
Gamma Functions for Function Fields and Drinfeld Modules

Dinesh S. Thakur

The Annals of Mathematics, 2nd Ser., Vol. 134, No. 1. (Jul., 1991), pp. 25-64.

Stable URL:

http://links.jstor.org/sici?sici=0003-486X%28199107%292%3A134%3A1%3C25%3AGFFFFA%3E2.0.CO%3B2-E

The Annals of Mathematics is currently published by Annals of Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/annals.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Sat Feb 2 16:52:10 2008

http://links.jstor.org/sici?sici=0003-486X%28199107%292%3A134%3A1%3C25%3AGFFFFA%3E2.0.CO%3B2-E
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/annals.html


Annals of Mathematics, 134 (1991), 25-64 

Gamma functions for function fields and 

Drinfeld modules 


Introduction 

The purpose of this paper is to study gamma functions in the context of the 
theory of function fields of one variable over a finite field. In particular, we 
explore, among other things, their connection with the theory of Drinfeld 
modules of rank one (which is function field cyclotomic theory), their interpola- 
tions, functional equations, the nature of their special values (transcendence, 
algebraicity, connection with "periods") and various analogies. Most of the facts 
about the classical gamma function are recalled when necessary. Readers may 
refer to [G-K] or Artin's book on the classical gamma function. 

Now we describe more precisely the contents of this paper. Let F, be a 
finite field of characteristic p. Section 0 covers the background material on 
Drinfeld modules. It also describes the gamma function r for F,[T] (with 
domain N and with values in F,[T]) introduced by Carlitz and its interpolations -

r, r, (with domain Z,, and with values in the completions of F,(T) at its infinite 
and finite places respectively) due to Goss. In Section 1,we relate this gamma 
function to the Carlitz module (which is a special Drinfeld F,[T]-module) by 
showing essentially that 

where .fi is a period of the Carlitz module (the analogue of 2.rri), and putting a 
bar over a quantity which "removes the degree part". The second (first) of the 
equations stated above, is in analogy to (in contrast to) what we know about 
usual gamma functions. We also recall results of [T2], [T3] (relating special 
values of r, to Gauss sums of [T2], [T3]), a weak corollary of which gives values 
of r,(O) and r,(1/2) for example. In the third and fourth sections we define 
gamma functions for function fields and interpolate them at all places by finding 
a suitable generalization of constructions of Carlitz and Goss and prove analo- 
gous results about the special values. Following a suggestion of Gekeler, we also 
include the degree part of the gamma function. 

"Supported in part by NSF grant DbIS 8610730C2 
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The second section proves functional equations for these gamma functions, 
giving in particular, analogues of the reflection and the multiplication formula. 
The functional equations turn out to be equivalent to some relations between 
digit expansions of certain combinations of p-adic numbers. Material in Sections 
0-4 formed a part of the author's thesis [T2]. 

The gamma function considered in this part has domain in characteristic 
zero and it reflects arithmetic of cyclotomic extensions which are constant field 
extensions. In Section 5, we introduce another gamma function with domain 
(and range) in characteristic p, now reflecting the cyclotomic theory of Carlitz- 
Hayes-Drinfeld and we interpolate it at all places. In Section 6, we prove 
functional equations for this gamma function (at all places). One interesting 
consequence is transcendence of values of gamma at all proper fractions and 
algebraicity of values of v-adic gamma at all fractions when q = 2. The seventh 
section analyses these results and tries to put the visible analogies studied so far 
in a better framework of brackets ( ) and partial zeta functions, following a 
suggestion by Anderson (see [All and references there). Section 8 studies similar 
questions for a two variable gamma function of Goss GO^], of which the two 
types of gamma functions studied above are essentially specializations. The last 
section contains miscellaneous comments, analogies and partial results verifying 
special cases of Chowla-Selberg phenomena for one and two variable gamma 
functions. 

It should be noted that we only have partial results on analogues of 
Chowla-Selberg and Gross-Koblitz formulae. Also, the analogue of Deligne's 
theorem we prove gives trivial Hecke characters. It seems that recent results of 
Greg Anderson (private communication) will provide complete results covering 
also the relations to the higher-dimensional generalizations of Drinfeld modules 
studied in [A2]. 

Warning on the notation. Symbols II,T, To, ii,Di,( ) etc, signify different 
objects according to the context. This has been done to avoid cumbersome 
notation and to make analogies more visible. The change of notation will be 
made explicit each time. We follow the standard convention where the empty 
sum evaluates to zero and the empty product evaluates to one. A prime over the 
summation or the product symbols means that the variable runs only through 
nonzero values. 

Acknowledgements. I am obliged to Greg Anderson, Pierre Deligne, Ernst 
Gekeler, David Goss, David Hayes, John Tate, Jing Yu for their encouragement 
and useful conversations. I would like to thank The Institute for Advanced Study 
for providing a very stimulating atmosphere and for arranging a special seminar 
on Drinfeld modules during 1987-88, where these results were presented. 
Finally, I would like to thank my wife, Jyoti, for her help in typing the 
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manuscript and the referee for many suggestions to improve the readability of 
the original manuscript. 

0. Background 

This section describes the work of Carlitz, Drinfeld and Goss relevant to 
this paper. More precisely, we explain the basic set-up of Drinfeld modules and 
describe the gamma function for F9[T] introduced by Carlitz and its interpola- 
tions due to Goss. 

0.1. Drinfeld modules (for more details, see [Dr], [Gel). 
0.1.0. Let K be a function field of one variable with field of constants 

k =:.F (where q is a power of a prime p ) ;  let co be a place of K, 6 be the 
9 

residue class degree of m, A be the ring of integers outside co of K, K, be 
the completion of K at m, k, be the field of constants F,s of K, and be the 
completion of an algebraic closure of K,. It will be useful to keep in mind 
analogies 

K - Q ,  A - Z ,  K,-R,  R - C .  

For z E K,X, let deg(z) =: -6 ord,(z). For a subfield L of R ,  L""Dil1 denote 
the separable closure of L inside R .  

0.1.1. Drinfeld introduced the .key concept of an elliptic module (also 
called a Drinfeld module) in the theory of function fields. A Drinfeld module is 
an analogue of the multiplicative group, elliptic curve or of an elliptic curve with 
complex multiplication. To motivate the definition, we recall that classically an 
elliptic curve is just C/A where the lattice A is a rank two Z-submodule of C. 
Similarly, C X =  C/A with A being a rank one Z-submodule of C. For a finite 
extension L, inside a ,  of K,, a lattice A over L will be, by definition, a finitely 
generated discrete A-submodule in LWp, invariant with respect to Gal(LSeP/L). 
An important point, though irrelevant for this paper, is that, in contrast to the 
classical case, lattices of arbitrary rank exist. 

0.1.2. Given such a lattice A, the corresponding exponential function 
(the analogue of exponential, sine or Weierstrass a-functions) 

is an entire additive function and induces a group isomorphism a / A  r R. 
Since A is an A module, we obtain R as an A module. In fact, for a E A, 
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a # 0, by comparing divisors, we see that 

where p, is a polynomial function and c E a. 
From the analytic object a / A ,  we extracted a nice algebraic object p. It 

gives an A-module structure on the additive group scheme G,, i.e., a nontrivial 
embedding 

where L{F}  is a twisted polynomial ring in the Frobenius, i.e., the ring 
generated by elements of L and by F with the commutation relation F1 = 1PF. 
Also, the constant term of pa is just a. This leads to: 

Definition 0.1.3. Let i: A -+ L be an embedding of A in a field L. The 
elliptic (or Drinfeld) A-module ("of generic characteristic" according to the 
standard terminology; but we will drop this phrase, as we will have no occasion 
to use the more general notion) over L is a homomorphism p: A -+ LIFJ,  
( a  + pa) such that the constant term of p, is just i(a) and p is not just 
i: A -+ L c L{F} (the nontriviality condition). 

0.1.4. This is analogous to "elliptic curve over L with complex multi- 
plication by A''. One should keep in mind the classical situations Z + End G,,, 
Z -+ End E, where E is an elliptic curve, and @', + End E (where F is an 
imaginary quadratic field and E is a complex multiplication elliptic curve). (In 
the first case, n E Z acts by the n-th power map, which is reflected in the 
functional equation (e")" = en". Compare with the functional equation for eA in 
0.1.2.) 

Definition 0.1.5. Let p, p' be Drinfeld A-modules over L. 
(1) An isomorphism (isogeny resp.) over L from p to p' is a nonzero 

element p E L X  ( p  E L{F}resp.) such that pp,  = p',p for a E A. 
(2) If the degree of pa (viewed as polynomial in F )  is -r(deg a)(logp q )  

for all a E A, then we say that p has rank r .  
It can be shown that, for any Drinfeld module p such an r exists and is a 

natural number. Drinfeld showed (see [Dr] for the definitions of the categories 
mentioned below): 

PROPOSITION0.1.6. If L is a finite extension of K,, then the category of 
elliptic A-modules of rank r over L is isomorphic to the category of A-lattices of 
rank r over L. (So, in particular, there exist elliptic A-modules of arbitrary rank 
over Kzp.) 
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0.1.7. We have already described how to pass from A to p = via 
e, = e,. On the other hand, given p, we can essentially solve for e, via 
e,(az) = p,(e,(z)) (with any nonconstant a)  and then recover A as Ker e,. 

0.2. The special case. 
0.2.0. Some forty years before Drinfeld defined the general notion, by 

different considerations, Carlitz [Cl] came across the F,[T]-module over F,(T) 
given by T -+ p, = T - F (T being the generator of F,[T], p is well-defined as 
an F9-algebra homomorphism). Also F is now the "q-th power Frobenius" 
(abuse of notation). 

Following Carlitz, define [i], Di (Carlitz used Fi in place of now-standard 
Di) for nonnegative integers i by 

[ i ]  =: T,' - T,  Do =: 1, Di =: [ i ]DL1,  

He showed that the exponential corresponding to p is given by 

and the corresponding lattice is +F,[T]. (This defines 7? up to multiplication by 
F,X) where 

See [Cl] for details. This period + was shown to be transcendental over F,[T] 
by Wade [W]. 

0.2.1. Let pn denote the set of n-th roots of unity. By adjoining p, to 
Q or K one obtains cyclotomic extensions with abelian Galois group. Over Q, by 
the Kronecker-Weber theorem, any finite abelian extension of Q is contained in 
some cyclotomic extension. Over K, the corresponding statement is, of course, 
false. In fact, Carlitz [C3] showed that adjoining the roots in 0 of "the 
cyclotomic equation" pa(z) = 0, a E A = F9[T] - (0) (i.e., the set of a-division 
points (let us denote it by A,) of the action by p) to K = F9(T), we get an 
abelian extension with Galois group ( A / U A ) ~ .  (This should be compared with 
the cyclotomic extension of Q obtained by adjoining the division points of 
Z -+ End G,  and the situation in Lubin-Tate theory.) Carlitz developed an 
analogous cyclotomic theory for F,[T]. This aspect has been greatly generalized 
by the work of Drinfeld and Hayes (see [Dr], [Hl], [H2], [H3]). In particular, see 
[Hl] for an analogue of the Kronecker-Weber theorem for F,(T). Roughly, the 
abelian extensions K(Aa) are tamely ramified over the infinite place. To get the 
maximal abelian extension of K, one has to let the infinite place vary through all 
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the places of K ,  choose sgn-normalized (see Section 3 for the definition) rank-1 
Drinfeld A-modules, for corresponding A's and then adjoin all torsion points 
thus obtained. 

0.3. The zeta function for Fq[T]. 
0.3.0. The Riemann zeta function is given by 

By interpreting n as the cardinality of the residue class ring (i.e., the norm) of a 
nonzero ideal (n) in Z and carrying over the interpretation to function fields, 
Artin developed zeta functions of a complex variable for function fields and 
showed that they gave an excellent analogue. 

Carlitz thought of n as a positive or monic (there are two choices f 1 of 
signs for Z whereas there are q - 1 choices of "signs" in F,X for F,[T]) 
representative of a nonzero ideal (n). Hence he considered [Cl] zeta values 

Z(S) =: l /ns ,  s E N,  Z(s )  E F,I((l/T)). 
n monic in F,[T] 

In other words, instead of the norm which just depends on the degree of the 
polynomial, he used the whole polynomial, trading it for a smaller domain for s .  
More justification lies in the obvious Euler product expression and in the 
following proposition [Cl], [C2]. (Notation is further explained in 0.3.3.) 

where m is a positive integer, B(, - ,),, E F,(T), II((q - 1)m) E Fq[T] and ii is 
as above. 

0.3.2. Example: 

0.3.3. This proposition should be compared with 

where B,, E Q, (2m)! E Z, 2 %- is transcendental over Q. Hence one should 
think of multiples of (q - l )m as analogues of even integers, B(,-,,, as 
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analogues of Bernoulli numbers B,,, (Carlitz [C2] defined these by a generating 
function analogous to the classical case and proved von-Staudt-type congruences 
for them to justify the terminology), H((q - Om) as factorials (see 0.4.1 for the 
definition of H) and i?- as an analogue of 2 r i  (these analogies will be explained 
later). For interpolations and more on zeta functions, see [Gol] and other papers 
by Goss. 

0.4. The factorial function for F,[T]. 
The factorial function FI for F,[T], which appeared in Proposition 0.3.1 was 

defined by Carlitz [C2] as follows: 

0.4.1. For a nonnegative integer n, n = Cniqi ,  0 _< ni _< q - 1, de- 
fine the factorial function by 

In addition to its analogous occurrence in the special values of the zeta function 
(see Proposition 0.3.1), its prime factorization 

I I (n)  = n P n p ;  n, = [n/NPe] 
P monic prime e = l  

(where the norm NP is the cardinality of the residue c1:tss field) is an exact 
analogue of the classical formula 

This was noticed by W. Sinnott and is easy to prove from the definitions since [i]  
is the product of all monic primes whose degree divides i and Di is the product 
of all monic polynomials of degree i (see [Cl, p. 1401). 

0.4.2. Remark. This factorization formula does not hold in general 
(i.e., for general A), for the definition of gamma functions we propose in Section 
3, or for the definition proposed by Goss. Also, Goss in his papers called what we 
call the factorial function, the gamma function. We put T(n) =: H(n - 1) in 
accordance with the classical convention, for all factorials occurring in Sections 
0-4. 

0.4.3. Carlitz [C2] also showed that II(a)II(b) divides H(a + b )  (in-
tegrality of binomial coefficients). 

0.4.4. Goss [Go2, Appendix] made interpolations of the factorial at all 
places of F,[T] as follows. Since Di = T i 9  - + lowerT ( ~ - ~ ) ~ ' + ~ ' - '  degree 
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terms, the unit part 

tends to 1in Fq((l/T)) as i tends to a. So the unit part of II(n) interpolates to 
a continuous function (called the a-adic factorial, this is not canonical: we are 
implicitly choosing uniformizer 1/T at a; see [Go21 and also Section 3) n(n) ;  

Also, since Di is the product of all monic elements of degree i,  we have a 
Morita-style v-adic factorial II,: Z, -+F,[T], for finite primes u of Fq[T] given 

by 

where Di,,is the product of all monic elements of degree i, which are relatively 
prime to u ,  and ni  are digits in the q-adic expansion of n. This makes sense 
since -Di,,+ 1 v-adically as i + a,as can be seen [Go21 by generalizing the 
standard group theoretical argument proving ( p  - l)! E -1modulo p. 

1. The gamma function and the Carlitz module 

In the last section, we introduced the gamma function and described many 
reasons why it is a good analogue. The aim of this section is to explain the 
analogy further by relating the gamma function to Drinfeld modules. 

1.1. Let C be a rank-one F,[T]-module, given by C, =: T + F. Then from 
0.2.0 it is easy to see that the corresponding exponential is given by ec(z) = 

E Z ~ ' / D ~ .  = II(qj). This should be compared with e" = Ezn/n(n) .  We But Dj 
can rephrase this in a more striking fashion as follows. 

Let 7 denote the contour starting at -m on the real axis, encircling the 
origin once in the positive sense and returning to the starting point. Then 
classically (closely related to Euler's famous integral representation of the 
gamma function) we have Hankel's formula: 

Here, for a positive integer n, l / I I (n)  is a visible residue of eZz-" dz/z (at 
z = 0) by the Taylor series expansion; and from that point of view, the same 
holds (with the classical exponential replaced by e, and 2 7 ~ i  replaced by a 
period (which is just fi of 0.2.0 multiplied by the q - l-th root of -1;see 3.13 
for a more detailed discussion) corresponding to C) in the function field case, 
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but now only for n = qj. (We get 0 otherwise.) The general value is then 
obtained multiplicatively. 

1.2. Another interesting analogy is as follows. Carlitz [Cl]  considered a 
linear operator A given by Af(x) = f(Tx) - Tf(x) on linear functions. (Note 
that in characteristic p, one has a wide variety of linear functions.) It satisfies the 
derivation rule A( f 0 g )  =f 0 (A g )  + (Af ) 0 g ,  where denotes composition. 0 

Consider d, =: A1'4 which is linear and satisfies the derivation rule for compo- 
sition if one restricts to "linear" power series with coefficients in F,. Interest-
ingly, the functional equation ec(Tx) = Tec(x) + ec(x)4 is equivalent to 
d,e,(x) = ec(x) just as d/dx(eA) = ex  (in contrast to d/dx(e,(x)) = 1). In 
fact, this holds term by term, and one has d,(x""/II(qn)) = xqn- ' /II(qn-l)  and 
also d,(xqn/[n]) = d,(xqn-'1 analogous to d/dx(xn/n!) = xn-l/(n - l)! and 
d/dx(x ,/n) = xn-l  resp. Also note that one has twisted recursions I I (qn+l)  = 

[n + 1]n(qn)4 and [n + 11 = [n]4 + [ l ]  = [n] + [l]qn in place of the usual 
(n  + l)! = (n  + l )n! and ( n  + 1) = n + 1resp. 

1.3. Now we relate the special values of r to the period 6.Note that we 
are still dealing with Carlitz' p and .fi. Similar statements can be made about C 
and the corresponding periods; indeed all these will be a special case of results 
in Section 3, where we also take care of the degree part and the signs. In the 
rest of this section, for 0 # M E F4((l/T)), M / T ~ ~ ~ " 'will be denoted by E. 
Recall the Carlitz formula for the period .fi given in 0.2.0. Namely, 

-
so that f i4- l  E Fq((l/T)) and eq-'makes sense. By 5 we will denote its 
unique q - 1-th root which is a one-unit in F4((1/T)). A similar remark applies 
to .fil/(q- 1). 

THEOREM a 5 q 1,1.4. For 0 I -

In particular, if q # 2n, then 

Proof: Since -1= C(q - l )qi ,  from the definitions of 0.4.4, we have 

It is easy to see from the definition of Di that 
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Hence 
-r (o)q-l/+q-l = q - 1  = Ilim Dn +, / [ l ] q " + l  

-qsince we have already seen that q-+1, and since [l] -+ 1, because any 
one-unit raised to the qn-th power tends to 1as n -+ m. 

Hence we have proved T(0) = z. Observing that a / ( l  - q )  = Caqi for 
0 I a I q - 1, we get the theorem. 

COROLLARY1.5. r ( i  - a/(q - 111, r ( n )  are transcendental, where a ,  i ,  n 
are integers, 0 < a < q - 1 and n I 0. 

Proof: The corollary follows from the fact that 

f '(z + l ) /f ;(z)  = [I] - - - [ n ]  

if q n  divides z, (in the sense of valuations for p-adic numbers), and q n + '  does 
not (the empty product being defined always as one; this excludes only z = 0). 
This fact, in turn, is immediate from the definitions together with the observa- 
tion made above that (Do - . . D,)~-"  = Dn+ ,/([I] - [n  + 11). 

To investigate the nature of gamma values at all fractions, it is sufficient to 
look at all B(qj / ( l  - qt)) for 0 I j I t. They can be related to the periods .fit's 
of Carlitz modules for Fqt[T]. For example: 

Proof: 
-

n(l/(l - q t ) )  Dtn Dt(n - 1) " '  D, 


= lim 
B(q t - l / (1  - qt ) )  . . .  

= l im[tn][t(n - l ) ]  . . -[ t ]  

This is the Chowla-Selberg formula for constant field extensions, as will be 
explained in Section 7. Similarly, it can be shown, for example, that 

Transcendence of these combinations of periods follows from [Yl]. 

1.7. In [T2] (see also [T3], Th. V, Cor. and Th. VI), we introduced Gauss 
sums for Fq[T] and related some special values of the v-adic gamma function to 
these. This also implied algebraicity of some special values. In Section 4, we 
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provide a simpler proof of a weak corollary (for the F,[T] case) of this result, to 
make a parallel statement to the theorem above. (Compare it to the analogous 
nature of r,(1/2), for Morita's p-adic gamma function T,.) 

2. Functional equations 

2.0. Recall that the classical gamma function satisfies (1) the reflection 
formula: T(z)T(l - z)  = rr/sin rrz and (2) the multiplication formula: 

We will prove analogues of these and also their p-adic counterparts in the 
function field case. The proof naturally falls into two parts. The first one, which 
is the subject of Sections 1, 3, 4, evaluates r(0), r,(O) (Thms. 3.10 and 4.4 resp.) 
and the other part, which is the subject of this section, establishes relations 
between gamma values in the abstract setting below (Thms. 2.6 and 2.8). 

2.1. Consider a function f defined on Z, by 

f ( E a j q ' )  =: ~ A Y 

for some Aj's which can be thought of as independent variables with the evident 
manipulation rules. Put g(z) = f (z  - 1). The various factorial ("f ") and gamma 
("g") functions introduced in Sections 0-4 are all of this form. 

We want to get formal relations satisfied by f .  In particular, we would like 
to know when FIf(xi)"t = 1formally, i.e., independently of Ai's. In other words, 
if xi has q-adic expansion Cxijqj, then we want to know about the kernel of the 

map 

Z ni('i) + ( c n i ' i j )  
formal j 

If Cni(xi) is in the kernel, then 

LEMMA2.2. For z # 0, g(z  + l)/g(z) depends only on ord,(z). 

Proof: This is obvious from the definition. 

Proof: This follows (replace z by z + 1) since -1 = C(q - 1)qj and if 
z = Czjqj then -1 - z = C(q - 1 - zj)qj. Another way to prove this is to 
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notice that g( l )  = f(0) = 1; so it is true for z = 0. And since ord,(z) = 

ord,(-z), by Lemma 2.2, we have g (z  + l)/g(z) = g ( l  - x)/g(-z); hence 
by induction it is true for all integers z. Integers being dense in Z,, the lemma 
follows easily. 

LEMMA2.4. For z E Z, and (n ,  q )  = 1, 

(Here, $n is euen, so that q is odd, then by g(0)1/2 the element 177=o~y-1)/2 
whose square is g(0) is meant.) 

Proof: Since ord,(z) = ord,(nz), Lemma 2.2 implies that 

and again, as before, it is enough to prove the claim for a single z, say z = l /n .  
So we want to prove g( l /n)  . g((n - l ) /n) = g ( ~ ) ( " - ' ) / ~ ,which follows 
from the reflection formula (Lemma 2.3), by pairing g(a/n) with g((n - a)/n). 

2.5. It is amusing to note that Lemma 2.4 also follows immediately from 
well-known results (e.g., Hardy and Wright, Chapter 9) on digit expansions; 
namely, if (n ,  q)  = 1, - l / n  has a purely recurring expansion of r recurring 
digits where r is minimal such that n divides q r  - 1.Essentially, the recurring 
digits for -a/n are obtained by permutations of those of - l /n ,  so that the 
sum of the i-th digits of all of them is constant. This constant is easily seen 
to be (q - l )(n - 1)/2, as - l / n  + . . . + - (n  - l ) /n = - (n  - 1)/2 = 

((n - 1)/2)E(q - l)qi. 
Summarizing, we have proved the following: 

THEOREM2.6. Let z E Z,, (n ,  q )  = 1.Then 
(1) g (z )g( l  - z) = g(0); 
(2) g(z)g(z + l / n )  g(z + (n  - l)/n)/g(nz) = g ( ~ ) ( " - ' ) / ~  

2.7. We now give a more general functional equation (Theorem 2.8). For 
the motivation and application of this result, see Sections 4 and 7. (In particular, 
4.7 and 7.3 will explain the analogy with the classical case and how it generalizes 
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Theorem 2.6.) Let N be a positive integer prime to p. For x E Q, define ( x ) by 
x = ( x )  modulo Z, 0 I( x )  < 1. If g = C m i [ a i ]  ( m i  E Z, a ,  E ( ~ / N z- (0)) 
is an element of the free abelian group with basis ( ~ / N z )- (01, put n ( g )  =: 

C m i ( a i ) .Also, for u E ( Z / N Z ) X ,let =: Cmi[ua i ] .By abuse of notation, a ( U )  

we put 

f ( - a )  =: n f ( - ( ~ ~ > ) ~ '  
Consider the hypothesis 

( *  * >  n(o(qJ))is an integer independent of j 

THEOREM2.8. If ( * * ) holds, then 

Proof: Without loss of generality, we may assume that N = q r  - 1. Put 
g = Cmia i  and 

Na, = bi = b,-,, i q r - l  + br-2 , iqr-2+ . . . +bo, i .  

For 1 Ij I r - 1, ( *  * )  is equivalent to 

Claim. Cmi (b j , i  - b r - l , i )= 0.  
This is obvious if j = r - 1; suppose it is true for j = r - 1, . . . ,r - t + 1. 

Then ( * * )  for j = t says that 

Now ( * * )  for j = 1 gives ( C m i b i ( q- l ) ) / N  = Cmib,- l , i  and hence 
(Cmib i (q t- l ) ) / N  is equal to the first [ . . . 1, and thus the second [ . . . ] is 
zero, proving the claim for j = r - t .  Hence induction completes the proof. 
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3. General A 

In this section we define the gamma function in general and relate its value 
at 0 to the period of the appropriate Drinfeld module. 

3.1. Definitions. Recall the notation in 0.1.0. Note that for a in A, deg a is 
just the usual notion; i.e., deg a = dim,$A/aA) = degree of the divisor of 

zeroes of a .  The degree is always a multiple of 6. For an ideal d of A, put 

dN=: {a E d:deg a IN}. 

Then the Riemann part of the Riemann-Roch theorem shows that #g,= q""+c 
for i E N, i >> 0, c some constant. 

Choose a uniformizer t at m. This gives us splitting of K,X as F$ X U' X t Z  
where u1 is the group of one-units at m. In other words, z in K,X can be written 
uniquely as z = sgn(z) X 2 X tn ,with sgn(z) E k,X, 2 E u', n G Z. 

This gives a homomorphism sgn: K,X -t k,X such that sgn(ul) = 1, sgn(t) = 

1, sgn(a) = a for a E k,X. There are q s  - 1 such sgn functions, depending on 
the choice of t .  For a E ~ a l ( k , / ~ , ) ,a o sgn is called a twisted sign function 
and a Drinfeld module p is called sign-normalized (see [H3, p. 2241) if the 
leading coefficient of p is a twisting of sign. 

By [H3, p. 2241, every rank-one Drinfeld A-module over In is isomorphic to 
a sign-normalized p, for chosen sgn. 

So fix a sign function (in 3.13-3.14 we discuss how the situation depends on 
the choice of sgn function) and let p be a corresponding sign-normalized 
rank-one Drinfeld A-module with corresponding rank-one lattice A and expo- 
nential (or sine) e, = eA. Since A is a Dedekind domain, A is isomorphic to an 
ideal, say d,of A. Choose such an d ,  and let ii E In be a corresponding 
"period" defined up to an element in Fcr by the equation A = +d.Think, if 
you will, of this period ii of p as an analogue of period 27ri (up to + 1) in the 
situation Z -, End G,. 

3.2. In this setting, E. U. Gekeler ([Ge, p. 361) gave a nice formula, based 
on the formula ((*)  below) of Hayes ([H3, p. 233]), for the period 6. This 
formula will now be described (see also [Gel) and reinterpreted as the identity 
r(0) = + multiplied by a root of unity. 

Let x be an element of A of degree > 0, say of degree d and with 
sgn(x) = 1.Then, since p is sign-normalized of generic characteristic, we have 

For each a E dmod x d ,  e,(aii/x) = iie,(a/x) is an x A-torsion point of 
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viewed as A-module via p.  (Since 

we have 

In other words, we have the following commutative diagram whose rows 
are exact: 

So these are distinct roots of p,(u). Since ( - l)qri-i = 1 in characteristic p,  
comparison of the coefficients of t gives 

Now 

This implies i i q d P 1  E K,. We will see later that , ~ r ~ ' - '  E K,. Hence, 

which is the limit of the same expression with b E d replaced by b E dN8as 
N tends to infinity. (This follows, since the exponential itself is such a limit.) 
Now (xb - O)/xb = 1, so that if N is large, then the numerator of the 
right-hand side of (*), with xb - 0 allowed, is just the product of nonzero 
elements of d n 6 + d ,  whereas the denominator is x''48-')*q" times the qd-th 
power of the product of nonzero elements of d', (as there are q d  a's). 

Take the one-unit part of both sides and notice that 

since a one-unit raised to the qr-th power tends to 1as r -+ m. 
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Hence, 

Keeping in mind that we want to interpret this as 

suggests the following definitions for Di,Di,r: 
3.3. First notice that, the field of constants being F,, if x E 4 then 

ax E 4,a E F,X, so that the signs (elements of F$) appear in F(r-equivalence 
classes. Choose representatives for F<?/F,X and let Di be the product of all 
elements a of d of degree i6 with sgn(a) being one of these representatives. 
Now DiE d c  A.Also let di be the number of these elements. The one-unit 
part Diis obviously independent of the choice of representatives. (Notice that 
for 6 = 1and 1 E F,X/F,X as the representative, Di= product of all monic (i.e., 
with sign 1) elements in A of degree i.) 

3.4. With these definitions, our equation becomes 

But in characteristic p ,  q Q o w e r  spreads out the power series expansion, so 
-9-1

that, since D,is a one-unit, we get Di + 1,and D,+ 1. 
Hence r:Z, + K,, given by 

is well-defined and 

In 3.8, we will prove the following: 
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Hence 

*l-q8 = q o ) l - q 8  

If $ is that (1 - qs)-th root of .fi1-q8 which is a one-unit, then F(0) = %. 

3.6. Gekeler showed how to the degree as deg T (or log T). 
Analysing the degrees on both sides 

deg 7?9"-' = lim q z'(deg b)  - ' (deg a )  + d # d N s  
b 4 3  a @\.%+d 

where d, = (q" l)qi"c/(q - 1) -+ 0 q-adically as i tends to infinity (by 
Riemann's theorem). 

This implies that the map N + Z given by z + deg IT(z) interpolates to a 
continuous function deg IT: Z, -+ Z, given by Cziqi  -+Ci6zidi .  Since -1 = 

C(q - l )qi ,  we get deg IT(-1) = C(q - l ) i6di.  So deg IT(-1) = deg iiand 
hence if we change the range of the gamma function, so as to make sense out of 
p-adic integral powers of t, we would get IT(- 1) = iitimes a root of unity, if 
we define Il(z) = =(")/" (Note that we use symbol IT again, as we 
have recovered the degree part also.) These would then be independent of the 
choice of the uniformizer, if it gives the same sign function. 

3.7. The most natural way to do this is to complete K,X p-adically; i.e., 
define k,X=: l i p  K,X/K,X"'. Since finite fields are perfect, signs in K,X project to 
1 in k,X. We obtain a gamma function which is independent of the choice of 
sign. 

If 6 > 1, as J. Tate pointed out to me, one can do a little better. Since d,, 
for large i ,  is not only divisible by a large power of q, but also by (qs  - 1)/ 
(q - and take it as the I), we can evidently put E,X=: l i p  K,X/~,X(q~-l)~"/(q-l) 
range. The signs in F,Xs survive now in F,Xs/F,X. Summarizing, one obtains 
IT: Z, -+ R," with Il(z) = ! T ( ~ ) t - ~ ~ g ~ ( " ) / ~ .  

3.8. Before analysing the root of unity (i.e., the sign from (*)) and the 
question of the variation of the situation with respect to the choices we make, we 
first prove the lemma above. 

Proof of Lemma 3.5. It is enough to prove that the gcd of d's is 6. First of 
all, by Riemann's theorem we know that the gcd of degrees of elements of A is 
6. Next, since K is dense in K,, there is an element of degree 0 in K of any 
given sign. Multiplying by elements in d of high degree, clearing the denomi- 
nators we see that d has, for some large i, elements of degree i of all signs. 
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Now, choose elements xk's in A of degrees dk such that the gcd of dk's is 8. 
Then multiplying by powers of xk,  we get all signs in degree i + ndk for all 
positive n, so that the gcd in question divides the gcd of i + ndk which is 6, 
and the lemma is proved. 

3.9. Now we analyse the signs in ( * 1. The sign of the right-hand side is the 
limit as N -+ 03 of the sign of the product of nonzero elements of dN,+d 
divided by the product of nonzero elements of dN6(as the qd-th power is the 
identity on F,.). When d varies, a simple gcd argument shows that ii'-96= 

~ ~ ( 0 ) l - q ~where the sign E is the stationary limiting sign (we have shown that it 
exists; for a more direct proof see [Ge, p. 301) of the product of elements of d of 
degree NS as N -+ m. If 6 = 1, as n,,,:a = - 1, and as ( - l)qd = -1 it 
follows by straightforward counting using Riemann's theorem that E = -1. 
Hence, 

as (q - 1)deg r(0) E Z rather than just in Z,. 
We summarize the discussion in the following: 

(where ,u is at most a (q" 1l2-th root of unity. If 6 = 1,it is a (q - 1)-th root 
of -I), in the sense that (qs - 1)-th powers of both sides are the same, 
considered in K,X. 

3.11. Jing Yu ([Yl, Th. 5.11) has proved transcendence of i i ,  which .then 
implies transcendence of some special values of the gamma function as in 
Section 1. 

3.12. Using this value of r(0) in Theorem 2.6, we see that the powers of ii 
appearing are the same as in the classical formulae 2.0, but some interesting 
algebraic parts are missing. 

3.13. It should be noted that in the case A = F,[T] studied in Section 0, 
and p did not correspond correctly from the point of view of this section. If 
uniformizer T corresponds to sign function sgn and for a E F;, T/a corre-
sponds to sgn' say, then C, = T + F ,  p> = T = a F  are sgn-normalized for sgn 
and sgn' respectively. So p is sgn-normalized for the uniformizer -T rather 
than T. Now C and p' are isomorphic. Suppose the corresponding lattices are A 
and PA. Then ,u-l(T + aF)  ,u = (T + F); i.e., ,uq-'a = 1. In other words, in 
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this case, change of sign function changes + up to a (q - 1)-th root of an 
element in F;. 

3.14. To summarize, given a rank-one Drinfeld module, we get an ideal 
class in A. If an ideal d is chosen representing the class, we get a gamma 
function and if in addition a sgn function is chosen ir is defined up to F,Xs and 
T(0) = 3 times a root of unity (at most (q" 11)-th in general and at most 
2(q - 1)-th if 6 = 1). Observe that, if q = 2 and 6 = 1, the question of signs 
disappears. A change of sgn function may change eqd-'by an element in F?, 
but leaves the formula intact. The r function is independent of choices of coset 
representatives of F,X~/F,X,and depends on the uniformizer only through its 
sign. If t and t '  are uniformizers with t = at', a E F$, then adegrj6T = T'; SO 

there are (q" l) /(q - 1) gamma functions (unique if 6 = 1) and the gamma 
function is independent of the sgn choice on a smaller disc of Z,. Notice that if 
you use the gamma function for A (i.e., choose d=A )  and use p (to get period 
ir) which need not correspond to the lattice giving the principal ideal class, still 
the relation in the theorem is true up to an algebraic number, since all rank-one 
normalized Drinfeld A-modules are isogenous. 

4. Interpolations at the finite places 

In this section we show that the gamma function interpolates at all finite 
places u of A which are relatively prime to d and that T,(o) = ( - I ) ~ " ~ " - ' .We 
also establish an analogue of Deligne's theorem in this context. 

4.1. Let v be a finite place of A relatively prime to d,with residue class 
degree h. We form f i i  =: D,,, as usual by removing the factors divisible by u. 

Dejinition 4.1.1. Let f i i  be the product of elements a of degree i6  with 
sgn(a) one of the chosen representatives and u(a) = 0. Let Si be the set of 
these elements. 

4.2. We will prove ( - -+ 1. 

Dejinition 4.2.1. 

so that IS,: Z, + K , .  Even though Di depends on a choice of representatives 
for F$/F,X, f i i  for large i does not, because the number of elements in Si of 
given sign is a multiple of q h  - 1 and (qh  - 1)-th power kills the choice. 
Similarly it is independent of the choice of sgn for large i. So T, is again unique 
on a smaller disc of Z,. In any case, a value T,(z) is determined up to 
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multiplication by an element in F,X. (So again, there is a unique function for 
4 = 2.) 

Proof: It is enough to prove: 

Claim. There is an integer 1 such that for i >> 0, ( - l)%i = 1mod uw 
with w = [i6/h] - 1. 

Proof Assume that i is sufficiently large. Then the product of elements of 
(&/do  ") is -1mod u ", by a generalization of Wilson's theorem. (Notice 
that we need i (and hence w) large to control elements of order two; for 
example, if A = d=F9[T] then the relevant product is not -1precisely when 
q = 2, u of degree 1and w = 2,3.) Now the elements of Si are equidistributed 
among the cosets, since elements of Si with fixed sign are. (This is because, for 
large i, all members of one coset can be transferred to any other by subtracting 
coset-representatives of degree less than i6, leaving the sign unchanged.) This 
takes care of the case p = 2; so now assume that the characteristic is odd. It is 
enough to prove that the number of elements of Si in any coset is = 6 mod2. 
Now #{a E d :  deg a I kc?} = qk'+c,  by Riemann's theorem, so that 

#(a E d:deg a = i6  with sgn(a) one of the chosen} 

= ( 4 6  - - l)q(i-l)s+c 

Now #Si = ((q" l) /(q - l))q(i-l)"h+c (qh  - l ) ,  but the number of cosets is 
(qh  - l )qhw,SO that the required number is 

as claimed. (Here 1 is chosen so that the equidistribution works and .r  is 
positive.) Hence the lemma is proved. 

THEOREM4.4. rV(0)= ( - lldeg"- ' for all u prime to d. For 0 5 a 5 

q - 1, the r,(l - a/(q - 1)) are roots of unity and rV(b/(4  - 1)) is algebraic 
for b E Z. 

Proof: The first statement of the theorem implies the rest and the first 
statement will follow, if we show that 

mod where m runs through monic polynomials prime to v and of degree not 0'1 


more than t i  and with l i ,  ti  + a as i + a.Given li,  choose t i  so that {am), as a 
runs through F,X,spans the reduced residue class system mod ull. (For example, 
in the F9[T] case, t i  = hli - 1 works.) Then it is easy to see that {am) covers 
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each reduced residue class an equal number (which is a power of q )  of times. 
Hence we have 

But H a  = - 1, so we are done if p = 2. Assume p is not two: then we have to 
show that #{m)= h mod 2. But for some c we have 

#{m) = ( q t , - c  - q t , - c - h  ) / (q  - 1) = ( q h  - l ) / ( q  - 1) - h m o d 2 .  

This finishes the proof. 
Using congruences to decide the root, one can pin down the roots of unity 

mentioned in the theorem. 

4.5. For the rest of this section, we use the notation of 2.7. Let us recall 
some notation and results of [T3]. (For comparison with the classical case, see 
[De].or [G-K].) Let A = F,[T]. Let N be a positive integer prime to p as in 2.7. 
Choose r such that N divides q' - 1 and let F = F,,(T). For prime P of 
F,,[T], the "Gauss sum" g(g ,  P) is defined as in [T3, p. 1111. From the analogue 
of Weil's theorem on Jacobi sums as Hecke characters, proved in [T3, Thm. IX, 
p. 1111 (also see forthcoming paper by D. Hayes proving it in full generality 
using different definitions and approach), we see that if a satisfies condition 
( * * ) of 2.7, then g(g, P)/(NP"(") is a Hecke character xu( P) for F of finite -

order. More precisely xu( P )  = ( - 1)' deg '"(").-

Now we prove the analogue of a theorem of Deligne ([De, p. 911) in our 
situation. Note that we are using the Drinfeld module C of 1.1 to define the 
Gauss sums mentioned above and the corresponding period ii in Theorem 4.6 
below. 

If one takes a general A ,  with 6 = 1 and chooses a sgn-normalized 
Drinfeld module and a corresponding period ii,Theorem 4.6 and its proof carry 
over word for word, when one takes xa( P) = ( - 1)' deg Pn(cr) as a definition of X, 
(as a character of F =: K(/L,. - ,) in th& case). But in this general case, one loses 
the connection with the Gauss sums of [T3]. 

THEOREM4.6 (analogue of Deligne's theorem). If condition ( * * )  of 2.7 
holds, and $ Lfa =: II(-a)/iin(" (this definition is to be understood in the sense 
explained in hio or em 3.101, then ni/n,- x,(T) for any T E Gal( FSeP/F). - = 

Proof: Theorem 3.10 shows that M =: T(O)/fi = ( - l)l/(q-l); if Frob, 
denotes the Frobenius ( q r  deg '-th power), then Frob, M/M = ( -

It is sufficient to look at the action of r = Frob,. By Theorem 2.8 and by 
the analogue of Weil's theorem mentioned above, we see that both sides are 
( - 1)' deg Pn(cr). Hence the theorem follows. 
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4.7. Remark. Note that Gal(Q(p,)/Q) is (Z/NZ)'  whereas 
Gal(K(p,)/K) in our case consists of Frobenius powers. Hence (see 7.2-7.3 for 
more details) the classical counterpart of condition ( *  * )  is (condition 1.13 of 
[G-K]) "n(a(")) is an integer independent of u ". This being a much - E (Z/NZ)' 
stronger condition, the gamma function in the function field case satisfying 
"more" relations, we can handle more 9's and at the same time, we can prove 
the full result and not just up to sign (see [G-K], remark after Theorem 4.5). We 
do not need to use Kubert or Koblitz-Ogus results [K-01. It should be noted that 
the multiplication and the reflection formulae follow easily from Theorem 2.8 
(since they arise just as in the classical case (see, e.g., p. 577 of [G-K]) from g's 
satisfying the stronger condition mentioned above). Also, in those cases, we can 
use r ( g )  instead of n ( - g )  in the definition of a,. 

Remark. Instead of using the analogue of Weil's theorem to get an expres- 
sion for x,, we could have used the analogue of the Gross-Koblitz Theorem [T3, 
Thm. ~11.-It  immediately implies Theorem 4.8 below. (Since we will not use the 
rest of the section anywhere else, we use the notation of [T3] without further 
explanation.) 

THEOREM4.8 (for F,[T] and CT = T + F ) .  

From this we get an expression 

for the Hecke character in terms of P-adic gamma functions and use of Theorem 
2.8 gives the required expression. 

For the rest of the paper, we restrict to the case 6 = 1for simplicity 

5. Characteristic p gamma function 

5.1. The gamma functions we have studied so far had domain in character- 
istic zero, even though the values were in characteristic p. This is connected to 
the fact that as we have seen, for example in the A = Fq[T] case, its arithmetic 
is linked up with cyclotomic extensions F,(T)(p,) of Fq(T) which are just 
constant field extensions. More precisely, the analogue of the Gross-Koblitz 
theorem in [T3, p. 1101 and the Chowla-Selberg formula of Section 1are related 
to Stickelberger elements of these constant field extensions. The fractions we 
handle there are p-integral, and so are of the form m/(qr - 1). The values of 
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gamma function at these fractions are connected to extension Fq(T)(pq,-,) 
which is a general finite constant field extension. 

But we have another nice family (see 0.2.1) (among other cyclotomic 
families, given similarly, but with a different infinite place) of cyclotomic 
extensions Fq(T)(A,) of Carlitz; so one would expect another gamma function 
with domain of characteristic p such that its special values at fractions with 
denominator a are related to the arithmetic of Fq(T)(A,). 

5.2. With all its nice analogies, the gamma function of the first part has one 
feature strikingly different from the classical gamma function. It has no poles. 
The usual gamma function has no zeroes and has simple poles exactly at 0 and 
the negative integers (negative of positive integers). In our non-archimedean 
case, the divisor determines function up to a multiplicative constant. (The 
simplest choice of constant we choose below also seems to be the best for the 
analogies we describe later.) As we have seen, monicity is an analogue of 
positivity (but note that positivity is closed under both addition and multiplica- 
tion, but monicity only under multiplication). 

5.3. Consider the meromorphic function defined as follows (note that we 
are changing the notation): 

1 x - l  r - I - )  ~ n u { q ,  ~ € 1 2 .  
X n monic n 

(Note that for p = 2, positive is the same as negative and for 9 = 2 all 
integers are negative!) From the point of view of divisors, the factorial I3 should 
be defined as follows: 

Definition 5.3.2. n ( x )  =: xT(x). 

Classically, xT(x) = H(x) = T(x + l),  whereas here the first equality is 
natural for the gamma and factorial defined here and the second equality holds 
for the ones considered previously in Sections 0-4. Consequently, gamma and 
factorial now differ by more than just a harmless change of variable. Also, in 
characteristic p, addition of p brings you back, so that giving the value at x + 1 
in terms of that at x will not cover all integers by recursion anyway. 

5.4. Remark. Definitions in 5.3 can be modified, as in 3.3, 4.1, so as to 
make good sense not only for A with 6 = 1, but for general A,  by choice of sign 
representatives if 6 > 1 and use of the general ideal class d instead of A.  



DINESH THAKUR 

5.5. Taking logarithmic derivatives in the definition one sees that 


r1 1 1 n
-(.) = - C -- - -- ( x 1 -(O) = -Z(1)r n monic x + n  x I1 

where Z(s) is as defined in 0.3.0 and Z(x, s) is an analogue of Hunvitz's partial 
zeta function defined analogously. But classically, the value at zero of the 
logarithmic derivative of the factorial is -y, where y is Euler's constant. Hence 
in our case, the analogue, denoted by y again, of Euler's constant gamma is (see 
[A-TI for details) 

(and this is equal to log(l), where log is the inverse function (with log(0) = 0) to 
the exponential ec of 1.1, if A = Fq[T], and also equal to +/(T + T)  if 
further, q = 2 (see [A-TI). 

5.6. Notation. We will write "n. E j" (resp. n E j + ) for "n is integral 
(resp. monic integral) of degree j " ,  A+ (resp. A _ )  for the set of "positive" (resp. 
"negative") elements of A. 

5.7. If j > deg x, I I n E j + n / ( n  + a)  = 1 and so if a E A - A_,  then 
T(a) E K. For example, when A = Fq[T], l/I '(T) = 2T(T + 1) (so prime 
factorization does not depend only on the degree of the prime in contrast to the 
gamma function of Section 0). 

5.8. Remark. In fact, interestingly enough, for A = Fq[T], if a EA, 
l /T(a)  E A (and even 2/T(a) EA+u(O} when a E A+). To see this, it is 
enough to see that II,,,+n divides II,,,+(a + n). (Choosing appropri-
ately, of degree less than e deg Q ,  one sees that if Q "  divides n then it also 
divides a + (n  + nD,,).) (This is not true for general A, because of the irregular 
behaviour in the Riemann-Roch for higher genus. For example, if A = 

Fq[x, y]/(y2 = x3 - x - l)(q = 3), then neither T(y) nor l /T(y)  is integral.) 
Another way to see this is: By Carlitz [Cl,  2.171 one has (in the Fq[T] case) 

where 

and by [C4, p. 5021, $j(x)/Dj is an integer when x is. For more on the 
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t+!ij(x)/Dj, which are analogues of binomial coefficients, see [Go4], [T4] and 
references there. 

5.9. This rationality gives us hope for interpolation 21 la Morita. First we 
make the following definition (note that we are changing notation: The use will 
be clear from the context). 

Definition 5.9.1. For a E A,, let 5 =: a (resp. 1) if u(a) = 0 (resp. v(a) > 
0) and when x E A, put 

Again terms are 1for large j. Hence II,(a) E K for a E A. 

LEMMA5.9.2. II, interpolates to II,: A, -+ At and is given by the same 
forriula, as in the definition, euen if x E A,. Similarly, I',(x) =: ll,(x)/? 
interpolates. 

Proof: In fact, it is easy to see that if x = y mod uz, then II,(x) = 
II,( y)mod vz. 

5.10. Example. (A  = F,[T]). II,(T" is (T + 1 ) / ( ( ~ ~  1 ) ( ~ "+ 1)(T -
T - 1)) if q = 3 and is 1 if q = 2. 

5.11. Remark. l/II,(x) = IT;=, - n,,,+(x + n) up to multiplication by 
a fixed root of unity by Theorem 4.4. 

6. Functional equations 

6.1. The reflection formula. For q = 2, all nonzero elements are monic, so 
that 

(where e, is the exponential corresponding to lattice A as in Section 1, e is the 
exponential corresponding to the sgn-normalized Drinfeld module with period 
lattice +A) SO that for x E K - A, T(x) has algebraic ratio with 7? and hence, in 
particular, r ( x )  is transcendental (see 3.11). From the point of view of their 
divisors, e(iix) being analogous to sin(vx) (i.e., both have simple zeros at 
integers and no poles), this observation suggests a relation between r and sine. 
We state these reflection relations (proof is immediate from the definitions) as 
follows (to make the analogy more visible). 



50 DINESH THAKUR 

The classical reflection formula can be stated as Il,,ZrIT(Bx) = 7rx/sin 7rx 
and here we have: 

Hence the classical name "half sine" for r should be replaced by 
"l /(q - 1)-th exponential" in our case! Notice also that the interesting cyclo- 
tomic part missing from the reflection formula (see 3.12) is present now. One 
interesting difference is that for x a fraction, the ratio (denoted by fl, again to 
stress analogy with the situation in Theorem 4.6) obtained by dividing the 
left-hand side by the first power of the period 27ri ( i i  resp.) lies in Q(/L,,)(K(R,) 
resp.) if the denominator of x is n ( a  resp.). Consequently, if r is an element of 
the relevant Galois group fixing appropriate roots of unity (i.e., n-th in the 
classical case, a-th torsion in our case (and ( q r  - 1)-th roots of unity in the case 
of Theorem 4.6), then from what we have just said, fl',/R, is 1 in our case. 
Hence the character X, occurring as in the analogue of DeliGe's theorem (take 
the formula in heo or em 4.6 as the definition of x u )  is trivial in our case; whereas 
it can be nontrivial in the classical case (see [ ~ e , p .  911 or [G-K, p. 5771). On the 
other hand, if we look at fl:/fl, - - for r ,  not necessarily fixing the appropriate 
roots of unity, we get cyclotomic units in both cases. 

6.2. The multiplication formula. 

THEOREM6.2.1. I.et g E A be n~orzic of degree d and let a run tlzrough a 
full system of representatives modulo g .  Then 

where 

where t is any integer larger than max(deg a ,2 g )  + d. 

Proof: To avoid confusion, here and for the rest of the paper, we use H, 
(l7, resp.) for the factorial (gamma resp.) of Section 3. Using Theorem 3.10 and 



GAh4,MA F L l l C T I O l S  FOR FUNCTION FIELDS 

the fact (see 3.4) that q+1as j + m, we see that 

rp(y)=nj n n (ga +g a )  aa € j +  + x 

Hence the proof is complete. 

6.2.2. Remark. Here R(x) takes care of beginning irregularity in 
Riemann-Roch. For example, R(x) = riff ,,,,,(x + a )  in case A = Fq[T] and 
{a )  is the set of all polynomials of degree not more than d .  

6.2.3. Remark. ( * )  of 3.2 is the multiplication and reflection formulae 
combined (for x = 0) and can be used to recover these formulae. 

6.2.4. Analogy with the usual multiplication formula (2.0) is quite 
visible in that an analogous combination of factorials is an analogous power of 
the period (instead of (n  - 1)/2 here one has (Ng - l ) / (q  - 1) but we have 
seen that 2 and q - 1represent choices of signs in respective situations whereas 
n and Ng are the number of residue classes that are relevant) times an algebraic 
part. For x E K - A, call the algebraic part R, again (see 4.6 and 6.1). Now 
corresponds to the multiplication formula (see [G-K, p. 5771). Again it is 
interesting to note that R, E K(A,), which makes, just as in 6.1, the corre- 
sponding character ,y,- (see 4.6 and 6.1) trivial again, in contrast with the 
classical situation. 

6.3. The multiplication formula for IT,. 

THEOREM6.3.1. Let a ,  g he as in Theorem 6.2.1 with ( g ,  v) = 1. k t  
h =: deg v and let g, he the Teichmiiller representative of g modulo v. Then 
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where 

t is any integer larger than max(deg a,2 g )  + d and - m  is the number of 
n E j + , j < d zc;itlz n not congruent to -x  modulo c .  

Proof: B y  manipulations similar to those in 6.2.1, we obtain 

where by Riemann-Roch-type counting m ,  is seen to be 

for some integer c. Now ( 1 )  the qL-th power of g /g , ,  a one-unit at v ,  tends 
to one as k tends to m. By 4.2 and Theorem 4.4, ( 2 )  -D~+ 1 and ( 3 )
( 8 ,  . . . 6 j ) c 1 - l  + ( - 1)Il-1. Hence the theorem follows easily. 

6.3.2. Remark. Here Q ( x )  takes care of beginning irregularity in 
Riernann-Roch, just as in 6.2.2. Also, Q ( x )  = I T ,  ,,,, ,,,,(x + a )  when A and { a }  
are as in 6.2.2. Note that when x E K ,  n,IT,((x + a ) / g ) / n , ( x )  E K'. 

6.4. The reflection formula for IT,.  


TIIEORE\I6.4.1. Lklt x E A,  . Then 


where l, E F; 

Proof: First, let x = a / b  with ( b ,  c )  = 1. Let 

Then 
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where w, is the number of n E i + with n not congruent to -a/(8b) modulo 
G .  For large i ,  by the equidistribution of n E i + among the residue classes 
modulo v, w,is also the number of n E i + not congruent to 0 modulo G .  

Hence 8's and E's can be combined (i.e., the condition of monicity for n can be 
dropped; see below). On the other hand, Riemann-Roch gives C,< ,w, = e + 
( q l - ~- l)(ql '  - l ) /(q - 1) where c and e are integers independent of j .  

Hence 

Here l E F,: is a contribution of Owl's for low i's and f is an integer 
independent of j. Also ( )/( ) on the right-hand side is plus or minus one, since 
numerator and denominator both tend to plus or minus one by Theorem 4.4 and 
by proofs similar to those of 4.3 and 4.4. 

(In more detail, we use the claim: There is an 1 such that { m E A.  
(m, G )  = 1, m - a(b), deg m Ij )  is equidistributed among residue classes 
mod G J - '  if j is large enough: By the Chinese remainder theorem, we may 
choose integers of degree Ij congruent to each given residue mod G I - '  and 
congruent to 0 mod b; using these representatives to do the coset transfer, we 
see that the claim is true. Each residue is repeated some power of q number of 
times; hence nm - - I mod v I-'.) 

Combining this information, we see that R = l,Zb ' for some integer s.  But 
the answer should be the same if we replace a ,  b by ra, rb for ( r ,  u )  = 1. -
Hence R = l,a/b. The continuity of nLnow enables us to finish the proof. 

6.4.2. Remark. (1) It is easy to determine (, using congruences. 
(2) The theorem implies that if q = 2, H,(a/b) is rational and in fact, n,(x) = Z 
and so T,(x) = 1. In general, for x E K ,  n n L ( O x )E KX.  

7. Framework of brackets 

In this section, we will try to explain the visible analogies studied so far in 
the framework of brackets ( ) and partial zeta functions. For comparison with 
the classical case, readers should refer to [De], [G-K], [ K - 0 ]  or [All. 

7.1. Unless clear from the context, r will stand for either the classical 
gamma or the p-adic gamma function of Morita or gamma f~~nctions and their 
interpolations in previous sections. I-, will stand for gamma at the infinite place 
(note that it is just Euler's gamma in the classical case) and T, for gamma 
functions at a finite place (p-adic or G-adic). JVe use shorthand "a - b" for 
"a/b is a nonzero algebraic number" (over Q or K according to the context). 



The idea of the framework of brackets is: Given a certain type of gamma 
function, to identify the relevant definition for ( ), so that simple recipes using 
( )'s (see, e.g., 7.3, 7.4, 7.12) will yield results on algebraicity and relations to 
periods of values of the gamma f~lnction at fractions. For certain types of gamma 
functions, these recipes are proved in f~111and in other cases they are to be 
considered as conjectures, for which some evidence is then provided. 

7.2. If a is a proper (i.e., nonintegral) fraction in the relevant domain, then 
up to - (in fact, up to "rational"), T(a) depends only on a modulo the integers. 
Classically, ( ):Q - Z + (0, 1) n Q is defined by 0 < ( a )  < 1,a = (a)modZ.  

Tlre consider a etc. as in 2.7. Without loss of generality, one can take 
A' = q'  - 1.Identifying Gal(K(p.y)/K) with qZ/lZ, one defines _au  for o in the 
Galois group, as in 2.7. (In other words, we think of o as some qJ  E (Z/NZ>".) 

Definition 7.2.1, m(a) =: Em,( - a , )  

hotice that ( a )  + ( - a )  = 1 for any proper fraction a and that for a's 
corresponding to multiplication or reflection formulae, one has Em,  = 2n(a).  
Hence Theorem 2.8 together with Theorenls 3.10 and 4.4 can be reformulated, 
in general, as (proved for r of Sections 3, 4): 

7.3. Recipe/conjecture. If m(a(")) is independent of u E Gal(K(p,)/K) 
then T,(a) - +f"'(@)and r t ( @ )  - 1. 

The classical counterpart of this can be found in [K-01, [De], [G-K]. Also, in 
both ours and the classical case, - can be replaced by the more precise "up to 
multiplication of a rational number and a root of unity", if m(g) is an integer. 

The proof of Theoren1 2.8 shows that the hypothesis of 7.3 can be rephrased 
as "a" is made up of Galois orbits" (i.e., if one expresses a in terms of basic 
a ,  =: y ' j ( y l  - 1) (using digit expansion), then all a,'s occur with the same 
multiplicity). This suggests: 

7.4. Recipe/conjecture. Tt(g) - 1if a is made up of Frob,-orbits (observe 
that this is not equivalent to "n(a("LJ)) is independent of j"). 

7.4 is true classically by [G-K, Cor. 1.111,and it is true for r functions of 
Section 4, if A = F,[T], by Theorem 4.8 (e.g. n,(qJ/(l- Nu)) is algebraic, 
because y l /( l  - Nu) is a Frob,-orbit; i.e., one has - Nu)) =( q ~ ~ u h / ( l  
( q  ' / ( l  - Nt.))). Some evidence for 7.4 in other cases is presented in Section 9. 

7.5. One wonders whether 7.3 and 7.4 are best possible in full generality 
(i.e., for all the different gamma functions under consideration in this paper), as 
far as values at proper fractions are concerned. 
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If one wants to extend this framework to T and T, in Sections 5 and 6, and 
to use the other cyclotomic family K(A,)/K, then one has to deal with ( ) 
defined for proper fractions in K as follows. (I would like to thank Greg 
Anderson for explaining this to me.) 

7.6. Greg Anderson defined ( ) as follows. (See also [All where he deals 
with the classical case.) 

Definition 7.6.1. We define ( ): K - A + {0,1) by putting ( - f/g ) =: 1 
i f f  is monic and zero otherwise, where we first normalize, using translation by 
elements in A, by making g rnonic and deg f < deg g. 

7.7. Motivation for this is as follows. Classically, one has the Hunvitz 
formula ((x, s)  = ( - x)  - 1/2 + (log T(x))s + o(s2) around s = 0. Hence 
one expects connection between (e.g., between distribution relations satisfied by 
them) partial zeta values at s = 0, ( )'s and T's. 

Now we do not have such a relation (yet), but we can consider (for 
A = F,[TI) 

I s = O  

s=O n monic 
C-fmod g 

4 
- s  deg n 

which is 1 - l / ( q  - 1) i f f  is rnonic and - l / ( q  - 1) otherwise. The analogy 
1/2 * l / (q  - 1) now explains the definition of ( ) in 7.6. 

7.8. The important thing is 7.3 holds (even with the refinement mentioned 
there) with this definition of ( ), with pN replaced by A, and a having 
fractions with denominator a E A in place of N E Z and n(g)and m(g) defined 
similarly, of course. (First note the case q = 2, when the ( ) is 1 and 
correspondingly, r ( a )  - .fr (see 6.1) and T,(a) - 1(see 6.41.) The reason is that 
the reflection and multiplication formulae in Section 6 are special cases of 7.3, 
and they generate (K-linearly) all of the relations of 7.3, as can be seen by 
straightforward modification of the Koblitz-Ogus proof [K-01, by the analogies 
mentioned. (More precisely, signs + 1 are now to be replaced by F,X and even 
and odd to be interpreted in that context. The 5 and ( ) connection there works 
by definition and L(0,xd)# 0 has a similar expression.) 

7.9. As noted in 4.7, for T of Sections 2, 3, 4, Theorem 2.8 gives many more 
relations than those generated by reflection and multiplication, since the condi- 
tion in this case (qj-powers) is weaker than that in [K-01 (power prime to 
denominator). 



7.10. For A = F,[T], if O < r < k ,  the basic partial eta value 

Ellt ,+, ,= I "rod /; q 
- s  dc g 11 is q l / ( l  - q L )at s = 0. These are (negatives of') basic 

( )'s for r of Sections 2, 3, 4. 

7.11. Now we turn to an "explanation" of Theorem 1.6 as the Chowla- 
Selberg formula. Recall that if E is an elliptic cur\.e over Q with complex 
multiplication by ( ~ ( m ) ) ,  then the classical Chowla-Selberg formula ex-
presses period in terms of r values at fractions with denominatorsrTTE d. 
"Discriminant" rl can also be viewed via Q(-) C Q(pC1) (or Q(pLrl)) .  
Hence considering the Carlitz module for F,t[T] c F,,[T](p,t_,) as an analogue 
of E, we see that Theorem 1.6 is a Chowla-Selberg formula. (Unit parts in the 
statement can be removed as in Section 3.) But, as explained to me by Greg 
Anderson (implicit in [All and in references given there), the particular combi- 
nation of r \~alues occurring there is no accident, but can be explained via ( )'s 
as follows. (For more details see [All and forthconling work by Anderson.) 

7.12. Recipe/conjecture. The general set-up in our case is roughly as 
follows. \Ye have the Drinfeld module E over K"" with complex multiplication 
via integral closure of A in an abelian extension L over base K. (This forces L 
to have only one place above the infinite place of K; one must use higher-dimen- 
sional generalizations of Drinfeld modules to remove this restriction.) 

Define h(a): Gal(KW1'/K) + Q, by h(u)(u)  =: ( - b )  where exp(27i-ia)" = 

exp(27i-ib). (Here the exp is the classical exponential, since we are dealing with 
constant field extensions and ( )'s which have values in characteristic zero. In 
dealing with Sections 5 and 6 one needs e(5ia), of course, in place of exp(2n-ia).) 
Let xLIKbe the characteristic function of Gal( L/K); i.e., xL/,: C:al(KKP/K) 
+ Z such that XL,/,(a) =: 1 if air,= 1 and 0 otherwise. Then if x,/, = 

Ctn,h(a) then the recipe for expressing the period n-, is: 

7.13. In our example, L = F,,~(T), the K = F,,(T), x,/,(F") = 1 if n - O 
mod t and O othenvise, where F 1s the q-power Frobenius. Sow 

explains Theorem 1.6. 

7.14. By the Chowla-Selberg phenomenon, we mean the expression, in a 
complex multiplication situation, for the period in terms of a certain combination 
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(predicted by simple calculation on ( )'s as in 7.12) of gamma values at 
appropriate fractions. We will give more examples of this phenomenon in 
Section 9. 

8. Two variable gamma functions of Goss 

In this section, we make a similar study of a two variable gamma function 
introduced by Goss [Go3]. 

8.1. Goss introduced a two-variable gamma function T: Cl X Z,, -+Cl 
which, up to small factors and change of variables, can be expressed as 
T(x, y) =: ( l /xrI>, r In , , j+( l  + X / ~ ) ~ Y J ) ~ ( ~ ) ,  = Z y j q i  is a where as usual y 
y-adic expression and r is the gamma function of Sections 0 and 1. IYy) can be 
replaced by To( y) (recall the notation from 6.2) if one makes adjustments similar 
to those in Section 3. We ignore such technical difficulties below and compare 
natural variations: 

Definition 8.1.1. n3(x ,  y) =: (n;=.=,nn, , + ( l  + x / ~ ) ~ ~ J ) ,  =:I12(x, y) 
II,(x, y)/n,(y) and IIl(x, y) =: II,(x, y)II,(y). For i = 1,2 ,3 ,  T,(x, y) =: 

IIt(x, y - l)/x. 

The definition of Ti seems to be a natural definition in view of previous 
sections. 

8.2. Sote that II,(O, y) is the factorial of Section 3 (now denoted by II,(y) 
to distinguish it from others) and II,(x, l / ( l  - q)) is up to constant 
(=  II,,(l/(l - q))) the factorial of Section 5. Hence two gamma functions 
studied so far are essentially specializations of II,. Similar statements can be 
made for II,. But, though n,(x, 1/(1 - q)) gives the factorial of Section 5, one 
cannot recover the factorial of Section 3 from it; on the other hand n3is more 
simply defined, in that technical problems of IIo(y) are absent and, as we will 
see below, ( ) for II, turns out to be simple and integral. See also [Go4], where 
Mahler coefficients of II, are identified with analogues of binomial coefficients 
(see 5.8). At the moment, it seems to be a matter of taste, whether one should 
use II, or n, and no etc. We will ignore questions of 0-adic interpolations, 
integrality (these can be treated as in Section 5) and turn to the subject of 
functional equations. 

8.3. Evaluation of the partial zeta function ZqPsdeg (where n is monic 
congruent to f modulo g and the degree of n is d modulo t )  at s = 0 suggests 
the following definition of bracket ( ) corresponding to n3(brackets for II, and 
II, are obtained just by adding or subtracting ( ) for n o ) .  



Dejifiition 5.3.1. ( , ) :  ( K  - A )  X (Q n Z, - Z) + Z is defined by: 
(1) ( x,y) depends only on x mod and y mod Z. 
(2) If f E A, g E A,, deg f < deg g ,  0 5 s < t then ( - f/g, 

$ / (y t  - 1)) =: 1iff  is monic and s - deg f - deg g mod t and 0 otherwise. 
(3) Given a proper fraction y, one can write Cizbn,  - 1); then 

( - f/g, y )  =: E n l (  - f/g, yJ / (yt  - 1)). 

8.4. Let us state functional equations in [Go31 adapted to n ,. First of all, 
II,is of the form "f" in 2.1, so that Theorem 2.8 applies. On the other hand, for 
zj = 1/(1 - q ) ,II, becomes the factorial of Section 5. (Notice that ( ) reduces 
to one considered before.) In other words, straight modification of 7.3 works, if 
restricted to the first or second variable. From Theorem 4.5.4 of [Go3], it is easy 
to see the following: 

X + (1n n,(--, Y )  n,(x,- ( j c l y ) n , ( y ) ' l l ' / n , ( q d y ) .  
u mod g g 

We do not yet know7 whether analogues of 7.3 and 7.4 are true for n, and 
whether they give all relations. Also, we have not yet tried to work out, 
generalizing 6.3 and 6.4, functional equations for c-adic interpolations of II,. 

More evidence that the two-variable gamma function deals with both 
cyclotomic fanlilies (i.e., constant field extensions and Carlitz' family) is pre- 
sented in Section 9. 

9. Miscellaneous results 

This section contains some partial miscellaneous results: cases of the 
Chowla-Selberg phenomenon (see 7.14), special cases of 7.3 and 7.4. We also 
discuss some open questions. 

9.1. We now give some examples of the Chowla-Selberg phenomenon for 
gamma functions of Sections 5-8. For 9.1-9.3, let the base be A = F,[T]. 

9.1.1. If one LT ants a rank-one Drinfeld B-module (complex multiplica- 
tion) where B is the integral closure of A in the full cyclotomic field K(A,), 
then the condition: "one infinite place" forces deg a _< 1. So without loss of 
generality consider B =: F,[T](A,) = F,[y] where Y'I-' = -T. 

We will show that if T, is a period of the Carlitz module of B, then 
n-, - I'(l/T). (Sotice that for y = 2, T,= + - I'(a/b) for any proper fraction 
a/b as noted before. This is consistent with the fact that ( ) = 1, when y = 2.) 
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Let u 6A ,  h E A+, deg a < deg b = h say, and let D, 
of monic elements of A of degree r ,  nhich are congruent to n modulo b. We 
will show how to evaluate some of these in 9.3; ill particular, we will show 

Hence, w7e have 

On the other hand, since y9" - y = y ( ( - T ) (9 " - l ) / ( q - l )  - I ) ,  by 0.2.0, we have 

Yd7/(9-l)(-~"\  1 )1 / ( 9  - 1 )  

rB- lim 
- 1 ( T - 1 ) '  

By straightfonvard algebraic manipulation, as ill Section 1, one now sees that 
rB- r ( l / T )  as claimed. 

9.1.2. It is easy to see that if one takes, for example, an intermediate 
case B' =: F , [ T ~ / ( " ~ ) ]between A and B,  then T,.- T ( l / T ) T (- 1 / T ) ,  by a 
similar proof. (Note coilsisteilcy with ( ) philosophy and case y = 3,  ~vhen 
A = B' and r,.= 6 - T ( l / T ) T ( -  1 / T )  by the reflection formula.) 

9.1.3. Now we turn to the two-variable case. First notice the follo~ving 
special case of the multiplication formula: FI,. , n, ( 0 / T ,  y )  = no(y) ' / n , (qy ) ,  
which with y = ( y t - l ) / ( l- q t )  gives 6, of 1.6, coilsisteilt with ( ) for 
subextension Fqt(T>of F q t ( A T ) .  

9.1.4. In fact, if T,denotes the period of Carlitz module for F q I I A T ]  
then rB- n 3 ( 1 / T , q f + l / ( l- qf)) call be easily seen from the proof of one 
variable case (i.e., Theorem 1.6). 

9.2. We now give some examples of 7.4 for the gamma function of Section 
5. We alread!. knou, by 6.4, that I ' , ( l / (T + 1)) - 1, for y = 2. Using the 
formula for D,,,,, in 9.1.1, we IIOW generalize this to p = 2. Put \Vl =: 

In: n E j f ,  ( n , T ) = 1, n = l ( m o d ~+ I)} and T, =: {n :  n E j f ,  n = 

be the product /, 



l(n1od T + 1)). Then, 

since the nunlerator D, . . . ~ , ( 1+ T) '~ '  of ( ) tends to 1,1)). Theore1114.4 and 
the fact that 1 + T is a one-unit at T. Now. 

where p 1s such that the quantity is a unit at T. (Ol~serve that this is the step 
which expresses the product as a telescoping product. where we use T -
l(n1od T + 1) (as p = 2); i.e., one has Frob,-orbit.) 

Combining this LT ith the fornlula for n,,,,TI. which is just L), ,,obtained 
aboj e with T replaced b) T + 1. we are reduced to showing algebraicity of the 
T-adic linlit 

where, again. p' is such that the quantity is a unit at T. Sow since 1 + T is a 
one-unit at T,  its q'-l-th power tends to 1: also by [T3, p. 1091. D,/T""J(" ) 

tends to 1. Now, (1 + T)("')/("-~' = 1 + T + . . . ; hence the linlit aboje is 

The clainl is established. 
The same method shows algebraicity of TLon Frobenius orbits of fractions. 

with denonlinators of degree not more than one. 

9.3. \Ve non7 show how to "evaluate" ,,D,, b ,  if a/b has a denominator 
which factors into distinct linear factors over F,,. 

PROPO\ITION = + . . . +a ,  x, .9.3.1(hIoore [MI). If G runs throzcgh G a,x, 
a ,  E F,, und a ,  = 1 for the lowest i for u;hich ( I ,  is nonzero, then nC:= 

det(x:"-I). 

9.3.2. We use shorthand [ a ,  b], (or just [ a ,  b] if there is no chance of 
ambiguity) for the determinant of the square matrix of order r + 1 whose 
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( i ,  j)-th entry is xyr-', where x, =: a and xk =: b ~ for~ 0 I-k <~r .  For 
6 t F,, we also write [T + 81, (or just [T + 81) for scalar (T + 

9.3.3. For example, by 0.4.1, we have [ I ,  11, = D, - . . Do. 

9.3.4. Observe that, for 8 E F,X, [8u,b] ,= 8[a,  b ] ,  and [ a ,  b ] ,  + 
[c,bl,  = [ a  + c, bl,. 

9.3.5. First let us compute D,, ,,,. Taking x, = T'+' + 1 and xi = 
~ r - i + l  for i > 0 in 9.3.1, we see that 

On the other hand, by 9.3.1 and elementary row operations, one sees that 

This, together with 9.3.3, gives the formula in 9.1.1. 

9.3.6. Let {a i }be an arbitrary set of distinct elements of F,X. We 
"know" [ l ,  11 by 9.3.3. 

[ T  + a , ] [ l , l ]+ [ -u , ,T  + a,] = [ T , T  + a,] = [ T ] [ 1 , 1 ] .  

(After one "takes out" [TI ,  the last equality follows from addition of suitable 
multiples of the next row to the given row from the bottom up.) Hence, by 9.3.4, 
one "knows" [ I ,  T + (I ,] .By induction, similarly, the equalities 

together with 9.3.4, show how to evaluate Dr,a,b ,if u / b  has a denominator 
which factors into distinct linear factors over F,. 

Even though the expression thus obtained for Dr,a,bis complicated, it 
seems that using it one can generalize algebraicity results in 9.2, by the same 
method. We have also proved a case of the Chowla-Selberg formula for a 
higher-dimensional generalization [A21of Drinfeld modules, combining 9.3 with 
techniques of 9.1.1. Since this is just a special case and since it seems that recent 
results of Anderson mentioned in the introduction will prove much more in a 
better way, we do not go into details. 

9.4. Functional equations and all examples of the Chowla-Selberg phe- 
nomenon so far, can be thought of as giving, for some g's (note that n(g) is an 
integer), a motive (in the sense of [A211 M(g) with complex multiplication (with 
the infinity type corresponding to g), whose period is (up to an algebraic 



quantity) T(g) and for which eigenvalues of Frob, are Gauss (or rather Jacobi) 
sums g(c, v) with prime factorization vLn(""))"-' . 11-1 our examples, L M ( ~ )  is just a 
Carlitz module for F,[T], Fqt[T], F,lt[A,], etc. Since the cyclotomic equation 
C,(u)  = 0 is Eisenstein at u by [C3], the eigenvalue of FrobL is 0. This fits with 
our situations: n(a) - -= 1, n(u") = 0 for a not the identit>, (see also the ailalogue 
of Weil's theorem on Jacobi sums as Hecke characters [T3] for Gauss sums for 
F,,[T] introduced in [T3]). (Using the tensor products of [A2], one can create 
more examples of M(g)'s.) For v in the base, the v-adic periods of M(g) (in the 
sense of A. Ogus: essentiall>~ eigenvalues of Frobenius at 6)should be T,(g) (up 
to an algebraic quantity). In our cases, when c is "ordinary", our results show 
that I',(g) is algebraic. This seems to fit with the statement above. 

9.5. In [H3], Hayes introduced "Gauss sums" (in the sense of providing 
"correct Stickelberger elements") in general, explicitly. (Their existence was 
shown by Tate and Deligne (see [H3]).) The interesting feature of his construc- 
tion is that the Gauss sum for a prime v occurs as a torsion point for some 
rank-one Drinfeld A-module, where the infinite place for A lies above v. But 
since the infinite place is arbitrary, by Theorem 3.10 and reflection formula 6.1, 
we get a v-adic expression for the Gauss sum for prime 0, in terms of values of 
gamma functions (for c )  at appropriate fractions. The difference from the 
Gross-Koblitz phenomenon is that this gamma function at v, though defined 
uniformly at all places, does not arise as interpolated from a fixed gamma 
function at infinity. 

9.6. Some results of this paper are mentioned or proved 01-11>. for F,[T] and 
not for general A. We now want to separate out what does not hold for general 
A from what is not proved, but ma>, be generalized: 0.4.1,0.4.3 do not hold (for 
example, for A =: F,[x, y]/(y+ y = x3 + x + l ) ,  II(8)/II(4) is not an inte- 
ger); 1.1and 1.2 do not hold; 1.6 and 1.7 should generalize. but 1.7 does not, if 
one defines "Gauss sums" as in [T3]; but 1.7 ma>, generalize with the definition 
as in [H3] mentioned above. More on this subject will appear in a separate 
paper. Equality Z(1) = log(1) in 5.5 does not hold in general. 

9.7. We finish this paper by mentioning briefl!. some of the open problems 
apart from the generalizations: 

(a) How are the gamma functions related to the zeta functions of [Gol]? 
(b) Wh>. do the characters coming from the analogue of Deligne's theorem 

(4.6,6.1,6.2) turn out to be trivial? 
(c) Why does the ( ), which was obtained from the partial zeta function for 

F,,[T], seem to work in general? 
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(d) Can gamma functions be defined in a better fashion treating sign and 
class number problems better? 

(e) Is there a u-adic Chowla-Selberg phenomenon? (I.e., can one decom- 
pose a combination, similar to that occurring in the Chowla-Selberg formula, of 
r, values into natural transcendental ("0-adic periods) and algebraic parts?.) 
A. Ogus has recently described (unpublished) the p-adic Chowla-Selberg for- 
mula using Morita's p-adic gamma function. We just note here that the p-adic 
periods he uses are different from the Fontaine-Messing periods and that there 
is some indication (see, e.g., 9.4) that the analogue of his formula holds in the 
function field case. 

(f) In view of the analogies of 0.1.1, can one define reasonable, useful 
gamma functions and Gauss sums in a situation where there is an elliptic curve 
with complex multiplication by a quadratic imaginary field? 
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