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1. Introduction

Many strong analogies [4,6] between number fields and function fields over finite fields have
been used to benefit the study of both. These analogies are even stronger in the base case Q,Z <
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When we look at the factorial of n or the binomial coefficient ‘n choose m’ in this setting, though the
values are in function field, n and m can be usual integers, polynomials or mixed. Thus we will see
several interesting analogs of the well-known theorems of Lucas, Wilson etc. We refer to [6, Chap-
ter 4] for historical references, properties of these analogs and proofs of many things recalled here.
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Let us fix the basic standard notation.

/ {integers}

Fq a finite field of q elements, g a power of prime p
A the polynomial ring [Fg[t], t a variable over g

K the function field Fy(t)

Ay {monics (in t) in A}

Aq {elements of A of degree d}

(n] =t —t

Dn =[5 —t9)=[ln—il¥

Lo =]l —o =TT

ex(x) =]](x—a), where a € A runs through elements of degree <k
Na =q? for a € Ay, ie., the norm of a

o] a monic irreducible polynomial in A of degree d

v(n)  highest k such that Npk divides n

We use the standard convention that empty sums are zero and the empty products are one, so
that Dg=Lo =1.

2. Multiple analogs

For n € Z, n > 0, we define the first factorial (due to Carlitz) by

n! :=HD?" cAy, forn=Zn,-qi, 0<n<q.

See [6, 4.5-4.8, 4.12, 4.13] for its properties, such as prime factorization, divisibilities, functional equa-
tions, interpolations and arithmetic of special values, which are analogous to those of the classical
factorial. See also [1,2], which gives many interesting divisibility properties in great generality, in par-
ticular, applying to the first factorial and to the first and the third binomials below. (The usual factorial
with values in Z will be always mentioned as the classical factorial.)

For x € A, with —x not monic, we define the second factorial by

-1
M) := ]_[ <1+2> cK.

acA+

See [6, 4.9-4.13] for its analogous properties such as the location of poles (in -A. ), functional equa-
tions, interpolations at all primes and arithmetic of special values etc. Its reciprocal is integral! Note
also that we basically excluded g =2 with the conditions on x. (The usual binomial with values in Z
will be always mentioned as the classical binomial.)

For n,m € Z, n,m > 0, we define the first binomial coefficient by

n n! . .
= —— € A;, ifn>m, 0otherwise.
m m!(n —m)!

See [6, 4.13-4.15] for its analogous properties regarding divisibilities.
For a,b € A, with —a, —b not monic, we define the second binomial coefficient by

‘ = & € K, ifb— anot monic, 0 otherwise.
b I1(b)I1(a —b)

For ae€ A, ne€Z, n > 0, we define the third binomial coefficient by
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{:} ;:]‘[{ ",} ieA, where { X{} ::qui(—l)k_i/(Diin_i),

q q"

where n; are the base g digits of n as above. See [6, 4.13-4.15] for analogous properties of this
definition, due to Carlitz, its use Mahler type interpolation in results of Wagner etc.
We now record some results [6, Chapter 2] we will use often. (IlI)-(V) and (VII) are due to Carlitz.

(I) [n] is the product of monic irreducible polynomials in A of degree dividing n.
() (DoD1-+-Dg—1)97" = Dg/Ly.
() Dy is the product of monic polynomials in A of degree n.
(IV) L, is the (monic) least common multiple of polynomials in A of degree n.
V) {q’i} = ex(x)/Dy, and thus equals O (1 respectively), if x € A is of degree less than (monic of
degree equal to) k.
VD) M@ ' =[], + {;,- 1), if a € Ag, with —a not monic.

Vi) If Cq(2) = Z{;i }zqi, then Cgp(2) = Cq(Cp(2)) = Cpqa(2). (Note C4 is the famous Carlitz module, but
we will not need any more of its related theory.)

3. Results of Lucas type

The well-known theorem of Lucas expresses the classical binomial coefficient ‘m choose n’ modulo
a prime p as the product of ‘m; choose n;’, where m;, n; are the base p digits of m, n respectively. In
our case, the modulus is a prime g of the function field, and we get several versions, with digits for
the base g or Mg, according to which binomial we use.

Theorem 3.1. Let ¢ be a prime of A of degree d. Then we have

m m;(d)
= mod s
<n> [ (ni(d)> v
where m = Y m;(d)q% and n = " n;(d)q? are the base q%-expansions of m and n respectively, so that 0 <
m;(d), ni(d) < q%.

In particular, the binomial is zero modulo g if and only if there is a carry over of q¢-digits in the sum
n+ (m—n), ie., nj(d) > m;(d) for some i.

Proof. First observe that if there is no carry over of base g-digits, then all the binomial coefficients
above are equal to one, because of the digit expansion definition of first factorial. Now suppose there
is a carry over at (base q) exponents i,i+1,...,j—1, but not at i — 1 or j. Let kaq", anq" and
szqk be the base q expansions of m, n, m — n respectively. Then ny + £, is mj +¢q, my+q—1 or
m; — 1 according as whether k is i, i +1 <k < j—1 or k= j. Thus, using the digit expansion and
the definition of the factorials, we see that the contribution of this block of digits to the binomial
coefficient expression is

— =[j]---[i].
q-1 9119
“j_]...“, “i

On the other hand, the congruence class of [k] modulo g depends on the congruence class of k
modulo d, and both are zero if d divides k. O

Theorem 3.2. Let g be a prime of A of degree d. Then we have

{h=11{,2 ) mode
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where a = Za,-(d)pi (n= Zn,-(d)qdi respectively) is the base p- (¢ = N g respectively)-expansions of m
and n respectively, so that 0 < m;(d), nj(d) < qd.

In particular, the binomial is zero modulo g if and only if the q-degree of n;(d) is greater than the t-degree
of a;, for some i.

Proof. All congruences below are modulo g and 0 < j <d. By (V) and (IIl), {Z} } =0 for i £ d. Hence
by comparing the coefficients in (VII), for b = g, we have (a)

el z ey =1

On the other hand, we have (b)

kd-+j _Z kdvj [ T ) gka+i [ T ) 40 [
q i>k q q q

where the first equality is by the Fy-linearity of the binomial coefficient in the top variable and (V),
the last by (a) and the middle by using the definition of the binomial and noticing that a,-ga"/Lde =0,
as the numerator has valuation i at g, and i > k = the valuation of the denominator by (I) and
definition of L;. If we write the base g-expansion of n;(d) = Zn,-jqj. combining we have

a a | _ ap' |" ap' | _ a
{n}zl:[l:[{qid+j} :l_[l_[{qid+j} _U{"i(d)qid}:ll_.[{ni(d)}’
as claimed. O

Theorem 3.3. Let g be a prime of A of degree d. Then we have

=M moes.

where a = Zaipi and b = Zb,-pi are the base g-expansions of a and b respectively (so that Naj, N'b; <
N g) and when all the binomials are defined.

In particular, under these conditions the binomial on the left is zero modulo g if and only if b; — a; is monic
for some i.

Proof. We have

[a]_naﬂg’i})(w{“;b})
bl T+{g}) '

In the proof of the last theorem we saw that modulo g, we have { qida+j )= {Zj }, so that the product
above decomposes over digits base g? and we see that the left side is the product over i of [gi] as
claimed. O

Remarks 3.4. Note that under the conditions of the theorem, the binomial on the left is gp-integral.
We can still get some information by relaxing these conditions (of ‘no poles’) by interpreting a zero
in the numerator or the denominator of the binomial expressions on the right as divisibility by g of
the numerator or denominator.
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4. Results of Wilson type

The classical Wilson/Leibnitz/Lagrange theorem [3] says (p — 1)! = —1 mod p, for the classical
factorial and p a prime.
Let o be a monic prime of degree d. Note that Np —1=¢q¢ — 1= Z?;Ol (q@—-1q'.

Theorem 4.1. We have for the first factorial,

WNp—Dl==DTT modp.

Proof. We give two proofs. First we observe that the product of non-zero elements of degree less
than d is —1 modulo g by pairing inverses modulo g with elements, as in the classical Wilson proof,
since —1 and are the only elements of order dividing two in the cyclic group (A/pA)*, which get
paired to themselves. Next, note that by (III) of Section 2, we see that (Mg — 1)! = (Dg--- Dg_1)9~!

differs from this product by multiplication of signs which contribute (—1)1+‘1+"‘+‘1d_1 = (=14, since

nedF; 0=-1.
Next we give another proof with formulas. By (II) of Section 2, we have

d-1_q

Wep =Dl = (D" = 'z—: + (D =d -1 T (DY

The proof follows from the observation that for 0 <i < d, we have [i]qLH—l = (tqd — tqdfi)/[i] =-1
modulo g, since by Fermat’s little theorem t'=t. O

Theorem 4.2. If p is odd, and 6 € Fy, 0 # —1, we have

plp—1)=1/2 modp, Mp+6)=(2(1+6) " modgp.

Proof. We use (VI). The d-th term of the product gives 2~!. The constant § or —1 matters only in
0-th term, and (gﬁ) =0 mod g, for i <d. This implies the claim easily. O

5. Primality criteria

Now we will study analogs of the classical primality criteria that (n — 1)! = —1 mod n if and only
if n is prime, if and only if ("!™) =1 mod n, for 0 <m < n, where the factorial and binomial are
classical.

Theorem 5.1. We have:

(i) Fora € A, and the first factorial,

Wa—1)!= (-1 moda, ifandonlyifais prime.

(ii) For the second binomial, we have (assuming sign conditions giving existence)

+b . R .
[a } =1 moda, forallb, Nb < Na,ifand only ifa is prime.
a

Proof. The if part of (i) is just the Wilson theorem analog above. Conversely, if a is not prime, it has
a factor of degree less than dega, which thus divides (Ma — 1)! by (Ill) of Section 2, and so cannot
divide the factorial 1. This proves (i).
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Let dega =d and degb = ¢. Then by (VI) of Section 2,

[Hb] T+ gD T+ ()
Mo+ +3y

a
By (V), one has cancellation and all products need only run to £.

Now, if a is prime, then by (III), (IV) (or by (IlI) and (V)) and the definition of the third binomial,
{;i} is divisible by g, if i < d. So modulo q, the first product in the numerator contributes 1 and the
second and the denominator are the same, proving if part of (ii). Conversely, if a is not a prime and
if k is the degree of the smallest degree prime, say c dividing a, then we use b of degree ¢ =k. All
the lower degree terms cancel as before, but {;k}, which is eg(a)/Dy by (V) is not zero modulo a,
because the only term in the product for the numerator which has a factor common to a is a itself,
and c divides the denominator by (II). O

Remarks 5.2. (i) On the other hand, we do not get such a binomial primality criterion for the first
binomial. In fact, for it, (*1™) =1, for all 0 <m <n, if and only if n = ¢, as there is no carry over

modulo g. Similarly, for the third binomial, we have withae A, {‘j’\J}g } =1, for 0 < Nb <Na, by (V).
(ii) The converse of last theorem of previous section does not hold, as the conclusion of the theo-
rem holds also e.g., if we replace g by composite a = [1]%, when g = 3. As explained in the proof, the

conclusion then is equivalent by (VI) to []¢¥@~1(1 + {;,- D =1 modulo a. It is easy to see that when

i=1
g=2 a=(t* +t+ 1)? satisfies this, as modulo a, the terms corresponding to i = 1, 2, 3 respectively
are congruent to 1, 14+ a/L, and 1+ a/L3 respectively. But we need p # 2. I thank Alejandro Lara
Rodriguez for making a search through a’s of small degree, using SAGE when ¢ = 3 and finding the

example above, unique such for degree at most 7. (No example exists of degree at most 6 for ¢ =5.)
6. Refined Wilson theorems

Interestingly, while the product of the reduced system of representatives of smallest positive
(monic respectively) modulo p (g respectively) is (p — 1)! (Mg — 1)/(q — 1))! respectively), if we
use smallest size representatives, it is (&(p — 1)/2)! (£(Ngp — 1)! respectively)! Also, while simple
counting gives ((p — 1)/2)12 = (=1)P=D/2(p — 1)!, in our case (Np — 1)/w)!" = (Np — 1! for all
w dividing q — 1, just from the definitions. Another interesting difference is that we have the same
Ng — 1 for several g’s (namely of same degree).

While the positive elements smaller than p give reduced system of representatives modulo p, the
monic elements of smaller size (degree) than g do not give the full reduced system and instead, their
product is Dg---Dg_1, when the degree of the prime g is d. One can ask its congruence class. In
fact, if we consider the smallest absolute value size representatives classically the relevant product is
((p—1)/2)!. For p=3 mod 4, it is (see e.g. Hardy-Wright) congruent modulo p to (—1)", where n is
the number of quadratic non-residues less than p/2.

So we now investigate

Np—1

q—1 )!:Dou-Dd,l modgo.

§:=84:=Sqd,p:= <

We have proved that S is g — 1-th root in (A/pA)* of (=1)4=1. But which one? Let us start with
some trivial observations.

(i) Ifd=1o0orq=2,then S=1.
(i) If p=2 or d is odd, then S € F. On the other hand, ¢=3,d=2, p =t2+1, then S=t.
(iii) If d is odd, (W — 1)/2)! = S@1/2 (which is S, if g =3) is &1, closer to the classical case.
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(iv) If g=3 and d odd, then —1 is a quadratic non-residue modulo g, and so parallel to the classical
case, by the same argument, S = (—1)", where n is the number quadratic non-residues modulo
g% among monics of degree less than d.

(v) If o € Fpr[t] C Fg[t], and p =2 or d is odd, then S e Fpr[t] ﬂIFZ = ]F;,.. In particular, S =1, if

p=2,r=1.For example, if p =t> +t+ 1 and q =2, with s odd, then S =1.

Theorem 6.1. Let 6, r € F;. The monic primes ¢ (t) for which S = r and those for which S = r/04@=1/2 gre
in bijection via gp (t) < o (9t)/9d.

Ifged(q — 1,d(d — 1)/2) = 1, then the primes g of degree d are equidistributed in each congruence class
S =r, as r runs through q — 1-th roots of (—1)4~1.

Proof. Note that if we replace t by 6t, [n] gets replaced by 6[n], and so noting that =1 mod q — 1,
we see that Do---Dg_q = [d — 1][d — 2]'*9...[1]19+ 44" gets multiplied by @1+2+++@d-1 —
64@=1/2 proving the first claim. Given the ged condition, as 6 runs through all elements of F*, so
does 64@=1/2 proving the second claim. O

Remarks 6.2. We can derive many special conclusions. For example, if d =3 mod 4, by choosing
6 = —1, we see that primes are equidistributed in S=r and S = —r.

Theorem 6.3. (1) Let 6 € Fq. If Sq g, ¢y =T(t), then Sq 4, o e19) =T(t + ).
In particular, if p =2 or d odd, then

Sq.d.p©) = Sq.d.p+6)-

(2) Let d be odd or p = 2, so that S can be considered in IFq. Let o be an automorphism of Fq. Then

S = Sq.d,p0 - In particular, primes are equidistributed in all congruence classes in a Gal(IFq /) orbit.

o
q.d.p

Proof. Since [n]=t7" —t = (t + 0)7" — (¢t + 0), and D;'s are the products of these, the first state-
ment follows. When p =2, or d is odd, then as we have seen r € IF;, so that r(t) =r(t + 0) and the
conclusion (1) follows. To see (2), we have only to note that Dg---Dg_1 € Fp[t]. O

Remarks 6.4. Sometimes, ¢ (t + 6) = g (t). For example, if g = p and g = g, defined below.

Theorem 6.5. If d is odd and not divisible by p, then the number of primes of degree d for which S is in a
particular congruence class r is a multiple of q.

Proof. The product P, of primes g of degree d for which S =r modulo g is the greatest common
divisor of [d] and D1 ---Dg_1 —r, and thus a polynomial (say of degree k) in [1] with Fg-coefficients.
Hence, the number N, :=deg(P;)/d = q(k/d) of such primes is a multiple of g by the hypothesis. O

Remarks 6.6. This g-divisibility makes one wonder whether there is any Fg-vector/affine space struc-
ture lurking behind.

7. Congruences modulo prime powers

The usual proof of the Wilson theorem (that the product of elements in (Z/pZ)* is —1) generalizes
immediately to the proof of well-known fact that the product of elements in a finite abelian group is
the product of its elements of order 2, and is thus 1 if there is more than one element of order 2 and
is the element of order 2 otherwise. Hence, the product for (Z/p"Z)* is —1 for odd p or p" =4 and
1 otherwise, while for (A/p"A)* it is —1 unless ¢ =2, deggp =1 and n =2, 3. See [6, p. 7] for more
details.
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We ask now when does the Wilson type congruence works modulo higher power. Note (5 —1)! =
—1 mod 5.

Theorem 7.1. Let g = p, a € Fg, so that pq := tP —t —ais prime in A. We have

2] [p—11=-1 modpl', Wgp.—D!=1 modpl .
Proof. Modulo such g := g, we have [1] =a, so that [n] = [1]‘DH + -+ + [1] = an implying
[11[2]---[p=11=aP 11 %2---(p — 1) = —1, by the usual Fermat and Wilson theorems!

In fact, [1] = p +a, [2] = P + » + 2a etc. implies [n] = p + na mod EP. So modulo P, we have
[11[2]---[p—11=]](p +na) = n"GFE (p +6) = pP~1 — 1, proving the first claim, as well as the fact
that the power of g cannot be improved.

From the first paragraph, we also see that [p—1]P--- [l]pp_1 = —1 mod pP, so dividing by the first
claim, we get the second claim that (Wp —1)! =[p—11P"1[p—217"~1...[11?"" '~ =1 mod pP~!. O

Remarks 7.2. If ¢ =2° and d = 2, then p||(Ngp — 1)}, as is seen from [2] = [1]9 + [1] = []([1] + 6),
where 6 runs through elements of [Fg. This also shows directly that S is equidistributed in IE‘Z in this
case.

Theorem 7.3. We have, for the first binomial,

X
(AA[/K),::J = <:1) mod ¥ ™+a-1,
&

Proof. By (1), p divides [r] if and only if d divides r. Again by (1), 7 divides [d]? = [r +d] — [r]. If
further d divides r, then [r +d]/gp = [r]/¢ mod pqrfl.

As explained in the proof of Lucas theorem for the first factorial, if there is no carry over in
m+ (n —m), then both sides are one. Otherwise carry over produces products of consecutive brackets
at the carry over places. More precisely, let k (r respectively) be smallest such that ny (m, respectively)
is non-zero. If r < k, this produces [k]---[r + 1]. By the two observations above, it is congruent to
[k+d]---[r+1+d] modulo s:= |k/d] — |r/d] +q"t" — 1-th power of . Now v(n) = |k/d| and
s > v(n) +q — 1. Any other [a] occurring via carry over (e.g. if r > k) has a > k and thus [a +d] =
[al mod o and ¢ >v(n) +q—1. O

Remarks 7.4. The case n=q, m =1, g =t already shows that the power in congruence is the best
possible in general. But it can be improved with more information as below.

Theorem 7.5. We have, for the first binomial,

(om) = () moas™
where w = max(0, |k/d| — |r/d]) +q™*TW+1 _ 1 where g¥||n, q"||m, g*||m — n. (Note |k/d| = v(n) and
lr/d] = v(m).)

Proof. The proof follows the same ideas as in the previous proof, so we just sketch the changes and
the cases. (i) If r <k, then u =r and the carry over produces [k]---[r + 1], which is divisible by the
‘difference of the floors’ power of o as before and when divided by them reduces the power by one,
as in the previous proof, leading to power difference of floors +q"t! — 1 as before and as claimed.
(ii) If r > k, then u =k and only possible carry overs lead [a]'s with a > r leading congruences to
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q't1 — 1 power as claimed. (iii) r =k and u =r = k. This leads to same situation as in (ii). Finally,
in case (iv) r =k, u >r, we use symmetry (;;) = (,",,) and reduce to the previous case leading to

n—-m
q“+1! — 1-th power as claimed. O

Remarks 7.6. Good example, where the reader can profitably make direct check very easily is o =t,
n=gq* and m =g/

Theorem 7.7. We have, for the third binomial, denoting valuation at © by v,, and v := v, (a), we have

{ /ap } = { a } mod 5Omax(q’”rl,vak/dJ).
q(-/\/@ qk

Proof. Comparing the coefficients in (VII), we get

j ¢

)= = L= = el

JjHe=k+d Jj+He=k+d

Now the definition of the third binomial and (II), (II) immediately gives that v, ({ Kj h=1,if j<d,
q
so that the first sum expression gives

ap | _|[a g+t
{qkqd}z{qk} mod g ’

irrespective of v. (Using digit expansions, we can replace ¥ in the two binomials by any of its multi-
ple in the congruence above.) But if this valuation is big, we can do better by using the second sum
expression instead.

First note that by Fermat’s little theorem and (IV), the term for ¢ =d is congruent to { ;k }. Now

if we look at terms in the definition of the third binomial {;k }, they have valuations g/v — V(D)) —
q’L(k + j)/d], which have unique minimum at j =0, if (‘the minimum’) v — |k/d] is > g**!, which
is the only case of interest for us. This gives the valuation of {;ﬂ} and the second sum expression
thus gives the required congruence to w-th power, where w = 1+ min(q?~J(v — [(k + j)/d])), and
1< j < d. Again under our assumption that v — [k/d] > ¢**, the minimum is unique at j =d and is
v — |k/d] as claimed. O

Remarks 7.8. (i) Note that both the sides of the congruence are zero, for k > deg(a).
(ii) The sum formula in the definition of the third binomial, together with {5; }=1lead to /Ly =

(=19 modulo 9, if d > 1, and modulo I, if d = 1. By (I) and (IV), this can be reformulated
as interesting congruence saying that the monic least common multiple of all, except g, elements
of degree d, which is also equal to the product of Pl9/de€(P)] gver monic primes P # p (of degree
at most g only matter) is congruent to (—1)? modulo 7 (respectively pI~1) if d > 1 (respectively
d=1).

Let us provide an analog of the theorem [3] on the classical factorial that (np)! =n!(p!)" mod p"*3.

Theorem 7.9. We have for the first factorial,

mNp)! =n!(NVp)!)" mod p"Ha.
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Proof. Let n = Zn,-qi be the base q expansion. Hence
i . . i—1\n; i i
N =[] DM, =[J(d +illd +i—119---[d+ 119 )" DF"7.

Now, by (IIl), " divides D} and when you divide out this o power, we use [d + j] = [j] mod qu.
Hence the claim follows, when we notice that i = 0 gives identity, so, in general, the minimum power
in the divided out congruence holds for g-th power of g corresponding to i=1. O

The special case n = q shows that the power in the congruence is best possible in general.
8. Higher powers and Bernoulli numbers

See [3] and [5] (and its review on MathSciNet by Evans) for references for many more results
(some mentioned below) by Lagrange, Wolstenholme, Ferrers, Glaisher, Carlitz etc. generalizing these
results and on congruences modulo higher powers of primes for the classical binomial.

In particular, congruences analogous to those in Section 7 work, for given m, n, to higher power
of a prime p if and only if p divides Bernoulli number B,_3 = By_1—2 € Q. In fact, for the usual

binomial coefficients and factorials, (a) (;’;)/(;) =1+mn(m—n)Bp_3p3/3 mod p'™4, where p > 5 and

pt||mn(m —n). Carlitz proved this with p‘™ replaced by p*. Its often quoted immediate consequences
are (b) (”;’:11) =1-n(n-1)p3B,_3/3 mod p* and (c) (np)!/(n!(p))") =1— (n*> —n)p>Bp_3/9 mod p*.

Carlitz also proved (d) ((pp__l}/z) = (—1)P~D/24P=1(1 + p3B,_3/12) mod p*.

Let us look at the [Fg[t] situation. For n =q+ 1, m =2 the congruence in the case (Theorem 7.3) of
the first binomial reduces to [d + 1] =[1] and q is the exact power of g dividing [d + 1] — [1] = [d]4
for any g of degree d, by (I). So there is no extra divisibility, at least in the full generality of the
classical case. In the case (Theorem 7.7) of the third binomial also, if, for example, we take a =t,
then the power of g in the displayed congruence in the proof is the best by argument there, for any
g #t. Hence there is no extra divisibility as in (a). As for (b), no carry over implies that for the first

binomial, we have ('}(\/fgj]l) =1, in fact. (Note that immediate argument for deducing (b) from (a) in

the classical case fails in this case.) Analog of (d): For the first binomial, ((NK{\—[A;;(]Q—U) is identically
one, again for no carry over reason. Similarly, we do not get extra divisibility for (c).

On the other side with Bernoulli, see [6, Sec. 4.16 and 5.3.9] or [4] for more on these Bernoulli-
Carlitz numbers By, € Fg(t) and many analogies they satisfy, such as their generating function, oc-
currence in special Carlitz zeta ‘even’ value, analog of the von-Staudt theorem etc. Analog of B, /n is
then B,(n — 1)!/n! [6, Sec. 4.16], where the factorial is the first factorial. In this case, no nice func-
tional equation is known for the Carlitz-Goss zeta function [4,6], so that there are also Bernoulli-Goss
numbers B(n) (these, rather than Bernoulli-Carlitz numbers, satisfy analogs of Kummer congruences
leading to g-adic interpolation) coming from the special values at negative integers.

Now, let us recall the Carlitz evaluation [6, Thm. 4.16.1] of the special ‘Bernoulli-Carlitz numbers’

_ (=D — )

By_q = qu
h—i

From the evaluation and (I), we see that g never divides the Bernoulli-Carlitz number Bar,_g =
Bwp-1)-@q-1 €K.

We have not yet fully investigated what happens for them in general, but we have checked that
for g =3, g does not divide £(1 — (q¢ — q)), if d < 5. On the other hand, out of 8 primes of degree
3 in [Fg[t], two divide the Bernoulli-Goss number B33 — 3), with close connection to the class group
component related to B3s_3, via analogs of the Herbrand-Ribet [6, Theorems 5.2.4, 5.3.8], [4].



D.S. Thakur / Finite Fields and Their Applications 18 (2012) 271-282 281

Next, let us look at the Lagrange, Wolstenholme, Ferrers, Glaisher results generalizing Wilson's
theorem to other elementary symmetric functions: If we write (x —1)(x—2)---(x—p+1) =xP~1 —
AxP=2 4. 4 Ap_1, then modulo p (for indices strictly between 0 and p — 1),

(i) A;=0, (i) Ay/p=—Ba/Qr), (i) Aor41/p® = (2r + 1)Ba;/(41).

The Carlitzian analog would be [[(x —a) = Z?:o quii_1qu_qd7i, where the product is over non-zero
polynomials a of norm less than A g. Thus by the definition of the third binomial and (V), we have

Dy(=1)!

Foa_ga-i = -
q—q d—i
Dg_iL]
So by (I)-(IV), these coefficients are divisible by g, but not its higher powers, in analogy as well as
contrast with the classical case mentioned above. Comparing the Bernoulli-Carlitz evaluation above,
using an identity similar to (II), an easy calculation shows that we have, for 0 <i <d,

Fot_qt-1/§ = (La/9)Bea_qa-i/La—i = (=1 Bga_ga-i/La—i.
where the last congruence is modulo o9 (or 91, if d = 1) and follows by Remark 7.8(ii).
9. Further questions, observations and partial results

(A) Since the second congruence in Theorem 7.1 works with the first power of g for all g, it raises
similar question for the first congruence. By an argument similar to Euclid’s argument for infinitude
of primes, by (I), [1]---[s — 1] + 1 can only be divisible by primes of degree > s and we are asking
when it is divisible by the lowest possible degree s. For s = p =g, it seems, but not yet proved that
the only primes which enter are the g,’'s identified in Theorem 7.1.

Small amount of data that we calculated shows that it works for some other primes (what is their
characterization?), but only in degrees divisible by the characteristic p. More precisely, it suggests the
guess that the greatest common divisor G of A:=[1]---[s— 1]+ 1 and B :=[s] is non-trivial, only if
pls. Here is the proof for s <4 and all q:

For s =1 it is vacuously true. For s = 2, it follows since Dy =[1] is congruent to q — 1-th root of
—1, and is thus congruent to one only if p = 2. For s = 3, 4, it follows also by the following calculation.
(We speculate, but cannot prove yet, that the method of this proof generalizes to all s.)

Let x :=[1], then [s] =xT~14... 4+ x0 +x, so that gcd G of A, B is a polynomial in x. If G is a
polynomial in x of degree w > 0 prime to s, then G is a polynomial of degree wq in t, on the other
hand its prime factors are all of degree s. So wq is a multiple of s, hence p divides s.

For s=2, A9—B=x—1.

For s=3, xXIB — A9 — A = —x? — 2 divisible by G, so that w =1 or 2.

For s=4, let C = A9 — xI(x4" + x1)B, D= (A —C)/x?, E=B — D9 =—x% +x, F=x4"1E + C, and
G= F(xq2 +x1+x)F —x1A —x7 +x Then E+G =2x,s0 w=1, unless p =2.

(B) The next unresolved question is what the distribution of primes corresponding to the different
possibilities for S in Section 6 is, when the hypothesis of Theorem 6.1 does not apply. Here are some
observations from the small numerical data gathered by calculating P, and N;, the number of primes
corresponding congruence class r (see proof of Theorem 6.5 for the notation), using maxima.

(i) For d = 3, we focus on the primes ¢ < 61 and ¢ =1 modulo 3 (not fully handled by Theo-
rem 6.1) and give the vector of entries N;/q (see Theorem 6.5) corresponding to 1 <r < (g —1)/2
(this range is enough by Remark 6.2) is given by

q=7, 13,41 q=13,(3,44,7,3,7; q=19,[9,4,4,7,4,7,9,9,7];
q=31, [12,12,13,12,7,13,13,12,7,7,7,13,7,13, 12];
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q=37,[9,16,13,13,13,9,13,9,16,9,9, 16, 13, 9, 16, 16, 16, 13];

q=43, [12,12,19,12,19,19,13,12,13,19, 12,19, 13,13,13,12,13, 13,19, 19, 12];

q==61, [21,16, 21, 25, 16, 16, 16, 21, 21, 25, 21, 25, 16, 25, 16, 16, 25, 16, 25, 21, 16, 16, 21, 21,
25,25,21, 21, 25, 25].

Here, all the repeat entries can be explained by the bijection in Theorem 6.1.

(ii) Let d =3 and r = 1. For ¢ =3", N1 is q(q + 1)/3 (and thus not a multiple of q), at least for
n < 4. For q=4,16,64,256 N1/q is 3, 3, 27, 75 respectively and for q = 25, 49 it is 12, 21 respectively.

(iii) For =4, d =4, S =1 class is empty and the primes are equidistributed in classes for S = ¢3
and S = §32 (equidistribution is in accordance with Theorem 6.3(2)).

An independent characterization of the distribution of these numbers and of the primes them-
selves in congruence classes would be interesting.
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