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Tensor powers of the Carlitz module and 
zeta values 

Notation 

A =: F,[T] (T: a variable, q :  a power of a prime number p ) .  

A +=: the set of monic elements of A. 

u =: a monic prime element of A. 

K =: the fraction field of A. 

K ,  =: Fq[( ) ) (the completion of K at the place T + a) 

K, =: an algebraic closure of K , .  

K X p=: the separable algebraic closure of K in K, . 
G ,  =: the additive group over A. 

Introduction 

The power sum 

1 
[(n) =: - E K ,  (n :  positive integer) 

a E A +  a n  

was first considered by Carlitz [Cl]. In many respects, e.g., the existence of an 
Euler product representation, [(n) is analogous to the corresponding value of the 
Riemann zeta function. A review of pertinent arithmetic properties of [(n) and 
its u-adic analogue can be found in Section 3 below. 

Our aim is to relate [(n) to a certain A-module-valued functor of A-alge- 
bras, namely the nth tensor power C a n  of the Carlitz module. We shall also 
obtain for each prime v a corresponding result concerning the v-adic analogue 
of [(n). Using our results, J. Yu [Y2] has proved the transcendence of [(n) over 
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K; see Section 3 for further discussion. We focus in this introduction on the 
functors CBn.  

The functor C = CB1, the Carlitz module ([Cl], [HI]), assigns to each 
A-algebra R the A-module obtained by equipping the additive group of R with 
the unique F9-linear action of A such that T acts by the (nonlinear) rule 

The group underlying C is the additive group G,. Given any f E A +, one can 
show that the &torsion submodule Cf(KSeP) of C(K"P) is a rank one free 
A/&module; let 

be the associated character. Given any monic prime v such that (0,f )  = 1, one 
can show that the character xf is unramified at v and for any arithmetic 
Frobenius element a, E Gal( K SeP/K), 

xf(u,) = v mod f. 

The exponential map 

exp: ~ i e ( c ) ( K , )  + c(K,) 
associated to the Carlitz module C is by definition the unique analytic additive 
Aequivariant map tangent to the identity map of ~ie(c)(K,).  (G' iven an 
A-module valued functor G of A-algebras, Lie(G) denotes the A-module-valued 
functor of A-algebras given by the rule 

Identifying the domain and range of exp with K, in the evident fashion, one has 

where ff E KzP (welldefined up to a factor in F,X) is the fundamental period of 
the Carlitz module; ff is an analogue of 2 ~ i ,  the fundamental period of the 
multiplicative group. Note that for each f E A+, exp(?i/f) generates Cf(KWp). 
These observations are key points of the explicit class field theory for K 
developed by Hayes [Hl], who built upon earlier ideas of Carlitz [C3]. All in all, 
it is reasonable to regard C as an A-analogue of the Tate motive Z(1). 

The functor C a n  would appear to be an analogue of the nth tensor power 
Z(n) of the Tate motive; it was this analogy, together with Deligne's results [De] 
concerning the fundamental group of the projective line minus three points, 
which suggested to the authors the possibility of a connection between C a n  and 
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[(n). We note key properties of the functor C a n  here. See Section 1below for 
the definition. 

(0.1) The groupvalued functor underlying C a n  is isomorphic to Gi. 

The functor C a n  is a higherdimensional generalization of a Drinfeld module. A 
class of functors including C a n  (over base rings that are perfect fields) was 
studied in [A], building upon the foundation laid by Drinfeld [Dr]. 

(0.2) 	 The group C?"(KSep) of Ksep-valued ftorsion points of C a n  is a 
free A/fmodule of rank one and the associated character 
Gal(KWp/K)+ (A/f)X is x;. 

Property (0.2) provides some justification for regarding C a n  as the nth tensor 
power of C. 

For the functor Can  one has an analytic theory generalizing that for the 
Carlitz module: 

(0.3) 	 There exists a unique Aequivariant additive analytic map 
exp,: Lie(Can)(K,) + Can(K,) tangent to the identity map of 
~ i e ( C @ " ) ( c ) .  

(0.4) 	 A, ker(exp,) K,) is discrete=: G ~ i e ( c @ " ) (  a A-submodule 
free of rank one. 

See Section 2 below for details. 
An important point is that for n > 1, the derivative action of T on 

Lie(Can) differs fim multiplication by T by a nonzero nilpotent endomor- 
phism consisting of a single Jordan block. Hence the largest quotient of Lie(Can) 
on which the derivative and multiplication actions of A coincide is isomorphic to 
G,; let en:Lie(Can)+ G, induce an isomorphism of this largest quotient with 
G,. The coordinate /, is unique up to a factor in F,X and has a special role to 
play; e.g., we show (Cor. 2.5.8) that 

Property (0.5) is another reason for regarding C a n  as the nth tensor power of C. 
At last we can state our main result (Theorem 3.8.3): 

Here r, E A+ is a certain polynomial defined by Carlitz [C2] analogous to 
( n  - l)! = r (n) .  We give explicit constructions for the points Z, and z,. See 

mailto:~ie(C@")(c)
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Section 3 for details. Concerning the explicit point Z, we prove (Cor. 3.8.4): 

(0.7) For n not divisible by q - 1, Z, is not an A-torsion point of 

We prove as well a v-adic analogue of (0.6), relating the "v-adic logarithm7' of 
the "v-twist" of Z, to the v-adic analogue of [(n). 

Acknowledgements. The research described in this paper was mainly car- 
ried out at IAS during the fall of 1987; the authors would like to thank IAS for 
providing the opportunity for collaboration as well as a stimulating atmosphere 
in which to work. Special thanks are due to P. Deligne and J. Yu for helpful 
discussions. G. Anderson also thanks IHES for hospitality during a later stage of 
the work. 

1. 	Definitions and first properties 
Notation (continued) 

# =: "cardinality of". 

f =: an element of A +. 
deg(a) =: the degree in T of a E A. 

r =: ( X- xq) E End(G,) (the qth power endomorphism). 

1.1. The Carlitz action 

a - [ a ]: A + ~ n d ( G , )  

of A upon Go is defined to be the unique Fq-linear ring homomorphism such that 

[ T ] =: (x - Tx + xq) E End(G,). 

Then, e.g., 

The subring of End(G,) consisting of the Fq-linear endomorphisms may be 
identified with the ring of polynomials in r with coefficients in A equipped with 
the "twisted" multiplication law 

In particular, 

[TI = T + r .  

The Carlitz module C is a copy of G, equipped with the Carlitz action of A. 
Given any A-algebra R, let C(R) denote the ring R equipped with A-module 
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structure via the Carlitz action. We shall briefly review some of the arithmetic 
properties which motivate the study of the Carlitz module before defining 
"higher" Carlitz modules. 

1.2. The key property of the Carlitz module is: 

PROPOSITION1.2.1 [C3, p. 1781. The endomorphisms 

[v ],rdeg(')E End(G,) 

are congruent modulo u. 

Proof: Set d =: deg(v). Since r = [TI - T ,  it follows by induction that 

where the coefficients Qdi E A are defined by 
d - 1 d 

( t - Tq') = Qdit (t : a variable independent of T ) . 
i = O  i = O  

Call the left-hand side above Qd(t), a polynomial in t with coefficients in A. 
Then clearly 

(1.2.2) Qd(t)  - v( t )  mod uA [ t ]  , 

where v(t) denotes the polynomial in t obtained by substituting t for T in v. 
Note that we made use of the assumption that v is monic to deduce the 
congruence above. The desired congruence now follows. q.e.d. 

Remark. The preceding proposition is the analogue of the fact that the 
endomorphism x * xp: G, + G, of the multiplicative group reduces modulo p 
to the Frobenius endomorphism of G,/F,. 

1.3. Put 


Cf =: ker([f]: G, + G,), 


the f-torsion submodule of the Carlitz module C. Since 

[ f ] = r deg(f) + terms of lower degree in r , 

Cf is a finite flat group scheme over A. Since 

[ f ] = f + terms of higher degree in r , 

Cf is btale over A[ f ' 1 .  In particular 

(1.3.1) # c ~ ( K s ~ P )= qdeg(f). 
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Since (1.3.1) holds for all monic divisors of f, Cf(K"p) must be an A-module 
isomorphic to A/f. 

PROPOSITION1.3.2 [Hl, p. 831. Let a, E Gal(KXP/K) be an arithmetic 
Frobenius element a t  u and assume that v does not divide f. Then for all 
c E Cf(KSep), 

U,C = [v l c .  

Consequently the representation 

is surjective. 

Proof. This follows directly from Proposition 1.2.1. q.e.d. 

Remark. Therefore the torsion points of the Carlitz module C in KXp 
generate an abelian extension of K, just as the torsion points of G, in 0,the 
roots of unity, generate an abelian extension of Q. (Of course, in the latter case, 
the extension in question is the maximal abelian extension, whereas this is not 
true in the former case.) It was Carlitz's insight [C3] that C could be the basis of 
explicit class field theory for K. This explicit class field theory was subsequently 
developed by Hayes [HI], and later vastly generalized by Hayes to the case of 
positive genus in [H2]. 

1.4. Let n be a positive integer. Given any ring R, Rn denotes the module 
consisting of all column vectors of length n with entries in R; we denote by G," 
the functor of A-algebras R - Rn. Given a matrix M (e.g., a column vector of 
length n)  and nonnegative integer k, let M(k) denote the matrix obtained by 
raising all the entries of M to the (qk)th power. The nth higher Carlitz action of 
A upon G," 

( a  - [ a ],) : A + End(G,") 

is defined to be the unique F,-linear ring homomorphism from A to the ring of 
endomorphisms of G," such that 

[TI ,=: (x - Tx + Nx + Exc1)): G," + Gna 3 

where 

is the nilpotent n-by-n matrix with 1's along the superdiagonal and O's else- 
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where, and 

is the n-by-n elementary matrix with 1 in the lower left-hand comer and 0's 
elsewhere. For example 

I [ ]  Tx, + x, 

[ T I ,  + " E E ~ ~ ( G : ) .  

\ , Tx, + x,9 

The nth higher Carlitz module C@" is a copy of G," equipped with the nth higher 
Carlitz action of A. Given any A-algebra R, CBn(R) denotes the group Rn upon 
which A operates by the nth higher Carlitz action. Let r denote the endomor- 
phism x * x(') of G,". In evident fashion, we may identify End(G,") with the 
ring of polynomials in r with coefficients in the ring of n-by-n matrices with 
entries in A, equipped with the "twisted" multiplication law 

Under this identification, we have simply 

1.5. The A-module-valued functor C@" of A-algebras admits another pre- 
sentation which is convenient for our purposes. Given any A-algebra R, set 

w n ( R )  =: (w E ~ ( ( t - ' ) ) / ~ [ t ]  -Iw(') = ( t  T)"W mod ~ [ t ] ) ,  

where here and elsewhere throughout the paper we denote by R((tP1)) the ring 
of Laurent series 

and write 

Let ei: G," + G, (i  = 1, .. . ,n)  denote the ith coordinate projection. 
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PROPOSITION1.5.1. The m a p  
00 

(*), =: c *- x ( e l [ T i - l ],c)t-': C B n ( R )  + ~ ( ( t - ' ) ) / R[ t ]  

is injectiue. The image of (*), is W,(R). 

Proof: We have 

ei+,= e i [ T ] ,- Tei ( i  = l , . . . , n  - 1) ,  

re, = e,[T],- Ten. 

Therefore, by an evident induction, 
k- 1 

(1.5.2) ek = x ( - l ) ' jk- l ) ~ i e , [ ~ k ' i ] ( k  = 1, . .. ,n ) ,
i 

, 
i = O  

(1.5.3) re, = I ) ~ ( : ) T ' ~ , [ T " ~ ]2 ( - ,. 
i =O 

In particular, if w E W,(R) is the image of c E C@"(R )  under (*),, then 

where here and throughout the paper, given a Laurent series 

C r i t iE ~ ( ( t - l ) )  (ri E R ) ,  

we set 

Therefore (*), is injective and moreover, by (1.5.3), takes values in W,(R). Now 
fix w E W,( R )  arbitrarily, let c E CBn( R )  be defined by the equations (1.5.4), 
and let w E W,(R) be the image of c under (*),. Set w" =: w - w'. Then by 
(1.5.2) and (1.5.4), 

Since w" belongs to W,(R), it follows by an evident induction that 
Res ,, ,(t 'w" d t )  vanishes for all i 2 0. Therefore w" = 0mod R [ t ] .  Hence w is 
the image of c under (*),. q.e.d. 

As an immediate consequence of the definition of (*),, 

(1.5.5) ( * ) , ( [ a ] , c ) = a ( t ) ( ( * ) , ( c ) )  ( a E A , c E c B n ( ~ ) ) ,  

where here and elsewhere throughout the paper, given a E A ,  a ( t )  denotes the 
polynomial obtained by replacing T by t .  
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1.6. The generalization for C@" of Proposition 1.2.1 is: 


PROPOSITION
1.6.1. The endommphims 

are congment modulo o. 

Proof: Let R be any A-algebra such that vR = 0, let w E W,(R) be given. 
Set d =: deg(o). It will suffice by (1.5.5) to prove that 

(1.6.2) W(d) = o(t)"w mod R [ t ]  

In any case, 

w ( ~ )= Q ~ ( ~ ) ~ wmod R [ t ] ,  

where Qd( t ) E A [ t ] is just as defined in the proof of Proposition 1.2.1. Relation 
(1.6.2) follows now by the congruence (1.2.2). q.e.d. 

1.7. Let R be an A-algebra, c E CBn(R) a point. We begin the study of 
"Kurnmer theory" for higher Carlitz modules by studying the functor of R-alge- 
bras 

Let w E t-lR[[t-l]] be the unique power series in t-' without constant term 
congruent modulo R [ t  ] to the image of c under (*),. Set 

C + =: w(l) - ( t - E R [ ~ ] ,T ) ~ W  

a polynomial in t with coefficients in R of degree strictly less than n. One can 
check that 

by using formula (1.5.4). Now under the map induced by (*),, the functor 
(1.7.1) of R-algebras is isomorphic to 

(1.7.3) R' * ( y  E t - ' ~ ' [ [ t - l ] ] l f ( t )y  = w and 

y(l) = ( t  - ~ ) ~ y m o d ~ ' [ t ] ) .  

The functor above is, in turn, isomorphic to the functor 

= c +  mod f ( t ) R t [ t ] )  
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under the map 

where, given any Laurent series 

we set 

1.8. We consider multiplication by f in CBn. 

PROPOSITION1.8.1. The morphimn 

is faithfully flat, finite and of rank qdeg(f).M o T ~ o z ) ~ ~ ,after the base change 
Spec(A[f '1) + Spec(A), it becomes itale. 

Proof. Set d =: deg( f ). Since 

[ f ] = f + nilpotent matrix + terms in positive powers of 7, 

the second statement follows by the Jacobian criterion. We turn to the proof of 
the first statement. We shall employ the observations of the preceding paragraph. 
Let R be any A-algebra, c E CBn(R)  any point and let R, be the R-algebra 
representing the functor (1.7.4) of R-algebras; it will suffice to prove that R, is a 
free R-module of rank qd. Let x,, . . . ,x, be independent variables. In any case, 
it is clear that there exist polynomials Fj E R[x,,. . . ,x,] ( j  = 1,.  . .,d )  such 
that 

Fj = X: + linear terms and constant term, 

and such that R, is isomorphic as an R-algebra to R[x,,. . ., xd]/(F1,. . . , F,). 
By the lemma to be proved below, R, is free of rank qd over R. q.e.d. 

1.9. In this paragraph we prove a lemma of commutative algebra needed 
to complete the proof of Proposition 1.8.1. We are grateful to 0. Gabber for 
the proof. Let R be a ring, x,, . . . ,X, variables, m a positive integer and 
F,, .. .,F,, E S =: R [x,, . . . ,x,] polynomials such that 

F,=x; '+termsoftotaldegree<m ( j = l ,  . . . ,  d ) .  

Let I be the ideal of S generated by F,, . . . , F,. 
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LEMMA1.9.1. S/I is a fiee R-module of rank md. 

Proof: Consider the filtered complex 

where for any F E S of total degree not exceeding m, K.(F) denotes the filtered 
complex 

concentrated in degrees 0 and 1,filtered by the rule 

Fil Kj ( ~ )=: polynomials of total degree I i - m ( j  = I ) ,  

polynomials of total degree I i ( j  = 01, 

Now K.(F,, . . . , F,) is the Koszul complex of the sequence F,, . . . , F, in S and, 
in particular, 

Further, there exist isomorphisms of complexes 

where Gr, =: Fil,/Fil,-,. Now since x,", . . . , x," is a regular sequence, 
Hi(Grp K.(x;", . . . , x,")) = 0 for i > 0 and by direct calculation one can show 
that H,(Gr, K.(x,", . . . , x,")) is a free R-module of finite rank vanishing for 
1 p 1 >> 0. Therefore the sequence 

is exact for all indices p and, by induction on p, H,(Fil,(F,, . . . , F,)) is a free 
R-module independent of p for p >> 0.Since homology commutes with direct 
limits, H,(Fil, K.(F,, . . . , F,)) = S/I for all p >> 0. Therefore S/I is a free 
R-module. Clearly rank,(S/I) = rank,(S/(x,", . . . , x,")) = md. q.e.d. 

1.10. Set 


c;n =: ker([f ] ,: G,"-+ G,"). 


Then by Proposition 1.8.1, C?" is a finite flat group scheme over A of rank 
deg(f 1, Btale over A [ f '1. 
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PROPOSITION1.10.1. Let L be any separably algebraically closed field 
equipped with the structure of an A-algebra and suppose that f # 0 in L. Then 
CfeP"( L )  is isomorphic to A / f  as an A-module. 

Proof: In any case, since C ' "  is Btale over A [f '1, 

(1.10.2) # c @ " ( L )  = qd"g'f'.f 

Because (1.10.2) holds also for all divisors of f and CFn( L )  is annihilated by f ,  
C: "( L )  must in fact be isomorphic to A / f .  q.e.d. 

Set 


F, =: A / v ,  


Frob, =: the arithmetic Frobenius automorphism of F,/F,. 


PROPOSITION1.10.3. Frob, and [ o n ] ,  act in the same way upon c @ " ( R )  
and, in particular, C@"(F,) is isomorphic as an A-module to A/( u" - 1). 

Proof: The first part follows from Proposition 1.6.1. Since the fixed points of 
Frob, in Can@,) are precisely the points killed by [on- 11.,the second part 
follows from Proposition 1.10.1. q.e.d. 

1.11. The generalization of Proposition 1.3.2 for C@"is: 

PROPOSITION1.11.1. Let a, E Gal(KXp/K)  be an arithmetic Frobenius at 
u. Then for all c E C'"(K"p), provided that u does not divide f ,  

Consequently the image of the Galois representation 


G ~ ~ ( K ~ " P / K )  = ( ~ / f ) 
-.A~~,(C;"(K=P))  


consists of the nth powers in the group ( A / f )  X. 


Proof: This follows easily from Proposition 1.10.1. q.e.d. 

Remark. We might rephrase Proposition 1.11.1 as the assertion that 
C' "( K " P )  is A-linearly and Gal( K "p/K)equivariantly isomorphic to the n-fold 
tensor power over A of Cf(Ksep) .It is this fact which suggests that C@"ought to 
be regarded as the nt" tensor power of C. See Anderson [A] for further 
discussion of higher-dimensional Drinfeld modules and tensor products. 

PROPOSITION = ( 0 )  unless q 1 divides n.  1.11.2. C'n(K) -

Proof: We may assume that f is irreducible, i.e., that f = u; suppose that 
C z  "(K"P) = C z n ( K )+ ( 0 ) .Then, by the preceding proposition, raising to the 
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nth power must annihilate the cyclic group F,X which is of order divisible by 
9 - 1. q.e.d. 

2. The logarithm and the exponential 

2.1. A positive integer n is fixed throughout this section. We define the 
f m l logarithm log, attached to the nth higher Carlitz module C B n  to be the 
unique series 

00 

log, = P i ~ i  ( P i :an n-by-n matrix with entries in K ) 

determined by the conditions 

where N and E are the n-by-n matrices intervening in the definition of the 
higher Carlitz module CBn. The formal series under consideration here are to be 
added and multiplied according to the rule (1.4.1) which makes sense for 
arbitrary sequences of coefficient matrices, and not just for those sequences 
almost al l  of whose terms vanish. In order to show that log, is well defined, we 
make explicit the recursion relations forced upon the coefficients Pi by (2.1.2). 
We have 

After a little rearrangement we obtain 

(Here [X, Y] =: XY - YX.) Since N is nilpotent, the relation above can be 
solved "by geometric series" and we obtain 

(Here ad (X) ' (~  ) =: Y, ad(X)J+ '(Y ) =: [X, ad(X) j(Y )I.) Therefore log, is 
well defined. For example we have 
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where (cf. [Cl], up to a sign) 

More generally, we have the following: 

PROPOSITION2.1.5. The entry in the lower right corner of Pi is L;". 

Proof: It will be enough to show that 

Note the following: 

= 0 otherwise. 

N i = O  i f i > n - 1 .  

If we multiply the right-hand side of (2.1.3) on the left by Nn- ' and on the right 
by E, the only surviving term is the one we want. q.e.d. 

Remark. Therefore one has formally 
1 \ 

l o \  

log, : -- xqk 

0 
X 1 \ =c,k = O  


Recalling that, classically, the nth multilogarithm function 

is the n-fold Hadamard convolution of 

and given that 
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is the logarithm of C, it is reasonable to think of the n-fold Hadamard convolu- 
tion . 

as the "nth multilogarithm" associated to the Carlitz module. Therefore one 
might hope for a relationship with zeta values as in the classical situation; such a 
relationship will be established in Section 3 below. 

2.2. We define the formal exponential exp, associated to the higher Carlitz 
module C m n  to be the unique series 

a, 


exp, = C Qiri (Qi: an n-by-n matrix with coefficients in K )  
i = O  

such that 

(2.2.1) Qo =: 1, 

(2.2.2) (T + N + E r )  exp, = expn(T + N) .  

In order to prove that exp, is well-defined, we exhibit a recursion relation for the 
coefficients Qi similar to (2.1.3). By (2.2.2), 

(T  + N)Qi+l+ EQ,!l) = Q ~ + ~ ( T ~ ' + '+ N ) ,  

which after rearrangement yields 

Solving for Qi+, we obtain 

For example, we have 

where (cf. [Cl]; however Carlitz writes Fi in place of D,), 
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In the general case, we have: 

PROPOSITION2.2.5. The entry in the upper left corner of Qi is D i n  

Proof: It will be enough to show that 

If we multiply the right-hand side of (2.2.3) on the left by E and on the right by 
~ n 1, -the only surviving term is the one we want. q.e.d. 

Remark. Therefore one has formally 

x \ 
0 

exp, : = 
i = O  

\ o /  \ I 

For n = 2, the "multiexponential" appearing above is (up to signs) the Bessel 
function analogue studied by Carlitz [C4]. 

2.3. It is easy to see that 

(2.3.1) log, exp, = 1, 

(2.3.2) exp, log, = 1, 

i.e., that log, and exp, are formally inverse one to the other. Now let us rewrite 
the characteristic functional equations (2.1.2) and (2.2.2) in a more suggestive 
manner, as follows. 

Identify End(G,") with a subring of the ring of formal series to which log, 
and exp, belong in the manner of subsection 1.4 above. Given any a E A, set 

in the expansion 

of [ a ]  ,in powers of 7. 

When we identify Lie(G,") with G,"in the evident fashion, d [a], is clearly the 
matrix representing the endomorphism of Lie(G,") induced by [a],  and 

7' the coefficient of =:,[ a ]d 

Therefore log, and exp, are the analogues for the higher Carlitz module Can  of 
the logarithm and exponential, respectively, attached to an algebraic group. 
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Remark. For all a E A, d [a],  is an upper triangular matrix with each 
diagonal entry equal to a .  In particular, one has 

* / * \  

d [ a ] ,  1 -- 1
* * 

\ X ,  , ax, 

Therefore the distinguished coordinate t',: Lie(C8") -+ G, mentioned in the 
introduction is none other than the last coordinate en: G,"-+ G,.  

2.4. Let KO denote the vadic completion of K, let K, denote an algebraic 
closure of KO and let I 1 ,  be the unique extension to K, of an ultrametric 
absolute value of K, that defines the vadic topology of K,. Given any matrix M 
with entries in K,,set 

lMl, =: supIMijl,. 
i,j 

The unique place of K - at which T has a pole is denoted GO. Let I 1 ,  be the 
unique extension to K, of an ultrametric absolute value of K, = Fq((l/T)) 
inducing the co-adic topology of K,. We turn to the investigation of the vadic 
and co-adic convergence properties of log, and exp,. 

PROPOSITION 2.4.1. For any x E K," such that xl ,< 1, the / DEFINITION 1 
series 

converges u-adically to a value in K,", denoted log,, , ( x ) .  

Proof: By (2.1.3), 

and one has the crude estimate 

whence by induction 

IPiIu I1'1; i(2n -1)
I p ~ l o .  

This last guarantees vadic convergence. 

PROPOSITION 2.4.2. For any x E Kz the series / DEFINITION 
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converges m-adically to a value denoted by exp,, ,(x). Consequently 

Proof: By (2.2.3), 

whence by induction 

IQiIw 5 I T I ~ ~ ~ ~ I Q ~ I ~ .  

This last estimate guarantees convergence. 

PROPOSITION/ DEFINITION2.4.3. Fm any x E K:, the components xi 
( i  = 1,.  . . ,n )  of which satisfy 

the series 

converges ooadically to a value denoted by logn,,(x). Consequently, for all 
such x, 

Proof: It will be enough to show that 

because, since Nn-'E is the matrix with entry 1in the ithrow and first column 
and zeroes elsewhere, the left-hand side above is the absolute value of the largest 
entry in the ithcolumn of Pk. We proceed by induction on k. The case k = 0 is 
trivial. We have 

Now by (2.1.6), the summand above vanishes unless j = i - 1and n + i - 2 2 
m 2 i - 1. We are left with 
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By the induction hypothesis, 

2.5. We shall determine the structure of 
-

An =: ker(expn,, : KE + Kl) 
by adapting techniques of [A]. We first consider the set anof power series 

h(t)  = C aiti  ( a , E K,)
i = o  

with the following properties: 

(2.5.1) { a ) generates a finite algebraic extension of K ,  . 

(2.5.2) h ( t )  converges for It[, I 1. 

where 

The set anhas the structure of a module over Fq [t 1 .  

LEMMA2.5.4. anis a fiee module of rank one over Fq[t]. 

Proof: Consider the power series 

and set 

where 
q - 1  

denotes a choice of the ( q - 1)" root of - T in K, fixed 
hereafter. Then w n ( t )  belongs to anand has no zeroes in the disc It[, I 1. 
Given now any h E an,set g =: h/wn. Then g satisfies (2.5.1), (2.5.2) and 
g(') = g. The power series g can have these properties only if g is a polynomial 
in t with coefficients in Fq. Consequently h has a factorization h = gun with 
g E Fq[t]which is unique by the Weierstrass preparation theorem. Therefore $2, 
is free of rank one over F,[t] on the basis an. q.e.d. 
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Therefore each h E an is a meromorphic function of t with poles of order 
no greater than n and, in particular, possesses a unique Laurent expansion 

00 

h ( t ) = x a i ( t- T ) '  ( a i E Em) 

convergent for t near T; we write 

R E S , ( ~ ( ~ ) )=: 

a-n 
-

PROPOSITION2.5.5. The map RES,: a ,  -+ K: is injective, and the image 
of RES, is A,. 

Proof: Let h ( t ) E a ,  be arbitrary. Let & ( t )be the column vector of length 
n with ith entry ( t  - T) ' - 'h ( t ) .  Set c, =: 0 E and define coefficients -
ci = ci(h) E K L  ( i  = 1,2,. . . ) by the rule 

Necessarily, lim, ,,lc,1 , = 0 because k ( t )  is a column vector each of whose 
entries converges on the closed unit disc It 1 , I1. Also, 

[T].c,+' = ( T +  N)c,+' + Ec!:), = ci ( i  = 0 , 1 , 2, . . . )  

as can be checked by direct calculation; i.e., the coefficients ci form a T-division 
sequence. Consequently 

( T  + N ) '  l ~ g ~ , ~ ( c i )  

is defined for all i >> 0 and is independent of i ;  call it A.  Necessarily X E A ,  
and 

Equivalently, 

The polar part of K(t) at t = T is clearly the same as that of 

whence it follows that 

(2.5.7) R E S , ( ~ ( ~ ) )- A .= 
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Therefore RES, takes values in A, and, by (2.5.6), RES, is injective. Now let 
X E A, be given arbitrarily and let F( t )  be the column vector of power series 
defined by the right-hand side of (2.5.6). Let h( t )  be the first entry of F(t). 
Then one check that h( t)  E 0, and that h( t)  = F(t). By (2.5.7) the image of 
h( t ) under RES, is -A. Therefore RES, is surjective. q.e.d 

Put 

+ =: R E S ~ ( W ~ ( ~ ) )  

COROLLARY with last entry .Irn such2.5.8. There exists a vector X E K: 
that A, =: {d[a],Ala E A ) .  

Proof: The image of w ,(t)" = a,( t ) under RES,, by Lemma 2.5.4 and 
Proposition 2.5.5, is the desired vector A. q.e.d. 

Remark. Note that the entries of the period vector X of C@"are the 
Laurent coefficients of the expansion in powers of ( t  - T) of w ,(t)". In 
particular, if n is a power of the characteristic p, all entries except the last are 
zero. 

COROLLARY2.5.9. +" belongs to K ,  if and only if q - 1divides n. 

Proof: 

3. Zeta values 

3.1. Following Carlitz ([Cl], [C2]) we define 

If one regards monicity as a sign condition analogous to positivity, then one 
might regard [(n) as an analogue of the corresponding value of the Riemann 
zeta function. The existence of a representation 

o :  prime 

as a convergent Euler product is more evidence for the existence of an analogy 
and, of course, guarantees that [(n) # 0. (The nonvanishing of [(n) is in any 
case a triviality since clearly I [(n) 1 ,  = 1.)Note, however, that in contrast to the 
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classical case of power sums of positive integers, the products and the sums 
under consideration here converge for n = 1;one might reasonably regard [(I) 
as the analogue of the Euler-Mascheroni constant. Note also the curious identity 

Nonetheless Carlitz showed that for "even" positive integers n, i.e., those 
positive integers divisible by q - 1, [(n) is quite analogous to the corresponding 
value of the Riemann zeta function. 

THEOREM3.1.1 (Carlitz [C2, p. 5031). If n is a positive integer divisible by 
q - 1, then [(n)/+fn belongs to K. 

Carlitz went on to show that the ratio in question can naturally be written 
as the quotient of a "Bernoulli number" by a "factorial". We have also: 

THEOREM3.1.2 (Wade [Wl]). 6 is transcendental over K. 

COROLLARY 1, then [(n) is 3.1.3. If n is a positive integer divisible by q -
transcendental and [(n)/fn is rational over K. 

This is analogous to what is known about the value of the Riemann zeta 
function at even positive integers. (But note that in the case q = 2, all positive 
integers are "even".) 

One knows nothing about the transcendence of the values of the Riemann 
zeta function at odd positive integers; even about irrationality, beyond Apery's 
celebrated result, nothing is known. But recently Jing Yu has obtained results 
about [(n) for n "odd" which go far beyond what is known for the special 
values of the Riemann zeta function at odd positive integers. 

THEOREM3.1.4 (Yu [Y2]). If n is a positive integer not divisible by 9 - 1, 
then [(n)and [(n)/fn are transcendental over K. 

In the paper [Yl], Yu obtained quite general results concerning the tran- 
scendence properties of a class of functions including exp, and log, that, in 
combination with the results of subsection 3.8 of this paper, are used to prove 
the cited result. In [Tl] and [T2], the transcendence of [(n) for some "odd" 
values of n was deduced by applying methods of [Wl] and evidence was 
presented for the transcendence of [(n)/fn for some "odd" values of n, 
namely, the existence of "fast approximation by rationals". It should be noted 
that Roth's inequalities do not imply transcendence in positive characteristic, in 
contrast to the characteristic zero case. 
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It seems that Carlitz and Wade had enough machinery to prove Theorem 
3.1.4 for n = 1, and so also for n equal to a power of p. More precisely, by [Cl, 
p. 1601, [(I) = log,(l). (Carlitz used T - r rather than T + T for the Tdivision 
polynomial, so that, strictly speaking, with his definition of log, [(I) = log(1) 
holds only in characteristic 2. However, [(l) = log(u)/u, where u is any 
(9  - 1)" root of -1holds in general.) On the other hand, Wade [Wl, p. 7201 
showed that the log of a nonzero number in K is transcendental, so that [(I) is 
transcendental. In [W2] he also proved an analogue of the Siegel-Schneider 
criterion, namely that, for nonzero a and irrational p,  at least one of a,p,  
expl(p logl(a)) is transcendental. In particular, taking a = 1 and ,O = +/[(I), 
one recovers the transcendence of [(I)/+ when 9 + 2. But this was not noticed 
then. 

3.2. It can be shown ([Cl, p. 1621, [G, p. 1101) that, with a fixed positive 
integer n, the sum 

vanishes for all sufficiently large k. By grouping terms according to degree, Goss 
" [GI has given an analytic continuation" to the power sums of Carlitz defining 

an analogue of the Riemann zeta function. We refer to [GI for a complete 
exposition. We simply note here that one can define [( -n) for any nonnegative 
integer n by the formula 

because the sum over k is in fact finite. 

Remark. Even though an analogue of Riemann's functional equation is not 
known for the Goss zeta function, Goss has shown that the special values at 
negative integers have interesting properties. For example, he has shown that 
[(n) vanishes for all negative "even" integers, is nonvanishing for all negative 
"odd" integers and belongs to A, i.e., is integral. Note that while the first two 
properties are analogous to those of the corresponding values of the Riemann 
zeta function, the third sharply distinguishes the characteristic p and character- 
istic zero situations. It should be noted here that vanishing of [ at negative even 
integers and integrality at negative integers are also consequences of Lemma 7.1 
of Lee [L]. 
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3.3. Having defined [(n) for nonpositive n, we naturally try to push the 
analogy with the Riemann zeta function further by seeking an interpolation of 
the values of [ at nonpositive integers for each prime u of A. This has been 
carried out by Goss; we refer the reader to [GI for the complete story. The 
following ad hoc approach will suffice for us: 

If a E A is prime to u, the function a n  interpolates to a continuous 
function with range 

A, =: the completion of A at u 

and domain 

From this fact it follows (see [GI for the details) that 

interpolates to a continuous A,-valued function on S,. 
The interpolation procedure yields as a by-product a representation of [,(n) 

for any integer n (positive or not) as a vadically convergent infinite sum 

where, of course, it is necessary that the interior summation be carried out first. 
This sum will play an important role later. It follows that, in particular, [,(n) for 
n positive may be recovered as the vadic limit of values of [, for negative 
integers by the formula 

[,(n) = lim [(n - (qdeg(') - 1) P I ) .
j ~ m  

Remark. Observe that the classical p-adic Kummer congruences may be 
interpreted as the assertion that the values at negative integers of the Riemann 
zeta function multiplied by the pth  Euler factor interpolate so as to yield a 
Q,-valued function on the space 

that is continuous apart from a "simple pole" at 1. 
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3.4. In this section we review some ideas of [Cl], especially pp. 160-162. 
Note, however, that we use different notation. Consider the polynomials 

defined by 

where the right-hand side is obtained by multiplying out the left-hand side 
according to the rule (1.4.1). Roughly speaking, the polynomials \kk(x) are to the 
Carlitz module as the polynomials 

defined by the power series identity 
00 

(1 + t ) ' =  exp(xlog(l + t ) )  = (;Itn
n=O 

are to the multiplicative group. The following properties of 'kk(x) are easy to 
check: 

(3.4.1) 	 \kk(x) is a polynomial of degree k. 

(3.4.2) 	 \kk(x) is a K-linear combination of terms of the form xq' 
(0 I i ~ k ) .  

Let a E A. Consider the equality of expansions 

Now the coefficient of T~ in the expansion of [a]  vanishes for k > deg(a) and 
equals 1if a is monic of degree k. Therefore 

(3.4.3) \ k k ( a ) = O  f o r a l l a ~ A s u c h t h a t d e g ( a ) < k .  

Having determined all the zeroes of 1- \kk(x) and their multiplicities, by taking 
the logarithmic derivative, we have 
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It follows that 

*;(o) 
= Laurent expansion of at x = 0. 

(1 - * k ( ~ ) )  

= Laurent expansion of -
*;(o) 

at x =  a. 
(1- * k ( ~ ) )  

Note that the vanishing of the sum (3.2.1) for fixed n and all sufficiently large k 
follows from (3.4.1) and (3.4.7). 

Another consequence of the definition is 

00 

log, = 1 +;(0)rk; 
k = O  


hence by (2.1.4), 

By comparing the coefficients of the r-expansions 

(exp,)Tx(log,) - T(exp,)x(log,) = .r(ex~l)x(logl)Y 

one finds that 

3.5. For any nonnegative integer n, write (uniquely) 

00 

n =  z n , q i  ( 0 5  n, < q ,  n, = Ofori >> O), 
i = O  


and define 
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Then rn+,is the factorial of n (gamma of n + 1) introduced by Carlitz [C2]. 
Observe that 

3.6. We define polynomials 

by the formula 

Note that 

(3.6.1) 

9 '+ l  - 9 9 
degree in y of Gi(y) = I 9i-

9 - 1 9 - 1  

We claim that 

In order to prove this, let the right-hand side above be denoted by Fk(x). Then 
by definition, Fo(x) = 'k,(x) and FL(0) = q;(O). In order to prove that F,(x) = 

\kk(x) in general, it will be enough to check that Fk(x) satisfies the functional 
equation (3.4.9). Equivalently, we must check that for all i, k 2 0, 

But this follows from the definitions of Gi(y), L, and Di.The claim is proved. 

3.7. Define a sequence of polynomials 


Hn(y) A[yl ( n  = O,l , .  . . )  
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by means of the generating function identity 

A priori the polynomials Hn(y) merely belong to K[y], but in fact belong to 
A [ y] by (3.5.1). Note that 

(3.7.2) 	 Hn(y) = 1 (01 n~ q - 1). 

From the estimate (3.6.3), we obtain 

Substituting Tqk for y and x/Lk for x in (3.7.1), we get by (3.6.4) and the 
definitions, 

By (3.4.6) and (3.4.8), 

3.8. Fix a positive integer n. We define coefficients hni E A ( i  = 0,1,2, . . . ) 
thus: 

(Note the index shift.) Of course, by (3.7.3) 

n4
(3.8.1) 	 hni= 0 fori 2 -. 

4 - 1  

Set 

Y,,, =: the column vector of length n with last entry Ti  and all other 
entries vanishing. 

Now define an A-valued point of C B n  by the formula 
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We call Z, the special point of C@". Here are some examples for small values 
of n. 

l o \  

For each monic irreducible element u of A, set 

Z,, ,=: [vn- 11,Z, E CBn(A)= An. 

We call Z,,, the vtwist  of the special point 2,. The vtwist operation 
corresponds to the operation of "deleting the Euler factor at 0". For example, as 
we shall show presently, 

Note that by Proposition 1.6.1, 

Z,," -- 0 mod v; 

hence log ,, ,( Z,, ,) is defined. 

THEOREM3.8.3. ( I )  There exists z, E K: (constructed explicitly in the 
proof) such that exp,,,(z,) = Z, and 

(11) For each monic irreducible element v of A, 
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COROLLARY3.8.4. If q - 1does not divide n, then 2, is not a torsion point 
of C@". 

Proof of corollary. Suppose that Zn is a torsion point. Then by (I) of the 
theorem and Corollary 2.5.8, the last coordinate of zn would be a K-multiple of 
enand, a fortiori, a K,-multiple. But this possibility is ruled out by Corollary 
2.5.9. q.e.d. 

Remark. Using Theorem 3.1.1, together with transcendence theory, Yu [Y2] 
has proved the converse to Corollary 3.8.4. For example, 1 is T2 + T-torsion if 
9 = 2, but non-torsion otherwise. 

3.9. Proof of Theorem 3.8.3(1). For 0 Ii < n(q/q - I), the column vec- 
tor Yni is in the region of convergence of log,, ,by Proposition 2.4.3. Therefore 

yni=: log,,,Yni E K& 

is defined and moreover, 

'ni = ex~n, rn(~ni )+  

Set 

Then the sum above breaks off after finitely many terms and, in view of the 

It remains to examine the last coordinate of z,. By Proposition 2.1.5 and the 
remark made at the end of subsection 2.3, 

By (3.7.4) and the definition of the coefficients hni, the last coordinate of the 
right-hand side above is indeed I',{(n). q.e.d. 

3.10. In this paragraph we prepare for the proof of Theorem 3.8.3(11). Let 
X be a variable and let K[[X]] be the ring of power series in X with coefficients 
in K. We define a map log,,,: XK[[X]In + XK[[X]In by the rule 

00 

log,, ,g = EPig(? 
i = O  

Here the coefficients Pi (see subsection 2.1 above) are the coefficients of the 

,, functional equation satisfied by exp,, 



189 

uXi b) belongs ,( ,,nonnegative integer. Then, by Proposition 2.4.1, log 

TENSOR POWERS OF THE CARLITZ MODULE 

formal logarithm log, associated to CBn,and g(') denotes the column vector 
whose entries are the (qi)th powers of the entries of g. Then log,,, ,satisfies the 
expected functional equation: 

log.,.([al .g) = d[aI.log,,.(g) ( a  E A, g E XK[[XII") .  

Let KO{ X )  denote the ring of power series with coefficients in K, convergent in 
the "closed" vadic unit disc 1x1, I 1. Then, in particular, we may assign to 
each g(X) E KO{ X )"  of length n a value g(1) E KG at X = 1 by summing 
vadically. Now let b E An be a column vector with entries in A and let i be a 

to 
KO{ X ) "; clearly the result of evaluation at X = 1 is log,, Job). Therefore, by 
the linearity of evaluation at X = 1, of log,, ,and of log,, U, the diagram below 
commutes: 

3.11. Proof of Theorem 3.8.3(11). Set 

i 


Then by the remark at the end of subsection 2.3 and formula (3.7.4), 

Set 
z,, ,(X) =: d [on]  ,zn(X) - z , ( x ~ ~ ~ ~ ( " ' )  

Then 

C 
U S A +  

(o, A ) = l  
deg(a)=k 
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Set 

" a',(XI =: C ['nil .(XYni) "[XI 
i 


Then Z,(X) is an A[X]-valued point of C@"from which, upon evaluating at 
X = 1, one recovers the special point Z,. Set 

Note that, upon evaluating Z,, .(X) at X = 1, we recover the v-twist Z,, of the 
special point Z, and that, 

Now by Proposition 1.6.1, 

and hence, by Proposition 2.4.1, the entries of the column vector x,, .(X) are 
power series convergent in the v-adic unit disk 1x1, I 1. By the commutativity 
of diagram (3.10. l ) ,  

zn ,  v(l) = logn,v Zn,v .  

By (3.3.1) and (3.11.1), the last entry of z,, .(l) is [,(n). q.e.d. 
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