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Tensor powers of the Carlitz module and
zeta values

By Grec W. ANDERSON* AND DiNEsH S. THAKUR* *

Notation
A =: F_[T] (T: a variable, g: a power of a prime number p).
A , =: the set of monic elements of A.

v =t a monic prime element of A.
K =: the fraction field of A.

1
K, = Fq(( 7,)) (the completion of K at the place T — ).
K_, = an algebraic closure of K_.

K*®® =: the separable algebraic closure of K in Izw.

G_ =: the additive group over A.
Introduction
The power sum

1
{(n)=2 ), — €K_ (n:positive integer)

n
a€A, a

was first considered by Carlitz [C1]. In many respects, e.g., the existence of an
Euler product representation, {(n) is analogous to the corresponding value of the
Riemann zeta function. A review of pertinent arithmetic properties of {(n) and

its v-adic analogue can be found in Section 3 below.
Our aim is to relate {(n) to a certain A-module-valued functor of A-alge-

bras, namely the n tensor power C®" of the Carlitz module. We shall also
obtain for each prime v a corresponding result concerning the v-adic analogue
of {(n). Using our results, J. Yu [Y2] has proved the transcendence of {(n) over

*Sloan fellow, also supported by NSF grant DMS-8610730(2)
**Supported by NSF grant DMS-8610730C2
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K; see Section 3 for further discussion. We focus in this introduction on the
functors C ®".

The functor C = C®!, the Carlitz module ([C1], [H1]), assigns to each
A-algebra R the A-module obtained by equipping the additive group of R with
the unique F_linear action of A such that T acts by the (nonlinear) rule

r—Tr+1r9: R > R.

The group underlying C is the additive group G,. Given any f € A, one can
show that the ftorsion submodule C/(K*P) of C(K*P) is a rank one free
A /f-module; let

Xs: Gal(K*®/K) - (A/f)”

be the associated character. Given any monic prime v such that (v, f) = 1, one
can show that the character x, is unramified at v and for any arithmetic
Frobenius element o, € Gal(K**?/K),

xf(ov) =0 mod f-
The exponential map
exp: Lie(C)(Ew) - C(Koo)

associated to the Carlitz module C is by definition the unique analytic additive
A-equivariant map tangent to the identity map of Lie(C)( Ew). (Given an
A-module valued functor G of A-algebras, Lie(G) denotes the A-module-valued
functor of A-algebras given by the rule

Lie(G)(R) = ker(G(R[e] /(%)) - G(R)).)

Identifying the domain and range of exp with Koo in the evident fashion, one has

ew(x) == TT (1- =] - f

0%acA (19" = T9") .- - (T = T)

where 7 € KP (well-defined up to a factor in F,*) is the fundamental period of
the Carlitz module; 7 is an analogue of 2i, the fundamental period of the
multiplicative group. Note that for each f€ A, exp(7/f) generates C{K*®).
These observations are key points of the explicit class field theory for K
developed by Hayes [H1], who built upon earlier ideas of Carlitz [C3]. All in all,
it is reasonable to regard C as an A-analogue of the Tate motive Z(1).

The functor C®" would appear to be an analogue of the n tensor power
Z(n) of the Tate motive; it was this analogy, together with Deligne’s results [De]
concerning the fundamental group of the projective line minus three points,
which suggested to the authors the possibility of a connection between C®" and
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{(n). We note key properties of the functor C®" here. See Section 1 below for
the definition.

(0.1)  The group-valued functor underlying C®" is isomorphic to G".

The functor C®" is a higher-dimensional generalization of a Drinfeld module. A
class of functors including C®" (over base rings that are perfect fields) was
studied in [A], building upon the foundation laid by Drinfeld [Dr].

(0.2) The group C®"(K*®) of K**®valued ftorsion points of C®" is a
free A/fmodule of rank one and the associated character
Gal(K**/K) = (A/f)* is X}.

Property (0.2) provides some justification for regarding C®" as the n tensor
power of C.

For the functor C®" one has an analytic theory generalizing that for the
Carlitz module:

(0.3) There exists a unique A-equivariant additive analytic map
exp,: Lie(C®")(K_) - C®"(K_) tangent to the identity map of
Lie(C®")(K,).

(04) A, = ker(exp,) C Lie(C®")( Ew) is a discrete A-submodule
free of rank one.

See Section 2 below for details.

An important point is that for n > 1, the derivative action of T on
Lie(C®") differs from multiplication by T by a nonzero nilpotent endomor-
phism consisting of a single Jordan block. Hence the largest quotient of Lie(C ®")
on which the derivative and multiplication actions of A coincide is isomorphic to
G,; let Z,: Lie(C®") - G, induce an isomorphism of this largest quotient with
G,. The coordinate £, is unique up to a factor in F,* and has a special role to
play; e.g., we show (Cor. 2.5.8) that

(0.5) ¢(A,) = 7A.

Property (0.5) is another reason for regarding C®" as the n tensor power of C.
At last we can state our main result (Theorem 3.8.3):

(0.6)  There exist Z, € C®"(A) and z, € Lie(C®")(K_) such that
expn(zn) = Zn’ {n(zn) = I‘n{(n)

Here I', € A, is a certain polynomial defined by Carlitz [C2] analogous to
(n — 1)! = I'(n). We give explicit constructions for the points Z, and z,. See
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Section 3 for details. Concerning the explicit point Z, we prove (Cor. 3.8.4):

0.7) For n not divisible by ¢ — 1, Z, is not an A-torsion point of
cen

We prove as well a v-adic analogue of (0.6), relating the “v-adic logarithm” of

the “otwist” of Z to the v-adic analogue of {(n).

Acknowledgements. The research described in this paper was mainly car-
ried out at IAS during the fall of 1987; the authors would like to thank IAS for
providing the opportunity for collaboration as well as a stimulating atmosphere
in which to work. Special thanks are due to P. Deligne and J. Yu for helpful
discussions. G. Anderson also thanks IHES for hospitality during a later stage of
the work.

1. Definitions and first properties
Notation (continued)

# = “cardinality of .
f=: anelementof A,.
deg(a) = the degreein T of a € A.
= (x> x9) € End(G,) (the g* power endomorphism).
1.1. The Carlitz action
a~ [a]: A - End(G,)
of A upon G, is defined to be the unique F_linear ring homomorphism such that
[T] = (x~ Tx + x9) € End(G,).
Then, e.g.,
[T2+ T] = (x~ (T2 + T)x + (T + T+ 1)x? + x7') € End(G,).

The subring of End(G,) consisting of the F_linear endomorphisms may be
identified with the ring of polynomials in 7 with coefficients in A equipped with
the “twisted” multiplication law

(Zair)(Zb;7) = Sagre
i j i, j
In particular,

[T] =T+ 7.

The Carlitz module C is a copy of G, equipped with the Carlitz action of A.
Given any A-algebra R, let C(R) denote the ring R equipped with A-module
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structure via the Carlitz action. We shall briefly review some of the arithmetic
properties which motivate the study of the Carlitz module before defining
“higher” Carlitz modules.

1.2. The key property of the Carlitz module is:
ProrosiTiON 1.2.1 [C3, p. 178]. The endomorphisms
[v], 79 € End(G,)
are congruent modulo v.

Proof. Set d =: deg(v). Since 7 = [T] — T, it follows by induction that
P = 1]~ T) = 9 T) T 1 = F Q7]
i=0
where the coeflicients Q,; € A are defined by
dil (t—T9) = i Qut! (¢: a variable independent of T').
i=0 i=0

Call the left-hand side above Q,(t), a polynomial in ¢ with coefficients in A.
Then clearly
(1.2.2) Q4(t) = 0o(¢) mod vA[t],

where v(t) denotes the polynomial in ¢ obtained by substituting ¢ for T in v.
Note that we made use of the assumption that v is monic to deduce the
congruence above. The desired congruence now follows. q.e.d.

Remark. The preceding proposition is the analogue of the fact that the
endomorphism x - x?: G, = G,, of the multiplicative group reduces modulo p
to the Frobenius endomorphism of G, /F,.

1.3. Put
C, = ker([f]: G, — G,),
the ftorsion submodule of the Carlitz module C. Since
[ £] = 798 + terms of lower degree in 7,
C; is a finite flat group scheme over A. Since
[ £] = f + terms of higher degree in 7,
C; is étale over A[f']. In particular
(1.3.1) #C(K*®) = goesf),
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Since (1.3.1) holds for all monic divisors of f, C{K**®) must be an A-module
isomorphic to A/f.

ProposiTiOoN 1.3.2 [H1, p. 83]. Let o, € Gal(K**®/K) be an arithmetic
Frobenius element at v and assume that v does not divide f. Then for all
¢ € CLK*?),

o,c = [v]c.
Consequently the representation
Gal(K*?/K) — Aut(C(K*?)) = (A/f)”
is surjective.
Proof. This follows directly from Proposition 1.2.1. q.e.d.

Remark. Therefore the torsion points of the Carlitz module C in K*P
generate an abelian extension of K, just as the torsion points of G,, in Q, the
roots of unity, generate an abelian extension of Q. (Of course, in the latter case,
the extension in question is the maximal abelian extension, whereas this is not
true in the former case.) It was Carlitz’s insight [C3] that C could be the basis of
explicit class field theory for K. This explicit class field theory was subsequently
developed by Hayes [H1], and later vastly generalized by Hayes to the case of
positive genus in [H2].

1.4. Let n be a positive integer. Given any ring R, R" denotes the module
consisting of all column vectors of length n with entries in R; we denote by G2
the functor of A-algebras R — R". Given a matrix M (e.g., a column vector of
length n) and nonnegative integer k, let M(® denote the matrix obtained by
raising all the entries of M to the (g*)® power. The n'™ higher Carlitz action of
A upon G}

(a = [a],): A - End(G7)

is defined to be the unique F linear ring homomorphism from A to the ring of
endomorphisms of G such that

[T], = (x> Tx + Nx + Ex®): G" - G”,

where
01 - 0
N = Nn = O O . 1
O 0 - 0

is the nilpotent n-by-n matrix with 1’s along the superdiagonal and O’s else-
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where, and
0 O 0
E—E = |0 0 0
1 O 0

is the n-by-n elementary matrix with 1 in the lower left-hand cormer and 0’s
elsewhere. For example

x, Tx, + x,
[T], = (xz — | Tx, + x5 | | € End(G2).
X3 Tx, + x{

The n® higher Carlitz module C®" is a copy of G" equipped with the n' higher
Carlitz action of A. Given any A-algebra R, C®"(R) denotes the group R" upon
which A operates by the n'® higher Carlitz action. Let 7 denote the endomor-
phism x = x® of G~ In evident fashion, we may identify End(G") with the
ring of polynomials in 7 with coefficients in the ring of n-by-n matrices with
entries in A, equipped with the “twisted” multiplication law

(1.4.1) (;P'T’)(?Q]T]) = ?%Piol(_i),rwi.

Under this identification, we have simply

[T],=T+N + Er.

1.5. The A-module-valued functor C®" of A-algebras admits another pre-
sentation which is convenient for our purposes. Given any A-algebra R, set

W,(R) = {(w e R((¢t7"))/R[¢t]|w® = (t — T)"wmod R[]},

where here and elsewhere throughout the paper we denote by R((¢™!)) the ring
of Laurent series

Yt  (r,€R,r=0fori> 0)

i€Z

and write

(Znti)(k) = Yritt (k=0,1,2,...).

Let ¢; G > G, (i = 1,..., n) denote the i*" coordinate projection.
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ProposiTioN 1.5.1. The map

[oe]

M= co— Y (e,][T"],c)t7: C®(R) > R((t7"))/R[¢]

i=1
is injective. The image of (*), is W, (R).
Proof. We have
e;.1=1¢]lT], — Te, (i=1,...,n—1),
e, = ¢, [T], — Te,.
Therefore, by an evident induction,
k-1

(152) e=Y (- 1)"("; l)T"el[Tk—l-"],, (k=1,...,n),

(15.3) e, = é(— 1)‘(?)T"61[T"-"],,.

In particular, if w € W,(R) is the image of ¢ € C®"(R) under (*),, then

(1.5.4) e;c = Res,=°°((t - T)k_lwdt) (k=1,...,n),

where here and throughout the paper, given a Laurent series
Yrt'eR((t7Y)) (1, €R),

we set

Res,=w(Zr,.t‘dt) = —7r_,.

Therefore (*), is injective and moreover, by (1.5.3), takes values in W,( R). Now
fix w € W, (R) arbitrarily, let ¢ € C®"(R) be defined by the equations (1.5.4),
and let w € W,(R) be the image of ¢ under (*),. Set w” =1 w — w’. Then by
(1.5.2) and (1.5.4),

Res,_ (t'w”dt) =0 (i=0,...,n—1).

Since w” belongs to W, (R), it follows by an evident induction that
Res,_ (t'w"” dt) vanishes for all i > 0. Therefore w” = Omod R[t]. Hence w is
the image of ¢ under (*),,. q.ed.

As an immediate consequence of the definition of (*),,,

(155)  (Mallalac) = a(t)(*)alc))  (a €A, ceC(R)),

where here and elsewhere throughout the paper, given a € A, a(t) denotes the
polynomial obtained by replacing T by ¢.



TENSOR POWERS OF THE CARLITZ MODULE 167

1.6. The generalization for C®" of Proposition 1.2.1 is:

ProrosiTiON 1.6.1. The endomorphisms
[v"] ., 79&*) € End(G")
are congment modulo v.

Proof. Let R be any A-algebra such that vR = 0, let w € W, (R) be given.
Set d =: deg(v). It will suffice by (1.5.5) to prove that

(1.6.2) w® =o(t)"w  modR[¢].
In any case,
wd = Q,(t)"w  mod R[t],

where Q,(t) € A[t] is just as defined in the proof of Proposition 1.2.1. Relation
(1.6.2) follows now by the congruence (1.2.2). q.ed.

1.7. Let R be an A-algebra, ¢ € C®"(R) a point. We begin the study of
“Kummer theory” for higher Carlitz modules by studying the functor of R-alge-
bras

(1.7.1) R — {e C®"(R')|[f].e=c}.

Let w € ¢t 'R[[t"!]] be the unique power series in ¢! without constant term
congruent modulo R[t] to the image of ¢ under (*),. Set

c,= w® — (t - T)"we R[t],

a polynomial in ¢ with coefficients in R of degree strictly less than n. One can
check that

(1.7.2) o= Y (ec)(t = T)™

i=1

by using formula (1.5.4). Now under the map induced by (*),, the functor
(1.7.1) of R-algebras is isomorphic to

(1.7.3) R~ {yet'R[[t"!]]If(t)y = w and
y® = (t — T)"ymod R'[¢]}.
The functor above is, in turn, isomorphic to the functor
(1.7.4) R~ {z€ R[t]/f(t)R[t]|]z® - (t - T)"z
= c, mod f(¢t)R'[¢]}
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under the map

y~— (f(t)y)zo’

where, given any Laurent series
| Yrt e R((tY)  (reR),

we set

(Xntf), = Lt eR[e].

i>0
1.8. We consider multiplication by f in C®".

ProrosiTion 1.8.1. The morphism
[fl.: G - G

is faithfully flat, finite and of rank q%°®". Moreover, after the base change
Spec(A[f!]) = Spec(A), it becomes étale.

Proof. Set d =: deg( f). Since
[ f]. = f + nilpotent matrix + terms in positive powers of 7,

the second statement follows by the Jacobian criterion. We turn to the proof of
the first statement. We shall employ the observations of the preceding paragraph.
Let R be any A-algebra, c € C®"(R) any point and let R, be the R-algebra
representing the functor (1.7.4) of R-algebras; it will suffice to prove that R, isa
free R-module of rank g Let x,..., x, be independent variables. In any case,
it is clear that there exist polynomials F; € R[x,,...,x,] (j=1...,d) such
that

Fj =x+ linear terms and constant term,

and such that R, is isomorphic as an R-algebra to R[x,,..., x,]/(F,,..., F)).
By the lemma to be proved below, R, is free of rank q¢ over R. q.e.d.

1.9. In this paragraph we prove a lemma of commutative algebra needed
to complete the proof of Proposition 1.8.1. We are grateful to O. Gabber for
the proof. Let R be a ring, x,,...,x, variables, m a positive integer and
F,,...,F,€S= R[x,...,x,] polynomials such that

F, = x}' + terms of total degree < m (j=1,...,d).

Let I be the ideal of S generated by F,..., F,.
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LemMa 1.9.1. S/I is a free R-module of rank m°.
Proof. Consider the filtered complex
K.(F,,..., F;)) = K.(F)) ? e ? K.(E,),

where for any F € S of total degree not exceeding m, K.(F) denotes the filtered
complex

. Q—O(_SQF_S(_O.

concentrated in degrees 0 and 1, filtered by the rule

Fil, K ,(F)=: polynomials of total degree < i — m (j=1),
polynomials of total degree < i (j=0),
0 (j#0,1).

Now K.(F,,..., F,) is the Koszul complex of the sequence F,..., F; in S and,
in particular,

H(K.(F,,...,E;))) =S/I.
‘Further, there exist isomorphisms of complexes
Gr,K.(F,,..., F;) > Gr, K.(xP,...,x7),

where Gr, = Fil /Fil, . Now since x7',...,x7 is a regular sequence,
H/(Gr, K.(x],...,x7)) = 0 for i > 0 and by direct calculation one can show
that Hy(Gr, K.(x7",..., x7)) is a free R-module of finite rank vanishing for
|p| > 0. Therefore the sequence

0 > Hy(Fil_, K.(F,,..., F,)) - Hy(Fil, K.(F,,..., F,))
- Hy(Gr,K.(F,,..., F;)) > 0

is exact for all indices p and, by induction on p, Hy(Fil (F,,..., F)) is a free
R-module independent of p for p > 0. Since homology commutes with direct
limits, Hy(Fil, K.(F,,..., F;)) = S/I for all p > 0. Therefore S/I is a free
R-module. Clearly rank z(S/I) = rankx(S/(x],..., x7)) = m-. q.ed.

1.10. Set
P = ker([f].: Gl > GI).

Then by Proposition 1.8.1, C®" is a finite flat group scheme over A of rank
qdee D), étale over A[f!].
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ProposiTion 1.10.1. Let L be any separably algebraically closed field
equipped with the structure of an A-algebra and suppose that f # 0 in L. Then
CP"(L) is isomorphic to A/f as an A-module.

Proof. In any case, since C®" is étale over A[ f~ 1,

(1.10.2) #CP™(L) = g,
Because (1.10.2) holds also for all divisors of f and C°"(L) is annihilated by f,
C2"(L) must in fact be isomorphic to A /f. q.e.d.
Set
F,= A/v,

Frob, = the arithmetic Frobenius automorphism of F, /F, .

ProposiTioN 1.10.3. Frob, and [v"], act in the same way upon C®"(F,)
and, in particular, C®"(F,) is isomorphic as an A-module to A /(v" — 1).

Proof. The first part follows from Proposition 1.6.1. Since the fixed points of
Frob, in C®"(F,) are precisely the points killed by [v" — 1], the second part
follows from Proposition 1.10.1. q.ed.

1.11. The generalization of Proposition 1.3.2 for C®" is:

ProrosiTioN 1.11.1. Let o, € Gal(K*?/K) be an arithmetic Frobenius at
v. Then for all ¢ € CP"(K*®), provided that v does not divide f,

o,c = [v"],c.
Consequently the image of the Galois representation
Gal(K*P/K) — Aut ,(CP™(K*?)) = (A/f)”
consists of the n'™ powers in the group (A/f)>.
Proof. This follows easily from Proposition 1.10.1. q.e.d.

Remark. We might rephrase Proposition 1.11.1 as the assertion that
CP"(K*®) is A-linearly and Gal(K**®/K)-equivariantly isomorphic to the n-fold
tensor power over A of C{K*P). It is this fact which suggests that C®" ought to
be regarded as the n™ tensor power of C. See Anderson [A] for further

discussion of higher-dimensional Drinfeld modules and tensor products.

ProposiTion 1.11.2. CP"(K) = {0} unless q — 1 divides n.

Proof. We may assume that f is irreducible, i.e., that f = v; suppose that
C2"(K*?) = C2"(K) # {0}. Then, by the preceding proposition, raising to the
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n® power must annihilate the cyclic group F* which is of order divisible by
qg-1 q.ed.

2. The logarithm and the exponential

2.1. A positive integer n is fixed throughout this section. We define the
formal logarithm log,, attached to the n™ higher Carlitz module C®" to be the
unique series

o0
log, = Y. Pr'  (P;: an nbyn matrix with entries in K)
i=0

determined by the conditions
(2.1.1) P,= 1,
(2.1.2) log (T + N + E7) = (T + N)log,,

where N and E are the n-by-n matrices intervening in the definition of the
higher Carlitz module C®". The formal series under consideration here are to be
added and multiplied according to the rule (1.4.1) which makes sense for
arbitrary sequences of coefficient matrices, and not just for those sequences
almost all of whose terms vanish. In order to show that log, is well defined, we
make explicit the recursion relations forced upon the coefficients P; by (2.1.2).
We have

i+1

(T+ N)P,,, =P (T + N) + PE.
After a little rearrangement we obtain
L NR] B
i+1 (Tqm _T) (Tq.‘+1 _T) .

(Here [X,Y] == XY — YX.) Since N is nilpotent, the relation above can be
solved “by geometric series” and we obtain

2122 ad(N)'(PE)

i+1 j+1

j=o0 (T9 —T)

(2.1.3) P, =- (i=0,1,2,...).

(Here ad(X)%(Y) = Y, ad(X)/*}Y) = [X,ad(X){(Y)].) Therefore log, is
well defined. For example we have

(2.1.4) P.=L;' (whenn=1),
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where (cf. [C1], up to a sign)

1

L= [[(T-TY) (i=12,...),

j=1

L,= 1.
More generally, we have the following:
Propos1TION 2.1.5. The entry in the lower right corner of P, is L ™.
Proof. It will be enough to show that
N"PE

Nn_le'+1E= PN
(T-T")

(i=0,1,2,...).

Note the following:
(2.1.6) EN'‘E=E fi=n-—1,
=0 otherwise.
Ni=0 ifi>n-—1.

If we multiply the right-hand side of (2.1.3) on the left by N*~! and on the right
by E, the only surviving term is the one we want. q.ed.

Remark. Therefore one has formally

0

]()g'l = 0 49
0 Y
X k=0 Lk

o] zk
Y
k=0
is the n-fold Hadamard convolution of
o0 zk
—log(l-2z)= Y} —,
k=0 k
and given that
o yd*
Z _
k=0 L«
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is the logarithm of C, it is reasonable to think of the n-fold Hadamard convolu-
tion .

o x4t
Y
ko Lk

as the “n™ multilogarithm” associated to the Carlitz module. Therefore one

might hope for a relationship with zeta values as in the classical situation; such a
relationship will be established in Section 3 below.

2.2. We define the formal exponential exp, associated to the higher Carlitz
module C®" to be the unique series

o0
exp, = 2. Qir'  (Q;: an n-by-n matrix with coefficients in K)
i=0

such that
(2.2.1) 0= 1,
(2.2.2) (T+ N+ E7)exp, =exp, (T + N).

In order to prove that exp, is well-defined, we exhibit a recursion relation for the
coefficients Q, similar to (2.1.3). By (2.2.2),

(T + N)Qi+l + EQi(l) = Qi+1(Tqi+l + N),

which after rearrangement yields

N.0.  BQ®
Qi+l - (Tqi+l _ T) = (Tqu _ T) .

Solving for Q,,, we obtain

223 0= % ad(fl)](EQ‘(jli)l (i=0,1,2,...).
=0 (T9 —=T)

For example, we have
(2.2.4) Q,=D;/' (whenn=1),

where (cf. [C1]; however Carlitz writes F; in place of D,),

i—1
D, = [[(1*-T) (i=1,2,...),

ji=0
D,= 1.
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In the general case, we have:
ProrosiTION 2.2.5. The entry in the upper left corner of Q, is D, ".

Proof. It will be enough to show that

EQ.(I)Nn_l

EQi+an_l = (T T)n (i = 031,29'-~)~

|+l

If we multiply the right-hand side of (2.2.3) on the left by E and on the right by
N"~! the only surviving term is the one we want. q.e.d.

Remark. Therefore one has formally

x o 4
||| £ 57

0

For n = 2, the “multi-exponential” appearing above is (up to signs) the Bessel
function analogue studied by Carlitz [C4].

2.3. It is easy to see that
(2.3.1) log,exp, = 1,
(2.3.2) exp, log, = 1,

i.e., that log, and exp, are formally inverse one to the other. Now let us rewrite
the characteristic functional equations (2.1.2) and (2.2.2) in a more suggestive
manner, as follows.

Identify End(G?) with a subring of the ring of formal series to which log,,
and exp, belong in the manner of subsection 1.4 above. Given any a € A, set

d[a], = the coefficient of 7° in the expansion
of [a], in powers of T.

When we identify Lie(G?) with G” in the evident fashion, d[a], is clearly the
matrix representing the endomorphism of Lie(G}) induced by [a], and

(2.3.3) log,[a], =d][a],log,,
(2.3.4) exp,d[a], = [a],exp,.

Therefore log,, and exp,, are the analogues for the higher Carlitz module C®" of
the logarithm and exponential, respectively, attached to an algebraic group.
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Remark. For all a € A, d[a], is an upper triangular matrix with each
diagonal entry equal to a. In particular, one has

* *
d[a]n ; = ;
X ax

Therefore the distinguished coordinate ¢,: Lie(C®") — G, mentioned in the
introduction is none other than the last coordinate e,: G} - G,.

2.4. Let K, denote the v-adic completion of K, let I?v denote an algebraic

closure of K, and let | |, be the unique extension to K, of an ultrametric

v

absolute value of K, that defines the v-adic topology of K. Given any matrix M

with entries in K, set
|M|, = sup|M

v ijlu’
i

The unique place of K at which T has a pole is denoted oo. Let | | be the
unique extension to Kw of an ultrametric absolute value of K, = F ((1/T))
inducing the co-adic topology of K. We turn to the investigation of the v-adic
and oco-adic convergence properties of log, and exp,.

ProposiTION / DEFINITION 2.4.1. For any x € K such that |x|, < 1, the
series

o0

Y Px®

i=0
converges v-adically to a value in K", denoted log n, o(X)-

Proof. By (2.1.3),
Pialy < IBLITT = TI;7** (i=10,1,2,...)
and one has the crude estimate
T = T), 2 |o|,,
whence by induction
|P], < [0 VIR,

This last guarantees v-adic convergence. q.ed.

ProposiTiON / DEFINITION 2.4.2. For any x € K™ the series

oo

> 0
1

i=0
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converges co-adically to a value denoted by exp, .(x). Consequently
exp, (d[a] .x) = [a], exp, . (x) (xeKr,acA).
Proof. By (2.2.3),
| 1Qtle < 1QUSITIT,
whence by induction

1000 < 112571 Qol oo

This last estimate guarantees convergence. q.ed.

ProposiTiON / DEFINITION 2.4.3. For any x € E;, the components x,
(i =1,...,n) of which satisfy

|xi|oo < |T|gn+(nq/(q—l)),

the series
o0
E Px®
1
i=0

converges oo-adically to a value denoted by log, .(x). Consequently, for all
such x,

expn,oo(logn,oo(x)) =x.
Proof. It will be enough to show that
(2.4.4) |PLN""E| < |T—n((q"“—q)/(q—1))+(n-i)qk .
(1<i<n,0<k< o)

because, since N"E is the matrix with entry 1 in the i row and first column
and zeroes elsewhere, the left-hand side above is the absolute value of the largest
entry in the i'" column of P,. We proceed by induction on k. The case k = 0 is
trivial. We have

2n-2 m N™ ip, EN""i~E
n—i j[m k
P \N""'E = Z E _(_1)](]') o1 m+1l
m=0 j=0 (T —T)

Now by (2.1.6), the summand above vaniéhes unless j=i—landn+i— 2>
m > i — 1. We are left with

n+i—2 Nm-itlp g
—i i[m k
Pk+1Nn E = E _(_1)](]) k+1
m=i—1 (Tq - T)

m+1 "
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By the induction hypothesis,

—i _ k+1_ —1)—i k+1 _ _ k+2_ _1+ k41
|Py, N"E|, <|T @ -a/@--ia"™| | pon@ T -a/@-)+(n=iat |

0"

q.e.d.
2.5. We shall determine the structure of
A, = ker(expn,oo: Kr > Kn)
by adapting techniques of [A]. We first consider the set Q, of power series

h(t) = i at’ (a,€K,))

with the following properties:

(2.5.1) {a;} generates a finite algebraic extension of K .
(2.5.2) h(t) converges for |t < 1.
(2.5.3) AO(t) = (¢t — T)"h(t),
where
hO(t) = Y adt'.
i=0

The set 2, has the structure of a module over F,[¢].
Lemma 2.5.4. Q, is a free module of rank one over F,[t].

Proof. Consider the power series

wy(t) = "‘i/?Tﬁ(l - i,)_l
and set
wo(t) = wy(t)",

where :/——T denotes a choice of the (¢ — 1)* root of —T in Kw fixed
hereafter. Then w,(t) belongs to 2, and has no zeroes in the disc |¢|, < 1.
Given now any h € @, set g = h/w,. Then g satisfies (2.5.1), (2.5.2) and
g = g. The power series g can have these properties only if g is a polynomial
in ¢ with coefficients in F,. Consequently h has a factorization h = gw, with
g € F,[t] which is unique by the Weierstrass preparation theorem. Therefore Q,,
is free of rank one over F,[t] on the basis w,,. q.ed.
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Therefore each h € @, is a meromorphic function of ¢ with poles of order
no greater than n and, in particular, possesses a unique Laurent expansion
(o]

h(t)= ¥ a(t-T)" (a,€K,)

i=—n
convergent for ¢t near T; we write
a_,
RES,(h(t)) = | : | € KZL.
a—n
ProposiTioN 2.5.5. The map RES,: Q, — K" is injective, and the image
of RES, is A,,.

Proof. Let h(t) € Q, be arbitrary. Let h(t) be the column vector of length
n with i entry (t— T)""'h(t). Set ¢, =t 0 € K2 and define coefficients
¢, =c(h) € K (i=1,2,...) by the rule

o0
h(t) = Z Cinat'
i=0
Necessarily, lim, _ |c,|, = O because h(t) is a column vector each of whose
entries converges on the closed unit disc ||, < 1. Also,
[T]nci+l= (T+N)Ci+1+Eci(-li-)l=Ci (i=0’1’2"")

as can be checked by direct calculation; i.e., the coefficients c; form a T-division
sequence. Consequently

(T + N)i logn,oo(ci)

is defined for all i > 0 and is independent of i; call it A. Necessarily A € A,
and

c,=exp, ((T+N)"A) (i=0,1,2,...).

Equivalently,
(2.5.6) R(t) = 3 exp, (T + N) ')
i=0
The polar part of h(t) at t = T is clearly the same as that of
i (T+N) " "Ati==Nt-T)"" - anf)\(t —-T1)7
i=0 i=1

whence it follows that
(2.5.7) RES (h(t)) = —A.
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Therefore RES,, takes values in A, and, by (2.5.6), RES,, is injective. Now let
A € A, be given arbitrarily and let F(¢) be the column vector of power series
defined by the right-hand side of (2.5.6). Let h(t) be the first entry of F(t).
Then one check that h(t) € Q,, and that A(¢) = F(t). By (2.5.7) the image of
h(t) under RES, is — A. Therefore RES,, is surjective. q.ed

Put
7 = RES,(,(t)).
CoroLLARY 2.5.8. There exists a vector A € K" with last entry 7" such

that A, = {d[a],\|a € A}.

Proof. The image of w,(t)" = w,(t) under RES,, by Lemma 2.5.4 and
Proposition 2.5.5, is the desired vector A. q.e.d.

Remark. Note that the entries of the period vector A of C®" are the
Laurent coefficients of the expansion in powers of (t — T) of w,(t)". In
particular, if n is a power of the characteristic p, all entries except the last are
Zero. ’

CoroLLARY 2.5.9. 7" belongs to K, if and only if q — 1 divides n.
Proof.

T -1
(1 - —) . q.e.d.

3. Zeta values

3.1. Following Carlitz ([C1], [C2]) we define

1
{(n)= Y —eK, (n=12,...).
a€A, a
If one regards monicity as a sign condition analogous to positivity, then one
might regard {(n) as an analogue of the corresponding value of the Riemann
zeta function. The existence of a representation

1!
() - I1 [1- 5]
vEA, v
v: prime
as a convergent Euler product is more evidence for the existence of an analogy
and, of course, guarantees that {(n) # 0. (The nonvanishing of {(n) is in any

case a triviality since clearly |{(n)|, = 1.) Note, however, that in contrast to the
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classical case of power sums of positive integers, the products and the sums
under consideration here converge for n = 1; one might reasonably regard {(1)
as the analogue of the Euler-Mascheroni constant. Note also the curious identity

{(np™) = §(n)?".

Nonetheless Carlitz showed that for “even” positive integers n, i.e., those
positive integers divisible by g — 1, {(n) is quite analogous to the corresponding
value of the Riemann zeta function.

THEOREM 3.1.1 (Carlitz [C2, p. 503]). If n is a positive integer divisible by
q — 1, then {(n)/7" belongs to K.

Carlitz went on to show that the ratio in question can naturally be written
as the quotient of a “Bernoulli number” by a “factorial”. We have also:

TueOREM 3.1.2 (Wade [W1]). 7 is transcendental over K.

CoroLLARY 3.1.3. If n is a positive integer divisible by ¢ — 1, then {(n) is
transcendental and {(n) /7" is rational over K.

This is analogous to what is known about the value of the Riemann zeta
function at even positive integers. (But note that in the case g = 2, all positive
integers are “even”.)

One knows nothing about the transcendence of the values of the Riemann
zeta function at odd positive integers; even about irrationality, beyond Apéry’s
celebrated result, nothing is known. But recently Jing Yu has obtained results
about {(n) for n “odd” which go far beyond what is known for the special
values of the Riemann zeta function at odd positive integers.

TueoreMm 3.1.4 (Yu [Y2]). If n is a positive integer not divisible by q — 1,
then {(n)and {(n)/7" are transcendental over K.

In the paper [Y1], Yu obtained quite general results concerning the tran-
scendence properties of a class of functions including exp, and log, that, in
combination with the results of subsection 3.8 of this paper, are used to prove
the cited result. In [T1] and [T2], the transcendence of {(n) for some “odd”
values of n was deduced by applying methods of [W1] and evidence was
presented for the transcendence of {(n)/7" for some “odd” values of n,
namely, the existence of “fast approximation by rationals”. It should be noted
that Roth’s inequalities do not imply transcendence in positive characteristic, in
contrast to the characteristic zero case.
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It seems that Carlitz and Wade had enough machinery to prove Theorem
3.1.4 for n = 1, and so also for n equal to a power of p. More precisely, by [C1,
p. 160], {(1) = log(1). (Carlitz used T — 7 rather than T + 7 for the T-division
polynomial, so that, strictly speaking, with his definition of log, {(1) = log(1)
holds only in characteristic 2. However, {(1) = log(u)/u, where u is any
(g — 1)* root of —1 holds in general.) On the other hand, Wade [W1, p. 720]
showed that the log of a nonzero number in K is transcendental, so that {(1) is
transcendental. In [W2] he also proved an analogue of the Siegel-Schneider
criterion, namely that, for nonzero a and irrational B, at least one of a, S,
exp,(f log,(a)) is transcendental. In particular, taking @ = 1 and B = 7/{(1),
one recovers the transcendence of {(1)/7 when g # 2. But this was not noticed

then.

3.2. It can be shown ([C1, p. 162], [G, p. 110]) that, with a fixed positive
integer n, the sum

(3.2.1) Y a"

a€A,
deg(a)=k

vanishes for all sufficiently large k. By grouping terms according to degree, Goss
[G] has given an “analytic continuation” to the power sums of Carlitz defining
an analogue of the Riemann zeta function. We refer to [G] for a complete
exposition. We simply note here that one can define {(—n) for any nonnegative
integer n by the formula

§(=n) = Z'I Y a°|,
k=0 ac€A,
\deg(a)=k

because the sum over k is in fact finite.

Remark. Even though an analogue of Riemann’s functional equation is not
known for the Goss zeta function, Goss has shown that the special values at
negative integers have interesting properties. For example, he has shown that
{(n) vanishes for all negative “even” integers, is nonvanishing for all negative
“odd” integers and belongs to A, i.e., is integral. Note that while the first two
properties are analogous to those of the corresponding values of the Riemann
zeta function, the third sharply distinguishes the characteristic p and character-
istic zero situations. It should be noted here that vanishing of { at negative even

integers and integrality at negative integers are also consequences of Lemma 7.1
of Lee [L].
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3.3. Having defined {(n) for nonpositive n, we naturally try to push the
analogy with the Riemann zeta function further by seeking an interpolation of
the values of { at nonpositive integers for each prime v of A. This has been
carried out by Goss; we refer the reader to [G] for the complete story. The
following ad hoc approach will suffice for us:

If a€ A is prime to v, the function a" interpolates to a continuous
function with range

A, =: the completion of A at v
and domain

S, = lim Z/(q%¥* — 1)p".

From this fact it follows (see [G] for the details) that
$(—=n)=(1—-0")¢(—n) (n:nonnegative integer)

interpolates to a continuous A -valued function on S,.
The interpolation procedure yields as a by-product a representation of { (n)
for any integer n (positive or not) as a v-adically convergent infinite sum

o0 1
(3.3.1) L) =2 X =l
k=0| qea, @
(v.a)=1
deg(a)=k

where, of course, it is necessary that the interior summation be carried out first.
This sum will play an important role later. It follows that, in particular, { (n) for
n positive may be recovered as the v-adic limit of values of {, for negative
integers by the formula

§o(n) = lim ¢(n — (%= — 1)pi).
jo oo

Remark. Observe that the classical p-adic Kummer congruences may be
interpreted as the assertion that the values at negative integers of the Riemann
zeta function multiplied by the p* Euler factor interpolate so as to yield a
Q,-valued function on the space

limZ/(p — 1)p’

that is continuous apart from a “simple pole” at 1.
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3.4. In this section we review some ideas of [C1], especially pp. 160-162.
Note, however, that we use different notation. Consider the polynomials

¥,(x) € K[x] (x: a variable, k = 0,1,2,...)
defined by

o0

(eXPl x (log 1 Z

where the right-hand side is obtained by multiplying out the left-hand side
according to the rule (1.4.1). Roughly speaking, the polynomials ¥,(x) are to the
Carlitz module as the polynomials

(F)eQlx] (n=012,...)

defined by the power series identity

(1+1t)" = exp(xlog(l + t)) = i (5)e"

n=0

are to the multiplicative group. The following properties of ¥,(x) are easy to
check:

(3.4.1) ¥, (x) is a polynomial of degree g*.

(3.4.2) ¥, (x) is a K-linear combination of terms of the form x?
(0 < i <k).

Let a € A. Consider the equality of T-expansions
(exp,)a(log,) = (exp,)(log,)[a] = [a] = Z ‘I'k(a)"'k
k=0

Now the coefficient of 7* in the T-expansion of [a] vanishes for k > deg(a) and
equals 1 if a is monic of degree k. Therefore

(3.4.3) ¥,(a) =0  forall a € A such that deg(a) < k.
(3.4.4) V,(T*) = 1.
Having determined all the zeroes of 1 — ¥,(x) and their multiplicities, by taking

the logarithmic derivative, we have

1 ¥(0)
(3.45) L o Towe)
deg(a)=k
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It follows that

(3.4.6) i )y redl KO

n=0 ac€A,
deg(a)=k

= Laurent expansion of —‘Pi(o)— atx=0

(1 - ‘I'k(x)) .

ol 1
(3.4.7) XY at|—F
n=0 a€A, x
deg(a)=k
¥{(0)
at x = o0.

= Laurent expansion of — (

1- ‘I'k(x))

Note that the vanishing of the sum (3.2.1) for fixed n and all sufficiently large k
follows from (3.4.1) and (3.4.7).

Another consequence of the definition is

log, = i ¥{(0)7%;
k=0
hence by (2.1.4),
(3.4.8) ¥/(0) = L; L.
By comparing the coefficients of the t-expansions

(exPl)Tx(IOgl) - T(eXPl)x(IOgl) = T(exPl)x(IOgl),
one finds that

(3.4.9) ¥ o(Tx) = T y(x) = ¥ (x)”.
3.5. For any nonnegative integer n, write (uniquely)
n=Ynq" (0<n,<gq,n =0fori> 0),

and define

©
_. n;
Fn+1 - I—!)Dt .
i=
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Then T, is the factorial of n (gamma of n + 1) introduced by Carlitz [C2].
Observe that

Fm n+1
(3.5.1) T e A.
’ Fm+lrn+l

3.6. We define polynomials
G,.(y) € Aly] (n=0,1,2,...) (y: a variable)

by the formula

n

G, (y) = TT(T" - y*).

i=1

Note that

(3.6.1) Gy(y) = 1.

(3.6.2) Gy = (T = y")" Gy(y)°
i1 _

(3.6.3) degree in y of G,(y) = a a <q d
g-—1 qg—1

We claim that

Gi(T"k)( x )q

D, \L,

1

k
(3.6.4) ¥, (x) = :;0

In order to prove this, let the right-hand side above be denoted by F;(x). Then
by definition, Fy(x) = ¥,(x) and F{(0) = ¥/(0). In order to prove that F;(x) =
V¥,(x) in general, it will be enough to check that F)(x) satisfies the functional
equation (3.4.9). Equivalently, we must check that for all i, k > 0,

G(1") "
D,LY

i+l

Gi(T)

(3.6.5)
Di+1L(I]<+ 1

(19" - 1) =

But this follows from the definitions of G(y), L, and D,. The claim is proved.

3.7. Define a sequence of polynomials

Hn(y) € Aly] (n=0,1,...)
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by means of the generating function identity

(3.7.1) i H,(y) | (1_ 2 Gi(y) qi)_.

n=0 Fn+1

i=0 Di

A prion' the polynomials H,(y) merely belong to K[y], but in fact belong to
Aly] by (3.5.1). Note that

(3.7.2) H(y)=1 (0<n<g-1).
From the estimate (3.6.3), we obtain

q
(3.7.3) deg(H,(y)) < nq i T < (n+ l)m

Substituting T for y and x/L, for x in (3.7.1), we get by (3.6.4) and the
definitions,

i H (T")x" 1
o Taali  (1-%(x)
By (3.4.6) and (3.4.8),

H,(T%)
(3.7.4) _L?(T =L a§+ PrESh
deg(a)=k

3.8. Fix a positive integer n. We define coefficients h,; € A (i = 0,1,2,...)
thus:

Y huyi= H,_\(y).
i=0

(Note the index shift.) Of course, by (3.7.3)

nq

(3.8.1) h,=0 fori> =1

Set

Y,, = the column vector of length n with last entry T* and all other
entries vanishing.

Now define an A-valued point of C®" by the formula
(3‘8‘2) Zn = Z [hm’] nYm"
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We call Z, the special point of C®". Here are some examples for small values
of n.

0
Zn= : n < 5
0 (n<q)
1
1 0
0 :
z,= ||+ re-11li] m=aw.
0 1
0
z,- (-1 ] -
1

For each monic irreducible element v of A, set
Z,,= [0~ 11,2, € C*(4) = A~
We call Z, , the v-twist of the special point Z,. The v-twist operation

corresponds to the operation of “deleting the Euler factor at v”. For example, as
we shall show presently,

1 1 1 log,(T)
(1 - ’f)f(l) = (1 - ?)IOgl(Zl) = (1 - ?)IOgl(l) = T € K,
1081,T(Z1,T) 1081,T(T)
(1) = T = T € K;.
Note that by Proposition 1.6.1,
Z, ,= 0mod v;

hence log, (Z, ,) is defined.

TueoreM 3.8.3. (I) There exists z, € K. (constructed explicitly in the
proof’) such that exp, (z,) = Z, and

z, = y
( [.8(n)
(II) For each monic irreducible element v of A,

log, ,Z, , = : .
Ogn,v n,v (U"anu(N))
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CoroLLARY 3.84. If q — 1 does not divide n, then Z, is not a torsion point
of C®",

Proof of corollary. Suppose that Z_ is a torsion point. Then by (I) of the
theorem and Corollary 2.5.8, the last coordinate of z, would be a K-multiple of
7" and, a fortiori, a K_-multiple. But this possibility is ruled out by Corollary
2.5.9. q.ed.

Remark. Using Theorem 3.1.1, together with transcendence theory, Yu [Y2]
has proved the converse to Corollary 3.8.4. For example, 1 is T2 + T-torsion if
q = 2, but non-torsion otherwise.

3.9. Proof of Theorem 3.8.3(I). For 0 < i < n(q/q — 1), the column vec-
tor Y, is in the region of convergence of log,, . by Proposition 2.4.3. Therefore

ym’ = logn,oo ni € K:o
is defined and moreover,

Yni = expn,oo(yni)'
Set

zn = Zd[hm] nyni € K:o'
i
Then the sum above breaks off after finitely many terms and, in view of the
functional equation satisfied by exp, ,
exp, (2,) = Z,.

It remains to examine the last coordinate of z,. By Proposition 2.1.5 and the
remark made at the end of subsection 2.3,

Z,= Tid"

hm’—n—
i)f_';'c Ly
By (3.7.4) and the definition of the coefficients h,;, the last coordinate of the
right-hand side above is indeed T, {(n). q.ed.

3.10. In this paragraph we prepare for the proof of Theorem 3.8.3(II). Let
X be a variable and let K[[X]] be the ring of power series in X with coefficients
in K. We define a map log, x: XK[[X]]" = XK[[X]]" by the rule

log, xg= 2 Pg®.
i=0

Here the coeflicients P, (see subsection 2.1 above) are the coefficients of the
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formal logarithm log, associated to C®", and g’ denotes the column vector
whose entries are the (g‘)th powers of the entries of g. Then log,, y satisfies the
expected functional equation:

log, x([a].g) =dla].log, x(g) (acA4,geXK[[X]]").

Let K { X} denote the ring of power series with coefficients in K, convergent in
the “closed” v-adic unit disc |X|, < 1. Then, in particular, we may assign to
each g(X) € K {X}" of length n a value g(1) € K at X =1 by summing
v-adically. Now let b € A" be a column vector with entries in A and let i be a
nonnegative integer. Then, by Proposition 2.4.1, log, x(vX‘b) belongs to
K {X}"; clearly the result of evaluation at X = 1 is log, ,(vb). Therefore, by
the linearity of evaluation at X = 1, of log, x and of log, ,, the diagram below
commutes:

oXA[X]" g(X) — g(1) A"

lOgn,X llogn’v

i mem

3.11. Proof of Theorem 3.8.3(II). Set
£,(X) = Td[h,]  log, x(XY,) € XK[[X]]"

(3.10.1)

Then by the remark at the end of subsection 2.3 and formula (3.7.4),

n

zn(X)= I‘ni Z i Xq" .
k=0

a€A,
deg(a)=k
Set
20, o(X) = d[0"] 42,(X) = 2,(X9™).
Then
© 1
(3.11.1) o X)= o, Y| ¥ =|x7
k=0| aecA, a
(v, A)=1
deg(a)=k
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Set
2,(X) = L[h,],(XY,) € XA[X]".

Then Z,(X) is an A[X]-valued point of C®" from which, upon evaluating at
X = 1, one recovers the special point Z . Set

Z, X) = [v"].Z,(X) = Z,(X7™"") € XA[X]".
Note that, upon evaluating Z, (X) at X = 1, we recover the v-twist Z,, , of the
special point Z, and that,
(3.11.2) z, o(X) =log Z, (X).
Now by Proposition 1.6.1,

Z, (X) e vAIX]",

and hence, by Proposition 2.4.1, the entries of the column vector z, (X) are
power series convergent in the v-adic unit disk |X|, < 1. By the commutativity
of diagram (3.10.1),

zn, v(l) = logn, v Zn, v
By (3.3.1) and (3.11.1), the last entry of z,, (1) is {(n). q.ed.
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