9.4) that the analogue of his formula holds in the
function field case.

(f) In view of the analogies of 0.1.1, can one define reasonable, useful
gamma functions and Gauss sums in a situation where there is an elliptic curve

with complex multiplication by a quadratic imaginary field?

Tara INsTITUTE, BOMBAY, INDIA
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